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Chapter 1

General introduction






General introduction

Importance of optimizing anti-cancer treatment

Worldwide, cancer is a leading cause of death and the incidence of cancer is rapidly
increasing, reflecting both the aging of the population and the prevalence of main risk
factors such as unhealthy lifestyle [1, 2]. Continuous efforts have been made to meet the
medical needs of cancer patients and numerous options are currently available. A conven-
tional treatment option for cancer patients is cytotoxic chemotherapy, which aims to inhibit
tumor cell multiplication by affecting the synthesis or function of macromolecular [3]. In
recent decades, targeted therapies, which act on specific oncogenic proteins that drive tumor
growth or progression, have also become a standard type of anti-cancer treatment [4, 5].
Due to the increasing knowledge of molecular alterations in tumor cells, appropriate drug
targets can be identified and specific targeted treatment options can be selected [6]. These
targeted therapies have significantly improved the survival of cancer patients, and more

than eighty targeted drugs have been brought to the market over the past decades [4, 7].

However, obstacles to accomplishing successful anti-cancer treatment still exist. First, for
both conventional chemotherapies and targeted therapies, one important reason for patients
experiencing treatment failure is drug resistance [8, 9]. The occurrence of drug resistance
is mediated by a range of mechanisms, including physical barriers and impact of the tumor
microenvironment [4, 9]. Evolutionary mechanisms are also increasingly acknowledged as
key factors that contribute to the development of drug resistance. It is driven by inter- and
intra-tumor heterogeneity, i.e. distinct cells exist in different or same tumors which show
different susceptibility to treatments, and the evolving adaptation of tumor cells to the
selection pressure of anti-cancer drug treatment, i.e. resistance subclones are acquired or
are adaptively selected from pre-existing subclones during treatment [9-12]. To increase
the chance to suppress the development of drug resistance, a better characterization and
understanding of evolutionary tumor progression, and subsequent use of this knowledge

to design new adaptive treatment regimens are desired.

Another important factor that challenges successful treatment is the substantial variability
in pharmacokinetics (PK) and pharmacodynamics (PD) of anti-cancer drugs, which is
especially frequently observed in real-world patients. Due to the existing correlations
between drug exposure and treatment response (efficacy and toxicity) for many oncologic
drugs, such variability can result in suboptimal treatment outcomes for part of the patients
especially when the therapeutic window is narrow [13, 14]. Thus, the need for precision
dosing in cancer therapy instead of a ‘one-dose-fits-all-approach’ is emerging [14]. In
addition, the dosages of most oncology drugs are selected according to the maximum

tolerated dose (MTD) paradigm [15]. This can lead to a demand for dose modification



Chapter 1

in real-world patients due to the risk of toxicity [15]. Therefore, optimizing dosage of
anti-cancer drugs to ensure efficacy while minimizing toxicity is essential. To achieve this
goal, it would be beneficial to better understand and predict PK/PD profiles and exposure-
response relationships of anti-cancer drugs, and identify factors that explain PK/PD vari-
ability (between and within patients) in real-world populations. In addition, a useful tool
to support optimal and personalized dose and regimen selection based on the therapeutic
target is warranted. This knowledge can also contribute to a better implementation of

therapeutic drug monitoring (TDM) in cancer patients.

Longitudinal (bio)markers

Monitoring longitudinal (bio)markers during anti-cancer therapies enables assessment of
cancer progression and treatment response. Tumor burden is a commonly used indicator
of anti-cancer treatment effect and is routinely monitored in clinical practice. In solid
tumors, tumor burden is typically quantified with the sum of the longest diameters (SLD)
of target lesions, which also forms several clinical endpoints defined by Response Evalu-
ation Criteria in Solid Tumours (RECIST version 1.1) [16]. The longitudinal tumor size
measurements can reflect the dynamics of treatment effect and tumor progression. SLD
related metrics, such as relative or absolute changes from baseline, have also showed to be
predictive to the overall survival of cancer patients [17]. In addition to tumor diameters,
soluble tumor markers have also been used to measure total tumor burden in clinical
practice. These include prostate-specific antigen (PSA) in prostate cancer, CA125 in
ovarian cancer, M-protein in multiple myeloma, and carcinoembryonic antigen (CEA) in

colorectal cancer [17, 18].

Circulating biomarkers, including soluble drug targets, inflammatory biomarkers, and
circulating genetic biomarkers, can also be assessed to monitor treatment response and
guide treatment modification. Circulating tumor DNA (ctDNA) is an emerging genetic
biomarker which refers to cell-free DNA (cfDNA) fragments that are released into the
circulation from primary tumor or metastatic cells [6]. It can be detected from liquid
biopsies which allows real-time monitoring with limited patient burden. From serial ctDNA
analysis, cancer-related genetic alternations can be detected and quantified, which can
reveal the mechanisms of resistance to targeted therapies, and provide important insights
into tumor heterogeneity and drug resistance evolution during treatment [6, 9, 19-21].
With relevant genetic alternations detected, ctDNA monitoring can potentially guide
early adjustment of treatment to target newly developed actionable mutations, thereby

suppressing the proliferation of tumor subclones [9, 19, 22]. In addition, the quantified
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ctDNA measurements have also shown to correlate with tumor burden and stage, and
ctDNA dynamics has been demonstrated to correlate with therapeutic response in various
kinds of cancers [19, 20, 23-25].

Therefore, data on longitudinal (bio)markers demonstrate great value in supporting the
investigation of evolutionary tumor dynamics and resistance development and PK/PD
relationships of oncologic drugs. Biomarker monitoring also holds the potential to guide

better treatment design aiming for improved cancer treatment outcomes.

Pharmacometric modeling

Pharmacometric modeling has been increasingly applied in pharmaceutical research to
support decision making in drug development and treatment optimization. Computa-
tional models allows quantitative characterization and prediction of the time courses of
drug exposure (PK), treatment response (PD), and disease progression, as well as their
relationships following drug administration [26, 27]. Mixed-effect modeling (population
modeling) approach is commonly applied which allows the description of population
level trends (i.e. fixed effects) and quantify random inter- and intra-individual variability
(i.e. random effects) simultaneously [26, 27]. Covariates that explain the variability can

also be explored.

In oncology research, the model-based approach is a helpful tool to make use of longitudinal
data to gain knowledge about the interaction between drug treatment, the human body
and disease. This knowledge can subsequently be used to advance treatment optimization

and rationalize individualized therapy [14, 27, 28].

Models that characterize the dynamics of tumor size measurements represent one key class
of PD models in cancer research. To better interpret the emergence of drug resistance,
the importance of accounting for tumor heterogeneity and drug resistance evolution in
tumor dynamics modeling has been pointed out before [29]. Up until now, various model
structures have been proposed to characterize the tumor dynamics and drug resistance
evolution in solid tumors, which can serve as references for future studies [10, 17, 30, 31].
Moreover, PK metrics and genetic biomarkers as well as their relation with tumor size
dynamics can also be investigated and incorporated in the model, which would further
benefit the understanding of PK/PD relationships and evolutionary tumor progression.
In conjunction with simulations, the model could be used to explore optimal adaptive

treatment strategies that can better prevent or delay anti-cancer treatment resistance.
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Computational models that characterize the PK/PD profiles and variability of anti-cancer
drugs can also guide optimal dose selection and enable individualized therapy (model-
informed precision dosing (MIPD)) [14]. With the PK-PD behavior and covariates identi-
tied by the model, the optimal treatment regimen that ensures balance between efficacy and
toxicity for individual patients can be identified. This can be especially helpful to guide the
selection of the initial dose and schedule aiming at the target exposure. Other approaches
that support precision dosing, such as pharmacogenomics, can also be integrated with
MIPD [14]. Moreover, with the Bayesian framework of the developed model, individual
parameters can be estimated once patient characteristics and data are known [14]. This
enables more precise capture and prediction of individual PK/PD profiles, which could
guide the selection of the next dose rationally. Compared with conventional TDM, MIPD

provides the decision support in a quantitative manner.

Aim and outline of this thesis

With the studies in this thesis, we aim to proceed toward better treatment for oncology

patients with model-based approach.

In section I, we aim to quantitatively characterize and understand the evolutionary tumor
dynamics and resistance development during treatment, and to identify treatment schedules

that can better suppress the occurrence of resistance.

In chapter 2, we perform a systematic literature search and comprehensively summarize
the mathematical models that have been used to describe and predict tumor growth
(inhibition) dynamics and evolutionary resistance development. The focus of this review

lies particularly on models that are applicable for clinical data.

In chapter 3, a mathematical model incorporating various tumor clonal populations and
evolving cancer resistance is developed to characterize tumor size dynamics and resist-
ance development under treatment, as well as and ctDNA dynamics based on data from
metastatic colorectal cancer (mCRC) patients. Subsequently, we evaluate adaptive and
intermittent treatment schedules and demonstrate the use of ctDNA as a marker to guide

adaptive treatment.

In chapter 4, we further characterize the tumor dynamics and development of drug
resistance in NSCLC patients treated with erlotinib with a model considering tumor
heterogeneity. A population PK model of erlotinib is also developed and subsequently used

to facilitate the investigation on the exposure-tumor dynamics relationship of erlotinib.

12
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Additionally, the potential correlation between ctDNA measurements and tumor dynamics

in NSCLC patients is explored to further understand the value of monitoring ctDNA.

In section II, we aim to characterize the PK/PD profiles and variabilities of anti-cancer
drugs in real-world patients to facilitate treatment optimization, and to demonstrate the

use of pharmacometric models in guiding individualized treatment.

In chapter 5, we introduce the application and benefits of model-informed precision dosing
in supporting anti-cancer treatment optimization and individualization, and discuss the

challenges and future perspectives of implementing MIPD in cancer therapies.

In chapter 6, a population PK analysis is performed for mitotane in patients with adreno-
cortical carcinoma (ACC). The effect of pharmacogenetic variations on mitotane PK
are investigated to better explain mitotane PK variability. Simulations are subsequently
performed to investigate optimal treatment regimens and facilitate treatment individu-

alization for patients with ACC.

In chapter 7, we perform a population PK analysis on high-dose methotrexate (HD-MTX)
in patients with central nervous system lymphoma. Additionally, a (exposure-)toxicity
analysis is performed to identify baseline and exposure-related predictive factors for the

acute renal and hepatotoxicity.

Finally, in chapter 8 we conclude this thesis with a general discussion and future perspec-
tives in data collection, model development, and results implementation regarding the
suggested regimens and developed models. English and Dutch summaries are presented
in chapter 9.
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Abstract

Increasing knowledge of intertumor heterogeneity, intratumor heterogeneity, and
cancer evolution has improved the understanding of anticancer treatment resistance.
A better characterization of cancer evolution and subsequent use of this knowledge
for personalized treatment would increase the chance to overcome cancer treatment
resistance. Model-based approaches may help achieve this goal. In this review, we
comprehensively summarized mathematical models of tumor dynamics for solid
tumors and of drug resistance evolution. Models displayed by ordinary differential
equations, algebraic equations, and partial differential equations for characterizing
tumor burden dynamics are introduced and discussed. As for tumor resistance
evolution, stochastic and deterministic models are introduced and discussed. The
results may facilitate a novel model-based analysis on anticancer treatment response
and the occurrence of resistance, which incorporates both tumor dynamics and
resistance evolution. The opportunities of a model-based approach as discussed in
this review can be of great benefit for future optimizing and personalizing anticancer

treatment.



Review of tumor dynamics and treatment resistance evolution models

1. Introduction

Drug resistance is one of the major reasons for patients experiencing treatment failure in
the area of oncology [1]. Increasing knowledge of intertumor and intratumor heterogeneity
that suggests distinct cells exist in different or the same tumors as well as cancer evolution
have improved the understanding of anticancer treatment resistance [2]. It thereby pushes
forward the necessity of precision medicine rather than a one-size-fits-all approach [2]. To
rationalize the treatment personalization and address treatment failure, the use of modeling
and simulation, which can quantitatively characterize and predict the relationships between
drug exposure/pharmacokinetics (PK), drug effects/pharmacodynamics (PD), and disease

progression, is widely accepted to support drug decision making [3-6].

Mathematical models that characterize the effects of anticancer drug treatment for solid
tumors based on tumor size dynamics, which is typically quantified with measurements
of tumor diameter and volume, represent one key class of models applied in cancer phar-
macology. Various tumor growth modeling strategies have been previously reviewed,
including agent-based models [7], image-based models [8], multiscale models [9], and
PK/PD models [10, 11].

Currently, an increasing number of studies concerning the gene sequencing of tumor
biopsies in different cancer types have demonstrated the dynamics of cancer evolution [2,
12]. Intratumor heterogeneity that results from cancer evolution and an evolving adaption
of heterogeneous tumor to treatment are also increasingly acknowledged as key factors
related to the development of resistance [2, 12]. To better characterize this process and
to account for tumor heterogeneity, mathematical models that consider the evolution of
tumors have been proposed [13-17]. Potentially, such evolution models in conjunction
with tumor growth models could be of benefit to interpret both tumor size change and
evolving tumor progression during treatment and thereby ultimately rationalize adaptive

treatments for individual patients and overcome treatment resistance.

To identify the challenges and opportunities of characterizing tumor size change and resist-
ance evolution simultaneously with a model-based approach that can facilitate anticancer
treatment optimization and personalized medicine, an overview of the current available
model structures is needed. Thus, in the current review, we comprehensively summarized
mathematical models for the characterization of tumor growth (inhibition) dynamics in
solid tumors and the relevant clonal evolution of drug resistance by a systematic search
and study of previous literature. The focus in this review lies particularly on models that

are applicable for clinical data.
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2. Literature search

Studies that characterized tumor growth (inhibition) dynamics and clonal evolution of
drug resistance with mathematical models were systematically retrieved and studied from
the PubMed database to provide a comprehensive and unbiased review. In total, 274 and
85 publications were obtained, respectively, for studies of tumor dynamics and tumor
resistance evolution based on established search terms. Details of the literature search
are described in Supplementary Material S2.1 and Figure S2.1. Ultimately, 61 and 25
papers, among which 13 and 2 papers were obtained from the publications’ references,
which introduced corresponding original models or demonstrated application examples of
certain model structures, were included, respectively, for tumor dynamics and resistance
evolution modeling. Model structures, cancer types, treatments, and the ways of reporting
tumor sizes were extracted from the included papers. The identified model structures
were classified by equation types in later sessions and were summarized in Tables 2.1 and
2.2. Data input, knowledge requirement, study type, and objectives related to different
model structures were summarized in Table 2.3 to provide a reference of the selection
of different model structures. The information of software that was used to perform the
corresponding modeling and simulation analysis was also obtained and are summarized

in Supplementary Material $2.1 and Table S2.1.

3. Tumor dynamics modeling

3.1 Ordinary differential equation

3.1.1 Basic growth model

A majority of the included studies applied ordinary differential equations (ODEs) to
describe tumor burden change. The natural growth of a tumor without treatment is
commonly characterized with several basic functions, including linear, exponential,
logistic, Gompertz, and combined exponential and linear models (Table 2.1). The time
curves of different models were simulated and are presented in Figure 2.1. Differential
equations were solved with the RxODE package implemented in R software (version 3.4.1;

R Foundation for Statistical Computing, Vienna, Austria).

The linear tumor growth assumes a constant zero-order growth rate (Eq. 2.1; Figure 2.1)
[10]. It has been applied to describe the natural tumor growth of metastatic renal cell
carcinoma [18] based on the measurements of sum of longest diameters (SLD) of the

target lesions in patients.
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Table 2.1: Modeling frameworks for characterizing tumor dynamics

Models/assumptions Equations Ref.
Ordinary differential equations
Basic functions describing natural tumor growth
Linear growth dT i Eg.2.1  [18]
dt g
daT Eq.2.2 [21]
—=ky—d-T
dt
Exponential growth dT b T Eg.2.3  [20]
dt Y
aTr Eq.24  [22,23]
— =k, T—d-T
dt 9
Logistic growth dT T Eq.2.5 [24,25]
= kg -T-[1—-
dt T max
Gompertz growth dT T max Eq.2.6  [27,29]
= kg T+ In (2"
dt T
dinT Eq.2.7 [28]
——=a—binT
dt
Combination of exponential T Ao T Eg.28 [31]
and linear growth dat =71
o 20720
1+(2-7) ]
[ Z
Model structures integrating tumor heterogeneity
Tumor burden(T)= Eq.2.9 [25]
Proliferative component (P) T f(P)—m-P
+ Quiescent component (Q) dQ
—=my-P
dt
dP Eq.2.10 [22,33]
—=f(P)—my-P+m,-Q
dt
dQ
—=my-P—m
it 1 20
Tumor burden (T)= das Eq.2.11 [24]
Sensitive component (S) + E = f(5)
Resistant component (R) dR
it ®

Table 2.1 continues on next page.
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Table 2.1: Continued

Models/assumptions Equations Ref.
Tumor burden (T)= as Eq.2.12 [23,35]
Sensitive component (S) + E =f(s) - my S
Resistant component (R) dR

—=f(R)+my"-S
= 1(®) +m,
ds Eq.2.13 [34,36]

=f(§)-m;-S+m, R

dR
E=f(R)+m1-S—m2-R

Model structures integrating tumor biology process

Angiogenesis dT BM, — BM Eq.2.14 [31,39]
—Zf(T)—k';'T
BM,
=f(M -k B
=M ( BMO)
ar T Eg.2.15 [40]
Ty (1-0)
dt E
dE 1
—_— = k2 -T2
dt
daT E Eq.2.16 [41,42]
= kg-V-10g<—>
dt T
dE 2
— =k, T—d T3 E
dt
Immune system h Eq.2.17 [44]
[ = -1 7 ()
T+h
f(D=d-1
™ - Q) ( ) Eq.2.18 [43]
= f(T 1)-T-
{ =@ =107 (5
I)=(d,-1,+d,"1 ( )
O =@ d ) (e
Eq.2.19 [46]
E: f(r)—d,-1-T—d,-N-T
Eq.2.20 [47]
=f(T)—-d-I1-T
Empirical model structures describing therapeutic effect
First-order treatment effect dT Eq.2.21 [18]
(“log-kill” pattern) at =fM -
Exposure-dependent dT Eq.2.22 [22,25]
treatment effect ar = f(T) — ky - Exposure-T

Table 2.1 continues on next page.
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Table 2.1: Continued

Models/assumptions Equations Ref.
Exposure-dependent dT o Eq.2.23 [20, 48,
treatment effect with ac - f(T) = kg e ** - Exposure-T 49]
resistance (TGl model)

Introducing a damaged cell ds Eq.2.24 [24,25]
compartment T f(S) — k, - Exposure - S

ab k; E S—d-D

— =k, - Exposure-S —d -

dt d P

T=S+D

Nf(;nlitnre;?rtcijr:gheixposure- k r_ e (1- Eonax - Exposure Eq.2.25 [21]
erect refationship g g ICsy + Exposure

Algebraic equations
Two-phase model T = (e—kd-t + ekg't — 1) - BASE Eqg.2.26 5555(;, 51,

T = (e—kd't + ekg-(t—‘r) _ 1) - BASE Eq.2.27 [50]
T = (d’ . e—kd-t + [ekg-t _ ¢]) - BASE Eq.2.28 [55]
Model proposed by Wang T = BASE -e 4t + B -t Eq.2.29 [52,56]
etal.
An extension of Eq. 2.30 T = BASE -e At +B-t + C - t? Eq.2.30 [53]
A 6 + 9 ( DOSe ) Eq231 [53]
72 \100mg
Simplified TGI model o (ka\ -t Eq.2.32 [54,57,
T = BASE - ekot=()(1=e7") 58,59,
60]
Partial differential equations
Proliferation-invasion model dc(x, t) ] Eq.2.33 [61,63,
= Diff - V2c(x,t) + f(c(x, 1)) 64, 69,
70]
v = 2JDiffp Eq.2.34
dc(x,t Eq.2.35 [67]
E?t ) = Diff -VZc(x,t) +
f(c(x, t)) — kg c(x,t)
Surv = e—(a-Dose+B-Dosez) Eq.2.36 [64]

Table 2.1 continues on next page.
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Table 2.1: Continued

Models/assumptions Equations Ref.

Proliferation-invasion model  gc(x, t Eq.2.37 [64]
CS; ) = Diff - V2c(x,t) + f(c(x, 1)) —

(1= Surv) - f(c(x, 1))

Eq.2.38 [74
ac(a);'t):Diff-Vzc(x,t)+ q.238 [74]

f(c(x, t)) —G(x,t)

a, B, radio sensitivity parameters; A, exponential shrinkage rate constant as a result of treatment; g, b,
constants; B, linear growth rate constant; BASE, baseline of tumor burden; BM,, baseline of biomarkers; BM,
biomarker amount at time point t, which could be assumed to remain constant and equal to baseline in
the absence of treatment; G, coefficient of quadratic growth term; c(x,t), tumor cell concentration/density at
location x at time t; D, damaged cells; d, death rate constant; d,, d,, rate constants; Dif, diffusion coefficient; E,
vessel endothelial cells; E__, maximal fraction of inhibition; f(P), f(S), f(R), f(T), growth function of proliferative

max’

cells (P), sensitive cells (S), resistant cells (R), and tumor tissue (T), respectively; G(xt), surgical term; h, g,
constants; /I, I, components in the immune system; IC_, the drug exposure that produces 50% of E__ k,
k,, rate constants; k, shrinkage rate constant of tumor as a result of drug treatment; kg, growth rate/growth
rate constant; kg', tumor growth rate constant under treatment; m, m,, conversion rate constants that can
be set as 0; N, normal cells; Surv, the probability of tumor cell survival; T, tumor burden; TGI, tumor growth

inhibition; T, carrying capacity; A, treatment efficacy decay rate constant; A, exponential growth rate;

)\,, linear growth rate; 7, delayed time of tumor regrowth; ¢, sensitive fraction of the tumor; p, growth rate
constant; V2, a Laplacian operator; f(c(x,t)), tumor proliferation function.

The exponential growth assumes the growth rate of a tumor is proportional to tumor
burden (first-order growth; Eq. 2.3; Figure 2.1) [10, 19]. It has been adopted in a widely
used tumor growth inhibition (TGI) model developed by Claret et al. to describe nature
tumor growth [11, 20].

The linear and exponential growth models have also been expanded by introducing a
first-order shrinkage term describing natural tumor death. For example, a model with
a linear growth and a first-order shrinkage (Eq. 2.2) was applied to describe the natural
tumor growth in patients with advanced solid malignancies based on SLD measurements
[21]. An exponential growth with a first-order shrinkage (Eq. 2.4) was also used as part
of the model structure to describe the natural growth of pediatric neuroblastoma based
on tumor volume measurements [22]. The same model structure was also adopted for
the description of the change of prostate cancer burden reflected by the level of prostate-
specific antigen (PSA) [23].

When compared with the unlimited growing pattern of linear and exponential growth
models, the logistic and Gompertz growth models provide a biologically realistic change
of the growth rate as the tumor burden increases [6] (Figure 2.1). The logistic growth
model assumes that the growth is limited by a carrying capacity (Eq. 2.5) [10] whereas
the Gompertz model assumes the growth rate of tumor decreases over time (Egs. 2.6 and
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2.7) [10, 11]. Many clinical studies have applied the logistic [24-26] and Gompertz models
[11, 27] as well as simulation studies [28, 29].

Finally, a combination of exponential and linear growth models (Eq. 2.8) has also been
introduced to describe tumor growth in patients, although it was proposed primarily for
characterizing xenograft tumor dynamics [30]. This combined model structure assumes
that an exponential (first-order) growth switches to a linear (zero-order) growth after
reaching a threshold (Figure 2.1). It was well used to describe the natural growth of
vestibular schwannoma volume in patients with neurofibromatosis type 2 [31]. Setting

the power term as 20 allows the switch between two growth patterns sharply enough [30].

Model 1 (Eq.1) : Linear growth

Model 2 (Eq.2): Linear growth
with a first-order shrinkage

Model 3 (Eq.3): Exponential growth
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Model 4 (Eq.4): Exponential growth
with a first-order shrinkage

Model 5 (Eq.5): Logistic growth

Model 6 (Eq.6): Gompertz growth
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Figure 2.1: Simulated time curves of tumor burden (7) with tumor natural growth models displayed by
Egs. 2.1-2.6 and 8. kg is the tumor growth rate / growth rate constant, d is the tumor death rate constant,
T . is the carrying capacity, A, is the exponential growth rate, and A, is the linear growth rate. The baseline
of tumor burden is 5. Parameter values used for the simulations are as follows: Models 1 and 2 (Egs. 2.1 and
2.2), kg = 2; Model 2 (Eq. 2.2), d = 0.01; Models 3-6 (Egs. 2.3-2.6), kg = 0.1; Model 4 (Eq. 2.4), d = 0.01; Models
5and 6 (Egs.2.5and 2.6), T, = 120; Model 7 (Eq. 2.8), )\0 =0.1, )\, =2.
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3.1.2 Tumor heterogeneity

Asaresult of the increasing awareness of the relevance of considering tumor heterogeneity,
model structures displayed by ODEs that incorporate tumor heterogeneity and mutations
have been developed for the characterization of tumor dynamics as was described in a
simulation study [32]. The general used model structures concerning tumor heterogeneity

are shown in Table 2.1.

Proliferative and quiescent cells

One frequently made assumption when modeling the growth of heterogeneous tumors is to
separate total tumor mass into proliferative and quiescent cells [22, 25, 33]. The increase of
quiescent tumor cells is assumed to result from a first-order conversion from proliferative
tumor cells instead of their own proliferation (Eq. 2.9). A reversed conversion can also be
assumed to be present (Eq. 2.10). The growth of proliferative cells may follow the patterns
as were introduced in the Basic growth model section Based on these assumptions, the
time courses of mean tumor diameter (MTD) in patients with low-grade glioma [25] and
that of tumor volume in pediatric neuroblastoma patients were successfully described
[22]. A similar model structure was also used to predict the effect of different treatment
regimens taking tumor cell number as a target [33]. Drug treatment effect could work
on both kinds of tissues [25], only on the proliferative tissue [22], or on targeted tissues

depending on the types of drug [33].

Sensitive and resistant cells

Another commonly made assumption is that tumors are composed of drug-sensitive and
drug-resistant cells [24, 34]. These two cell types both proliferate, but drug treatment can
only decrease the amount of drug-sensitive cells. Primary and acquired resistance can both
be taken into consideration. For illustrating the acquired resistance, the resistant cells are
mostly assumed to mutate from sensitive cells because of the treatment with a first-order
process [23, 24, 34, 35] (Eqgs. 2.12-2.13). By separating tumor mass into sensitive and
resistant cells, the dynamics of low-grade glioma measured with MTD in patients was well
described with models assuming that primary resistant cells or both primary and acquired
resistant cells are present in the tumor [24]. In the study, the natural growth of drug-sensitive
and primary-resistant cells were described separately without any conversion (Eq. 2.11).
The acquired resistant cells are assumed to emerge exponentially from damaged sensitive
cells as a result of treatment. Also, by assuming that resistant cells can also convert back
to sensitive cells (Eq. 2.13), the dynamics of the PSA level in prostate cancer patients was
well described, where the rate constants of cell proliferation, apoptosis, and conversion are

expressed as functions of intracellular concentration of androgen receptors [34].
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In addition, the treatment sensitivity of both proliferative and quiescent cells can also be
considered when modeling tumor growth, leading to a combination of previous introduced
model structures. One example can be seen from a study that assumed proliferative and
quiescent cells form a tumor and the proliferative cells could mutate from drug sensitive

to drug resistant, which is biologically plausible [33].

Androgen-dependent cells and androgen-independent cells

Studies regarding prostate cancer often consider prostate tumors consists of androgen-
dependent (AD) and androgen-independent (AI) cells [23, 36-38]. PSA levels are commonly
used to represent tumor burden in this case. Two frequently reported model structures
for describing the growth of prostate cancer were proposed by Ideta et al. [23] and Hirata
etal. [36].

The former model structure assumes that prostate cancer consists of AD and Al cells, and
AD cells can mutate exponentially to Al cells when treatment alters the androgen level.
The model structure is shown in Eq. 2.12. The natural proliferation and apoptosis rate
constants of AD and AI cells were expressed as functions of the androgen level [23]. The
net growth rate of AD decreases when the androgen level decreases because of treatment,
whereas that of AI cells increases. When the androgen level is normal, three cases of the
net growth rate of Al cells were considered: larger than 0, equal to 0, and smaller than 0.
This model was recently extended by accounting for competition between two kinds of

cells and the finite carrying capacity environment [35].

The latter model structure assumes that besides AD cells, reversible and irreversible A cells
exist. All types of cells are assumed to proliferate and convert to each other exponentially.
It is assumed that AD cells convert to both types of Al cells during on-treatment status
and reversible Al cells convert back to AD cells during off-treatment status. The model
structure is expressed with Eq. 2.13. This model has been applied to adequately describe
patient data [37, 38].

3.1.3 Integration of biology process

Tumor growth models displayed by ODEs that additionally incorporate biological factors
and processes have also been developed [6], such as integration of angiogenesis biomarkers
and the dynamics of components in the immune system (Table 2.1). To apply these
methods, apart from tumor burden measurements, knowledge related to the biological

processes is also needed.

29



Chapter 2

Angiogenesis

Concentration of vascular endothelial growth factor (VEGF) or soluble VEGF receptor may
serve as biomarkers indicating the treatment effect for patients treated with angiogenesis
inhibitors [11]. Incorporating the dynamics of angiogenesis biomarkers in tumor growth
modeling enables better understanding and prediction of tumor progression. A model
structure showed as Eq. 2.14, where the change of biomarkers from baseline affects the
tumor decay rate, was applied in two studies [31, 39]. One study characterized the time
course of SLD in patients with gastrointestinal stromal cancer undergoing sunitinib
treatment. The natural growth of the tumor was described with the exponential model,
and the model-predicted relative change of the biomarker’s amount was incorporated to
affect the shrinkage of the tumor [39]. The other study well characterized the dynamics
of tumor volume measured in neurofibromatosis patients undergoing bevacizumab and
everolimus. The natural tumor growth was described by the combined exponential and
linear model (Eq. 2.8), and the amount of unbound VEGF was considered to affect a first-

order apoptosis of the tumor [31].

Another way to account for angiogenesis effect on tumor growth is by assuming the carrying
capacity of the tumor is determined by the effective tumor vascular support that is in turn
affected by the tumor volume (Eqs. 2.15 and 2.16) [40, 41]. Logistic and Gompertz model
structures were applied under this assumption. A model structure displayed by Eq. 2.15 was
applied to well characterize the tumor growth in renal cell carcinoma (RCC) patients based
on SLD measurements [40]. The carrying capacity in this study was assumed to expand
because of proangiogenic factors. Another similar model structure is shown by Eq. 2.16.
Although as far as we know there is no clinical study that utilized this model framework,
it has been used to perform simulations to optimize the delivery of therapeutic agents for
enhancing targeted therapies for liver cancer [41] and to investigate the optimization of

antiangiogenic treatment [42].

Immune system

Apart from angiogenesis, the effect of the immune system has also been incorporated in
the tumor growth model when patients were undergoing immunotherapy [43, 44]. The
proposed model structure is presented in Eqs. 2.17 and 2.18, where the rate of first-order
decline of tumor burden was assumed to depend on the amount of immune component
and decrease while tumor burden was increasing. This model structure was adopted to
characterize the growth of prostate cancer by accounting for the dynamics of the immune
system. Tumor cells were assumed to proliferate exponentially, and the amount of cytotoxic
T lymphocytes affected the cell decline rate (Eq. 2.17) [44]. The applicability of this model

was validated by the results of a clinical trial where PSA measurements were obtained from
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prostate cancer patients treated with a vaccine. Considering the effect of more than one
immune component, another study developed a model structure to simulate the growth of
bladder cancer undergoing immunotherapy [43]. The growth of tumor cells was described
with a logistic model, and the cell decline rate was set to be linearly or nonlinearly related

to the amount of immune components (Eq. 2.18).

Another concept model structure described tumor burden dynamics by a logistic growth,
a first-order damage resulting from immune cells, and a first-order competition with
normal cells (Eq. 2.19) [45]. This model structure was recently adopted to obtain an
optimal dosing regimen for cancer patients based on simulation [46]. A model structure
that omits the competition with normal cells (Eq. 2.20) was also proposed to investigate

treatment optimization [47].

3.1.4 Treatment effect

Empirical method

Tumor shrinkage resulting from drug treatment is typically quantified with an empirical
drug-induced shrinkage term as has previously been summarized [10]. Commonly used
equations identified from included papers are presented in Table 2.1. The time curves
of these equations were simulated with R and are shown in Figure 2.2, assuming an

exponential growth with the growth rate constant k = 0.1.

A log-kill pattern is commonly used for modeling treatment effect, which assumes that
the shrinkage rate of the tumor as a result of drug treatment is proportional to tumor
burden [6]. The simplest way to adopt this pattern is using Eq. 2.21, where k, is the drug-
induced tumor shrinkage rate constant. Such an equation has been used to well described
the treatment effect of everolimus on metastatic RCC patients [18]. The estimates of k, in

that study were different between two dose groups.

The rate of drug-induced shrinkage can also be considered to depend on drug exposure,
i.e., drug concentration and area under the concentration-time curve or drug dose. A linear
drug exposure-effect relationship can be quantified using Eq. 2.22 [22, 25]. Meanwhile,
drug resistance can also be taken into consideration by introducing a e* term on the basis
of Eq. 2.22 to quantify the decline of drug effect over time (Eq. 2.23; Figure 2.2). This
model structure has been applied to characterize the effect of pazopanib on RCC patients
[40]. Setting f(T) = kg - T, an exposure-driven TGI model was developed based on SLD
measurements from colorectal cancer patients receiving capecitabine and fluorouracil [20].

It has then been widely applied to various cancer types and drugs as was reviewed previ-
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ously [11]. Two more recent studies also adopted this model structure to characterize the
tumor SLD change in metastatic breast cancer patients treated with eribulin [48] and in
metastatic ovarian cancer patients receiving carboplatin or gemcitabine plus carboplatin

[49], respectively.

In addition, a damaged cell compartment (D) has also been introduced in studies to
account for the damage on cell DNA as a result of the treatment, as is displayed by Eq. 2.24,
which can result in a delay on drug onset (Figure 2.2). This model structure was used in
two studies that characterized the MTD change in low-grade glioma patients treated with
chemotherapy or radiotherapy [24, 25]. In these two studies, the damaged cell compartment
was used to characterize the treatment effects on drug-sensitive cells [24] and quiescent
cells [25] respectively. Part of the damaged cells eventually died, and the rest were assumed

to become drug-resistant cells [24] and proliferative cells [25] respectively.

Apart from the linear drug exposure-effect relationship, a nonlinear drug exposure-effect
relationship can also be considered to characterize treatment effect particularly for targeted
anticancer treatment [21]. An E__model is commonly used in this circumstance. An
example equation is showed as Eq. 2.25, which was derived from a model where the studied
medicine was assumed to inhibit the zero-order growth rate of advanced solid malignan-

cies following the nonlinear drug exposure-effect relationship [21].

Considering biomarkers
When biomarkers that represent the drug-targeting system are incorporated in the tumor
dynamic models, treatment effect can be added on the dynamics of biomarkers according

to corresponding mechanisms.

In the study where neurofibromatosis patients were treated with bevacizumab and
everolimus, the decrease of the unbound VEGF amount because of the binding with
bevacizumab was considered in the model [31]. Meanwhile, the inhibition of the zero-

order production rate of total VEGF because of everolimus was described with a nonlinear

W) where IC,, the drug exposure

exposure-effect relationship: kK =k- <

that produces 50% of the maximal inhibition effect. As a result of the quantity decrease
of biomarkers, the shrinkage rate of tumor burden increased (Eq. 2.14). The delayed
activation of tumor proliferation result from the continuous use of everolimus was also
integrated in their model structure [31]. In the study where gastrointestinal stromal cancer
patients were treated with sunitinib, the effect of sunitinib was described by a nonlinear

inhibition on the zero-order production rate or first-order decline rate of biomarkers

, I E
usingk =k- <1 _ lmax* EXpoOSure

————————— | , where Imax is the maximal fraction of inhibition
IC5 + Exposure
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Model 1 (Eq.21) : First-order treatment effect Model 2 (Eq.22): Exposure-dependent Model 3 (Eq.23): Exposure-dependent
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Figure 2.2: Simulated time curves of total tumor burden (T) with tumor dynamic models incorporating
treatment effect with Egs. 2.21-2.25 and assuming an exponential growth (growth rate constant kg = 0.1). k,
is the tumor shrinkage rate constant due to drug treatment, A is the treatment efficacy decay rate constant,
Sisthe drug sensitive cells, D represents the damaged cells, d is the death rate constant. £ is the maximal
fraction of inhibition, and IC is the drug exposure that produces 50% of E__ . The baseline of total tumor
burden is 30. Parameter values used for the simulations are as follows: Model 1 (Eq. 2.21), k,= 0.4; Models 2-4

(Eqs.2.22-2.24), k,=0.04;Model 3 (Eq.2.23),A=0.1;Model 4 (Eq.2.24), d=0.1;Model 5 (Eq.2.25),E, _ =2,IC, =5.
tO'S tO‘S

D imul ith Hill" ion: Exposure = E — =30 —,
rug exposure was simulated with Hill's equation P Pmax Epteg®® 1 005 1005 7 £05

where Ep  represents the maximum exposure at steady state and Ept represents the time when the
exposure reaches half maximum value.

[39]. The negative item in Eq. 2.23 was also included to quantify the treatment effect and

resistance [39].

In addition, the effect of angiogenesis inhibition treatment can also be incorporated by
introducing a first-order drug exposure dependent decline term (Eq. 2.22) on the dynamics
of tumor vascular support [40, 41] when the vascular support was assumed to determine

the carrying capacity of tumor (Eqgs. 2.15 and 2.16).

Studies where patients were treated with immunotherapy have also considered drug inter-
action with the immune system. The presence of immunotherapeutic agents is frequently

assumed to affect the dynamics of components in the immune system, and the amount of
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those components can affect the decrease rate of tumor burden (Egs. 2.17 and 2.18) [43,
44]. For example, the model structure proposed to describe PSA change in prostate cancer
patients treated with a vaccine assumed that the presence of the vaccine upregulated the
zero-order production rate of mature dendritic cells and therefore increased the number

of cytotoxic T lymphocytes, which increased the decay of tumor tissue [44].

3.2 Algebraic equation

Besides using ODEs, model structures displayed by algebraic equations have also been
developed to characterize the dynamics of tumor directly as is summarized in Table 2.1
[50-54]. The simulated time curves of tumor dynamics given by these models are shown
in Figure 2.3. Although these equations could be treated as analytical solutions of ODEs,
they provided different shapes of time curves when compared with what was introduced

previously.

A novel two-phase model that combines exponential tumor regrowth and regression was
developed to interpret serial PSA measurements from Al prostate cancer patients [50]
and metastatic castration-resistant prostate carcinoma patients undergoing combination
therapy [51]. The corresponding model equation is shown in Eq. 2.26, where k is the tumor
regrowth rate constant and k, is the drug-dependent tumor regression rate constant. The
same model structure was also utilized to assess the therapeutic efficacy of bevacizumab
in patients with RCC using the sum of perpendicular diameter measurements [55]. On
the bases of this model structure, an extra parameter 7 has been introduced to account
for the delayed tumor regrowth as presented in Figure 2.3 (Eq. 2.27) [50]. In addition, a
parameter ¢ has also been introduced on the basis of Eq. 2.26 to differentiate the sensitive
and resistant part of the tumor (Eq. 2.28) [55], which results in a less degree of tumor
shrinkage at the early phase (Figure 2.3). This model structure was found to be applicable
when sufficient data points were available, and the estimation of growth rate constant was

similar to what was obtained by the original equation (Eq. 2.26).

Another model structure was proposed by Wang et al. to describe the time courses of
tumor SLD data of non-small cell lung cancer (NSCLC) patients from four clinical trials
treated with eight treatments/placebos [11, 52], as shown by Eq. 2.29. A and B represent
the rate constants of exponential shrinkage as a result of treatment and linear growth,
respectively. The treatment effect was also characterized as a drug-dependent manner. This
model structure has been successfully applied afterward [11] and was recently applied to
analyze SLD measurements collected from NSCLC patients from three clinical studies to

identify the obstacles to wider use of quantitative measures [56].
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Figure 2.3: Simulated time curves of tumor burden (7) with tumor dynamic models displayed by algebraic
equations that describe both tumor natural growth and treatment effect (Egs. 2.26-2.30 and 2.32). kg isthe
tumor growth rate constant, k, is the tumor shrinkage rate constant due to drug treatment, tis the delayed
time of tumor regrowth, ¢ is the sensitive fraction of the tumor, A is the exponential shrinkage rate constant
due to treatment, B is the linear growth rate constant, C is the coefficient of quadratic growth term, BASE is
the baseline of tumor burden, and A is the treatment efficacy decay rate constant. Parameter values used for
the simulations are as follows: Models 1-3 (Eqgs. 2.26-2.28), kg =0.1,k,= 0.4, BASE = 30; Model 2 (Eq. 2.27), T=
10; Model 3 (Eq. 2.28), ¢ = 0.6; Models 4 and 5 (Egs. 2.29 and 2.30), A = 0.4, B =2, C=0.05, BASE = 30; Model
6 (Eq.2.32),k, =0.1,k,=0.4,A=0.1.

A quadratic growth term with a coefficient C was later introduced to this model structure
as is shown in Eq. 2.30 [53]. This model structure was demonstrated to have the best
performance on characterizing the SLD measurements in RCC patients receiving pazopanib
or placebo, and predictive patient-specific covariates were also identified [53]. Treatment
effect, which is reflected by parameter A, was described in a dose-depended manner for

one group of the patients in this case (Eq. 2.31).

In addition, a simplified version of the previously introduced TGI model, which was
displayed by an algebraic equation, was also developed (Eq. 2.32) [54]. This model structure
also assumes an exponential tumor growth with growth rate (k ) while the treatment effect
is described in a drug-dependent manner with parameters account for tumor growth

inhibition (k) and drug resistance (1). By applying this model structure, the tumor size

35



Chapter 2

change in metastatic colorectal cancer patient treated with bevacizumab and chemotherapy
was described satisfactorily [54]. This model structure has been well applied to describe
tumor size change in metastatic RCC patients treated with cytokine, mammalian target of
rapamycin inhibitor, and VEGF receptor inhibitors [57]; in NSCLC patients undergoing
treatment of carboplatin/paclitaxel combining motesanib or not [58]; in NSCLC patients
treated with bevacizumab and erlotinib [59]; and in gastric cancer patients treated with

bevacizumab and chemotherapy [60].

3.3 Partial differential equation

3.3.1 Natural growth

Partial differential equations (PDEs), which take the change of a dependent variable in
time and space into consideration, have also been adopted in the modeling of solid tumor
dynamics in clinical research. One common application is known as a proliferation-invasion
model or a reaction-diffusion model, which hypothesize that it is the net proliferation
and invasion that contribute to the growth of cancer [61]. This model formation has been
typically used in studies where imaging observations of tumor, especially brain tumors,
were available to describe and predict tumor expansion [8]. The equation of this structure
is shown as Eq. 2.33 in Table 2.1, where the dynamics of tumor cell concentration/density
atlocation x at time (¢ (x, t)) is described [8, 61]. The tumor proliferation in this model can
be expressed by exponential, logistic, or Gompertz functions [8, 61]. Moreover, this model
mathematically regards the expansion of imaging detectable tumor edge as a “traveling
wave,” and the velocity of tumor expansion is a constant that is determined by the diffusion
coefficient (Dif) and growth rate constant p (Eq. 2.34) [61]. This linear radius/ diameter
expansion was confirmed in a group of grade IT gliomas patients with magnetic resonance

image (MRI) measurements before any oncological treatment [62].

