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Abstract

Increasing knowledge of intertumor heterogeneity, intratumor heterogeneity, and 
cancer evolution has improved the understanding of anticancer treatment resistance. 
A better characterization of cancer evolution and subsequent use of this knowledge 
for personalized treatment would increase the chance to overcome cancer treatment 
resistance. Model-based approaches may help achieve this goal. In this review, we 
comprehensively summarized mathematical models of tumor dynamics for solid 
tumors and of drug resistance evolution. Models displayed by ordinary differential 
equations, algebraic equations, and partial differential equations for characterizing 
tumor burden dynamics are introduced and discussed. As for tumor resistance 
evolution, stochastic and deterministic models are introduced and discussed. The 
results may facilitate a novel model-based analysis on anticancer treatment response 
and the occurrence of resistance, which incorporates both tumor dynamics and 
resistance evolution. The opportunities of a model-based approach as discussed in 
this review can be of great benefit for future optimizing and personalizing anticancer 
treatment.
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1.  Introduction

Drug resistance is one of the major reasons for patients experiencing treatment failure in 
the area of oncology [1]. Increasing knowledge of intertumor and intratumor heterogeneity 
that suggests distinct cells exist in different or the same tumors as well as cancer evolution 
have improved the understanding of anticancer treatment resistance [2]. It thereby pushes 
forward the necessity of precision medicine rather than a one-size-fits-all approach [2]. To 
rationalize the treatment personalization and address treatment failure, the use of modeling 
and simulation, which can quantitatively characterize and predict the relationships between 
drug exposure/pharmacokinetics (PK), drug effects/pharmacodynamics (PD), and disease 
progression, is widely accepted to support drug decision making [3-6].

Mathematical models that characterize the effects of anticancer drug treatment for solid 
tumors based on tumor size dynamics, which is typically quantified with measurements 
of tumor diameter and volume, represent one key class of models applied in cancer phar-
macology. Various tumor growth modeling strategies have been previously reviewed, 
including agent-based models [7], image-based models [8], multiscale models [9], and 
PK/PD models [10, 11].

Currently, an increasing number of studies concerning the gene sequencing of tumor 
biopsies in different cancer types have demonstrated the dynamics of cancer evolution [2, 
12]. Intratumor heterogeneity that results from cancer evolution and an evolving adaption 
of heterogeneous tumor to treatment are also increasingly acknowledged as key factors 
related to the development of resistance [2, 12]. To better characterize this process and 
to account for tumor heterogeneity, mathematical models that consider the evolution of 
tumors have been proposed [13-17]. Potentially, such evolution models in conjunction 
with tumor growth models could be of benefit to interpret both tumor size change and 
evolving tumor progression during treatment and thereby ultimately rationalize adaptive 
treatments for individual patients and overcome treatment resistance.

To identify the challenges and opportunities of characterizing tumor size change and resist-
ance evolution simultaneously with a model-based approach that can facilitate anticancer 
treatment optimization and personalized medicine, an overview of the current available 
model structures is needed. Thus, in the current review, we comprehensively summarized 
mathematical models for the characterization of tumor growth (inhibition) dynamics in 
solid tumors and the relevant clonal evolution of drug resistance by a systematic search 
and study of previous literature. The focus in this review lies particularly on models that 
are applicable for clinical data.   
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2.  Literature search

Studies that characterized tumor growth (inhibition) dynamics and clonal evolution of 
drug resistance with mathematical models were systematically retrieved and studied from 
the PubMed database to provide a comprehensive and unbiased review. In total, 274 and 
85 publications were obtained, respectively, for studies of tumor dynamics and tumor 
resistance evolution based on established search terms. Details of the literature search 
are described in Supplementary Material S2.1 and Figure S2.1. Ultimately, 61 and 25 
papers, among which 13 and 2 papers were obtained from the publications’ references, 
which introduced corresponding original models or demonstrated application examples of 
certain model structures, were included, respectively, for tumor dynamics and resistance 
evolution modeling. Model structures, cancer types, treatments, and the ways of reporting 
tumor sizes were extracted from the included papers. The identified model structures 
were classified by equation types in later sessions and were summarized in Tables 2.1 and 
2.2. Data input, knowledge requirement, study type, and objectives related to different 
model structures were summarized in Table 2.3 to provide a reference of the selection 
of different model structures. The information of software that was used to perform the 
corresponding modeling and simulation analysis was also obtained and are summarized 
in Supplementary Material S2.1 and Table S2.1.

3.  Tumor dynamics modeling 

3.1  Ordinary differential equation

3.1.1  Basic growth model
A majority of the included studies applied ordinary differential equations (ODEs) to 
describe tumor burden change. The natural growth of a tumor without treatment is 
commonly characterized with several basic functions, including linear, exponential, 
logistic, Gompertz, and combined exponential and linear models (Table 2.1). The time 
curves of different models were simulated and are presented in Figure 2.1. Differential 
equations were solved with the RxODE package implemented in R software (version 3.4.1; 
R Foundation for Statistical Computing, Vienna, Austria).

The linear tumor growth assumes a constant zero-order growth rate (Eq. 2.1; Figure 2.1) 
[10]. It has been applied to describe the natural tumor growth of metastatic renal cell 
carcinoma [18] based on the measurements of sum of longest diameters (SLD) of the 
target lesions in patients.
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Table 2.1: Modeling frameworks for characterizing tumor dynamics

Models/assumptions Equations Ref.

Ordinary differential equations

Basic functions describing natural tumor growth

Linear growth 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑔𝑔 

Eq. 2.1 [18]

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑔𝑔 � 𝑑𝑑 � 𝑑𝑑 

Eq. 2.2 [21]

Exponential growth 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑔𝑔 ∙ 𝑇𝑇 

Eq. 2.3 [20]

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑔𝑔 � 𝑑𝑑 � 𝑑𝑑 � 𝑑𝑑 

Eq. 2.4 [22, 23]

Logistic growth 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑔𝑔 ∙ 𝑇𝑇𝑇  �� � 𝑇𝑇

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚� 
Eq. 2.5 [24, 25]

Gompertz growth 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑔𝑔 ∙ 𝑇𝑇𝑇  𝑇𝑇 �𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇 � 

Eq. 2.6 [27, 29]

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � � � �𝑑𝑑𝑑𝑑𝑑𝑑 

Eq. 2.7 [28]

Combination of exponential 
and linear growth

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 �

0 ∙ 𝑇𝑇

�1 � �01 ∙ 𝑇𝑇�
20
�
1
20

 
Eq. 2.8 [31]

Model structures integrating tumor heterogeneity

Tumor burden(T)=
Proliferative component (P) 
+ Quiescent component (Q) �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑃𝑃� � �1 ∙ 𝑃𝑃

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �1 ∙ 𝑃𝑃

 

Eq. 2.9 [25]

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑃𝑃� � �1 ∙ 𝑑𝑑 � �2 ∙ 𝑄𝑄

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �1 ∙ 𝑑𝑑 � �2 ∙ 𝑄𝑄

 

Eq. 2.10 [22, 33]

Tumor burden (T)=
Sensitive component (S) + 
Resistant component (R) �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑆𝑆�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑅𝑅�

 

Eq. 2.11 [24]

Table 2.1 continues on next page.
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Table 2.1: Continued

Models/assumptions Equations Ref.

Tumor burden (T)=
Sensitive component (S) + 
Resistant component (R) �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑆𝑆� � �1 ∙ 𝑆𝑆
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑅𝑅� � �1 ∙ 𝑆𝑆

 

Eq. 2.12 [23, 35]

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑆𝑆� � �1 ∙ 𝑑𝑑 � �2 ∙ 𝑅𝑅
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑅𝑅� � �1 ∙ 𝑑𝑑 � �2 ∙ 𝑅𝑅

 

Eq. 2.13 [34, 36]

Model structures integrating tumor biology process

Angiogenesis 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑇𝑇� � � ∙ 𝐵𝐵𝐵𝐵0 � 𝐵𝐵𝐵𝐵𝑡𝑡

𝐵𝐵𝐵𝐵0
∙ 𝑇𝑇 

�������� ��𝑇𝑇� � � ∙ �� � 𝐵𝐵𝐵𝐵�
𝐵𝐵𝐵𝐵�

� ∙ 𝑑𝑑 

Eq. 2.14 [31, 39]

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑔𝑔 ∙ 𝑇𝑇𝑇  �1 � 𝑇𝑇

𝐸𝐸�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �2 ∙ 𝑇𝑇

1
2

 

Eq. 2.15 [40]

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑔𝑔 ∙ 𝑉𝑉 𝑉 𝑉𝑉𝑉 �𝐸𝐸𝑇𝑇�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �2 ∙ 𝑑𝑑 � 𝑑𝑑 ∙ 𝑑𝑑

2
3 ∙ 𝐸𝐸

 

Eq. 2.16 [41, 42]

Immune system

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � 𝑓𝑓�𝑇𝑇� � 𝑓𝑓�𝐼𝐼� ∙ 𝑇𝑇𝑇  � ℎ

𝑑𝑑 � ℎ�
𝑓𝑓�𝐼𝐼� � 𝑑𝑑 ∙ 𝐼𝐼

 
Eq. 2.17 [44] 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � 𝑓𝑓�𝑇𝑇� � 𝑓𝑓�𝐼𝐼� ∙ 𝑇𝑇𝑇  � ℎ

𝑑𝑑 � ℎ�
𝑓𝑓�𝐼𝐼� � �𝑑𝑑1 ∙ 𝐼𝐼1 � 𝑑𝑑2 ∙ 𝐼𝐼2� ∙ � 𝐼𝐼3

𝐼𝐼3 � ��
 

Eq. 2.18 [43]

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑇𝑇� � 𝑑𝑑1 ∙ � ∙ 𝑑𝑑 � 𝑑𝑑2 ∙ 𝑁𝑁 𝑁𝑁𝑁  

Eq. 2.19 [46]

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑇𝑇� � 𝑑𝑑 � � � 𝑑𝑑 

Eq. 2.20 [47]

Empirical model structures describing therapeutic effect

First-order treatment effect 
(“log-kill” pattern)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑇𝑇� � �𝑑𝑑 ∙ 𝑇𝑇 

Eq. 2.21 [18]

Exposure-dependent 
treatment effect

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑇𝑇� � �𝑑𝑑 ∙ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝐸  

Eq. 2.22 [22, 25]

Table 2.1 continues on next page.
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Table 2.1: Continued

Models/assumptions Equations Ref.

