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Importance of optimizing anti-cancer treatment

Worldwide, cancer is a leading cause of death and the incidence of cancer is rapidly 
increasing, reflecting both the aging of the population and the prevalence of main risk 
factors such as unhealthy lifestyle [1, 2]. Continuous efforts have been made to meet the 
medical needs of cancer patients and numerous options are currently available. A conven-
tional treatment option for cancer patients is cytotoxic chemotherapy, which aims to inhibit 
tumor cell multiplication by affecting the synthesis or function of macromolecular [3]. In 
recent decades, targeted therapies, which act on specific oncogenic proteins that drive tumor 
growth or progression, have also become a standard type of anti-cancer treatment [4, 5]. 
Due to the increasing knowledge of molecular alterations in tumor cells, appropriate drug 
targets can be identified and specific targeted treatment options can be selected [6]. These 
targeted therapies have significantly improved the survival of cancer patients, and more 
than eighty targeted drugs have been brought to the market over the past decades [4, 7].   

However, obstacles to accomplishing successful anti-cancer treatment still exist. First, for 
both conventional chemotherapies and targeted therapies, one important reason for patients 
experiencing treatment failure is drug resistance [8, 9]. The occurrence of drug resistance 
is mediated by a range of mechanisms, including physical barriers and impact of the tumor 
microenvironment [4, 9]. Evolutionary mechanisms are also increasingly acknowledged as 
key factors that contribute to the development of drug resistance. It is driven by inter- and 
intra-tumor heterogeneity, i.e. distinct cells exist in different or same tumors which show 
different susceptibility to treatments, and the evolving adaptation of tumor cells to the 
selection pressure of anti-cancer drug treatment, i.e. resistance subclones are acquired or 
are adaptively selected from pre-existing subclones during treatment [9-12]. To increase 
the chance to suppress the development of drug resistance, a better characterization and 
understanding of evolutionary tumor progression, and subsequent use of this knowledge 
to design new adaptive treatment regimens are desired.  

Another important factor that challenges successful treatment is the substantial variability 
in pharmacokinetics (PK) and pharmacodynamics (PD) of anti-cancer drugs, which is 
especially frequently observed in real-world patients. Due to the existing correlations 
between drug exposure and treatment response (efficacy and toxicity) for many oncologic 
drugs, such variability can result in suboptimal treatment outcomes for part of the patients 
especially when the therapeutic window is narrow [13, 14]. Thus, the need for precision 
dosing in cancer therapy instead of a ‘one-dose-fits-all-approach’ is emerging [14]. In 
addition, the dosages of most oncology drugs are selected according to the maximum 
tolerated dose (MTD) paradigm [15]. This can lead to a demand for dose modification 
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in real-world patients due to the risk of toxicity [15]. Therefore, optimizing dosage of 
anti-cancer drugs to ensure efficacy while minimizing toxicity is essential. To achieve this 
goal, it would be beneficial to better understand and predict PK/PD profiles and exposure-
response relationships of anti-cancer drugs, and identify factors that explain PK/PD vari-
ability (between and within patients) in real-world populations. In addition, a useful tool 
to support optimal and personalized dose and regimen selection based on the therapeutic 
target is warranted. This knowledge can also contribute to a better implementation of 
therapeutic drug monitoring (TDM) in cancer patients. 

Longitudinal (bio)markers        

Monitoring longitudinal (bio)markers during anti-cancer therapies enables assessment of 
cancer progression and treatment response. Tumor burden is a commonly used indicator 
of anti-cancer treatment effect and is routinely monitored in clinical practice. In solid 
tumors, tumor burden is typically quantified with the sum of the longest diameters (SLD) 
of target lesions, which also forms several clinical endpoints defined by Response Evalu-
ation Criteria in Solid Tumours (RECIST version 1.1) [16]. The longitudinal tumor size 
measurements can reflect the dynamics of treatment effect and tumor progression. SLD 
related metrics, such as relative or absolute changes from baseline, have also showed to be 
predictive to the overall survival of cancer patients [17]. In addition to tumor diameters, 
soluble tumor markers have also been used to measure total tumor burden in clinical 
practice. These include prostate-specific antigen (PSA) in prostate cancer, CA125 in 
ovarian cancer, M-protein in multiple myeloma, and carcinoembryonic antigen (CEA) in 
colorectal cancer [17, 18].  

Circulating biomarkers, including soluble drug targets, inflammatory biomarkers, and 
circulating genetic biomarkers, can also be assessed to monitor treatment response and 
guide treatment modification. Circulating tumor DNA (ctDNA) is an emerging genetic 
biomarker which refers to cell-free DNA (cfDNA) fragments that are released into the 
circulation from primary tumor or metastatic cells [6]. It can be detected from liquid 
biopsies which allows real-time monitoring with limited patient burden. From serial ctDNA 
analysis, cancer-related genetic alternations can be detected and quantified, which can 
reveal the mechanisms of resistance to targeted therapies, and provide important insights 
into tumor heterogeneity and drug resistance evolution during treatment [6, 9, 19-21]. 
With relevant genetic alternations detected, ctDNA monitoring can potentially guide 
early adjustment of treatment to target newly developed actionable mutations, thereby 
suppressing the proliferation of tumor subclones [9, 19, 22]. In addition, the quantified 
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ctDNA measurements have also shown to correlate with tumor burden and stage, and 
ctDNA dynamics has been demonstrated to correlate with therapeutic response in various 
kinds of cancers [19, 20, 23-25]. 