Studies applying the proliferation-invasion model to characterize tumor dynamics
typically have interest in estimating the rate constants of net proliferation and invasion.
An application of this model structure can be found in a study where the tumor volumes
obtained from the MRI imaging were available for 70 patients with previously untreated
glioblastoma [61]. The tumor proliferation was described by a logistic function (Eq. 2.5)
with a growth rate constant p. The ratio Dif / p was estimated for each patient based on
MRI observations. Subsequently, setting p as a reported mean value and estimating Dif,
the velocity of tumor radial expansion was estimated, and the survival time of patients
underwent tumor resection were satisfactorily predicted by the estimated time of reaching

a target radius. The same model structure was also applied on serial available MRI data
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from 32 glioblastoma patients before treatment [63]. The net proliferation and invasion
rates they quantified were significantly associated with the survival of patients. Another
study characterized tumor natural growth for nine patients with glioblastoma with the same
model [64]. This study demonstrated that the parameter estimated based on pretreatment
MRIs had high prediction accuracy for responses after treatment for these patients. Using
the same model structure, the correlation between proliferation rate and hypoxic volumes
based on imaging data from newly diagnosed glioblastomas patients was demonstrated
[65]. This model structure was also recently used to investigate the personalization of

radiotherapy strategy for brain cancer patients [66].

Setting f(c(x,1)) = p- c(x, 1) a similar model structure was also used to simulate the growth
of glioblastoma based on previous reported parameters estimated from patients and

estimated the survival times of patients under different parameter settings [67].

Likewise, the proliferation-invasion model with logistic growth function was also success-
fully applied in breast cancer patients to characterize and predict their tumor burden. [68]
The model developed based on MRI data that were available from the early treatment
phase was demonstrated to be able to predict patient response at the end of treatment [69,
70]. In these studies, an apparent diffusion coefficient was estimated based on diffusion-
weighted MRI data and was then transformed to an estimate of tumor cell number, which
was the dependent variable in the model. Moreover, the inhibitory effect of tumor diffu-
sivity resulting from the stress and the deformation of surrounding tissue forced by the
tumor cells were also considered in these studies [69, 70], which is called “mass effect”
[8]. More examples of the application of the proliferation-invasion model can be found

in a previous review [8].

Apart from taking the diffusion coefficient as a constant, the difference between diffusion
rates in gray and white matter can also be considered, such as setting Dif as two different
constants for the cells in gray and white matter, respectively [71]. The proportions of white
and gray matter (i.e. P, (x), Pg(x)) have also been taken into account when computing the
diffusion coefficient with the following equation: Dif (x) = Pg(x) . szg +P (x) - Dif,. The
prediction of the model was validated with clinical imaging data from one glioma patient
case [72].

Recently, a threshold and a necrosis rate were also introduced into the proliferation-
invasion model structure, which assumes an exponential decay will occur once the tumor
cell amount exceeds the threshold [73].
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3.3.2 Treatment effect

When using the proliferation-invasion model, the treatment effect can also be expressed
by subtracting an extra term (corresponding equations are shown in Table 2.1). The effect
of chemotherapy can be expressed with Eq. 2.35, where k, is the drug effect rate constant
[67]. For radiotherapy, a linear-quadratic equation has been used to estimate the probability
of tumor cell survival (Surv) after the administration of radiation with dose (Dose) (Eq.
2.36). The effect of radiotherapy can thus be incorporated as presented by Eq. 2.37 [64].
In addition, it is also possible to incorporate the effect of resection in the proliferation-
invasion model to describe tumor growth after surgery. The resection can be simulated
by setting the cell concentration in the resected region as zero at the time point of surgery
[61]. Subtracting a surgical term (Eq. 2.38) was also found to be applied to simulate the

resection of tumor [74].

4. Tumor resistance evolution modelling

4.1 Tumor clonal evolution

Theoretically, three models of tumor evolution have been reported. One is a selective
sweep model, which is also known as “linear” model [14, 75]. It holds that during cancer
initiation, mutations with fitness advantage are raised and then selectively take over the
whole population sequentially [14, 75]. However, because intratumor heterogeneity was
identified and evidence of branching growth was found from multibiopsy and genomewide
studies, a branching evolution theory where multiple subclones are considered to present
and compete was developed [14, 75]. Another “big bang” model of tumor evolution was
observed in colorectal tumors, which suggests that advantage mutations arise and cumulate
during the early phase of cancer development and the tumor then grows as a neutral single
clonal [14, 75].

Mathematical models that characterize tumor initiation and progression as an evolving
process, including stochastic models and deterministic models, were sufficiently intro-
duced in previous reviews [13, 14]. A well-mixed cell population is typically assumed [13].
Modeling strategies that focus on describing the evolution of cancer resistance have also
been discussed [15, 17]. In the following sections, we will mainly give an introduction
about different mathematical modeling strategies that were used to characterize cancer

resistance with the tumor evolution principle.
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4.2 Stochastic model

4.2.1 Probability model assuming the branching process

The branching process, which is also called the birth-death process, is a commonly
adopted stochastic process that is used to characterize the evolving dynamics of cancer
resistance [13, 15, 17]. The Markov property is adopted in this model. Normally, at least
two cell types, i.e., sensitive cells and resistant cells, are considered. It assumes that a tumor
grows exponentially and that each sensitive cell has a certain birth rate, death rate, and a
mutation probability in one cell division, and each resistant cell also has a certain birth
rate and death rate. The probability of cell number change from current generation to the
next could therefore be expressed with these parameters, as is shown in Eq. 2.39 (Table
2.2). n and m the numbers of sensitive cells and resistant cells, respectively. Substantially,
stochastic simulation could be performed and the probability of resistance (the probability
of at least one resistant cell is present; P_) and the expected number of resistant cells (E,)

could be calculated with probability-generating function.

Resistance evolution before treatment

By applying the branching process, the resistance evolution before treatment can be
investigated. One study estimated the P, and E_ of a cell population reached a certain
size through the branching process starting with one sensitive cell [76]. The fitness of the
resistant cells that is relative to sensitive cells was also taken into consideration [76]. The
derived equations were later adopted to estimate the resistance probability of colorectal
cancer prior to endothelial growth factor receptor (EGFR) antibody treatment, where the
parameters were estimated based on longitudinal KRAS mutation amount measurements
[77]. The results indicated that the resistant mutation was highly likely to be present prior
to the initiation of treatment. The same process has also been applied to investigate the
evolution of drug resistance in chronic lymphocytic leukemia before treatment [78], where
the growth and death rates of cancer cells were set based on patient results. In this case,
besides estimating P, and E, at the time of treatment start, a time needed for the resistant
population to reach a detectable level after treatment was also estimated based on which

disease progression was analyzed and compared with real patient data.

Another study proposed functions for estimating the expected and median cell numbers for
each resistant subclone in a metastatic lesion containing a certain number of cells with the
branching process starting with a single sensitive cell [79]. The predictions of relative cell
numbers of resistant subclones assuming resistant cells were neutral were demonstrated to be in
agreement with what was estimated based on the mutation concentrations in circulation tumor
DNA (ctDNA) obtained from colorectal cancer patients treated with an EGFR blockade [79].
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Table 2.2: Modeling frameworks for characterizing tumor resistance evolution

Models Equations Ref.
Stochastic models
Probability ( P(n+1,mnm) =b,-(1—u)-n-At Eq.2.39 [76,
model assuming | P(n—1,m[n,m) =d, n-At 81,
branching P(n,m+1n,m) = b, -m-At+b,-u-n-At 83]
process P(n,m—1n,m) =d, -m-At
P(n,mln,m) =1— ((bs +d,) n-At+ (b, +d,) -m- At)
SFOChaSt?C dS:kg~S-(1—M)-dt —u-S-dt—ky' -S-dt+0,-S dW, —qy K-S+ dN; Eq.240 [90]
differential max c
equation k' = ke e
Deterministic models
Ordinary ds Eg.2.41 [91]
differential dt (e —d —ky) -
equation dR
a Z:(kg—d)-R+u-S
ds Eq.242 [88]
z:(kg-(l—u)—d—kd)-s
dR
E:(kg—d)-R+kg-u-s
ds
% (ky k- Dose) -5 Eq.243 [92]
dR
5 =k RAkguss
s Eq.2.44 [93]
= (kgt =y —kgy - Cp) - S+uy - R
dR
E:(kgz—uz)-R+ul-R
Game theory W) = Zp]_ Payoff(i) =1 =1 —d; + (1—p) - X; Eq.245 [94]
W Zpi W) Eq.2.46
dp, N = Eq.247
PRt w@ -w)
t
In.tegral—. % =[r)- (1= - c@) = G(p(®) - d()] - n(x,) +9'flf(y)'M(y,X)-n(y. t)-dy Eq.248 195,
differential N o 96]
equation ”(t):fo"("’t)d"

n, numbers of sensitive cells; m, numbers of resistant cells; b, birth rate of sensitive cells; d, death rate of
sensitive cells; u, mutation probability in one cell division; b, birth rate of resistant cells; d, death rate of
resistant cells; P, probability of cell number changing from current generation to the next; S, sensitive cells, R,
resistant cells, k , k , k , growth rate constant; d, death rate constant; k , shrinkage rate constant as a result of
drug treatment; C, drug concentration; K, drug concentration that produces 50% of maximum treatment
effect; dw,, stochastic cell diffusion in a small time interval (Wiener process); dN,, stochastic dissemination
in a small time interval (Poisson process); o,, diffusion rate; g,, dissemination rate; K, angiogenesis; u,, u,,
mutation rate; W(i), fitness of type i cell; Payofflij), payoff of type i cells when they meet cell type j; p, p;
proportion of cells; r, cost of resistance; d,, cost as a result of treatment; X, benefit for resistant cells when
interacting with susceptible cells; x, y, resistance levels; n(x, t), cell density with resistance level x at time t;
r(x), r(y), cell division rate; c(x), treatment effect; d(x), cell death rate; G(p(t)), a density dependence term; 6,
mutation fraction; M (y,x), probability that cell y mutates to cell x.
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Resistance evolution during treatment

The branching process has also been applied to simulate the evolving resistance during
treatment. Regarding treatment initiation as the starting point, the dynamics of resistance
evolution has been investigated with branching stochastic processes. Starting with a group of
drug-sensitive cells, Foo and Michor [80] proposed functions of P, and E, during treatment
depending on the length of treatment on and break time for continuous and pulsed dosing
strategies. Treatment effect was incorporated by setting different birth and death rates
for sensitive and resistant cells, if considering partial resistance, at on-treatment and off-
treatment periods, respectively. They also estimated P, E, and variance of resistance cell
number during treatment as functions of time considering with or without preexisting
resistant cells [81]. Treatment effect in this study was incorporated by making the birth and
death rates of both sensitive and (partial) resistant cells affected by drug concentration. The
treatment schedule could therefore be optimized by minimizing resistance risk or limiting
the size of resistant clones. Corresponding equations were later adopted to simulate the
time curve of E, and P, and thereby to identify a relatively best treatment strategy for
EGFR-mutant NSCLC patients receiving erlotinib [82]. In that study, the birth and death
rates of different types of cells were obtained from in vitro experiments, and the birth rates
were affected by drug concentration [82]. Three cases of mutation rate change because of

drug dose were also considered in the study.

Cancer progression under combination therapies has also be investigated with evolution
models to predict the outcome of multiple treatment strategies in EGFR-mutant lung
cancer patients treated with two drugs [83]. Tumor evolution after treatment initiation was
modeled as a branching process with at least three types of cells considered: one type of
sensitive cell and two types of preexisting resistant cells that are resistant to only one of the
two drugs, respectively. The expected numbers of each type of cells were thereby estimated
and the sum of which was the total expected cancer cell number (treatment outcome). The
treatment effect was described by decreasing the birth rates of cells depending on drug

concentration, and drug interaction was also taken into consideration [83].

Besides separating tumor cells as being sensitive and resistant to treatment, one study also
separated cells (subclones) according to resistant status and the number of accumulated
drivers [84]. In the stochastic branching process of tumor progression, subclones were
assumed to have probabilities of raising a driver mutation and a resistant mutation during
division. The accumulation of driver mutations resulted in an increase in the fitness of
cells, whereas resistance was related to a fitness cost, and the fitness of nonresistant cells
decreased because of treatment. By modeling the probability change of each cell type, the

expected tumor size and the average frequency of resistant cells were estimated as functions
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of time. Subsequently, tumor detection time was calculated and used to compare the effect

of prevention and postdiagnostic interventions [84].

Tumor eradication

Considering that resistant mutations may die out as a result of stochastic drift during
branching evolution, tumor eradication (treatment success) probability has also been
investigated. One study modeled tumor progression as the following three phases:
expansion with decreasing division rate until steady state, maintaining steady state, and
treatment phase, starting with a single sensitive cell [85]. Treatment was assumed to decrease
the division rate and increase the death rate of sensitive cells. A formula of the probability
of resistant cells arising but becoming extinct by the end of the treatment in each phase
was then proposed, and the overall probability of treatment success was estimated as the
product of the three probabilities [85].

Multidrug resistance

The evolution of multidrug resistance has also been elucidated by a stochastic model
where drug-sensitive and drug-resistant cells can divide, die (naturally and as a result of
treatment), and mutate with certain probabilities [86, 87]. In this model, cells accumulate
one mutation that leads to resistance to one drug each time, and all mutations must
be accumulated to make a cell resistant to all drugs. The treatment success probability
(probability of extinction) as well as the probabilities of resistance when resistant cells
generated exclusively before and during treatment were estimated, respectively. Based on
the derived equations, the tumor size at which a certain percentage of patients were treated
successfully were investigated under various numbers of drugs, mutation rates, and the
turnover rates of cancer cells [86, 87]. This model structure and the derived equation of
treatment success probability were later utilized to optimize cyclic treatment scheduling
[88]. Moreover, taking the contribution of quiescent tumor cells into consideration by
incorporating the branching process of both cycling cells and quiescent cells, the effect
of quiescent cells on the treatment outcome, such as the resistance probability, of chronic

myelogenous leukemia patients has also been investigated [89].

4.2.2 Stochastic differential equation

In addition of the probability models, another stochastic modeling strategy that has been
applied to characterize the development of resistance during treatment is by using stochastic
differential equations. An example can be found in a study on melanoma cancer patients
[90]. Three types of cancer cells, including sensitive, resistant, and metastasis cells, and

angiogenetic cells were considered. The dynamics of the number of drug-sensitive cells
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is described by Eq. 2.40 (Table 2.2). In this differential equation, cell growth, mutation,
and death were described deterministically, whereas cell diffusion and dissemination were
considered as stochastic processes. Logistic growth function was used to describe the growth
of cells, and the mutation from sensitive to resistant cells is described with a first-order
process. The death of sensitive cells was caused by drug treatment, and the nonlinear drug
exposure-effect relationships was adopted (Eq. 2.40). Wiener process and Poisson process
were incorporated to account for stochastic cell diffusion and dissemination, respectively.
The effect of angiogenesis was also included. A drug-induced resistance factor, which
depends on drug concentrations, was integrated to increase the growth and dissemination
rates. The model predictions of the progression-free survival and number of metastasis
cells were demonstrated to be, respectively, comparable with the observed progression-free
survival and ctDNA level obtained from melanoma patients treated with B-Raf kinase and

mitogen-activated protein kinase inhibitors [90].

4.3 Deterministic model

4.3.1 ODEs

Other than stochastic models, deterministic differential equations have also been used
to study the evolution toward drug resistance, especially for a population with a large
size that often behaves nearly deterministically [13]. The dynamics of sensitive cells and
resistant cells can be modeled with ODEs similar to what were introduced in the “Tumor
Heterogeneity” section, but the transition from resistant to sensitive cells is often neglected.

The model structures that have been identified are shown in Table 2.2.

One model of resistance evolution displayed by ODEs is shown as Eq. 2.41, where drug
resistance is considered to raise due to point mutations [91]. When considering multiple
drug resistance, multiresistant cells were assumed to only be mutated from single-resistant
cells. Starting with a certain number of sensitive cells, the resistance amount by the time
of treatment initiation and during treatment was estimated under different conditions.
The authors demonstrated that the simpler ODE model provided comparable results to
previous models that were derived from more complicated stochastic models [91]. Another
example can be seen in Eq. 2.42. This model was used to investigate the preferable treatment
by controlling the total amount of fully resistant mutants, which can be acquired from
sensitive cells and single-resistant cells [88]. In addition, a model with treatment effect
being proportional to drug dose has also been used to model evolving tumor resistance (Eq.
2.43) [92]. Multiresistant cells were also considered and were assumed to mutate only from

single-resistant cells. Based on this model structure, the survival of patients undergoing
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different treatment strategies, such as the strategy of minimizing the total cell population or
minimizing the multiresistant population, was investigated [92]. Another model structure
of resistance evolution that includes the transition from resistant to sensitive cells (Eq. 2.44)

has also been adopted to investigate the optimization of treatment [93].

4.3.2 Game theory

Evolutionary game theory has also been used to investigate the evolution of cancer
resistance, especially under combination therapy [94]. It assumes the fitness of one type
of cell, which can be understood as the growth rate, changes when the cells interact with
different types of other cells. This can be expressed with a payoff matrix, and the final
fitness of one type of cell is their expected payoff of this “game” [13]. An example was
found from a study where a well-mixed population and a deterministic dynamic of the
evolving process were considered [94]. The evolutionary game theory was adopted to
investigate and understand the evolving resistance for small cell lung cancer patients
under a combination of chemotherapy and tumor suppressor p53 vaccine treatment
[94]. Three cell populations, including cells that are sensitive to both treatments and cells
that are resistant to one of the treatments but sensitive to the other, were considered to
constitute the total tumor population. As presented in Table 2.2, the fitness of type i cell
can be expressed as a sum of the product of the payoff of type i cell interacting with type
j cell and the proportion of type j cell (Eq. 2.45), where a cost of resistance and a cost as
a result of treatment was considered [94]. In addition, to account for the influence of cell
interaction on cell sensitivity and fitness, an extra benefit for resistant cells when interacting
with susceptible cells under treatment was also introduced (Eq. 2.45) [94]. The average
fitness was expressed with Eq. 2.46, where pi is the proportion of each type of cells. The
dynamics of each cell type under sequencing treatment was described using a replicator
equation (Eq. 2.47), and the time curve of the proportion and fitness of each cell type are

two main outcomes of the simulations in this study.

4.3.3 Integral-differential equation

An integral-differential equation, where the states of cancer resistance are described in a
continuous way ranging from complete sensitivity to complete resistance, has also been used
to characterize the evolution of cancer resistance [95, 96]. A model structure shown as Eq.
2.48 has been used to describe the dynamics of cancer cell density with resistance level x
at time t [95, 96], where cell division, cell death, treatment effect, and cell mutation were
all incorporated (Table 2.2). Simulations were performed in these studies to illustrate the

evolution of resistant level during treatment, but it has not yet been applied in clinical studies.
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5. Model selection

Applying different model structures to characterize tumor dynamics and tumor resistance
evolution may achieve different objectives and require different data input and knowledge
(Table 2.3). The target cancer type and treatment option may also influence the selection
of model structure (Table 2.3).

As for the tumor dynamics models displayed by ODEs and algebraic equations, most models
are applicable to describe tumor size change in patients with various kinds of solid tumors
and under different kinds of treatment (monotherapy or combination therapy). However,
the models specifically developed for prostate cancer are mainly suitable to describe PSA
level change, and the models incorporating angiogenesis biomarkers or immune compo-
nents are normally considered when patients are treated with antiangiogenesis treatment

or immunotherapy, respectively.

Longitudinal tumor size data, such as the SLD of target lesions, MTD, or tumor volumes,
or PSA measurements are required to estimate model parameters. A mixed-effect modeling
approach has been applied to most model structures that are displayed by ODEs and
algebraic equations to account for interindividual variability, whereas the parameters of
other structures, such as the two-phase model, were normally estimated for each subject
separately. In the former case, each subject in a group is normally required to contribute at
least one measurement before treatment and one thereafter. More data points are preferred
to enable the better estimate of all parameters. However, the latter method may require
each subject to contribute enough data points to enable parameter estimates. In addition,
if a study aims at developing a model incorporating biomarkers, longitudinal biomarker
observations or previously reported models for treatment-biomarkers interaction are
required. If no specific biological process is considered, the selection of model structures
can also depend on the model fit to the data as long as the model is physiologically or

biologically plausible.

Among the functions of the natural tumor growth (Egs. 2.1-2.8), which are always part of
the tumor dynamics models, the exponential growth model has been the most frequently
selected in clinical studies. The logistic growth model was normally satisfactorily applied
when the maximum tumor capacity was fixed. The selection of the basic functions could
also depend on the model fit to the data. More than one available pretreatment tumor size
measurement would be helpful to find the best fit natural growth model and would enable

a more accurate estimate of the tumor natural growth rate.
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Chapter 2

The treatment effect can be characterized in a drug-dependent manner or exposure-
dependent manner. If a study does not focus on investigating the exposure-effect rela-
tionship, using a model with drug-dependent tumor shrinkage will be enough and drug-
exposure information is not required. For studies aiming at characterizing the relationship
between drug exposure/dose and tumor response and/or optimizing treatment regimens
for patients based on simulations, the exposure-dependent (or dose-dependent) treatment
effect structure should be applied. To estimate drug exposure, longitudinal concentra-
tion data for PK model development or a previously reported PK model are needed. In
addition, the previous knowledge of the treatment mechanism may also be required to
appropriately characterize the treatment effect, especially when applying models consid-

ering biological factors.

The proliferation-invasion model that is displayed by PDE has mainly been applied to
investigate glioblastoma or breast cancer based on available MRI measurements. The
required parameters can be estimated for each patient separately based on two sets of
pretreatment MRI data or one before treatment and one thereafter. Simulations can then
be performed to predict patient outcome with the model or with the velocity function of
tumor radius expansion (Eq. 2.34). The mixed-effect modeling approach has not been

found to be applied in these studies yet.

The model structures of tumor resistance evolution have been mainly applied to perform
simulations to understand evolving resistance and optimize the treatment. The equations
derived from the branching process can be applied to answer clinical questions. Available
longitudinal or static ctDNA measurements can be utilized to determine the parameter
values and to evaluate the simulation results. Although no mixed-effect modeling approach
has been applied in these studies yet, the model structures displayed by ODEs, which can
provide comparable results to stochastic models, are considered to be potentially able to

account for interindividual variability.

6. Discussion

Overcoming treatment resistance with a better understanding of cancer evolution and
personalizing treatment brings opportunities to treat cancer as a chronic disease and has
been increasingly studied in the oncology field. Model-based approaches incorporating
tumor growth and resistance evolution may help achieve this goal. By applying math-
ematical models, prior knowledge derived from clinical trials and routine patients care can

be utilized to quantitatively understand drug PK profiles, the drug-response relationship,
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and evolving resistance in cancer patients. These profiles can be predicted accordingly for
future patients, which could be beneficial for identifying optimized therapeutic regimens.
Furthermore, by accounting for interindividual variability with a mixed-effect modeling

approach, treatment individualization can also be designed and guided rationally [97].

In the current review, feasible model structures that have been used to describe and predict
tumor dynamics and resistance evolution during treatment for patients with solid tumors
are discussed. Models concerning tumor evolution in leukemia were included because
they provide reference value for solid tumors. Apart from what has been introduced, more
extensive models have also been found in the literature search, such as agent-based models
and the cellular automata approach. The agent-based models often include components
from two or more spatial or temporal scales, ranging from molecular to tissue [7], and
the cellular automata approach adopts a discrete dynamical system of time and space [9].
Although tumor growth can be simulated in silico realistically with these approaches,
because they require infeasible information input (e.g., cell location, nutrition distribu-
tion, and/or oxygen amount) from clinical patients, they were excluded from the current
review. Studies applying the proliferation-invasion model, which are expressed with PDE,
were not excluded, although tumor cell location is also one of the variables. It is because
two main parameters in this model structure, the diffusion coefficient Dif and growth rate
constant p, can be estimated directly based on MRI results obtained from patients, and

the velocity of tumor radius expansion can then be estimated and utilized for prediction.

Models displayed by ODEs, algebraic equations, and PDE are commonly reported for the
modeling of tumor size change and, in the case of prostate cancer, PSA amount change.
Five main basic natural tumor growth model structures were frequently reported. The
diversity in model selection can be explained by the difficulties of assessing real long-term
natural tumor growth pattern in patients [11]. Although setting the maximum boundaries
of tumor growth is more biologically plausible, the models without such limits, especially
the exponential growth models, have also been used extensively. The concept of linear
growth is also reflected in the studies that applied the proliferation-invasion model, as the
expansion of tumor radius has a constant velocity under such a model, and this concept

has been used to predict tumor radius [63-65].

For characterizing treatment effect, empirical methods are relatively simple to apply for
describing the effect of various kinds of drugs and are therefore more generally applicable.
The shrinkage rate of tumor burden caused by treatment can be described to be propor-
tional to drug exposure/dose or by utilizing drug-dependent parameters, although the

latter method does not allow differentiation among different dosing regimens. In addition,
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when the dynamics of biomarkers are available and are incorporated in the tumor dynamics
models, the treatment effect on the production of biomarkers can be integrated according
to drug mechanism [31, 39]. Furthermore, the regrowth of a tumor during treatment can
be considered in several ways. Studies applying algebraic equations generally characterize
the decline and regrowth of a tumor by a single equation. For studies that used ODEs,
tumor regrowth was mainly characterized by separating the tumor in two parts consisting

of drug-sensitive cells and drug-resistant cells or by adding the e term.

The resistance evolution of cancer has been mainly characterized by stochastic models
within which the branching process is reported most frequently. However, in studies
applying the branching process, the focus was mainly on the expected outcome of tumor
evolution, such as the P, and E_. Therefore, relatively simpler deterministic models are
considered to be good alternative choices. It has already been demonstrated that ODE
models can provide comparable results to those that are derived from stochastic models
[91]. Given that the goal is to characterize evolving tumor resistance based on clinical
data, applying deterministic models might be more suitable given clinical available data

generally represents the apparent response of each patient.

Among the studies included in this review, the detailed data of resistance evolution have
not yet been incorporated in tumor size-based modeling of anticancer treatment response.
However, genetic biomarkers that represent tumor heterogeneity and resistance evolution
become increasingly available as a result of novel technologies. For example, in a clinical
setting, a feasible genetic biomarker that is also correlated with tumor burden has been
identified as ctDNA [98]. Three of the included studies have already utilized the available
ctDNA data to support the estimation of parameters in the tumor evolution model or to
evaluate the model simulation results [77, 79, 90]. It has also been demonstrated that the
mutation in ctDNA, which represents treatment resistance, is detectable before disease
progression [99], suggesting the predictive value of ctDNA to the development of drug
resistance. By applying longitudinal monitoring of ctDNA, an adaptive treatment for
individual patients may be achieved by selecting drugs that target emerging actionable
mutations [98]. Therefore, it is feasible to obtain the information of evolving cancer resist-
ance and, to increase the chance to overcome treatment resistance, it would be helpful if

such information could be incorporated in future model-based studies.

Based on what was learned from previous reported studies, as is introduced in this review,
model structures displayed by ODEs are considered to be feasible for the characterization
of both tumor size change and resistance evolution in cancer patients. A mathematical

model can be developed based on the input data of tumor size, mutation load of ctDNA,
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and treatment information over time. The emergence and dynamics of mutations in ctDNA
can provide insight of the occurrence, growth, decay, and mutation for different tumor
subclones. External data sets, if available, can be used to further evaluate the developed
model structure. Subsequently, the effect of sequential treatment regimens with different
dose levels or starting times of therapies can be explored with simulation and thereby
to facilitate the identification of an optimal regimen. Moreover, because the parameter
values can be estimated for each individual and the variability of which can be partially
explained by patient characteristics, the treatment personalization can also be rationally
guided based on the modeling and simulation results. These will be the ultimate output
of the model-based study.

However, challenges remain beyond what is already stated. First, in terms of data collec-
tion, previous knowledge of the mutations that represent resistant subclones is required.
Second, if sequencing data of the subclones (ctDNA) over time are available, efforts need
to be made to handle the vast amount of genetic data in a quantitative manner in relation
to tumor size dynamics. Third, the optimal method on how to predict a newly acquired
mutation that has not yet occurred in the data needs to be further explored. Finally, because
in-depth knowledge is required from multiple aspects of tumor and clone dynamics as well
as complex modeling and simulation, a multidisciplinary collaboration is essential to enable

the achievement of the ultimate goal of optimizing and personalizing anticancer treatment.

In conclusion, based on a systematic search of studies from the literature, mathematical
models that have been used to describe and predict tumor size change, drug effect, and
resistance evolution based on clinically available data were introduced in this review. The
results may facilitate the model-based anticancer treatment response analysis that accounts
for both tumor growth inhibition and resistance evolution, although important challenges
still need to be overcome. An ultimate model structure handling all of these aspects would

be of great benefit for optimizing and personalizing anticancer treatment.
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Supplementary Material S2.1

Literature searching method

As for tumor dynamic modelling, a search term: (“Models, Theoretical” [Majr:NoExp]
OR “Computer Simulation”[Mesh] OR “Models, Biological*” [Majr:NoExp]) AND
(“mathematical” [title/abstract] OR “computational”[title/abstract] OR “model-
based”[title/abstract] OR “model based” [title/abstract] OR “pharmacometric*”[title/
abstract] OR model framework|title/abstract] OR modelling framework|title/abstract]
OR modeling framework(title/abstract] OR PK/PD model* [title/abstract] OR PK-PD
model* [title/abstract]) AND (pharmacody* [title/abstract] OR tumor growth[title/
abstract] OR tumour growth|title/abstract] OR tumor dynamic|title/abstract] OR tumour
dynamic[title/abstract] OR tumor dynamics[title/abstract] OR tumour dynamicstitle/
abstract] OR tumor-growth[title/abstract] OR tumour-growth|title/abstract] OR “change
in tumor size”[title/abstract] OR “change in tumour size”[title/abstract] OR “tumor
growth inhibition”[title/abstract] OR “tumour growth inhibition’[title/abstract]) AND
(“Neoplasms”[Majr:NoExp] OR “cancer”[title/abstract] OR “tumor*”[title/abstract]
OR “tumour*”[title/abstract] OR malignan*[title/abstract] OR oncolog*[title/abstract])
AND “Humans”’[Mesh] NOT “Animals”’[Mesh:NoExp] NOT “Cells’[Mesh] AND
English[Language] AND (Pharmacology OR oncology) was used to retrieve records from
PubMed database. Papers published until the start of March 2018 were scanned based on
their abstract and method part. Papers that met the following criteria were included: 1)
published after 2000; 2) studies where longitudinal tumor size data obtained from patients
with solid tumors was described with mathematical models; 3) studies where longitudinal
PSA data from prostate cancer patients was characterized with mathematical models; 4)
studies where tumor size data from patients were obtained to estimate model parameters;
5) reviews that summarized equations of different tumor growth modelling structures; 6)
simulation studies where the models are potentially applicable in clinical settings, i.e. well

mixed cancer cell population were considered.

Exclusion criteria include: 1) studies published before 2000; 2) studies for which the full
text was not available; 3) animal studies; 4) computer aided molecular studies; 5) studies
with no equation reported; 6) studies characterizing disease progression; 7) studies that
focus on MRI/PET/CT utility, optimization, or kinetics; 8) studies characterizing safety and
toxicity profiles; 9) studies characterizing the dynamic of biomarkers or markers related
to drug activity; 10) studies where the target cancer types are not solid tumor; 11) studies
that modelled cell cycle kinetics or signaling pathway; 12) computational methodology

studies; 13) studies characterizing tumor evolution; 14) introductory journal article; 15)
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reviews discussing the application of mathematical models and/or have no equations
reported; 16) other studies that are not focus on tumor growth analysis; 17) simulation
studies where the models are potentially not feasible in clinical settings, including studies
considered nutrition distribution, cellular automata, multiple scales, chemical potential,

and in silico illustration of tumor growth .

As for tumor resistance evolution modelling, a search term: (“Models, Theoretical” [Mesh]
OR “Computer Simulation”’[Mesh] OR “Models, Biological*” [Mesh]) AND (“math-
ematical” [title/abstract] OR “computational”[title/abstract] OR “model-based”[title/
abstract] OR “model based”[title/abstract] OR “pharmacometric*”[title/abstract] OR
model framework([title/abstract] OR modelling framework[title/abstract] OR modeling
framework|[title/abstract]) AND (“Neoplasms”[Majr:NoExp] OR “cancer”[title/
abstract] OR “tumor*”[title/abstract] OR “tumour*”[title/abstract] OR malignan*[title/
abstract] OR oncolog*[title/abstract]) AND “Humans”’[Mesh] NOT “Cells”[Mesh]
AND English[Language] AND (“Drug Resistance, Neoplasm”[mesh] OR “Biological
Evolution”[Majr:NoExp] OR “Clonal Evolution’[Mesh]) AND (“Resistance”|[title/abstract]
OR “heterogeneit* “[title/abstract] OR “evolution”[title/abstract] OR “clone”[title/abstract]
OR microenvironment|title/abstract]) was used to retrieve records from PubMed database.
Papers published until the start of March 2018 were scanned based on their abstract and
method part. Papers that met the following criteria were included: 1) published after 2000;
2) model-based studies on the evolution of tumor resistance and tumor progression; 3)

reviews that summarized equations of different model structure.

Exclusion criteria include: 1) studies published before 2000; 2) articles that overlap with
what we obtained from tumor growth modelling; 3) studies for which the full text was not
available; 4) computational molecular studies; 5) network studies; 6) studies concerning
P-glycoprotein and resistance protein; 7) studies focus on cell cycle kinetics or signaling
pathway; 8) introductory journal article; 9) studies characterizing tumor growth; 10)
studies with no equation reported; 11) reviews discussing the application of models and/

or have no equations reported; 12) other studies that are not focus on tumor evolution.

Studies concerning tumor dynamics and tumor resistance evolution that were retrieved
by the other search term were also scanned and included according to their own corre-
sponding inclusion and exclusion criteria respectively. Included articles’ references which
introduced corresponding original models or demonstrated application examples, which

were not found in the included papers, of certain model structures were included as well.

The flow diagram of scanning literature is shown in Figure S2.1.

61



Chapter 2

1A Tumour dynamics

Nz

ﬂclusion (N=229):
¢ Published before 2000 n=16
*  Nofull text n=9
*  Animal study n=6
*  Computer aided drug design n=11
*  Researches with no equation n=1
*  Reviews with no equation n=8
. Disease progress n=4
. MRI/PET/CT n=14
*  Safety and toxicity n=10
. Biomarker/drug marker n=5
¢ Leukemia n=5
¢ Cellcycle n=4
*  Signal pathway n=11
*  Methodology n=19
¢ Evolution n=3
* Introductory Journal Article n=2 N=45
e Other n=51
& Not applicable n=50 / N=7 from evolution

Exclusion (N=4)

¢ Leukemia n=2

* Not applicable n=1

* Animalstudy n=1

N=3
N=48
(—[ Included References: N=13 ]
N=61
1B Tumour evolution
N=85

ﬁxclusion (N=65): \

*  Published before 2000

¢ Overlap

¢ Nofull text

*  Computational molecular studies
¢ Network analysis

*  Resistance protein and P-gp

*  Signal pathway

¢ Cellcycle

* Introductory Journal Article

¢ Tumour growth

*  Research studies with no equation
*  Reviews with no equation

k Other

)

[ N=3 from tumour dynamics ]

2333333333333
P ORNRPRNNGOOOR®R

N
H

4‘ Exclusion (N=0)

j€———| N=3

N=23

<_[ Included References: N=2 ]

N=25
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Software

Software that was applied in studies concerning tumor dynamics (TD) and tumor evolution
(TE) to perform parameter estimation and data simulation is summarized in Table S2.1.
As can be seen in the table, NONMEM and Matlab are two most frequently used software
that performing model-based analysis concerning tumor dynamics. Studies applying non-
linear mixed-effect models (NLMEM) mostly utilized NONMEM software to estimate
parameter values, while Matlab was popular when performing simulation with partial
differential equations. Three other commonly used software packages for tumor dynamics
modelling are Monolix, Phoenix NLME, and Sigmaplot. For studies performing tumor

evolution analysis, only a few of them reported the software, namely Matlab and R.

Table S2.1: Software that was applied in studies concerning tumor dynamics (TD) and tumor evolution (TE)
to perform parameter estimation and data simulation

Application Name Algorithm
D NONMEM (ICON Development First-order conditional estimation with interaction
Solutions) (FOCE-I) algorithm

First-order conditional estimation (FOCE) algorithm
Laplacian algorithm

Stochastic approximation of expectation
minimization (SAEM) algorithm

Matlab Ordinary differential equation solver
pdepe
ODE45 subroutine

A custom genetic algorithm

Monolix SAEM algorithm
Phoenix NLME FOCE algorithm
Sigmaplot (Systat Software Inc) ~ Not mentioned
SPLUS Not mentioned
C programme Not mentioned
TE Matlab Not mentioned
R; coded with C++ Not mentioned
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Abstract

Quantitative characterization of evolving tumor resistance under targeted treatment
could help identify novel treatment schedules, which may improve the outcome of
anti-cancer treatment. In this study, a mathematical model which considers various
clonal populations and evolving treatment resistance was developed. With parameter
values fitted to the data or informed by literature data, the model could capture
previously reported tumor burden dynamics and mutant KRAS levels in circulating
tumor DNA (ctDNA) of patients with metastatic colorectal cancer treated with
panitumumab. Treatment schedules, including a continuous schedule, intermit-
tent schedules incorporating treatment holidays, and adaptive schedules guided
by ctDNA measurements were evaluated using simulations. Compared with the
continuous regimen, the simulated intermittent regimen which consisted of 8-week
treatment and 4-week suspension prolonged median progression-free survival (PFES)
of the simulated population from 36 weeks to 44 weeks. The median time period in

which the tumor size stayed below the baseline level (T, ... ) was prolonged from 52

TS<TSO
weeks to 60 weeks. Extending the treatment holiday resulted in inferior outcomes.

The simulated adaptive regimens showed to further prolong median PFS to 56-64

weeks and T to 114-132 weeks under different treatment designs. A prospec-

TS<TSO
tive clinical study is required to validate the results and to confirm the added value

of the suggested schedules.



Treatment schedule optimization considering evolving resistance

1. Introduction

Emerging treatment resistance during anti-cancer therapy is one of the major causes of
cancer patients experiencing treatment failure [1, 2]. The occurrence of treatment resistance
is mediated by a range of mechanisms [1, 2]. Evolutionary mechanisms driven by intra-
tumor heterogeneity and the evolving adaptation of tumor cells to the selection pressure
of treatment are increasingly acknowledged as key factors related to the development of

treatment resistance [3-7].

To improve the treatment outcome in cancer patients, it may be important to take the
intra-tumor heterogeneity and evolutionary dynamics of tumors into consideration when
designing treatment strategies. A clinical genetic biomarker that is useful to capture the
tumor heterogeneity and to monitor the evolving treatment resistance in a quantitative way
is circulating tumor DNA (ctDNA), i.e. tumor DNA fragments circulating in the blood-
stream [2, 8-10]. Different from tumor size, which is commonly used as an indicator of
anti-cancer treatment effect [11], ctDNA can be detected from liquid biopsies and allows
real-time monitoring with limited patient burden. It has been demonstrated that mutations
present in multiple biopsies of primary tumor and metastasis can be detected in ctDNA
including those being missed in certain biopsies[12]. In addition, the genetic alternations
captured by ctDNA can also be quantified. The relative change of genetic alterations in
serial ctDNA analysis could provide important insight into the molecular evolution of the
tumor and reveal the mechanisms of resistance to targeted agents [8-10]. Previous studies
of ctDNA in colorectal cancer patients have demonstrated a positive selection of mutant
KRAS clones during epidermal growth factor receptor (EGFR) blockade [10, 13], and a
decline in mutant KRAS clones upon the withdrawal of the therapy [9]. The concentration
of ctDNA has also been shown to correlate with tumor burden and stage, and is associated
with therapeutic response, such as disease progression and recurrence, in different kinds
of cancers [8, 9, 14-18].

Monitoring tumor-specific genetic alternations can facilitate the selection and adjustment
of drugs that target newly developed actionable mutations [2, 8]. Such adaptive treatment
suppresses the proliferation of resistant tumor clones and thereby overcome or at least

delay treatment resistance [2, 8].

Considering evolutionary dynamics, suppressing the emergence of resistance by applying
intermittent treatment has also been previously proposed [19, 20]. Intermittent treatment
allows sensitive cells to utilize their fitness advantage during the withdrawal of treatment
to suppress the growth of the resistant population, so that the same treatment can remain

effective when it is reinitiated, which is especially relevant in the metastatic setting when
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cure is not possible [19, 21]. This principle was demonstrated in silico with game theory
models and with a pilot study of abiraterone in prostate cancer patients [19]. For colorectal
cancer, it has been shown that tumor genomes adapt dynamically to intermittent drug
schedules and re-challenge of EGFR blockade can be efficient [9]. This strategy is also

of emerging clinical interest and has been investigated in several clinical studies [22-27].

Mathematical modelling and simulation is a widely accepted tool in pharmaceutical
research to characterize and understand the interaction among drug treatment, the human
body, and disease [11, 28-30]. Various mathematical model structures have been used to
characterize the tumor dynamics and drug resistance evolution for solid tumors [19, 31, 32].
Tumor proliferation, regression due to treatment, heterogeneity, and treatment resistance
are key elements that are commonly considered in those models [32]. The dynamics of
biomarkers can also be incorporated which enables better understanding and prediction
of tumor progression [32]. A non-linear mixed-effect modeling approach is commonly
applied to account for inter-individual variability (IIV) [32]. Studies developing models
for tumor dynamics and evolving drug resistance are mostly aimed at optimizing and indi-
vidualizing current treatments. Furthermore, they are also aimed at better understanding
of emerging drug resistance and identification of outcome predictors [32]. Connecting
these models to patients’ survival and adverse effects with time-to-event modelling is
also common to support the understanding of treatment efficacy and enables the explo-
ration of optimized dosing schedules [33]. These models could guide the interpretation
and clinical decision making process based on observed tumor size dynamics and the
associated evolution of tumor progression during treatment, and thereby supporting the
identification of novel personalized strategies to optimize anti-cancer treatment schedules

and overcome treatment resistance.

The aim of the current study was to develop a mathematical model to quantitatively char-
acterize the dynamics of treatment response and evolving resistance, based on tumor sizes
and mutant KRAS levels in ctDNA from metastatic colorectal cancer (mCRC) patients.
We also aimed to evaluate anti-cancer treatment designs which consider cancer resistance
evolution and demonstrate the use of ctDNA as a marker to guide adaptive treatment. These
aspects might be beneficial to improve the treatment outcome, especially in the metastatic
setting. Data identified from the literature were used for model development. Anti-cancer
treatment schedules, including continuous, intermittent, and adaptive schedules guided by

ctDNA measurements were designed to evaluate optimal treatment schedules.
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2. Results

2.1 Data and model evaluation

A dataset containing longitudinal tumor burden measurements and mutant KRAS levels
in ctDNA was identified from 28 mCRC patients treated with the anti-EGFR inhibitor
panitumumab in a previous clinical study [13] (Figure 3.1). Among the 28 patients, 25
were identified to be initially KRAS wild-type and 9 of those 25 developed KRAS mutation
after 5-34 weeks’ (median 22 weeks’) treatment. The remaining 3 patients had detectable
mutant KRAS at the start of treatment. The characteristics of the patients are summarized

in Supplementary Table S3.1.
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Figure 3.1: Model evaluations results on the data of tumor burden (a, c) and mutant KRAS (b, d) collected
from a previous clinical trial on patients with metastatic colorectal cancer who were identified to be initially
KRAS wild-type (a, b) or had detectable mutant KRAS at the start of treatment (¢, d); Model predicted mutant
KRAS concentrations under a regimen of 20-week treatment and 20-week suspension (e).