Exposure-dependent 
treatment effect with 
resistance (TGI model)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑑𝑑� � �𝑑𝑑 ∙ 𝑒𝑒��∙𝑑𝑑 ∙ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸   

Eq. 2.23 [20, 48, 
49]

Introducing a damaged cell 
compartment

⎩⎪
⎨
⎪⎧
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑆𝑆� � �𝑑𝑑 ∙ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝐸
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑑𝑑 ∙ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ∙ 𝑑𝑑 � 𝑑𝑑 ∙ 𝑑𝑑

� � 𝑑𝑑 � 𝑑𝑑

 

Eq. 2.24 [24, 25]

Nonlinear drug exposure-
effect relationship 𝑘𝑘𝑔𝑔′ � 𝑘𝑘𝑔𝑔 ∙ �� � 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝐼𝐼𝐼𝐼50 � 𝐸𝐸𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� 
Eq. 2.25 [21]

Algebraic equations

Two-phase model  Eq. 2.26 [50, 51, 
55]

� � �����∙� � ���∙����� � �� ∙ ���� Eq. 2.27 [50]

 Eq. 2.28 [55]

Model proposed by Wang 
et al.

 Eq. 2.29 [52, 56]

An extension of Eq. 2.30  Eq. 2.30 [53]

� � �� � �� ∙ � 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
100𝑚𝑚𝑚𝑚� 

Eq. 2.31 [53]

Simplified TGI model



 

Eq. 2.32 [54, 57, 
58, 59, 
60]

Partial differential equations

Proliferation-invasion model 𝜕𝜕𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�
𝜕𝜕𝜕𝜕 � ���� � ��𝑐𝑐�𝑥𝑥𝑥 𝑥𝑥� � ��𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�� Eq. 2.33 [61, 63, 

64, 69, 
70]

� � ��𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷 𝐷𝐷 Eq. 2.34

𝜕𝜕𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�
𝜕𝜕𝜕𝜕 � ���� ∙ ��𝑐𝑐�𝑥𝑥𝑥 𝑥𝑥� � ��𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�� � �� ∙ 𝑐𝑐�𝑥𝑥𝑥 𝑥𝑥� 

𝜕𝜕𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�
𝜕𝜕𝜕𝜕 � ���� ∙ ��𝑐𝑐�𝑥𝑥𝑥 𝑥𝑥� � ��𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�� � �� ∙ 𝑐𝑐�𝑥𝑥𝑥 𝑥𝑥� 

Eq. 2.35 [67]

 Eq. 2.36 [64]

Table 2.1 continues on next page.
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Table 2.1: Continued

Models/assumptions Equations Ref.

Proliferation-invasion model 𝜕𝜕𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�
𝜕𝜕𝜕𝜕 � ���� � ��𝑐𝑐�𝑥𝑥𝑥 𝑥𝑥� � ��𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�� � �� � ����� � ��𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�� 

𝜕𝜕𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�
𝜕𝜕𝜕𝜕 � ���� � ��𝑐𝑐�𝑥𝑥𝑥 𝑥𝑥� � ��𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�� � �� � ����� � ��𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�� 

Eq. 2.37 [64]

𝜕𝜕𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�
𝜕𝜕𝜕𝜕 � ���� � ��𝑐𝑐�𝑥𝑥𝑥 𝑥𝑥� � ��𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�� � ��𝑥𝑥𝑥 𝑥𝑥� 

𝜕𝜕𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�
𝜕𝜕𝜕𝜕 � ���� � ��𝑐𝑐�𝑥𝑥𝑥 𝑥𝑥� � ��𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�� � ��𝑥𝑥𝑥 𝑥𝑥� 

Eq. 2.38 [74]

α, β, radio sensitivity parameters; A, exponential shrinkage rate constant as a result of treatment; a, b, 
constants; B, linear growth rate constant; BASE, baseline of tumor burden; BM0, baseline of biomarkers; BMt, 
biomarker amount at time point t, which could be assumed to remain constant and equal to baseline in 
the absence of treatment; C, coefficient of quadratic growth term; c(x,t), tumor cell concentration/density at 
location x at time t; D, damaged cells; d, death rate constant; d1, d2, rate constants; Dif, diffusion coefficient; E, 
vessel endothelial cells; Emax, maximal fraction of inhibition; f(P), f(S), f(R), f(T), growth function of proliferative 
cells (P), sensitive cells (S), resistant cells (R), and tumor tissue (T), respectively; G(x,t), surgical term; h, g, 
constants; I, I1, I2, I3, components in the immune system; IC50, the drug exposure that produces 50% of Emax; k, 
k2, rate constants; kd, shrinkage rate constant of tumor as a result of drug treatment; kg, growth rate/growth 
rate constant; kg

’, tumor growth rate constant under treatment; m1, m2, conversion rate constants that can 
be set as 0; N, normal cells; Surv, the probability of tumor cell survival; T, tumor burden; TGI, tumor growth 
inhibition; Tmax, carrying capacity; λ, treatment efficacy decay rate constant; λ0, exponential growth rate; 
λ1, linear growth rate; τ, delayed time of tumor regrowth; 𝜙, sensitive fraction of the tumor; ρ, growth rate 
constant; ∇2, a Laplacian operator; f(c(x,t)), tumor proliferation function.

The exponential growth assumes the growth rate of a tumor is proportional to tumor 
burden (first-order growth; Eq. 2.3; Figure 2.1) [10, 19]. It has been adopted in a widely 
used tumor growth inhibition (TGI) model developed by Claret et al. to describe nature 
tumor growth [11, 20].

The linear and exponential growth models have also been expanded by introducing a 
first-order shrinkage term describing natural tumor death. For example, a model with 
a linear growth and a first-order shrinkage (Eq. 2.2) was applied to describe the natural 
tumor growth in patients with advanced solid malignancies based on SLD measurements 
[21]. An exponential growth with a first-order shrinkage (Eq. 2.4) was also used as part 
of the model structure to describe the natural growth of pediatric neuroblastoma based 
on tumor volume measurements [22]. The same model structure was also adopted for 
the description of the change of prostate cancer burden reflected by the level of prostate-
specific antigen (PSA) [23].

When compared with the unlimited growing pattern of linear and exponential growth 
models, the logistic and Gompertz growth models provide a biologically realistic change 
of the growth rate as the tumor burden increases [6] (Figure 2.1). The logistic growth 
model assumes that the growth is limited by a carrying capacity (Eq. 2.5) [10] whereas 
the Gompertz model assumes the growth rate of tumor decreases over time (Eqs. 2.6 and 
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2.7) [10, 11]. Many clinical studies have applied the logistic [24-26] and Gompertz models 
[11, 27] as well as simulation studies [28, 29].

Finally, a combination of exponential and linear growth models (Eq. 2.8) has also been 
introduced to describe tumor growth in patients, although it was proposed primarily for 
characterizing xenograft tumor dynamics [30]. This combined model structure assumes 
that an exponential (first-order) growth switches to a linear (zero-order) growth after 
reaching a threshold (Figure 2.1). It was well used to describe the natural growth of 
vestibular schwannoma volume in patients with neurofibromatosis type 2 [31]. Setting 
the power term as 20 allows the switch between two growth patterns sharply enough [30].

Figure 2.1:  Simulated time curves of tumor burden (T) with tumor natural growth models displayed by 
Eqs. 2.1–2.6 and 8. kg is the tumor growth rate / growth rate constant, d is the tumor death rate constant, 
Tmax is the carrying capacity, λ0 is the exponential growth rate, and λ1 is the linear growth rate. The baseline 
of tumor burden is 5. Parameter values used for the simulations are as follows: Models 1 and 2 (Eqs. 2.1 and 
2.2), kg = 2; Model 2 (Eq. 2.2), d = 0.01; Models 3–6 (Eqs. 2.3–2.6), kg = 0.1; Model 4 (Eq. 2.4), d = 0.01; Models 
5 and 6 (Eqs. 2.5 and 2.6), Tmax = 120; Model 7 (Eq. 2.8), λ0 = 0.1, λ1 = 2.

Model 7 (Eq.8): Combined exponential and
linear growth

Model 4 (Eq.4): Exponential growth
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3.1.2  Tumor heterogeneity 
As a result of the increasing awareness of the relevance of considering tumor heterogeneity, 
model structures displayed by ODEs that incorporate tumor heterogeneity and mutations 
have been developed for the characterization of tumor dynamics as was described in a 
simulation study [32]. The general used model structures concerning tumor heterogeneity 
are shown in Table 2.1.

Proliferative and quiescent cells

One frequently made assumption when modeling the growth of heterogeneous tumors is to 
separate total tumor mass into proliferative and quiescent cells [22, 25, 33]. The increase of 
quiescent tumor cells is assumed to result from a first-order conversion from proliferative 
tumor cells instead of their own proliferation (Eq. 2.9). A reversed conversion can also be 
assumed to be present (Eq. 2.10). The growth of proliferative cells may follow the patterns 
as were introduced in the Basic growth model section Based on these assumptions, the 
time courses of mean tumor diameter (MTD) in patients with low-grade glioma [25] and 
that of tumor volume in pediatric neuroblastoma patients were successfully described 
[22]. A similar model structure was also used to predict the effect of different treatment 
regimens taking tumor cell number as a target [33]. Drug treatment effect could work 
on both kinds of tissues [25], only on the proliferative tissue [22], or on targeted tissues 
depending on the types of drug [33].

