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Abstract

Increasing knowledge of intertumor heterogeneity, intratumor heterogeneity, and
cancer evolution has improved the understanding of anticancer treatment resistance.
A better characterization of cancer evolution and subsequent use of this knowledge
for personalized treatment would increase the chance to overcome cancer treatment
resistance. Model-based approaches may help achieve this goal. In this review, we
comprehensively summarized mathematical models of tumor dynamics for solid
tumors and of drug resistance evolution. Models displayed by ordinary differential
equations, algebraic equations, and partial differential equations for characterizing
tumor burden dynamics are introduced and discussed. As for tumor resistance
evolution, stochastic and deterministic models are introduced and discussed. The
results may facilitate a novel model-based analysis on anticancer treatment response
and the occurrence of resistance, which incorporates both tumor dynamics and
resistance evolution. The opportunities of a model-based approach as discussed in
this review can be of great benefit for future optimizing and personalizing anticancer

treatment.
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1. Introduction

Drug resistance is one of the major reasons for patients experiencing treatment failure in
the area of oncology [1]. Increasing knowledge of intertumor and intratumor heterogeneity
that suggests distinct cells exist in different or the same tumors as well as cancer evolution
have improved the understanding of anticancer treatment resistance [2]. It thereby pushes
forward the necessity of precision medicine rather than a one-size-fits-all approach [2]. To
rationalize the treatment personalization and address treatment failure, the use of modeling
and simulation, which can quantitatively characterize and predict the relationships between
drug exposure/pharmacokinetics (PK), drug effects/pharmacodynamics (PD), and disease

progression, is widely accepted to support drug decision making [3-6].

Mathematical models that characterize the effects of anticancer drug treatment for solid
tumors based on tumor size dynamics, which is typically quantified with measurements
of tumor diameter and volume, represent one key class of models applied in cancer phar-
macology. Various tumor growth modeling strategies have been previously reviewed,
including agent-based models [7], image-based models [8], multiscale models [9], and
PK/PD models [10, 11].

Currently, an increasing number of studies concerning the gene sequencing of tumor
biopsies in different cancer types have demonstrated the dynamics of cancer evolution [2,
12]. Intratumor heterogeneity that results from cancer evolution and an evolving adaption
of heterogeneous tumor to treatment are also increasingly acknowledged as key factors
related to the development of resistance [2, 12]. To better characterize this process and
to account for tumor heterogeneity, mathematical models that consider the evolution of
tumors have been proposed [13-17]. Potentially, such evolution models in conjunction
with tumor growth models could be of benefit to interpret both tumor size change and
evolving tumor progression during treatment and thereby ultimately rationalize adaptive

treatments for individual patients and overcome treatment resistance.

To identify the challenges and opportunities of characterizing tumor size change and resist-
ance evolution simultaneously with a model-based approach that can facilitate anticancer
treatment optimization and personalized medicine, an overview of the current available
model structures is needed. Thus, in the current review, we comprehensively summarized
mathematical models for the characterization of tumor growth (inhibition) dynamics in
solid tumors and the relevant clonal evolution of drug resistance by a systematic search
and study of previous literature. The focus in this review lies particularly on models that

are applicable for clinical data.
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2. Literature search

Studies that characterized tumor growth (inhibition) dynamics and clonal evolution of
drug resistance with mathematical models were systematically retrieved and studied from
the PubMed database to provide a comprehensive and unbiased review. In total, 274 and
85 publications were obtained, respectively, for studies of tumor dynamics and tumor
resistance evolution based on established search terms. Details of the literature search
are described in Supplementary Material S2.1 and Figure S2.1. Ultimately, 61 and 25
papers, among which 13 and 2 papers were obtained from the publications’ references,
which introduced corresponding original models or demonstrated application examples of
certain model structures, were included, respectively, for tumor dynamics and resistance
evolution modeling. Model structures, cancer types, treatments, and the ways of reporting
tumor sizes were extracted from the included papers. The identified model structures
were classified by equation types in later sessions and were summarized in Tables 2.1 and
2.2. Data input, knowledge requirement, study type, and objectives related to different
model structures were summarized in Table 2.3 to provide a reference of the selection
of different model structures. The information of software that was used to perform the
corresponding modeling and simulation analysis was also obtained and are summarized

in Supplementary Material $2.1 and Table S2.1.

3. Tumor dynamics modeling

3.1 Ordinary differential equation

3.1.1 Basic growth model

A majority of the included studies applied ordinary differential equations (ODEs) to
describe tumor burden change. The natural growth of a tumor without treatment is
commonly characterized with several basic functions, including linear, exponential,
logistic, Gompertz, and combined exponential and linear models (Table 2.1). The time
curves of different models were simulated and are presented in Figure 2.1. Differential
equations were solved with the RxODE package implemented in R software (version 3.4.1;

R Foundation for Statistical Computing, Vienna, Austria).

The linear tumor growth assumes a constant zero-order growth rate (Eq. 2.1; Figure 2.1)
[10]. It has been applied to describe the natural tumor growth of metastatic renal cell
carcinoma [18] based on the measurements of sum of longest diameters (SLD) of the

target lesions in patients.
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Table 2.1: Modeling frameworks for characterizing tumor dynamics

Models/assumptions Equations Ref.
Ordinary differential equations
Basic functions describing natural tumor growth
Linear growth dT i Eg.2.1  [18]
dt g
daT Eq.2.2 [21]
—=ky—d-T
dt
Exponential growth dT b T Eg.2.3  [20]
dt Y
aTr Eq.24  [22,23]
— =k, T—d-T
dt 9
Logistic growth dT T Eq.2.5 [24,25]
= kg -T-[1—-
dt T max
Gompertz growth dT T max Eq.2.6  [27,29]
= kg T+ In (2"
dt T
dinT Eq.2.7 [28]
——=a—binT
dt
Combination of exponential T Ao T Eg.28 [31]
and linear growth dat =71
o 20720
1+(2-7) ]
[ Z
Model structures integrating tumor heterogeneity
Tumor burden(T)= Eq.2.9 [25]
Proliferative component (P) T f(P)—m-P
+ Quiescent component (Q) dQ
—=my-P
dt
dP Eq.2.10 [22,33]
—=f(P)—my-P+m,-Q
dt
dQ
—=my-P—m
it 1 20
Tumor burden (T)= das Eq.2.11 [24]
Sensitive component (S) + E = f(5)
Resistant component (R) dR
it ®

Table 2.1 continues on next page.
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Table 2.1: Continued

Models/assumptions Equations Ref.
Tumor burden (T)= as Eq.2.12 [23,35]
Sensitive component (S) + E =f(s) - my S
Resistant component (R) dR

—=f(R)+my"-S
= 1(®) +m,
ds Eq.2.13 [34,36]

=f(§)-m;-S+m, R

dR
E=f(R)+m1-S—m2-R

Model structures integrating tumor biology process

Angiogenesis dT BM, — BM Eq.2.14 [31,39]
—Zf(T)—k';'T
BM,
=f(M -k B
=M ( BMO)
ar T Eg.2.15 [40]
Ty (1-0)
dt E
dE 1
—_— = k2 -T2
dt
daT E Eq.2.16 [41,42]
= kg-V-10g<—>
dt T
dE 2
— =k, T—d T3 E
dt
Immune system h Eq.2.17 [44]
[ = -1 7 ()
T+h
f(D=d-1
™ - Q) ( ) Eq.2.18 [43]
= f(T 1)-T-
{ =@ =107 (5
I)=(d,-1,+d,"1 ( )
O =@ d ) (e
Eq.2.19 [46]
E: f(r)—d,-1-T—d,-N-T
Eq.2.20 [47]
=f(T)—-d-I1-T
Empirical model structures describing therapeutic effect
First-order treatment effect dT Eq.2.21 [18]
(“log-kill” pattern) at =fM -
Exposure-dependent dT Eq.2.22 [22,25]
treatment effect ar = f(T) — ky - Exposure-T

Table 2.1 continues on next page.
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Table 2.1: Continued

Models/assumptions Equations Ref.
Exposure-dependent dT o Eq.2.23 [20, 48,
treatment effect with ac - f(T) = kg e ** - Exposure-T 49]
resistance (TGl model)

Introducing a damaged cell ds Eq.2.24 [24,25]
compartment T f(S) — k, - Exposure - S

ab k; E S—d-D

— =k, - Exposure-S —d -

dt d P

T=S+D

Nf(;nlitnre;?rtcijr:gheixposure- k r_ e (1- Eonax - Exposure Eq.2.25 [21]
erect refationship g g ICsy + Exposure

Algebraic equations
Two-phase model T = (e—kd-t + ekg't — 1) - BASE Eqg.2.26 5555(;, 51,

T = (e—kd't + ekg-(t—‘r) _ 1) - BASE Eq.2.27 [50]
T = (d’ . e—kd-t + [ekg-t _ ¢]) - BASE Eq.2.28 [55]
Model proposed by Wang T = BASE -e 4t + B -t Eq.2.29 [52,56]
etal.
An extension of Eq. 2.30 T = BASE -e At +B-t + C - t? Eq.2.30 [53]
A 6 + 9 ( DOSe ) Eq231 [53]
72 \100mg
Simplified TGI model o (ka\ -t Eq.2.32 [54,57,
T = BASE - ekot=()(1=e7") 58,59,
60]
Partial differential equations
Proliferation-invasion model dc(x, t) ] Eq.2.33 [61,63,
= Diff - V2c(x,t) + f(c(x, 1)) 64, 69,
70]
v = 2JDiffp Eq.2.34
dc(x,t Eq.2.35 [67]
E?t ) = Diff -VZc(x,t) +
f(c(x, t)) — kg c(x,t)
Surv = e—(a-Dose+B-Dosez) Eq.2.36 [64]

Table 2.1 continues on next page.
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Table 2.1: Continued

Models/assumptions Equations Ref.

