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Importance of optimizing anti-cancer treatment

Worldwide, cancer is a leading cause of death and the incidence of cancer is rapidly 
increasing, reflecting both the aging of the population and the prevalence of main risk 
factors such as unhealthy lifestyle [1, 2]. Continuous efforts have been made to meet the 
medical needs of cancer patients and numerous options are currently available. A conven-
tional treatment option for cancer patients is cytotoxic chemotherapy, which aims to inhibit 
tumor cell multiplication by affecting the synthesis or function of macromolecular [3]. In 
recent decades, targeted therapies, which act on specific oncogenic proteins that drive tumor 
growth or progression, have also become a standard type of anti-cancer treatment [4, 5]. 
Due to the increasing knowledge of molecular alterations in tumor cells, appropriate drug 
targets can be identified and specific targeted treatment options can be selected [6]. These 
targeted therapies have significantly improved the survival of cancer patients, and more 
than eighty targeted drugs have been brought to the market over the past decades [4, 7].   

However, obstacles to accomplishing successful anti-cancer treatment still exist. First, for 
both conventional chemotherapies and targeted therapies, one important reason for patients 
experiencing treatment failure is drug resistance [8, 9]. The occurrence of drug resistance 
is mediated by a range of mechanisms, including physical barriers and impact of the tumor 
microenvironment [4, 9]. Evolutionary mechanisms are also increasingly acknowledged as 
key factors that contribute to the development of drug resistance. It is driven by inter- and 
intra-tumor heterogeneity, i.e. distinct cells exist in different or same tumors which show 
different susceptibility to treatments, and the evolving adaptation of tumor cells to the 
selection pressure of anti-cancer drug treatment, i.e. resistance subclones are acquired or 
are adaptively selected from pre-existing subclones during treatment [9-12]. To increase 
the chance to suppress the development of drug resistance, a better characterization and 
understanding of evolutionary tumor progression, and subsequent use of this knowledge 
to design new adaptive treatment regimens are desired.  

Another important factor that challenges successful treatment is the substantial variability 
in pharmacokinetics (PK) and pharmacodynamics (PD) of anti-cancer drugs, which is 
especially frequently observed in real-world patients. Due to the existing correlations 
between drug exposure and treatment response (efficacy and toxicity) for many oncologic 
drugs, such variability can result in suboptimal treatment outcomes for part of the patients 
especially when the therapeutic window is narrow [13, 14]. Thus, the need for precision 
dosing in cancer therapy instead of a ‘one-dose-fits-all-approach’ is emerging [14]. In 
addition, the dosages of most oncology drugs are selected according to the maximum 
tolerated dose (MTD) paradigm [15]. This can lead to a demand for dose modification 
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in real-world patients due to the risk of toxicity [15]. Therefore, optimizing dosage of 
anti-cancer drugs to ensure efficacy while minimizing toxicity is essential. To achieve this 
goal, it would be beneficial to better understand and predict PK/PD profiles and exposure-
response relationships of anti-cancer drugs, and identify factors that explain PK/PD vari-
ability (between and within patients) in real-world populations. In addition, a useful tool 
to support optimal and personalized dose and regimen selection based on the therapeutic 
target is warranted. This knowledge can also contribute to a better implementation of 
therapeutic drug monitoring (TDM) in cancer patients. 

Longitudinal (bio)markers        

Monitoring longitudinal (bio)markers during anti-cancer therapies enables assessment of 
cancer progression and treatment response. Tumor burden is a commonly used indicator 
of anti-cancer treatment effect and is routinely monitored in clinical practice. In solid 
tumors, tumor burden is typically quantified with the sum of the longest diameters (SLD) 
of target lesions, which also forms several clinical endpoints defined by Response Evalu-
ation Criteria in Solid Tumours (RECIST version 1.1) [16]. The longitudinal tumor size 
measurements can reflect the dynamics of treatment effect and tumor progression. SLD 
related metrics, such as relative or absolute changes from baseline, have also showed to be 
predictive to the overall survival of cancer patients [17]. In addition to tumor diameters, 
soluble tumor markers have also been used to measure total tumor burden in clinical 
practice. These include prostate-specific antigen (PSA) in prostate cancer, CA125 in 
ovarian cancer, M-protein in multiple myeloma, and carcinoembryonic antigen (CEA) in 
colorectal cancer [17, 18].  