Sensitive and resistant cells

Another commonly made assumption is that tumors are composed of drug-sensitive and 
drug-resistant cells [24, 34]. These two cell types both proliferate, but drug treatment can 
only decrease the amount of drug-sensitive cells. Primary and acquired resistance can both 
be taken into consideration. For illustrating the acquired resistance, the resistant cells are 
mostly assumed to mutate from sensitive cells because of the treatment with a first-order 
process [23, 24, 34, 35] (Eqs. 2.12–2.13). By separating tumor mass into sensitive and 
resistant cells, the dynamics of low-grade glioma measured with MTD in patients was well 
described with models assuming that primary resistant cells or both primary and acquired 
resistant cells are present in the tumor [24]. In the study, the natural growth of drug-sensitive 
and primary-resistant cells were described separately without any conversion (Eq. 2.11). 
The acquired resistant cells are assumed to emerge exponentially from damaged sensitive 
cells as a result of treatment. Also, by assuming that resistant cells can also convert back 
to sensitive cells (Eq. 2.13), the dynamics of the PSA level in prostate cancer patients was 
well described, where the rate constants of cell proliferation, apoptosis, and conversion are 
expressed as functions of intracellular concentration of androgen receptors [34].
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In addition, the treatment sensitivity of both proliferative and quiescent cells can also be 
considered when modeling tumor growth, leading to a combination of previous introduced 
model structures. One example can be seen from a study that assumed proliferative and 
quiescent cells form a tumor and the proliferative cells could mutate from drug sensitive 
to drug resistant, which is biologically plausible [33].

Androgen-dependent cells and androgen-independent cells 

Studies regarding prostate cancer often consider prostate tumors consists of androgen-
dependent (AD) and androgen-independent (AI) cells [23, 36-38]. PSA levels are commonly 
used to represent tumor burden in this case. Two frequently reported model structures 
for describing the growth of prostate cancer were proposed by Ideta et al. [23] and Hirata 
et al. [36].

The former model structure assumes that prostate cancer consists of AD and AI cells, and 
AD cells can mutate exponentially to AI cells when treatment alters the androgen level. 
The model structure is shown in Eq. 2.12. The natural proliferation and apoptosis rate 
constants of AD and AI cells were expressed as functions of the androgen level [23]. The 
net growth rate of AD decreases when the androgen level decreases because of treatment, 
whereas that of AI cells increases. When the androgen level is normal, three cases of the 
net growth rate of AI cells were considered: larger than 0, equal to 0, and smaller than 0. 
This model was recently extended by accounting for competition between two kinds of 
cells and the finite carrying capacity environment [35].

The latter model structure assumes that besides AD cells, reversible and irreversible AI cells 
exist. All types of cells are assumed to proliferate and convert to each other exponentially. 
It is assumed that AD cells convert to both types of AI cells during on-treatment status 
and reversible AI cells convert back to AD cells during off-treatment status. The model 
structure is expressed with Eq. 2.13. This model has been applied to adequately describe 
patient data [37, 38].

3.1.3  Integration of biology process
Tumor growth models displayed by ODEs that additionally incorporate biological factors 
and processes have also been developed [6], such as integration of angiogenesis biomarkers 
and the dynamics of components in the immune system (Table 2.1). To apply these 
methods, apart from tumor burden measurements, knowledge related to the biological 
processes is also needed.
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Angiogenesis 

Concentration of vascular endothelial growth factor (VEGF) or soluble VEGF receptor may 
serve as biomarkers indicating the treatment effect for patients treated with angiogenesis 
inhibitors [11]. Incorporating the dynamics of angiogenesis biomarkers in tumor growth 
modeling enables better understanding and prediction of tumor progression. A model 
structure showed as Eq. 2.14, where the change of biomarkers from baseline affects the 
tumor decay rate, was applied in two studies [31, 39]. One study characterized the time 
course of SLD in patients with gastrointestinal stromal cancer undergoing sunitinib 
treatment. The natural growth of the tumor was described with the exponential model, 
and the model-predicted relative change of the biomarker’s amount was incorporated to 
affect the shrinkage of the tumor [39]. The other study well characterized the dynamics 
of tumor volume measured in neurofibromatosis patients undergoing bevacizumab and 
everolimus. The natural tumor growth was described by the combined exponential and 
linear model (Eq. 2.8), and the amount of unbound VEGF was considered to affect a first-
order apoptosis of the tumor [31].

Another way to account for angiogenesis effect on tumor growth is by assuming the carrying 
capacity of the tumor is determined by the effective tumor vascular support that is in turn 
affected by the tumor volume (Eqs. 2.15 and 2.16) [40, 41]. Logistic and Gompertz model 
structures were applied under this assumption. A model structure displayed by Eq. 2.15 was 
applied to well characterize the tumor growth in renal cell carcinoma (RCC) patients based 
on SLD measurements [40]. The carrying capacity in this study was assumed to expand 
because of proangiogenic factors. Another similar model structure is shown by Eq. 2.16. 
Although as far as we know there is no clinical study that utilized this model framework, 
it has been used to perform simulations to optimize the delivery of therapeutic agents for 
enhancing targeted therapies for liver cancer [41] and to investigate the optimization of 
antiangiogenic treatment [42].

Immune system

Apart from angiogenesis, the effect of the immune system has also been incorporated in 
the tumor growth model when patients were undergoing immunotherapy [43, 44]. The 
proposed model structure is presented in Eqs. 2.17 and 2.18, where the rate of first-order 
decline of tumor burden was assumed to depend on the amount of immune component 
and decrease while tumor burden was increasing. This model structure was adopted to 
characterize the growth of prostate cancer by accounting for the dynamics of the immune 
system. Tumor cells were assumed to proliferate exponentially, and the amount of cytotoxic 
T lymphocytes affected the cell decline rate (Eq. 2.17) [44]. The applicability of this model 
was validated by the results of a clinical trial where PSA measurements were obtained from 
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prostate cancer patients treated with a vaccine. Considering the effect of more than one 
immune component, another study developed a model structure to simulate the growth of 
bladder cancer undergoing immunotherapy [43]. The growth of tumor cells was described 
with a logistic model, and the cell decline rate was set to be linearly or nonlinearly related 
to the amount of immune components (Eq. 2.18).

Another concept model structure described tumor burden dynamics by a logistic growth, 
a first-order damage resulting from immune cells, and a first-order competition with 
normal cells (Eq. 2.19) [45]. This model structure was recently adopted to obtain an 
optimal dosing regimen for cancer patients based on simulation [46]. A model structure 
that omits the competition with normal cells (Eq. 2.20) was also proposed to investigate 
treatment optimization [47].

3.1.4  Treatment effect 

Empirical method

Tumor shrinkage resulting from drug treatment is typically quantified with an empirical 
drug-induced shrinkage term as has previously been summarized [10]. Commonly used 
equations identified from included papers are presented in Table 2.1. The time curves 
of these equations were simulated with R and are shown in Figure 2.2, assuming an 
exponential growth with the growth rate constant kg = 0.1. 

A log-kill pattern is commonly used for modeling treatment effect, which assumes that 
the shrinkage rate of the tumor as a result of drug treatment is proportional to tumor 
burden [6]. The simplest way to adopt this pattern is using Eq. 2.21, where kd is the drug-
induced tumor shrinkage rate constant. Such an equation has been used to well described 
the treatment effect of everolimus on metastatic RCC patients [18]. The estimates of kd in 
that study were different between two dose groups.

The rate of drug-induced shrinkage can also be considered to depend on drug exposure, 
i.e., drug concentration and area under the concentration-time curve or drug dose. A linear 
drug exposure-effect relationship can be quantified using Eq. 2.22 [22, 25]. Meanwhile, 
drug resistance can also be taken into consideration by introducing a e–λ⋅t term on the basis 
of Eq. 2.22 to quantify the decline of drug effect over time (Eq. 2.23; Figure 2.2). This 
model structure has been applied to characterize the effect of pazopanib on RCC patients 
[40]. Setting f (T) = kg ⋅ T, an exposure-driven TGI model was developed based on SLD 
measurements from colorectal cancer patients receiving capecitabine and fluorouracil [20]. 
It has then been widely applied to various cancer types and drugs as was reviewed previ-
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ously [11]. Two more recent studies also adopted this model structure to characterize the 
tumor SLD change in metastatic breast cancer patients treated with eribulin [48] and in 
metastatic ovarian cancer patients receiving carboplatin or gemcitabine plus carboplatin 
[49], respectively.

In addition, a damaged cell compartment (D) has also been introduced in studies to 
account for the damage on cell DNA as a result of the treatment, as is displayed by Eq. 2.24, 
which can result in a delay on drug onset (Figure 2.2). This model structure was used in 
two studies that characterized the MTD change in low-grade glioma patients treated with 
chemotherapy or radiotherapy [24, 25]. In these two studies, the damaged cell compartment 
was used to characterize the treatment effects on drug-sensitive cells [24] and quiescent 
cells [25] respectively. Part of the damaged cells eventually died, and the rest were assumed 
to become drug-resistant cells [24] and proliferative cells [25] respectively.

Apart from the linear drug exposure-effect relationship, a nonlinear drug exposure-effect 
relationship can also be considered to characterize treatment effect particularly for targeted 
anticancer treatment [21]. An Emax model is commonly used in this circumstance. An 
example equation is showed as Eq. 2.25, which was derived from a model where the studied 
medicine was assumed to inhibit the zero-order growth rate of advanced solid malignan-
cies following the nonlinear drug exposure-effect relationship [21]. 

Considering biomarkers 

When biomarkers that represent the drug-targeting system are incorporated in the tumor 
dynamic models, treatment effect can be added on the dynamics of biomarkers according 
to corresponding mechanisms. 

In the study where neurofibromatosis patients were treated with bevacizumab and 
everolimus, the decrease of the unbound VEGF amount because of the binding with 
bevacizumab was considered in the model [31]. Meanwhile, the inhibition of the zero-
order production rate of total VEGF because of everolimus was described with a nonlinear 

exposure-effect relationship: 𝑘𝑘′ � 𝑘𝑘 � � 𝐼𝐼𝐼𝐼50
𝐼𝐼𝐼𝐼50 � ��������� , where IC50 the drug exposure 

that produces 50% of the maximal inhibition effect. As a result of the quantity decrease 
of biomarkers, the shrinkage rate of tumor burden increased (Eq. 2.14). The delayed 
activation of tumor proliferation result from the continuous use of everolimus was also 
integrated in their model structure [31]. In the study where gastrointestinal stromal cancer 
patients were treated with sunitinib, the effect of sunitinib was described by a nonlinear 
inhibition on the zero-order production rate or first-order decline rate of biomarkers 

using 𝑘𝑘′ � 𝑘𝑘 ∙ �� � 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝐼𝐼𝐼𝐼50 � 𝐸𝐸𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� , where Imax is the maximal fraction of inhibition 
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[39]. The negative item in Eq. 2.23 was also included to quantify the treatment effect and 
resistance [39].