The developed model consists of three clonal tumor populations, including T, which was
sensitive to anti-EGFR inhibitor (D,), T, which harbored KRAS mutation and was resistant
to D ,and T,, which was resistant to both D, and a hypothetical second treatment targeting
T, (D,), as well as two compartments for mutant KRAS (M, .,) and a hypothetical second
) in ctDNA (Figure 3.2). M and M were assumed to emerge

mutation (M tDNA1 ctDNA2

ctDNA2

69



Chapter 3

"juswieall-aid YNQI? Ul Sy Jueinw 3|qe3dsiap pey oym sjualed
‘syuanied Syyy-IN YNQID Ul 9dA1-plim Siyy Se payinuapl Ajjeimul a1am oym siuaied ‘syusned Sygy-1A ‘AN[IGRLBA [BNPIAIPUI-ISIUL ‘All ‘YN Jown} Bunendin ‘YyNJP

eleq 70 °) §O All JO UORRIASP piepuUElS () Al
ele@ 90 S3UIIa5Eq JO All JO UOHRIASP pIepuels (‘™) g A
ety Sl S100 WNI2 L 10 9181 BUIppays WNWIXe| ((;Ww,dpPam)/(Jw/sauswbely) -y
MH«WM_MM”M MW S0 JUE}SUOD B3Rl dJRUIWID YNJID o2amy) °y
au pue elep sl SL0°0 "Ny jo 2384 BUIPPaYS WNWIXe ((Ww,Pam)/(w/syuswiBesy) 'y
J0 adojs ayy 00S€E VNQ3? J0 33e1 BuIppays [ewixew-jjey 3piroid Jeyy Jowny Jo 3z1s 3y | (ww) %1y
Buydrew Ajjensip S UBPYIR0D [I1H H
“y €00 0="guaym "1 01 ¥] wouy a1es uoneny (amy) ™y
My S0°0 L =g uaym ¥} 01" wouy a1el uoneny Oeamy) 'y
[6] "y ueyy 1omo1 €00 0="q uaym’ 01 "’; wouy s3es uonEIN Oreamy) @y
anjeA pajewisy 500 L ='guaym Y1 01°] woly 33e1 uonEINY Opamy) My
Y 1’0 ¢@ 031 anp jue)suod a3es abeyuLYsS Jown] (eamy)) Cy
anjea pajewnsy 1’0 ‘@ 01 anp jurISUOD 3)R1 3BR3ULIYS Jown] Oeamy) “y
[ ‘s¥] SL00 %) Jo 3ueISUOD 33BI YIMOID) Opamy) ©y
[ ‘st 1200 "] 40 3URISUOD 3381 YIMOID) Opamy) Py
[ov] €00 °| JO JUBISUOD B1RJ YIMOID) Opamy) %y
0 0 vNG» utl p) uoneinw eonayrodAy puodas e jo auljeseg (lw/syuswbey) © “NPpy
LyNa» 0~ LYNGP
Juswieas buLnp 00S 0 VNQ@» Ul ( W) Syax u.cﬁstc JO suljsseg (lw/syuswbeyy) O\ES\
pasnbae 3q 0} 0 0 (sjuswiyeasy yroq 03 3dueisisal si yeyy uonendod jeuopd) ¥ jo suaseg (uw) ® ¥
pawnsse sem (@) yusunean [eanayiodAy puodass ayy _
uoneINw ‘anjea 001 0 03 9AIISUIS S1 3N ‘g 03 duelsisai si yeyy uopeindod [euopd) ¥ jo suleseg (Qw) ® ¥
pajewsa/eleq 00l 00SS (‘@) Jomquyur y1D3-Hue 03 2ARISUBS S1 1ey) uonejndod [euopd) ° Jo auljaseg (ww) g
sjusned  syusped uondusaq (s3un) si1s1awWweleqd
SY&I-W  SY&I-LM
ERIEIETEN] san|eA [ea1dA|
sjuaned

(DYDW) Jadued [}2210[0D DIFRISEIDW U] SUOIFRIFUIDUOD UOHEINW pUe 3zIS Jown} Jo solweup ay) buiziiaioeleyd [apow padojaaap ay3 JO sanjea sidjdweled :L°€ SjqeL

70



Treatment schedule optimization considering evolving resistance

during treatment. Shedding rates of ctDNA depended on the size of T, and T,,, and Hill
equations with tumor size as independent variable were applied to describe the delayed
emergence (or ability to detect) of mutant genes in ctDNA. Values of model parameters
were obtained by fitting to the data or informed by literature (Table 3.1). Parameters
describing tumor dynamics under D, therapy were estimated based on the observed raw

data and the results are shown in Supplementary Table S3.2.

kg
kgl
kyz, without anti- K,
EGER inhibitor with anti-EGFR inhibitor
ky
T T~ Al M ke
e CtDNAL —
kgz
ks, without D, which ks
targets KRAS mutated with D, which targets KRAS mutated
colon cancer colon cancer K
2

Figure 3.2: The model that characterizes the dynamics ot tumor size and mutation concentrations in
ctDNA from metastatic colorectal cancer patients. T, T, and T, represent the sizes of three tumor clonal
populations, respectively. M, . andM__ - represent the concentration of mutant KRAS and a hypothetical
mutation in ctDNA. kg1, kgz, kg3 represent the net growth rate constants of three clonal populations. k  and
k, represent the tumor shrinkage rate due to treatments. k,, and k,,, represent the mutation rate constant
from drug susceptible clonal population to drug resistant clonal population during the course of anti-EGFR
treatment (D)) and a hypothetical treatment (D,), respectively. k,,, and k,,, represent the transition rate
constant from drug resistant clonal population to drug susceptible clonal population upon the withdrawal
of treatments. k, and k, represent the shedding rate constant of ctDNA which carries mutations. k, represent
the elimination rate constant of ctDNA.

The model evaluation results show that the 50 percentiles of the simulated time-courses
of total tumor size (TS) and mutant KRAS (M

ona; ) concentrations were generally in line

with the 50 percentiles of corresponding observations (Figure 3.1). The 50" percentiles
of observations were also adequately covered by the 95% confidence intervals (CIs) of

corresponding percentile obtained from the simulations. Upon a treatment suspension
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after 20 weeks of treatment, a decay of KRAS levels that was observed in previous studies
[9] could also be described by the model. The median and 90% prediction interval of
corresponding simulations of 100 virtual patients were shown in Figure 3.1E. The predicted
median half-life of KRAS levels was 4.98 months.

An available dataset on 16 non-small cell lung cancer (NSCLC) patients was utilized as an
evaluation cohort (Supplementary Table $3.3) [14]. Patients included in this study had detect-
able EGFR L858R mutation / exon 19 deletion at the start of treatment and developed EGFR
T790M mutation during treatment. The model used in the validation cohort was adjusted
according to the findings of the study, the details of which can be found in Supplementary
method and Supplementary Figure $3.1. Model evaluation results show that the distribu-
tion of the model simulations was also in line with the distribution of the tumor size and

concentrations of mutant EGFR obtained from NSCLC patients (Supplementary Figure $3.2).

2.2 Treatment schedule evaluation

Based on the developed model, multiple dosing schedules, including a continuous D,
schedule, intermittent D, schedules with different on- and off-dosing durations, and
adaptive schedules where the use of D, and D, were guided by ctDNA measurements, were
simulated and evaluated to identify optimal treatment designs (Table 3.2). For adaptive
schedules, the treatment started with a continuous D, and switched to a continuous D,
when the ctDNA measurements increased to an upper limit for drug adjustment. When the
mutation concentration decreased back to a lower limit for drug adjustment, the treatment

was switched back to D, and the loop continued.

Predicted median progression-free survival (PFS) and time until the tumor size had grown
back to the baseline level (T

are shown in Figure 3.3, the detailed results of which can be found in Supplementary

rsorso) Of the simulated population under all evaluated regimens

Table S§3.4. The median predicted PFS under continuous drug exposure was 36 weeks

and median T, was 52 weeks. Five out of 9 designs of intermittent schedule prolonged

median PFS and median T compared with continuous treatment (Figure 3.3). Four- or

TS<TS0O
8-week treatment suspension was introduced in these regimens. Extending the treatment
holiday from 4 weeks to 4 weeks more than the treatment period mostly resulted in inferior
results (Figure 3.3). A regimen consisting of 4-week treatment and 4-week suspension

(S

8-week treatment and 4-week suspension (S,

interm(8on_4off)

)) provided the longest median PFS (48 weeks), while a schedule consisting of
(60

weeks). A survival prediction also illustrated a better clinical outcome provided by regimen

interm(4on_4off)

) provided the longest T

TS<TSO

than continuous regimen (Figure 3.4).

interm(8on_4off)
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Table 3.2: Evaluated treatment schedules

Schedules Details

Continuous schedule (standard D, was continuously administered resulting in continuous drug

of care) exposure for 180 weeks
Intermittent schedules D, was administered for N weeks and suspended for M weeks. Total
treatment time was 180 weeks.
N (weeks) M (weeks)
4 4,8
8 4,8,12
12 4,8,12,16
Adaptive schedules with a D, was continuously given, and suspended and switched to

hypothetical second treatment D, when the ctDNA measurement increased to higher than
UP fragment/ml. Treatment switched back to D, when ctDNA
measurement decreased back to lower than LOW fragment/ml.
Total treatment time was 180 weeks.

Monitoring frequency

LOW (fragment/ml) UP (fragment/ml) of ctDNA (weeks)

5 10,15, 20, 25 4

10 15,20, 25 4

5 10,15, 20, 25 8

10 15,20, 25 8

5 10,15, 20, 25 12

10 15, 20, 25 12

D,, anti-EGFR inhibitor; D,, a hypothetical second treatment to which the newly acquired clone is suscep-
tible; ctDNA, circulating tumor DNA. Drug exposure variability was not considered in this study but only the
presence (D = 1) or absence (D, = 0) of a drug were considered.

a Intermittent Adaptive
Freq = 4 weeks Freq = 4 weeks Freq = 8 weeks Freq = 12 weeks

jr
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] 16 3
E 1 Median PFS
< g‘ 10
= 12 © L
é E 50
g 8 < 30
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L °
& Continous/4 5
o 3

o

Continous 4 8 12 Continous10 15 20 25 10 15 20 25 10 15 20 25
on-treatment duration (week) upper ctDNA limit (fragments/mL)
b Intermittent Adaptive
Freq = 4 weeks Freq = 4 weeks Freq = 8 weeks Freq = 12 weeks

jany
3 16 £
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Figure 3.3: The predicted median progression-free survival (PFS) (a) and the time until the tumor size had

grown back to the baseline level (T, ) (b) of evaluated regimens.
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Figure 3.4: The survival plot of 100 virtual patients under continuous treatment, intermittent treatment
(8-week treatment and 4-week suspension), and adaptive treatment with the second hypothetical drug
(ctDNA limits for drug adjustment: 5 and 10 fragments/ml, monitor frequency: 12 weeks).

As for the adaptive regimen guided by ctDNA measurements, all designs further prolonged
median PFS to 56-64 weeksand T to 114-132 weeks (Figure 3.3). Comparable results
were obtained when the monitoring frequency of ctDNA altered and slightly longer median
PFSs were observed when the monitoring frequency of ctDNA was once every 12 weeks.
Under the same monitoring frequency, the different upper and lower ctDNA limits for
drug adjustment only resulted in small changes in median PFSand T ., especially when
the ctDNA was less frequently monitored. Overall, the longest median PFS and T .,
were mostly observed when the upper and lower ctDNA limits for drug adjustment were
5 fragments/ml and 10 fragments/ml, respectively (Figure 3.3). A regimen with 5 and 10
fragments/ml as ctDNA limits for drug adjustment and a monitoring frequency of once
every 12 weeks (S ) provided the longest median PFS. The survival prediction

nd

adapt(5_10_Freq12)
Of S 40i(5.10._rreqz) 180 showed a better clinical outcome than the regimen S, . - . a

the continuous regimen (Figure 3.4).

Figure 3.5 shows the simulated time-curves of each tumor clonal population and each
mutation in ctDNA over time from a typical subject under the continuous schedule, the inter-

mittent schedule S, . .. and the adaptive schedule S - The corresponding

adapt(5_10_Freq12
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results of the simulated population are shown in Supplementary Figure $3.3. It can be seen

that the schedule S, and S suppressed the growth of resistant clonal

interm(8on_4off) adapt(5_10_Freq12)

population T,,. In addition, predicted time until detectable mutation ( ) under

Tmutant_test

each evaluated regimen was evaluated. It was shown that M = under both continuous

and intermittent regimens could become detectable before disease progression (Figure 3.5,

Supplementary Table $3.4). In the setting of adaptive treatment, as the M_ . level was
applied as a biomarker to guide the treatment switching, the medianT . ofM_ . was
evaluated. The results indicate that M .- would be observed after disease progression has
occurred but before the tumor size grows back to baseline level (Figure 3.5).
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Figure 3.5: The simulated time-curves of total tumor burden and each clonal population (a, d, g),
mutation concentrations (b, e, h), and dosing strategies (c, f, i) of a typical subject with metastatic colorectal
cancer undergoing continuous treatment (a, b, c), intermittent treatment (8-week treatment and 4-week
suspension) (d, e, f), and adaptive treatment with the second hypothetical drug (ctDNA limits for drug
adjustment: 5 and 10 fragments/ml, monitor frequency: 12 weeks) (g, h, i). Estimated PFS (black dashed
vertical line), T. (red dashed vertical line), and T (blue dash vertical line) are also shown in the

TS<TSO mutant_test
figure.
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2.3 Sensitivity analysis

While the value of the parameters describing tumor dynamics were estimated based on
the data or adapted from literature, that of other parameters were set based on a visual
fit to the data since the amount of data did not support estimation of parameters. These
parameter values may however not be optimal, and therefore the parameter sensitivity to the

simulated curves was assessed by increasing or decreasing parameters by 50% one at a time.

The predicted PESand T derived from each time of simulation, which represent
the dynamics of tumor burden and mutation concentrations in ctDNA respectively, are
shown in Figure 3.6 and Supplementary Table S3.5. Both simulated tumor sizes and
mutation concentrations were affected when any of the parameters characterizing the
tumor burden dynamics, including net growth rate constants (k ), tumor shrinkage rate

due to treatments (k ), and mutation rate constants (k,,) varied. In contrast, the change of

a Continuous Intermittent Adaptive
kg3
kM1
kM2
3 APFS
2 me
@ kM4 20
£
§ e I °
©
o ks2 [ -20
kTmax_1
kTmax_2
g E—
ke
increase decrease increase decrease increase decrease
Parameter changes
b Continuous Intermittent Adaptive
kg1 kg1
kg2 kg2
kg3 kg3
kM2 kM2 No result
s A Trnutant _test s
) )
8 i m ¥ 3 i A Troutant_test
[ [
2 10 2 m 100
E o 5w "
S -10 S 20
a ks2 a ks2
: [ | : 20
KTmax_1 KTmax_1 -100
kTmax_2 kTmax_2
H H
ke ke
increase decrease Increase decrease increase decrease
Parameter changes Parameter changes

Figure 3.6: Relative change (A) of predicted progression-free-survival (weeks) (a) and time until detectable
mutation (weeks) (b) compared with using original parameters in the sensitivity analysis. No result, the
mutant gene concentrations did not reach the detectable limit (5 fragments/ml) by the end of simulation
time (180 weeks).
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the parameters characterizing the mutation concentrations, including the Hill coefficient
(H), max releasing rates (k__ ), the tumor size that provide half-maximal releasing rate
(KT,,), and elimination rate constant of ctDNA (k ), only affected the simulated mutation
concentrations but not the simulated tumor size except for KT, and H under an adaptive
treatment design. The predicted PFS was mainly sensitive to parameters k , and k,, , and
the predicted T H and KT,. Nonethe-

| ant e WS mainly sensitive to parameters k_, k
less, the intermittent regimen and the adaptive regimen still resulted in better treatment

M1
outcomes (i.e. longer PFS) than the continuous regimen, no matter how the parameter
values varied (Supplementary Table $3.5). More detailed simulated time-curves of
tumor burden and M, concentrations under each setting, and the relative changes of

predicted total tumor sizes and M

levels compared with original results are shown in
ctDNA

Supplementary Figure S3.4 and Figure S3.5.

3. Discussion

In the current study, a mathematical model was developed to characterize the tumor size
dynamics and tumor resistance development in response to treatment. The model was built
based on findings from previously published studies and the collected raw data itself. The
model well captured the reported time curves of tumor sizes and mutant KRAS levels in
ctDNA from mCRC patients. A similar model could also characterize the time-curves of

EGFR mutation and tumor sizes obtained from NSCLC patients.

The current model assumed that for patients who had no detectable KRAS mutation pre-
treatment, there was no primary resistance, despite that the original study estimated that
drug resistance is likely to be present prior to the initiation of treatment [13]. However,
since the size of the resistant clonal population was estimated to only account for a small
part of the total tumor cell population (2300 cells out of one billion cells) [13], the primary

resistance was eventually not included in our model.

During treatment interruption, a back transfer process from drug resistant clonal population
to drug sensitive clonal population was incorporated to capture the recovery of sensitivity
to the treatment. This assumption was supported by in vitro observations [9]. This process
could also describe the phenomenon that in the absence of the drug, susceptible tumor cells
have the benefit of growing back again at the expense of resistant tumor cells. When the back
transfer process was removed (k,,, and k, , fixed to 0), prolonged predicted median PFSs
under the schedule S. and S , compared with the continuous regimen

interm(4on_4off) adapt(5_10_Freq12

were still observed, although not for schedule S, . - . in contrast to when the back
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transfer was allowed (Supplementary Figures $3.6, $3.7). However, the decline of ctDNA
upon withdrawal of treatment, which has been observed in mCRC patients [9, 34], could
not be captured when removing the back transfer process (Supplementary Figure S3.8).
It was also observed that under this circumstance, the remaining susceptible cells had no
growth advantage over the resistant cells during the withdrawal of treatment, hence tumor
would not regain susceptibility (Supplementary Figures $3.7, $3.8). Therefore, the back
transfer process is considered to be a reasonable assumption to describe the dynamics of
and the competition among different clonal populations upon treatment withdrawal based
on current available data. More data under intermittent therapy would be valuable to better

characterize this dynamic process, and to better estimate parameters.

A delayed emergence of a mutation indicating treatment resistance in ctDNA was observed
in both original studies on mCRC patients (after in median 22 weeks’ treatment) [13]
and NSCLC patients (after in median 10.5 months’ treatment) [14]. This phenomenon
was characterized by the Hill equations with tumor size as the independent variable (Eq.
3.4 and 3.5) in the current study, assuming a delayed shedding of ctDNA from the tumor
tissue. We also investigated a model where the delayed process was incorporated in the
mutation from one clonal population to another by applying transit compartments. This

model could also capture the delayed emergence of mutation in ctDNA.

The designs of intermittent and adaptive regimens aim to prolong the duration of
suppressing treatment resistance since they considered intra-tumor heterogeneity and
evolving adaptation of tumor to treatment. In addition, the evaluated adaptive schedules
also enabled the personalized design of therapy since the switch of drug was guided by
individual ctDNA measurements. Here we focused explicitly on the use of ctDNA and
therefore the change in tumor size was not considered as a criterion to switch therapy,
despite the fact that tumor size is a common marker in clinical practice for the efficacy of
anti-cancer treatment [11]. In the future, the help of tumor size could be further evaluated
when data regarding ctDNA and tumor size dynamics under adaptive therapy are available

to facilitate a better understanding of their relationship and refining the current model.

In the current study, the intermittent and adaptive regimens, with appropriate designs,
were shown to outperform the conventional continuous treatment by simulations (i.e.
median PFS was prolonged) (Figure 3.3). This is in line with the evolutionary principle of
control and the findings from clinical observations. For example, an adaptive intermittent
treatment of abiraterone based on prostate-specific antigen (PSA) levels was shown to result
in a better clinical outcome than the typical continuous treatment [19], although the study

design may need to be refined [35]. Another recent retrospective analysis demonstrated
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that intermittent use of enzalutamide in metastatic castration-resistant prostate cancer
patients prolonged the time to PSA failure and improved overall survival [20]. Traditional
approaches to cancer therapy have not exploited these theoretical advantages. For example,
current protocols typically apply a treatment agent or agents at the maximum tolerated

dose (MTD) until there is unequivocal clinical evidence of progression [21].

The intermittent therapy has also been investigated in several clinical studies. In contrast to
our simulation results and the clinical observations, these studies did not show improved
outcomes in patients undergoing intermittent therapy [22-27]. One study on BRAF and
MET inhibitors in melanoma patients even showed an inferior result under the intermit-
tent therapy compared to continuous therapy [22]. The underlined mechanism remains
unclear. Nevertheless, in these cases, the developed mathematical model may be helpful
for understanding these conflicting results. Further identification of optimal designs
based on different resistance mechanisms and dynamics of cancers can be supported by
the model-based approach. For example, a previous in silico study showed that an inter-
mittent abiraterone followed by a lead-in period was not beneficial for prostate cancer
patients, and the adaptive intermittent treatment guided by PSA was demonstrated to
be the best option [19]. Moreover, the simulation results derived from the current study
suggest that although introducing a treatment holiday may improve the treatment outcome,
the length of the treatment holiday still needs to be controlled. Extending the treatment
holiday mostly resulted in inferior results, especially when the holiday was longer than the
treatment period. This is in accordance with a previous finding that chemotherapy with
shorter intervals (dose-dense therapy) resulted in better treatment outcome even though

the total dose amounts were the same [36].

When evaluating the adaptive treatment, a second hypothetical treatment (D,) targeting
T,, was introduced. An example of this idea can be seen from the treatments of NSCLC
patients. For NSCLC patients, acquisition of T790M mutation is the main mechanism of
acquired resistance upon treatment of erlotinib/gefitinib, and osimertinib can be selected
for T790M-positive patients [37]. Lately, the Food and Drug Administration (FDA) also
granted accelerated approval to the first KRAS-blocking drug [38]. This indicates potential
feasibility of the here suggested adaptive treatment design. Due to the use of D,, a hypo-
thetical newly acquired mutation (M ..
(KRAS mutation), M_ .. only became detectable after disease progression in the current

study. This brings on a question about the predictive value of mutations in ctDNA. Most

) was also considered in the model. Unlike M

likely the dynamics of the sensitive clones are also very important to predict emerging
resistance at an earlier phase. However, to answer this question, more data is required to

support the understanding of the dynamics of the hypothetical mutation.
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With the sensitivity analysis, we showed that the choice of parameter values can affect the
simulated curves. The predicted tumor sizes were mainly sensitive to the parameters k , and
k,,, using the developed model, and the predicted mutation concentrations were mainly

sensitive to the parametersk , k,

Hand KT, (Figure 3.6). This suggests that an accurate
estimation of these parameters is of importance for this model. However, the intermittent
and adaptive treatment still provided better treatment outcome when parameter values
varied, indicating that the value of the parameters didn’t affect the conclusion that the
intermittent and adaptive regimens with a certain design outperform the conventional

continuous treatment.

To apply the novel treatment strategy, there are still some challenges. Firstly, for patients
who had detectable KRAS mutation pre-treatment, the intermittent treatment provided
similar treatment outcome compared to continuous treatment (Supplementary Figure
$3.9). Therefore, for these patients, a better option will be to choose another treatment
from start. In fact, in clinical practice panitumumab is contraindicated for patients with
KRAS mutation. Secondly, to be able to monitor the development of resistance with
ctDNA, the mutations that are associated with the resistance to a target treatment need
to be acknowledged beforehand. If multiple mutations have been reported, a selection
may be required based on the capability of the applied quantification technique, such as
the selection of gene panel in the assay and the number of mutations that can be detected
simultaneously. Thirdly, as can be seen from the previous study, only 9 out of 25 patients
developed detectable KRAS mutations and the median disease progression time of the 9
patients was the same as for the remaining 16 patients (23 weeks). It was also noticed when
the individual results were compared, 4 out of 100 virtual patients were predicted to have
Additionally,
despite that adaptive regimens provided longer median PFS than intermittent regimens,

longer PFS under a continuous schedule than under regimen S

interm(8on_4off)*

31 out of 100 patients had longer PFS under regimen S

interm(8on_4off)

than under regimen
These results indicate that ctDNA guided treatment may not be feasible for

Sadapt(SflOfFrequ)'
all patients and variability between individuals can affect the choice of regimen.

Our study has some limitations. First of all, the amount of data we obtained limited the
ability to adequately estimate all parameters of the developed model. We were also not able
to fully consider pre-treatment tumor heterogeneity and incorporate the eco-evolutionary
dynamics in the model. Additionally, due to the lack of drug exposure records, dose- or
exposure-response relationship was not incorporated in the model and was not investigated
in this study. However, for panitumumab, it has been shown that with standard treatment
regimens, even the trough concentrations are maintained above the 90% saturation levels,

meaning almost maximum effect in all patients [39]. However, for other molecules such
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as tyrosine kinase inhibitors (TKIs), drug levels are also important to be included in the
analysis. In these cases, drug exposure measurements can be helpful for the understanding
of exposure-response relationship under the evaluated regimens. Secondly, alternative
mutations that are related to anti-EGFR treatment resistance in addition to the reported
mutant genes were not considered in this study. However, KRAS mutation and EGFR
mutation were the most commonly reported gene mutations that are associated with resist-
ance to anti-EGFR treatment in mCRC and NSCLC patients respectively [18]. Therefore,
we mainly considered the most representative mutations. Thirdly, the idea of individual
intermittent treatment could be further investigated. Because of the above limitations, an
external dataset is needed to validate the results and a clinical pilot study is required to

confirm the added value of the suggested schedules.

In conclusion, a mathematical model incorporating evolving cancer resistance was
developed to characterize tumor size dynamics and resistance development under
treatment. The model well captured the clinical data from colorectal cancer patients as
well as from NSCLC patients. Compared with a conventional continuous anti-cancer
treatment schedule, intermittent and adaptive schedules were predicted to better suppress
the evolving cancer resistance and suggested a potential improvement in clinical outcome.
However, a prospective study is required to validate the results and to confirm the added

value of the suggested approach.

4. Methods

4.1 Dataset

A dataset containing longitudinal tumor burden measurements and mutant KRAS levels in
ctDNA was identified from a published study where patients diagnosed with mCRC were
treated with the anti-EGFR inhibitor panitumumab [13]. Patient demographic information,
time-courses of tumor burden that was reported as the aggregate cross-sectional diameter of
all index lesions (mm?), and the time-courses of mutant KRAS concentrations (fragments/
ml) of 28 patients were collected from the supplementary tables of the paper [13]. When
corresponding time of a data point was not shown in the table, the time information was
digitized from the corresponding supplementary figures using WebplotDigitizer (https://
apps.automeris.io/wpd/).

All data in this study were collected from publicly available materials (i.e. supplementary
material or figures) in literature from which the studies were approved by corresponding

ethical committees and all informed consents were obtained. Therefore, for this study, no
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additional ethical approval or written informed consent was required. All procedures in

this study were performed in accordance with relevant guidelines.

4.2 Model structure
A mathematical model was developed to describe the obtained time-courses of tumor
burden and mutant KRAS concentrations under anti-EGFR therapy. The model structure

is shown in Figure 3.2.
Six assumptions were made when developing the model structure:

1. The growth of the tumor was assumed to follow an exponential growth pattern
[40, 41].

2. Tumor tissue was assumed to consist of multiple clonal sub populations which

are defined as sets of cancer cells that share a common genotype [5]. One clonal
population (T)) was defined to be sensitive to the anti-EGFR inhibitor panitu-
mumab (D,). Another clonal population (T),) harbored KRAS mutation (M, ., )
and was consequently resistant to D,. This is based on previous evidence where
patients harboring RAS variant in pre-treatment ctDNA did not benefit from
EGFR blockade [13, 42]. The emergence of KRAS mutation was also suggested
to be a mediator of acquired resistance to EGFR blockade [13, 42].
For patients who were initially identified as KRAS wild-type in ctDNA (WT-KRAS
patients), T, was assumed to form the whole tumor at the start of treatment. While
for patients who had detectable mutant KRAS in ctDNA pre-treatment (M-KRAS
patients), tumor tissue was assumed to consist of both T, and T,, at the start of
treatment. In addition, given that the resistant clonal population may have fitness
cost [43], the proliferation rate of resistant clones was assumed to be lower than
that of the sensitive clones [44].

3. A KRAS mutation could be acquired during the treatment of D,, as WT-KRAS
patients could develop detectable mutations [13].

4. A hypothetical treatment next to panitumumab (D,) was incorporated in the
current study and assumed to target KRAS-mutated colorectal cancer and
thereby inhibiting the growth of T, . In the meantime, a second mutation
M,

(T,,) that was resistant to D,. The mutation rate was assumed to be the same as

onay) Was able to be acquired which resulted in a third clonal population

that of the acquiring KRAS mutation clonal population.
5. During treatment interruption, a back transfer process from the drug resistant

clonal population to drug sensitive clonal population was assumed to be present
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and was incorporated in the model with a rate lower than the mutation rate. This
assumption was supported by a previous in vitro study in colorectal cancer (CRC)
cells [9], which showed that CRC cells that acquired resistance to cetuximab
with amplification of KRAS gene regained partial sensitivity to cetuximab when
cultured in the absence of the drug [9]. This process could also be understood
as the competition between drug susceptible and resistant cells in the absence
of the drug. When the pressure of the drug was gone, the susceptible cells have
the benefit to grow back again at the expense of resistant cells in the tumor.

6. ctDNA which carries the target mutations was shed from resistant clonal popu-

lations and the shedding rate depends on the corresponding tumor tissue size.

In order to be able to capture the following features observed from clinical studies, two

features were incorporated in the model structure:

1. The mutant KRAS concentration became detectable after 5-34 weeks’ (median
22 weeks) treatment for WT-KRAS patients who developed detectable mutant
KRAS [13]. Therefore, the Hill equations (Eq. 3.4 and 3.5) were applied to
describe this delayed emergence (or ability to detect) of M . and M_ . .

2. Mutant KRAS levels in ctDNA increased when challenged with D, and declined
upon the withdrawal of treatment [9]. The elimination half-life of resistance
mutations is approximately 4 months [34, 42]. Therefore, in addition to the
back transfer process, a first-order ctDNA elimination was incorporated. The
half-life of a typical patient was confirmed to be 4.15 months with the given

parameter values.

The ordinary differential equations of the model were as follows:

ik 3.

EZkgllTs_ksl'Dl'Ts_le'D1'T5+kMZ'(1_D1)'TR1

4T 3.2

a kyy Dy Ts+kgy Tpy — kg Dy Tpy —kyz " (1 =D ) Try —kyz Dy " Tpy + kg " (1 = D3) - Tpy

dTp,

dt = kM3 "Dy Try + kg3 "Try —kya" (1= D3) - Tpy (3.3)

ky = Koy 1" Tra"'/ (Tra® + KTs0") 3.4)

ky = kmax 2 * Tra"/ (Tre" + KTso™) (3.5)

dMpnas 3.6
Cd—t =k Try — ke Mctpnar (3.6)

dMcpnaz 3.7
Cd—t =kyTrz — ke - Mcepnaz (3.7)

TS =Tg+ Ty + Ty (3.8)
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TS represents the total tumor size as detected by CT scan. k ;, k ,, and k , represent the net
growth rate constants of three clonal populations. k  and k , represent the tumor shrinkage
rate due to treatments. Drug exposure variability was not considered in this study but only
the presence (D, = 1) or absence (D, = 0) of a drug were considered (n = 1 and 2 represent
panitumumab and the hypothetical treatment, respectively). k,, and k,, represent the
mutation rate constants governing the transfer from the drug susceptible clonal population
to the drug resistant clonal population during D, and D, treatment, respectively. k, , and
k,, represent the mutation rate constants from drug resistant clonal population to drug
susceptible clonal population upon the withdrawal of treatments. k, and k, represent the
shedding rate constants of ctDNA which carries mutations. Hill equations (Eq. 3.4 and
3.5) was applied to capture the concentration change of M k and k,_, are max

ctDNA® ““max _1
releasing rates, KT, is the tumor size that provide half-maximal releasing rate, H is the

Hill coefficient. k, represent the elimination rate constant of ctDNA.

When performing simulations, the baseline levels of TS (Eq. 3.8) and M, ., were set to
the median of the real observations in different patient groups (Supplementary Table
$3.1). For WT-KRAS patients, the baseline T, (TRLO) and T, (TRZ*O) were both set to 0.
For M-KRAS patients, T, j were set to 0 while T, ; was set according to the median of

observations.

4.3 Parameter values

The values of all model parameters used in the simulation are shown in Table 3.1.

To assist the setting of parameter values, the parameters describing tumor dynamics under
D, therapy (k, and k,, ) were estimated by fitting the collected tumor sizes data using the
first order conditional estimation method with interaction (FOCEI) implemented in the
NONMEM software, version 7.4.1 (ICON Development Solutions). The detailed method

on parameter estimates can be found from the Supplementary methods.

The estimated typical values of k, and k,, were adopted to simulations. Assuming the
tumor growth follows an exponential growth pattern, k , was fixed as 0.03/week (= In2/
(6.8 months - 4 weeks/month)) according to a previously reported median placebo tumor
doubling time of colorectal carcinomas, i.e. 6.8 months (range: 3-24 months) [40]. Accord-
ingly, k , was fixed as 0.021 /week (0.03-70%). k,,, was set to be lower than k, | based on the
5" assumption. The parameters that are related to the emergence of mutations (H, KT,
and k) were set by visually matching the slope of mutant KRAS time-courses and the
detectable time of mutant KRAS.
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Random IIV was incorporated on k and baselines, which was assumed to be log-normally
distributed, when performing the simulations (Table 3.1). It was due to the fact that patients
in the dataset had different baseline tumor burden and mutant KRAS levels, and different
growth rates of CRC were reported in different studies [13, 40]. If data from more patients
can be included, the IIV on parameters will be able to be added to more parameters and

be estimated.

4.4 Model evaluation

To evaluate the suitability of the model, five hundred times of simulations were performed
for TSand M, concentrations under continuous drug exposure. The 50™ percentiles and
the corresponding 95% Cls of simulations derived from the model were plotted along with
the real observation points and the 50" percentiles of observations. In addition, assuming
D, was administered continuously for 20 weeks (leading to a continuous drug exposure)

and then stopped for 20 weeks, the time-course of M concentrations were simulated

ctDNA1
for 100 virtual patients to demonstrate if the decay upon the withdrawal of treatment could

be captured by this model.

The performance of the model was also evaluated using another dataset from a study on
NSCLC patients receiving EGFR inhibitors (icotinib/gefitinib) with the same method as
above [14]. The time curves of tumor size which was reported as the longest diameter
(mm) and that of EGFR mutation (L858R, exon 19 deletion, and T790M) concentrations
(mutation copies/ml plasma) detected from ctDNA were digitized from published figures
using WebplotDigitizer (https://apps.automeris.io/wpd/). The model used in the evaluation
cohort was adjusted according to the findings of the study. More detailed introduction of

the model and parameter values is shown in Supplementary methods.

4.5 Treatment schedule evaluation
Treatment schedules that were considered in the current study are shown in Table 3.2.
These schedules were evaluated on WT-KRAS patients.

A continuous schedule with D, was first considered. The continuous schedule is the conven-
tional treatment strategy in clinical practice where a therapy is administered continuously
until disease progression (i.e. in schedules leading to continuous drug exposure) [19].
Monitoring frequency, i.e. the frequency of taking blood samples for ctDNA analysis and
assessing tumor sizes, was set as once every 4 weeks according to the frequency of the
obtained data.
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To identify an optimized anti-cancer treatment schedule that suppresses the develop-
ment of treatment resistance, intermittent schedules with D and adaptive schedules with
D, and D, guided by ctDNA measurements, as proposed in previous studies (2, 8, 19,
21], were considered. For the intermittent schedules, drug-exposure interruption was
introduced and multiple combinations of on- and off-dosing durations were evaluated.
For the adaptive schedules, the ctDNA measurements were monitored and applied as a
biomarker to determine the time point of switching treatment between D, and D,. The
treatment started with D, and continued till the ctDNA measurements increased to an
upper limit for drug adjustment. Then D, was suspended and switched to a continuous
D,. When the mutation concentration decreased back to a lower limit for drug adjust-
ment, the treatment was switched back to D, and the loop continued. In this case, multiple
monitoring frequencies of ctDNA and multiple threshold of mutation concentrations for
treatment switching were explored for comparison. The frequency of assessing tumor sizes

was set as once every 4 weeks.

Simulations were performed with the package RxODE (version 1.0.8) implemented in R
(version 4.0.2). One hundred virtual patients were simulated under each regimen. PFS
of each virtual patient under each schedule was derived from the simulated total tumor
size at every monitoring time point. PFS was defined based on WHO criteria (i.e. 25%
increase in TS) as was applied in the original study [13, 45]. The T, was also estimated
to compare the effect of different regimens. In addition, T

mutant_test

was estimated assuming
a lower limit of quantification for target mutant genes in ctDNA of 5 fragments/ml which
was set based on the observed data. This aimed to determine if detectable mutation in

ctDNA can be a predictor of disease progression.

4.6 Sensitivity analysis

A sensitivity analysis was performed to evaluate the impact of all parameter values on
the model predictions. Every parameter was set as 50% or 150% of the original typical
values one at a time. The continuous schedule, one intermittent schedule S, . - . and

one adaptive schedule S were simulated. IV was not incorporated here. The

adapt(5_10_Freq12)
sensitivity to the parameters was assessed by comparing the newly simulated time-courses of
total tumor size and mutation concentrations together with the original simulation results.

Medijan PFSand T derived from each simulation were also estimated for comparison.

mutant_test
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Supplementary Methods

Parameter estimate

To assist the setting of parameter values, the values of parameter describing tumor dynamics
under anti-EGFR inhibitor (D,) therapy were estimated by fitting the collected tumor sizes
data [1] using the first order conditional estimation method with interaction (FOCEI)
implemented in NONMEM software, version 7.4.1 (ICON Development Solutions).

A non-linear mixed-effect model was developed. Parameters were assumed to be log-
normally distributed and were expressed using Eq. S3.1. P, represents the parameter of
ith individual, P _represents typical value of the parameter, and 7, represents the random
inter-individual variability (IIV) which was normally distributed with mean of 0 and
variance of w? The residual error was characterized with a proportional error model as
is shown in Eq. S3.2, where Obs represents observations, IPRED represents individual
predictions, and ¢, represents the proportional residual error which was assumed to be
normally distributed with mean of 0 and variance of o,°.

P=pP -e" Eq.S3.1

Obs =IPRED - (1 +¢)) Eq.S3.2

Assuming the tumor growth follows an exponential growth pattern, k , was fixed as 0.03/
week (= In2/(6.8 months - 4 weeks/month)) according to a previously reported median
placebo tumor doubling time colorectal carcinomas, i.e. 6.8 months (range: 3-24 months)
[2]. k_, as was assumed, was fixed as 0.021 /week (0.03-70%). The baseline levels of TS

2

and mutant KRAS (M

ctDNA1

WT-KRAS patients, the baseline of T, were set to 0. For M-KRAS patients, the baseline

of T, was estimated and the baseline of T, equals the difference between the observed

) were fixed according to real observations of each patient. For

baseline and estimated baseline T,,.

Model in an evaluation cohort

The model used in the evaluation cohort was adjusted according to the findings of the study:

1. The detectable EGFR L858R mutation or exon 19 deletion in ctDNA at the start
of treatment indicates the tumor is sensitive to anti-EGFR inhibitor. Therefore,
the sensitive clonal population (T)) was assumed to carry one of these two

mutations (MCtDNAl )
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2. L858R mutation or exon 19 deletion became undetectable when EGFR inhibitor
(D,) started and raised back again together with the newly developed EGFR
T790M mutation (M,
of treatment resistance. Therefore the acquired resistant clonal population under
D, (T,,) was assumed to carry both M and M

ctDNA1 ctDNA2’

\onay) during treatment [3], which indicates the emergence

3. A hypothetical treatment next to anti-EGFR inhibitor (D,) was incorporated
and assumed to target T790M positive NSCLC cancer (T,,). In the meantime, a
third mutation (M

onas) Was able to be acquired which resulted in a third clonal

population (T,,) that were resistant to D,.

More details of the model and the parameters are shown in Supplementary Figure S3.1

and Supplementary Table S3.6.

The values of parameters regarding tumor dynamics were estimated using the collected
time curves of tumor sizes as described above. The residual error was characterized with
an additive error model as is shown in Eq. S3.3, where Obs represents observations, IPRED
represents individual predictions, and ¢, represents the additive residual error which was
assumed to be normally distributed with mean of 0 and variance of 0,”. The parameter

estimate results can be found in Supplementary Table S3.7.

Obs = IPRED + ¢, Eq.S3.3
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Treatment schedule optimization considering evolving resistance

Figure $S3.1: The model structure that characterize the dynamics of tumor size and mutation concentra-
tions in ctDNA from NSCLC patients. T, T, , and T,, represent the sizes of the three tumor clonal populations,
respectively. kg1, kgz, kg3 represent the net growth rates of three clonal populations. k , and k, represent the
tumor decay rate due to treatments. k,,, and k, . represent the mutation rate constant from drug susceptible
clonal population to drug resistant clonal population during the course of anti-EGFR inhibitor (D,) and the
hypothetical treatment (D,), respectively. k,, and k,,, represent the transition rate constant from drug resis-
tant clonal population to drug susceptible clonal population upon the withdrawal of treatments. k,, k,, k,,
and k, represent the shedding rate constant of ctDNA which carries mutations.
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Figure S3.2: Model evaluation results on the time-courses of tumor diameters (a) and EGFR mutation
concentrations including L858R mutation/ exon 19 deletion (b) and T790M mutation (c) collected from a
previous clinical study where patients with non-small cell lung cancer were treated with anti-EGFR inhibitor
icotinib/gefitinib.
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Figure $3.7: When fixing k,,, and k,,, to zero, the simulated time-curves of total tumor burden and each
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Estimated PFS (black dashed vertical line), T

line) are also shown in the figure.
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Supplementary Tables

Table S3.1: Characteristics of the dataset collected from patients with metastatic colorectal cancer

WT-KRAS patients M-KRAS patients

Number of patients 25 3

Gender (Male (%)) 15 (60%) 0 (0%)

Age (years) (median (range)) 59 (42-78) 56 (48-78)

TS, (mm?) (median (range)) 5649 (396-38006) 1714 (1312-1849)
Baseline mutant KRAS (fragments/ml) (median (range)) 0 411 (23-810)

PFS (week) (median (range)) 23 (7-52) 7(7-11)

Mutant KRAS detectable time (week) (median (range)) 22 (5-34)(N=9) 0

TS, baseline tumor size; PFS, progression-free survival; WT-KRAS patients, patients who were identified to
be initially KRAS wild-type; M-KRAS patients, patients who had detectable mutant KRAS pre-treatment.

Table S3.2: Parameter estimates of the tumor dynamics model based on the dataset collected from
patients with metastatic colorectal cancer

Parameters Estimate (RSE) IV (CV%) [shrinkage]
WT-KRAS patients -

Tso (mm?) TS, (fixed) -

Tm,o (mm?) 0 (fixed) -

M-KRAS patients

Ts,o (mm?) Tsoz;s - Tm,o,fst -
Ty o (Mm?) 1830 (17%) 0 (fixed)
kSﬂ (/week) 0.03 (fixed) 68.6% [14%)]
kg2 (/week) 0.7 - kg1 (fixed) -
k., (/week) 0.127 (5%) -
k,, (/week) 0.0459 (18%) -

Residual error -

Prop (CV%) 21.7% (11%)

TS,,s Observed total tumor size, T, ., estimated baseline of T, WT-KRAS patients, patients who were
identified to be initially KRAS wild-type; M-KRAS patients, patients who had detectable mutant KRAS pre-
treatment. RSE, relative standard error, CV, coefficient of variation, IlV, inter-individual variability, Prop,
proportional residual error. Relative standard errors (RSEs) of parameter estimates were all within an

acceptable range (< 30%).
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Table $3.3: Characteristics of the dataset collected form patients with non-small cell lung cancer (NSCLC)

Values
Number of patients 16
TS, (mm) (median (range)) 33.92 (16.97-87.96)
Baseline EGFR L858R mutation /exosome 19 deletion concentration 438.75 (42-9555.56)
(copies/ml) (median (range))
PFS (months) (median (range)) 12 (4-25)
EGFR T790M mutation detectable time (months) (median (range)) 10.5 (3-27.5)

TS,, baseline tumor size; PFS, progression-free survival.
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Table S3.4: The results of each evaluated schedule in patients who were identified to be initially KRAS

wild-type
Median PFS* MedianT Median T utant_test
(90% interval) (90% interval) (90% interval)
Schedules (weeks) (weeks) (weeks)
Continuous schedule (standard of care) 36 (32-44) 52 (36-72) 18 (8-52.6)

Intermittent schedules

D, was administered for N weeks and suspended for M weeks. Total treatment time was 180 weeks.