Circulating biomarkers, including soluble drug targets, inflammatory biomarkers, and 
circulating genetic biomarkers, can also be assessed to monitor treatment response and 
guide treatment modification. Circulating tumor DNA (ctDNA) is an emerging genetic 
biomarker which refers to cell-free DNA (cfDNA) fragments that are released into the 
circulation from primary tumor or metastatic cells [6]. It can be detected from liquid 
biopsies which allows real-time monitoring with limited patient burden. From serial ctDNA 
analysis, cancer-related genetic alternations can be detected and quantified, which can 
reveal the mechanisms of resistance to targeted therapies, and provide important insights 
into tumor heterogeneity and drug resistance evolution during treatment [6, 9, 19-21]. 
With relevant genetic alternations detected, ctDNA monitoring can potentially guide 
early adjustment of treatment to target newly developed actionable mutations, thereby 
suppressing the proliferation of tumor subclones [9, 19, 22]. In addition, the quantified 
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ctDNA measurements have also shown to correlate with tumor burden and stage, and 
ctDNA dynamics has been demonstrated to correlate with therapeutic response in various 
kinds of cancers [19, 20, 23-25]. 

Therefore, data on longitudinal (bio)markers demonstrate great value in supporting the 
investigation of evolutionary tumor dynamics and resistance development and PK/PD 
relationships of oncologic drugs. Biomarker monitoring also holds the potential to guide 
better treatment design aiming for improved cancer treatment outcomes. 

Pharmacometric modeling   

Pharmacometric modeling has been increasingly applied in pharmaceutical research to 
support decision making in drug development and treatment optimization. Computa-
tional models allows quantitative characterization and prediction of the time courses of 
drug exposure (PK), treatment response (PD), and disease progression, as well as their 
relationships following drug administration [26, 27]. Mixed-effect modeling (population 
modeling) approach is commonly applied which allows the description of population 
level trends (i.e. fixed effects) and quantify random inter- and intra-individual variability 
(i.e. random effects) simultaneously [26, 27]. Covariates that explain the variability can 
also be explored. 

In oncology research, the model-based approach is a helpful tool to make use of longitudinal 
data to gain knowledge about the interaction between drug treatment, the human body 
and disease. This knowledge can subsequently be used to advance treatment optimization 
and rationalize individualized therapy [14, 27, 28].   

Models that characterize the dynamics of tumor size measurements represent one key class 
of PD models in cancer research. To better interpret the emergence of drug resistance, 
the importance of accounting for tumor heterogeneity and drug resistance evolution in 
tumor dynamics modeling has been pointed out before [29]. Up until now, various model 
structures have been proposed to characterize the tumor dynamics and drug resistance 
evolution in solid tumors, which can serve as references for future studies [10, 17, 30, 31]. 
Moreover, PK metrics and genetic biomarkers as well as their relation with tumor size 
dynamics can also be investigated and incorporated in the model, which would further 
benefit the understanding of PK/PD relationships and evolutionary tumor progression. 
In conjunction with simulations, the model could be used to explore optimal adaptive 
treatment strategies that can better prevent or delay anti-cancer treatment resistance.  
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Computational models that characterize the PK/PD profiles and variability of anti-cancer 
drugs can also guide optimal dose selection and enable individualized therapy (model-
informed precision dosing (MIPD)) [14]. With the PK-PD behavior and covariates identi-
fied by the model, the optimal treatment regimen that ensures balance between efficacy and 
toxicity for individual patients can be identified. This can be especially helpful to guide the 
selection of the initial dose and schedule aiming at the target exposure. Other approaches 
that support precision dosing, such as pharmacogenomics, can also be integrated with 
MIPD [14]. Moreover, with the Bayesian framework of the developed model, individual 
parameters can be estimated once patient characteristics and data are known [14]. This 
enables more precise capture and prediction of individual PK/PD profiles, which could 
guide the selection of the next dose rationally. Compared with conventional TDM, MIPD 
provides the decision support in a quantitative manner. 

Aim and outline of this thesis

With the studies in this thesis, we aim to proceed toward better treatment for oncology 
patients with model-based approach.