In addition, the effect of angiogenesis inhibition treatment can also be incorporated by 
introducing a first-order drug exposure dependent decline term (Eq. 2.22) on the dynamics 
of tumor vascular support [40, 41] when the vascular support was assumed to determine 
the carrying capacity of tumor (Eqs. 2.15 and 2.16).

Studies where patients were treated with immunotherapy have also considered drug inter-
action with the immune system. The presence of immunotherapeutic agents is frequently 
assumed to affect the dynamics of components in the immune system, and the amount of 

Figure 2.2:  Simulated time curves of total tumor burden (T) with tumor dynamic models incorporating 
treatment effect with Eqs. 2.21–2.25 and assuming an exponential growth (growth rate constant kg = 0.1). kd 
is the tumor shrinkage rate constant due to drug treatment, λ is the treatment efficacy decay rate constant, 
S is the drug sensitive cells, D represents the damaged cells, d is the death rate constant. Emax is the maximal 
fraction of inhibition, and IC50 is the drug exposure that produces 50% of Emax. The baseline of total tumor 
burden is 30. Parameter values used for the simulations are as follows: Model 1 (Eq. 2.21), kd = 0.4; Models 2–4 
(Eqs. 2.22–2.24), kd = 0.04; Model 3 (Eq. 2.23), λ = 0.1; Model 4 (Eq. 2.24), d = 0.1; Model 5 (Eq. 2.25), Emax = 2, IC50 = 5. 

Drug exposure was simulated with Hill’s equation: 𝐸𝐸�𝐸𝐸����� � 𝐸𝐸𝐸𝐸��� ∙ 𝑡𝑡���
𝐸𝐸𝐸𝐸𝐸𝐸����� � 𝑡𝑡��� � �0 ∙ 𝑡𝑡���

10��� � 𝑡𝑡��� ,  

where Epmax represents the maximum exposure at steady state and Ept50 represents the time when the 
exposure reaches half maximum value.

Model 4 (Eq.24): Damage compartment considered Model 5 (Eq.25): Non−linear drug exposure−effect

Model 1 (Eq.21) : First−order treatment effect Model 2 (Eq.22): Exposure−dependent
first−order treatment effect

Model 3 (Eq.23): Exposure−dependent
first−order treatment effect + resistance
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those components can affect the decrease rate of tumor burden (Eqs. 2.17 and 2.18) [43, 
44]. For example, the model structure proposed to describe PSA change in prostate cancer 
patients treated with a vaccine assumed that the presence of the vaccine upregulated the 
zero-order production rate of mature dendritic cells and therefore increased the number 
of cytotoxic T lymphocytes, which increased the decay of tumor tissue [44].

3.2  Algebraic equation
Besides using ODEs, model structures displayed by algebraic equations have also been 
developed to characterize the dynamics of tumor directly as is summarized in Table 2.1 
[50-54]. The simulated time curves of tumor dynamics given by these models are shown 
in Figure 2.3. Although these equations could be treated as analytical solutions of ODEs, 
they provided different shapes of time curves when compared with what was introduced 
previously.

A novel two-phase model that combines exponential tumor regrowth and regression was 
developed to interpret serial PSA measurements from AI prostate cancer patients [50] 
and metastatic castration-resistant prostate carcinoma patients undergoing combination 
therapy [51]. The corresponding model equation is shown in Eq. 2.26, where kg is the tumor 
regrowth rate constant and kd is the drug-dependent tumor regression rate constant. The 
same model structure was also utilized to assess the therapeutic efficacy of bevacizumab 
in patients with RCC using the sum of perpendicular diameter measurements [55]. On 
the bases of this model structure, an extra parameter τ has been introduced to account 
for the delayed tumor regrowth as presented in Figure 2.3 (Eq. 2.27) [50]. In addition, a 
parameter 𝜙 has also been introduced on the basis of Eq. 2.26 to differentiate the sensitive 
and resistant part of the tumor (Eq. 2.28) [55], which results in a less degree of tumor 
shrinkage at the early phase (Figure 2.3). This model structure was found to be applicable 
when sufficient data points were available, and the estimation of growth rate constant was 
similar to what was obtained by the original equation (Eq. 2.26).

Another model structure was proposed by Wang et al. to describe the time courses of 
tumor SLD data of non-small cell lung cancer (NSCLC) patients from four clinical trials 
treated with eight treatments/placebos [11, 52], as shown by Eq. 2.29. A and B represent 
the rate constants of exponential shrinkage as a result of treatment and linear growth, 
respectively. The treatment effect was also characterized as a drug-dependent manner. This 
model structure has been successfully applied afterward [11] and was recently applied to 
analyze SLD measurements collected from NSCLC patients from three clinical studies to 
identify the obstacles to wider use of quantitative measures [56].



Review of tumor dynamics and treatment resistance evolution models

35

2

A quadratic growth term with a coefficient C was later introduced to this model structure 
as is shown in Eq. 2.30 [53]. This model structure was demonstrated to have the best 
performance on characterizing the SLD measurements in RCC patients receiving pazopanib 
or placebo, and predictive patient-specific covariates were also identified [53]. Treatment 
effect, which is reflected by parameter A, was described in a dose-depended manner for 
one group of the patients in this case (Eq. 2.31).

In addition, a simplified version of the previously introduced TGI model, which was 
displayed by an algebraic equation, was also developed (Eq. 2.32) [54]. This model structure 
also assumes an exponential tumor growth with growth rate (kg) while the treatment effect 
is described in a drug-dependent manner with parameters account for tumor growth 
inhibition (kd) and drug resistance (λ). By applying this model structure, the tumor size 

Figure 2.3:  Simulated time curves of tumor burden (T) with tumor dynamic models displayed by algebraic 
equations that describe both tumor natural growth and treatment effect (Eqs. 2.26–2.30 and 2.32). kg is the 
tumor growth rate constant, kd is the tumor shrinkage rate constant due to drug treatment, τ is the delayed 
time of tumor regrowth, 𝜙 is the sensitive fraction of the tumor, A is the exponential shrinkage rate constant 
due to treatment, B is the linear growth rate constant, C is the coefficient of quadratic growth term, BASE is 
the baseline of tumor burden, and λ is the treatment efficacy decay rate constant. Parameter values used for 
the simulations are as follows: Models 1–3 (Eqs. 2.26–2.28), kg = 0.1, kd = 0.4, BASE = 30; Model 2 (Eq. 2.27), τ = 
10; Model 3 (Eq. 2.28), 𝜙 = 0.6; Models 4 and 5 (Eqs. 2.29 and 2.30), A = 0.4, B = 2, C = 0.05, BASE = 30; Model 
6 (Eq. 2.32), kg = 0.1, kd = 0.4, λ = 0.1.
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change in metastatic colorectal cancer patient treated with bevacizumab and chemotherapy 
was described satisfactorily [54]. This model structure has been well applied to describe 
tumor size change in metastatic RCC patients treated with cytokine, mammalian target of 
rapamycin inhibitor, and VEGF receptor inhibitors [57]; in NSCLC patients undergoing 
treatment of carboplatin/paclitaxel combining motesanib or not [58]; in NSCLC patients 
treated with bevacizumab and erlotinib [59]; and in gastric cancer patients treated with 
bevacizumab and chemotherapy [60].

3.3  Partial differential equation 

3.3.1  Natural growth
Partial differential equations (PDEs), which take the change of a dependent variable in 
time and space into consideration, have also been adopted in the modeling of solid tumor 
dynamics in clinical research. One common application is known as a proliferation-invasion 
model or a reaction-diffusion model, which hypothesize that it is the net proliferation 
and invasion that contribute to the growth of cancer [61]. This model formation has been 
typically used in studies where imaging observations of tumor, especially brain tumors, 
were available to describe and predict tumor expansion [8]. The equation of this structure 
is shown as Eq. 2.33 in Table 2.1, where the dynamics of tumor cell concentration/density 
at location x at time t (c (x, t)) is described [8, 61]. The tumor proliferation in this model can 
be expressed by exponential, logistic, or Gompertz functions [8, 61]. Moreover, this model 
mathematically regards the expansion of imaging detectable tumor edge as a “traveling 
wave,” and the velocity of tumor expansion is a constant that is determined by the diffusion 
coefficient (Dif) and growth rate constant ρ (Eq. 2.34) [61]. This linear radius/ diameter 
expansion was confirmed in a group of grade II gliomas patients with magnetic resonance 
image (MRI) measurements before any oncological treatment [62].

Studies applying the proliferation-invasion model to characterize tumor dynamics 
typically have interest in estimating the rate constants of net proliferation and invasion. 
An application of this model structure can be found in a study where the tumor volumes 
obtained from the MRI imaging were available for 70 patients with previously untreated 
glioblastoma [61]. The tumor proliferation was described by a logistic function (Eq. 2.5) 
with a growth rate constant ρ. The ratio Dif / ρ was estimated for each patient based on 
MRI observations. Subsequently, setting ρ as a reported mean value and estimating Dif, 
the velocity of tumor radial expansion was estimated, and the survival time of patients 
underwent tumor resection were satisfactorily predicted by the estimated time of reaching 
a target radius. The same model structure was also applied on serial available MRI data 
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from 32 glioblastoma patients before treatment [63]. The net proliferation and invasion 
rates they quantified were significantly associated with the survival of patients. Another 
study characterized tumor natural growth for nine patients with glioblastoma with the same 
model [64]. This study demonstrated that the parameter estimated based on pretreatment 
MRIs had high prediction accuracy for responses after treatment for these patients. Using 
the same model structure, the correlation between proliferation rate and hypoxic volumes 
based on imaging data from newly diagnosed glioblastomas patients was demonstrated 
[65]. This model structure was also recently used to investigate the personalization of 
radiotherapy strategy for brain cancer patients [66].