N (weeks) M (weeks)

4 4 48 (24-80) 56 (24-112.8) 28 (8-92.8)
4 8 12(12-72.6) 24 (12-96) 32(8-112.4)
8 4 44 (32-60) 60 (36-104.2) 20 (8-80)

8 8 38(16-64) 60 (32-113.2) 24 (8-93.2)
8 12 20 (16-20) 40 (20-116.4) 28 (8-108)
12 4 40 (32-56) 60 (36-92.2) 24 (8-68.4)
12 8 40 (20-60) 60 (36-112.2) 28 (8-88)

12 12 24 (20-49.0) 64 (24-116.2) 32(8-100.4)
12 16 24 (20-28) 52 (24-108.4) 32 (8-96)

Adaptive schedules with a hypothetical second treatment
D, was continuously given, and suspended and switched to D, when the ctDNA measurement increased
to higher than UP fragment/ml. Treatment switched back to D, when ctDNA measurement decreased
back to lower than LOW fragment/ml. Total treatment time was 180 weeks.

Low upP Monitoring

(fragment/ (fragment/ frequency of

ml) ml) ctDNA (weeks)

5 10 4 62 (36-118.4) 124 (45.2-170.8) 100 (36-169.2)
5 15 4 60 (32-116.4) 132 (45.8-176) 108 (36-172)

5 20 4 60 (32-112.4) 124 (46.8-180) 102 (36-168)

5 25 4 60 (32-112.4) 120 (44-172.4) 102 (36-168.2)
10 15 4 56 (32-124) 124 (47.2-172.8) 108 (42.4-172.8)
10 20 4 56 (32-108.4) 120 (47.8-172.2) 108 (44-176)
10 25 4 56 (32-108.8) 114 (44-172.2) 110 (44-175.8)
5 10 8 60 (32-112.4) 120 (44.8-163.2) 96 (40-163.2)

5 15 8 60 (32-104.8) 120 (44-169) 96 (40-170.4)

5 20 8 56 (32-100.4) 120 (44-168) 96 (40-168)

5 25 8 56 (32-104.4) 116 (44.8-168) 96 (40-168)

10 15 8 60 (32-104.4) 120 (44-168) 96 (45.61-70.4)
10 20 8 56 (32-108.4) 120 (44-164.4) 96 (45.6-168)
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Table S3.4: Continued

LOW UP Monitoring

(fragment/  (fragment/  frequency of

ml) ml) ctDNA (weeks)

10 25 8 56 (32-104.8) 118 (44.2-160) 104 (47.2-168)
5 10 12 64 (32-108) 128 (44-164) 96 (48-180)
5 15 12 60 (36-120) 124 (44-176) 102 (48-168)
5 20 12 60 (32-104.2) 120 (44-157.6) 108 (48-180)
5 25 12 60 (32-104) 120 (44-156) 108 (48-168)
10 15 12 62 (32-108.2) 124 (44-176) 102 (48-168)
10 20 12 60 (32-108) 120 (44-157.6) 108 (48-168)
10 25 12 60 (36-104.2) 120 (44-156) 108 (48-168)

*Disease progression was defined by WHO criteria.
D,,anti-EGFRinhibitor; D,, a hypothetical second treatment to which the newly acquired clone s susceptible;

PFS, Progression-free survival; T

mutant_test’

time until detectable mutation; T

TS<TSO’

had grown back to the baseline level; ctDNA, circulating tumor DNA.

the time until the tumor size
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Table $3.5: Predicted progression-free-survival and time until detectable mutation in the sensitivity analysis

Adaptive schedule
(ctDNA limits for drug

Intermittent schedule adjustment: 5 and 10
(8-week treatment and fragments/ml, monitor
Continuous schedule 4-week suspension) frequency 12 weeks)

PFS (weeks) (Relative change*)

Increase Decrease Increase Decrease Increase Decrease
Parameters 50% 50% 50% 50% 50% 50%
kSﬂ - - 36 (-8) 48 (+4) 96 (+32) -
k, 28 (-8) 52 (+16) 32(-12) 84 (+40) 56 (-8) 76 (+12)
kg3 - - - - 60 (-4) -
k., - - - 32(-12) 36 (-28) 60 (-4)
k, - - - - - 60 (-4)
L 32(-4) 44 (+8) 36 (-8) 60 (+16) 84 (+20) 44 (-20)
K, - - 48 (+4) 40 (-4) - 60 (-4)
kma' kM4 - - - - - -
k, - - - - - -
H - - - - - 96 (+32)
KT, - - - - 36 (-28) 84 (+20)
kmax 1 - - - - - -
kmax72 - - - - - -
Tmutant,test °f MctDNA1 (Weeks) Tmutant,test Of MdDNAZ (Weeks)
(Relative change*) (Relative change¥*)
Increase Decrease Increase Decrease Increase Decrease
Parameters 50% 50% 50% 50% 50% 50%
kEﬂ - 20 (+4) - 24 (+4) 120 (-48) 180 (+12)
kg2 - 20 (+4) - 28 (+8) 108 (-60) No result
kg3 - - - - 120 (-48) No result
k., 24 (+8) 12 (-4) 32 (+12) 16 (-4) No result 72 (-96)
k, - - - - No result 108 (-60)
L 12 (-4) 32(+16) 16 (-4) 44 (+24) 144 (-24) No result
Ky - - - - - 132(-36)
Kys - - - - 120 (-48) No result
Kya - - - - No result 132 (-36)
k, - - - - - 132(-36)
H 20 (+4) 12 (-4) 28 (+8) 16 (-4) - 120 (-48)
KT, 28 (+12) 8(-8) 32 (+12) 8(-12) 180 (+12) 96 (-72)
- 20 (+4) - 24 (+4) - 180 (+12)

max_1

- - - - 132 (-36) -

max_2

PFS, Progression-free survival; T ent e time when mutation concentration became detectable; M.,
KRAS mutation; M__ .., the second hypothesis mutation; -, result same as that under the original parameter
setting; No result, the mutant gene concentrations did not reach the detectable limit (5 fragments/ml) by
the end of simulation time (180 week).

*With original parameters, the predicted PFS were 36, 44, and 64 weeks under continuous, intermittent,

and adaptive schedule, respectively, and the predicted T were 16, 20, and 168 weeks, respectively.

mutant_test
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Table $3.6: Parameters values of the developed model characterizing the dynamics of tumor size and
mutation concentrations in NSCLC patients

Parameters Description Typical  Ref.
values
T ,(mm) Baseline of T, 35 Data
- ) Mutation was
T . (mm Baseline of T 0
o (M) R1 assumed to be

TRZ_O (mm) Baseline of T, 0 acquired during

MdDNAU (copies/ml)  Baseline of EGFR L858R mutation or exon 19 450 treatment
deletion (M__, )

M“DNAU (copies/ml)  Baseline of EGFRT790M mutation M o) 0

MctDNAB_O (copies/ml)  Baseline of a third hypothetical mutation (M_, .) 0

kg] (/month) Growth rate constant of T, 0.07 Estimated

kg2 (/month) Growth rate constant of T, 0.049

k 5 (/month) Growth rate constantof T, 0.035

k., (/month) Tumor shrinkage rate constant due to D, (anti- 0.8 Estimated
EGFR inhibitor)

k., (/month) Tumor shrinkage rate constant due to D, (the 0.8 k.,
second hypothetical treatment)

k., (/month) Mutation rate from T to T,, when D, =1 0.6 Estimated

k,,, (/month) Mutation rate from T, to T, when D, =0 04 Lower than k,,

k. (/month) Mutation rate from T, to T,, when D, = 1 0.6 Ky

k,, (/month) Mutation rate from T, to T, when D, =0 04 k.,

H Hills coefficient 5 Visually

KT, (mm) The size of tumor that provide half-maximal 30 Tatcm??;QSM
shedding rate of ctDNA slope ? ;

mutation time-

K .y 1 (copies /ml/ Maximum shedding rate of M_ .. 120 courses

(month*mm))

k.o » (cOpies /ml/ Maximum shedding rate of M ., 50

(month*mm))

k.o ; (cOpies /ml/ Maximum shedding rate of M ., 50

(month*mm))

k, (/month) ctDNA eliminate rate constant 2

IIV_B (w,) Standard deviation of IV of baselines 0.6

IIV_kg (w,) Standard deviation of IV of kg 0.2

ctDNA, circulating tumor DNA; 11V, inter-individual variability.
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Table S3.7: Parameter estimates of the tumor dynamics model based on the dataset collected form

patients with NSCLC

Parameters Estimate (RSE%) IV (CV%) [shrinkagel]
T (mm) TSo_obs (fixed)

Tm,o (mm) 0 (fixed)

k,, (/month) 0.0675 (45%) 105.4% [6%]

kg2 (/month) 0.7 - kg1 (fixed) -

k,, (/month) 0.835 (23%) 74% [3%]

k,, (/month) 0.553 (28%) -

Residual error -

Add (mm) 2.67 (34%)

RSE, relative standard error; CV, coefficient of variation; IV, inter-individual variability; Add, additive residual

error.
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Abstract

Insight into the development of treatment resistance can support the optimization
of anti-cancer treatments. This study aims to characterize the tumor dynamics and
development of drug resistance in non-small cell lung cancer (NSCLC) patients
treated with erlotinib, and investigate the relationship between baseline circulating
tumor DNA (ctDNA) data and tumor dynamics. Data obtained for the analysis
included 1) intensively sampled erlotinib concentrations from 29 patients from two
previous pharmacokinetic (PK) studies, and 2) tumor sizes, ctDNA measurements,
and sparsely sampled erlotinib concentrations from 18 patients from the START-TKI
study. A two-compartment population PK model was first developed which well
described the PK data. The PK model was subsequently applied to investigate the
exposure-tumor dynamics relationship. To characterize the tumor dynamics, models
accounting for intra-tumor heterogeneity and acquired resistance with or without
primary resistance were investigated. Eventually, the model assumed acquired
resistance only resulted in an adequate fit. Additionally, models with or without
exposure-dependent treatment effect were explored, and no significant exposure-
response relationship for erlotinib was identified within the observed exposure range.
Subsequently, the correlation of baseline ctDNA data on EGFR and TP53 variants
with tumor dynamics parameters was explored. The analysis indicated that higher
baseline plasma EGFR mutation levels correlated with increased tumor growth rates,
and the inclusion of ctDNA measurements improved model fit. This result suggests
that quantitative ctDNA measurements at baseline have the potential to be a predictor
of anti-cancer treatment response. The developed model can potentially be applied

to design optimal treatment regimens that better overcome resistance.

Keywords: oncology, quantitative modeling, intra-tumor heterogeneity, tumor
dynamics, resistance development, non-small cell lung cancer, circulating tumor
DNA



Tumor dynamics and resistance development in NSCLC patients

1. Introduction

The occurrence of anticancer treatment resistance due to intra-tumor heterogeneity and
evolving adaptation of tumor cells to the treatment can limit the long-lasting efficacy of
targeted anticancer treatment [1, 2]. In order to improve the anti-cancer treatment outcome,
it is important to have detailed insight into the tumor progression during treatment since

it enables designing of alternative treatment strategies.

In patients with non-small cell lung cancer (NSCLC), erlotinib, a tyrosine kinase inhibitor
(TKI), is one of the effective treatment options especially for patients with EGFR exon 19
deletions or exon 21 mutations [3-5]. However, the occurrence of acquired drug resistance,
which is most frequently due to the acquisition of the EGFR p.T790M mutation, and the
possible presence of drug-resistant component pre-treatment (primary resistance) can
limit its efficacy and result in relapse [3-6]. Thus, understanding the evolving progression
of NSCLC during the treatment and identifying predictive biomarkers would be beneficial
to optimize the treatment of NSCLC.

Pharmacometric modeling allows quantitative characterization and prediction of pharma-
cokinetic (PK) - pharmacodynamic (PD) profiles of drugs and thus facilitates treatment
design [7-9]. With the help of a model-based approach, studies on evolving tumor progres-
sion can be conducted based on available data on tumor sizes and genetic biomarkers, and
optimal treatment designs can be evaluated. Our previous study has proven such a concept
based on data from metastatic colorectal cancer patients as well as from NSCLC patients
[10]. Further incorporating the exposure of therapeutic agents in the model can support
the investigation and understanding of exposure-tumor inhibition relationship and the

evolutionary tumor dynamics in relation to drug exposure during anti-cancer treatment.

Circulating tumor DNA (ctDNA), which are DNA fragments in the circulation (circulating
free DNA (cfDNA)) that are of tumor origin, is a clinically available and emerging genetic
biomarker [11]. It has shown to be able to provide detailed insight into the molecular
alterations and evolving progression of tumor under treatment [4, 5, 11]. In patients with
NSCLC, numerous studies have shown that a decrease in mutant gene levels in ctDNA
correlates to the therapeutic response of TKIs [5]. In another model-based study, the relative
change of concentrations of driver mutation in ctDNA from the estimated baseline was
shown to be predictive to disease progression of NSCLC patients [12]. Further research
on the correlation between ctDNA measurements and tumor size dynamics would be
beneficial to understanding the evolutionary development of treatment resistance and
the value of ctDNA.
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In the current study, we aimed to develop a model to understand and characterize tumor
dynamics and the development of drug resistance in NSCLC patients treated with erlotinib.
First, a population PK model of erlotinib was developed and thereafter applied to inves-
tigate the exposure-tumor inhibition relationship of erlotinib. Tumor dynamics models
accounting for tumor heterogeneity, with or without a pre-existing resistance component,
and drug exposure-dependent treatment effects, were evaluated. Subsequently, we aimed
to explore the correlation of the extent of somatic driver mutation in ctDNA at baseline

with the tumor dynamics in NSCLC patients.

2. Method

2.1 Patients and data

2.1.1 Intensively sampled PK data

The study included intensively sampled erlotinib concentration-time curves from two
previous PK studies in patients with NSCLC who were treated with erlotinib for an
activating EGFR mutation [13, 14]. Erlotinib was administrated orally once daily with a
dosage of 50-150 mg. PK samples were collected before drug intake and at 0.5, 1, 1.5, 2,
25,3, 3.5, 4, 6, 8, 12, and 24 hours after drug administration at steady state. The studies
were performed at the Erasmus MC Cancer Institute in Rotterdam, the Netherlands, and
the details of the studies’ design can be found in previous publications [13, 14]. For the
current study, only the data in the control arms that were sampled after receiving erlotinib
with water and without concomitant esomeprazole were included, which aimed to be

consistent with real world patients.

Patients’ demographic information, including age, sex, weight, height, and additional
laboratory test results, including creatinine, estimated glomerular filtration rate (eGFR),
albumin, total bilirubin, aspartate aminotransferase (AST), alanine aminotransferase (ALT),

and alkaline phosphatase (ALP) were collected for covariate analysis.

2.1.2 PK-PD data

Longitudinal measured tumor sizes under standard clinical care conditions as well as
sparsely sampled intended trough erlotinib concentrations from real-world NSCLC
patients who participated in the START-TKI study (NCT05221372), which is a prospective,
observational multicenter study [6], were also included in this analysis. Erlotinib was

administrated orally once daily with a dosage of 75-150 mg. The tumor size measurements,
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i.e. the sum of the longest diameters (SLD, mm) of target lesions, were assessed by Response
Evaluation Criteria In Solid Tumors (RECIST version 1.1 [15]). Additional data of dosing
information, ctDNA data on variant allele frequency (VAF) of mutant genes over time, and
concentrations of cfDNA over time from these patients were also collected. The detailed
methods of cfDNA isolation and next-generation sequencing process have earlier been
described [6]. Patients demographic information and lab test results as above mentioned

were also collected for potential covariate analysis.

The studies from which the data were obtained were previously approved by local ethics
committee and were registered in the Dutch Trial Registry. Written informed consent
was obtained from all patients prior to these studies, including the use of data for further
studies. For the current study, the data were shared anonymously and all procedures were
performed in accordance with relevant guidelines and the Declaration of Helsinki, so no

additional informed consent had to be obtained.

2.2 Population PK model
Based on the collected PK data, a population PK model was developed to characterize
the erlotinib PK profiles of included patients. The intensively sampled PK data and the
sparsely sampled PK data from patients involved in the START-TKI study were combined
for the model development.

One- and two-compartment models with first-order absorption, with or without lag time,
and first-order elimination were explored as the structural model. A combined propor-
tional and additive model was applied to characterize the residual error. Parameters were
assumed to be log-normally distributed. To account for the inter-individual variability
(IIV) in bioavailability (F) which is shared by the estimated apparent PK parameters,
the IIV on F was estimated while the typical value of F was fixed to 1. The structural
model was selected based on biological plausibility and the objective function value
(OFV).

Patients’ demographic information and lab test results were then investigated as covari-
ates using the stepwise covariate modeling (SCM) function of Perl-speaks NONMEM
(version 4.9). The effect of all covariates on erlotinib clearance and that of weight, height,
and albumin on apparent distribution volume of the central compartment were investi-
gated. The relationship between F and dose level was not explored since the majority of
patients received the same dose level. Model selection was based on the reduction in OFV
(a likelihood ratio test) assuming a x* distribution, a reduction in IIV, and physiological

plausibility. The p values were set as 0.05 and 0.01 for the forward selection and backward
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elimination process, respectively. A more detailed description of the covariates analysis

can be found in Supplementary Material S4.1.

The final model was evaluated with goodness-of-fit (GOF) plots, visual predictive checks
(VPC) based on 1000 simulations, and bootstrap with 1000 resampled datasets. In addition,
the percentage where the predicted area under the curve (AUC) falls within 80-120% of
the corresponding observed AUC (estimated with trapezoidal rules method) was calculated
for the full concentration-time curves to evaluate the model. The percentage where the
predicted trough concentrations fall within 80-120% of the corresponding observations
was also estimated for the data from the START-TKI study.

2.3 Tumor dynamics model

The dynamics of tumor sizes during erlotinib treatment, which was represented by sum
of longest diameters (SLD, mm) of target lesions, was characterized accounting for tumor
heterogeneity. Tumor tissue was assumed to consist of a sensitive clonal population (T))
and a resistant clonal population (T,). Models considering 1) only acquired resistance
and no primary resistance (i.e. baseline T, (T} ) = 0), and 2) both primary and acquired
resistance (i.e. T, , # 0 and was estimated), with or without a drug exposure-dependent
decay, were exploged. Considering the amount of the available data, the baseline tumor sizes
were fixed to the observed values to ensure the stability of the model. The model structure
is shown in Figure 4.1 and Eqs. 4.1-4.4, where k_ represents the growth rates of T and
T, k, represents mutation rate, and k, represents tumor decay rate due to treatment. For
the models exploring the exposure-dependent treatment effect, the tumor decay rate was
assumed to depend on drug exposure and a simple linear relationship was assumed (Eq.
4.2). A non-linear relationship with Emax model was also explored. The drug exposure
was defined as the trough concentration, which is the exposure metrics of interest for
erlotinib exposure-response analysis and is relatively easy to measure in clinical practice.
The trough concentrations were predicted by the individual PK parameters obtained from
the PK model. The IIV of parameters were evaluated and parameters were assumed to be

log-normally distributed. The combined proportional and additive model was applied to

FOENO

I

Figure 4.1: Graphical structure of the tumor dynamics model.
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characterize the residual error. The model fit was evaluated by OFV and Akaike information
criterion (AIC). The best fitted model was evaluated with GOF plots and VPC considering
the censoring of data due to progression defined by RECIST version 1.1 [15].

%zkg'TS_kd'TS_km'TS Eq.4.1
o=k, Beposurer” for the modelwith xposare - dependent docay  £**7
%zkm'Ts+kg'TR Eq.4.3
TS =Ts+ Ty Eq.4.4

2.4 Genetic biomarkers and tumor dynamics

The correlation of baseline ct DNA measurements, including EGFR mutation levels and the
presence of TP53 mutations, with tumor dynamics parameters (k,, k, ,and k ) were explored
graphically. Patients were separated into groups based on 1) whether their baseline mutant
EGEFR VAF was < or > the median value, or the measurements were unavailable, or 2)
whether patients had a TP53 mutation at baseline or not, or the results were unavailable. The
correlation between baseline cfDNA concentrations and tumor dynamics parameters was
also explored by separating patients into groups based on the median value to investigate

informativeness of cfDNA compared to ctDNA.

Furthermore, the influence of baseline ctDNA measurements and cfDNA concentrations
on k, k , and k, were evaluated as categorical covariates in the tumor dynamics model.
The EGFR mutation levels and the cfDNA concentrations were categorized based on the
corresponding median values as is described above. When a sample is missing, it was
assigned to the third category and a sensitivity analysis was performed by evaluating models
with and without the covariate for a dataset where the data from patients with missing
covariates were removed. A significant correlation was defined as a decrease in OFV by

more than 3.84 (p < 0.05, degree of freedom = 1, assuming x* distribution).

2.5 Software and estimation methods

The population modeling analysis in this study was performed with NONMEM (version
7.4.4, ICON Development Solutions, Ellicott City, MD, USA). Parameters were estimated
using the first order conditional estimation method with interaction (FOCEI). Data
management and plots generation were performed with R statistics software (version 4.2.1,

R Foundation for Statistical Computing, Vienna, Austria).
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3. Results

3.1 Patients and data

The intensively sampled erlotinib concentration-time curves were obtained from 29
patients (N = 377, 13 samples per patient). The SLD measurements (N = 155) as well as
additionally sampled erlotinib concentrations (N = 146), ctDNA measurements (N = 50),
and cfDNA concentrations (N = 50) were collected from 18 real-world NSCLC patients
from the START-TKI study. For these 18 patients, the median time period when the SLD
measurements were available is 264 days since the start of the treatment (range from
20-1168 days), and all patients had an event of disease progression or death where data

were censored afterwards.

The obtained erlotinib concentration data over time are presented in Figure S4.1. None
of the collected data was below the lower limit of quantification. The median baseline
tumor size (SLD) of the included patients was 76.6 mm (range 29-116 mm). Out of the 146
obtained concentrations, 125 were measured at > 20 hours after last drug intake (trough
concentrations) with a median of 842 ng/mL and range of 318-1834 ng/mL. Activating
EGFR variants (including exon 19 deletions (N = 11) and EGFR p.L858R (N = 6) and
p-K852R (N = 1) mutations) were detected in the tumor biopsies of all 18 patients [6]. The
plasma cfDNA samples at the start of treatment were available from 12 out of 18 patients.
The median baseline cfDNA concentration was 1.44 ng/uL (range from 0.77-3.65 ng/uL).
The primary EGFR variants were detected from baseline cfDNA samples from 8 out of 12
patients, which include exon 19 deletions (N = 6) and EGFR p.L858R (N = 1) and p.K852R
(N =1) mutations. The median baseline EGFR VAF was 1.74% (range from 0-62.74%). The
obtained VAF of primary EGFR variants over time are shown in Figure $S4.2. Furthermore,
a TP53 mutation was detected in 4 patients at baseline and the EGFR p.T790M mutation
was detected in 3 patients during erlotinib treatment. The baseline characteristics and the

data contributed by each patient are summarized in Table 4.1.

3.2 Population PK model

A two-compartment population PK model with first-order absorption with lag time
and first-order elimination was developed and showed to best fit the obtained PK data.
Compared to the one-compartment model, the OFV of the selected model decreased by
27.5 (p < 0.01, degree of freedom = 3), indicating an improvement in the model fit. None
of the tested covariates was identified to have significant effect on the PK parameters. The
parameter estimates of the PK model are presented in Table 4.2. The relative standard

errors (RSEs) were < 25% for all parameters except for apparent distribution clearance
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Table 4.1: Baseline characteristics of patients and the collected data

Intensively sampled PK data PK/PD data

(N=29) (N=18)
Median Range Median Range

Age (years) 63 35-78 66 48-78
Sex (N (%))

Male 13 (44.8%) 5 (27.8%)

Female 16 (55.2%) 13 (72.2%)
Weight (kg) 74 50-102 69.5 46.1-109
Height (cm) 173 152-202 169 154-180
Serum creatinine (umol/L) 82 47-138 66 59-192
eGFR (ml/(min.1.73 m?)) 71 46-100 84.5 23-103
AST (IU/L) 29 13-40 215 14-37
ALT (IU/L) 25 10-83 18 6-43
Albumin (g/L) 41 32-48 42.5 34-51
ALP (U/L) 85 53-157 87.5 3-798
Bilirubin (umol/L) 8 3-58 6.5 3-14
Erlotinib starting dose (N (%))

150 mg 25 (86.2%) 18 (100%)

100 mg 3(10.3%) 0

50 mg 1 (3.4%) 0
N of concentration per patient 13 13-13 8(N=2nodata) 1-20
N of SLD per patient - - 7 2-18
N of ctDNA or cfDNA data per - - 3 1-4
patient

eGFR, estimated glomerular filtration rate; AST, aspartate aminotransferase; ALT, alanine aminotransferase;
ALP, alkaline phosphatase; ctDNA, circulating tumor DNA; cfDNA, circulating free DNA; SLD, sum of longest
diameters.

(Q/F) (40%), indicating acceptable estimation precision. High estimates for IIV on Q/F
and absorption rate constant (Ka) were observed (coefficient of variation (CV%) > 100
%), with shrinkages < 30%. The parameter estimates were also in good agreement with
the bootstrap results (Table 4.2).

The GOF plots of the final PK model demonstrated a good concordance between the
model predictions and observations (Figure S4.3). The conditional weighted residual
errors (CWRES) randomly distributed around zero without obvious trends over popula-
tion predictions, but with a slight trend over time between 6-8h after last drug intake. The
VPC plot (Figure 4.2) shows that the observed data can be adequately predicted by the
developed model. Additionally, 100% of the model predicted AUC and 82.4% of the model

predicted trough concentrations were within 80-120% of their corresponding observations.
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Table 4.2: Parameter estimates of the population pharmacokinetic model

Bootstrap
Estimate 11V (CV%) (RSE%)
Parameters Explanation (RSE%) [shrinkage%] Median 95% Cl
CL/F (L/h) Apparent clearance 4.10 (5%) 15.7% (31%) [48%] 4.09 3.68-4.47
Vc/F (L) Apparent distribution 142 (7%) 20.3% (31%) [43%] 142 125-162
volume of the central
compartment
Vp/F (L) Apparent distribution 2420 (12%) - 2462 1768- 8043
volume of the periph-
eral compartment
Q/F (L/h) Apparent distribution  0.548 (40%) 194.4% (15%) [28%] 0.542 0.188-1.24
clearance
Ka (/h) Absorption rate 1.61 (23%) 124.5% (15%) [18%] 1.68 1.03-2.65
constant
T (h) Absorption lag time 0.400 (5%) - 0.400 0.358-0.428
F Bioavailability 1 fixed 16.3% (31%) [37%] 1fixed -
Residual errors
Prop. Err. proportional residual  15.4 (6%) [10%]" 15.3 -
(CV%) error
Add. Err. additive residual error  44.5 (25%) [10%]" -
(SD, ng/ml) 434

RSE, relative standard error; IlV, inter-individual variability; Cl, confidence interval; CV, coefficient of
variation; SD, standard deviation.
* Epsilon shrinkage.

Erlotinib concentration (ng/mL)

3000

2000

1000

T
10

20

Time after last dose (hrs)

Figure 4.2: Visual predictive check (VPC) of the developed population PK model. Blue dashed lines
represent 95" and 5% percentiles of the observations, red dashed line represents the 50™" percentile of the
observations, blue shaded areas represent 95% confidence interval of the 95% and 5% percentiles based on
the simulations respectively, and red shaded area represents 95% confidence interval of the 50* percentile
based on the simulations.
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3.3 Tumor dynamics model

The tumor dynamics modeling results showed that the model accounting for acquired
resistance only could adequately fit the data. The model that assumed the presence of
primary resistance did not show an improved fit to the available data (p > 0.05, OFV
decreased by 0.731 and AIC increased by 1.269, degree of freedom = 1). The typical estimate
of T, , in this model was 4.51 mm which account for a small proportion (5.9%) of the
median baseline tumor size (Table $4.1). Therefore, the pre-exiting resistance component
was ultimately not included in the model. Furthermore, the OFV and AIC of the model
incorporating an exposure-dependent decay increased by 1.441 compared with the base
model, indicating no improvement in the model fit. Therefore, the exposure-dependent

drug effect was not included in the final model.

The parameter estimates of the final tumor dynamics model are shown in Table 4.3 (model
code in Supplementary Material S4.2). The RSEs of the parameter estimates were all <
30%, indicating acceptable estimation precision. High estimates for IV of the estimated
tumor dynamics parameters were observed (CV% > 60 %). The GOF plots demonstrated
a sufficient fit of the developed model to the data (Figure $4.4). The VPC considering the
censoring of data due to progression showed that the model predicted intervals adequately

captured the distribution of observations (Figure 4.3).
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Figure 4.3: Visual predictive check (VPC) considering drop out of the developed tumor dynamics model.
Blue dashed lines represent 95" and 5™ percentiles of the observations, red dashed line represents the 50®"
percentile of the observations, blue shaded areas represent 95% confidence interval of the 95" and 5%
percentiles based on the simulations respectively, and red shaded area represents 95% confidence interval
of the 50* percentile based on the simulations.
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Table 4.3: Parameter estimates of the tumor dynamics models without or with baseline ctDNA data
incorporated

Model with baseline ctDNA

Model without covariate data as a covariate
IV (CV%) IV (CV%)
Estimate (RSE%) Estimate (RSE%)
Parameters Description (RSE%) [shrinkage%)] (RSE%) [shrinkage%)]
kg (/day) Tumor growth rate 0.000799 60.3% (27%) 0.00204 16.6% (152%)
constant (13%) [26%] (25%) [57%]
f, kg change fraction - - 0.334 -
when mutant EGFR (28%)
VAF < 1.74%
f, kg change fraction - - 0.281 -
when baseline ctDNA (28%)
data was unavailable
k, (/day) Tumor decay rate 0.0121 68.4% (26%) 0.0123 66.2% (22%)
constant (19%) [8%] (18%) [7%]
k_ (/day) Mutation rate constant ~ 0.00911 56.5% (25%) 0.00824 57.9% (32%)
(2%) [19%)] (18%) [15%)]
T, , (mm) Baseline size of Observed - Observed -
sensitive clonal baseline baseline
population
T, , (mm) Baseline size of 0 fixed - 0 fixed -
resistant clonal
population
Residual errors
Prop. Err. Proportional residual 7.54% [12%)]" 7.67% [12%]"
(CV%) error (13%) (14%)
Add. Err. Additive residual error 1.17 (38%)  [12%]" 1.13 (9%) [12%]"

(SD, mm)

RSE, relative standard error; IV, inter-individual variability; CV, coefficient of variation; SD, standard
deviation, VAF, variant allele frequency.
* Epsilon shrinkage.

3.4 Genetic biomarkers and tumor dynamics

The baseline results regarding ctDNA measurements and cfDNA concentrations were
available from 12 out of 18 patients and missing for 6 patients. No correlation was
observed between baseline mutant EGFR VAF and ¢fDNA concentrations. According to
the exploratory plots, patients with baseline mutant EGFR VAF > 1.74% had relatively high
k,and k, estimates, and slightly higher k, estimates than patients with mutant EGFR VAF
< 1.74% (Figure 4.4). In addition, for patients with a TP53 mutation at baseline, the kg
and k estimates were relatively high compared to patients without TP53 mutations, and
comparable k, estimates were observed (Figure 4.4). The association between baseline
cfDNA concentrations and tumor dynamics parameters is shown in Figure $4.5. Patients

with baseline cfDNA concentration > 1.44 ng/uL showed to have higher k and lower k,
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estimate than patients with baseline cfDNA concentration < 1.44 ng/pL, and comparable

k _estimates were observed.

When exploring the covariate effect of the baseline genetic biomarkers in the tumor
dynamics model, the correlation between baseline mutant EGFR VAF and k_ was iden-
tified to be most significant when assigning the missing values as a separate category
(OFV decreased by 11.6, p < 0.01, degree of freedom = 2). This correlation remained
to be significant when removing the data of patients with missing covariate from the
dataset (OFV decreased by 4.6, p < 0.05 degree of freedom = 1). The differences in k  or
k, among patient groups with different baseline mutant EGFR VAF levels were shown to
be not significant. Additionally, the correlations between the presence of a TP53 mutation
and tumor dynamics parameters were also not significant in the covariate analysis. The
parameter estimates of the model with baseline mutant EGFR VAF as the covariate are
shown in Table 4.3. The typical kg estimate in patients with baseline EGFR VAF > 1.74%
was 0.00204 day', which is higher than the estimate for the whole population (0.000799
day). The typical k estimate in patients with baseline EGFR VAF < 1.74% was 33.4% of
that in patients with baseline EGFR VAF > 1.74%, while the difference between patients
with baseline EGFR VAF < 1.74% and with unknown mutant EGFR level was not signifi-
cant. The inclusion of mutant EGFR VAF in the model decreased the CV% of IIV in k_
from 60.3% to 16.6%, while the corresponding RSE increased. The population predictions
of the model also improved according to the GOF plots (Figure $4.6).

4. Discussion

In this study, the tumor dynamics and the development of drug resistance in NSCLC
patients undergoing erlotinib treatment was characterized with a mathematical model
accounting for tumor heterogeneity. Incorporating the erlotinib exposure into the model
was also explored. The potential correlation between baseline genetic biomarkers and
parameters that characterize tumor dynamics was identified with exploratory plots and

confirmed with the model.

To facilitate the investigation on the exposure-tumor inhibition relationship, a population
PK model of erlotinib was first developed. The estimated clearance is comparable to what
has been reported previously (4.10 L/h vs 3.64-4.71 L/h) [16-19]. Due to lack of data, previ-
ously reported covariates on erlotinib PK, including the smoking status, co-medications,
and alpha-1-acid glycoprotein, could not be investigated in our analysis [16, 19]. The CV%
of ITV in Ka and Q/F was estimated to exceed 100%. For Ka, this high IIV estimate might
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because it covers the variability in the lag time of absorption. Considering the amount of
available data, these IIV estimates may not be precise. However, this does not affect the
predictive ability of the PK model for the intended use in this study. The performance of
the model were confirmed by the model evaluation results. However, a trend in CWRES
over time between 6-8h after last drug intake was observed. This is considered to be due to
the double peaks that were observed in the obtained data: data from 18 out of 29 patients
who provided intensively sampled PK data demonstrate increased drug concentrations
at 6-8 hours. The possible explanation could be the delayed disintegration of the tablets,
food intake [20, 21], or possible enterohepatic circulation, although the latter has not been
reported in literature before. This observed double peaks could not be captured by the
current PK model, nor by a model considering dual first-order absorption with different
lag times. Nevertheless, the model showed to be able to adequately predict the AUC of
individual concentration-time curves as well as the trough concentrations which are of
interest to be linked to the tumor dynamics. Therefore, the developed PK model was

considered to be valid to support our study.

For the tumor size dynamics, a model accounting for intra-tumor heterogeneity and
acquired resistance showed to adequately fit the obtained data, and considering primary
resistance was not favored based on the available data. This may indicate that for patients
with NSCLC with an activating EGFR mutation, it is mainly the acquired resistance,
which may be due to the acquisition of EGFR p.T790M mutation or other mechanisms,
that limits the treatment response. Among previously reported model-based studies on
tumor size dynamics in NSCLC patients undergoing erlotinib treatment, one study also
considered tumor heterogeneity [22]. Their results also showed that the models with and
without primary resistance could describe the data equally well even though erlotinib was
used as a second-line treatment in their study [22]. However, it is worth noting that the
model presented in the current study is empirical and simplifies the complex process of
the emergence of treatment resistance. Previously, several mechanistic models have been
proposed to provide quantitative insight into this process [23, 24]. The relatively limited
amount of data in the current analysis prohibits the implementation of more mechanistic
models and therefore may limit the mechanistic interpretation. In fact, the presence of
TP53 mutations may indicate the presence of primary resistance [25, 26]. However, TP53
mutations were only detected in 4 out of 18 patients which may be unable to provide
significant impact to our model. Nonetheless, this more empirical approach does take into
account the existence and interaction among multiple clonal populations which are crucial
for understanding resistance development [24]. We do consider this approach relevant for

exploring optimal guided drug treatment in real world clinical oncology practice where
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extensive data is normally sparse. Furthermore the current approach can serve as a basis
for building more mechanistic-based models when more extensive data is available [24].
The growth rates of treatment sensitive and resistant clonal populations were assumed to
be the same in the model. This was because of the lack of identifiability of separate growth

rates due to the limited amount of data.

The current study did not identify a clear exposure-tumor inhibition relationship within the
current concentration range (the median predicted drug concentrations at the tumor size
monitoring time points was 992 ng/ml (range of 284-1554 ng/mL)), neither when assuming
anon-linear relationship with the Emax model. A dose-tumor inhibition relationship was
also explored but no clear relationship was identified. This might be because the treatment
effect has already been saturated. The dose level selected for erlotinib (i.e. 150 mg daily)
is the maximum tolerated dose, under which the average trough concentration at steady
state is well above what is required for the required erlotinib activity and considered to be
sufficient to provide a high anti-neoplastic effect [27]. This lack of relationship is in line
with previous clinical studies where no significant correlation between erlotinib exposure
and response has been identified [28-30]. One study also showed that increased erlotinib
exposure had less impact on the antitumor effects in EGFR mutation-positive patients
[31]. As an exposure-response relationship was not identified, we could not investigate
the influence of drug exposure on the evolving tumor progression in this case. However,
this result suggests that there is a potential option to decrease the dose of erlotinib to
target for a lower concentration range that still ensures sufficient efficacy but can be better
tolerated, especially since a significant proportion of erlotinib-treated patients can have
severe toxicity [6]. The U.S. Food and Drug Administration (FDA) has recently proposed
the Project Optimus which also encourages to improve dose selection and optimization
for oncology drugs by accounting for both efficacy and tolerability rather than automati-
cally selecting the maximum tolerated dose [32, 33]. A recent study has already suggested
an optimized starting dose of 50-60 mg/day for erlotinib and a concentration range of
150-310 ng/mL for personalized erlotinib treatment in NSCLC patients considering both
efficacy and tolerability [34].

The correlation between baseline genetic biomarkers and parameters in tumor dynamics
model was investigated in this study. The VAF’s of mutant EGFR and the presence of TP53
mutations in ctDNA at baseline showed to have potential correlation with the estimated
parameters in the tumor dynamics model (mainly k and k, ), especially that higher
baseline EGFR VAF was significantly correlated with increased growth rate constant k.
This indicates that patients with higher EGFR VAF at baseline may have a worse response

to the treatment, which is in line with the clinical findings from a EGFR cohort in the
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START-TKI study;, i.e. patients without detectable ctDNA at baseline had a lower rate of
radiological progression [6]. An explanation could be the association between ctDNA levels
and tumor burden [11, 35]. Our result is also in line with previous findings that baseline
concomitant TP53 mutations may relate to worse clinical outcome in patients with NSCLC
[6]. After incorporating baseline ctDNA measurements, the developed tumor dynamics
model could better predict the tumor sizes dynamics in response to erlotinib treatment in
NSCLC patients. This finding also demonstrates the potential to use baseline ctDNA as
an early biomarker to support decision making for the treatment of NSCLC patients [36].

This study also has some limitations. The results found in the current study are based on
limited data from a limited number of patients, especially for genetic biomarkers. The
unavailability of baseline cfDNA samples in 6 out of 18 patients could also impact the
interpretation of the results, as well as the determination of the threshold value of EGFR
VAF which was associated with increased growth rates. However, this study is one of the
first that investigated the relationships among PK, tumor dynamics, and ctDNA measure-
ments. Furthermore, since the data on detectable mutation levels in ctDNA are limited,
development of a model for describing longitudinal ctDNA data was not feasible and
only the baseline ctDNA measurements were included in the analysis, which however
explored the value of ctDNA as an early biomarker. Additionally, the mutant EGFR VAF
was only investigated as a categorical covariate while the data range from 0% to 62.74%
and correspond to multiple variants. Therefore, further analysis with more extensive data
is warranted to validate the current results and to explore the correlation between the

longitudinal ctDNA measurements and tumor size dynamics with models.

In conclusion, our study demonstrated that the model accounting for intra-tumor hetero-
geneity and acquired resistance can well characterize the tumor size dynamics in NSCLC
patients during erlotinib treatment. No clear exposure-tumor inhibition relationship was
identified within the current concentration range. A correlation between baseline ctDNA
measurements and tumor growth rates was however identified which suggests that quan-
titative ctDNA measurements at baseline have potential to be predictive of anti-cancer
treatment response, and further study on more extensive longitudinal data is warranted.
The developed model can potentially be further applied to design optimal treatment

regimens that better overcome resistance.
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Study highlights

What is the current knowledge on the topic?

Insight into the evolutionary development of treatment resistance can support
optimization of anti-cancer treatments. This is also the case in non-small cell lung cancer
(NSCLC) patients. A model-based approach can support such study based on data on

pharmacokinetics, tumor sizes and genetic biomarkers

What question did this study address?
We aimed to quantitatively characterize the tumor dynamics and evolving resistance
development in NSCLC patients treated with erlotinib, and investigate the relationship

between baseline circulating tumor DNA (ctDNA) measurements and tumor dynamics.

What does this study add to our knowledge?

A model accounting for intra-tumor heterogeneity and acquired resistance well
characterized the tumor size dynamics in NSCLC patients during erlotinib treatment. No
exposure-tumor inhibition relationship was identified in the identified exposure range.
Baseline ctDNA data on mutant EGFR levels correlate with tumor growth rate and the

inclusion of ctDNA data improved model prediction.

How might this change drug discovery, development, and/or therapeutics?

Our findings suggest that baseline ctDNA measurements have the potential to be a predictor
of anti-cancer treatment response, which encouraged to use ctDNA as an early biomarker.
The developed model can further be applied to design optimal treatment regimens to

better overcome resistance.
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Supplementary Material S4.1

Population PK analysis - covariate analysis methods

In the population PK analysis, patients’ demographic information, including age, sex,
weight, height, and laboratory test results, including creatinine, estimated glomerular
filtration rate (eGFR), albumin, total bilirubin, aspartate aminotransferase (AST), alanine
aminotransferase (ALT), and alkaline phosphatase (ALP) were investigated as covariates.
The stepwise covariate modeling (SCM) function of Perl-speaks NONMEM (version
4.9) was applied to perform the covariate analysis. The effect of all covariates on erlotinib
clearance and that of weight, height, and albumin on apparent distribution volume of
the central compartment were investigated. Model selection was based on the reduction
in objective function value (OFV) (a likelihood ratio test) assuming a x? distribution, a
reduction in IIV, and physiological plausibility. The p values were set as 0.05 and 0.01 for

the forward selection and backward elimination process, respectively.

The effects of continuous covariates were investigated with both linear relation (Eq.
§4.1) and power relation (Eq. $4.2), where P, represents the parameter of ith individual,
P, represents typical value of the parameter, and #, represents the individual variability,
0, represents the estimate of covariate effect, COV, represents the covariate value of ith
individual, COV _is the median value of the covariate. Categorical covariates (e.g. sex) were
analyzed with Eq. $4.3, where 6 was set as 1 for reference category (e.g. males) and was

estimated for other categories (e.g. females).

Py = P+ (1 8coy + (COV; — COVp)) - e Eq. 54.1

p. =P cov; Ocov . aMi Eq.S4.2
i = (COVm) € q. 54.