Proliferation-invasion model  gc(x, t Eq.2.37 [64]
CS; ) = Diff - V2c(x,t) + f(c(x, 1)) —

(1= Surv) - f(c(x, 1))

Eq.2.38 [74
ac(a);'t):Diff-Vzc(x,t)+ q.238 [74]

f(c(x, t)) —G(x,t)

a, B, radio sensitivity parameters; A, exponential shrinkage rate constant as a result of treatment; g, b,
constants; B, linear growth rate constant; BASE, baseline of tumor burden; BM,, baseline of biomarkers; BM,
biomarker amount at time point t, which could be assumed to remain constant and equal to baseline in
the absence of treatment; G, coefficient of quadratic growth term; c(x,t), tumor cell concentration/density at
location x at time t; D, damaged cells; d, death rate constant; d,, d,, rate constants; Dif, diffusion coefficient; E,
vessel endothelial cells; E__, maximal fraction of inhibition; f(P), f(S), f(R), f(T), growth function of proliferative

max’

cells (P), sensitive cells (S), resistant cells (R), and tumor tissue (T), respectively; G(xt), surgical term; h, g,
constants; /I, I, components in the immune system; IC_, the drug exposure that produces 50% of E__ k,
k,, rate constants; k, shrinkage rate constant of tumor as a result of drug treatment; kg, growth rate/growth
rate constant; kg', tumor growth rate constant under treatment; m, m,, conversion rate constants that can
be set as 0; N, normal cells; Surv, the probability of tumor cell survival; T, tumor burden; TGI, tumor growth

inhibition; T, carrying capacity; A, treatment efficacy decay rate constant; A, exponential growth rate;

)\,, linear growth rate; 7, delayed time of tumor regrowth; ¢, sensitive fraction of the tumor; p, growth rate
constant; V2, a Laplacian operator; f(c(x,t)), tumor proliferation function.

The exponential growth assumes the growth rate of a tumor is proportional to tumor
burden (first-order growth; Eq. 2.3; Figure 2.1) [10, 19]. It has been adopted in a widely
used tumor growth inhibition (TGI) model developed by Claret et al. to describe nature
tumor growth [11, 20].

The linear and exponential growth models have also been expanded by introducing a
first-order shrinkage term describing natural tumor death. For example, a model with
a linear growth and a first-order shrinkage (Eq. 2.2) was applied to describe the natural
tumor growth in patients with advanced solid malignancies based on SLD measurements
[21]. An exponential growth with a first-order shrinkage (Eq. 2.4) was also used as part
of the model structure to describe the natural growth of pediatric neuroblastoma based
on tumor volume measurements [22]. The same model structure was also adopted for
the description of the change of prostate cancer burden reflected by the level of prostate-
specific antigen (PSA) [23].

When compared with the unlimited growing pattern of linear and exponential growth
models, the logistic and Gompertz growth models provide a biologically realistic change
of the growth rate as the tumor burden increases [6] (Figure 2.1). The logistic growth
model assumes that the growth is limited by a carrying capacity (Eq. 2.5) [10] whereas
the Gompertz model assumes the growth rate of tumor decreases over time (Egs. 2.6 and
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2.7) [10, 11]. Many clinical studies have applied the logistic [24-26] and Gompertz models
[11, 27] as well as simulation studies [28, 29].

Finally, a combination of exponential and linear growth models (Eq. 2.8) has also been
introduced to describe tumor growth in patients, although it was proposed primarily for
characterizing xenograft tumor dynamics [30]. This combined model structure assumes
that an exponential (first-order) growth switches to a linear (zero-order) growth after
reaching a threshold (Figure 2.1). It was well used to describe the natural growth of
vestibular schwannoma volume in patients with neurofibromatosis type 2 [31]. Setting

the power term as 20 allows the switch between two growth patterns sharply enough [30].

Model 1 (Eq.1) : Linear growth

Model 2 (Eq.2): Linear growth
with a first-order shrinkage

Model 3 (Eq.3): Exponential growth

ok
at °

80+

60+

40

20+

600

400

200

Model 4 (Eq.4): Exponential growth
with a first-order shrinkage

Model 5 (Eq.5): Logistic growth

Model 6 (Eq.6): Gompertz growth

400

100 -

120

dT dT T Gl T,
5 — =k T-d-T 754 —=kg T-(1-—) %0 — =Ky T log—)
B w0y dt max at T
a
5 200 50 60
£
F 100 254 30
0 0]
0 10 20 30 40 50 0 10 20 30 40 50
Model 7 (Eq.8): Combined exponential and
linear growth
dT AT

e e
(G T
‘

Time

Figure 2.1: Simulated time curves of tumor burden (7) with tumor natural growth models displayed by
Egs. 2.1-2.6 and 8. kg is the tumor growth rate / growth rate constant, d is the tumor death rate constant,
T . is the carrying capacity, A, is the exponential growth rate, and A, is the linear growth rate. The baseline
of tumor burden is 5. Parameter values used for the simulations are as follows: Models 1 and 2 (Egs. 2.1 and
2.2), kg = 2; Model 2 (Eq. 2.2), d = 0.01; Models 3-6 (Egs. 2.3-2.6), kg = 0.1; Model 4 (Eq. 2.4), d = 0.01; Models
5and 6 (Egs.2.5and 2.6), T, = 120; Model 7 (Eq. 2.8), )\0 =0.1, )\, =2.
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3.1.2 Tumor heterogeneity

Asaresult of the increasing awareness of the relevance of considering tumor heterogeneity,
model structures displayed by ODEs that incorporate tumor heterogeneity and mutations
have been developed for the characterization of tumor dynamics as was described in a
simulation study [32]. The general used model structures concerning tumor heterogeneity

are shown in Table 2.1.

Proliferative and quiescent cells

One frequently made assumption when modeling the growth of heterogeneous tumors is to
separate total tumor mass into proliferative and quiescent cells [22, 25, 33]. The increase of
quiescent tumor cells is assumed to result from a first-order conversion from proliferative
tumor cells instead of their own proliferation (Eq. 2.9). A reversed conversion can also be
assumed to be present (Eq. 2.10). The growth of proliferative cells may follow the patterns
as were introduced in the Basic growth model section Based on these assumptions, the
time courses of mean tumor diameter (MTD) in patients with low-grade glioma [25] and
that of tumor volume in pediatric neuroblastoma patients were successfully described
[22]. A similar model structure was also used to predict the effect of different treatment
regimens taking tumor cell number as a target [33]. Drug treatment effect could work
on both kinds of tissues [25], only on the proliferative tissue [22], or on targeted tissues

depending on the types of drug [33].

Sensitive and resistant cells

Another commonly made assumption is that tumors are composed of drug-sensitive and
drug-resistant cells [24, 34]. These two cell types both proliferate, but drug treatment can
only decrease the amount of drug-sensitive cells. Primary and acquired resistance can both
be taken into consideration. For illustrating the acquired resistance, the resistant cells are
mostly assumed to mutate from sensitive cells because of the treatment with a first-order
process [23, 24, 34, 35] (Eqgs. 2.12-2.13). By separating tumor mass into sensitive and
resistant cells, the dynamics of low-grade glioma measured with MTD in patients was well
described with models assuming that primary resistant cells or both primary and acquired
resistant cells are present in the tumor [24]. In the study, the natural growth of drug-sensitive
and primary-resistant cells were described separately without any conversion (Eq. 2.11).
The acquired resistant cells are assumed to emerge exponentially from damaged sensitive
cells as a result of treatment. Also, by assuming that resistant cells can also convert back
to sensitive cells (Eq. 2.13), the dynamics of the PSA level in prostate cancer patients was
well described, where the rate constants of cell proliferation, apoptosis, and conversion are

expressed as functions of intracellular concentration of androgen receptors [34].
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In addition, the treatment sensitivity of both proliferative and quiescent cells can also be
considered when modeling tumor growth, leading to a combination of previous introduced
model structures. One example can be seen from a study that assumed proliferative and
quiescent cells form a tumor and the proliferative cells could mutate from drug sensitive

to drug resistant, which is biologically plausible [33].