In section I, we aim to quantitatively characterize and understand the evolutionary tumor 
dynamics and resistance development during treatment, and to identify treatment schedules 
that can better suppress the occurrence of resistance. 

In chapter 2, we perform a systematic literature search and comprehensively summarize 
the mathematical models that have been used to describe and predict tumor growth 
(inhibition) dynamics and evolutionary resistance development. The focus of this review 
lies particularly on models that are applicable for clinical data. 

In chapter 3, a mathematical model incorporating various tumor clonal populations and 
evolving cancer resistance is developed to characterize tumor size dynamics and resist-
ance development under treatment, as well as and ctDNA dynamics based on data from 
metastatic colorectal cancer (mCRC) patients. Subsequently, we evaluate adaptive and 
intermittent treatment schedules and demonstrate the use of ctDNA as a marker to guide 
adaptive treatment. 

In chapter 4, we further characterize the tumor dynamics and development of drug 
resistance in NSCLC patients treated with erlotinib with a model considering tumor 
heterogeneity. A population PK model of erlotinib is also developed and subsequently used 
to facilitate the investigation on the exposure-tumor dynamics relationship of erlotinib. 
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Additionally, the potential correlation between ctDNA measurements and tumor dynamics 
in NSCLC patients is explored to further understand the value of monitoring ctDNA. 

In section II, we aim to characterize the PK/PD profiles and variabilities of anti-cancer 
drugs in real-world patients to facilitate treatment optimization, and to demonstrate the 
use of pharmacometric models in guiding individualized treatment.  

In chapter 5, we introduce the application and benefits of model-informed precision dosing 
in supporting anti-cancer treatment optimization and individualization, and discuss the 
challenges and future perspectives of implementing MIPD in cancer therapies.

In chapter 6, a population PK analysis is performed for mitotane in patients with adreno-
cortical carcinoma (ACC). The effect of pharmacogenetic variations on mitotane PK 
are investigated to better explain mitotane PK variability. Simulations are subsequently 
performed to investigate optimal treatment regimens and facilitate treatment individu-
alization for patients with ACC.

In chapter 7, we perform a population PK analysis on high-dose methotrexate (HD-MTX) 
in patients with central nervous system lymphoma. Additionally, a (exposure-)toxicity 
analysis is performed to identify baseline and exposure-related predictive factors for the 
acute renal and hepatotoxicity.

Finally, in chapter 8 we conclude this thesis with a general discussion and future perspec-
tives in data collection, model development, and results implementation regarding the 
suggested regimens and developed models. English and Dutch summaries are presented 
in chapter 9. 
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Abstract

Increasing knowledge of intertumor heterogeneity, intratumor heterogeneity, and 
cancer evolution has improved the understanding of anticancer treatment resistance. 
A better characterization of cancer evolution and subsequent use of this knowledge 
for personalized treatment would increase the chance to overcome cancer treatment 
resistance. Model-based approaches may help achieve this goal. In this review, we 
comprehensively summarized mathematical models of tumor dynamics for solid 
tumors and of drug resistance evolution. Models displayed by ordinary differential 
equations, algebraic equations, and partial differential equations for characterizing 
tumor burden dynamics are introduced and discussed. As for tumor resistance 
evolution, stochastic and deterministic models are introduced and discussed. The 
results may facilitate a novel model-based analysis on anticancer treatment response 
and the occurrence of resistance, which incorporates both tumor dynamics and 
resistance evolution. The opportunities of a model-based approach as discussed in 
this review can be of great benefit for future optimizing and personalizing anticancer 
treatment.
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1.  Introduction

Drug resistance is one of the major reasons for patients experiencing treatment failure in 
the area of oncology [1]. Increasing knowledge of intertumor and intratumor heterogeneity 
that suggests distinct cells exist in different or the same tumors as well as cancer evolution 
have improved the understanding of anticancer treatment resistance [2]. It thereby pushes 
forward the necessity of precision medicine rather than a one-size-fits-all approach [2]. To 
rationalize the treatment personalization and address treatment failure, the use of modeling 
and simulation, which can quantitatively characterize and predict the relationships between 
drug exposure/pharmacokinetics (PK), drug effects/pharmacodynamics (PD), and disease 
progression, is widely accepted to support drug decision making [3-6].