P; = P, B¢y - € Eq.54.3
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Supplementary Material $4.2

NONMEM code for the tumor dynamics model

$INPUT

CID DROP TIME TAD AMT ADDL II CMT EVID DV
UNDERTREAT; if treatment started: 1, yes

DROP DROP Dose; dose

DROP AGE SEXHT WT DROP BMI

baseTS; baseline tumor size

T790M; T790M: 1, yes

TP53_base; presence of TP53: 1, yes

basecfDNA; baseline cfDNA concentration

baseVAF; baseline EGFR mutant levels

DROP DROP DROP DROP DROP DROP DROP
ICLIV21V3IQ IKA TALAGI IF1; individual PK parameters

$DATA START _all6.csv IGNORE=C IGNORE=(CMT.GT.4) IGNORE=(CMT.EQ.2); only

data of tumor sizes
$SUBROUTINES ADVAN13 TOL=4

$MODEL

COMP = (DEPOT)

COMP = (CENTRAL,DEFOBS)
COMP = (PRIPH)

COMP = (TUMOR)

COMP = (TUMOR2)

$PK

KG1 = THETA(1)* EXP(ETA(1))/100

KD1 = THETA(2)* EXP(ETA(2))/100

KM1 = THETA(5)* EXP(ETA(3))/100
;IF(baseVAEGE.0.AND.baseVAELT.1.74) KG1=THETA(6)*KG1
;IF(baseVAELT.0) KG1=THETA(7)*KG1; no sample group

CL = ICL*24; change unit from L/h to L/day
V2=1V2
V3=1V3
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Q=1Q*24

ALAGI = IALAGI1 /24
KA = IKA*24

F1 =IF1

K=CL/V2

K23=Q/V2
K32=Q/V3

BASES = baseTS
A_0(4)=BASES
A_0(5)=0

$DES

DADT(1) = -KA*A(1); can simulate drug concentrations, if needed

DADT(2)= KA*A(1) - K*A(2) -K23*A(2) +K32*A(3); can simulate drug concentrations,
if needed

DADT(3) = K23*A(2)- K32*A(3); can simulate drug concentrations, if needed
DADT(4) = KG1*A(4)-KD1* UNDERTREAT *A(4) - KM1* UNDERTREAT *A(4)
DADT(5) = KM1* UNDERTREAT *A(4)+ KG1* UNDERTREAT *A(5)

$ERROR

TS=A(4)+A(5)

IPRED = TS
W = SQRT(THETA(3)**2*IPRED**2 + THETA(4)**2)
Y = IPRED + W*EPS(1)

IRES = DV-IPRED

TWRES = IRES/W

$THETA

(0.001,0.1,1); KG1

(0.1,1,5); KD

(0.01,0.1,1); Prop err
(0.1,1,10); Add err

(0.01,1, 5); KM1

;(0.05,0.5,2); VAF < 1.74
;(0.05,0.5,2); VAF not available

$OMEGA
0.1; IIV KG
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0.1; IIV KD
0.1; IIV KM1

$SIGMA 1 FIX;

$ESTIMATION METHOD=1 INTER MAXEVAL=9999 NOABORT SIG=3 PRINT=10
POSTHOC

$COV print=E

$TABLE ID TIME TAD MDV EVID UNDERTREAT Dose baseTS T790M TP53_base
basecfDNA baseVAF baseTS KG1 KD1 KM1 TS IPRED IW
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Supplementary figures and table

Supplementary Figures
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Figure S4.1: The collected data on erlotinib concentrations over time.
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Figure S4.3: Goodness-of-fit plots of the developed population PK model, including observations versus
individual predictions (a) and population predictions (b), and conditional weighted residual errors (CWRES)
versus populations predictions (c) and versus time after last dose (d). The red dashed lines represent y = x
(a, b) and y = 0 (c, d). Black dashed lines represent corresponding loess regressions.
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Figure S4.4: Goodness-of-fit plots of the developed tumor dynamics model, including observations
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Supplementary Table

Table S4.1: Parameter estimates of the tumor dynamics model considering pre-existing resistance
component (primary resistance)

IV (CV%) (RSE%)

Parameters Description Estimate (RSE%) [shrinkage%]
kg (/day) Tumor growth rate constant 0.000801 (22%) 60.4% (29%) [26%]
k, (/day) Tumor decay rate constant 0.0129 (21%) 73.6% (27%) [8%]
k_ (/day) Mutation rate constant 0.00756 (28%) 66.6% (34%) [19%]
T, , (mm) Baseline size of sensitive clonal Observed baseline-T, =~ -
population
T o (Mm) Baseline size of resistant clonal 4.51 (39%) 0 fixed
population
Residual errors
Prop. Err. (CV%)  Proportional residual error 7.44% (18%) [12%]"
Add. Err. (SD, Additive residual error 1.19 (21%) [12%]"
mm)
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Abstract

In real-world patients, anti-cancer drugs frequently show substantial variability in
pharmacokinetics (PK) and pharmacodynamics (PD). Especially for anti-cancer
drugs that exhibit a narrow therapeutic window, these characteristics lead to an
increased risk of suboptimal therapy and toxicity. This highlights the need for more
individualized dosing in cancer patients. Model-informed precision dosing (MIPD)
is an advanced quantitative approach which applies pharmacometric models to
guide optimal dose selection and enables individualized therapy. This expert opinion
article introduces the current application of MIPD in supporting optimal anti-cancer
treatment, and discusses the challenges and future perspectives of implementing
MIPD in this field.



MIPD in oncology

1. Introduction

Pharmacokinetic (PK) and pharmacodynamic (PD) characteristics of anti-cancer drugs
can be highly variable in real-world patients [1, 2]. Due to the correlations between drug
exposure and treatment response (efficacy and toxicity), such variability can result in
suboptimal treatment outcomes for a considerable part of the patients especially when the
therapeutic window is narrow [1, 2]. Moreover, since the dose selection for most oncology
drugs is based on the maximum tolerated dose (MTD) or maximal administered dose
(MAD) paradigm, the use of standard dosing according to the drug label can result in
negative consequences for real-world patients. This leads to a demand for dose modifica-
tion processes [3]. Therefore, the necessity for dose individualization and optimization
in anti-cancer therapies is highlighted, and a useful tool to support the decision making

is warranted.

Model-informed precision dosing (MIPD) is a promising tool which adopts pharmaco-
metric models to guide optimal and individualized dose selection, the goal of which is
to improve efficacy and reduce the risk of toxicity [2, 4]. Pharmacometric models enable
quantitative characterization and prediction of drug PK and PD in target populations
under certain dosing regimens [5, 6]. With a mixed-effect modeling (population modeling)
approach, variability between and within patients can be quantified and predictive covari-
ates can be identified [5, 6]. Once data of patients are known, the Bayesian framework of the
population model would enable more precise description and prediction of individual PK/
PD characteristics with individual parameters [2]. Combined with simulations, treatment
strategies that are likely to achieve the therapeutic targets and desired clinical outcome can
therefore be derived with the model. The value of MIPD in supporting cancer treatment
optimization has gained increasing interest in oncology research and clinical practice.

However, challenges still remain in the implementation of MIPD.

The current article aims to introduce the application and benefits of MIPD in supporting
anti-cancer treatment optimization and individualization, and discuss the challenges and

future perspectives of implementing MIPD in cancer therapies.

2. MIPD application

Insight into the correlation between drug or surrogate biomarker concentration and the
clinical effect in real-world patients can facilitate determining a therapeutic target or range
that is associated with sufficient efficacy and less risk of toxicity. This pre-defined target

can then be incorporated in the algorithm of MIPD to derive optimal dosing regimens.
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2.1 Starting dose selection

The benefits of MIPD in anti-cancer treatment have been demonstrated in many studies [2,
7]. First of all, MIPD can be applied to guide (starting) dose selection based on identified
covariates [7]. Population modeling allows the identification of covariates that influence
model parameters and explain the inter- and intra-patient variability in drug PK/PD
profiles. Data from various studies can also be pooled in one analysis to facilitate a more
in-depth exploration on relevant covariates. Before any data on PK or PD biomarkers
are available to inform the individual parameters, the model can guide dose tailoring
considering the value of relevant covariates for each individual patient, which would
increase the chance to achieve the therapeutic target and reduce inter-individual variability.

This can be especially helpful for determining the optimal starting dose.

The current standard practice to individualize the dose of anti-cancer drugs (normally
for cytotoxic chemotherapy) is based on body surface area (BSA) [7, 8]. However, BSA
may not be a relevant covariate that correlates with the PK variability of these drugs [7,
8]. Dosing based on BSA can thus still lead to substantial PK variability and cause under
or over drug exposure, which may lead to less efficacy or a higher risk of toxicity. The
model-informed approach allows investigating the impact of a wide range of factors,
including patients’ characteristics, renal or kidney function, disease related indicators, and
co-medications, identifying real covariates that should be accounted for dose adjustment
[7]. It also allows taking multiple influential factors into consideration at the same time.
The impact of pharmacogenetic variants on drug PK profile can also be investigated and

incorporated in MIPD to further refine the dose selection [7].

A clinical trial on busulfan in pediatric hematopoietic cell transplantation (HCT) patients
has confirmed the advantage of model-informed dosing in guiding starting dose selection
[9]. This trial compared conventional strategies for determining initial busulfan dose
(based on weight), calculating AUC following TDM (trapezoidal rule), and determining
the following dose (proportional scaling) with the model-informed approach. Their
results show that receiving initial doses that were calculated by the PK model enabled
more patients to achieve the exposure target at the time of first PK collection, especially
in the cohort where the initial dose was guided with an updated PK model (75% vs. 25%

in conventional group).

2.2 Adaptive dose selection during treatment
Secondly, MIPD also presents a potential to guide dose selection and adaptation during

anti-cancer treatment, which has shown to outperform the conventional therapy in terms of
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target attainment and clinical outcome. Such dose selection is typically guided by population
PK models that possess sufficient predictive ability. Once measured drug concentrations
and individual characteristics of the patient are available, individual parameters can be
estimated (empirical Bayesian estimates) which could capture the current and forecast
future individual PK time curves, given the applied dosage [2, 10]. Thus, with the aim to
achieve the defined exposure target, the optimal dosage for the following treatment can be
determined rationally. A recent perspective on MIPD has listed several motivating examples
[2]. One study in breast cancer patients performed simulations to compare different dosing
strategies of tamoxifen [11]. The results demonstrated that compared with standard dosing
(20 mg QD) or CYP2D6-guided dosing, the MIPD strategy (individual maintenance dose
was derived with MIPD using three monitored drug concentrations) could reduce the
proportion of patients failing to reach the predefined target endoxifen (active metabolite)

exposure (22.2% (standard dosing) to 7.19%) and the inter-individual variability.

In addition to drug concentrations, monitoring other biomarkers to inform dose selection

can potentially also be accomplished with a model-informed approach.

The benefit of MIPD in guiding anti-cancer treatment dose adaptation has also been
confirmed in clinical trials. For instance, Joerger et al. have performed a randomized
study in advance non-small cell lung cancer (NSCLC) patients to compare standard pacli-
taxel dosing (per BSA) and PK-guided paclitaxel dosing which was proposed from their
previous simulation-based study (initial paclitaxel dose was adjusted according to patients
characteristics and subsequent doses were guided considering previous-cycle paclitaxel
exposure estimated with a PK model) [12]. The study demonstrated that that PK-guided
dosing can significantly reduce paclitaxel-associated neuropathy while having the similar

response rate as standard dosing, thus suggesting an improved benefit-risk profile [12].

2.3 Model-informed TDM

Therapeutic drug monitoring (TDM) is a clinical practice of adjusting drug dosing regimen
for an individual patient based on measured drug concentrations in biological fluid (typically
plasma, serum, urine, or whole blood) [10]. For anti-cancer therapies, TDM-based dosing has
been partially implemented for a small number of agents, including carboplatin, methotrexate,
busulfan, and mitotane [13]. The benefits and feasibility of TDM for many other drugs
have also been demonstrated in clinical studies, including imatinib, sunitinib, pazopanib,
5-fluorouracil, and tamoxifen [8, 13]. Implementing TDM for other kinase inhibitors, which
are typically administrated at fixed doses, has also been recommended due to the high PK

variability and clear relationships between exposure and treatment outcomes [1].
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MIPD, which is able to guide dose adaptation with population PK models and Bayesian
forecasting, can be combined with TDM to ensure optimal dose adjustment. This model-
informed TDM has already been implemented in clinical practice, although not yet widely
adopted [4]. The exposure metrics that were of interest included trough concentrations,
area under the concentration-time curve (AUC), or concentrations at a certain time point.
Compared with conventional TDM, the model-informed approach provides the decision
support in a quantitative manner and the advantage is multifaceted [2, 8]. First, the indi-
vidual parameters estimated based on the monitored concentrations (Bayesian estimates)
would enable the prediction of whole drug concentration-time curves for each individual
patient following the current or subsequent doses. In this way, the concentrations at any
time point of interest can be obtained based on the monitored sample. This approach
has proved to be able to provide more precise prediction on trough concentrations than
normal log extrapolation as is used in conventional TDM [14]. In addition, this approach
also allows more accurate estimation of AUC, and flexible limited sampling strategies
can be applied. Second, MIPD provides the ability to account for non-linear PK behavior
and guide dose adjustment when steady state is not yet reached. This is because MIPD
supports the dose adaptation based on the forecasting of drug exposure after dose adjust-
ment. In conventional TDM, the decision on dose adjustment is simply made by scaling
the previous dose with the ratio of the observed and target exposures, assuming a linear
PK profile [7, 10]. This requires the concentration profile to be at steady state [10]. Finally,
with the help of the pharmacometric models and simulations, different TDM strategies
can be explored and the most optimal strategy can be identified for further exploration

and/or clinical implementation [8].

The clinical trial on busulfan in pediatric HCT patients has strengthened the clinical utility
of model-informed dosing and TDM for supporting personalized busulfan dosing and
target exposure attainment [9]. In addition to the benefit of selecting the initial dose using
the PK model, in the cohort where busulfan AUC and subsequent doses were estimated
with the MIPD platform during TDM, the achievement of the goal exposure (cumulated
AUC) has shown to be significantly improved (100% vs. 66% in conventional group) and
the variability among patients was reduced (from 14.8% to 4.1%), which is expected to

improve clinical outcomes [9].

3. Challenges and perspectives

Challenges still have to be overcome to implement MIPD of cancer therapies in clinical

practice. A previous perspective has provided a comprehensive overview on the chal-
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lenges that hinder the implementation of MIPD in clinical practice in general, as well as
corresponding recommendations and future opportunities, from multiple aspects [2].
Here, we highlight a few challenges and provide future perspectives specifically for anti-

cancer therapies.

3.1 Therapeutic target identification

A pre-defined therapeutic target of drug or biomarker exposure that is associated with
optimal treatment outcome is fundamental for MIPD to estimate optimal dosing regimens.
A therapeutic target can be determined based on the PK/PD study outcomes in registration
files or clinical studies. Developing a PK-PD model on exposure-response relationship
based on retrospective data can also facilitate the identification of an optimal therapeutic
target for real-world cancer patients. The therapeutic target can be an exposure range, as
is traditionally aimed at during drug TDM, or a specific exposure value which can relate
to a specific PD target [10]. For anti-cancer drugs, the potential PD target of interest can
relate to the change in tumor burden or PD biomarkers. Typically, one therapeutic target is
being used for one whole patient population. For future studies and practices, personalizing
dosage based on an individual target determined with the help of population PK/PD
modeling and Bayesian forecasting would be of interest.

3.2 Model selection

In order to implement MIPD, selecting a suitable model that presents sufficient predictive
ability to the target patient population is essential. Whether a model matches the target
patient population, regarding e.g. age (adult or pediatric), body composition (normal or
obese), indications (cancer types and drugs), or dose levels, need to be considered when
selecting the model [15]. The intention to use the model should also be taken into account.
For example, if a population PK model was developed based on trough concentrations, it
may not be able to adequately capture the drug absorption and distribution phase, thus
may be suboptimal to support AUC estimation [8].

At times, identifying one model that already has sufficient predictive ability to the target
population is difficult. This can be due to the sample size of the study population, or the
lack of ability to cover all potential influential factors (e.g. different genotypes or the use
of co-medications) in one study [8, 10]. In this case, pooling data of the same drug and
cancer type to develop a model, or updating the model (structure or parameters) with
newly collected data during TDM allows to derive a model that can better fit the target
population [2, 15]. The clinical study on MIPD application in busulfan treatment has proved

149



Chapter 5

that a model updated with additional patient data can improve the performance of MIPD
on therapeutic target attainment [9]. A recent study also proposed a continued learning
framework which uses a sequential hierarchical Bayesian framework to update the model
during MIPD. With this method, the prior model used within MIPD is improved as new
data from the target patient population are integrated [16].

Nowadays advanced approaches such as machine learning (ML) approaches have also
shown to be able to assist with model selection for MIPD [17].

Model evaluation is also essential for selecting a model that is most suitable. This can be
done using the historical data considering the intention to use the model (TDM or starting
dose) [15]. In the case where inter-occasion variability (IOV, which represents intra-patient
variability) is considered, the predictive value of the historical data (covariate value, data

points from much earlier) to subsequent treatment courses needs to be evaluated [15].

3.3 User-friendly MIPD program

To motivate clinicians and clinical pharmacists to implement MIPD and remove the
barrier due to the lack of knowledge in quantitative pharmacology, translating the research
findings into user-friendly MIPD software would be beneficial and can also be challenging
[2]. Luckily, there are already multiple programs available and some are already integrated
with local electronic health records [2, 18]. The user-friendliness of 3 Bayesian forecasting
programs (TDMx, InsightRx and DoseMe) in a clinical setting has also been evaluated and
confirmed [19]. Moreover, many of the available programs also allow including new PK
models and adjust PK/PD targets [18]. In order to guide anti-cancer treatment, a program
that already has a validated model available for the intention drugs in the intention patient
population, or allows including such a new model would be ideal to be selected. Developing
a program for local use could also be an option, which can be facilitated by the increasingly
available program packages. In addition, training and education are still needed to increase

the uptake of MIPD into routine clinical practice [2].

3.4 Prospective clinical trials

To promote the implementation of MIPD in clinical practice, a necessity for prospective
clinical trials comparing standard dosing strategies versus MIPD has been highlighted
[4]. It is pointed out that the clinical evidence supporting the benefit of the MIPD tools
in improving patient outcomes is crucial for the integration of MIPD into clinical care
[4]. Although clinical trials will continue to take an important role, given the repeatedly

occurring evidence on the advantage of MIPD tools in cancer treatment from clinical trials
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and the ability of pharmacometric methods to provide the most likely beneficial strategy,

the requirement for largescale trials can decrease [8].

4. Conclusion

Substantial PK/PD variability and suboptimal dosing of anti-cancer drugs highlight the
need for precision dosing in real-world cancer patients. MIPD is a promising tool which
adopts pharmacometric models to guide precision dose selection aiming for improved
therapeutic target attainment and optimal treatment outcome. Many research and clinical
trials have demonstrated the benefits of applying MIPD in anti-cancer treatment, including
guiding dose selection and adaptation, as well as TDM. To promote the implementation
of MIPD in clinal cancer treatment, challenges regarding optimal target identification,
suitable model selection, available programs, and the necessity of prospective clinical

trials need to be addressed.

151



Chapter 5

References

1.

10.

11.

12.

13.

14.

15.

152

Verheijen RB, Yu H, Schellens JHM, Beijnen JH, Steeghs N, Huitema ADR. Practical
Recommendations for Therapeutic Drug Monitoring of Kinase Inhibitors in Oncology. Clin
Pharmacol Ther. 2017;102(5):765-76. doi:10.1002/cpt.787.

Kluwe E Michelet R, Mueller-Schoell A, Maier C, Klopp-Schulze L, van Dyk M, et al.
Perspectives on Model-Informed Precision Dosing in the Digital Health Era: Challenges,
Opportunities, and Recommendations. Clin Pharmacol Ther. 2021;109(1):29-36. doi:10.1002/
cpt.2049.

Fourie Zirkelbach ], Shah M, Vallejo J, Cheng J, Ayyoub A, Liu J, et al. Improving Dose-
Optimization Processes Used in Oncology Drug Development to Minimize Toxicity and
Maximize Benefit to Patients. ] Clin Oncol. 2022;40(30):3489-500. doi:10.1200/JC0.22.00371.
Wright DFB, Martin JH, Cremers S. Spotlight Commentary: Model-informed precision
dosing must demonstrate improved patient outcomes. Br ] Clin Pharmacol. 2019;85(10):2238-
40. doi:10.1111/bcp.14050.

Lalonde RL, Kowalski KG, Hutmacher MM, Ewy W, Nichols DJ, Milligan PA, et al. Model-
based drug development. Clin Pharmacol Ther. 2007;82(1):21-32. doi:10.1038/sj.clpt.6100235.
Buil-Bruna N, Lopez-Picazo JM, Martin-Algarra S, Troconiz IF. Bringing Model-Based
Prediction to Oncology Clinical Practice: A Review of Pharmacometrics Principles and
Applications. Oncologist. 2016;21(2):220-32. doi:10.1634/theoncologist.2015-0322.
Barbolosi D, Ciccolini J, Lacarelle B, Barlesi F Andre N. Computational oncology--
mathematical modelling of drug regimens for precision medicine. Nature Reviews Clinical
Oncology. 2016;13(4):242-54. doi:10.1038/nrclinonc.2015.204.

Menz BD, Stocker SL, Verougstraete N, Kocic D, Galettis P, Stove CP, et al. Barriers and
opportunities for the clinical implementation of therapeutic drug monitoring in oncology. Br
J Clin Pharmacol. 2021;87(2):227-36. doi:10.1111/bcp.14372.

Shukla P, Goswami S, Keizer R], Winger BA, Kharbanda S, Dvorak CC, et al. Assessment of
a Model-Informed Precision Dosing Platform Use in Routine Clinical Care for Personalized
Busulfan Therapy in the Pediatric Hematopoietic Cell Transplantation (HCT) Population.
Front Pharmacol. 2020;11:888. doi:10.3389/fphar.2020.00888.

Briki M, Andre P, Thoma Y, Widmer N, Wagner AD, Decosterd LA, et al. Precision Oncology
by Point-of-Care Therapeutic Drug Monitoring and Dosage Adjustment of Conventional
Cytotoxic Chemotherapies: A Perspective. Pharmaceutics. 2023;15(4). doi:10.3390/
pharmaceutics15041283.

Klopp-Schulze L, Mueller-Schoell A, Neven P, Koolen SLW, Mathijssen RH]J, Joerger M, et
al. Integrated Data Analysis of Six Clinical Studies Points Toward Model-Informed Precision
Dosing of Tamoxifen. Front Pharmacol. 2020;11:283. doi:10.3389/fphar.2020.00283.

Joerger M, von Pawel ], Kraff S, Fischer JR, Eberhardt W, Gauler TC, et al. Open-label,
randomized study of individualized, pharmacokinetically (PK)-guided dosing of paclitaxel
combined with carboplatin or cisplatin in patients with advanced non-small-cell lung cancer
(NSCLC). Ann Oncol. 2016;27(10):1895-902. doi:10.1093/annonc/mdw290.

Shafiei M, Mahmood A, Beale P, Galettis P, Martin ], McLachlan AJ, et al. Dried Blood Spot
Sampling in the Monitoring of Anticancer Therapy for Solid Tumors: A Systematic Review.
Ther Drug Monit. 2023;45(3):293-305. doi:10.1097/FTD.0000000000001082.

Janssen JM, Dorlo TPC, Beijnen JH, Huitema ADR. Evaluation of Extrapolation Methods to
Predict Trough Concentrations to Guide Therapeutic Drug Monitoring of Oral Anticancer
Drugs. Ther Drug Monit. 2020;42(4):532-9. doi:10.1097/ftd.0000000000000767.

KeizerR], Ter Heine R, Frymoyer A, Lesko L], Mangat R, Goswami S. Model-Informed Precision
Dosing at the Bedside: Scientific Challenges and Opportunities. CPT Pharmacometrics Syst
Pharmacol. 2018;7(12):785-7. doi:10.1002/psp4.12353.



MIPD in oncology

16.

17.

18.

19.

Maier C,de Wiljes ], Hartung N, Kloft C, Huisinga W. A continued learning approach for model-
informed precision dosing: Updating models in clinical practice. CPT Pharmacometrics Syst
Pharmacol. 2022;11(2):185-98. doi:10.1002/psp4.12745.

Poweleit EA, Vinks AA, Mizuno T. Artificial Intelligence and Machine Learning Approaches
to Facilitate Therapeutic Drug Management and Model-Informed Precision Dosing. Ther
Drug Monit. 2023;45(2):143-50. doi:10.1097/FTD.0000000000001078.

Jager NGL, Chai MG, van Hest RM, Lipman ], Roberts JA, Cotta MO. Precision dosing software
to optimize antimicrobial dosing: a systematic search and follow-up survey of available
programs. Clin Microbiol Infect. 2022;28(9):1211-24. doi:10.1016/j.cmi.2022.03.041.

Kumar AA, Burgard M, Stacey S, Sandaradura I, Lai T, Coorey C, et al. An evaluation of the
user-friendliness of Bayesian forecasting programs in a clinical setting. Br J Clin Pharmacol.
2019;85(10):2436-41. doi:10.1111/bcp.14066.

153






Population pharmacokinetic and
pharmacogenetic analysis of mitotane in
patients with adrenocortical carcinoma:
towards individualized dosing

Anyue Yin, Madeleine H.T. Ettaieb, Jesse J. Swen, Liselotte van Deun,

Thomas M.A. Kerkhofs, Robert J.H.M. van der Straaten, Eleonora P.M. Corssmit,
Hans Gelderblom, Michiel N. Kerstens, Richard A. Feelders, Marelise Eekhoff,
Henri J.L.M. Timmers, Antonio D'Avolio, Jessica Cusato, Henk-Jan Guchelaar,
Harm R. Haak, Dirk Jan A.R. Moes

Clin Pharmacokinet. 2021 Jan;60(1):89-102



Chapter 6

156

Abstract

Background: Mitotane is the only approved treatment for patients with adrenocor-
tical carcinoma (ACC). A better explanation for the variability in the pharmacoki-
netics (PK) of mitotane, and the optimization and individualization of mitotane

treatment, is desirable for patients.

Objectives: This study aims to develop a population PK (PopPK) model to char-
acterize and predict the PK profiles of mitotane in patients with ACC, as well as to
explore the effect of genetic variation on mitotane clearance. Ultimately, we aimed

to facilitate mitotane dose optimization and individualization for patients with ACC.

Methods: Mitotane concentration and dosing data were collected retrospectively
from the medical records of patients with ACC taking mitotane orally and partici-
pating in the Dutch Adrenal Network. PopPK modelling analysis was performed
using NONMEM (version 7.4.1). Genotypes of drug enzymes and transporters,
patient demographic information, and clinical characteristics were investigated
as covariates. Subsequently, simulations were performed for optimizing treatment

regimens.

Results: A two-compartment model with first-order absorption and elimination
best described the PK data of mitotane collected from 48 patients. Lean body weight
(LBW) and genotypes of CYP2C19*2 (rs4244285), SLCOIB3 699A>G (rs7311358),
and SLCO1BI1 571T>C (rs4149057) were found to significantly affect mitotane
clearance (CL/F), which decreased the coefficient of variation (CV%) of the random
inter-individual variability of CL/F from 67.0 to 43.0%. Fat amount (i.e. body weight
- LBW) was found to significantly affect the central distribution volume. Simulation
results indicated that determining the starting dose using the developed model is
beneficial in terms of shortening the period to reach the therapeutic target and limit
the risk of toxicity. A regimen that can effectively maintain mitotane concentration
within 14-20 mg/L was established.

Conclusions: A two-compartment PopPK model well-characterized mitotane PK
profiles in patients with ACC. The CYP2C19 enzyme and SLCO1B1 and SLCO1B3
transporters may play roles in mitotane disposition. The developed model is beneficial
in terms of optimizing mitotane treatment schedules and individualizing the initial

dose for patients with ACC. Further validation of these findings is still required.



Population PK and PG analysis of mitotane

1. Introduction

Adrenocortical carcinoma (ACC) is a rare endocrine malignancy (1 per million per year)
with a poor prognosis and limited treatment options [1]. Mitotane, a highly lipophilic
compound, is the only treatment approved by the US FDA and the European Medicines
Agency for ACC [1]. Mitotane is developed as an orally administered treatment and its
absorption is improved by concomitant intake of fat-rich food [2]. The bioavailability of
mitotane is around 35-40% [3]. Mitotane has a high volume of distribution and the primary
distribution site is fat [3, 4]. The half-life of mitotane elimination ranges from 18 to 159

days, with a median of 53 days [2, 3].

The efficacy and toxicity of mitotane are related to the plasma concentration [1, 3]. In
order to ensure efficacy and avoid increased toxicity, the mitotane plasma concentration
should be between the therapeutic range of 14 and 20 mg/L, which requires therapeutic
drug monitoring (TDM) [1].

However, due to the large distribution volume and long half-life of mitotane, a long-time
interval (around 3-5 months [1]) is usually required for patients to reach the effective
concentration [3], which limits the clinical utility of mitotane. The inability to reliably predict
mitotane plasma concentrations may result in a prolonged time to reach the target value,
hence causing a significant delay in tumour treatment, or may give rise to drug toxicity. In
addition, it has been demonstrated that only half of the patients who received a high-dose
regimen for 3 months achieved the target [5], suggesting a demand for individualized
treatment and a presence of high inter-individual variability (IIV) in the pharmacokinetics
(PK) of mitotane. Currently, the dosage titration is largely expert-based, making it prone
to errors. Therefore, a tool enabling mitotane concentration prediction and an optimized
treatment regimen for individual patients, which shortens the period required to reach the

target concentration while limiting the toxicity, would be desirable for patients with ACC.

A population PK (PopPK) modelling approach with mixed-effect models enables quan-
titative characterization and prediction of drug PK profiles for both the study population
and individuals [6]. The development of a PopPK model of mitotane would be beneficial
for the characterization and understanding of mitotane PK, as well as for the optimization
and personalization of mitotane treatment. Until now, two studies have performed PopPK
modelling analysis on mitotane in patients with ACC [3, 7]; one-compartment models
were developed in these two studies. One study assuming a self-induced clearance and a
body mass index (BMI) was found to be a covariate of mitotane distribution volume [3],
while the other study identified the effects of triglyceride and high-density lipoprotein on

mitotane clearance [7]. Another model-based PK study of mitotane developed a three-
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compartment model and showed weak correlations of age, sex, body weight, height, and

body surface area with model parameters [8].

In order to further elucidate the variability of mitotane PK, it would be beneficial to explore
the effect of pharmacogenetic polymorphisms [8]. Although the exact PK pathway of
mitotane and the enzymes involved in mitotane metabolism remain unknown [9], two
studies suggested possible roles for cytochrome P450 (CYP) 2B6 and CYP2C9 [10, 11].
One study demonstrated that the genotype of CYP2B6*6 (rs3745274) was significantly
correlated with mitotane plasma concentrations at 3 and 6 months after the initiation of
treatment [10]. The other study showed that one patient with high mitotane concentra-
tion was a CYP2C9 intermediate metabolizer [11]. Further analysis of the relationship
between genes encoding for PK enzymes and transporters and mitotane PK profiles,
and incorporating these variables into a PopPK model, may allow better explanation of

mitotane PK variability.

In the current study, a PopPK analysis was performed for mitotane in patients with ACC
utilizing the retrospectively collected PK data. The effect of genes encoding drug absorp-
tion, distribution, metabolism, and elimination (ADME), patient demographic informa-
tion, and clinical characteristics on mitotane PK were investigated as covariates. We aimed
to develop a PopPK model to describe and predict the PK of mitotane in patients with
ACC, as well as to explore the effect of genetic variation on mitotane clearance. Moreover,
we intended to better explain mitotane PK variability using the developed model and to

facilitate treatment optimization and individualization for patients with ACC.

2. Methods

2.1 Patients

Forty-nine adult patients diagnosed with ACC (=18 years old), who were enrolled in the
Dutch Adrenal Network Registry, had been treated with mitotane, had provided consent,
and had available mitotane dosing information as well as concentration data were included
in this PopPK analysis. One patient was eventually excluded because of missing information

regarding starting dose.

The study was approved by the Medical Ethical Committee of the Maxima Medical Center,
Veldhoven (2015), and approval for the inclusion of patients in other institutes was obtained
from the local boards. The required informed consents were obtained from all patients.
All procedures performed in this study were in accordance with the ethical standards of
the institutional Medical Ethical Committee and the 1964 Helsinki Declaration.
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2.2 Pharmacokinetic (PK) data

Data on mitotane plasma concentrations, including concentrations from routine TDM, data
sampled during one treatment interval, and data collected after treatment discontinuation,
as well as all mitotane dosing data, were collected retrospectively from patients’ medical
records. Patients administrated mitotane orally were advised to take mitotane with fat-
rich food. Concomitant medication information was not included in the current analysis
since the data were not complete. The mitotane plasma concentrations were determined
by a validated gas-chromatography/ mass spectrometry assay at the Department of
Clinical Pharmacy and Toxicology, Leiden University Medical Center (LUMC) [12]. The
lower limit of quantification (LLOQ) was 2 mg/L. In addition, patients’ demographic
information, including age, sex, and body weight (WT) and height (HT) at the start of
treatment, were collected. Furthermore, levels of serum aspartate transaminase (ASAT),
alanine transaminase (ALAT), gamma-glutamyltransferase (yGT), total cholesterol, and
estimated glomerular filtration rate (GFR; recorded as 0 if the result was > 60 mL/min/1.73

m?, otherwise 1) were also collected in our analysis.

Lean body weight (LBW) and fat amount (FAT) were also calculated for each patient.
LBW was estimated using the Boer formula [13] and FAT was obtained by subtracting
LBW from WT.

2.3 Genotyping method

The DNA of included patients was isolated from EDTA blood samples using Maxwell
(Promega, Leiden, The Netherlands) or MagNAPure compact (Roche, Almere, The
Netherlands). Genotyping of patients was performed using the Drug Metabolizing Enzymes
and Transporters (DMET™) Plus array (Affymetrix UK Ltd, High Wycombe, UK), which
contains 1936 genetic variants (1931 single nucleotide polymorphisms [SNPs] and 5 copy
number variations [CNVs]) of ADME-related enzymes and transporters [14], according to

the manufacturers’ protocol. The method has been previously described in detail [15, 16].

A preset selection was performed using the DMET™ console software that generates fully
annotated marker reports based on a translation file as recommended by Affymetrics® [17].
The reports include commonly recognized, haplotype-based allele calls commonly cited in
Medline reference studies [18-20]. The DMET™ Plus allele translation software produces
a comprehensive genotyping report containing pharmacogenomic reference data on all
probes. This step leads to the selection of 959 SNPs from the total of 1931 SNPs present
on the DMET™ platform. Subsequently, the SNPs that deviated from Hardy-Weinberg

equilibrium (p < 0.0001), with a call rate below 97% or with a minor allele frequency
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(MAF) < 0.1, as well as tri-allelic SNPs and SNPs of genes located on the X chromosome,
were excluded from further analysis.

2.4 Population PK model development

Based on the obtained mitotane concentration data, a non-linear mixed-effects model was
developed. Parameters were estimated using the first-order conditional estimation method
with interaction (FOCEI) implemented in NONMEM software version 7.4.1 (ICON
Development Solutions, Ellicott City, MD, USA). One-, two- and three-compartment
models with first-order absorption and first-order elimination were explored as the
structural model. Data points below the LLOQ were omitted since they only contributed
to 3.6% of the observations [21, 22].

Since the majority of collected data were trough concentrations, and data regarding the
absorption phase were limited, the absorption rate constant (KA) was first estimated based
on a sub-dataset containing data of the patients who contributed multiple data points
during one treatment interval at steady state. The KA estimate was then fixed to analyze
the full dataset. Inter-occasion variability (IOV) was incorporated on apparent systemic
clearance (CL/F) and every 200 days of treatment was defined as an occasion. In addition,
to simplify the situation, all patients were assumed to receive a single dose once daily at

8:00 am, with the dose amount being equal to the total daily dose.

A further detailed description of the PopPK modelling methods is shown in Online
Resource 6.1.

2.5 ldentify potential correlated single nucleotide polymorphisms and covariate
analysis

Since knowledge regarding the relationship between mitotane clearance and pharma-
cogenetic polymorphisms is limited, an exploratory analysis was first performed to find
potential SNPs that were correlated with mitotane clearance. The estimates of random IIV
of CL/F (n,,, .,) from the basic model and the genotyping results were utilized. For each
SNP, when the number of patients in a minor homozygous group was < 4, the results of
these patients were combined with the corresponding heterozygote group for the associa-
tion analysis assuming a dominant allele effect. Additionally, when the number of patients
with genotype results of zero copy number’ or ‘possible rare allele’ was less than four, or
when patients had ‘NoCall’ results, the results were not included for statistical analysis.

A one-way analysis of variance (ANOVA) test and a two-sided t test were performed
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using R version 3.6.1 (The R Foundation for Statistical Computing Vienna, Austria) to
evaluate the differencein . , across genotype groups for each SNP. Selection of the test
method depended on the number of genotype groups of each SNP after the combination.
The SNPs were considered to correlate with mitotane clearance if the p-value was < 0.05.
Correction for multiple testing was not performed due to the exploratory characteristics

of the current analysis.

The identified SNPs, as well as patient demographic information and clinical character-
istics, were considered in the covariate analysis. The stepwise covariate modelling (SCM)
function implemented with Perl-Speaks-NONMEM (version 4.7.0) [23] was applied. Both
forward inclusion (p < 0.05) and backward elimination processes (p < 0.01) were performed
to identify significant covariates. A more detailed description of the covariates analysis is

shown in Online Resource 6.1.

2.6 Model evaluation

The predictability and stability of the final model was evaluated using goodness-of-fit (GOF)
plots, prediction-corrected visual predictive checks (pcVPC) [24], and non-parametric
bootstrap. Normalized prediction distribution errors (NPDEs) were also applied for
evaluation. All figures were created using R (The R Foundation for Statistical Computing).

A detailed description of the evaluation methods is shown in Online Resource 6.1.

2.7 Simulations for treatment optimization

Based on the final model, simulations were performed to optimize mitotane dosing regimen
and starting dose determination, in order to shorten the target-reaching time while limiting
the risk of toxicity. The simulation was performed for patients included in this study, as
they are considered to be able to represent the corresponding adult patient population.
The individual parameters of each patient were used to simulate the ‘real’ mitotane

concentrations (C ) under each regimen. The residual errors were not considered.

sim_real
Different strategies of adjusting the dose according to C; . are shown in Figure 6.1. All
simulations were performed using R (The R Foundation for Statistical Computing) and the
differential equations were solved using the RODE package (version 0.6-1) [25]. A detailed

description of the regimens and simulation methods are shown in Online Resource 6.1.

On the basis of the simulated PK curves, for patients who originally reached the target,
the mean and maximum time needed to reach the target (T, the first day when C |

> 14 mg/L), the mean percentage of days when C_

. rea Was higher than 20 mg/L in the
first 200 days (P

), and the mean percentages of C__ located outside the thera-

toxicity:
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Figure 6.1: Designed treatment regimens that were evaluated by simulation. (a) A previously reported
dosing regimen (Regimen 1), where the dose started as 1.5 g/day and increased up to 6 g/day in 4 days
and continued until the next dose adjustment. The dosage was adjusted each time according to the
monitored mitotane concentration level. (b) Regimens where all patients started with 2 g (Regimen 2-2 g),
4 g (Regimen 2-4 g) or 6 g (Regimen 2-6 g) per day. Dosage increased by 0.5 g every 21 days till the target
was reached or 126 days if C < 14 mg/L. Thereafter, the dosage increased by 1.5gifC_ <14 mg/L,
remained unchanged if 14 mg/L < Csim_real < 18 mg/L, decreased by 1 gif 18 mg/L<C_ <20 mg/L,
and decreased by 3 g if C = 20 mg/L. (c) Regimens where patients started with an individualized dose

sim_real —

that allowed CSianred on day 77 (Regimen 3-77 day), 98 (Regimen 3-98 day), or 119 (Regimen 3-119 day)
reach the target. The remaining dose-adjustment strategies were the same as Regimen 2. (d) Regimens
where patients started with 4 g/day (Regimen 4) or an individualized dose (Regimen 5) and the dosage
decreased by 4 g, or 50%, if C . =20 mg/L. The remaining dose-adjustment strategies were the same
as Regimen 2. (e) Regimens where patients started with 4 g/day (Regimen 6) or an individualized dose
(Regimen 7) and the dosage increased by 1 g after reaching target or 126 daysif C__ <14 mg/L (Regimen
6-1 and 7-1), or increased by 1 g until reaching target or 126 days if C_ < 14 mg/L (Regimen 6-2 and
7-2). The remaining dose-adjustment strategies were the same as Regimen 2. (f) A regimen where patients
started with an individualized dose that remained unchanged until reaching target or 105 days if C__
< 14 mg/L. The remaining dose-adjustment strategies were the same as Regimen 2. (g) A regimen where
patients started with 4 g/day for the first 21 days and the next dosage was determined that allowed Csimiipred
on day 98 to reach the target (Regimen 9). The remaining dose-adjustment strategies were the same as
Regimen 8. C » simulated ‘real’ mitotane concentrations based on individual parameters, C » model

sim_real sim_pre

predictions based on patient characteristics, C model predictions using individual parameters, i.e.

sim_ipred”

incorporating the inter-individual variability (n,,,) estimated based on the first monitored concentration.

peutic window after reaching the target (P ), were calculated and compared across

o.window

different strategies. P represents the probability of causing toxicity in the early phase

toxicity

of treatment, and P represents the ability to maintain the concentration within the

o.window
therapeutic window. Meanwhile, the median maximum and minimum C__ . as well as
the range of determined starting doses, were also collected and evaluated. Asan optimized
regimen is expected to be able to ensure a shorter target-reaching time and well-maintain
the concentration within the therapeutic window while not causing much toxicity, the
optimization target was defined as the mean T < 90 days (3 months), the mean P

target —
< 10%, and themean P .~ ~<15%.

indo

toxicity

Using the optimized regimen, a Shiny application was created based on the Shiny package
(version 1.4.0) and the RxODE package in R (The R Foundation for Statistical Computing)
in order to perform simulation for a random patient and to elucidate an option of providing
treatment advice for a new patient based on the model. A detailed description is shown

in Online Resource 6.2.
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3. Results

3.1 Patients and data

Data from 48 patients with ACC (21 males and 27 females) were included in the PopPK
analysis. The characteristics of patients are summarized in Table 6.1. Patients received
mitotane treatment between 2002 and 2017, and the median duration of treatment was
713.5 days (range 90-2856). The total daily dosage ranged from 0.5 to 16 g/day and was
divided into one to four doses. Five (two patients), six (one patient), and eight (one patient)
daily dosages were also applied occasionally. Forty-one patients reached the concentration
target during treatment, among whom 16 patients reached the target after 150 days. In total,

914 concentration data points were collected from patients’ electronic hospital records,

Table 6.1: Patient characteristics (n = 48)

Characteristic Value/mean SD Range

Patient characteristics

No. of patients 48
Sex, male [n (%)] 21 (43.8)
Age, years® 52.0 12.1 22.6-76.8
Weight, kg® (n=2 no record) 80.0 15.9 52.5-120
Height, cm? (n=5 no record) 172 10.0 154-193
BMI, kg/m? (n=5 no record) 271 4.48 18.2-38.3
LBW, kg® (n=5 no record) 55.8 10.0 39.7-78.5
ASAT, IU/L® (n=1 no record) 45.15 353 16-185
ALAT, IU/L® (n=1 no record) 42.68 35.6 9-197
YGT, IU/L® (n=1 no record) 278.70 2159 55-898
GFR, >50% of records were normal [n (%)] (n=7 no record) 39(95.1)
Cholesterol, mmol/L® (=11 no record) 6.54 1.56 3.6-11.6
Disease characteristics [n (%)]
ENSAT |, patients 2(4.2)
ENSAT Il, patients 19 (39.6)
ENSAT IlI, patients 10 (20.8)
ENSAT IV, patients 17 (35.4)
Target-reaching characteristics
No. of patients who reached the target 41
150 days [n (%)] 16 (39.0)
<90 days [n (%)] 19 (46.3)
Target-reaching time, days 142 1139 24-579
Duration of treatment, days 742 553.2 90-2856

SD, standard deviation; BMI, body mass index; LBW, lean body weight; ASAT, aspartate transaminase; ALAT,
alanine transaminase; yGT, gamma-glutamyl transferase; GFR, glomerular filtration rate; ENSAT, European
Network for the Study of Adrenal Tumors.

2 At the start of treatment.

b Mean record of each patient.
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33 of which were below the LLOQ. The time-course of collected mitotane concentrations
is shown in Figure 6.2. Nine patients contributed multiple sampling data within one
treatment interval and 13 patients had more than one data point collected after treatment
discontinuation. The median number of data points contributed by each patient was 16.5,
ranging from 2 to 47.

Data from 48 patients with ACC (21 males and 27 females) were included in the PopPK
analysis. The characteristics of patients are summarized in Table 6.1. Patients received
mitotane treatment between 2002-2017 and the median duration of treatment was 713.5
days (range from 90-2856 days). The total daily dosage ranged from 0.5-16 g per day and
was divided into one to four doses. Five (2 patients), six (1 patient), and eight (1 patient)
daily dosages were also applied occasionally. Forty-one patients reached the concentration
target during treatment, among whom 16 patients reached the target after 150 days. In total,
914 concentration data points were collected from patients’ electronic hospital records,
33 of which were below the LLOQ. The time-course of collected mitotane concentrations
was shown in Figure 6.2. Nine patients contributed multiple sampling data within one
treatment interval and 13 patients have more than one data point collected after treatment
discontinuation. The median number of data points contributed by each patient was 16.5,
ranging from 2 to 47.