Androgen-dependent cells and androgen-independent cells

Studies regarding prostate cancer often consider prostate tumors consists of androgen-
dependent (AD) and androgen-independent (AI) cells [23, 36-38]. PSA levels are commonly
used to represent tumor burden in this case. Two frequently reported model structures
for describing the growth of prostate cancer were proposed by Ideta et al. [23] and Hirata
etal. [36].

The former model structure assumes that prostate cancer consists of AD and Al cells, and
AD cells can mutate exponentially to Al cells when treatment alters the androgen level.
The model structure is shown in Eq. 2.12. The natural proliferation and apoptosis rate
constants of AD and AI cells were expressed as functions of the androgen level [23]. The
net growth rate of AD decreases when the androgen level decreases because of treatment,
whereas that of AI cells increases. When the androgen level is normal, three cases of the
net growth rate of Al cells were considered: larger than 0, equal to 0, and smaller than 0.
This model was recently extended by accounting for competition between two kinds of

cells and the finite carrying capacity environment [35].

The latter model structure assumes that besides AD cells, reversible and irreversible A cells
exist. All types of cells are assumed to proliferate and convert to each other exponentially.
It is assumed that AD cells convert to both types of Al cells during on-treatment status
and reversible Al cells convert back to AD cells during off-treatment status. The model
structure is expressed with Eq. 2.13. This model has been applied to adequately describe
patient data [37, 38].

3.1.3 Integration of biology process

Tumor growth models displayed by ODEs that additionally incorporate biological factors
and processes have also been developed [6], such as integration of angiogenesis biomarkers
and the dynamics of components in the immune system (Table 2.1). To apply these
methods, apart from tumor burden measurements, knowledge related to the biological

processes is also needed.
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Angiogenesis

Concentration of vascular endothelial growth factor (VEGF) or soluble VEGF receptor may
serve as biomarkers indicating the treatment effect for patients treated with angiogenesis
inhibitors [11]. Incorporating the dynamics of angiogenesis biomarkers in tumor growth
modeling enables better understanding and prediction of tumor progression. A model
structure showed as Eq. 2.14, where the change of biomarkers from baseline affects the
tumor decay rate, was applied in two studies [31, 39]. One study characterized the time
course of SLD in patients with gastrointestinal stromal cancer undergoing sunitinib
treatment. The natural growth of the tumor was described with the exponential model,
and the model-predicted relative change of the biomarker’s amount was incorporated to
affect the shrinkage of the tumor [39]. The other study well characterized the dynamics
of tumor volume measured in neurofibromatosis patients undergoing bevacizumab and
everolimus. The natural tumor growth was described by the combined exponential and
linear model (Eq. 2.8), and the amount of unbound VEGF was considered to affect a first-

order apoptosis of the tumor [31].

Another way to account for angiogenesis effect on tumor growth is by assuming the carrying
capacity of the tumor is determined by the effective tumor vascular support that is in turn
affected by the tumor volume (Eqs. 2.15 and 2.16) [40, 41]. Logistic and Gompertz model
structures were applied under this assumption. A model structure displayed by Eq. 2.15 was
applied to well characterize the tumor growth in renal cell carcinoma (RCC) patients based
on SLD measurements [40]. The carrying capacity in this study was assumed to expand
because of proangiogenic factors. Another similar model structure is shown by Eq. 2.16.
Although as far as we know there is no clinical study that utilized this model framework,
it has been used to perform simulations to optimize the delivery of therapeutic agents for
enhancing targeted therapies for liver cancer [41] and to investigate the optimization of

antiangiogenic treatment [42].

Immune system

Apart from angiogenesis, the effect of the immune system has also been incorporated in
the tumor growth model when patients were undergoing immunotherapy [43, 44]. The
proposed model structure is presented in Eqs. 2.17 and 2.18, where the rate of first-order
decline of tumor burden was assumed to depend on the amount of immune component
and decrease while tumor burden was increasing. This model structure was adopted to
characterize the growth of prostate cancer by accounting for the dynamics of the immune
system. Tumor cells were assumed to proliferate exponentially, and the amount of cytotoxic
T lymphocytes affected the cell decline rate (Eq. 2.17) [44]. The applicability of this model

was validated by the results of a clinical trial where PSA measurements were obtained from
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prostate cancer patients treated with a vaccine. Considering the effect of more than one
immune component, another study developed a model structure to simulate the growth of
bladder cancer undergoing immunotherapy [43]. The growth of tumor cells was described
with a logistic model, and the cell decline rate was set to be linearly or nonlinearly related

to the amount of immune components (Eq. 2.18).

Another concept model structure described tumor burden dynamics by a logistic growth,
a first-order damage resulting from immune cells, and a first-order competition with
normal cells (Eq. 2.19) [45]. This model structure was recently adopted to obtain an
optimal dosing regimen for cancer patients based on simulation [46]. A model structure
that omits the competition with normal cells (Eq. 2.20) was also proposed to investigate

treatment optimization [47].

3.1.4 Treatment effect

Empirical method

Tumor shrinkage resulting from drug treatment is typically quantified with an empirical
drug-induced shrinkage term as has previously been summarized [10]. Commonly used
equations identified from included papers are presented in Table 2.1. The time curves
of these equations were simulated with R and are shown in Figure 2.2, assuming an

exponential growth with the growth rate constant k = 0.1.

A log-kill pattern is commonly used for modeling treatment effect, which assumes that
the shrinkage rate of the tumor as a result of drug treatment is proportional to tumor
burden [6]. The simplest way to adopt this pattern is using Eq. 2.21, where k, is the drug-
induced tumor shrinkage rate constant. Such an equation has been used to well described
the treatment effect of everolimus on metastatic RCC patients [18]. The estimates of k, in

that study were different between two dose groups.

The rate of drug-induced shrinkage can also be considered to depend on drug exposure,
i.e., drug concentration and area under the concentration-time curve or drug dose. A linear
drug exposure-effect relationship can be quantified using Eq. 2.22 [22, 25]. Meanwhile,
drug resistance can also be taken into consideration by introducing a e* term on the basis
of Eq. 2.22 to quantify the decline of drug effect over time (Eq. 2.23; Figure 2.2). This
model structure has been applied to characterize the effect of pazopanib on RCC patients
[40]. Setting f(T) = kg - T, an exposure-driven TGI model was developed based on SLD
measurements from colorectal cancer patients receiving capecitabine and fluorouracil [20].

It has then been widely applied to various cancer types and drugs as was reviewed previ-
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ously [11]. Two more recent studies also adopted this model structure to characterize the
tumor SLD change in metastatic breast cancer patients treated with eribulin [48] and in
metastatic ovarian cancer patients receiving carboplatin or gemcitabine plus carboplatin

[49], respectively.

In addition, a damaged cell compartment (D) has also been introduced in studies to
account for the damage on cell DNA as a result of the treatment, as is displayed by Eq. 2.24,
which can result in a delay on drug onset (Figure 2.2). This model structure was used in
two studies that characterized the MTD change in low-grade glioma patients treated with
chemotherapy or radiotherapy [24, 25]. In these two studies, the damaged cell compartment
was used to characterize the treatment effects on drug-sensitive cells [24] and quiescent
cells [25] respectively. Part of the damaged cells eventually died, and the rest were assumed

to become drug-resistant cells [24] and proliferative cells [25] respectively.

Apart from the linear drug exposure-effect relationship, a nonlinear drug exposure-effect
relationship can also be considered to characterize treatment effect particularly for targeted
anticancer treatment [21]. An E__model is commonly used in this circumstance. An
example equation is showed as Eq. 2.25, which was derived from a model where the studied
medicine was assumed to inhibit the zero-order growth rate of advanced solid malignan-

cies following the nonlinear drug exposure-effect relationship [21].

Considering biomarkers
When biomarkers that represent the drug-targeting system are incorporated in the tumor
dynamic models, treatment effect can be added on the dynamics of biomarkers according

to corresponding mechanisms.