Mathematical models that characterize the effects of anticancer drug treatment for solid 
tumors based on tumor size dynamics, which is typically quantified with measurements 
of tumor diameter and volume, represent one key class of models applied in cancer phar-
macology. Various tumor growth modeling strategies have been previously reviewed, 
including agent-based models [7], image-based models [8], multiscale models [9], and 
PK/PD models [10, 11].

Currently, an increasing number of studies concerning the gene sequencing of tumor 
biopsies in different cancer types have demonstrated the dynamics of cancer evolution [2, 
12]. Intratumor heterogeneity that results from cancer evolution and an evolving adaption 
of heterogeneous tumor to treatment are also increasingly acknowledged as key factors 
related to the development of resistance [2, 12]. To better characterize this process and 
to account for tumor heterogeneity, mathematical models that consider the evolution of 
tumors have been proposed [13-17]. Potentially, such evolution models in conjunction 
with tumor growth models could be of benefit to interpret both tumor size change and 
evolving tumor progression during treatment and thereby ultimately rationalize adaptive 
treatments for individual patients and overcome treatment resistance.

To identify the challenges and opportunities of characterizing tumor size change and resist-
ance evolution simultaneously with a model-based approach that can facilitate anticancer 
treatment optimization and personalized medicine, an overview of the current available 
model structures is needed. Thus, in the current review, we comprehensively summarized 
mathematical models for the characterization of tumor growth (inhibition) dynamics in 
solid tumors and the relevant clonal evolution of drug resistance by a systematic search 
and study of previous literature. The focus in this review lies particularly on models that 
are applicable for clinical data.   
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2.  Literature search

Studies that characterized tumor growth (inhibition) dynamics and clonal evolution of 
drug resistance with mathematical models were systematically retrieved and studied from 
the PubMed database to provide a comprehensive and unbiased review. In total, 274 and 
85 publications were obtained, respectively, for studies of tumor dynamics and tumor 
resistance evolution based on established search terms. Details of the literature search 
are described in Supplementary Material S2.1 and Figure S2.1. Ultimately, 61 and 25 
papers, among which 13 and 2 papers were obtained from the publications’ references, 
which introduced corresponding original models or demonstrated application examples of 
certain model structures, were included, respectively, for tumor dynamics and resistance 
evolution modeling. Model structures, cancer types, treatments, and the ways of reporting 
tumor sizes were extracted from the included papers. The identified model structures 
were classified by equation types in later sessions and were summarized in Tables 2.1 and 
2.2. Data input, knowledge requirement, study type, and objectives related to different 
model structures were summarized in Table 2.3 to provide a reference of the selection 
of different model structures. The information of software that was used to perform the 
corresponding modeling and simulation analysis was also obtained and are summarized 
in Supplementary Material S2.1 and Table S2.1.

3.  Tumor dynamics modeling 

3.1  Ordinary differential equation

3.1.1  Basic growth model
A majority of the included studies applied ordinary differential equations (ODEs) to 
describe tumor burden change. The natural growth of a tumor without treatment is 
commonly characterized with several basic functions, including linear, exponential, 
logistic, Gompertz, and combined exponential and linear models (Table 2.1). The time 
curves of different models were simulated and are presented in Figure 2.1. Differential 
equations were solved with the RxODE package implemented in R software (version 3.4.1; 
R Foundation for Statistical Computing, Vienna, Austria).

The linear tumor growth assumes a constant zero-order growth rate (Eq. 2.1; Figure 2.1) 
[10]. It has been applied to describe the natural tumor growth of metastatic renal cell 
carcinoma [18] based on the measurements of sum of longest diameters (SLD) of the 
target lesions in patients.
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Table 2.1: Modeling frameworks for characterizing tumor dynamics

Models/assumptions Equations Ref.