Mitotane Concentration (mg/L)

Mitotane Concentration (mg/L)

0 200 400 600
Time after first dose (days)

0 1000 2000 3000
Time after first dose (days)

Figure 6.2: Mitotane concentration-time curve collected from patients on logarithmic scale. Inserts show
the data during the first 600 days of treatment.
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3.2 The basic model

Based on the sub-dataset containing data from the nine patients with multiple sampling
data within one treatment interval, the KA was estimated as 22.1 (/day) and 15.0 (/day)
under a one-compartment and a two-compartment model structure, respectively. A
three-compartment model could not be identified, since (1) the time-course of mitotane
concentration did not meet the characteristics of a three-compartment model; and (2) when
running the three-compartment model, the parameters were shown to be unidentifiable.
The basic models were then developed by fitting the full dataset with fixed KA and
incorporating IOV on CL/E The relative standard error (RSE) parameter estimates of
both two-model structures were all within the acceptable range (< 30%). The objective
function value (OFV) of the two-compartment model was reduced by 92.13 compared
with that of the one-compartment model (p < 0.001, degree of freedom = 4), suggesting an
improvement on the model fitness. Therefore, the two-compartment model was ultimately
selected for describing mitotane PK profiles in patients with ACC in this study. The model
structure is shown in Online Resource 6.1, Figure S6.1. The parameter estimates of the
basic model are shown in Table 6.2. The high percentage coefficient of variation (CV%)
of IIV for all parameters was identified, and the CV% of IIV for the apparent distribution
rate constant (Q/F) was even higher than 100%.

3.3 Pharmacogenetic analysis

For each patient, the genotyping results of the 959 SNPs from the DMET™ platform
were obtained. A list of these SNPs can be found in Online Resource 6.3. All SNPs
were in Hardy-Weinberg equilibrium (p > 0.0001). A flow diagram of the selection of
genetic variants is shown in Figure 6.3. Eventually, 172 SNPs were included for further
investigation. Among these 172 SNPs, 55 had less than four patients belonging to the
minor homozygous group. The ‘NoCall’ result was reported in one patient in 19 SNPs
and the ‘Possible Rare Allele’ result was reported in one patient in one SNP. The results of
these patients were thus not included in the association analysis of corresponding SNPs. In
contrast, the “Zero Copy Number’ result occurred in three SNPs in 8, 24, and 24 patients,
respectively. Thus, patients with a ‘Zero Copy Number’ were treated as a different genotype

group in the association analysis of these three SNPs.

Finally, the result of the association test showed that 11 SNPs, as shown in Online Resource
6.1, Table S6.1, were potentially related to mitotane clearance (p < 0.05). Among these
11 SNPs, the genotyping results of CYP2CI8 1154C>T (rs2281891) and CYP2C19*2
(rs4244285) were shown to be 100% in linkage disequilibrium in our dataset, which was
the same as the genotyping results of SLCO1B3 334G>T (rs4149117), 699A>G (rs7311358),
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and 1557G>A (rs2053098) and that of the three SNPs located on VKORCI (283+124G>C,
174-136C>T, and -1639G>A). The results of the 11 identified SNPs were subsequently

combined into the full dataset for stepwise covariate analysis.

1936 genetic variant
from DMET™ plus array

Excl. 5 CNVs

1931

;
i

Excl. 972 SNPs based on a
translation file recommended

by Affymetrics®
959 vy

Excl. 57 SNPs call rate < 0.97 ]

902

Excl. 20 SNPs on Ch X ]

882

frt

—

Excl. 1 Triallelic SNP ]

881

T

Excl. 709 SNPs Minor allele frequency <0.1 ]

j

172 SNPs

Figure6.3: Selectionofthegeneticvariants.Excl.excluding, Ch X chromosome X, DMET™ Drug Metabolizing
Enzymes and Transporters, CNVs copy number variations, SNPs single nucleotide polymorphisms.

3.4 The final model

The parameter estimates of the final model are shown in Table 6.2. The CYP2C19*2
(rs4244285), SLCO1B3 699A>G (rs7311358), and SLCOIBI 571T>C (rs4149057)
genotypes, and LBW at the start of treatment, with power relation, were found to have a
significant effect on the CL/F of mitotane (Table 6.2). Carrying the A’ variant in CYP2C19*2
reduced the CL/F by 44.9%, and carrying ‘G’ variant in SLCOI1B3 699A>G resulted in a
39.9% reduction in CL/F (Table 6.2). As for SLCO1B1 571T>C, the CL/F of patients carrying
one ‘C’ variant decreased to 40.2% that of wild-type patients, while the CL/F of patients
carrying two ‘C’ variants decreased to 30.2%. The distribution of 77, , derived from the

basic model in each genotype group of the above three SNPs is shown in Online Resource
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6.1, Figure S6.2. In addition, FAT at the start of treatment with power relation was found
to significantly influence the apparent distribution volume of the central compartment
(V/F). The inclusion of these covariates decreased the CV% of CL/F and V /F from 67.0%
and 68.1% to 43.0% and 47.2%, respectively. Overall, the parameter estimates were shown
to be in good agreement with the bootstrap results (Table 6.2).

The GOF plots (Figure 6.4) show that the individual predictions of the final model are
in good accordance with the observations, while the population predictions are slightly
deviated from the observations. The conditional weighted residual errors (CWRES)
randomly distributed around zero, without obvious trends over time or across population
predictions. The pcVPC plot (Figure 6.5) shows that the 5%, 50%, and 95% percentiles of
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Figure 6.4: Goodness-of-fit plots of the final population pharmacokinetic model of mitotane in patients
with adrenocortical carcinoma, including observations versus (a) population predictions and (b) individual
predictions, and CWRES versus (c) time and (d) populations predictions. The black dotted lines represent y =
x (a, b) and y = 0 (¢, d), and the black dashed lines represent the corresponding LOESS regressions. CWRES;
conditional weighted residual errors; LOESS, locally estimated scatterplot smoothing.
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o
[=]

Mitotane concentration (mg/L)

0 1000 2000 3000
Time (day)

Figure 6.5: Prediction-corrected visual predictive check plot of the final model on the logarithmic scale.
Black dashed lines represent the 50, 95™ and 5" percentiles of the prediction- corrected observations; light-
grey shading represents the 95% confidence interval of the 95t and 5% percentiles of the simulations; and
dark-grey shading represents the 95% confidence interval of the 50" percentiles of the simulations.

prediction-corrected concentrations can be mostly adequately covered by the 95% confi-
dence interval (CI) of the corresponding percentiles of simulations, although a few large
prediction-corrected concentrations are present. The NPDE results are shown in Online

Resource 6.1, Figure $6.3.

3.5 Simulation results
The simulation results of different regimens in included patients who originally reached

the target (n = 41) are summarized in Table 6.3.

The previously suggested high-dose regimen (Regimen 1) resulted in the lowest T but

target

thehighestP . .TheC_  canalsonotbe well-maintained within the therapeutic range.

As for the newly designed strategies, if all patients started with the same dosage (Regimen
2-2g,2-4 gand 2-6 g), the increase in the starting dosage reduced the T, butincreased
P, ity a0d weakened the ability of maintaining C |

determining the starting dose individually (Regimen 3-77 day, 3-98 day and 3-119 day),
Regimen 3-98 day fulfilled the optimization target and resulted inalower T, buthigher

within the therapeutic range. When

P and P compared with Regimen 2-4 g. The range of determined starting dose

toxicity o.window

was in accordance with what is currently recommended [26] (Table 6.3).
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Table 6.3: Simulation results of different treatment regimens for included patients who originally reached
the target (n=41)

Mean Median Starting
Regimen Mean Max meimy Mean max / min dose range
(Figure 6.1) Ttarget (day) Ttarget (day) (%) P window (%0) CSirrLreaI (mg/L) (9)
1 54.22 125 23.6 18.35 223/13.11 -
2-2g9 133.98 236 4.16 12.6 20.65/13.14 2
2-4g 89.8 182 7.01 13.15 2090/1320 4 *
2-69g 60.61 149 13.85 15.13 21.13/13.09 6
3-77 day 73 173 10.63 12.7 21.07/1329  35-7
3-98 day 85.07 182 9.26 1435 21.03/13.16  3-6 *
3-119 day 97.9 191 6.44 12.22 20.96/13.21 2.5-5
4-(-49) 89.8 182 5.96 12.66 2091/1322 4 *
4-50% 89.8 182 8.82 1237 2091/1322 4 *
5-(-49) 85.07 182 7.92 13.01 20.84/13.14  3-6 ¥
5-50% 85.07 182 11.13 12.21 20.84/13.22  3-6
6-1 91.12 194 6.61 13.37 20.84/12.91 4
6-2 74.32 151 14.34 16.26 21.57/13.02 4
7-1 86.12 194 8.52 14.69 21.03/1296  3-6 *
7-2 80.27 160 14 15.53 21.46/1287  2.5-5
8 87.85 191 5.05 11.26 20.34/1330  3.5-7 *
9 87.8 161 5.56 10.72 20.33/13.09  3-10 *

T,rgew tArget reaching time (the day when simulated mitotane concentration = 14 mg/L), Pyovicty” PEFCENtagE
of days when simulated mitotane concentrations were higher than the upper limit of mitotane therapeutic
window (20 mg/L) in the first 200 days, P_ . ., percentage of simulated mitotane concentrations located
outside the therapeutic window after reaching the target, max maximum, min minimum, * indicates the
regimen fulfills the optimization target, C simulated ‘real’ mitotane concentrations based on individual

parameters.

sim_real

Compared with Regimens 2-4 g and 3-98 day, increasing the dose reduction amount to 4
gwhenC_  >20mg/Lreduced theP and P

sim_real toxicity o.window®

when C_ > 20 mg/L reduced the P

sim_real

whereas setting a 50% deduction

., but increased the P (Regimen 4 and 5).

inds toxicity

Both of these changes did not affect T__ . In contrast, when adjusting the dose change
amount when C_ < 14 mg/L, the evaluated regimens did not provide better results

sim_real

(Regimens 6 and 7).

Regimen 8, where a constant starting dose determined by the model was applied, provided
generally better results compared with starting with 4 g/day for all patients (Regimen 2-4
g)intermsof T P .. andtheability to maintain concentration within the therapeutic
range. The suggested starting dose range (3-7 g, median 5 g) was slightly beyond the
current recommended range but was considered to be acceptable. In comparison, when
determining a constant dose using individual PK parameters (incorporating II'V estimates)

[Regimen 9], the P and maximum nge[ decreased. Although meidty increased, it was

o.window
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still low enough. The suggested doses under Regimen 9 were relatively higher (3-10 g)

since ITV was taken into account.

Opverall, Regimens 2-4 g, 3-98 day, 4-(-4 g), 4-(-50%), 5-(-4 g), 7-1, 8, and 9 fulfilled the
optimization target. The individualized starting dose resulted in a lower T, but higher
P iy compared with the fixed starting dose. Regimens 3-98 day and 5-(-4 g) provided

thelowestmeanT, , while regimen 5-(-4 g) resulted in lower P

. - Regimen 8 provided

toxicit
the lowest P and Regimen 9 provided the lowest maximum T and mean P___ .
Based on these results, Regimen 5-(-4 g) and Regimen 8 were considered to be more
beneficial, while Regimen 9 could also be applied, considering the patients’ tolerance to

the level of dose increase.

The Shiny app was established based on the final model, and the treatment strategy 5-(— 4
g) was applied since this regimen provided the lowest mean T, . A reduced model where
the effect of pharmacogenetic variation was not included was also built in to serve as an
alternative option for patients when genotyping results were not available. The results are

shown in Online Resource 6.2.

4. Discussion

In the current study, a two-compartment PopPK model was developed that adequately
described the PK profile of mitotane in patients with ACC. The covariates identified
explained 24% and 20.9% of random variability in mitotane clearance and distribution
volume, respectively. As mitotane distributes in most body tissues, predominantly in the
fat [1], the two-compartment model structure is considered to also be in line with the PK
characteristics of mitotane, although the wide 95% CI of the Q/F parameter still indicates
uncertainty in the estimation. A three-compartment model structure, which has been
previously applied on mitotane [8], could not be identified in this study as the time-course
of mitotane concentration did not meet the characteristics of a three-compartment model

and parameter estimates for the three-compartment model were found to be unidentifiable.

Because of the limited data in the absorption phase, KA was first estimated based on a
sub-dataset and then fixed to analyze the full dataset. Precise KA estimation was unidentifi-
able if estimating based on the full dataset. The estimates of V /F and V /F were relatively
large, which is in accordance with previous reports and the fact that mitotane distributes
in many body tissues [1, 3]. The separate effects of LBW and FAT on mitotane distribution
volumes were of interest in this study as they are more realistic covariates physiologically

(3, 4]. As a result, FAT was found to be a significant covariate on the V /E The estimated
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half-life of mitotane in the included patients ranged from 16.4 to 700.6 days, with a
median of 101.5 days. This range is wider than what has been previously reported [1, 2],
which may be explained by the larger number of patients included in the current study
than in the original study [2]. Incorporating IOV on CL/F in the current study explained
the intrasubject variability. The estimates of IOV indicate an overall increasing clearance
during the first 500 days, followed by a decrease thereafter (Online Resource 6.1, Figure
$6.4). This dynamic indicates that a self-induction in mitotane clearance, which has been

suggested previously [3], may exist temporarily.

For the first time, the current study explored and quantified the potential effect of pharmaco-
genetic variation on mitotane clearance in patients with ACC. Due to the lack of knowledge
regarding the PK pathway of mitotane, a wide range of SNPs from the DMET™ Plus array
were considered. However, because of the limited number of patients, it was decided to
focus on the SNPs with known functionality by adopting a preset selection [17], although
an exploratory analysis based on all genetic variants from the DMET™ Plus array was also
performed. The flow diagram of the SNP selection and the nine additional SNPs that are
potentially correlated to mitotane clearance if the preset selection was not considered are
shown in Online Resource 6.1, Table $6.2 and Figure S6.5. Genes located on the X chromo-

some were excluded since only the general influence of sex on mitotane PK was considered.

Eventually, three SNPs, i.e. CYP2C19*2 (rs4244285), SLCO1B3 699A>G (rs7311358), and
SLCOIB1 571T>C (rs4149057), were included in the final model and were considered
as the pharmacogenetic polymorphisms that should be considered for mitotane dose
selection. This result also suggests that the CYP2C19 enzyme and SLCO1B3 and SLCO1B1
transporters for drug uptake in the liver might be involved in the mitotane PK pathways,

but further confirmation is required.

In fact, in our dataset, CYP2C19*2 was in 100% linkage disequilibrium with CYP2C18
1154C>T (rs2281891), which was the same as SLCO1B3 699A>G with SLCO1B3 334G>T
(rs4149117) and SLCO1B3 1557G>A (rs2053098). Comparable high linkage disequilibrium
was also found in 1000 Genomes CEU population (Utah residents with Northern and
Western European ancestry). Compared with CYP2C18 1154C>T, for which no sufficient
evidence has been found regarding the effect on the drug PK, the ‘A’ variant of CYP2C19*is
known to be a nonfunctioning variant and has been demonstrated to decrease the activity
of CYP2C19 [27, 28]. Similarly, the variants of SLCO1B3 699A>G with SLCO1B3 334G>T
have been reported to be associated with a decrease in drug clearance, and SLCOIB3
699A>G has a stronger level of clinical annotations [29, 30]. Therefore, CYP2C19*2 and
SLCO1B3 699A>G were included in the final model.
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CYP2B6*6, which has been reported to be related to mitotane plasma concentrations
detected at 3 and 6 months [10], was not found to have a significant effect on mitotane
clearance in the current study. Among the five SNPs located on CYP2B6 that were included
in the association analysis, none were significantly related to mitotane clearance (p > 0.05).
This discrepancy may be due to the much longer observation period in the present study.
One SNP located on CYP2C9, CYP2C9*2 (rs1799853), was also not found to be significant;

however, the evidence of the involvement of CYP2C9 is in fact insufficient.

The predictability and stability of the final model were confirmed to be acceptable. In the
pcVPC plot, a few prediction-corrected concentrations are inadequately covered by the
simulations. A possible explanation is that the observations at corresponding time points
are from a single patient and the population prediction of this patient is much smaller than
real observations. The deviation of population predictions from observations can also be
seen in the GOF plots. Patients’ adherence and other unknown factors may also introduce
additional bias. Identification of additional covariates, such as the effect of co-medication

and food intake, might improve the population predictions.

Based on the final PopPK model, several mitotane treatment strategies were designed and
evaluated by simulations. A regimen with a bolus dose followed by a maintenance dose
was not considered as this regimen requires a high dosage, which is not tolerable for some
patients. Among the regimens that fulfilled the optimization target, applying the individual
starting dose determined by the model was demonstrated to shorten the time to achieve
the therapeutic window compared with starting with a fixed dose for all patients. Under
the setting of individualized starting dose, the regimens with a stepwise increasing dose at
start required less time to reach the therapeutic target, while the regimen with a constant
starting dose demonstrated the lowest risk of having toxicity. The determined individual
starting dose was also acceptable. In addition, the newly designed dose-adjustment strate-
gies were able to satisfactorily keep the mitotane concentrations within the therapeutic
range. Therefore, determining the starting dose using the developed model is considered
to be most beneficial in terms of shortening the time to reach the therapeutic target and

limit the risk of toxicity. However, due to the fact that a shorter T is normally paired

target
with a higher P_. . itis suggested to consider, based on a patient’s condition, whether the

increased risk of having toxicity can be tolerated in order to gain the benefit of a shorter

time to reach the therapeutic target when selecting a dosing regimen.

Obtaining individual parameters based on one (or more) TDM result with the PopPK
model, and determining the dose amount accordingly, can also decrease the risk of toxicity

while providing a satisfactory target reaching time; thus, this is also a promising strategy.
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However, patients’ tolerance to the high level of dose increase needs to be considered when
applying this strategy. This method can also be useful to estimate an adequate dose for
the drug concentration level maintenance after reaching the therapeutic window, thereby

decreasing the frequency of dose adjustment.

Simulation results also indicate that in order to reduce the risk of having toxicity and to
effectively maintain mitotane concentration within the therapeutic range, a better strategy
is to set the concentration boundary of dose decreases at 18 mg/L instead of 20 mg/L. This
early dose adjustment takes into consideration the 7-day period when the monitoring result
is unknown and the dose is not adjusted. The concentration boundary of dose increases
needs to be 14 mg/L since it affects the adequacy of maintaining the plasma concentra-
tion above 14 mg/L. The frequency of TDM was set at once every 21 days, as suggested by
the guideline in the simulation. If TDM is performed less frequently, a larger dose change

step will be required.

The current study has some limitations. First, the small number of patients included in
this study and the exploratory characteristics of this analysis may influence the power
of covariate analysis, especially for pharmacogenetic analysis. However, as the dataset
consisted of concentrations on different occasions for each patient, which enabled differ-
entiation between II'V and intrasubject variability (i.e. IOV) in clearance, the certainty of
the possible genotype effect on clearance, which is more likely to be covered by IIV since
genotype is a constant factor in patients, was increased. Nonetheless, further validation
with an external dataset to replicate the findings is warranted to confirm the identified
associations and to translate the findings into a clinical recommendation. However, since
ACC is a very rare disease (1 per million per year), the collection of another comparable
or even larger dataset will be challenging. Therefore, an in vitro assay might be more
feasible in future studies to substantiate the activity of the suggested enzymes in mitotane
PK. Second, the model lacks a strong ability to accurately predict high concentrations
(e.g., peak concentrations) due to the limited data input in the absorption and distribution
phase. Furthermore, the accuracy of parameter estimates may be affected by our simpli-
fication of multiple daily dosing to a single dose. However, the prediction of mitotane
trough concentrations and the suggestion of daily dose based on the model will not be
significantly affected. Therefore, we believe this model is still fit for the current applica-
tion. Third, the impact of coadministrated drugs and food intake on mitotane PK was not

taken into account in this study due to the lack of data.
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5. Conclusions

The current study presents a two-compartment PopPK model that well-characterizes
mitotane PK profiles in patients with ACC. The polymorphisms of CYP2C19*2 (rs4244285),
SLCO1B3 699G>A (rs7311358), and SLCOIB1 571T>C (rs4149057) were found to be
correlated to mitotane PK. Further external or in vitro evaluation is suggested to confirm
the results. Moreover, optimized mitotane treatment schedules for patients with ACC were
identified by simulation and the developed model can be of help to individualize the initial

dose. These strategies should be confirmed in a prospective study

Key points

o Atwo-compartment population pharmacokinetic (PK) model with first-order absorp-
tion and elimination was developed for mitotane based on PK data collected from 48
adrenocortical carcinoma patients.

o The pharmacogenetic variation of CYP2C19*2 (rs4244285), SLCO1B3 699A>G
(rs7311358),and SLCO1B1 571T>C (rs4149057) was found to have a significant effect
on mitotane clearance. Fat amount, which was defined as the difference between total
body weight and lean body weight, had a significant effect on the central distribution
volume.

«  With the help of the model, mitotane treatment can be guided and optimized for indi-

vidual patients. Further validation of the findings is warranted to confirm the results.

Code availability

PopPK analysis was performed using the FOCEI method implemented in NONMEM
software version 7.4.1 (ICONDevelopment Solutions). Statistical analysis, plot generation,
and simulations were performed using R version 3.6.1 (The R Foundation for Statistical
Computing). The R script of the Shiny application established in this study for simulation
can be found at https://github.com/AnyueYin/Shiny-app-script-for-model-simulation-

--Population-PK-and-PG-analysis-of-mitotane.
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Online Resource 6.1: Supplementary methods, figures and tables

Supplementary population PK analysis methods

One-, two- and three-compartment models, with first-order absorption and first-order
elimination, were explored as the structural model. Relative standard error (RSE) of
parameters, which represent the precision of parameter estimates, and the objective
function value (OFV) were considered when evaluating the structural models. The one

with acceptable RSE and lower OFV was selected as the final basic model structure.

Inter-individual variability (IIV) of parameters were estimated with Eq. 6.1, where P,
represents the parameter of ith individual and was assumed to be log-normally distributed,
P, represents typical value of the parameter, and #,,,, represents the random IIV which
was assumed to be normally distributed with mean of 0 and variance of w? In addition,
inter-occasion variability (IOV), which reflects the intra-individual variability, of apparent
systematic clearance (CL/F) was also included when analyzing the full dataset. As is shown
in Eq. $6.1, 77, represents the random IOV. The distribution of 77, in each occasion was
assumed to be similar and normally distributed with mean of 0 and variance of w,’. In
this study, every 200 days of treatment was defined as an occasion as the total observation

periods of the patients were long.

The residual error was characterized with a combined proportional and additive model
as is shown in Eq. $6.2, where Obs represents observations, IPRED represents individual
predictions, and ¢, and ¢, represent the proportional residual error and additive residual
error respectively which were assumed to be normally distributed with mean of 0 and

variance of 0,> and 0%, respectively.
P, = P, - evithiovj Eq. S6.1
Obs = IPRED - (1 + &) + &, Eq. S6.2

As for the covariate analysis, the identified SNPs, as well as patients’ demographic informa-
tion and clinical characteristics were considered. For continuous covariates, for each patient
the mean values of all measurements during the monitoring period were taken. In case of
missing continuous covariates, the corresponding median value of all patients was assigned.
For patients who only missed HT but not WT, LBW was calculated using real WT and
imputed HT. For GFR, 0 (normal) was assigned if > 50% of the collected patient’s records

were 0 otherwise 1 was assigned. Patients who missed GFR measurements, 0 was assigned.
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The effect of all above covariates on mitotane CL/F and the effect of WT, LBW, FAT, and
gender on apparent distribution volumes (V/F) were investigated using stepwise covariate
modelling (SCM) function implemented with Perl-Speaks-NONMEM (version 4.7.0) [1].
Both a forward inclusion (p < 0.05) and a backward elimination process (p < 0.01) were
performed to identify significant covariates. For SNPs that were in 100% linkage disequi-
librium, if they were included during the SCM analysis, the more clinically relevant ones
would be selected in the final model. The effects of continuous covariates were investigated
with both linear relation (Eq. $6.3) and power relation (Eq. $6.4), where P, represents the
parameter of ith individual, P, represents typical value of the parameter, and 7, represents
the individual variability, 8

the covariate value of ith individual, COV is the median value of the covariate. Categorical

oy Tepresents the estimate of covariate effect, COV, represents

covariates were analyzed with Eq. $6.5, where 6, was set as 1 for reference category and

was estimated for other categories.

P, =P, (14 8¢y - (COV; — COV,p)) - €M Eq. 6.3
P, =P,- (COV[ )9c0V - eMi Eq. S6.4
ETE Yeow, o
P; =P+ Ocoy - €™ Eq. S6.5

Supplementary model evaluation methods

pcVPC was performed by 1000 times of simulation and the data points, 5%, 50", and
95 percentiles of prediction-corrected observations were plotted together with 95%
confidence intervals (CI) of 5%, 50%, and 95" percentiles of simulations. NPDE evaluation
was performed with npde package (version 2.0) implemented in R statistics software based
on 1000 times of simulations. The bootstrap was conducted by 1000 runs of bootstrap
replicates sampled from original dataset with replacement, which was stratified on whether
the subject contributed more than two data points after the end of treatment. The median as

well as 95% CI of parameters were derived and compared with original parameter estimates.

Supplementary simulation method

Based on the final model structure, simulations were performed to evaluate different
designed treatment strategies and approaches of starting dose determination. Patients were
assumed to receive treatment as long as their last mitotane concentration monitoring time.
The blood samples were assumed to be collected once every 2 weeks after knowing the
result of the last sample, and the concentration of mitotane was assumed to be known 7
days after blood collection, which is in accordance with the optimal scenario in the clinical

practice. The dose amount was subsequently adjusted accordingly.
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As a comparison, a previous recommended ‘high-dose’ starting regimens, where the
mitotane dose starts with 1.5 g per day and increases up to 6 g per day in 4 days, were

simulated (Regimen 1) [2].

As for the newly designed regimens, the starting dose was 1) set as 2 g, 4 g, or 6 g for all
patients according to the guideline [3] (Regimen 2, 4, and 6) or 2) set individually consid-
ering patients’ characteristics with the help of the model (Regimen 3, 5, 7, and 8). As the
expected time to reach the therapeutic target of mitotane is 3 to 5 months, the individually
starting daily mitotane dose was estimated as the dose that allows the predicted mitotane
concentrationsonday 98 (C .,.) reach the therapeutic target. The C ., was obtained
by performing simulation under a regimen of 6 g per day increasing by 0 g (Regimen 8), 0.5
g (Regimen 2, 3, 4, 5,6-1,and 7-1), or 1 g (Regimen 6-2 and 7-2) once every 21 days till
the 98" day of treatment, with only typical parameter values and covariate effects consid-
ered. Given the linear PK feature of mitotane, the suggested starting daily dose (Dose) was
therefore determined by Eqgs. $6.6 and S6.7, where [X] represents the least integer greater
than or equal to X, | X] represents the greatest integer less than or equal to X. Determining

the starting dose based on the C;  , on day 77 and 119 were also used for comparison.

14 L
x = Ame/l o Eq. $6.6

Csim_(i)pred

[X1, X —[X] > 0.650
Dose = {|X] + 0.5, 0.350 < X — |X] <0.650 Eq. S6.7
X1, X —[X] <0.350

Besides the above regimens, since individual parameters could be estimated after knowing
one TDM result, Regimen 9 was also designed and evaluated. In this strategy, patients were
assumed to start with 4 g per day until the first TDM result was obtained. C; . of each
patient on day 14 was simulated, based on which the 7, and 7, . were estimated for each
patient using NONMEM with the POSTHOC function. Subsequently, the next daily dose
of each patient was determined with Egs. $6.6-56.7 according to the individual C; .,
(C

suggested in a previous study [4]. The constant starting regimen was applied in this regimen.

am_ipreasy) under the daily dosing of 6 g, based on the model incorporating 7,,,, as was

In Regimen 2 to 8, the dose increasing amount when C__ < 14 mg/L was set differ-
ently before and after the target was reached (starting and maintenance regimen), in order
to limit the toxicity at start and maintain the mitotane trough concentration within the
therapeutic range at a later phase. The combination of 0 g/1.5g,0.5g/1.5g,0.5g/1 g,and 1
g/1.5 g were simulated and evaluated. Regimen 2 to 7 applied stepwise increasing starting

regimen and Regimen 8 applied constant starting regimen. A maximum number of days
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that follows the starting regimen was set as 126 (around 4 months) and 105 (98+7 days)

for the stepwise increasing or constant starting regimens, respectively.

When C__ reached 20 mg/L, a 50% dose reduction was suggested in Regimen 1. In
comparisogl, both fixed dose amount reduction (3 g or 4 g) and 50% reduction were
evaluated in the newly designed regimens (Regimen 2 to 9). If a reduction resulted in a dose
level lower than 0 g, then 0 g was applied. Besides, an additional concentration threshold
of dose reduction, 18 mg/L, with 1 g dose reduction was introduced in Regimen 2 to 9,

since a 7-day period of no dose adjustment presented.
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Supplementary Tables

Table S6.1: Potential SNPs out of the 959 SNPs that are correlated to mitotane clearance based on the
association analysis

Gene Common name dbSNP.RS.ID P value
1 CYP2C18 CYP2C18_c.1154C>T(T385M) rs2281891 0.020
2 CYP2C19 CYP2C19%2_19154G>A(P227P) rs4244285 0.020
3 SLCO1B3 SLCO1B3_c.334G>T(A112S) rs4149117 0.027
4 SLCO1B3 SLCO1B3_c.699A>G(1233M) rs7311358 0.027
5 SLCO1B3 SLCO1B3_c.1557G>A(A519A) rs2053098 0.027
6 SLCO1B1 SLCO1B1_c.571T>C(L191L) rs4149057 0.020
7 VKORC1 VKORC1_c.*134G>A(3'UTR) rs7294 0.050
8 VKORC1 VKORC1_c.283+124G>C rs8050894 0.030
9 VKORC1 VKORC1_c.174-136C>T rs9934438 0.030
10 VKORC1 VKORC1_c.-1639G>A(Promoter) rs9923231 0.030
11 UGTI1A6 UGT1A6_c.315A>G(L105L) rs1105880 0.042

Table $6.2: Additional potential SNPs that are correlated to mitotane clearance based on the association
analysis, if the pre-set selection based on a translation file as recommended by Affymetrics® was not
considered

Gene Common name dbSNP.RS.ID Pvalue
1 CA5P CA5P_A>G(rs11859842) rs11859842 0.029
2 SLC16A1 SLC16A1_c.*1942T>C rs9429505 0.0067
3 CHST10 CHST10_c.*381G>A rs1530031 0.040
4 CYP20A1 CYP20A1_50767C>T(L346F) rs1048013 0.014
5 SLC22A13 SLC22A13_c.*8336G>A rs4679028 0.032
6 UGT2A1 UGT2A1_c.1305-109A>C rs2288741 0.042
7 ADH6 ADH6_c.-930T>C rs10002894 0.012
8 ADH6 ADH6_c.-2874T>C rs6830685 0.012
9 SLCO5A1 SLCO5A1_c.97C>T(L33F) rs3750266 0.015
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Supplementary Figures

Figure S6.1: The population PK model structure of mitotane. CL/F represents apparent system clearance,
KA represents absorption rate constant, V/F represents apparent distribution volume of central
compartment, V /F represents apparent distribution volume of peripheral compartment, Q/F represents

apparent distribution rate constant.
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Figure S6.2: The boxplots of estimated Ny ¢ 1N €ach genotype group of SNP (a) CYP2C19%2 (rs4244285),
(b) SLCO1B3 699A>G (rs7311358), and (c) SLCO1B1 571T>C (rs4149057).
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Figure $6.3: Normalized prediction distribution error (NPDE) results of the final population PK model of
mitotane in patients with ACC, including the quantile-quantile plot (a), the distribution histogram of NPDE
(b), and the NPDE versus time (c) and population predictions (d). The NPDE results are shown to distribute
around a mean of 0.03616 with a variance of 1.134.
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Figure S6.4: The estimates of inter-occasion variability (IOV) over time. Red dashed lines represent loess
regression result.
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Figure S6.5: Flow diagram of the genetic variants selection if the pre-set selection based on a translation
file as recommended by Affymetrics® was not considered. Excl. represents excluding, Ch X represents
chromosome X, DMET™ represent Drug Metabolizing Enzymes and Transporters, CNVs represents copy
number variations.
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Online Resource 6.2: Shiny app establishing method and results

Shiny app establishment

Based on the final mitotane population pharmacokinetic model, a Shiny app was established
for the simulation for a random patient and to elucidate an example of the model application
on guiding treatment for a new patient. Package shiny (version 1.4.0) and RxODE (version
0.6-1) in R statistics software (version 3.4.2; R Foundation for Statistical Computing, Vienna,
Austria) were utilized. The R script can be found through: https://github.com/AnyueYin/
Shiny-app-script-for-model-simulation---Population-PK-and-PG-analysis-of-mitotane.
Patient gender, weight, and height, which were used to estimate lean body weight (LBW)
and fat amount (FAT), as well as the results of three SNPs were in the input panel, based
on which the starting dose was suggested. One hundred times of simulation under an
optimized mitotane treatment regimen, Regimen 5-(- 4 g), were performed given the
input information. The 90% prediction interval, 50™ percentile of the predictions, target
reaching time, and suggested starting dose were plotted in the output figure. The residual

errors were not considered in the simulation.

Screen shots of the developed shiny app is shown in Figure $6.6. The result shows that
for a male patient with 85 kg weight and 180 cm height who carries G/G, A/A, and T/C
for CYP2C19*2 (rs4244285), SLCOIB3 699A>G (rs7311358), and SLCOIB1 571T>C
(rs4149057), respectively, the 90% prediction interval can nicely locate within the thera-
peutic window of mitotane. The starting dose was suggested as 5.5 g per day and the
50" percentile of the predictions reached the target on day 92. If the genotype result of
CYP2C19*2 (rs4244285) changed to G/A, the suggested starting dose became 4 g per day
and the 50™ percentile of the predictions reached the target on day 94.

In addition, a model with FAT effect on central distribution volume as the only covariate
(Table S6.3) was also built in the Shiny app as an alternative option to allow dosing advice
and concentration prediction for patients when genotyping results are not available (Figure
$6.6¢).
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Table S6.3: Parameter estimates of the final model without genotyping results as covariates

Final model
Parameters Estimate (RSE%) IV (CV%) [shrinkage, %] 10V (CV%)
KA (/day) 15.0 fixed - -
CL/F (L/day) 217 (9) 66.3 [7] 31.2
V/F (L) 8450 (16) 63.5[37] -
VrFAT (power) 1.12(18) - -
V/F@L) 15500 (15) 80.4 [36] -
Q/F (/day) 609 (28) 100.5 [38] -
Residual errors
PRO (CV%) 16.7 (6) - -
ADD (mg/L) 0.907 (16) - -

FAT, fat amount; RSE, relative standard error; CV, coefficient of variation; IV, inter-individual variability; 10V,
inter-occasion variability; PRO, proportional residual error; ADD, additive residual error; CL/F, apparent
system clearance; KA, absorption rate constant; V /F, apparent distribution volume of central compartment;
Vp/F, apparent distribution volume of peripheral compartment; Q/F, apparent distribution rate constant.

2 Every 200 days of dosing was defined as an occasion.
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Figure S6.6: Screen shot of the shiny app established based on the final model. (a) A male patient with 85
kg weight and 180 cm height who carries G/G, A/A, and T/C for CYP2C19*2 (rs4244285), SLCO1B3 699A>G
(rs7311358), and SLCO1B1 571T>C (rs4149057), respectively. (b) A male patient with 85 kg weight and 180
cm height who carries G/A, A/A, and T/C for CYP2C19*2 (rs4244285), SLCO1B3 699A>G (rs7311358), and
SLCO1B1 571T>C (rs4149057), respectively. (c) A male patient with 85 kg weight and 180 cm height whose

genotyping results are unknown.
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Online Resource 6.3: List of 959 SNPs from DMET™ array of
which the genotyping results were obtained for each patient

The online version of this article (https ://doi.org/10.1007/54026 2-020-00913 -y) contains

this supplementary material, which is available to authorized users.
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Abstract

Background: High-dose methotrexate (HD-MTX) based polychemotherapy is
widely used for patients with central nervous system (CNS) lymphoma. The phar-
macokinetic (PK) variability and unpredictable occurrence of toxicity remain major

concerns in HD-MTX treatment.

Objectives: This study aimed to characterize the population PK of HD-MTX in
patients with CNS lymphoma and to identify baseline predictors and exposure
thresholds that predict a high risk of renal and hepatotoxicity.

Methods: Routinely monitored serum MTX concentrations after intravenous
infusion of HD-MTX and MTX dosing information were collected retrospectively.
Acute event of toxicity was defined according to the Common Terminology Criteria
for Adverse Events (CTCAE) version 5.0. A population PK model was developed
in NONMEM. Toxicity data were analyzed using a logistic regression model and

potential baseline and exposure-related predictors were investigated.

Results: In total 1584 MTX concentrations from 110 patients were available for the
analysis. A two-compartment population PK model adequately described the data.
Estimated glomerular filtration rate (eGFR), treatment regimen, albumin, alkaline
phosphatase, and body weight were identified as significant covariates that explain
PK variability of HD-MTX. Baseline eGFR and sex were identified as significant
predictors for renal toxicity, and MTX dose (mg/m?) was the strongest predictor for
hepatotoxicity. The MTX area under the concentration-time curve (AUC,, ) and
concentration at 24 hours (C,,,) showed to correlate with renal toxicity only, and
AUC,, _>109.5 umol/L*hand C,, > 8.64 umol/L were potential exposure thresholds
predicting a high risk.

Conclusion: A population PK model was developed for HD-MTX in patients
with CNS lymphoma. The toxicity analysis showed that low baseline eGFR and
male sex, and high MTX dose are associated with increased risk of acute renal and

hepatotoxicity, respectively. AUC,, _>109.5 umol/L*h and C,, > 8.64 umol/L were

24h
potential exposure thresholds predicting a high risk of renal toxicity. The models
hold the potential to guide HD-MTX dosage individualization and better prevent

acute toxicity.
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1. Introduction

High-dose methotrexate (HD-MTX)-based polychemotherapy is the standard therapy for
patients with primary central nervous system (CNS) lymphoma [1, 2]. It is also widely used
for patients with secondary CNS involvement of diffuse large B-cell lymphoma (DLBCL),
mainly for those who are naive for HD-MTX [3].

The standard dose of HD-MTX for patients with CNS lymphoma is 3 g/m? and is admin-
istrated by intravenous infusion. Methotrexate (MTX) has approximately 50% protein
binding and is eliminated primarily unchanged by renal excretion (> 80%) while a small

fraction is eliminated as an metabolite 7-hydroxymethotrexate [4, 5].

In routine HD-MTX treatment, MTX concentrations are monitored after each admin-
istration until they reach a safe target (< 0.2 uM). Although HD-MTX dose is based on
patients’ body surface area (BSA), significant inter- and intra-individual variability in its
pharmacokinetics (PK) is observed [6-8]. Delayed elimination of MTX due to impaired
renal function or extravascular fluid collections can occur which will result in a prolonged
period of MTX exposure and a higher risk of toxicity [4, 7, 8]. Furthermore, the unpredict-
able occurrence of acute toxicity during HD-MTX treatment, including kidney dysfunc-
tion and hepatotoxicity, may result in treatment interruption or delay which could cause
unfavorable treatment outcome [6, 7]. To improve the outcomes of HD-MTX therapy,
further individualizing HD-MTX dosage and identifying factors that predict a high risk
of HD-MTX induced toxicity are desired.

The risk factors that have been identified for HD-MTX induced renal toxicity in patients
with lymphoid or hematological malignancy are mostly dose- or exposure-related: doses
> 6 g/m?, area under the concentration-time curve (AUC) in the first administration cycle,
and dose-normalized concentration at 24 and 48 hours [9-11]. For HD-MTX induced
hepatotoxicity, studies on risk factors are limited but one study suggested that AUC of
HD-MTX is associated with hepatotoxicity [12]. Yet, an exposure threshold for toxicity
which would facilitate better supportive care and treatment individualization for HD-MTX
is still missing. Moreover, the predictors at baseline for HD-MTX induced toxicities are less
studied. One study showed that baseline lactate dehydrogenase and albumin correlated with
the risk of acute kidney injury [13]. Further exploration of potential risk factors at baseline

for both renal and hepatotoxicity would therefore be beneficial to guide HD-MTX therapy.

Population PK-pharmacodynamic (PD) modeling with mixed-effect models enables to
quantitatively characterize as well as predict drug PK, response, or toxicity profiles and

their relationships in both population and individual levels. This approach also enables
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identification of covariates that explain the observed inter- and intra-individual variabilities
[14]. Combined with simulations, the developed model can be applied to guide treatment
rationally [15]. Until now, several population PK models of HD-MTX in patients with
lymphoid malignancy have been published but many were not specifically focused on
patients with CNS lymphoma [8, 10, 12, 16-21]. Subsequent toxicity analysis of HD-MTX
for patients with CNS lymphoma with a model-based approach is still lacking.

In the current study, based on retrospectively collected data, we performed a population PK
analysis to characterize HD-MTX PK in patients with CNS lymphoma who received various
treatment regimens, and explored covariates that explain the variability. Subsequently, the
occurrence of acute renal and hepatotoxicity were analyzed with a model-based approach
which aims to identify baseline predictors and exposure threshold that predict a high risk
of toxicity for each HD-MTX administration cycle.

2. Method

2.1 Patients and data

Patients who were diagnosed with CNS lymphoma, treated with HD-MTX based
polychemotherapy with available dosing information and MTX concentrations in the
period ranging from 2010 to March 2021 from the Leiden University Medical Center
(LUMC), Erasmus Medical Center (EMC), and University Medical Center Groningen
(UMCG) were included. Patients received HD-MTX by intravenous infusion and were
dosed per body surface area (BSA). All medications that have potential drug-drug
interaction with MTX (e.g. benzimidazoles and nonsteroidal anti-inflammatory drugs
(NSAIDs)) were stopped 72 hours prior to the use of HD-MTX.

The routinely monitored MTX concentrations were retrospectively collected from the labora-
tory information system (LIS). MTX concentrations were analyzed with ARK™ assay [22]
with a lower limit of quantification (LLOQ) of 18.2 pg/L (0.04 pmol/L) in the LUMC and the
EMC and 15 pg/L in the UMCG. If the detected MTX was above 50 umol/L at 24 hours, or
above 5 pmol/L at 48 hours, or above 0.2 pmol/L at 72 hours after administration of HD-MTX,
it was defined as delayed elimination [4]. Patients’ demographic characteristics, drug dosing
information (i.e. treatment regimen, infusion hours, and dose), and laboratory results (i.e.
serum creatinine (SCr), alkaline phosphatase (ALP), aspartate aminotransferase (ASAT),
alanine aminotransferase (ALAT), albumin, bilirubin) were collected from patients’ electronic
health care records. Based on the available data, estimated glomerular filtration rate (¢GFR)

was also estimated with the CKD-EPI creatinine equation and included in the analysis [23].
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This study is approved by the local Ethical Committee of each institute (number G20.126),
and did not fall within the scope of the WMO (Medical Scientific Research Act). A waiver
for informed consent was granted. All performed procedures were in accordance with the
ethical standards of the institutional medical ethical committee and the 1964 Declaration

of Helsinki and its later amendments.

2.2 Population PK modeling

A population PK model was developed based on the available MTX PK data. The unit of
MTX concentrations was unified to pg/L by multiplying the data reported in pmol/L by
the molar mass of MTX (454.44 g/mol). The data that were below LLOQ were omitted
from the analysis due to the small proportion (< 10%) [24].

One-, two- and three-compartment models with first-order elimination were explored as
the structural model. Parameters were assumed to be log-normally distributed and inter-
individual variability (IIV) was quantified. Inter-occasion variability (IOV) was incorpo-
rated on the PK parameter clearance (CL) to account for the intra-individual variability,
and each administration cycle was defined as an occasion. A combined proportional and
additive error model was applied to characterize the residual errors. The residual errors of
data from different medical centers were set to follow the same distribution. The structural
model was selected based on goodness-of-fit (GOF), objective function value (OFV) and
the stability of the model.