Setting f (c (x, t)) = ρ ⋅ c (x, t) a similar model structure was also used to simulate the growth 
of glioblastoma based on previous reported parameters estimated from patients and 
estimated the survival times of patients under different parameter settings [67].

Likewise, the proliferation-invasion model with logistic growth function was also success-
fully applied in breast cancer patients to characterize and predict their tumor burden. [68] 
The model developed based on MRI data that were available from the early treatment 
phase was demonstrated to be able to predict patient response at the end of treatment [69, 
70]. In these studies, an apparent diffusion coefficient was estimated based on diffusion-
weighted MRI data and was then transformed to an estimate of tumor cell number, which 
was the dependent variable in the model. Moreover, the inhibitory effect of tumor diffu-
sivity resulting from the stress and the deformation of surrounding tissue forced by the 
tumor cells were also considered in these studies [69, 70], which is called “mass effect” 
[8]. More examples of the application of the proliferation-invasion model can be found 
in a previous review [8].

Apart from taking the diffusion coefficient as a constant, the difference between diffusion 
rates in gray and white matter can also be considered, such as setting Dif as two different 
constants for the cells in gray and white matter, respectively [71]. The proportions of white 
and gray matter (i.e. Pw(x), Pg(x)) have also been taken into account when computing the 
diffusion coefficient with the following equation: Dif (x) = Pg(x) ⋅ Difg + Pw(x) ⋅ Difw. The 
prediction of the model was validated with clinical imaging data from one glioma patient 
case [72].

Recently, a threshold and a necrosis rate were also introduced into the proliferation-
invasion model structure, which assumes an exponential decay will occur once the tumor 
cell amount exceeds the threshold [73].
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3.3.2  Treatment effect
When using the proliferation-invasion model, the treatment effect can also be expressed 
by subtracting an extra term (corresponding equations are shown in Table 2.1). The effect 
of chemotherapy can be expressed with Eq. 2.35, where kd is the drug effect rate constant 
[67]. For radiotherapy, a linear-quadratic equation has been used to estimate the probability 
of tumor cell survival (Surv) after the administration of radiation with dose (Dose) (Eq. 
2.36). The effect of radiotherapy can thus be incorporated as presented by Eq. 2.37 [64]. 
In addition, it is also possible to incorporate the effect of resection in the proliferation-
invasion model to describe tumor growth after surgery. The resection can be simulated 
by setting the cell concentration in the resected region as zero at the time point of surgery 
[61]. Subtracting a surgical term (Eq. 2.38) was also found to be applied to simulate the 
resection of tumor [74].

4.  Tumor resistance evolution modelling 

4.1  Tumor clonal evolution
Theoretically, three models of tumor evolution have been reported. One is a selective 
sweep model, which is also known as “linear” model [14, 75]. It holds that during cancer 
initiation, mutations with fitness advantage are raised and then selectively take over the 
whole population sequentially [14, 75]. However, because intratumor heterogeneity was 
identified and evidence of branching growth was found from multibiopsy and genomewide 
studies, a branching evolution theory where multiple subclones are considered to present 
and compete was developed [14, 75]. Another “big bang” model of tumor evolution was 
observed in colorectal tumors, which suggests that advantage mutations arise and cumulate 
during the early phase of cancer development and the tumor then grows as a neutral single 
clonal [14, 75].

Mathematical models that characterize tumor initiation and progression as an evolving 
process, including stochastic models and deterministic models, were sufficiently intro-
duced in previous reviews [13, 14]. A well-mixed cell population is typically assumed [13]. 
Modeling strategies that focus on describing the evolution of cancer resistance have also 
been discussed [15, 17]. In the following sections, we will mainly give an introduction 
about different mathematical modeling strategies that were used to characterize cancer 
resistance with the tumor evolution principle. 
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4.2  Stochastic model

4.2.1  Probability model assuming the branching process
The branching process, which is also called the birth-death process, is a commonly 
adopted stochastic process that is used to characterize the evolving dynamics of cancer 
resistance [13, 15, 17]. The Markov property is adopted in this model. Normally, at least 
two cell types, i.e., sensitive cells and resistant cells, are considered. It assumes that a tumor 
grows exponentially and that each sensitive cell has a certain birth rate, death rate, and a 
mutation probability in one cell division, and each resistant cell also has a certain birth 
rate and death rate. The probability of cell number change from current generation to the 
next could therefore be expressed with these parameters, as is shown in Eq. 2.39 (Table 
2.2). n and m the numbers of sensitive cells and resistant cells, respectively. Substantially, 
stochastic simulation could be performed and the probability of resistance (the probability 
of at least one resistant cell is present; PR) and the expected number of resistant cells (ER) 
could be calculated with probability-generating function. 

Resistance evolution before treatment

By applying the branching process, the resistance evolution before treatment can be 
investigated. One study estimated the PR and ER of a cell population reached a certain 
size through the branching process starting with one sensitive cell [76]. The fitness of the 
resistant cells that is relative to sensitive cells was also taken into consideration [76]. The 
derived equations were later adopted to estimate the resistance probability of colorectal 
cancer prior to endothelial growth factor receptor (EGFR) antibody treatment, where the 
parameters were estimated based on longitudinal KRAS mutation amount measurements 
[77]. The results indicated that the resistant mutation was highly likely to be present prior 
to the initiation of treatment. The same process has also been applied to investigate the 
evolution of drug resistance in chronic lymphocytic leukemia before treatment [78], where 
the growth and death rates of cancer cells were set based on patient results. In this case, 
besides estimating PR and ER at the time of treatment start, a time needed for the resistant 
population to reach a detectable level after treatment was also estimated based on which 
disease progression was analyzed and compared with real patient data.

Another study proposed functions for estimating the expected and median cell numbers for 
each resistant subclone in a metastatic lesion containing a certain number of cells with the 
branching process starting with a single sensitive cell [79]. The predictions of relative cell 
numbers of resistant subclones assuming resistant cells were neutral were demonstrated to be in 
agreement with what was estimated based on the mutation concentrations in circulation tumor 
DNA (ctDNA) obtained from colorectal cancer patients treated with an EGFR blockade [79]. 
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Table 2.2: Modeling frameworks for characterizing tumor resistance evolution

Models Equations Ref.

Stochastic models

Probability 
model assuming 
branching 
process

⎩⎪
⎨
⎪⎧

𝑃𝑃�𝑛𝑛 � �𝑛 𝑚𝑚𝑛𝑛𝑛𝑛 𝑚𝑚� � 𝑏𝑏𝑠𝑠 ∙ �� � 𝑢𝑢� ∙ 𝑛𝑛 𝑛 𝑛𝑛𝑛
𝑃𝑃�𝑛𝑛 � �𝑛 𝑚𝑚𝑛𝑛𝑛𝑛 𝑚𝑚� � �𝑠𝑠 ∙ 𝑛𝑛 𝑛 𝑛𝑛𝑛

𝑃𝑃�𝑛𝑛𝑛 𝑚𝑚 � �𝑛𝑛𝑛𝑛 𝑚𝑚� � 𝑏𝑏𝑟𝑟 ∙ 𝑚𝑚 ∙ 𝑛𝑛𝑛 � 𝑏𝑏𝑠𝑠 ∙ 𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢  
𝑃𝑃�𝑛𝑛𝑛 𝑚𝑚 � �𝑛𝑛𝑛𝑛 𝑚𝑚� � �𝑟𝑟 ∙ 𝑚𝑚 𝑚𝑚𝑚𝑚

𝑃𝑃�𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛� � � � ��𝑏𝑏𝑠𝑠 � �𝑠𝑠� ∙ 𝑛𝑛 ∙ 𝑛𝑛𝑛 � �𝑏𝑏𝑟𝑟 � �𝑟𝑟� ∙ 𝑚𝑚 𝑚𝑚𝑚𝑚 �

  

Eq. 2.39 [76, 
81, 
83]

Stochastic 
differential 
equation ⎩⎪

⎨
⎪⎧𝑆𝑆𝑆𝑆 � 𝑘𝑘� ∙ 𝑆𝑆 ∙ �� � �𝑆𝑆 � ��

𝑇𝑇��� �� ∙ 𝑆𝑆�� � � ∙ 𝑆𝑆 ∙ 𝑆𝑆� � 𝑘𝑘�� ∙ 𝑆𝑆 ∙ 𝑆𝑆� � �� ∙ 𝑆𝑆 𝑆 𝑆𝑆𝑆𝑆� � �� ∙ 𝐾𝐾 𝐾𝐾𝐾𝐾𝐾𝐾   𝐾𝐾�

𝑘𝑘�� � 𝑘𝑘� ∙ 𝐶𝐶�
𝐾𝐾� � 𝐶𝐶�

 
Eq. 2.40 [90]

Deterministic models 

Ordinary 
differential 
equation

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑘𝑘𝑔𝑔 � 𝑑𝑑 � 𝑘𝑘𝑑𝑑� ∙ 𝑆𝑆
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑘𝑘𝑔𝑔 � 𝑑𝑑� ∙ 𝑑𝑑 � � ∙ 𝑑𝑑

 

Eq. 2.41 [91]

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑘𝑘𝑔𝑔 ∙ �� � 𝑢𝑢� � 𝑑𝑑 � 𝑘𝑘𝑑𝑑� ∙ 𝑆𝑆
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑘𝑘𝑔𝑔 � 𝑑𝑑� ∙ 𝑑𝑑 � 𝑘𝑘𝑔𝑔 ∙ 𝑢𝑢 𝑢𝑢𝑢

 

Eq. 2.42 [88]

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑘𝑘𝑔𝑔 � 𝑘𝑘𝑑𝑑 ∙ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷� ∙ 𝑆𝑆
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � 𝑘𝑘𝑔𝑔 ∙ 𝑑𝑑 � 𝑘𝑘𝑔𝑔 ∙ 𝑢𝑢 𝑢𝑢𝑢

 

Eq. 2.43 [92]