Ordinary differential equations

Basic functions describing natural tumor growth

Linear growth 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑔𝑔 

Eq. 2.1 [18]

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑔𝑔 � 𝑑𝑑 � 𝑑𝑑 

Eq. 2.2 [21]

Exponential growth 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑔𝑔 ∙ 𝑇𝑇 

Eq. 2.3 [20]

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑔𝑔 � 𝑑𝑑 � 𝑑𝑑 � 𝑑𝑑 

Eq. 2.4 [22, 23]

Logistic growth 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑔𝑔 ∙ 𝑇𝑇𝑇  �� � 𝑇𝑇

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚� 
Eq. 2.5 [24, 25]

Gompertz growth 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑔𝑔 ∙ 𝑇𝑇𝑇  𝑇𝑇 �𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇 � 

Eq. 2.6 [27, 29]

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � � � �𝑑𝑑𝑑𝑑𝑑𝑑 

Eq. 2.7 [28]

Combination of exponential 
and linear growth

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 �

0 ∙ 𝑇𝑇

�1 � �01 ∙ 𝑇𝑇�
20
�
1
20

 
Eq. 2.8 [31]

Model structures integrating tumor heterogeneity

Tumor burden(T)=
Proliferative component (P) 
+ Quiescent component (Q) �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑃𝑃� � �1 ∙ 𝑃𝑃

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �1 ∙ 𝑃𝑃

 

Eq. 2.9 [25]

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑃𝑃� � �1 ∙ 𝑑𝑑 � �2 ∙ 𝑄𝑄

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �1 ∙ 𝑑𝑑 � �2 ∙ 𝑄𝑄

 

Eq. 2.10 [22, 33]

Tumor burden (T)=
Sensitive component (S) + 
Resistant component (R) �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑆𝑆�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑅𝑅�

 

Eq. 2.11 [24]

Table 2.1 continues on next page.
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Table 2.1: Continued

Models/assumptions Equations Ref.

Tumor burden (T)=
Sensitive component (S) + 
Resistant component (R) �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑆𝑆� � �1 ∙ 𝑆𝑆
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑅𝑅� � �1 ∙ 𝑆𝑆

 

Eq. 2.12 [23, 35]

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑆𝑆� � �1 ∙ 𝑑𝑑 � �2 ∙ 𝑅𝑅
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑅𝑅� � �1 ∙ 𝑑𝑑 � �2 ∙ 𝑅𝑅

 

Eq. 2.13 [34, 36]

Model structures integrating tumor biology process

Angiogenesis 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑇𝑇� � � ∙ 𝐵𝐵𝐵𝐵0 � 𝐵𝐵𝐵𝐵𝑡𝑡

𝐵𝐵𝐵𝐵0
∙ 𝑇𝑇 

�������� ��𝑇𝑇� � � ∙ �� � 𝐵𝐵𝐵𝐵�
𝐵𝐵𝐵𝐵�

� ∙ 𝑑𝑑 

Eq. 2.14 [31, 39]

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑔𝑔 ∙ 𝑇𝑇𝑇  �1 � 𝑇𝑇

𝐸𝐸�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �2 ∙ 𝑇𝑇

1
2

 

Eq. 2.15 [40]

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑔𝑔 ∙ 𝑉𝑉 𝑉 𝑉𝑉𝑉 �𝐸𝐸𝑇𝑇�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �2 ∙ 𝑑𝑑 � 𝑑𝑑 ∙ 𝑑𝑑

2
3 ∙ 𝐸𝐸

 

Eq. 2.16 [41, 42]

Immune system

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � 𝑓𝑓�𝑇𝑇� � 𝑓𝑓�𝐼𝐼� ∙ 𝑇𝑇𝑇  � ℎ

𝑑𝑑 � ℎ�
𝑓𝑓�𝐼𝐼� � 𝑑𝑑 ∙ 𝐼𝐼

 
Eq. 2.17 [44] 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � 𝑓𝑓�𝑇𝑇� � 𝑓𝑓�𝐼𝐼� ∙ 𝑇𝑇𝑇  � ℎ

𝑑𝑑 � ℎ�
𝑓𝑓�𝐼𝐼� � �𝑑𝑑1 ∙ 𝐼𝐼1 � 𝑑𝑑2 ∙ 𝐼𝐼2� ∙ � 𝐼𝐼3

𝐼𝐼3 � ��
 

Eq. 2.18 [43]

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑇𝑇� � 𝑑𝑑1 ∙ � ∙ 𝑑𝑑 � 𝑑𝑑2 ∙ 𝑁𝑁 𝑁𝑁𝑁  