Subsequently, the covariate effects of patients’ demographic information, treatment
regimen, time-varying laboratory results on CL, and body size related characteristics
on volumes of distribution were investigated. The stepwise covariate modelling (SCM)
function was applied with assistance of Perl-speaks NONMEM (version 4.9) [25]. Model
selection was based on a reduction in OFV assuming a x* distribution, a reduction in IIV
or IOV, and physiological plausibility. Both a forward inclusion (p < 0.05, AOFV < -3.84,
degrees freedom = 1) and a backward elimination process (p < 0.01, AOFV > 6.64, degrees

freedom = 1) were performed to identify significant covariates.

2.3 Toxicity analysis

At each HD-MTX administration cycle, the renal and hepatotoxicity were graded based
on monitored SCr and ALAT results according to the NCI Common Terminology Criteria
for Adverse Events (CTCAE) version 5.0, respectively [26]. The > grade 1 toxicity was
defined as a toxicity event. The data were analyzed with a logistic regression model where

the probability of having toxicity was estimated. The logit function is shown in Eqs. 7.1-7.3,
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where base represents baseline logit score, 0 is the typical population probability operator,
1, represents the random IV which was assumed to be normally distributed with mean

of 0 and variance of w2.

Individual PK parameters obtained from the final PK model were applied to simulate and
estimate the MTX exposure metrics of interest: AUC between 24 hours after drug admin-
istration to infinity (AUC,, _) and MTX concentration at 24 hours (C,, ). The AUC,, _

were estimated by integrating the individual concentration-time curves from 24 hours to

24- o 24h

last sample time plus AUC from the last sample time to infinity which was approximated

as last concentration divided by terminal elimination rate constant ({).

The baseline predictors and exposure-related predictors were investigated by being
included linearly into the logit function (Eq. 7.4). The evaluated baseline factors include
patients’ demographic information, baseline eGFR, ALAT, ASAT, and albumin of each
administration cycle, dose amount, treatment regimen, dose divided by baseline CL as
an AUC approximation (AUC, ) of each administration cycle, AUC,, _ from previous
administration course (pAUC,, ), and C,,, from previous administration course (pC,,, ).
The toxicity status in the previous administration course was also evaluated as a potential
predictive factor. The inclusion of covariates was based on the reduction in OFV and
physiological plausibility. A forward inclusion process was performed when investigating
baseline predictors. Factors that result in a AOFV < -3.84 were considered to be significant

(p < 0.05, degrees freedom = 1).

o Eq.7.1
base =1 ( ) a-7
ase =In{—p
n
logit; = base + z Ecovx + 1 Eq.7.2
k=1
elogiti
Pp=— Eq.7.3
1 — elogit;

categorical: 6.,,
Ecop s = cov )9 Eq.7.4

continuous: (—me dian(CoV)

2.4 Model evaluation
The final PK model was evaluated with GOF plots, prediction-corrected visual predictive
check (pcVPC), and a bootstrap based on 1000 runs of replicated datasets sampled from

original dataset with replacement.
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The pcVPC plot was generated based on 1000 times of simulation. MTX concentrations
were commonly monitored at 24 hours, 48 hours, and 72 hours, and thereafter every 24
hours after the start of infusion until the concentration was below a threshold. Consequently,
patients with delayed elimination had a longer follow-up and more samples per patient.
The same sampling strategy was applied when performing simulations for the pcVPC plot,
i.e., if the simulated concentration after day 3 fell below 0.1 pmol/L, the next data point
would not be sampled. The set threshold of 0.1 umol/L is the median of the second last
monitored concentration of the collected data after day 3.

The adequacy of the toxicity model was evaluated with a visual predictive check (VPC).
The original dataset was simulated 500 times to derive the 90% prediction interval of the
proportion of patients having toxicity at each administration cycle and over a range of

covariate values. The prediction interval was compared with the observed results.

2.5 Software and estimation method

The population modelling analysis was performed with NONMEM (version 7.4.4, ICON
Development Solutions, Ellicott City, MD, USA) aided with Perl-speaks-NONMEM
(PsN) (version 4.9, Uppsala University, Uppsala, Sweden) [27]. Parameters of the
population PK model were estimated using the first order conditional estimation method
with interaction (FOCEI). Conditional Laplacian method was used to approximate the
marginal likelihood in the toxicity analysis. Data management and plots generation were
performed with R statistics software (version 4.2.1, R Foundation for Statistical Computing,

Vienna, Austria).

3. Results

3.1 Patients and PK data

In total 110 patients with CNS lymphoma (56 males and 54 females) were included from
the LUMC (n = 75), the UMCG (n = 17), and the EMC (n = 18). Among the included
patients, 80 patients (73%) were diagnosed with primary CNS lymphoma, 11 patients (10%)
were diagnosed with secondary CNS lymphoma, and 11 patients (10%) had secondary
CNS involvement of systemic DLBCL. The baseline characteristics of the included patients

from 3 medical centers are shown in Table 7.1.

In total, 1584 monitored MTX concentrations from 412 administration cycles were
collected, of which 124 (7.8%) were below the LLOQ and were omitted from the analysis.
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Table 7.1: Baseline characteristics of the patients included in the current study

Item N (%) / Median (Range)
Center LUMC UMCG EMC
Number of patients 75 17 18
Age (year) 66 (22-83) 66 (52-73) 67 (51-76)
Sex
Male 42 (56%) 6 (35%) 8 (44%)
Female 33 (44%) 11 (65%) 10 (56%)
Body weight (kg) 78 (53.4-115) 76.5 (46.4-108) 70.1 (49.5-96.3)
Height (cm) 176 (155-195) 169 (158-192) 168 (148-186)

Body mass index (kg/m?)
Body surface area (m?)

ASAT (IU/L) 20 (9-100) 20.3 (10-53) 22.5(14-58)
ALAT (IU/L) 30.5 (9-286) 43 (16-213) 41 (13-215)
SCr (umol/L) 64 (37-125) 66 (43-94) 65 (45-98)
eGFR (ml/(min*1.73 m?)) 2 93.8(52.9-159) 89.3 (54-113) 90.3 (66.9-115)
Albumin (g/L) 38.5(28-49) 37.5(32.5-45.4) 40 (34-49)
ALP (U/L) 67 (25-297) 60 (44-82) 62.5(28-118)
Bilirubin (umol/L) 8(3-23) 7.7 (3-25.3) 8(4-19)
Disease type

PCNSL 45 (60%) 17 (100%) 18 (100%)

SCNSL 11 (14.7%) 0 0

Stage IV DLBCL with CNS involvement 11 (14.7%) 0 0

Other lymphoma with CNS 8(10.7%) 0 0

involvement ®
Number of administration cycles per 4(1-8) 4 (3-4) 4(1-8)
patient
Dose of MTX (mg/m?) 3000 (1500-8000) 3000 (1950-3000) 3000 (1500-3200)

Treatment regimens ©

25.0(17.6-38.0)
1.94 (1.58-2.34)

25.0(17.9-35.4)
1.94 (1.44-2.40)

23.7 (18.9-34.5)
1.8(1.41-2.05)

RMP 35 (46.7%) 0 0
MATRIX 40 (53.3%) 0 0
MBVP 0 17 (100%) 18 (100%)

ALAT, alanine aminotransferase; ALP, alkaline phosphatase; ASAT, aspartate aminotransferase; CNS, central
nervous system; DLBCL, diffuse large B-cell lymphoma; eGFR, estimated glomerular filtration rate; MTX,
methotrexate; PCNSL, primary CNS lymphoma; SCNSL, secondary CNS lymphoma; SCr, serum creatinine.

2 eGFR was estimated with the CKD-EPI creatinine equation.

b Including T cell lymphoma, Follicular lymphoma, and Burkitt lymphoma

¢ RMP, contains high-dose MTX (HD-MTX), rituximab and procarbazine; MATRIX, contains HD-MTX, high-
dose cytarabine (HD-AraC), thiotepa, and rituximab; MBVP, contains HD-MTX, teniposide, carmustine,
prednisolone, with or without rituximab or HD-AraC. Details can be found in Online Resource, Table 57.1.

The concentrations were monitored daily after the start of MTX infusion until the concen-
trations fell to a level below 0.2 umol/L or the LLOQ. The median number of concentra-
tions contributed by each patient to the analysis was 12, ranging from 2 to 35. The delayed
elimination was observed in 47 (31.3%) patients and the longest follow-up time during one

administration cycle was 454 hours. Five patients had a treatment interruption of more
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than 2.5 months and their data before and after the interruption were treated as data from
two separate subjects. This resulted in 115 subjects in the dataset eventually. The time-

course of all collected MTX concentrations is shown in Online Resource 7.1, Figure S7.1.

The treatment regimen differs among medical centers (Table 7.1, Online Resource 7.1,
Table $7.1). The LUMC patients were separated into 2 treatment groups. Older and/or less
fit patients received HD-MTX with rituximab and procarbazine (RMP). For younger and
fit patients (< 70 years old), HD-MTX was given with high-dose cytarabine (HD-AraC),
thiotepa, and rituximab (MATRIX). As for the UMCG and the EMC patients, HD-MTX
was administered with teniposide, carmustine, prednisolone, with or without rituximab
or HD-AraC (MBVP). Details about the treatment regimens including infusion durations

can be found in Online Resource 7.1, Table S7.1.

3.2 Population PK model

A two-compartment population PK model with first-order elimination provided the best
fit to the obtained data in HD-MTX in patients with CNS lymphoma. Compared with the
one-compartment model, the objective function value (OFV) of the two-compartment
model was 1843.772 units lower (p < 0.01, degree of freedom = 4). Although the three-
compartment model showed to further improve the model fit, the estimated relative
standard errors (RSEs) of parameters indicated unreliable parameter estimates. Therefore,

the two-compartment model was selected as the structural model.

The covariate analysis identified eGFR, treatment regimen, albumin, and ALP are signifi-
cant covariates on CL of MTX (p < 0.01). Body weight was a significant covariate on the
volume of distribution of the central compartment (V1). The RSEs indicate an acceptable
precision (< 40%) of most parameters except for the coefficient of ALP effect (Table 7.2).
The typical MTX CL in patients in the RMP group was estimated to be 16.0 % lower than
that in the MATRIX group, while the CL differences between the MATRIX and MBVP
groups were not significant (Table 7.2, Online Resource 7.1, Figure $7.2). The coefficient
of variation (CV%) of random IIV and IOV for CL decreased from 29.2% and 23.1% to
15.5% and 12.3%, respectively, after covariate inclusions. The inclusion of IIV on V, became
insignificant after covariate inclusions and was therefore fixed to zero (OFV increased by
2.265). The estimated standard deviation (SD) of the additive residual error approached
zero and was therefore fixed to 0.0001 pg/L.

The GOF plots in both normal and logarithmic scale showed that the model predictions
were generally in good accordance with the observations, while the population predictions

underpredicted the observations at lower concentrations (Figure 7.1). The deviations
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between model predictions and observations were also observed when the concentrations
were above 20,000 pg/L. However, when it was explored to remove these data points, the
new parameter estimates were still within the estimated 95% confidence interval (CI)
of the current parameter estimates. The conditional weighted residual errors (CWRES)
were distributed around zero without obvious trends over time, but trends over popula-
tion predictions at lower concentrations can be observed (Figure 7.1). The pcVPC plot
demonstrated an adequate predictability of the model (Figure 7.2). The final parameter

estimates were in good agreement with the bootstrap results (Table 7.2).

Table 7.2: Parameter estimates of the final population PK model of HD-MTX in patients with CNS lym-
phoma

Bootstrap
IV (CV%) (RSE%) IOV (CV%)
Estimate (RSE)  [shrinkage] (RSE%) Median 95% Cl
CL (L/h) 21.2 (13%) 15.5 (8%) [10%] 123(6%) 214 [17.2,27.2]
0.cre 0.0104 (5%) - 0.0104 [0.0093,0.011]
eTREAT
MATRIX 1 - - -
RMP 0.840 (4%) - 0.839 [0.772,0.913]
MBVP 1.03 (3%) - 1.03 [0.952,1.11]
SALB 0.225 (28%) - 0.225 [0.0715, 0.369]
6, -0.0624 (41%) - -0.0656 [-0.115,-0.0186]
v, (L) 125 (16%) 0 FIX 126.4 [98.1,172]
SWT 0.00370 (34%) - 0.00369 [0.00127,0.00629]
v, (L) 36.7 (27%) 55.7 (11%) [13%] 38.1 [23.9,62.4]
Q (L/h) 0.593 (21%) 30.2 (15%) [15%] 0.605 [0.418 0.920]
Residual errors
Prop. (CV%) 25.2% (4%) [18%]* 25.0% [23.0%, 26.9%]
Add. (SD, ug/L)  0.0001 FIX - 0.0001 FIX -

Add., additive residual error; ALB, alboumin; ALP, alkaline phosphatase; Cl, confidence interval; CL, clearance;
CV, coefficient of variation; eGFR, estimated glomerular filtration rate; 11V, inter-individual variability; IOV,
inter-occasion variability; Prop., proportional residual error; Q, distribution clearance; RSE, relative standard
error; SD, standard deviation; V1, distribution volume of the central compartment; V2, distribution volume
of the peripheral compartment; WT, weight; MATRIX, RMP, and MBVP, three different treatment regimens.

2 Epsilon shrinkage.
Vi =125 % (1 + Oyp * (WT — 75.8)) xe™

ALB )GALB ( ALP
*

YaLp
- - ni
3731 73.81) * Orrear * €

CL; = 21.2 % (1 + B,6pg * (eGFR — 82.93)) = (
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Figure 7.1: Goodness-of-fit plots of the developed population PK model, including observations versus
individual predictions in both normal (a) and logarithmic scale (c), observations versus population
predictions in both normal (b) and logarithmic scale (d), and conditional weighted residual errors (CWRES)
versus populations predictions (e) and time after last dose (f). The red dashed lines representy =x (a, b, ¢,
d) and y =0 (e, f). Black dashed lines represent corresponding loess regressions.
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Figure 7.2: Prediction-corrected visual predictive check (pcVPC) of the final HD-MTX pharmacokinetic
model. Black points represent observations, black dashed lines represent 95% and 5% percentile of
the observations, red dashed line represents the 50* percentile of the observations, grey shaded areas
represent 95% confidence interval of the 95" and 5% percentiles of the simulations, and red shaded area
represents 95% confidence interval of the 50* percentile of the simulations.

3.3 Toxicity analysis

Among the 115 subjects, 51 (44.3%) and 76 (66.1%) subjects developed acute renal and
hepatotoxicity during at least one administration cycle, respectively. The majority of subjects
received < 4 courses of treatment (98/115, 85.2%). The observed proportion of patients
having each grade of renal or hepatotoxicity during each administration cycle were shown
in Online Resource 7.1, Figure S7.3. The dose was reduced in 13 subjects after they had

either renal or hepatotoxicity or both.

The modelling analysis of renal toxicity showed that among the investigated baseline
,pC,,.,pPAUC,, _, or eGFR resulted

in a significant decrease in OFV in the univariable covariate analysis, among which the

factors, the inclusion of age, sex, dose in mg/m? AUC

base 24-00

baseline eGFR was the most significant predictor (AOFV = -52.8). The inclusion of toxicity
status of the previous administration course did not result in a significant decrease in OFV.
The treatment regimen itself was also not identified to affect the toxicity probability. The
final model of renal toxicity included baseline eGFR (range: 40.2-158.7 mL/min/1.73m?,
maximum predicted probability change (maxAP) = -0.929) and sex (for female, AP =

-0.103) as significant covariates.

As for the hepatotoxicity model, AUC,, dose in mg, and dose in mg/m’ resulted in

significant decreases in OFV in the univariable covariate analysis, among which dose
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in mg/m?* showed to be the most significant predictor (AOFV = -14.7). The inclusion of
toxicity status of the previous administration cycle did not decrease OFV significantly. No
additional covariates were significant after the inclusion of dose in mg/m? i.e. the final
model of hepatotoxicity only included dose in mg/m? (range 1500-8000 mg/m?, maxAP

=0.86) as the most significant covariate.

The parameter estimates of the base and final toxicity models are shown in Table 7.3. The
RSE of all parameters are < 40% indicating acceptable precision. The inclusion of covariates
largely reduced the variance of the random IIV in both models. The VPC plots demon-
strated an adequate model predictability for the probability of having renal toxicity, while
the decreasing trend of hepatotoxicity over treatment courses was not well captured (Online
Resource 7.1, Figure S7.4). The wider 90% prediction interval after the 4" administration
cycle was due to the relatively small sample size at those cycles. Figure 7.3 demonstrated
the change of observed and predicted renal and hepatotoxicity probability as predictor
values change. The simulation results showed that the median predicted probability of
having renal toxicity decreased to less than 25% when baseline eGFR was higher than 66.6
mL/min/1.73m? and the median predicted probability of having hepatotoxicity increase

to above 38.5% when dose raised above 3500 mg/m?.

Table 7.3: Parameter estimates of the base and final logistic regression model of renal and hepatotoxicity

Base model Final model

Estimate  RSE (%) / [Shrinkage (%)]  Estimate  RSE (%) / [Shrinkage (%)]

Renal toxicity model

6 0.112 29% 0.0595 26%

[ - - -3.06 9%

0., -1.32 32%

1V (w?) 3.29 43% [35%)] 1.1 61% [50%]

Hepatotoxicity model

6 0.289 11% 0.118 15%

Opose - - 2.25 38%

1V (w?) 0.922 48% [41%] 0.708 52% [45%]

BSA, body surface area; IV, inter-individual variability; RSE, relative standard error; eGFR, estimated
glomerular filtration rate.

The exposure metrics C,, and AUC,, _were identified to correlate with renal toxicity
(AOFV = -75.3 and -85.6, respectively) in the univariable covariate analysis but not for
hepatotoxicity. The parameter estimates can be found in Online Resource 7.1, Table S§7.2.
The observed proportion of patients with renal toxicity was 61% when C,,, > 8.64 umol/L
and 68.3% when AUC,, = > 109.5 umol/L*h. According to the model simulations, the
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predicted median proportions of renal toxicity decreased from 61% to < 29.3% when C
decreased to < 8.64 umol/L, and from 61% to < 26.8% when AUC,, _ decreased to < 109.5
umol/L*h, respectively. The distribution of estimated AUC,, _ and C,,, of all treatment
cycles and observed and predicted probability of renal toxicity over AUC,, _and C,, were

shown in Figure 7.4.

4. Discussion

In this study, a population PK model was developed for HD-MTX in patients with CNS
lymphoma and covariates that explains HD-MTX PK variability were identified. Toxicity
analysis identified baseline predictors for renal and hepatotoxicity, and the models allow to
estimate the toxicity probability before each administration cycle. Additionally, potential
exposure thresholds of AUC,, and C,, that indicate a high risk of renal toxicity were

suggested to support better HD-MTX treatment.

The identified covariates on CL of MTX in the final model includes albumin and indicators
of renal function, which are in accordance with the known PK characteristics of MTX [4, 5].
In addition, the CL of MTX also showed to vary among treatment regimens, which might
suggest a need to alter the dose when targeting to the same level of exposure. The possible
explanations for this finding could be the differences in infusion duration / rate of HD-MTX,
patients’ status, and the combined medications among these treatment groups. However, the
impact of those factors cannot be distinguished as they highly overlapped with each other. A
potential correlation between infusion duration/rate and MTX clearance has been mentioned
previously. In those studies, higher CL or lower AUC has been observed in patients receiving
HD-MTX with long infusion durations (24 hours) compared to short infusion durations
(2-6 hours) [10, 28, 29]. In our study, high CL estimates under 24-hour infusion were also
observed. In addition, a 4-hour infusion showed to correlate with low CL estimates compared
with 1- or 3.25-hour infusion in our results (Online Resource 7.1, Figure §7.2). However,
a clear physiological explanation for this observed phenomenon could not be found, and

therefore dose alterations based on infusion duration specifically are not recommended.

Currently HD-MTX was dosed per BSA in CNS lymphoma patients. However, our study
demonstrated that the influence of BSA on MTX PK is less significant than that of body
weight, although these two factors are highly correlated and BSA has been identified as
a covariate in previous PK studies [17, 20]. The estimated MTX AUC,, _and C,,, in our
study population also showed an increasing trend over BSA (Online Resource 7.1, Figure

§7.5). A few other studies have also pointed out that BSA is not the most predictive factor
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to MTX PK, and BSA-guided dosing should be reconsidered especially for overweight
patients [10, 30, 31]. Moreover, a dose reduction for HD-MTX has been suggested for
patients with reduced renal function [7, 32]. Taking these facts into account, adjusting
the MTX dose with the developed PK model which involves multiple covariates including
renal function is considered to be more rational and accurate than BSA-guided dosing,

and can help to further reduce PK variability.

The GOF plot of the final PK model showed that the population predictions underpredicted
the lower concentrations (data points collected after 200 hours after last drug intake) while
the individual predictions fitted well to the observations. These underpredicted concen-
trations all came from the treatment cycles where delayed elimination was observed.
This suggests that the model structure could still be improved to better characterize the
concentration-time curves in case of a delayed elimination. For example, an interac-
tion between renal function and MTX PK, which may result in a time dependent MTX
elimination, and non-linear elimination at low concentrations can be considered [33, 34].
A three-compartment model could also slightly better capture the delayed elimination.
However, a reliable and stable three-compartment model could not be identified based
on the current dataset. Since the individual fit of our model is considered to be adequate,

a more complicated model was eventually not applied.

The toxicity analysis identified baseline predictors for HD-MTX-induced renal and hepa-
totoxicity which allow estimation of the toxicity probability before administration cycle.
eGFR and sex were identified as significant baseline predictors for renal toxicity probability.
Dose (mg/m?) and age were also identified as significant predictors in the univariable
analysis, which is consistent with previous findings [11, 13]. However, their influence did
not remain significant after including eGFR in the model. Our findings suggest that to lower
the probability of renal toxicity, the use of HD-MTX for patients with CNS lymphoma is
recommended when eGFR > 66.6 mL/min/1.73m? This is in accordance with a previous
review which indicated that renal function is a key prognostic factor for the tolerance of
HD-MTX [32]. Accurately estimating the renal function of the patients before HD-MTX
treatment may therefore be key in preventing toxicity during HD-MTX treatment. In
patients with relatively low muscle mass, other eGFR measurement techniques such as a
iohexol eGFR test could be applied [35]. Patients with a higher risk of toxicity that still
need HD-MTX treatment should be carefully monitored and rescue therapy with high

dose folate or in severe cases glucarpidase could be considered [36-38].

The dose of HD-MTX (mg/m?) was identified to be the strongest predictor of hepatotoxicity.
The results suggest that a high risk for hepatotoxicity in patients with CNS lymphoma is
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foreseeable if the administrated dose of HD-MTX is higher than 3500 mg/m?. In addition,
the probability of hepatotoxicity appeared to decrease over treatment cycles which was not
fully captured by the model. A possible explanation could be that patients tend to tolerate
MTX better when treated for alonger period of time. Drop out due to toxicity is considered
to be a less possible reason since less than 50% of subjects who stopped treatment after
the first to third treatment courses had hepatotoxicity. Since the information on reason of

drop out was not available, it was not considered in the analysis.

MTX exposure metrics was only identified to correlate with renal toxicity in patients with
CNS lymphoma. To avoid the impact of possible inaccurate prediction of peak concen-
trations, AUC,, _ was estimated and included in the analysis instead of AUC, _. We also

investigated the correlation between C,, and toxicity as a threshold on C,,, is valuable

24h
for early identification of patients at risk and early application of rescue treatment. Our
results show that AUC,, _>109.5 umol/L*h or C,,, > 8.66 umol/L correlate with high risk
of renal toxicity in CNS lymphoma patients (> 60%). The threshold of C ,, is also in line

with what was found in a previous study (10 umol/L) [7].

Although high MTX exposure can result in toxicity, sufficient exposure is still essential to
guarantee the efficacy. To better apply our findings to facilitate the individualization and
optimization of HD-MTX therapy in patients with CNS lymphoma, an investigation on
exposure-efficacy relationship is still needed. A previous study suggested that AUC _ >
1100 umol/L*h is associated with a favorable treatment outcome [12]. Due to an identified
correlation of AUC _ with C
[16]. Nonetheless, the direct relationship between C,,, or AUC,, _ and the efficacy has not

4> the same group recommend a C,, target of 4-5 umol/L
been reported. Thus, a further investigation on the relationship between C,, or AUC,,
and efficacy would be beneficial to establish a therapeutic range for HD-MTX to support
the individualization of HD-MTX dosage.

The current study has some limitations. First of all, due to the lack of data sampled in the
first 12 hours after the start of MTX infusion, the developed model may not be able to well
capture peak concentrations and provide a precise estimate of AUC_ _. Nevertheless, our
study demonstrated that AUC,, _and C,,, estimated with the model are also predictive to
HD-MTX induced renal toxicity. Secondly, since this study was based on real-world data,
the possibility of data not being recorded adequately enough may impact our analysis.
Nevertheless, our findings may be more representative of real-world patients and are more
translatable to clinical practice. Finally, although identified predictors have explained a
large proportion of variability in HD-MTX induced toxicities, the unexplained variability

remains large. Identifying covariates for the remained variability would be beneficial to
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further improve the prediction. Previous studies have reported the influence of ABCC2 on
PK of HD-MTZX and the potential association of gene MTHFR, SLC19A1 and ABCB1 with
MTX-induced hepatic toxicity [8, 21, 39]. Thus, the potential impact of pharmacogenetic

polymorphisms would be of interest for future studies.

5. Conclusion

A population PK model was developed which adequately characterized the PK profile of
HD-MTX in patients with CNS lymphoma. eGFR, treatment regimen, albumin, ALP, and
body weight were identified as significant covariates that explain inter- and intra-individual
variabilities in PK of HD-MTX. The toxicity analysis identified lower eGFR and male
sex, and higher MTX dose (mg/m?) as baseline predictors that are associated with higher
>109.5 ymol/L*h and C,, >
8.64 pumol/L were suggested to be potential exposure thresholds that predict a high risk

risk of acute renal and hepatotoxicity, respectively. AUC,, _
of renal toxicity. These results hold a great potential for further individualizing HD-MTX
dosage and preventing acute organ toxicity, which can improve HD-MTX therapy in CNS

lymphoma patients.

Key points

o A population pharmacokinetic (PK) model was developed for high-dose methotrexate
(HD-MTX) based on data collected from patients with central nervous system (CNS)

lymphoma and subsequently used for exposure-toxicity analysis.

o Lower baseline eGFR and male sex are associated with increased risk of acute renal
toxicity (grade > 1). Higher MTX dose (mg/m?) is associated with increased risk of
acute hepatotoxicity (grade > 1).

o The analysis identified that the MTX exposure metrics correlate with renal toxicity
only, and area under the concentration-time curve from 24h to infinite (AUC,, ) >
109.5 pmol/L*h and concentration at 24 hours (C,, ) > 8.64 pmol/L predicted a high

risk of renal toxicity.

24h
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Figure S7.1: The collected methotrexate concentration-time curves in patients with CNS lymphoma on
semi-logarithmic scale (n = 110 patients).
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Figure S7.3: Observed percentage of renal (a) and liver (b) toxicity under each treatment cycle separated

by the toxicity grade.
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Supplementary Tables

Table S7.1: Characteristics of the HD-MTX treatment regimens of the included patients

N of administrations (%) / Median (Range)

Treatment regimen
Age of patients (years)

Infusion duration
a. 4hours

b. 14-25% dose 15 mins, and the

rest 3 hours

c. 10% dose 1 hour, and the rest

23 hours
d. 1hour

Infusion rate (mg/m?h)
Dose of MTX (mg/m?)

RMP
72 (28-83)

133 (93.7%)
9 (6.3%)

0
750 (375-1077)
3000 (1500-3650)

MATRIX
58.5(22-67)

6 (4.5%)
126 (94.0%)

2(1.5%)

0
1076 (125-2000)
3500 (1750-8000)

MBVP
66 (51-76)

136 (100%)
3000 (1500-3200)
3000 (1500-3200)

Dose intensity (days) 14.0 (12.9-54.1) 23.0(11.0-66.9) 15.0 (6-45)
Co-medications rituximab and high-dose teniposide,
procarbazine cytarabine, carmustine,

thiotepa, and prednisolone

rituximab with/without

rituximab or high
dose cytarabine

Table S7.2: Parameter estimates of the logistic regression model of renal toxicity with exposure metrics
included as predictors

Estimate RSE (%) / [Shrinkage (%)]

Renal toxicity model with AUC,, |

0 0.0135 61%

O, 0.746 1%

IV (w?) 5.69 55% [38%]
Renal toxicity model with C

6 0.0132 64%

e 0.851 10%
1V (w?) 6.04 55% [37%]

IV, inter-individual variability; RSE, relative standard error; AUC
curve between 24 hours after drug administration to infinity; C
drug administration.

-4 .+ @rea under the concentration-time

Lav MTX concentration at 24 hours after
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General discussion

Introduction

Although anti-cancer treatments have significantly advanced over the past decades,
obstacles to accomplishing successful treatment still exist. The occurrence of treatment
resistance is one of the major factors that limit the long-lasting efficacy of anti-cancer
therapies [1, 2]. Evolutionary mechanisms are increasingly acknowledged as key factors that
contribute to the occurrence of treatment resistance [2-5]. A better characterization and
understanding of evolutionary tumor progression, and subsequent use of this knowledge
to design new treatment regimens would increase the chance to suppress the develop-
ment of cancer treatment resistance. Another important factor that challenges successful
treatment is the substantial variability in pharmacokinetics (PK) / pharmacodynamics (PD)
of anti-cancer drugs, which is especially frequently observed in real-world patients. This
can result in suboptimal treatment outcomes for part of the patients especially when the
therapeutic window is narrow [6, 7]. Moreover, the typically applied maximum tolerated
dose (MTD) paradigm in cancer treatment may not be optimal for real-world patients due
to high risk of toxicity [8]. These factors highlight the need to gain more insight into the
PK/PD profiles and variability of anti-cancer drugs in real-world patients, and to further

develop optimized and individualized treatment regimens.

Quantitative modeling with mixed-effect models is widely applied in pharmaceutical
research which enables quantitative characterization and prediction of the PK and PD
of therapeutic agents. It also allows quantifying inter- and intra-individual variability
and identify covariates that explain the variability [9, 10]. With a Bayesian framework,
individual parameters can be obtained based on prior knowledge from the model and
patient characteristics and data, which can be used to capture and predict individual PK/
PD characteristics [7]. In oncology research, the model-based approach is a helpful tool
to make use of longitudinal data, such as drug concentrations, tumor burden, and other
PD biomarkers, to gain knowledge about the interaction between drug treatment and
the human body, as well as cancer progression. This knowledge and developed models
can subsequently support the identification of optimal therapeutic regimens and guide

individualized treatment rationally (model-informed precision dosing, MIPD) 7, 11, 12].

The studies presented in this thesis applied quantitative modeling approaches to charac-
terize the evolutionary tumor progression and PK/PD of anti-cancer drugs. The developed
models were subsequently applied to evaluate and develop optimal and individualized

regimens for oncology patients.
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Better understanding of evolutionary tumor progression

Intra-tumor heterogeneity

Intra-tumor heterogeneity, which suggests distinct cells exist in the same tumor, is
considered to be one of the main factors that drive the evolving adaptation of cancer to
treatment. Capturing intra-tumor heterogeneity is therefore of importance for a better
understanding of evolutionary treatment resistance. As summarized in chapter 2, various
kinds of quantitative models have been applied to describe and predict tumor dynamics
and resistance evolution in cancer patients. Among the reported tumor dynamics models,
intra-tumor heterogeneity has been considered when describing tumor regrowth by
separating the tumor into components consisting of cells that are sensitive or resistant to
therapy. The interaction between sensitive and resistant cells is also the cornerstone for

the models that characterize the evolutionary development of drug resistance.

In the studies in section I, intra-tumor heterogeneity has served as a key element in the
applied models to support the understanding of evolving tumor progression. The presence
of pre-existing resistant components (primary resistance) and/or acquired resistance and
their interaction have also been frequently discussed. In chapter 3, a model that accounted
for various clonal populations was developed and it well captured the tumor sizes and
mutant KRAS levels in circulating tumor DNA (ctDNA) versus time curves from patients
with metastatic colorectal cancer (mCRC). In addition to the clonal populations that are
sensitive or resistant to the original treatment, a hypothetical third clonal population was
also introduced in the model to describe tumor response to multiple treatments. The
same structure was also applied to characterize the dynamics of tumor sizes and ctDNA
measurements in non-small cell lung cancer (NSCLC) patients. The inclusion of primary
or acquired resistance in this study was supported by the detected mutation in ctDNA,
which was suggested to be a mediator of acquired resistance [13, 14]. The model therefore
included acquired resistance, and primary resistance was only considered for patients with
detectable KRAS mutation pre-treatment. The developed model allowed us to capture
not only the dynamics of total tumor size but also that of sub-clones in the tumor, which

reflects the evolutionary progression of the tumor.

The study presented in chapter 4 further characterized the tumor dynamics in NSCLC
patients treated with erlotinib while considering tumor heterogeneity. In this study, we
explored models with or without primary resistance while including an acquired resist-
ance for both. The results indicated that the model assuming no primary resistance could
adequately fit the obtained data, and estimating primary resistance did not improve the
model fit. This might indicate that for NSCLC patients with an activating EGFR mutation,
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it is mainly the acquired resistance, which was due to the acquisition of EGFR p.T790M
mutation or other mechanisms, that limits the treatment response. Among previously
reported model-based studies on tumor size dynamics in NSCLC patients treated with
erlotinib, one study also considered tumor heterogeneity [15]. Their results also showed
that the models with or without primary resistance could describe the data equally well

even though erlotinib was used as a second-line treatment in their study [15].

In fact, studies on the probability of having resistance at the start of treatment have been
performed. They demonstrated that such probability increased as tumor burden increased
and it could reach up to > 90% [16, 17]. The study that provided the original data for
chapter 3 also suggested that drug resistance is likely to be present prior to the initiation
of anti-cancer drug treatment [13]. Yet, the estimated baseline size of the resistance clonal
population only accounted for a small part of the total tumor cell population [13]. In
chapter 4, the estimated baseline size of primary resistance accounted for a small propor-
tion (5.9%) of the baseline tumor size. Therefore, although resistance may be present prior
to the treatment, considering the small proportion and the complexity of the model, the
primary resistance has been omitted in the models used in our studies. In addition, the
data of genetic biomarkers is believed to be viable evidence to support the differentiation
of heterogeneous components in the tumor when modeling tumor dynamics considering

tumor-heterogeneity [18].

Interaction among clonal populations and treatment

In addition to intra-tumor heterogeneity, capturing the interaction among clonal
populations in the tumor and anti-cancer drug treatment is also a cornerstone when
describing evolving development of resistance in tumor. We have addressed such interaction
by accounting for the differences in proliferation rates of tumor cells, the response of
tumor cells to the therapy, and the transition between sensitive and resistant tumor cells

in response to treatment.

In order to obtain resistance to treatment, tumor may give up some proliferation capability,
which is represented by a fitness cost [19]. Due to this fitness cost, the proliferation rate of
the resistant clonal population can be lower than that of the sensitive clonal population [19,
20]. In chapter 3, we adopted this concept and assumed that the growth rate of resistant
cells was 70% of the sensitive cells. In chapter 4, we have also estimated separate growth
rates for different cell populations during model development. The estimated growth
rate of sensitive cells was 2.19 fold higher than that of the resistant cells. However, the

high relative standard error (RES) (104%) indicated a high uncertainty in the estimation.
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Therefore, the growth rates of treatment sensitive and resistant clonal populations were
eventually set to be the same in this study. This lack of identifiability of separate growth

rates is considered to be caused by the limited amount of data.

The response of tumor cells to the therapy has been mainly addressed by adding a regres-
sion term on drug susceptible tumor cells. In chapter 3, we have included treatment effect
with a drug-dependent regression term. This is due to the lack of data on drug exposure
or dose in this study. In the meantime, the trough concentrations of the used monoclonal
antibody therapy have shown to be able to reach above 90% of the saturation levels at
standard treatment regimens, suggesting almost a maximum effect in all patients [21].
However, for other molecules the exposure of which correlates to response, such as tyrosine
kinase inhibitors (TKIs), drug levels are important to be included in the analysis. This
would be beneficial for the understanding the exposure-response relationship and how
drug exposure is driving the evolutionary progression of tumor. Therefore, we explored a
model that incorporated exposure-dependent treatment effect in chapter 4. However, we
did not identify a clear exposure-tumor inhibition relationship within the studied concen-
tration range (the median predicted drug concentrations at the tumor size monitoring time
points was 992 ng/ml (range of 284-1554 ng/mL)). A dose-tumor inhibition relationship
was also not identified. This lack of relationship between erlotinib exposure and responses,
which may be because of the saturated treatment effect, is in line with previous findings
[6, 22-24]. Although the influence of drug exposure on the evolving tumor progression
could not be investigated in this case, the results may suggest a potential option to decrease
the dose of erlotinib to target a lower concentration that still ensures sufficient efficacy
but can be better tolerated, especially since a significant proportion of erlotinib-treated

patients can have severe toxicity [25].

Because of the selection pressure of anti-cancer drug treatment, our studies in chapter
3 and 4 assumed that mutations were able to be acquired which resulted in a transition
from sensitive to resistant cell population. A back transfer process from drug resistant to
sensitive clonal population was also introduced in chapter 3 during the treatment inter-
ruption periods. This assumption allowed capturing the recovery of sensitivity to the
treatment upon withdrawal of treatment, which was supported by in vitro observations
[26]. This process could also describe the phenomenon that in the absence of the drug,
susceptible tumor cells have the benefit of growing back again at the expense of resistant
tumor cells. When the back transfer process was removed, the simulation outcomes of
evaluated regimens were only slightly affected but the decline of ctDNA upon withdrawal
of treatment, which has been observed in mCRC patients [26, 27], could not be captured

anymore. It was also observed that under this circumstance, the remaining susceptible
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tumor cells had no growth advantage over the resistant tumor cells during the withdrawal
of treatment, hence the tumor would not regain susceptibility. Therefore, the introduction
of a transition between clonal populations in this study allowed the description of the
dynamics of and the competition among different clonal populations based on current
available data. More data under intermittent therapy would be valuable to better charac-

terize this dynamic process, and to better estimate parameters.

Insight provided by ctDNA

Clinically available genetic biomarkers such as ctDNA have been shown to be able to
provide insight into tumor heterogeneity and evolution of resistance, and also correlate
with tumor burden [18]. Studies have already utilized the available ctDNA data to
support the estimation of parameters that are required in the tumor evolution model or
to evaluate the simulation results of the models [13, 28, 29]. Thus, we see opportunities to
incorporate the ctDNA measurements in model-based tumor dynamics studies to enable
better understanding and prediction on the tumor progression and dynamics of tumor
sub-clones. Such models would be of help in investigating treatment regimens that increase
the chance of overcoming treatment resistance. The model developed in chapter 3 enabled
the characterization of the time-curves of both tumor sizes and ctDNA measurements in
patients with mCRC. The link between the generation of genetic variants in ctDNA and
tumor burden was accounted by a sub-clonal tumor-size dependent shedding rate which
was expressed with Hill equations with tumor size as the independent variable. This model
allowed us to describe the delayed emergence of genetic variants in ctDNA indicating
treatment resistance as well as the earlier emergence of detectable mutation than disease
progression, which was observed in the original studies [13, 30]. The ctDNA measurements

also informed the inclusion of primary or acquired resistance.

The study in chapter 4 demonstrated that in NSCLC patients treated with erlotinib, the
baseline ctDNA measurements on variant allele frequency (VAF) of mutant EGFR and the
presence of a TP53 mutation have a potential correlation with the estimated parameters
related to tumor dynamics (mainly the growth rate constant k and mutation rate constant
k), especially that higher baseline EGFR VAF was significantly correlated with increased
growth rate constant k. This indicates that patients with higher EGFR VAF at baseline
may have a worse response to the treatment, which is in line with the clinical findings
from an EGFR cohort in the START-TKI study, i.e. patients without detectable ctDNA at
baseline had a lower rate of radiological progression [25]. An explanation could be the
association between ctDNA levels and tumor burden [18, 31]. Our result also supports

previous findings suggesting that baseline concomitant TP53 mutations may relate to
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worse clinical outcomes in patients with NSCLC [25]. After incorporating baseline ctDNA
measurements, the developed tumor dynamics model could better predict the tumor size
dynamics in response to erlotinib treatment in NSCLC patients. This finding also demon-
strates the potential to use ctDNA as an early biomarker to support decision making for
the treatment of NSCLC patients [32].

Design treatment to overcome resistance

Designing treatment with gained knowledge on treatment resistance evolution and applying
personalized treatment would increase the chance of overcoming cancer treatment resist-
ance [2, 33]. Based on this concept, adaptive treatments where drug selection is guided
by the mutation detected in ctDNA, and intermittent treatment which utilizes the fitness
advantage of sensitive cells during the withdrawal of treatment to regain sensitivity to
treatment have been suggested for better treating cancer patients [18, 33, 34]. This also
brings forward opportunities to treat cancer as a chronic disease and has been increas-
ingly studied in the oncology field. Traditional approaches of anti-cancer therapy have not
exploited these theoretical advantages. Current protocols typically apply treatment agents

at the MTD until evidence of progression [33].

The study presented in chapter 3 evaluated different designs of adaptive and intermittent
treatment regimens with simulations based on the developed model. These regimens
aim to prolong the duration of suppressing treatment resistance and thereby overcoming
treatment resistance. The adaptive schedules also enabled the personalized design of
therapy since the switch of drugs was guided by individual ctDNA measurements. The
results of this study showed that the adaptive and intermittent treatment regimens, with
appropriate designs, outperformed the conventional continuous treatment. The simulated
intermittent regimen which consisted of an 8-week treatment and a 4-week suspension
prolonged median progression-free survival (PFS) of the simulated population from 36
weeks to 44 weeks. The simulated adaptive regimens were shown to further prolong median
PES to 56-64 weeks.

Our results are in line with the evolutionary principle, and evidence that supports the
feasibility of suggested regimens is present. An example of the adaptive therapy can be
seen from the treatments of NSCLC patients. Acquisition of T790M mutation is the main
mechanism of acquired resistance upon treatment of erlotinib/gefitinib in NSCLC patients,
and osimertinib can be selected for T790M-positive patients [35]. In the study, we intro-

duced a second hypothetical treatment targeting the resistant population that harbors KRAS

228



General discussion

mutation. Lately, the U.S. Food and Drug Administration (FDA) also granted accelerated
approval to the first KRAS-blocking drug [36]. This indicates the potential feasibility of

successfully implementing the suggested adaptive treatment.

As for the intermittent treatment, the advantage has been seen from some clinical obser-
vations. A study has shown that adaptive intermittent treatment of abiraterone based on
prostate-specific antigen (PSA) levels resulted in a better clinical outcome than the typical
continuous treatment [34], although the study design may need to be refined [37]. Another
retrospective analysis demonstrated that intermittent use of enzalutamide in metastatic
castration-resistant prostate cancer patients prolonged the time to PSA failure and improved
overall survival [38]. In patients with colorectal cancer, a re-challenge of EGFR blockade
has shown to be efficient again [26]. Yet, several clinical studies failed to show improved
outcomes in patients undergoing intermittent therapy and the underlined mechanism
remains unclear [39-44]. We believe that, in this case, a model-based approach may be
helpful for understanding these conflicting results and support identification of the optimal
designs. For example, a previous in silico study indicated that an intermittent abiraterone
followed by a lead-in period was not beneficial for prostate cancer patients, while the
adaptive intermittent treatment guided by PSA was the best option [34]. Moreover, the
results derived from our study also raised attention to the length of the treatment holiday
if improved treatment outcome is desired, as extending the treatment holiday can result

in inferior results.