In the study where neurofibromatosis patients were treated with bevacizumab and
everolimus, the decrease of the unbound VEGF amount because of the binding with
bevacizumab was considered in the model [31]. Meanwhile, the inhibition of the zero-

order production rate of total VEGF because of everolimus was described with a nonlinear

W) where IC,, the drug exposure

exposure-effect relationship: kK =k- <

that produces 50% of the maximal inhibition effect. As a result of the quantity decrease
of biomarkers, the shrinkage rate of tumor burden increased (Eq. 2.14). The delayed
activation of tumor proliferation result from the continuous use of everolimus was also
integrated in their model structure [31]. In the study where gastrointestinal stromal cancer
patients were treated with sunitinib, the effect of sunitinib was described by a nonlinear

inhibition on the zero-order production rate or first-order decline rate of biomarkers

, I E
usingk =k- <1 _ lmax* EXpoOSure

————————— | , where Imax is the maximal fraction of inhibition
IC5 + Exposure
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Model 1 (Eq.21) : First-order treatment effect Model 2 (Eq.22): Exposure-dependent Model 3 (Eq.23): Exposure-dependent

first-order treatment effect first-order treatment effect + resistance
30 30 30
dT dT At
E=kg-T—kd-ExposurevT E=kg-T—kd-e . Exposure - T

20 20

$ o 0
° v
B 0 10 20 30 40 50
5 Model 4 (Eq.24): Damage compartment considered Model 5 (Eq.25): Non-linear drug exposure-effect
5
= ds %0 dT Eqmax - Exposure
—=Kg-S —kq-Exposure - S —=kg-T- (1 - ————————
30 dt 9 i dt 9 ICs0+ Exposure

dD
—=kq-Exposure-S—-d-D
dt

20
20

T=8+D
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Time
Figure 2.2: Simulated time curves of total tumor burden (T) with tumor dynamic models incorporating
treatment effect with Egs. 2.21-2.25 and assuming an exponential growth (growth rate constant kg = 0.1). k,
is the tumor shrinkage rate constant due to drug treatment, A is the treatment efficacy decay rate constant,
Sisthe drug sensitive cells, D represents the damaged cells, d is the death rate constant. £ is the maximal
fraction of inhibition, and IC is the drug exposure that produces 50% of E__ . The baseline of total tumor
burden is 30. Parameter values used for the simulations are as follows: Model 1 (Eq. 2.21), k,= 0.4; Models 2-4

(Eqs.2.22-2.24), k,=0.04;Model 3 (Eq.2.23),A=0.1;Model 4 (Eq.2.24), d=0.1;Model 5 (Eq.2.25),E, _ =2,IC, =5.
tO'S tO‘S

D imul ith Hill" ion: Exposure = E — =30 —,
rug exposure was simulated with Hill's equation P Pmax Epteg®® 1 005 1005 7 £05

where Ep  represents the maximum exposure at steady state and Ept represents the time when the
exposure reaches half maximum value.

[39]. The negative item in Eq. 2.23 was also included to quantify the treatment effect and

resistance [39].

In addition, the effect of angiogenesis inhibition treatment can also be incorporated by
introducing a first-order drug exposure dependent decline term (Eq. 2.22) on the dynamics
of tumor vascular support [40, 41] when the vascular support was assumed to determine

the carrying capacity of tumor (Eqgs. 2.15 and 2.16).

Studies where patients were treated with immunotherapy have also considered drug inter-
action with the immune system. The presence of immunotherapeutic agents is frequently

assumed to affect the dynamics of components in the immune system, and the amount of
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those components can affect the decrease rate of tumor burden (Egs. 2.17 and 2.18) [43,
44]. For example, the model structure proposed to describe PSA change in prostate cancer
patients treated with a vaccine assumed that the presence of the vaccine upregulated the
zero-order production rate of mature dendritic cells and therefore increased the number

of cytotoxic T lymphocytes, which increased the decay of tumor tissue [44].

3.2 Algebraic equation

Besides using ODEs, model structures displayed by algebraic equations have also been
developed to characterize the dynamics of tumor directly as is summarized in Table 2.1
[50-54]. The simulated time curves of tumor dynamics given by these models are shown
in Figure 2.3. Although these equations could be treated as analytical solutions of ODEs,
they provided different shapes of time curves when compared with what was introduced

previously.

A novel two-phase model that combines exponential tumor regrowth and regression was
developed to interpret serial PSA measurements from Al prostate cancer patients [50]
and metastatic castration-resistant prostate carcinoma patients undergoing combination
therapy [51]. The corresponding model equation is shown in Eq. 2.26, where k is the tumor
regrowth rate constant and k, is the drug-dependent tumor regression rate constant. The
same model structure was also utilized to assess the therapeutic efficacy of bevacizumab
in patients with RCC using the sum of perpendicular diameter measurements [55]. On
the bases of this model structure, an extra parameter 7 has been introduced to account
for the delayed tumor regrowth as presented in Figure 2.3 (Eq. 2.27) [50]. In addition, a
parameter ¢ has also been introduced on the basis of Eq. 2.26 to differentiate the sensitive
and resistant part of the tumor (Eq. 2.28) [55], which results in a less degree of tumor
shrinkage at the early phase (Figure 2.3). This model structure was found to be applicable
when sufficient data points were available, and the estimation of growth rate constant was

similar to what was obtained by the original equation (Eq. 2.26).

Another model structure was proposed by Wang et al. to describe the time courses of
tumor SLD data of non-small cell lung cancer (NSCLC) patients from four clinical trials
treated with eight treatments/placebos [11, 52], as shown by Eq. 2.29. A and B represent
the rate constants of exponential shrinkage as a result of treatment and linear growth,
respectively. The treatment effect was also characterized as a drug-dependent manner. This
model structure has been successfully applied afterward [11] and was recently applied to
analyze SLD measurements collected from NSCLC patients from three clinical studies to

identify the obstacles to wider use of quantitative measures [56].
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Figure 2.3: Simulated time curves of tumor burden (7) with tumor dynamic models displayed by algebraic
equations that describe both tumor natural growth and treatment effect (Egs. 2.26-2.30 and 2.32). kg isthe
tumor growth rate constant, k, is the tumor shrinkage rate constant due to drug treatment, tis the delayed
time of tumor regrowth, ¢ is the sensitive fraction of the tumor, A is the exponential shrinkage rate constant
due to treatment, B is the linear growth rate constant, C is the coefficient of quadratic growth term, BASE is
the baseline of tumor burden, and A is the treatment efficacy decay rate constant. Parameter values used for
the simulations are as follows: Models 1-3 (Eqgs. 2.26-2.28), kg =0.1,k,= 0.4, BASE = 30; Model 2 (Eq. 2.27), T=
10; Model 3 (Eq. 2.28), ¢ = 0.6; Models 4 and 5 (Egs. 2.29 and 2.30), A = 0.4, B =2, C=0.05, BASE = 30; Model
6 (Eq.2.32),k, =0.1,k,=0.4,A=0.1.

A quadratic growth term with a coefficient C was later introduced to this model structure
as is shown in Eq. 2.30 [53]. This model structure was demonstrated to have the best
performance on characterizing the SLD measurements in RCC patients receiving pazopanib
or placebo, and predictive patient-specific covariates were also identified [53]. Treatment
effect, which is reflected by parameter A, was described in a dose-depended manner for

one group of the patients in this case (Eq. 2.31).

In addition, a simplified version of the previously introduced TGI model, which was
displayed by an algebraic equation, was also developed (Eq. 2.32) [54]. This model structure
also assumes an exponential tumor growth with growth rate (k ) while the treatment effect
is described in a drug-dependent manner with parameters account for tumor growth

inhibition (k) and drug resistance (1). By applying this model structure, the tumor size
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change in metastatic colorectal cancer patient treated with bevacizumab and chemotherapy
was described satisfactorily [54]. This model structure has been well applied to describe
tumor size change in metastatic RCC patients treated with cytokine, mammalian target of
rapamycin inhibitor, and VEGF receptor inhibitors [57]; in NSCLC patients undergoing
treatment of carboplatin/paclitaxel combining motesanib or not [58]; in NSCLC patients
treated with bevacizumab and erlotinib [59]; and in gastric cancer patients treated with

bevacizumab and chemotherapy [60].

3.3 Partial differential equation

3.3.1 Natural growth

Partial differential equations (PDEs), which take the change of a dependent variable in
time and space into consideration, have also been adopted in the modeling of solid tumor
dynamics in clinical research. One common application is known as a proliferation-invasion
model or a reaction-diffusion model, which hypothesize that it is the net proliferation
and invasion that contribute to the growth of cancer [61]. This model formation has been
typically used in studies where imaging observations of tumor, especially brain tumors,
were available to describe and predict tumor expansion [8]. The equation of this structure
is shown as Eq. 2.33 in Table 2.1, where the dynamics of tumor cell concentration/density
atlocation x at time (¢ (x, t)) is described [8, 61]. The tumor proliferation in this model can
be expressed by exponential, logistic, or Gompertz functions [8, 61]. Moreover, this model
mathematically regards the expansion of imaging detectable tumor edge as a “traveling
wave,” and the velocity of tumor expansion is a constant that is determined by the diffusion
coefficient (Dif) and growth rate constant p (Eq. 2.34) [61]. This linear radius/ diameter
expansion was confirmed in a group of grade IT gliomas patients with magnetic resonance

image (MRI) measurements before any oncological treatment [62].