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑘𝑘𝑔𝑔𝑔 � �1 � 𝑘𝑘𝑑𝑑𝑑 ∙ 𝐶𝐶𝐷𝐷� ∙ 𝑑𝑑 � �2 ∙ 𝑅𝑅

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑘𝑘𝑔𝑔𝑔 � �2� ∙ 𝑅𝑅 � �1 ∙ 𝑅𝑅

 

Eq. 2.44 [93]

Game theory 𝑊𝑊�𝑖𝑖� ���� ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑖𝑖𝑖𝑖� � � � �� � �� � �� � ��� ∙ �� Eq. 2.45 [94]

𝑊𝑊 ��𝑝𝑝𝑖𝑖 ∙ 𝑊𝑊�𝑖𝑖� Eq. 2.46

𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑 � 𝑑𝑑𝑖𝑖 � ���𝑖𝑖� � �� Eq. 2.47

Integral-
differential 
equation ⎩⎪

⎨
⎪⎧
𝜕𝜕𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�
𝜕𝜕𝜕𝜕 � �𝑟𝑟�𝑥𝑥� ∙ �� � �� � ��𝑥𝑥� � ��𝜌𝜌�𝑡𝑡�� ∙ 𝑑𝑑�𝑥𝑥�� ∙ 𝑛𝑛�𝑥𝑥𝑥 𝑥𝑥� � � ∙ � 𝑟𝑟�𝑦𝑦� ∙ 𝑀𝑀�𝑦𝑦𝑦𝑦𝑦 � ∙ 𝑛𝑛�𝑦𝑦𝑦𝑦𝑦 � ∙ 𝑑𝑑𝑑𝑑

�

�

𝜌𝜌�𝑡𝑡� � � 𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�𝑑𝑑𝑑𝑑
�

�

 
Eq. 2.48 [95, 

96]

n, numbers of sensitive cells; m, numbers of resistant cells; bs, birth rate of sensitive cells; ds, death rate of 
sensitive cells; u, mutation probability in one cell division; bs, birth rate of resistant cells; ds, death rate of 
resistant cells; P, probability of cell number changing from current generation to the next; S, sensitive cells, R, 
resistant cells, kg, kg1, kg2, growth rate constant; d, death rate constant; kd, shrinkage rate constant as a result of 
drug treatment; CD, drug concentration; KD, drug concentration that produces 50% of maximum treatment 
effect; dW1, stochastic cell diffusion in a small time interval (Wiener process); dN1, stochastic dissemination 
in a small time interval (Poisson process); σ1, diffusion rate; qM, dissemination rate; K, angiogenesis; u1, u2, 
mutation rate; W(i), fitness of type i cell; Payoff(ij), payoff of type i cells when they meet cell type j; pi , pj , 
proportion of cells; ri, cost of resistance; di , cost as a result of treatment; Xi, benefit for resistant cells when 
interacting with susceptible cells; x, y, resistance levels; n(x, t), cell density with resistance level x at time t; 
r(x), r(y), cell division rate; c(x), treatment effect; d(x), cell death rate; G(ρ(t)), a density dependence term; θ, 
mutation fraction; M (y,x), probability that cell y mutates to cell x.
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Resistance evolution during treatment 

The branching process has also been applied to simulate the evolving resistance during 
treatment. Regarding treatment initiation as the starting point, the dynamics of resistance 
evolution has been investigated with branching stochastic processes. Starting with a group of 
drug-sensitive cells, Foo and Michor [80] proposed functions of PR and ER during treatment 
depending on the length of treatment on and break time for continuous and pulsed dosing 
strategies. Treatment effect was incorporated by setting different birth and death rates 
for sensitive and resistant cells, if considering partial resistance, at on-treatment and off-
treatment periods, respectively. They also estimated PR, ER, and variance of resistance cell 
number during treatment as functions of time considering with or without preexisting 
resistant cells [81]. Treatment effect in this study was incorporated by making the birth and 
death rates of both sensitive and (partial) resistant cells affected by drug concentration. The 
treatment schedule could therefore be optimized by minimizing resistance risk or limiting 
the size of resistant clones. Corresponding equations were later adopted to simulate the 
time curve of ER and PR, and thereby to identify a relatively best treatment strategy for 
EGFR-mutant NSCLC patients receiving erlotinib [82]. In that study, the birth and death 
rates of different types of cells were obtained from in vitro experiments, and the birth rates 
were affected by drug concentration [82]. Three cases of mutation rate change because of 
drug dose were also considered in the study.

Cancer progression under combination therapies has also be investigated with evolution 
models to predict the outcome of multiple treatment strategies in EGFR-mutant lung 
cancer patients treated with two drugs [83]. Tumor evolution after treatment initiation was 
modeled as a branching process with at least three types of cells considered: one type of 
sensitive cell and two types of preexisting resistant cells that are resistant to only one of the 
two drugs, respectively. The expected numbers of each type of cells were thereby estimated 
and the sum of which was the total expected cancer cell number (treatment outcome). The 
treatment effect was described by decreasing the birth rates of cells depending on drug 
concentration, and drug interaction was also taken into consideration [83].

Besides separating tumor cells as being sensitive and resistant to treatment, one study also 
separated cells (subclones) according to resistant status and the number of accumulated 
drivers [84]. In the stochastic branching process of tumor progression, subclones were 
assumed to have probabilities of raising a driver mutation and a resistant mutation during 
division. The accumulation of driver mutations resulted in an increase in the fitness of 
cells, whereas resistance was related to a fitness cost, and the fitness of nonresistant cells 
decreased because of treatment. By modeling the probability change of each cell type, the 
expected tumor size and the average frequency of resistant cells were estimated as functions 
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of time. Subsequently, tumor detection time was calculated and used to compare the effect 
of prevention and postdiagnostic interventions [84]. 

Tumor eradication 

Considering that resistant mutations may die out as a result of stochastic drift during 
branching evolution, tumor eradication (treatment success) probability has also been 
investigated. One study modeled tumor progression as the following three phases: 
expansion with decreasing division rate until steady state, maintaining steady state, and 
treatment phase, starting with a single sensitive cell [85]. Treatment was assumed to decrease 
the division rate and increase the death rate of sensitive cells. A formula of the probability 
of resistant cells arising but becoming extinct by the end of the treatment in each phase 
was then proposed, and the overall probability of treatment success was estimated as the 
product of the three probabilities [85]. 

Multidrug resistance

The evolution of multidrug resistance has also been elucidated by a stochastic model 
where drug-sensitive and drug-resistant cells can divide, die (naturally and as a result of 
treatment), and mutate with certain probabilities [86, 87]. In this model, cells accumulate 
one mutation that leads to resistance to one drug each time, and all mutations must 
be accumulated to make a cell resistant to all drugs. The treatment success probability 
(probability of extinction) as well as the probabilities of resistance when resistant cells 
generated exclusively before and during treatment were estimated, respectively. Based on 
the derived equations, the tumor size at which a certain percentage of patients were treated 
successfully were investigated under various numbers of drugs, mutation rates, and the 
turnover rates of cancer cells [86, 87]. This model structure and the derived equation of 
treatment success probability were later utilized to optimize cyclic treatment scheduling 
[88]. Moreover, taking the contribution of quiescent tumor cells into consideration by 
incorporating the branching process of both cycling cells and quiescent cells, the effect 
of quiescent cells on the treatment outcome, such as the resistance probability, of chronic 
myelogenous leukemia patients has also been investigated [89].

4.2.2  Stochastic differential equation
In addition of the probability models, another stochastic modeling strategy that has been 
applied to characterize the development of resistance during treatment is by using stochastic 
differential equations. An example can be found in a study on melanoma cancer patients 
[90]. Three types of cancer cells, including sensitive, resistant, and metastasis cells, and 
angiogenetic cells were considered. The dynamics of the number of drug-sensitive cells 
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is described by Eq. 2.40 (Table 2.2). In this differential equation, cell growth, mutation, 
and death were described deterministically, whereas cell diffusion and dissemination were 
considered as stochastic processes. Logistic growth function was used to describe the growth 
of cells, and the mutation from sensitive to resistant cells is described with a first-order 
process. The death of sensitive cells was caused by drug treatment, and the nonlinear drug 
exposure-effect relationships was adopted (Eq. 2.40). Wiener process and Poisson process 
were incorporated to account for stochastic cell diffusion and dissemination, respectively. 
The effect of angiogenesis was also included. A drug-induced resistance factor, which 
depends on drug concentrations, was integrated to increase the growth and dissemination 
rates. The model predictions of the progression-free survival and number of metastasis 
cells were demonstrated to be, respectively, comparable with the observed progression-free 
survival and ctDNA level obtained from melanoma patients treated with B-Raf kinase and 
mitogen-activated protein kinase inhibitors [90].

4.3  Deterministic model

4.3.1  ODEs
Other than stochastic models, deterministic differential equations have also been used 
to study the evolution toward drug resistance, especially for a population with a large 
size that often behaves nearly deterministically [13]. The dynamics of sensitive cells and 
resistant cells can be modeled with ODEs similar to what were introduced in the “Tumor 
Heterogeneity” section, but the transition from resistant to sensitive cells is often neglected. 
The model structures that have been identified are shown in Table 2.2.

One model of resistance evolution displayed by ODEs is shown as Eq. 2.41, where drug 
resistance is considered to raise due to point mutations [91]. When considering multiple 
drug resistance, multiresistant cells were assumed to only be mutated from single-resistant 
cells. Starting with a certain number of sensitive cells, the resistance amount by the time 
of treatment initiation and during treatment was estimated under different conditions. 
The authors demonstrated that the simpler ODE model provided comparable results to 
previous models that were derived from more complicated stochastic models [91]. Another 
example can be seen in Eq. 2.42. This model was used to investigate the preferable treatment 
by controlling the total amount of fully resistant mutants, which can be acquired from 
sensitive cells and single-resistant cells [88]. In addition, a model with treatment effect 
being proportional to drug dose has also been used to model evolving tumor resistance (Eq. 
2.43) [92]. Multiresistant cells were also considered and were assumed to mutate only from 
single-resistant cells. Based on this model structure, the survival of patients undergoing 
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different treatment strategies, such as the strategy of minimizing the total cell population or 
minimizing the multiresistant population, was investigated [92]. Another model structure 
of resistance evolution that includes the transition from resistant to sensitive cells (Eq. 2.44) 
has also been adopted to investigate the optimization of treatment [93].