Model-informed precision dosing (MIPD)

Quantify variabilities and identify covariates

Our studies in section IT demonstrated that with the population modeling approach, the
variabilities in PK/PD of a therapeutic agent as well as the influence of relevant covariates
can be quantified. This would be of great importance to guide dose tailoring for an
individual patient prior to the start of treatment to achieve personalized therapy. In chapter
6, we have developed a two-compartment population PK model which well described
the PK of mitotane in patients with ACC. The covariates that significantly correlate
with mitotane PK have been identified, which explained 35.8% and 30.7% of random
inter-individual variabilities (IIV) on apparent clearance (CL/F) and central distribution
volume (Vc/F), respectively. In this study, we were able to investigate separate effects of lean
body weight (LBW) and fat amount (total body weight - LBW) on mitotane distribution
volumes, as they are more physiologically plausible covariates [45, 46]. Furthermore, the
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inter-occasion variability (IOV) on CL/F was also incorporated to capture the intra-subject
variability. The estimates of IOV indicate an overall increasing clearance during the first
500 days followed by a decrease thereafter. This dynamic indicates that a self-induction in
mitotane clearance, which has been suggested previously [45], may exist temporarily. This
study also for the first time explored and quantified the potential effect of pharmacogenetic
variation on mitotane clearance. Eventually, three SNPs, i.e. CYP2C19*2 (rs4244285),
SLCO1B3 699A>G (rs7311358), and SLCOIBI 571T>C (rs4149057), were included in
the final model. The model estimated that carrying ‘A’ variant in CYP2C19*2 reduced the
mitotane CL/F by 44.9%. This is in line with the fact that the A’ variant of CYP2C19*2is a
nonfunctioning variant and has been demonstrated to decrease the activity of CYP2C19
[47, 48]. The power of pharmacogenetic analysis may be influenced by the small number
of included patients and the exploratory characteristic of this analysis. However, as the
dataset enabled differentiation between ITV and IOV, the certainty of the possible genotype
effect on clearance, which is more likely to be covered by IIV, was increased. Our result
suggests that enzyme CYP2C19 and transporters SLCO1B3 and SLCO1B1 for drug uptake
in the liver might be involved in mitotane PK pathways, and their polymorphisms should
be considered for mitotane dose selection, but further validation is required to translate

the findings into an implementable clinical recommendation.

The study in chapter 7 performed a population PK analysis for high-dose methotrexate
(HD-MTX) in patients with central nervous system (CNS) lymphoma based on data from
3 medical centers. In addition to the impact of patients’ demographics and physiological
condition on HD-MTX PK, the study also enabled an investigation on the variation among
patients from different medical centers receiving different treatment regimens. The results
show that the identified covariates on clearance (CL) of MTX are in accordance with
the known PK characteristics of MTX [49, 50]. Moreover, the CL of MTX also showed
to vary among treatment regimens, and the difference in CL was able to be quantified.
This might suggest a need to alter the dose when targeting to the same level of exposure.
The possible factors that contributed to this result could be the differences in infusion
duration / rate of HD-MTX, patients’ status, and the combined medications among these
treatment groups. However, the impact of those factors cannot be distinguished as they
highly overlapped with each other. The included covariates in the final model explained
46.9% of the variability on CL between and within patients. Additionally, body weight was
identified as a significant covariate on distribution volume of central comparment which
reduced random IIV significantly. Currently, HD-MTX is dosed per body surface area
(BSA) in CNS lymphoma patients. However, our study demonstrated that the influence
of BSA on MTX PK is less significant, although BSA has been identified as a covariate in
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previous PK studies [51, 52]. A few previous studies have also pointed out that BSA is not
the most predictive factor to MTX PK, and BSA-guided dosing should be reconsidered
especially for overweight patients [53-55]. In our study population, an increasing trend of
the estimated MTX area under the concentration-time curve (AUC) from 24 hours after
drug administration to infinity (AUC,, ) and MTX concentration at 24 hours (C,,, ) over
BSA has also been observed. Additionally, a dose reduction for HD-MTX has already
been suggested for patients with reduced renal function [56, 57]. Taking these facts into
account, a potential to dose HD-MTX with a model-based approach that involves multiple
covariates including renal function is implied. This is considered to be more rational and

accurate than BSA-guided dosing, and can help to further reduce PK variability.

Better prediction of toxicity
Toxicity can cause unfavorable outcomes in the treatment of cancer patients. Because of
this, studies on risk factors and thresholds that predict high toxicity are of great importance.
In chapter 7, the baseline predictors as well as exposure thresholds that predict a high risk
of renal and hepatotoxicity in patients with CNS lymphoma treated with HD-MTX were
identified with the model-based approach. Based on the modeling and simulation results,
we recommended a baseline eGFR target of > 66.6 mL/min/1.73 m? for patients with CNS
lymphoma to use HD-MTX in order to lower the probability of renal toxicity. This is in
accordance with a previous review which indicated that renal function is a key prognostic
factor for the tolerance of HD-MTX [57]. Additionally, a higher risk for hepatotoxicity in
CNS lymphoma patients is foreseeable if the administrated dose of HD-MTX is higher than
3500 mg/m?. The study also identified correlations between MTX exposure metrics and
renal toxicity. In addition to the AUC of MTX, C

metric, as a threshold on C, is valuable for early identification of patients at risk and

.4, Was also investigated as an exposure
early application of rescue treatment. The modeling results provided potential exposure
thresholds that correlate with a high risk of renal toxicity in patients with CNS lymphoma
(> 60%). The threshold of C
previous study (10 umol/L) [56]. For patients with a higher risk of toxicity that still need

L4 (8.66 umol/L) is also in line with what was found in a
HD-MTX treatment, they should be carefully monitored and rescue therapy with high
dose folate or, in severe cases, glucarpidase could be considered [58-60]. In addition, due
to the feature of mixed-effect modeling, once patients’ toxicity results of the first cycle
are known, the model can also be applied to provide individual threshold that predicts
high toxicity. In this circumstance, we believe our study holds great potential for further
individualizing HD-MTX dosage and preventing acute organ toxicity, which can improve
HD-MTX therapy in CNS lymphoma patients.
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Guide individualized treatment

Based on the identified covariates and pre-defined therapeutic targets, coupled with
Bayesian forecasting, MIPD can be applied to guide optimal initial dose selection and
dose adaptation for cancer patients. The optimal therapeutic drug monitoring (TDM)
strategies can also be explored. The study presented in chapter 6 designed and evaluated
several mitotane dosing strategies, given that TDM was performed, by simulating with
the final population PK model. The results indicated that determining the starting dose
with the developed model considering included covariates is most beneficial in terms of
shortening the time to reach the therapeutic target, compared with starting with the fixed
dose for all patients. This design can also limit the risk of toxicity to a relatively low level,
together with the designed TDM strategies. Under the setting of individualized starting
dose, the regimens with stepwise increasing dose at the start required less time to reach
the therapeutic target, while the one with constant starting dose demonstrated the lowest
risk of having toxicity. However, due to the fact that a shorter time to reach the therapeutic
target is normally paired with a higher probability of toxicity, it is suggested to consider
patients’ condition on whether the increased risk of having toxicity can be tolerated in
order to gain the benefit of reaching the therapeutic target quicker when selecting a dosing
regimen. A regimen with a loading dose followed by a maintenance dose would also be
desired to allow a fast target attainment. However, we didn’t consider this regimen in our
study as it requires a high dosage which is not tolerable for most patients. When one (or
more) TDM result becomes available, individual parameters could be estimated with the
population PK model. The dose amount for subsequent drug administrations can then
be determined according. This approach is also demonstrated to be a promising strategy
which was predicted to further decrease the risk of toxicity while providing a satisfactory
target reaching time. Only that patients’ tolerance to the high level of dose increase
needs to be considered when applying this strategy. Potentially, with the individual PK
parameters, an adequate dose for maintaining a steady drug concentration level after
reaching the therapeutic window can be estimated so that the frequency of dose adaptation
can be decreased. In chapter 7, our findings imply that dosing HD-MTX with a model-
based approach would potentially be more rational for further reducing PK variability.
In addition, on the basis of our results on toxicity analysis, further investigation on the
exposure-response relationship of MTX would be of interest for establishing a therapeutic

range for HD-MTX for future model-based personalized dosing.
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Challenges and future perspectives

Addressing treatment resistance considering evolutionary resistance development and
applying precision treatment would be beneficial to improve the treatment outcome for
oncology patients. The results presented in this thesis show that with the quantitative
models, the evolutionary tumor progression and PK/PD of anti-cancer drugs can be char-
acterized and predicted, thereby optimal treatment strategies can be designed and evaluated
for oncology patients. However, beyond what has been demonstrated and discussed,
challenges still remain regarding data availability, model development, and validation and
implementation of the results. Further research and collaborations are needed to overcome

the challenges and facilitate better implementation of the findings in the clinic.

Section|

Knowledge and data availability

In order to make use of genetic biomarkers to understand the dynamics of tumor sub-clones,
previous knowledge of the genetic variants that reflect treatment sensitivity is required.
Available data is also essential for developing models to characterize the correlation between
anti-cancer treatment responses and biomarkers, and to support decision making. As for
ctDNA, although its value in oncology treatment has now been increasingly acknowledged,
ctDNA monitoring has not yet been widely applied in routine clinical practice and the
availability and collection of longitudinal ctDNA data are limited [31, 32, 61]. Whether
patients had metastatic disease and the available sequencing assay and gene panel can also
impact the availability of ctDNA data. In chapter 3, detectable mutant KRAS concentrations
were only available from 9 patients out of 25 mCRC patients. In chapter 4, detectable mutant
EGFR VAFs were available in 13 out of 18 NSCLC patients. The limited capability to develop
a ctDNA dynamics model and adequately estimate all parameters. The missing data, such as
the missing baseline ctDNA measurements in chapter 4, may also affect the interpretation
of the results. Therefore, more and more detailed data is desired to validate our findings.
Since ctDNA is being increasingly studied and the analysis method is improving, together
with active collaborations, we see opportunities in the future to gain sufficient knowledge
and data on longitudinal ctDNA measurements. This will better support the development
of models capturing ctDNA dynamics and the incorporation of ctDNA time curves in the
tumor dynamics model, which would benefit the in-depth study on evolutionary resistance
development. In addition, once an adequate model is developed, sparsely sampled data
can also be well utilized and missing data can be imputed rationally. Currently, effort is

being made to establish standards and best practices to better systematize the evaluation
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of ctDNA kinetics [31]. Moreover, if sequencing data of multiple variants are available,
efforts need to be made to handle these data in a quantitative manner and a selection of

variants to be included in the analysis may be required.

Model development for evolutionary tumor progression

When modeling tumor dynamics in our studies, the sum of the longest diameters (SLD) of
all target lesions has been the observation of interest. Nevertheless, the dynamics of each
separate lesion would also be suitable for supporting the investigation of the progression
of heterogeneous tumors, especially when differences can be observed between primary
and metastatic lesions. Thus, further investigation on the dynamics of separate lesions
and comparing the findings with what is presented in this thesis can be of interest for

future studies.

In addition to what are proposed in this thesis, other modeling strategies that characterize
evolutionary tumor dynamics are also available, which can be applied in studies having
different focuses. One example would be game theory models which have a stronger focus
on the interaction and payoff matrix among different cell populations. The changes in the
fitness of cells (fitness cost or benefit) when interacting with therapy and other types of cells
are accounted for in game theory models [19, 34]. Another commonly applied modeling
strategy is stochastic models which allow describing the stochastic process of proliferation,
death, and mutation of tumor cells in the tumor, although the expected outcome can be
comparable to those that are derived from ordinary differential equations [62]. In addition,
the studies presented in this thesis assumed tumor cells accumulate one mutation that
leads to resistance to one drug each time. The possibility of acquiring multiple mutations
at a time which leads to multi-drug resistance has not been included in the analysis. This

can also be a point of consideration for future studies.

In terms of modelling the time-curves of ctDNA measurements, our study presented in
chapter 3 proposed a concept model for capturing ctDNA dynamics which consists of
a sub-clonal tumor-size dependent generation and a first-order elimination. The model
considered the correlation between tumor size and ctDNA amount and well characterized
the data from mCRC and NSCLC patients. We have also seen recent studies applying models
that are classically used to capture tumor size to describe ctDNA time course dynamics.
One study characterized the time-curves of mutant EGFR in ctDNA in NSCLC patients
with a model with zero-order increase, first-order decay, and time-dependent regrowth,
and tumor size dynamic was not incorporated [63]. Another study successfully modeled
the ctDNA time course using a bi-exponential model (first-order increase and first-order

decay) [64]. The correlation between tumor shrinkage and ctDNA drop has been observed
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and described by linking the decay rates of tumor sizes and ctDNA data [64]. These studies
provide more simple model options with fewer parameters for future pharmacometric
studies. However, the underlying biology and tumor heterogeneity were not considered
[64]. Moreover, in addition to characterizing the observed data, the prediction of newly
acquired mutation which has not yet occurred in the data would also be interesting to be

further explored.

Validation and extrapolation of the proposed model and treatment design

The studies in section I illustrated how quantitative models can support the study on
evolving tumor progression and treatment optimization so that anti-cancer resistance
can be better overcome. However, due to the characteristics of being based on limited
data, further validation with external datasets is required to confirm the performance
of the model and the added value of the suggested schedules. In addition, prospective
clinical studies are warranted before the application of the suggested treatment designs.
The validation should concern not only the predictability on the observed time-curves
of data, but also on the treatment outcome such as PFS. Regarding clinical trials, several
clinical studies on intermittent therapies have been reported, which however failed to
show improved outcomes and the underlined mechanism remains unclear [39-44]. The
need for clinical trials on adaptive therapy guided by ctDNA is however not met yet [31].
Currently, our group is carrying out a clinical study on intermittent enzalutamide therapy in
prostate cancer patients (NCT05393791). The findings would be of great value to evaluate

the concept proved in our study.

In addition, our studies were mainly performed in mCRC and NSCLC patients treated with
anti-EGFR therapies, and focused explicitly on the use of tumor size measurements and
ctDNA data. It would be of interest for future studies to extrapolate the concept models
and findings to other targeted treatments and cancer types. Moreover, other oncologic
biomarkers would in principle also be valuable to provide insight into the evolutionary
dynamics of tumor and guide treatment. A previous study has demonstrated the value of

PSA in guiding the intermittent treatment of prostate cancer patients [34].

Furthermore, to support further research and enable the achievement of the ultimate goal
of optimizing and personalizing anti-cancer treatment, a multidisciplinary collaboration
is essential. This is due to the requirement of in-depth knowledge about tumor and clonal

dynamics as well as skills needed for complex modeling and simulation.
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Implementation of proposed treatment design

Challenges also remain to apply the proposed novel treatment strategies in chapter 3
that could better overcome resistance in clinical practice. First of all, our study indicated
that intermittent therapy may only work for the responders to certain targeted treatment.
Thus, for patients who had detectable resistance mutation pre-treatment, a better option
would be to choose another treatment from start. Moreover, despite that the intermittent
regimens were predicted to provide better treatment outcome than the continuous
regimen in a population level, opposite results can be seen when looking at simulated
subjects individually, same as when comparing adaptive and intermittent regimens. This
indicates that variability between individuals can affect the choice of regimen. Thus, the
idea of individual intermittent treatment, the concept of which has been proposed in the

treatment of prostate cancer patients [34], could be further investigated.

Furthermore, in order to apply adaptive treatment guided by ctDNA measurements, the
mutations indicating sensitivity to treatment need to be acknowledged beforehand. If
multiple mutations have been reported, a selection may be required based on the strength
of evidence and capability of the quantification technique, such as the gene panel in the
assay and the number of mutations that can be detected simultaneously. To strengthen
clinical implementation of ctDNA in the future, the turnaround times of the sequencing
assays should also be short. In chapter 3, the study focused on the most representative
mutation that is associated with resistance. However, not all patients developed detect-
able KRAS mutation during the course of treatment. This indicates that in order to better
implement adaptive treatment, multiple relevant mutations may need to be considered.
In addition, our study demonstrated that the frequency of monitoring ctDNA and the
thresholds of adjusting treatment also matters when implementing adaptive treatment
to improve treatment outcome. We have evaluated frequencies of once every 4-12 weeks
which has been shown to be feasible [13, 65], but there is no clear validated optimal time
point for ctDNA analysis [31]. The sampling frequency can also depend on the disease,
therapy, sequencing assays, financial burden, and burden on the patients. After validation,
the proposed computational model can be of help to inform the best practice on monitoring

ctDNA and guide optimized treatment accordingly [31].
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Section |

Implementation of MIPD

As discussed in chapter 5, to facilitate the implementation of MIPD in clinical practice,
efforts are still required to overcome several challenges, such as to evaluate the model and
to translate the research findings into user-friendly MIPD software [7]. Currently, multiple
programs have been developed and are already in use for model-informed TDM [7, 66].
In chapter 6, we have also developed a Shiny app to elucidate how precision dosing advice
of mitotane for ACC patients can be informed by the developed population PK model. We
have implemented the final PK model and an optimized individualized dosing regimen
into this app. With this program, based on the input of the characteristics of a certain
patient, an individualized starting dose can be determined by the model and be visualized
together with the predicted mitotane concentration-time curves for this patient. Currently,
the build-in algorithm only allows the determination of the starting dose according to the
input information corresponding to the included covariates. As a R package that supports
empirical Bayesian estimation is now available [67], we see a potential to implement the
regimen where a more precise dose amount can be determined according to individual
parameters estimated based on available TDM results. Nevertheless, this app is currently
intended for research purpose only. Validation in hospital settings is still needed for its

application in clinic or transferring the model to a commercial platform.

Moreover, given that programs are available for model-informed TDM, the developed
models in our studies are believed to be able to be further applied to support model-based
TDM of mitotane and high-dose MTX.

Further PK/PD analysis for precision dosing

In addition to PK, variabilities in PD should also be taken into consideration when
implementing precision treatment. FDA recently proposed the Project Optimus which
encourages improving dose selection and optimization for oncology drugs by accounting
for both efficacy and tolerability rather than automatically selecting the MTD [8, 68]. In
chapter 7, we have developed a toxicity model which allows quantifying the probability
of having renal or hepatotoxicity in patients with CNS lymphoma treated with HD-MTX
given the value of risk factors. The identified exposure thresholds on C,,, can also be
applied to guide the early use of rescue therapy. Nevertheless, in order to better guide
personalized treatment, further PK/PD analyses are still warranted. Firstly, in addition to
already investigated factors, the impact of pharmacogenetic polymorphisms on the PK

and toxicity probability in patients with CNS lymphoma treated with HD-MTX would
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be of interest to future studies. Previous studies have demonstrated the influence of
ABCC2 polymorphisms on the PK of HD-MTX in patients with lymphoid malignancy
[69, 70]. Gene MTHEFR, SLC19A1, and ABCBI were reported to potentially associate
with an increased risk for hepatic toxicity [71]. Exploring the impact of pharmacogenetic
polymorphisms has the potential to better explain inter-patient variability. Additionally,
studies on the penetration of MTX to the CNS would also be of interest as CNS is the target
site of MTX and neurotoxicity is also a major problem for patients receiving HD-MTX
treatment. This goal can be achieved by applying physiologically based pharmacokinetic
modelling (PBPK) approach [72]. Furthermore, although high drug exposure can result
in toxicity, sufficient exposure is still essential to guarantee the efficacy. In our study,
an exposure-efficacy relationship was not investigated. A previous study suggested that
AUC, > 1100 umol/L*h is associated with a favorable treatment outcome [73]. Due to
an identified correlation of AUC, _with C,,,,
of 4-5 pmol/L [74]. Nonetheless, the direct relationship between C,, and the efficacy has

the same group recommended a C ,, target

not been reported. Therefore, further investigation is warranted to explore the possibility
of establishing a therapeutic range for HD-MTX, which could better facilitate future

personalized dosing.

Conclusion

Addressing treatment resistance considering evolutionary resistance development and
applying personalized drug treatment would be beneficial to improve the treatment
outcome for oncology patients. This thesis has applied the quantitative modeling approach
to characterize the evolutionary tumor dynamics and ctDNA dynamics and quantify PK/
PD variabilities for anti-cancer drugs. The developed model can facilitate the identifica-
tion of optimal treatment designs and guide individualized treatment rationally, although
challenges remain for the results implementation and further research and more data is

warranted to validate the findings and support better practice of personalized treatment.
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Summary

Quantitative modeling with mixed-effect models has been increasingly applied in phar-
maceutical research. It allows quantitative description and prediction of pharmacokinetics
(PK) and pharmacodynamics (PD) of therapeutic agents, as well as to quantify and explain
inter- and intra- individual variability. In oncology research, the model-based approach can
be applied to make use of longitudinal data to learn about the interaction between drug
treatment and the human body, as well as cancer progression. The developed model can
subsequently support the identification of the optimal regimen and facilitate individual-

ized treatment.

In cancer treatment, the occurrence of treatment resistance is one of the major causes of
treatment failure in patients. An insight into the inter- and intra-tumor heterogeneity and
evolutionary dynamics of tumors, and subsequent use of this knowledge for designing
treatment strategies would be beneficial for optimizing targeted anti-cancer treatment. In
Section I of this thesis, we applied the model-based approach to specifically interpret tumor
size dynamics and evolutionary resistance development during treatment, and explored

optimal regimens that can better suppress the development of resistance.

In order to identify opportunities and challenges of quantitatively characterizing anti-
cancer treatment response accounting for tumor dynamics and evolutionary resistance
development, an overview of currently available model structures is needed. In chapter
2, we performed a systematic search and comprehensively summarized the mathematical
models that have been used to describe and predict tumor growth (inhibition) dynamics
and evolutionary resistance development. We particularly focused on models that are
applicable to clinical data. In this review, tumor dynamic models displayed by ordinary
differential equations, algebraic equations, and partial differential equations were identified
and summarized. Tumor proliferation, regression due to treatment, tumor heterogeneity
and treatment resistance are key elements that are commonly considered in those models.
The dynamics of biomarkers can also be incorporated which enables better understanding
and prediction of tumor progression. As for models for evolutionary tumor resistance,
stochastic and deterministic models were identified and summarized. The required data
and knowledge as well as the applicability of the models to different cancer types and
treatment options were also summarized. The results of this review may facilitate a novel
model-based analysis of anti-cancer treatment response and the occurrence of resistance,

which incorporates both tumor dynamics and evolutionary resistance development.

Among the studies included in this review, detailed data regarding evolutionary resistance

has not yet been incorporated in tumor size-based modeling of anti-cancer treatment
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response. Given that genetic biomarkers, such as circulating tumor DNA (ctDNA), become
increasingly available, there is an opportunity to make use of such data to support the
development of a tumor dynamics model that accounts for evolutionary resistance for
cancer patients. The developed model could subsequently support the optimization and

personalization of anti-cancer therapy with simulations.

In order to test this concept, in chapter 3, a mathematical model incorporating various
clonal populations and evolving cancer resistance was developed to characterize tumor size
dynamics and resistance development under treatment. With parameter values fitted to the
data or informed by literature data, the model well captured previously reported tumor sizes
and mutant KRAS levels in ctDNA of patients with metastatic colorectal cancer (mCRC)
treated with panitumumab. Subsequently, we evaluated anti-cancer treatment schedules
the design of which considered the evolving progression of tumor and demonstrated the
use of ctDNA as a marker to guide adaptive treatment. The simulation results indicated
that compared with a conventional continuous treatment schedule, intermittent schedules
with treatment holidays and adaptive schedules guided by ctDNA could better suppress the
evolving cancer resistance. Intermittent and adaptive schedules were also predicted to result
in improved clinical outcomes, i.e. the predicted median progression-free survival (PFS)
and time period in which the tumor size stayed below the baseline level were prolonged.
With the sensitivity analysis, we identified parameters of which the accurate estimation is
important for the model to capture the observed dynamics of tumor sizes and mutation
concentrations. Nevertheless, the intermittent and adaptive treatment still provided better

treatment outcomes when parameter values varied.

In chapter 4, we further characterized the tumor dynamics considering intra-tumor hetero-
geneity and explored the correlation between ctDNA measurements and tumor dynamics
parameters based on data from non-small cell lung cancer (NSCLC) patients treated with
erlotinib. The study included intensively sampled erlotinib PK curves from 29 patients, and
tumor sizes, ctDNA measurements, and sparsely sampled erlotinib concentrations from 18
patients from the START-TKI study. A population PK model of erlotinib was first developed
and subsequently applied to investigate the exposure-tumor dynamics relationship. To
characterize the tumor dynamics, models accounting for intra-tumor heterogeneity and
acquired resistance with or without a pre-existing resistance component were investigated.
Eventually, a model with acquired resistance only resulted in an adequate fit to the data.
Additionally, no significant exposure-response relationship for erlotinib was identified
within the observed exposure range. Subsequently, the correlation of baseline ctDNA
measurements on EGFR and TP53 variants with tumor dynamics parameters was explored.

The analysis indicated that higher baseline plasma EGFR mutation levels correlated with
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increased tumor growth rates, and the inclusion of ctDNA data improved model fit. This
result suggests that quantitative ctDNA measurements have the potential to be a predictor

of anti-cancer treatment response, which encouraged to use ctDNA as an early biomarker.

Since high PK/PD variabilities of anti-cancer drugs are present in real-world patients
which may result in unfavorable treatment outcomes, a better understanding of such
variabilities would be beneficial to improve anti-cancer therapy for individual patients. In
Section II of this thesis, we demonstrated the application of pharmacometric modeling in
characterizing the PK/PD profiles and variabilities of anti-cancer drugs, and in supporting
precision treatment for real-world patients. We first introduced model-informed precision
dosing (MIPD) and the current application and benefit of MIPD in supporting optimal
and precision anti-cancer treatment in chapter 5. MIPD adopts pharmacometric models
to guide precision dose selection aiming for improved therapeutic target attainment and
optimal treatment outcome. MIPD can be applied to rationally guide initial dose selection
and dose adaptation during anti-cancer treatment, as well as therapeutic drug monitoring
(TDM). The advantage of MIPD over conventional strategies in cancer treatment has
been demonstrated in many research and clinical trials. However, challenges still have to
be overcome to implement MIPD of cancer therapies in clinical practice. We highlighted
a few challenges and provided future perspectives regarding optimal target identification,

suitable model selection, available programs, and the necessity of prospective clinical trials.

In chapter 6, we performed a population PK analysis to characterize and predict mitotane
PK in patients with adrenocortical carcinoma (ACC). Additionally, we explored and
quantified the potential effect of pharmacogenetic variations on mitotane clearance for
the first time to better explain the PK variability of mitotane. A two-compartment PK
model was developed based on retrospectively collected data from 48 patients. For each
patient, the genotyping results of 172 SNPs from the DMET™ platform were included in
the analysis. The exploratory analysis identified 11 SNPs that were potentially related to
mitotane clearance. The final stepwise covariate analysis identified the lean body weight
(LBW), genotypes of CYP2C19*2 (rs4244285), SLCO1B3 699A>G (rs7311358), and
SLCO1B1 571T>C (rs4149057) as significant covariates on mitotane clearance (CL/F).
This suggests that enzyme CYP2C19 and transporter SLCO1B1 and SLCO1B3 may play
roles in mitotane disposition but further external or in vitro evaluation is warranted to
confirm the results. Based on the developed model, various dosing regimens and the TDM
process were simulated to investigate optimal and individualized mitotane regimens for
patients with ACC. The results indicated that determining the starting dose individually
with the developed model is beneficial to shorten the period for mitotane to reach the

therapeutic target and limit the risk of toxicity. Regimens that can effectively maintain
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mitotane concentration within its therapeutic range, i.e., 14-20 mg/L, were established.
One optimal regimen was then built in a Shiny app to elucidate an option of providing

treatment advice for a new patient based on the model.

In chapter 7, we performed a population PK analysis on high-dose methotrexate (HD-MTX)
in patients with central nervous system (CNS) lymphoma. Data from 110 patients from 3
medical centers were available in this study. A two-compartment population PK model was
developed and shown to adequately describe the PK data. Estimated glomerular filtration
rate (eGFR), treatment schedule, albumin, alkaline phosphatase, and body weight were
identified as significant covariates. The results suggest that adjusting the HD-MTX dose
with a model-based approach may be more rational to further reduce PK variability than
dosing only based on body surface area (BSA). Subsequently, a (exposure-)toxicity analysis
was performed to identify predictive factors for acute renal and liver toxicity. eGFR and
sex were identified to be significant baseline predictors for renal toxicity, and HD-MTX
dose (mg/m?) was the strongest baseline predictor of liver toxicity. Simulation results
suggest that starting HD-MTX when eGFR > 66.6 mL/min/1.73m? is recommended for
patients with CNS lymphoma, and a dose higher than 3500 mg/m? predicted a high risk of
liver toxicity. The exposure metrics of methotrexate (MTX) including the area under the

concentration-time curve (AUC, ) and concentration at 24 hours (C,, ) were identified

24h
to correlate with renal toxicity but not with liver toxicity. AUC,, _ > 109.5 umol/L*h and
C,,, > 8.64 umol/L were suggested to be potential exposure thresholds that predict a high
risk of toxicity. These findings would be beneficial for further individualizing HD-MTX
dosage and preventing acute organ toxicity, which can improve HD-MTX therapy in CNS

lymphoma patients.

Finally, in chapter 8, we discussed the results of this thesis and potential challenges and
perspectives for future studies. We have shown that with the quantitative models, the
evolutionary progression of tumor can be characterized and predicted, accounting for
interactions among heterogeneous tumor cells and supported by mutant gene variants
detected in ctDNA. In addition, population PK/PD modeling allows for a quantitative
description of the PK and PD of anti-cancer drugs at both population and individual
levels. The developed model can further facilitate the identification of optimal treatment
designs and guide individualized treatment rationally for oncology patients. However,
challenges still remain for data collection (especially for ctDNA data), model develop-
ment and validation, and results implementation (including suggested regimens and the
models). Further research is warranted to validate the findings and support better practice

of personalized treatment.
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Kwantitatieve modellering met zogenaamde gemengde-effect modellen wordt steeds vaker
toegepast in farmaceutisch onderzoek. Het maakt het mogelijk om de farmacokinetiek
(PK) en farmacodynamiek (PD) van geneesmiddelen kwantitatief te beschrijven en te
voorspellen. Daarnaast kan met deze methode de inter- en intra-individuele variabiliteit
gekwantificeerd en verklaard worden. In oncologisch onderzoek kan de op modellen
gebaseerde benadering worden toegepast om longitudinale gegevens te benutten om
meer te weten te komen over de interactie tussen medicamenteuze behandeling en het
menselijk lichaam, evenals de progressie van kanker. Het ontwikkelde model kan vervol-
gens de identificatie van het optimale behandelingsregime ondersteunen en individuele

behandeling vergemakkelijken.

Bij kankerbehandeling is de opkomst van behandelingsresistentie één van de belangrijkste
oorzaken van therapiefalen bij patiénten. Inzicht in de inter- en intra-tumor heterogeniteit
en evolutionaire dynamiek van tumoren, en het daaropvolgende gebruik van deze kennis
voor het ontwerpen van behandelstrategieén, zou zeer gunstig zijn voor het optimaliseren
van gerichte antikankerbehandeling. In Sectie I van dit proefschrift hebben we deze op
modellen gebaseerde benadering specifiek toegepast om de dynamiek van tumorgrootte
en evolutionaire resistentieontwikkeling tijdens de behandeling te interpreteren, en
optimale behandelregimes te verkennen die de ontwikkeling van resistentie beter kunnen

onderdrukken.

Om kansen en uitdagingen te identificeren bij het kwantitatief karakteriseren van de reactie
op antikankerbehandeling rekening houdend met tumordynamiek en evolutionaire resis-
tentieontwikkeling, is een overzicht van momenteel beschikbare modelstructuren nodig. In
hoofdstuk 2 hebben we een systematische zoektocht uitgevoerd en de wiskundige modellen
die zijn gebruikt om de dynamiek van tumor(groei) en evolutionaire resistentieontwikkeling
te beschrijven en voorspellen, uitgebreid samengevat. We richtten ons met name op modellen
die toepasbaar zijn op klinische data. In deze review werden tumordynamische modellen
weergegeven door gewone differentiaalvergelijkingen, algebraische vergelijkingen en partiéle
differentiaalvergelijkingen geidentificeerd en vervolgens samengevat. Tumorproliferatie en
regressie als gevolg van behandeling, tumorheterogeniteit en behandelingsresistentie zijn
belangrijke elementen die doorgaans in die modellen worden meegenomen. De dynamiek
van biomarkers kan ook worden opgenomen in de modellen, wat een beter begrip en voor-
spelling van de tumorontwikkeling mogelijk maakt. Wat betreft modellen voor evolutionaire
tumorresistentie, werden stochastische en deterministische modellen geidentificeerd en

samengevat. De benodigde gegevens en kennis, evenals de toepasbaarheid van de modellen
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op verschillende kankersoorten en behandelingsmogelijkheden, werden ook samengevat.
De resultaten van deze review kunnen een nieuwe op modellen gebaseerde analyse van de
reactie op antikankerbehandeling en het optreden van resistentie vergemakkelijken, waarbij

zowel tumordynamiek als evolutionaire resistentieontwikkeling worden meegenomen.

Onder de studies die in deze review zijn opgenomen, is gedetailleerde informatie over
evolutionaire resistentie nog niet opgenomen in de op tumoromvang gebaseerde model-
lering van de reactie op antikankerbehandeling. Gezien het feit dat genetische biomarkers,
zoals circulerend tumor-DNA (ctDNA), steeds meer beschikbaar worden, is er een moge-
lijkheid om dergelijke gegevens te gebruiken ter ondersteuning van de ontwikkeling van
een tumordynamisch model dat rekening houdt met evolutionaire resistentie bij kanker-
patiénten. Het ontwikkelde model kan vervolgens de optimalisatie en personalisatie van

antikankertherapie ondersteunen met behulp van simulaties.

Om dit concept te testen, is in hoofdstuk 3 een wiskundig model ontwikkeld dat verschil-
lende klonale populaties en evoluerende kankerresistentie meeneemt om de dynamiek van
tumorgrootte en resistentieontwikkeling onder behandeling te karakteriseren. Met para-
meterwaarden afgestemd op de beschikbare data of geinformeerd door literatuurgegevens,
beschreef het model eerder gerapporteerde tumorgroottes en mutante KRAS-niveaus in
ctDNA van patiénten met gemetastaseerde dikkedarmkanker (mCRC) die met panitu-
mumab waren behandeld redelijk goed. Vervolgens evalueerden we behandelingsschema’s
die rekening hielden met de voortschrijdende progressie van tumoren en toonden we aan
dat het gebruik van ctDNA als marker om adaptieve behandeling te begeleiden in potentie
kan worden gebruikt. De simulatieresultaten gaven aan dat vergeleken met een conven-
tioneel continu behandelingsschema, onderbroken schema’s met behandelingspauzes en
adaptieve schema’s begeleid door monitoring van ctDNA de evoluerende kankerresis-
tentie beter konden onderdrukken. Er werd ook voorspeld dat onderbroken en adaptieve
schema’s zouden resulteren in verbeterde klinische resultaten, d.w.z. de voorspelde mediane
progressievrije overleving (PES) en de periode waarin de tumorgrootte onder het basale
niveau bleef, werden verlengd. Met de gevoeligheidsanalyse identificeerden we parame-
ters waarvan de nauwkeurige schatting belangrijk is voor het model om de waargenomen
dynamiek van tumorgroottes en mutatieconcentraties vast te leggen. Desalniettemin
boden de onderbroken en adaptieve behandeling betere behandelingsresultaten wanneer

de parameterwaarden varieerden.

In hoofdstuk 4 karakteriseerden we de tumordynamiek verder, waarbij rekening werd
gehouden met intra-tumor heterogeniteit, en onderzochten we de correlatie tussen ct DNA-

metingen en tumordynamiekparameters op basis van gegevens van patiénten met niet-
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kleincellige longkanker (NSCLC) die met erlotinib werden behandeld. De studie omvatte
intensief gesamplede erlotinib PK-curves van 29 patiénten, en tumorgrootte meetwaarden,
ctDNA-metingen en spaarzaam gesamplede erlotinib-concentraties van 18 patiénten uit
de START-TKI-studie. Een populatie-PK-model van erlotinib werd eerst ontwikkeld en
vervolgens toegepast om de relatie tussen blootstelling en tumordynamiek te onderzoeken.
Om de tumordynamiek te karakteriseren, werden modellen onderzocht die rekening
houden met intra-tumor heterogeniteit en verworven resistentie met of zonder een vooraf
bestaand resistentiecomponent. Uiteindelijk resulteerde een model met alleen verworven
resistentie in een adequate overeenkomst met de beschikbare gegevens. Bovendien werd
geen significante blootstellings-responsrelatie voor erlotinib geidentificeerd binnen het
waargenomen blootstellingsbereik. Vervolgens werd de correlatie van baseline ctDNA-
metingen van EGFR- en TP53-varianten met tumordynamiekparameters onderzocht.
De analyse gaf aan dat hogere plasma-EGFR-mutatieniveaus bij aanvang correleerden
met verhoogde tumorgroeisnelheden, en de opname van ctDNA-gegevens verbeterde de
modelaanpassing. Dit resultaat suggereert dat kwantitatieve ctDNA-metingen het poten-
tieel hebben om een vroege voorspeller te zijn van de reactie op antikankerbehandeling,

wat stimuleert om ctDNA te gebruiken als een vroege biomarker in de klinische praktijk.

Aangezien er in de praktijk hoge PK/PD-variabiliteit van antikankermedicijnen aanwezig is
bij patiénten, wat kan leiden tot ongunstige behandelingsresultaten, zou een beter begrip van
dergelijke variabiliteit gunstig zijn om de antikankertherapie voor individuele patiénten te
verbeteren. In Sectie I van dit proefschrift hebben we de toepassing van farmacometrische
modellering laten zien bij het karakteriseren van de PK/PD-profielen en variabiliteit van
antikankermedicijnen, en bij het ondersteunen van precisiebehandeling voor patiénten
in de klinische praktijk. We hebben eerst model-geinformeerde precisiedosering (MIPD)
geintroduceerd en de huidige toepassing en voordelen van MIPD in het ondersteunen
van optimale en precieze antikankerbehandeling besproken in hoofdstuk 5. MIPD maakt
gebruik van farmacometrische modellen om precisiedosering te begeleiden met als doel
een verbeterde therapeutische blootstelling en daaropvolgende optimale behandelingsresul-
taten. MIPD kan worden toegepast om rationeel de initiéle dosiskeuze en dosisaanpassing
tijdens antikankerbehandeling vast te stellen, net als therapeutic drug monitoring (TDM).
Het voordeel van MIPD ten opzichte van conventionele strategieén in de behandeling
van kanker is aangetoond in veel onderzoeken en klinische trials. Er moeten echter nog
obstakels worden overwonnen om MIPD van kankertherapieén in de klinische praktijk te
implementeren. We hebben een aantal uitdagingen benadrukt en toekomstperspectieven
geboden met betrekking tot optimale doelidentificatie, geschikte modelselectie, beschikbare

programma’s en de noodzaak van prospectieve klinische onderzoeken.
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Chapter 9

In hoofdstuk 6 hebben we een populatie-PK-analyse uitgevoerd om de PK van mitotaan te
karakteriseren en voorspellen bij patiénten met bijnierschorscarcinoom (ACC). Bovendien
hebben we voor de eerste keer het potentiéle effect van farmacogenetische variaties op
mitotaanklaring kwantitatief onderzocht om de PK-variabiliteit van mitotaan beter te
verklaren. Er werd een tweecompartimenten-PK-model ontwikkeld op basis van retrospec-
tief verzamelde gegevens van 48 patiénten. Voor elke patiént werden de genotyperesultaten
van 172 SNPs van het DMET™-platform opgenomen in de analyse. De verkennende analyse
identificeerde 11 SNPs die potentieel gerelateerd waren aan mitotaanklaring. De uiteinde-
lijke stapsgewijze covariaatanalyse identificeerde het lichaamsgewicht zonder vet (LBW),
genotypen van CYP2C19*2 (rs4244285), SLCO1B3 699A>G (rs7311358) en SLCO1BI
571T>C (rs4149057) als significante covariaten voor schijnbare mitotaanklaring (CL/F). Dit
suggereert dat het enzym CYP2C19 en de transporters SLCO1B1 en SLCO1B3 mogelijk een
rol spelen in de verdeling van mitotaan, maar verdere externe of in vitro-evaluatie is nodig
om de resultaten te bevestigen. Op basis van het ontwikkelde model werden verschillende
doseringsschema’s en het TDM-proces gesimuleerd om optimale en geindividualiseerde
mitotaanregimes voor patiénten met ACC te onderzoeken. De resultaten gaven aan dat
het individueel bepalen van de startdosis met het ontwikkelde model gunstig is om de
periode voor mitotaan om het therapeutische doel te bereiken te verkorten en het risico
op toxiciteit te beperken. Regimes die effectief mitotaan concentratie binnen het therapeu-
tische bereik kunnen handhaven (14-20 mg/L) werden vastgesteld. Eén optimaal regime
werd vervolgens gebouwd in een Shiny-app om een optimaal behandelingsadvies voor een

nieuwe patiént op basis van het model te genereren en te visualiseren.

In hoofdstuk 7 hebben we een populatie PK-analyse uitgevoerd op hoge doses methotrexaat
(HD-MTZX) bjj patiénten met lymfoom van het centrale zenuwstelsel (CZS). Gegevens van
110 patiénten uit drie academische medische centra waren beschikbaar in deze studie.
Er werd een tweecompartimenten populatie PK-model ontwikkeld en getoond om de
PK-gegevens adequaat te beschrijven. Geschatte glomerulaire filtratiesnelheid (eGFR),
behandelschema, albumine, alkalische fosfatase en lichaamsgewicht werden geidenti-
ficeerd als significante covariaten. De resultaten suggereren dat het aanpassen van de
HD-MTX-dosering met een op modellen gebaseerde benadering mogelijk rationeler is
om de PK-variabiliteit verder te verminderen dan dosering alleen op basis van lichaams-
oppervlak (BSA). Vervolgens werd een (blootstellings-)toxiciteitsanalyse uitgevoerd om
voorspellende factoren voor acute nier- en levertoxiciteit te identificeren. eGFR bij start
behandeling en geslacht werden geidentificeerd als significante basale voorspellers voor
niertoxiciteit, en de HD-MTX-dosering (mg/m?*) was de sterkste basale voorspeller van

levertoxiciteit. Simulatieresultaten suggereren dat om niertoxiciteit te voorkomen het
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aanbevolen is om alleen te starten met een volledig dosis van HD-MTX wanneer patiénten
met CZS-lymfoom een eGFR > 66,6 mL/min/1,73m* hebben. Een dosis hoger dan 3500
mg/m? voorspelde een verhoogd risico op levertoxiciteit. De blootstellingsmetingen van
methotrexaat (MTX), waaronder de oppervlakte onder de concentratie-tijdcurve (AUC,, )

en de concentratie na 24 uur (C, ), werden geidentificeerd als correlerend met niertoxi-

24h
citeit, maar niet met levertoxiciteit. AUC,, > 109,5 pmol/L*uur en C,,, > 8,64 pmol/L
werden voorgesteld als mogelijke blootstellingsdrempels die een hoog risico op toxiciteit
voorspellen. Deze bevindingen zouden nuttig kunnen zijn voor verdere individualisering
van de HD-MTX-dosering en het voorkomen van acute orgaantoxiciteit, wat de HD-MTX-

therapie bij patiénten met CZS-lymfoom kan verbeteren.

Tenslotte, in hoofdstuk 8, hebben we de resultaten van deze scriptie en potentiéle uitda-
gingen en perspectieven voor toekomstige studies besproken. We hebben aangetoond
dat met kwantitatieve modellen de evolutionaire progressie van tumoren kan worden
gekarakteriseerd en voorspeld, rekening houdend met interacties tussen heterogene
tumorcellen en ondersteund door gemuteerde genvarianten die zijn gedetecteerd in ctDNA.
Bovendien maakt populatie PK/PD-modellering een kwantitatieve beschrijving mogelijk
van de PK en PD van antikankergeneesmiddelen op zowel populatie- als individueel
niveau. Het ontwikkelde model kan verder bijdragen aan de identificatie van optimale
behandelingsontwerpen en het rationeel begeleiden van geindividualiseerde behandeling
voor oncologiepatiénten. Er blijven echter uitdagingen bestaan voor gegevensverzameling
(vooral voor ctDNA-gegevens), modelontwikkeling en validatie, en de implementatie van
resultaten (inclusief voorgestelde behandelingsregimes en modellen). Verder onderzoek
is nodig om de bevindingen te valideren en een betere praktijk van gepersonaliseerde

behandeling te ondersteunen.
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