Studies applying the proliferation-invasion model to characterize tumor dynamics
typically have interest in estimating the rate constants of net proliferation and invasion.
An application of this model structure can be found in a study where the tumor volumes
obtained from the MRI imaging were available for 70 patients with previously untreated
glioblastoma [61]. The tumor proliferation was described by a logistic function (Eq. 2.5)
with a growth rate constant p. The ratio Dif / p was estimated for each patient based on
MRI observations. Subsequently, setting p as a reported mean value and estimating Dif,
the velocity of tumor radial expansion was estimated, and the survival time of patients
underwent tumor resection were satisfactorily predicted by the estimated time of reaching

a target radius. The same model structure was also applied on serial available MRI data
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from 32 glioblastoma patients before treatment [63]. The net proliferation and invasion
rates they quantified were significantly associated with the survival of patients. Another
study characterized tumor natural growth for nine patients with glioblastoma with the same
model [64]. This study demonstrated that the parameter estimated based on pretreatment
MRIs had high prediction accuracy for responses after treatment for these patients. Using
the same model structure, the correlation between proliferation rate and hypoxic volumes
based on imaging data from newly diagnosed glioblastomas patients was demonstrated
[65]. This model structure was also recently used to investigate the personalization of

radiotherapy strategy for brain cancer patients [66].

Setting f(c(x,1)) = p- c(x, 1) a similar model structure was also used to simulate the growth
of glioblastoma based on previous reported parameters estimated from patients and

estimated the survival times of patients under different parameter settings [67].

Likewise, the proliferation-invasion model with logistic growth function was also success-
fully applied in breast cancer patients to characterize and predict their tumor burden. [68]
The model developed based on MRI data that were available from the early treatment
phase was demonstrated to be able to predict patient response at the end of treatment [69,
70]. In these studies, an apparent diffusion coefficient was estimated based on diffusion-
weighted MRI data and was then transformed to an estimate of tumor cell number, which
was the dependent variable in the model. Moreover, the inhibitory effect of tumor diffu-
sivity resulting from the stress and the deformation of surrounding tissue forced by the
tumor cells were also considered in these studies [69, 70], which is called “mass effect”
[8]. More examples of the application of the proliferation-invasion model can be found

in a previous review [8].

Apart from taking the diffusion coefficient as a constant, the difference between diffusion
rates in gray and white matter can also be considered, such as setting Dif as two different
constants for the cells in gray and white matter, respectively [71]. The proportions of white
and gray matter (i.e. P, (x), Pg(x)) have also been taken into account when computing the
diffusion coefficient with the following equation: Dif (x) = Pg(x) . szg +P (x) - Dif,. The
prediction of the model was validated with clinical imaging data from one glioma patient
case [72].

Recently, a threshold and a necrosis rate were also introduced into the proliferation-
invasion model structure, which assumes an exponential decay will occur once the tumor
cell amount exceeds the threshold [73].
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3.3.2 Treatment effect

When using the proliferation-invasion model, the treatment effect can also be expressed
by subtracting an extra term (corresponding equations are shown in Table 2.1). The effect
of chemotherapy can be expressed with Eq. 2.35, where k, is the drug effect rate constant
[67]. For radiotherapy, a linear-quadratic equation has been used to estimate the probability
of tumor cell survival (Surv) after the administration of radiation with dose (Dose) (Eq.
2.36). The effect of radiotherapy can thus be incorporated as presented by Eq. 2.37 [64].
In addition, it is also possible to incorporate the effect of resection in the proliferation-
invasion model to describe tumor growth after surgery. The resection can be simulated
by setting the cell concentration in the resected region as zero at the time point of surgery
[61]. Subtracting a surgical term (Eq. 2.38) was also found to be applied to simulate the

resection of tumor [74].

4. Tumor resistance evolution modelling

4.1 Tumor clonal evolution

Theoretically, three models of tumor evolution have been reported. One is a selective
sweep model, which is also known as “linear” model [14, 75]. It holds that during cancer
initiation, mutations with fitness advantage are raised and then selectively take over the
whole population sequentially [14, 75]. However, because intratumor heterogeneity was
identified and evidence of branching growth was found from multibiopsy and genomewide
studies, a branching evolution theory where multiple subclones are considered to present
and compete was developed [14, 75]. Another “big bang” model of tumor evolution was
observed in colorectal tumors, which suggests that advantage mutations arise and cumulate
during the early phase of cancer development and the tumor then grows as a neutral single
clonal [14, 75].

Mathematical models that characterize tumor initiation and progression as an evolving
process, including stochastic models and deterministic models, were sufficiently intro-
duced in previous reviews [13, 14]. A well-mixed cell population is typically assumed [13].
Modeling strategies that focus on describing the evolution of cancer resistance have also
been discussed [15, 17]. In the following sections, we will mainly give an introduction
about different mathematical modeling strategies that were used to characterize cancer

resistance with the tumor evolution principle.
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4.2 Stochastic model

4.2.1 Probability model assuming the branching process

The branching process, which is also called the birth-death process, is a commonly
adopted stochastic process that is used to characterize the evolving dynamics of cancer
resistance [13, 15, 17]. The Markov property is adopted in this model. Normally, at least
two cell types, i.e., sensitive cells and resistant cells, are considered. It assumes that a tumor
grows exponentially and that each sensitive cell has a certain birth rate, death rate, and a
mutation probability in one cell division, and each resistant cell also has a certain birth
rate and death rate. The probability of cell number change from current generation to the
next could therefore be expressed with these parameters, as is shown in Eq. 2.39 (Table
2.2). n and m the numbers of sensitive cells and resistant cells, respectively. Substantially,
stochastic simulation could be performed and the probability of resistance (the probability
of at least one resistant cell is present; P_) and the expected number of resistant cells (E,)

could be calculated with probability-generating function.

Resistance evolution before treatment

By applying the branching process, the resistance evolution before treatment can be
investigated. One study estimated the P, and E_ of a cell population reached a certain
size through the branching process starting with one sensitive cell [76]. The fitness of the
resistant cells that is relative to sensitive cells was also taken into consideration [76]. The
derived equations were later adopted to estimate the resistance probability of colorectal
cancer prior to endothelial growth factor receptor (EGFR) antibody treatment, where the
parameters were estimated based on longitudinal KRAS mutation amount measurements
[77]. The results indicated that the resistant mutation was highly likely to be present prior
to the initiation of treatment. The same process has also been applied to investigate the
evolution of drug resistance in chronic lymphocytic leukemia before treatment [78], where
the growth and death rates of cancer cells were set based on patient results. In this case,
besides estimating P, and E, at the time of treatment start, a time needed for the resistant
population to reach a detectable level after treatment was also estimated based on which

disease progression was analyzed and compared with real patient data.

Another study proposed functions for estimating the expected and median cell numbers for
each resistant subclone in a metastatic lesion containing a certain number of cells with the
branching process starting with a single sensitive cell [79]. The predictions of relative cell
numbers of resistant subclones assuming resistant cells were neutral were demonstrated to be in
agreement with what was estimated based on the mutation concentrations in circulation tumor
DNA (ctDNA) obtained from colorectal cancer patients treated with an EGFR blockade [79].
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Table 2.2: Modeling frameworks for characterizing tumor resistance evolution

Models Equations Ref.
Stochastic models
Probability ( P(n+1,mnm) =b,-(1—u)-n-At Eq.2.39 [76,
model assuming | P(n—1,m[n,m) =d, n-At 81,
branching P(n,m+1n,m) = b, -m-At+b,-u-n-At 83]
process P(n,m—1n,m) =d, -m-At
P(n,mln,m) =1— ((bs +d,) n-At+ (b, +d,) -m- At)
SFOChaSt?C dS:kg~S-(1—M)-dt —u-S-dt—ky' -S-dt+0,-S dW, —qy K-S+ dN; Eq.240 [90]
differential max c
equation k' = ke e
Deterministic models
Ordinary ds Eg.2.41 [91]
differential dt (e —d —ky) -
equation dR
a Z:(kg—d)-R+u-S
ds Eq.242 [88]
z:(kg-(l—u)—d—kd)-s
dR
E:(kg—d)-R+kg-u-s
ds
% (ky k- Dose) -5 Eq.243 [92]
dR
5 =k RAkguss
s Eq.2.44 [93]
= (kgt =y —kgy - Cp) - S+uy - R
dR
E:(kgz—uz)-R+ul-R
Game theory W) = Zp]_ Payoff(i) =1 =1 —d; + (1—p) - X; Eq.245 [94]
W Zpi W) Eq.2.46
dp, N = Eq.247
PRt w@ -w)
t
In.tegral—. % =[r)- (1= - c@) = G(p(®) - d()] - n(x,) +9'flf(y)'M(y,X)-n(y. t)-dy Eq.248 195,
differential N o 96]
equation ”(t):fo"("’t)d"

n, numbers of sensitive cells; m, numbers of resistant cells; b, birth rate of sensitive cells; d, death rate of
sensitive cells; u, mutation probability in one cell division; b, birth rate of resistant cells; d, death rate of
resistant cells; P, probability of cell number changing from current generation to the next; S, sensitive cells, R,
resistant cells, k , k , k , growth rate constant; d, death rate constant; k , shrinkage rate constant as a result of
drug treatment; C, drug concentration; K, drug concentration that produces 50% of maximum treatment
effect; dw,, stochastic cell diffusion in a small time interval (Wiener process); dN,, stochastic dissemination
in a small time interval (Poisson process); o,, diffusion rate; g,, dissemination rate; K, angiogenesis; u,, u,,
mutation rate; W(i), fitness of type i cell; Payofflij), payoff of type i cells when they meet cell type j; p, p;
proportion of cells; r, cost of resistance; d,, cost as a result of treatment; X, benefit for resistant cells when
interacting with susceptible cells; x, y, resistance levels; n(x, t), cell density with resistance level x at time t;
r(x), r(y), cell division rate; c(x), treatment effect; d(x), cell death rate; G(p(t)), a density dependence term; 6,
mutation fraction; M (y,x), probability that cell y mutates to cell x.
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Resistance evolution during treatment