Eq. 2.19 [46]

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑇𝑇� � 𝑑𝑑 � � � 𝑑𝑑 

Eq. 2.20 [47]

Empirical model structures describing therapeutic effect

First-order treatment effect 
(“log-kill” pattern)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑇𝑇� � �𝑑𝑑 ∙ 𝑇𝑇 

Eq. 2.21 [18]

Exposure-dependent 
treatment effect

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑇𝑇� � �𝑑𝑑 ∙ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝐸  

Eq. 2.22 [22, 25]

Table 2.1 continues on next page.
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Table 2.1: Continued

Models/assumptions Equations Ref.

Exposure-dependent 
treatment effect with 
resistance (TGI model)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑑𝑑� � �𝑑𝑑 ∙ 𝑒𝑒��∙𝑑𝑑 ∙ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸   

Eq. 2.23 [20, 48, 
49]

Introducing a damaged cell 
compartment

⎩⎪
⎨
⎪⎧
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ��𝑆𝑆� � �𝑑𝑑 ∙ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝐸
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑑𝑑 ∙ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ∙ 𝑑𝑑 � 𝑑𝑑 ∙ 𝑑𝑑

� � 𝑑𝑑 � 𝑑𝑑

 

Eq. 2.24 [24, 25]

Nonlinear drug exposure-
effect relationship 𝑘𝑘𝑔𝑔′ � 𝑘𝑘𝑔𝑔 ∙ �� � 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝐼𝐼𝐼𝐼50 � 𝐸𝐸𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� 
Eq. 2.25 [21]

Algebraic equations

Two-phase model  Eq. 2.26 [50, 51, 
55]

� � �����∙� � ���∙����� � �� ∙ ���� Eq. 2.27 [50]

 Eq. 2.28 [55]

Model proposed by Wang 
et al.

 Eq. 2.29 [52, 56]

An extension of Eq. 2.30  Eq. 2.30 [53]

� � �� � �� ∙ � 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
100𝑚𝑚𝑚𝑚� 

Eq. 2.31 [53]

Simplified TGI model



 

Eq. 2.32 [54, 57, 
58, 59, 
60]

Partial differential equations

Proliferation-invasion model 𝜕𝜕𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�
𝜕𝜕𝜕𝜕 � ���� � ��𝑐𝑐�𝑥𝑥𝑥 𝑥𝑥� � ��𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�� Eq. 2.33 [61, 63, 

64, 69, 
70]

� � ��𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷 𝐷𝐷 Eq. 2.34

𝜕𝜕𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�
𝜕𝜕𝜕𝜕 � ���� ∙ ��𝑐𝑐�𝑥𝑥𝑥 𝑥𝑥� � ��𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�� � �� ∙ 𝑐𝑐�𝑥𝑥𝑥 𝑥𝑥� 

𝜕𝜕𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�
𝜕𝜕𝜕𝜕 � ���� ∙ ��𝑐𝑐�𝑥𝑥𝑥 𝑥𝑥� � ��𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�� � �� ∙ 𝑐𝑐�𝑥𝑥𝑥 𝑥𝑥� 

Eq. 2.35 [67]

 Eq. 2.36 [64]

Table 2.1 continues on next page.
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Table 2.1: Continued

Models/assumptions Equations Ref.

Proliferation-invasion model 𝜕𝜕𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�
𝜕𝜕𝜕𝜕 � ���� � ��𝑐𝑐�𝑥𝑥𝑥 𝑥𝑥� � ��𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�� � �� � ����� � ��𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�� 

𝜕𝜕𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�
𝜕𝜕𝜕𝜕 � ���� � ��𝑐𝑐�𝑥𝑥𝑥 𝑥𝑥� � ��𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�� � �� � ����� � ��𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�� 

Eq. 2.37 [64]

𝜕𝜕𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�
𝜕𝜕𝜕𝜕 � ���� � ��𝑐𝑐�𝑥𝑥𝑥 𝑥𝑥� � ��𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�� � ��𝑥𝑥𝑥 𝑥𝑥� 

𝜕𝜕𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�
𝜕𝜕𝜕𝜕 � ���� � ��𝑐𝑐�𝑥𝑥𝑥 𝑥𝑥� � ��𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�� � ��𝑥𝑥𝑥 𝑥𝑥� 