4.3.2  Game theory
Evolutionary game theory has also been used to investigate the evolution of cancer 
resistance, especially under combination therapy [94]. It assumes the fitness of one type 
of cell, which can be understood as the growth rate, changes when the cells interact with 
different types of other cells. This can be expressed with a payoff matrix, and the final 
fitness of one type of cell is their expected payoff of this “game” [13]. An example was 
found from a study where a well-mixed population and a deterministic dynamic of the 
evolving process were considered [94]. The evolutionary game theory was adopted to 
investigate and understand the evolving resistance for small cell lung cancer patients 
under a combination of chemotherapy and tumor suppressor p53 vaccine treatment 
[94]. Three cell populations, including cells that are sensitive to both treatments and cells 
that are resistant to one of the treatments but sensitive to the other, were considered to 
constitute the total tumor population. As presented in Table 2.2, the fitness of type i cell 
can be expressed as a sum of the product of the payoff of type i cell interacting with type 
j cell and the proportion of type j cell (Eq. 2.45), where a cost of resistance and a cost as 
a result of treatment was considered [94]. In addition, to account for the influence of cell 
interaction on cell sensitivity and fitness, an extra benefit for resistant cells when interacting 
with susceptible cells under treatment was also introduced (Eq. 2.45) [94]. The average 
fitness was expressed with Eq. 2.46, where pi is the proportion of each type of cells. The 
dynamics of each cell type under sequencing treatment was described using a replicator 
equation (Eq. 2.47), and the time curve of the proportion and fitness of each cell type are 
two main outcomes of the simulations in this study.

4.3.3  Integral-differential equation
An integral-differential equation, where the states of cancer resistance are described in a 
continuous way ranging from complete sensitivity to complete resistance, has also been used 
to characterize the evolution of cancer resistance [95, 96]. A model structure shown as Eq. 
2.48 has been used to describe the dynamics of cancer cell density with resistance level x 
at time t [95, 96], where cell division, cell death, treatment effect, and cell mutation were 
all incorporated (Table 2.2). Simulations were performed in these studies to illustrate the 
evolution of resistant level during treatment, but it has not yet been applied in clinical studies.
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5.  Model selection

Applying different model structures to characterize tumor dynamics and tumor resistance 
evolution may achieve different objectives and require different data input and knowledge 
(Table 2.3). The target cancer type and treatment option may also influence the selection 
of model structure (Table 2.3).

As for the tumor dynamics models displayed by ODEs and algebraic equations, most models 
are applicable to describe tumor size change in patients with various kinds of solid tumors 
and under different kinds of treatment (monotherapy or combination therapy). However, 
the models specifically developed for prostate cancer are mainly suitable to describe PSA 
level change, and the models incorporating angiogenesis biomarkers or immune compo-
nents are normally considered when patients are treated with antiangiogenesis treatment 
or immunotherapy, respectively.

Longitudinal tumor size data, such as the SLD of target lesions, MTD, or tumor volumes, 
or PSA measurements are required to estimate model parameters. A mixed-effect modeling 
approach has been applied to most model structures that are displayed by ODEs and 
algebraic equations to account for interindividual variability, whereas the parameters of 
other structures, such as the two-phase model, were normally estimated for each subject 
separately. In the former case, each subject in a group is normally required to contribute at 
least one measurement before treatment and one thereafter. More data points are preferred 
to enable the better estimate of all parameters. However, the latter method may require 
each subject to contribute enough data points to enable parameter estimates. In addition, 
if a study aims at developing a model incorporating biomarkers, longitudinal biomarker 
observations or previously reported models for treatment-biomarkers interaction are 
required. If no specific biological process is considered, the selection of model structures 
can also depend on the model fit to the data as long as the model is physiologically or 
biologically plausible.

Among the functions of the natural tumor growth (Eqs. 2.1–2.8), which are always part of 
the tumor dynamics models, the exponential growth model has been the most frequently 
selected in clinical studies. The logistic growth model was normally satisfactorily applied 
when the maximum tumor capacity was fixed. The selection of the basic functions could 
also depend on the model fit to the data. More than one available pretreatment tumor size 
measurement would be helpful to find the best fit natural growth model and would enable 
a more accurate estimate of the tumor natural growth rate.
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The treatment effect can be characterized in a drug-dependent manner or exposure-
dependent manner. If a study does not focus on investigating the exposure-effect rela-
tionship, using a model with drug-dependent tumor shrinkage will be enough and drug-
exposure information is not required. For studies aiming at characterizing the relationship 
between drug exposure/dose and tumor response and/or optimizing treatment regimens 
for patients based on simulations, the exposure-dependent (or dose-dependent) treatment 
effect structure should be applied. To estimate drug exposure, longitudinal concentra-
tion data for PK model development or a previously reported PK model are needed. In 
addition, the previous knowledge of the treatment mechanism may also be required to 
appropriately characterize the treatment effect, especially when applying models consid-
ering biological factors.

The proliferation-invasion model that is displayed by PDE has mainly been applied to 
investigate glioblastoma or breast cancer based on available MRI measurements. The 
required parameters can be estimated for each patient separately based on two sets of 
pretreatment MRI data or one before treatment and one thereafter. Simulations can then 
be performed to predict patient outcome with the model or with the velocity function of 
tumor radius expansion (Eq. 2.34). The mixed-effect modeling approach has not been 
found to be applied in these studies yet.

The model structures of tumor resistance evolution have been mainly applied to perform 
simulations to understand evolving resistance and optimize the treatment. The equations 
derived from the branching process can be applied to answer clinical questions. Available 
longitudinal or static ctDNA measurements can be utilized to determine the parameter 
values and to evaluate the simulation results. Although no mixed-effect modeling approach 
has been applied in these studies yet, the model structures displayed by ODEs, which can 
provide comparable results to stochastic models, are considered to be potentially able to 
account for interindividual variability.

6.  Discussion

Overcoming treatment resistance with a better understanding of cancer evolution and 
personalizing treatment brings opportunities to treat cancer as a chronic disease and has 
been increasingly studied in the oncology field. Model-based approaches incorporating 
tumor growth and resistance evolution may help achieve this goal. By applying math-
ematical models, prior knowledge derived from clinical trials and routine patients care can 
be utilized to quantitatively understand drug PK profiles, the drug-response relationship, 
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and evolving resistance in cancer patients. These profiles can be predicted accordingly for 
future patients, which could be beneficial for identifying optimized therapeutic regimens. 
Furthermore, by accounting for interindividual variability with a mixed-effect modeling 
approach, treatment individualization can also be designed and guided rationally [97].

In the current review, feasible model structures that have been used to describe and predict 
tumor dynamics and resistance evolution during treatment for patients with solid tumors 
are discussed. Models concerning tumor evolution in leukemia were included because 
they provide reference value for solid tumors. Apart from what has been introduced, more 
extensive models have also been found in the literature search, such as agent-based models 
and the cellular automata approach. The agent-based models often include components 
from two or more spatial or temporal scales, ranging from molecular to tissue [7], and 
the cellular automata approach adopts a discrete dynamical system of time and space [9]. 
Although tumor growth can be simulated in silico realistically with these approaches, 
because they require infeasible information input (e.g., cell location, nutrition distribu-
tion, and/or oxygen amount) from clinical patients, they were excluded from the current 
review. Studies applying the proliferation-invasion model, which are expressed with PDE, 
were not excluded, although tumor cell location is also one of the variables. It is because 
two main parameters in this model structure, the diffusion coefficient Dif and growth rate 
constant ρ, can be estimated directly based on MRI results obtained from patients, and 
the velocity of tumor radius expansion can then be estimated and utilized for prediction. 

Models displayed by ODEs, algebraic equations, and PDE are commonly reported for the 
modeling of tumor size change and, in the case of prostate cancer, PSA amount change. 
Five main basic natural tumor growth model structures were frequently reported. The 
diversity in model selection can be explained by the difficulties of assessing real long-term 
natural tumor growth pattern in patients [11]. Although setting the maximum boundaries 
of tumor growth is more biologically plausible, the models without such limits, especially 
the exponential growth models, have also been used extensively. The concept of linear 
growth is also reflected in the studies that applied the proliferation-invasion model, as the 
expansion of tumor radius has a constant velocity under such a model, and this concept 
has been used to predict tumor radius [63-65].

For characterizing treatment effect, empirical methods are relatively simple to apply for 
describing the effect of various kinds of drugs and are therefore more generally applicable. 
The shrinkage rate of tumor burden caused by treatment can be described to be propor-
tional to drug exposure/dose or by utilizing drug-dependent parameters, although the 
latter method does not allow differentiation among different dosing regimens. In addition, 
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when the dynamics of biomarkers are available and are incorporated in the tumor dynamics 
models, the treatment effect on the production of biomarkers can be integrated according 
to drug mechanism [31, 39]. Furthermore, the regrowth of a tumor during treatment can 
be considered in several ways. Studies applying algebraic equations generally characterize 
the decline and regrowth of a tumor by a single equation. For studies that used ODEs, 
tumor regrowth was mainly characterized by separating the tumor in two parts consisting 
of drug-sensitive cells and drug-resistant cells or by adding the e–λ⋅t term.

The resistance evolution of cancer has been mainly characterized by stochastic models 
within which the branching process is reported most frequently. However, in studies 
applying the branching process, the focus was mainly on the expected outcome of tumor 
evolution, such as the PR and ER. Therefore, relatively simpler deterministic models are 
considered to be good alternative choices. It has already been demonstrated that ODE 
models can provide comparable results to those that are derived from stochastic models 
[91]. Given that the goal is to characterize evolving tumor resistance based on clinical 
data, applying deterministic models might be more suitable given clinical available data 
generally represents the apparent response of each patient.