The branching process has also been applied to simulate the evolving resistance during
treatment. Regarding treatment initiation as the starting point, the dynamics of resistance
evolution has been investigated with branching stochastic processes. Starting with a group of
drug-sensitive cells, Foo and Michor [80] proposed functions of P, and E, during treatment
depending on the length of treatment on and break time for continuous and pulsed dosing
strategies. Treatment effect was incorporated by setting different birth and death rates
for sensitive and resistant cells, if considering partial resistance, at on-treatment and off-
treatment periods, respectively. They also estimated P, E, and variance of resistance cell
number during treatment as functions of time considering with or without preexisting
resistant cells [81]. Treatment effect in this study was incorporated by making the birth and
death rates of both sensitive and (partial) resistant cells affected by drug concentration. The
treatment schedule could therefore be optimized by minimizing resistance risk or limiting
the size of resistant clones. Corresponding equations were later adopted to simulate the
time curve of E, and P, and thereby to identify a relatively best treatment strategy for
EGFR-mutant NSCLC patients receiving erlotinib [82]. In that study, the birth and death
rates of different types of cells were obtained from in vitro experiments, and the birth rates
were affected by drug concentration [82]. Three cases of mutation rate change because of

drug dose were also considered in the study.

Cancer progression under combination therapies has also be investigated with evolution
models to predict the outcome of multiple treatment strategies in EGFR-mutant lung
cancer patients treated with two drugs [83]. Tumor evolution after treatment initiation was
modeled as a branching process with at least three types of cells considered: one type of
sensitive cell and two types of preexisting resistant cells that are resistant to only one of the
two drugs, respectively. The expected numbers of each type of cells were thereby estimated
and the sum of which was the total expected cancer cell number (treatment outcome). The
treatment effect was described by decreasing the birth rates of cells depending on drug

concentration, and drug interaction was also taken into consideration [83].

Besides separating tumor cells as being sensitive and resistant to treatment, one study also
separated cells (subclones) according to resistant status and the number of accumulated
drivers [84]. In the stochastic branching process of tumor progression, subclones were
assumed to have probabilities of raising a driver mutation and a resistant mutation during
division. The accumulation of driver mutations resulted in an increase in the fitness of
cells, whereas resistance was related to a fitness cost, and the fitness of nonresistant cells
decreased because of treatment. By modeling the probability change of each cell type, the

expected tumor size and the average frequency of resistant cells were estimated as functions
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of time. Subsequently, tumor detection time was calculated and used to compare the effect

of prevention and postdiagnostic interventions [84].

Tumor eradication

Considering that resistant mutations may die out as a result of stochastic drift during
branching evolution, tumor eradication (treatment success) probability has also been
investigated. One study modeled tumor progression as the following three phases:
expansion with decreasing division rate until steady state, maintaining steady state, and
treatment phase, starting with a single sensitive cell [85]. Treatment was assumed to decrease
the division rate and increase the death rate of sensitive cells. A formula of the probability
of resistant cells arising but becoming extinct by the end of the treatment in each phase
was then proposed, and the overall probability of treatment success was estimated as the
product of the three probabilities [85].

Multidrug resistance

The evolution of multidrug resistance has also been elucidated by a stochastic model
where drug-sensitive and drug-resistant cells can divide, die (naturally and as a result of
treatment), and mutate with certain probabilities [86, 87]. In this model, cells accumulate
one mutation that leads to resistance to one drug each time, and all mutations must
be accumulated to make a cell resistant to all drugs. The treatment success probability
(probability of extinction) as well as the probabilities of resistance when resistant cells
generated exclusively before and during treatment were estimated, respectively. Based on
the derived equations, the tumor size at which a certain percentage of patients were treated
successfully were investigated under various numbers of drugs, mutation rates, and the
turnover rates of cancer cells [86, 87]. This model structure and the derived equation of
treatment success probability were later utilized to optimize cyclic treatment scheduling
[88]. Moreover, taking the contribution of quiescent tumor cells into consideration by
incorporating the branching process of both cycling cells and quiescent cells, the effect
of quiescent cells on the treatment outcome, such as the resistance probability, of chronic

myelogenous leukemia patients has also been investigated [89].

4.2.2 Stochastic differential equation

In addition of the probability models, another stochastic modeling strategy that has been
applied to characterize the development of resistance during treatment is by using stochastic
differential equations. An example can be found in a study on melanoma cancer patients
[90]. Three types of cancer cells, including sensitive, resistant, and metastasis cells, and

angiogenetic cells were considered. The dynamics of the number of drug-sensitive cells
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is described by Eq. 2.40 (Table 2.2). In this differential equation, cell growth, mutation,
and death were described deterministically, whereas cell diffusion and dissemination were
considered as stochastic processes. Logistic growth function was used to describe the growth
of cells, and the mutation from sensitive to resistant cells is described with a first-order
process. The death of sensitive cells was caused by drug treatment, and the nonlinear drug
exposure-effect relationships was adopted (Eq. 2.40). Wiener process and Poisson process
were incorporated to account for stochastic cell diffusion and dissemination, respectively.
The effect of angiogenesis was also included. A drug-induced resistance factor, which
depends on drug concentrations, was integrated to increase the growth and dissemination
rates. The model predictions of the progression-free survival and number of metastasis
cells were demonstrated to be, respectively, comparable with the observed progression-free
survival and ctDNA level obtained from melanoma patients treated with B-Raf kinase and

mitogen-activated protein kinase inhibitors [90].

4.3 Deterministic model

4.3.1 ODEs

Other than stochastic models, deterministic differential equations have also been used
to study the evolution toward drug resistance, especially for a population with a large
size that often behaves nearly deterministically [13]. The dynamics of sensitive cells and
resistant cells can be modeled with ODEs similar to what were introduced in the “Tumor
Heterogeneity” section, but the transition from resistant to sensitive cells is often neglected.

The model structures that have been identified are shown in Table 2.2.

One model of resistance evolution displayed by ODEs is shown as Eq. 2.41, where drug
resistance is considered to raise due to point mutations [91]. When considering multiple
drug resistance, multiresistant cells were assumed to only be mutated from single-resistant
cells. Starting with a certain number of sensitive cells, the resistance amount by the time
of treatment initiation and during treatment was estimated under different conditions.
The authors demonstrated that the simpler ODE model provided comparable results to
previous models that were derived from more complicated stochastic models [91]. Another
example can be seen in Eq. 2.42. This model was used to investigate the preferable treatment
by controlling the total amount of fully resistant mutants, which can be acquired from
sensitive cells and single-resistant cells [88]. In addition, a model with treatment effect
being proportional to drug dose has also been used to model evolving tumor resistance (Eq.
2.43) [92]. Multiresistant cells were also considered and were assumed to mutate only from

single-resistant cells. Based on this model structure, the survival of patients undergoing
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different treatment strategies, such as the strategy of minimizing the total cell population or
minimizing the multiresistant population, was investigated [92]. Another model structure
of resistance evolution that includes the transition from resistant to sensitive cells (Eq. 2.44)

has also been adopted to investigate the optimization of treatment [93].

4.3.2 Game theory

Evolutionary game theory has also been used to investigate the evolution of cancer
resistance, especially under combination therapy [94]. It assumes the fitness of one type
of cell, which can be understood as the growth rate, changes when the cells interact with
different types of other cells. This can be expressed with a payoff matrix, and the final
fitness of one type of cell is their expected payoff of this “game” [13]. An example was
found from a study where a well-mixed population and a deterministic dynamic of the
evolving process were considered [94]. The evolutionary game theory was adopted to
investigate and understand the evolving resistance for small cell lung cancer patients
under a combination of chemotherapy and tumor suppressor p53 vaccine treatment
[94]. Three cell populations, including cells that are sensitive to both treatments and cells
that are resistant to one of the treatments but sensitive to the other, were considered to
constitute the total tumor population. As presented in Table 2.2, the fitness of type i cell
can be expressed as a sum of the product of the payoff of type i cell interacting with type
j cell and the proportion of type j cell (Eq. 2.45), where a cost of resistance and a cost as
a result of treatment was considered [94]. In addition, to account for the influence of cell
interaction on cell sensitivity and fitness, an extra benefit for resistant cells when interacting
with susceptible cells under treatment was also introduced (Eq. 2.45) [94]. The average
fitness was expressed with Eq. 2.46, where pi is the proportion of each type of cells. The
dynamics of each cell type under sequencing treatment was described using a replicator
equation (Eq. 2.47), and the time curve of the proportion and fitness of each cell type are

two main outcomes of the simulations in this study.