Eq. 2.38 [74]

α, β, radio sensitivity parameters; A, exponential shrinkage rate constant as a result of treatment; a, b, 
constants; B, linear growth rate constant; BASE, baseline of tumor burden; BM0, baseline of biomarkers; BMt, 
biomarker amount at time point t, which could be assumed to remain constant and equal to baseline in 
the absence of treatment; C, coefficient of quadratic growth term; c(x,t), tumor cell concentration/density at 
location x at time t; D, damaged cells; d, death rate constant; d1, d2, rate constants; Dif, diffusion coefficient; E, 
vessel endothelial cells; Emax, maximal fraction of inhibition; f(P), f(S), f(R), f(T), growth function of proliferative 
cells (P), sensitive cells (S), resistant cells (R), and tumor tissue (T), respectively; G(x,t), surgical term; h, g, 
constants; I, I1, I2, I3, components in the immune system; IC50, the drug exposure that produces 50% of Emax; k, 
k2, rate constants; kd, shrinkage rate constant of tumor as a result of drug treatment; kg, growth rate/growth 
rate constant; kg

’, tumor growth rate constant under treatment; m1, m2, conversion rate constants that can 
be set as 0; N, normal cells; Surv, the probability of tumor cell survival; T, tumor burden; TGI, tumor growth 
inhibition; Tmax, carrying capacity; λ, treatment efficacy decay rate constant; λ0, exponential growth rate; 
λ1, linear growth rate; τ, delayed time of tumor regrowth; 𝜙, sensitive fraction of the tumor; ρ, growth rate 
constant; ∇2, a Laplacian operator; f(c(x,t)), tumor proliferation function.

The exponential growth assumes the growth rate of a tumor is proportional to tumor 
burden (first-order growth; Eq. 2.3; Figure 2.1) [10, 19]. It has been adopted in a widely 
used tumor growth inhibition (TGI) model developed by Claret et al. to describe nature 
tumor growth [11, 20].

The linear and exponential growth models have also been expanded by introducing a 
first-order shrinkage term describing natural tumor death. For example, a model with 
a linear growth and a first-order shrinkage (Eq. 2.2) was applied to describe the natural 
tumor growth in patients with advanced solid malignancies based on SLD measurements 
[21]. An exponential growth with a first-order shrinkage (Eq. 2.4) was also used as part 
of the model structure to describe the natural growth of pediatric neuroblastoma based 
on tumor volume measurements [22]. The same model structure was also adopted for 
the description of the change of prostate cancer burden reflected by the level of prostate-
specific antigen (PSA) [23].

When compared with the unlimited growing pattern of linear and exponential growth 
models, the logistic and Gompertz growth models provide a biologically realistic change 
of the growth rate as the tumor burden increases [6] (Figure 2.1). The logistic growth 
model assumes that the growth is limited by a carrying capacity (Eq. 2.5) [10] whereas 
the Gompertz model assumes the growth rate of tumor decreases over time (Eqs. 2.6 and 
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2.7) [10, 11]. Many clinical studies have applied the logistic [24-26] and Gompertz models 
[11, 27] as well as simulation studies [28, 29].

Finally, a combination of exponential and linear growth models (Eq. 2.8) has also been 
introduced to describe tumor growth in patients, although it was proposed primarily for 
characterizing xenograft tumor dynamics [30]. This combined model structure assumes 
that an exponential (first-order) growth switches to a linear (zero-order) growth after 
reaching a threshold (Figure 2.1). It was well used to describe the natural growth of 
vestibular schwannoma volume in patients with neurofibromatosis type 2 [31]. Setting 
the power term as 20 allows the switch between two growth patterns sharply enough [30].

Figure 2.1:  Simulated time curves of tumor burden (T) with tumor natural growth models displayed by 
Eqs. 2.1–2.6 and 8. kg is the tumor growth rate / growth rate constant, d is the tumor death rate constant, 
Tmax is the carrying capacity, λ0 is the exponential growth rate, and λ1 is the linear growth rate. The baseline 
of tumor burden is 5. Parameter values used for the simulations are as follows: Models 1 and 2 (Eqs. 2.1 and 
2.2), kg = 2; Model 2 (Eq. 2.2), d = 0.01; Models 3–6 (Eqs. 2.3–2.6), kg = 0.1; Model 4 (Eq. 2.4), d = 0.01; Models 
5 and 6 (Eqs. 2.5 and 2.6), Tmax = 120; Model 7 (Eq. 2.8), λ0 = 0.1, λ1 = 2.