Among the studies included in this review, the detailed data of resistance evolution have 
not yet been incorporated in tumor size-based modeling of anticancer treatment response. 
However, genetic biomarkers that represent tumor heterogeneity and resistance evolution 
become increasingly available as a result of novel technologies. For example, in a clinical 
setting, a feasible genetic biomarker that is also correlated with tumor burden has been 
identified as ctDNA [98]. Three of the included studies have already utilized the available 
ctDNA data to support the estimation of parameters in the tumor evolution model or to 
evaluate the model simulation results [77, 79, 90]. It has also been demonstrated that the 
mutation in ctDNA, which represents treatment resistance, is detectable before disease 
progression [99], suggesting the predictive value of ctDNA to the development of drug 
resistance. By applying longitudinal monitoring of ctDNA, an adaptive treatment for 
individual patients may be achieved by selecting drugs that target emerging actionable 
mutations [98]. Therefore, it is feasible to obtain the information of evolving cancer resist-
ance and, to increase the chance to overcome treatment resistance, it would be helpful if 
such information could be incorporated in future model-based studies.

Based on what was learned from previous reported studies, as is introduced in this review, 
model structures displayed by ODEs are considered to be feasible for the characterization 
of both tumor size change and resistance evolution in cancer patients. A mathematical 
model can be developed based on the input data of tumor size, mutation load of ctDNA, 
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and treatment information over time. The emergence and dynamics of mutations in ctDNA 
can provide insight of the occurrence, growth, decay, and mutation for different tumor 
subclones. External data sets, if available, can be used to further evaluate the developed 
model structure. Subsequently, the effect of sequential treatment regimens with different 
dose levels or starting times of therapies can be explored with simulation and thereby 
to facilitate the identification of an optimal regimen. Moreover, because the parameter 
values can be estimated for each individual and the variability of which can be partially 
explained by patient characteristics, the treatment personalization can also be rationally 
guided based on the modeling and simulation results. These will be the ultimate output 
of the model-based study. 

However, challenges remain beyond what is already stated. First, in terms of data collec-
tion, previous knowledge of the mutations that represent resistant subclones is required. 
Second, if sequencing data of the subclones (ctDNA) over time are available, efforts need 
to be made to handle the vast amount of genetic data in a quantitative manner in relation 
to tumor size dynamics. Third, the optimal method on how to predict a newly acquired 
mutation that has not yet occurred in the data needs to be further explored. Finally, because 
in-depth knowledge is required from multiple aspects of tumor and clone dynamics as well 
as complex modeling and simulation, a multidisciplinary collaboration is essential to enable 
the achievement of the ultimate goal of optimizing and personalizing anticancer treatment.

In conclusion, based on a systematic search of studies from the literature, mathematical 
models that have been used to describe and predict tumor size change, drug effect, and 
resistance evolution based on clinically available data were introduced in this review. The 
results may facilitate the model-based anticancer treatment response analysis that accounts 
for both tumor growth inhibition and resistance evolution, although important challenges 
still need to be overcome. An ultimate model structure handling all of these aspects would 
be of great benefit for optimizing and personalizing anticancer treatment.
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Supplementary Material S2.1 

Literature searching method
As for tumor dynamic modelling, a search term: (“Models, Theoretical” [Majr:NoExp] 
OR “Computer Simulation”[Mesh] OR “Models, Biological*” [Majr:NoExp]) AND 
(“mathematical” [title/abstract] OR “computational”[title/abstract] OR “model-
based”[title/abstract] OR “model based” [title/abstract] OR “pharmacometric*”[title/
abstract] OR model framework[title/abstract] OR modelling framework[title/abstract] 
OR modeling framework[title/abstract] OR PK/PD model* [title/abstract] OR PK-PD 
model* [title/abstract]) AND (pharmacody* [title/abstract] OR tumor growth[title/
abstract] OR tumour growth[title/abstract] OR tumor dynamic[title/abstract] OR tumour 
dynamic[title/abstract] OR tumor dynamics[title/abstract] OR tumour dynamics[title/
abstract] OR tumor-growth[title/abstract] OR tumour-growth[title/abstract] OR “change 
in tumor size”[title/abstract] OR “change in tumour size”[title/abstract] OR “tumor 
growth inhibition”[title/abstract] OR “tumour growth inhibition”[title/abstract]) AND 
(“Neoplasms”[Majr:NoExp] OR “cancer”[title/abstract] OR “tumor*”[title/abstract] 
OR “tumour*”[title/abstract] OR malignan*[title/abstract] OR oncolog*[title/abstract]) 
AND “Humans”[Mesh] NOT “Animals”[Mesh:NoExp] NOT “Cells”[Mesh] AND 
English[Language] AND (Pharmacology OR oncology) was used to retrieve records from 
PubMed database. Papers published until the start of March 2018 were scanned based on 
their abstract and method part. Papers that met the following criteria were included: 1) 
published after 2000; 2) studies where longitudinal tumor size data obtained from patients 
with solid tumors was described with mathematical models; 3) studies where longitudinal 
PSA data from prostate cancer patients was characterized with mathematical models; 4) 
studies where tumor size data from patients were obtained to estimate model parameters; 
5) reviews that summarized equations of different tumor growth modelling structures; 6) 
simulation studies where the models are potentially applicable in clinical settings, i.e. well 
mixed cancer cell population were considered.

Exclusion criteria include: 1) studies published before 2000; 2) studies for which the full 
text was not available; 3) animal studies; 4) computer aided molecular studies; 5) studies 
with no equation reported; 6) studies characterizing disease progression; 7) studies that 
focus on MRI/PET/CT utility, optimization, or kinetics; 8) studies characterizing safety and 
toxicity profiles; 9) studies characterizing the dynamic of biomarkers or markers related 
to drug activity; 10) studies where the target cancer types are not solid tumor; 11) studies 
that modelled cell cycle kinetics or signaling pathway; 12) computational methodology 
studies; 13) studies characterizing tumor evolution; 14) introductory journal article; 15) 
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reviews discussing the application of mathematical models and/or have no equations 
reported; 16) other studies that are not focus on tumor growth analysis; 17) simulation 
studies where the models are potentially not feasible in clinical settings, including studies 
considered nutrition distribution, cellular automata, multiple scales, chemical potential, 
and in silico illustration of tumor growth .

As for tumor resistance evolution modelling, a search term: (“Models, Theoretical” [Mesh] 
OR “Computer Simulation”[Mesh] OR “Models, Biological*” [Mesh]) AND (“math-
ematical” [title/abstract] OR “computational”[title/abstract] OR “model-based”[title/
abstract] OR “model based”[title/abstract] OR “pharmacometric*”[title/abstract] OR 
model framework[title/abstract] OR modelling framework[title/abstract] OR modeling 
framework[title/abstract]) AND (“Neoplasms”[Majr:NoExp] OR “cancer”[title/
abstract] OR “tumor*”[title/abstract] OR “tumour*”[title/abstract] OR malignan*[title/
abstract] OR oncolog*[title/abstract]) AND “Humans”[Mesh] NOT “Cells”[Mesh] 
AND English[Language] AND (“Drug Resistance, Neoplasm”[mesh] OR “Biological 
Evolution”[Majr:NoExp] OR “Clonal Evolution”[Mesh]) AND (“Resistance”[title/abstract]  
OR “ heterogeneit* “[title/abstract] OR “evolution”[title/abstract] OR “clone”[title/abstract] 
OR microenvironment[title/abstract]) was used to retrieve records from PubMed database. 
Papers published until the start of March 2018 were scanned based on their abstract and 
method part. Papers that met the following criteria were included: 1) published after 2000; 
2) model-based studies on the evolution of tumor resistance and tumor progression; 3) 
reviews that summarized equations of different model structure.

Exclusion criteria include: 1) studies published before 2000; 2) articles that overlap with 
what we obtained from tumor growth modelling; 3) studies for which the full text was not 
available; 4) computational molecular studies; 5) network studies; 6) studies concerning 
P-glycoprotein and resistance protein; 7) studies focus on cell cycle kinetics or signaling 
pathway; 8) introductory journal article; 9) studies characterizing tumor growth; 10) 
studies with no equation reported; 11) reviews discussing the application of models and/
or have no equations reported; 12) other studies that are not focus on tumor evolution.

Studies concerning tumor dynamics and tumor resistance evolution that were retrieved 
by the other search term were also scanned and included according to their own corre-
sponding inclusion and exclusion criteria respectively. Included articles’ references which 
introduced corresponding original models or demonstrated application examples, which 
were not found in the included papers, of certain model structures were included as well.

The flow diagram of scanning literature is shown in Figure S2.1. 
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Figure S2.1:  Diagram of literature scanning for (A) tumor dynamics and (B) tumor resistance evolution.
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Software
Software that was applied in studies concerning tumor dynamics (TD) and tumor evolution 
(TE) to perform parameter estimation and data simulation is summarized in Table S2.1. 
As can be seen in the table, NONMEM and Matlab are two most frequently used software 
that performing model-based analysis concerning tumor dynamics. Studies applying non-
linear mixed-effect models (NLMEM) mostly utilized NONMEM software to estimate 
parameter values, while Matlab was popular when performing simulation with partial 
differential equations. Three other commonly used software packages for tumor dynamics 
modelling are Monolix, Phoenix NLME, and Sigmaplot. For studies performing tumor 
evolution analysis, only a few of them reported the software, namely Matlab and R.

Table S2.1: Software that was applied in studies concerning tumor dynamics (TD) and tumor evolution (TE) 
to perform parameter estimation and data simulation

Application Name Algorithm

TD NONMEM (ICON Development 
Solutions)

First-order conditional estimation with interaction 
(FOCE-I) algorithm

First-order conditional estimation (FOCE) algorithm

Laplacian algorithm

Stochastic approximation of expectation 
minimization (SAEM) algorithm

Matlab Ordinary differential equation solver

pdepe

ODE45 subroutine

A custom genetic algorithm

Monolix SAEM algorithm

Phoenix NLME FOCE algorithm

Sigmaplot (Systat Software Inc) Not mentioned

SPLUS Not mentioned

C programme Not mentioned

TE Matlab Not mentioned

R; coded with C++ Not mentioned