4.3.3 Integral-differential equation

An integral-differential equation, where the states of cancer resistance are described in a
continuous way ranging from complete sensitivity to complete resistance, has also been used
to characterize the evolution of cancer resistance [95, 96]. A model structure shown as Eq.
2.48 has been used to describe the dynamics of cancer cell density with resistance level x
at time t [95, 96], where cell division, cell death, treatment effect, and cell mutation were
all incorporated (Table 2.2). Simulations were performed in these studies to illustrate the

evolution of resistant level during treatment, but it has not yet been applied in clinical studies.
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5. Model selection

Applying different model structures to characterize tumor dynamics and tumor resistance
evolution may achieve different objectives and require different data input and knowledge
(Table 2.3). The target cancer type and treatment option may also influence the selection
of model structure (Table 2.3).

As for the tumor dynamics models displayed by ODEs and algebraic equations, most models
are applicable to describe tumor size change in patients with various kinds of solid tumors
and under different kinds of treatment (monotherapy or combination therapy). However,
the models specifically developed for prostate cancer are mainly suitable to describe PSA
level change, and the models incorporating angiogenesis biomarkers or immune compo-
nents are normally considered when patients are treated with antiangiogenesis treatment

or immunotherapy, respectively.

Longitudinal tumor size data, such as the SLD of target lesions, MTD, or tumor volumes,
or PSA measurements are required to estimate model parameters. A mixed-effect modeling
approach has been applied to most model structures that are displayed by ODEs and
algebraic equations to account for interindividual variability, whereas the parameters of
other structures, such as the two-phase model, were normally estimated for each subject
separately. In the former case, each subject in a group is normally required to contribute at
least one measurement before treatment and one thereafter. More data points are preferred
to enable the better estimate of all parameters. However, the latter method may require
each subject to contribute enough data points to enable parameter estimates. In addition,
if a study aims at developing a model incorporating biomarkers, longitudinal biomarker
observations or previously reported models for treatment-biomarkers interaction are
required. If no specific biological process is considered, the selection of model structures
can also depend on the model fit to the data as long as the model is physiologically or

biologically plausible.

Among the functions of the natural tumor growth (Egs. 2.1-2.8), which are always part of
the tumor dynamics models, the exponential growth model has been the most frequently
selected in clinical studies. The logistic growth model was normally satisfactorily applied
when the maximum tumor capacity was fixed. The selection of the basic functions could
also depend on the model fit to the data. More than one available pretreatment tumor size
measurement would be helpful to find the best fit natural growth model and would enable

a more accurate estimate of the tumor natural growth rate.
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Chapter 2

The treatment effect can be characterized in a drug-dependent manner or exposure-
dependent manner. If a study does not focus on investigating the exposure-effect rela-
tionship, using a model with drug-dependent tumor shrinkage will be enough and drug-
exposure information is not required. For studies aiming at characterizing the relationship
between drug exposure/dose and tumor response and/or optimizing treatment regimens
for patients based on simulations, the exposure-dependent (or dose-dependent) treatment
effect structure should be applied. To estimate drug exposure, longitudinal concentra-
tion data for PK model development or a previously reported PK model are needed. In
addition, the previous knowledge of the treatment mechanism may also be required to
appropriately characterize the treatment effect, especially when applying models consid-

ering biological factors.

The proliferation-invasion model that is displayed by PDE has mainly been applied to
investigate glioblastoma or breast cancer based on available MRI measurements. The
required parameters can be estimated for each patient separately based on two sets of
pretreatment MRI data or one before treatment and one thereafter. Simulations can then
be performed to predict patient outcome with the model or with the velocity function of
tumor radius expansion (Eq. 2.34). The mixed-effect modeling approach has not been

found to be applied in these studies yet.

The model structures of tumor resistance evolution have been mainly applied to perform
simulations to understand evolving resistance and optimize the treatment. The equations
derived from the branching process can be applied to answer clinical questions. Available
longitudinal or static ctDNA measurements can be utilized to determine the parameter
values and to evaluate the simulation results. Although no mixed-effect modeling approach
has been applied in these studies yet, the model structures displayed by ODEs, which can
provide comparable results to stochastic models, are considered to be potentially able to

account for interindividual variability.

6. Discussion

Overcoming treatment resistance with a better understanding of cancer evolution and
personalizing treatment brings opportunities to treat cancer as a chronic disease and has
been increasingly studied in the oncology field. Model-based approaches incorporating
tumor growth and resistance evolution may help achieve this goal. By applying math-
ematical models, prior knowledge derived from clinical trials and routine patients care can

be utilized to quantitatively understand drug PK profiles, the drug-response relationship,
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and evolving resistance in cancer patients. These profiles can be predicted accordingly for
future patients, which could be beneficial for identifying optimized therapeutic regimens.
Furthermore, by accounting for interindividual variability with a mixed-effect modeling

approach, treatment individualization can also be designed and guided rationally [97].

In the current review, feasible model structures that have been used to describe and predict
tumor dynamics and resistance evolution during treatment for patients with solid tumors
are discussed. Models concerning tumor evolution in leukemia were included because
they provide reference value for solid tumors. Apart from what has been introduced, more
extensive models have also been found in the literature search, such as agent-based models
and the cellular automata approach. The agent-based models often include components
from two or more spatial or temporal scales, ranging from molecular to tissue [7], and
the cellular automata approach adopts a discrete dynamical system of time and space [9].
Although tumor growth can be simulated in silico realistically with these approaches,
because they require infeasible information input (e.g., cell location, nutrition distribu-
tion, and/or oxygen amount) from clinical patients, they were excluded from the current
review. Studies applying the proliferation-invasion model, which are expressed with PDE,
were not excluded, although tumor cell location is also one of the variables. It is because
two main parameters in this model structure, the diffusion coefficient Dif and growth rate
constant p, can be estimated directly based on MRI results obtained from patients, and

the velocity of tumor radius expansion can then be estimated and utilized for prediction.

Models displayed by ODEs, algebraic equations, and PDE are commonly reported for the
modeling of tumor size change and, in the case of prostate cancer, PSA amount change.
Five main basic natural tumor growth model structures were frequently reported. The
diversity in model selection can be explained by the difficulties of assessing real long-term
natural tumor growth pattern in patients [11]. Although setting the maximum boundaries
of tumor growth is more biologically plausible, the models without such limits, especially
the exponential growth models, have also been used extensively. The concept of linear
growth is also reflected in the studies that applied the proliferation-invasion model, as the
expansion of tumor radius has a constant velocity under such a model, and this concept

has been used to predict tumor radius [63-65].

For characterizing treatment effect, empirical methods are relatively simple to apply for
describing the effect of various kinds of drugs and are therefore more generally applicable.
The shrinkage rate of tumor burden caused by treatment can be described to be propor-
tional to drug exposure/dose or by utilizing drug-dependent parameters, although the

latter method does not allow differentiation among different dosing regimens. In addition,
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when the dynamics of biomarkers are available and are incorporated in the tumor dynamics
models, the treatment effect on the production of biomarkers can be integrated according
to drug mechanism [31, 39]. Furthermore, the regrowth of a tumor during treatment can
be considered in several ways. Studies applying algebraic equations generally characterize
the decline and regrowth of a tumor by a single equation. For studies that used ODEs,
tumor regrowth was mainly characterized by separating the tumor in two parts consisting

of drug-sensitive cells and drug-resistant cells or by adding the e term.

The resistance evolution of cancer has been mainly characterized by stochastic models
within which the branching process is reported most frequently. However, in studies
applying the branching process, the focus was mainly on the expected outcome of tumor
evolution, such as the P, and E_. Therefore, relatively simpler deterministic models are
considered to be good alternative choices. It has already been demonstrated that ODE
models can provide comparable results to those that are derived from stochastic models
[91]. Given that the goal is to characterize evolving tumor resistance based on clinical
data, applying deterministic models might be more suitable given clinical available data

generally represents the apparent response of each patient.

Among the studies included in this review, the detailed data of resistance evolution have
not yet been incorporated in tumor size-based modeling of anticancer treatment response.
However, genetic biomarkers that represent tumor heterogeneity and resistance evolution
become increasingly available as a result of novel technologies. For example, in a clinical
setting, a feasible genetic biomarker that is also correlated with tumor burden has been
identified as ctDNA [98]. Three of the included studies have already utilized the available
ctDNA data to support the estimation of parameters in the tumor evolution model or to
evaluate the model simulation results [77, 79, 90]. It has also been demonstrated that the
mutation in ctDNA, which represents treatment resistance, is detectable before disease
progression [99], suggesting the predictive value of ctDNA to the development of drug
resistance. By applying longitudinal monitoring of ctDNA, an adaptive treatment for
individual patients may be achieved by selecting drugs that target emerging actionable
mutations [98]. Therefore, it is feasible to obtain the information of evolving cancer resist-
ance and, to increase the chance to overcome treatment resistance, it would be helpful if

such information could be incorporated in future model-based studies.