Therefore, data on longitudinal (bio)markers demonstrate great value in supporting the 
investigation of evolutionary tumor dynamics and resistance development and PK/PD 
relationships of oncologic drugs. Biomarker monitoring also holds the potential to guide 
better treatment design aiming for improved cancer treatment outcomes. 

Pharmacometric modeling   

Pharmacometric modeling has been increasingly applied in pharmaceutical research to 
support decision making in drug development and treatment optimization. Computa-
tional models allows quantitative characterization and prediction of the time courses of 
drug exposure (PK), treatment response (PD), and disease progression, as well as their 
relationships following drug administration [26, 27]. Mixed-effect modeling (population 
modeling) approach is commonly applied which allows the description of population 
level trends (i.e. fixed effects) and quantify random inter- and intra-individual variability 
(i.e. random effects) simultaneously [26, 27]. Covariates that explain the variability can 
also be explored. 

In oncology research, the model-based approach is a helpful tool to make use of longitudinal 
data to gain knowledge about the interaction between drug treatment, the human body 
and disease. This knowledge can subsequently be used to advance treatment optimization 
and rationalize individualized therapy [14, 27, 28].   

Models that characterize the dynamics of tumor size measurements represent one key class 
of PD models in cancer research. To better interpret the emergence of drug resistance, 
the importance of accounting for tumor heterogeneity and drug resistance evolution in 
tumor dynamics modeling has been pointed out before [29]. Up until now, various model 
structures have been proposed to characterize the tumor dynamics and drug resistance 
evolution in solid tumors, which can serve as references for future studies [10, 17, 30, 31]. 
Moreover, PK metrics and genetic biomarkers as well as their relation with tumor size 
dynamics can also be investigated and incorporated in the model, which would further 
benefit the understanding of PK/PD relationships and evolutionary tumor progression. 
In conjunction with simulations, the model could be used to explore optimal adaptive 
treatment strategies that can better prevent or delay anti-cancer treatment resistance.  
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Computational models that characterize the PK/PD profiles and variability of anti-cancer 
drugs can also guide optimal dose selection and enable individualized therapy (model-
informed precision dosing (MIPD)) [14]. With the PK-PD behavior and covariates identi-
fied by the model, the optimal treatment regimen that ensures balance between efficacy and 
toxicity for individual patients can be identified. This can be especially helpful to guide the 
selection of the initial dose and schedule aiming at the target exposure. Other approaches 
that support precision dosing, such as pharmacogenomics, can also be integrated with 
MIPD [14]. Moreover, with the Bayesian framework of the developed model, individual 
parameters can be estimated once patient characteristics and data are known [14]. This 
enables more precise capture and prediction of individual PK/PD profiles, which could 
guide the selection of the next dose rationally. Compared with conventional TDM, MIPD 
provides the decision support in a quantitative manner. 

Aim and outline of this thesis

With the studies in this thesis, we aim to proceed toward better treatment for oncology 
patients with model-based approach.

In section I, we aim to quantitatively characterize and understand the evolutionary tumor 
dynamics and resistance development during treatment, and to identify treatment schedules 
that can better suppress the occurrence of resistance. 

In chapter 2, we perform a systematic literature search and comprehensively summarize 
the mathematical models that have been used to describe and predict tumor growth 
(inhibition) dynamics and evolutionary resistance development. The focus of this review 
lies particularly on models that are applicable for clinical data. 

In chapter 3, a mathematical model incorporating various tumor clonal populations and 
evolving cancer resistance is developed to characterize tumor size dynamics and resist-
ance development under treatment, as well as and ctDNA dynamics based on data from 
metastatic colorectal cancer (mCRC) patients. Subsequently, we evaluate adaptive and 
intermittent treatment schedules and demonstrate the use of ctDNA as a marker to guide 
adaptive treatment. 

In chapter 4, we further characterize the tumor dynamics and development of drug 
resistance in NSCLC patients treated with erlotinib with a model considering tumor 
heterogeneity. A population PK model of erlotinib is also developed and subsequently used 
to facilitate the investigation on the exposure-tumor dynamics relationship of erlotinib. 
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Additionally, the potential correlation between ctDNA measurements and tumor dynamics 
in NSCLC patients is explored to further understand the value of monitoring ctDNA. 

In section II, we aim to characterize the PK/PD profiles and variabilities of anti-cancer 
drugs in real-world patients to facilitate treatment optimization, and to demonstrate the 
use of pharmacometric models in guiding individualized treatment.  

In chapter 5, we introduce the application and benefits of model-informed precision dosing 
in supporting anti-cancer treatment optimization and individualization, and discuss the 
challenges and future perspectives of implementing MIPD in cancer therapies.

In chapter 6, a population PK analysis is performed for mitotane in patients with adreno-
cortical carcinoma (ACC). The effect of pharmacogenetic variations on mitotane PK 
are investigated to better explain mitotane PK variability. Simulations are subsequently 
performed to investigate optimal treatment regimens and facilitate treatment individu-
alization for patients with ACC.

In chapter 7, we perform a population PK analysis on high-dose methotrexate (HD-MTX) 
in patients with central nervous system lymphoma. Additionally, a (exposure-)toxicity 
analysis is performed to identify baseline and exposure-related predictive factors for the 
acute renal and hepatotoxicity.

Finally, in chapter 8 we conclude this thesis with a general discussion and future perspec-
tives in data collection, model development, and results implementation regarding the 
suggested regimens and developed models. English and Dutch summaries are presented 
in chapter 9. 
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