Based on what was learned from previous reported studies, as is introduced in this review,
model structures displayed by ODEs are considered to be feasible for the characterization
of both tumor size change and resistance evolution in cancer patients. A mathematical

model can be developed based on the input data of tumor size, mutation load of ctDNA,
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and treatment information over time. The emergence and dynamics of mutations in ctDNA
can provide insight of the occurrence, growth, decay, and mutation for different tumor
subclones. External data sets, if available, can be used to further evaluate the developed
model structure. Subsequently, the effect of sequential treatment regimens with different
dose levels or starting times of therapies can be explored with simulation and thereby
to facilitate the identification of an optimal regimen. Moreover, because the parameter
values can be estimated for each individual and the variability of which can be partially
explained by patient characteristics, the treatment personalization can also be rationally
guided based on the modeling and simulation results. These will be the ultimate output
of the model-based study.

However, challenges remain beyond what is already stated. First, in terms of data collec-
tion, previous knowledge of the mutations that represent resistant subclones is required.
Second, if sequencing data of the subclones (ctDNA) over time are available, efforts need
to be made to handle the vast amount of genetic data in a quantitative manner in relation
to tumor size dynamics. Third, the optimal method on how to predict a newly acquired
mutation that has not yet occurred in the data needs to be further explored. Finally, because
in-depth knowledge is required from multiple aspects of tumor and clone dynamics as well
as complex modeling and simulation, a multidisciplinary collaboration is essential to enable

the achievement of the ultimate goal of optimizing and personalizing anticancer treatment.

In conclusion, based on a systematic search of studies from the literature, mathematical
models that have been used to describe and predict tumor size change, drug effect, and
resistance evolution based on clinically available data were introduced in this review. The
results may facilitate the model-based anticancer treatment response analysis that accounts
for both tumor growth inhibition and resistance evolution, although important challenges
still need to be overcome. An ultimate model structure handling all of these aspects would

be of great benefit for optimizing and personalizing anticancer treatment.
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Supplementary Material S2.1

Literature searching method

As for tumor dynamic modelling, a search term: (“Models, Theoretical” [Majr:NoExp]
OR “Computer Simulation”[Mesh] OR “Models, Biological*” [Majr:NoExp]) AND
(“mathematical” [title/abstract] OR “computational”[title/abstract] OR “model-
based”[title/abstract] OR “model based” [title/abstract] OR “pharmacometric*”[title/
abstract] OR model framework|title/abstract] OR modelling framework|title/abstract]
OR modeling framework(title/abstract] OR PK/PD model* [title/abstract] OR PK-PD
model* [title/abstract]) AND (pharmacody* [title/abstract] OR tumor growth[title/
abstract] OR tumour growth|title/abstract] OR tumor dynamic|title/abstract] OR tumour
dynamic[title/abstract] OR tumor dynamics[title/abstract] OR tumour dynamicstitle/
abstract] OR tumor-growth[title/abstract] OR tumour-growth|title/abstract] OR “change
in tumor size”[title/abstract] OR “change in tumour size”[title/abstract] OR “tumor
growth inhibition”[title/abstract] OR “tumour growth inhibition’[title/abstract]) AND
(“Neoplasms”[Majr:NoExp] OR “cancer”[title/abstract] OR “tumor*”[title/abstract]
OR “tumour*”[title/abstract] OR malignan*[title/abstract] OR oncolog*[title/abstract])
AND “Humans”’[Mesh] NOT “Animals”’[Mesh:NoExp] NOT “Cells’[Mesh] AND
English[Language] AND (Pharmacology OR oncology) was used to retrieve records from
PubMed database. Papers published until the start of March 2018 were scanned based on
their abstract and method part. Papers that met the following criteria were included: 1)
published after 2000; 2) studies where longitudinal tumor size data obtained from patients
with solid tumors was described with mathematical models; 3) studies where longitudinal
PSA data from prostate cancer patients was characterized with mathematical models; 4)
studies where tumor size data from patients were obtained to estimate model parameters;
5) reviews that summarized equations of different tumor growth modelling structures; 6)
simulation studies where the models are potentially applicable in clinical settings, i.e. well

mixed cancer cell population were considered.

Exclusion criteria include: 1) studies published before 2000; 2) studies for which the full
text was not available; 3) animal studies; 4) computer aided molecular studies; 5) studies
with no equation reported; 6) studies characterizing disease progression; 7) studies that
focus on MRI/PET/CT utility, optimization, or kinetics; 8) studies characterizing safety and
toxicity profiles; 9) studies characterizing the dynamic of biomarkers or markers related
to drug activity; 10) studies where the target cancer types are not solid tumor; 11) studies
that modelled cell cycle kinetics or signaling pathway; 12) computational methodology

studies; 13) studies characterizing tumor evolution; 14) introductory journal article; 15)
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reviews discussing the application of mathematical models and/or have no equations
reported; 16) other studies that are not focus on tumor growth analysis; 17) simulation
studies where the models are potentially not feasible in clinical settings, including studies
considered nutrition distribution, cellular automata, multiple scales, chemical potential,

and in silico illustration of tumor growth .

As for tumor resistance evolution modelling, a search term: (“Models, Theoretical” [Mesh]
OR “Computer Simulation”’[Mesh] OR “Models, Biological*” [Mesh]) AND (“math-
ematical” [title/abstract] OR “computational”[title/abstract] OR “model-based”[title/
abstract] OR “model based”[title/abstract] OR “pharmacometric*”[title/abstract] OR
model framework([title/abstract] OR modelling framework[title/abstract] OR modeling
framework|[title/abstract]) AND (“Neoplasms”[Majr:NoExp] OR “cancer”[title/
abstract] OR “tumor*”[title/abstract] OR “tumour*”[title/abstract] OR malignan*[title/
abstract] OR oncolog*[title/abstract]) AND “Humans”’[Mesh] NOT “Cells”[Mesh]
AND English[Language] AND (“Drug Resistance, Neoplasm”[mesh] OR “Biological
Evolution”[Majr:NoExp] OR “Clonal Evolution’[Mesh]) AND (“Resistance”|[title/abstract]
OR “heterogeneit* “[title/abstract] OR “evolution”[title/abstract] OR “clone”[title/abstract]
OR microenvironment|title/abstract]) was used to retrieve records from PubMed database.
Papers published until the start of March 2018 were scanned based on their abstract and
method part. Papers that met the following criteria were included: 1) published after 2000;
2) model-based studies on the evolution of tumor resistance and tumor progression; 3)

reviews that summarized equations of different model structure.

Exclusion criteria include: 1) studies published before 2000; 2) articles that overlap with
what we obtained from tumor growth modelling; 3) studies for which the full text was not
available; 4) computational molecular studies; 5) network studies; 6) studies concerning
P-glycoprotein and resistance protein; 7) studies focus on cell cycle kinetics or signaling
pathway; 8) introductory journal article; 9) studies characterizing tumor growth; 10)
studies with no equation reported; 11) reviews discussing the application of models and/

or have no equations reported; 12) other studies that are not focus on tumor evolution.

Studies concerning tumor dynamics and tumor resistance evolution that were retrieved
by the other search term were also scanned and included according to their own corre-
sponding inclusion and exclusion criteria respectively. Included articles’ references which
introduced corresponding original models or demonstrated application examples, which

were not found in the included papers, of certain model structures were included as well.

The flow diagram of scanning literature is shown in Figure S2.1.
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Figure S2.1: Diagram of literature scanning for (A) tumor dynamics and (B) tumor resistance evolution.
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Software

Software that was applied in studies concerning tumor dynamics (TD) and tumor evolution
(TE) to perform parameter estimation and data simulation is summarized in Table S2.1.
As can be seen in the table, NONMEM and Matlab are two most frequently used software
that performing model-based analysis concerning tumor dynamics. Studies applying non-
linear mixed-effect models (NLMEM) mostly utilized NONMEM software to estimate
parameter values, while Matlab was popular when performing simulation with partial
differential equations. Three other commonly used software packages for tumor dynamics
modelling are Monolix, Phoenix NLME, and Sigmaplot. For studies performing tumor

evolution analysis, only a few of them reported the software, namely Matlab and R.

Table S2.1: Software that was applied in studies concerning tumor dynamics (TD) and tumor evolution (TE)
to perform parameter estimation and data simulation

Application Name Algorithm
D NONMEM (ICON Development First-order conditional estimation with interaction
Solutions) (FOCE-I) algorithm

First-order conditional estimation (FOCE) algorithm
Laplacian algorithm

Stochastic approximation of expectation
minimization (SAEM) algorithm

Matlab Ordinary differential equation solver
pdepe
ODE45 subroutine

A custom genetic algorithm

Monolix SAEM algorithm
Phoenix NLME FOCE algorithm
Sigmaplot (Systat Software Inc) ~ Not mentioned
SPLUS Not mentioned
C programme Not mentioned
TE Matlab Not mentioned
R; coded with C++ Not mentioned
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