Model 7 (Eq.8): Combined exponential and
linear growth

Model 4 (Eq.4): Exponential growth
with a first−order shrinkage Model 5 (Eq.5): Logistic growth Model 6 (Eq.6): Gompertz growth

Model 1 (Eq.1) : Linear growth Model 2 (Eq.2): Linear growth
with a first−order shrinkage Model 3 (Eq.3): Exponential growth
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3.1.2  Tumor heterogeneity 
As a result of the increasing awareness of the relevance of considering tumor heterogeneity, 
model structures displayed by ODEs that incorporate tumor heterogeneity and mutations 
have been developed for the characterization of tumor dynamics as was described in a 
simulation study [32]. The general used model structures concerning tumor heterogeneity 
are shown in Table 2.1.

Proliferative and quiescent cells

One frequently made assumption when modeling the growth of heterogeneous tumors is to 
separate total tumor mass into proliferative and quiescent cells [22, 25, 33]. The increase of 
quiescent tumor cells is assumed to result from a first-order conversion from proliferative 
tumor cells instead of their own proliferation (Eq. 2.9). A reversed conversion can also be 
assumed to be present (Eq. 2.10). The growth of proliferative cells may follow the patterns 
as were introduced in the Basic growth model section Based on these assumptions, the 
time courses of mean tumor diameter (MTD) in patients with low-grade glioma [25] and 
that of tumor volume in pediatric neuroblastoma patients were successfully described 
[22]. A similar model structure was also used to predict the effect of different treatment 
regimens taking tumor cell number as a target [33]. Drug treatment effect could work 
on both kinds of tissues [25], only on the proliferative tissue [22], or on targeted tissues 
depending on the types of drug [33].

Sensitive and resistant cells

Another commonly made assumption is that tumors are composed of drug-sensitive and 
drug-resistant cells [24, 34]. These two cell types both proliferate, but drug treatment can 
only decrease the amount of drug-sensitive cells. Primary and acquired resistance can both 
be taken into consideration. For illustrating the acquired resistance, the resistant cells are 
mostly assumed to mutate from sensitive cells because of the treatment with a first-order 
process [23, 24, 34, 35] (Eqs. 2.12–2.13). By separating tumor mass into sensitive and 
resistant cells, the dynamics of low-grade glioma measured with MTD in patients was well 
described with models assuming that primary resistant cells or both primary and acquired 
resistant cells are present in the tumor [24]. In the study, the natural growth of drug-sensitive 
and primary-resistant cells were described separately without any conversion (Eq. 2.11). 
The acquired resistant cells are assumed to emerge exponentially from damaged sensitive 
cells as a result of treatment. Also, by assuming that resistant cells can also convert back 
to sensitive cells (Eq. 2.13), the dynamics of the PSA level in prostate cancer patients was 
well described, where the rate constants of cell proliferation, apoptosis, and conversion are 
expressed as functions of intracellular concentration of androgen receptors [34].
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In addition, the treatment sensitivity of both proliferative and quiescent cells can also be 
considered when modeling tumor growth, leading to a combination of previous introduced 
model structures. One example can be seen from a study that assumed proliferative and 
quiescent cells form a tumor and the proliferative cells could mutate from drug sensitive 
to drug resistant, which is biologically plausible [33].

Androgen-dependent cells and androgen-independent cells 

Studies regarding prostate cancer often consider prostate tumors consists of androgen-
dependent (AD) and androgen-independent (AI) cells [23, 36-38]. PSA levels are commonly 
used to represent tumor burden in this case. Two frequently reported model structures 
for describing the growth of prostate cancer were proposed by Ideta et al. [23] and Hirata 
et al. [36].

The former model structure assumes that prostate cancer consists of AD and AI cells, and 
AD cells can mutate exponentially to AI cells when treatment alters the androgen level. 
The model structure is shown in Eq. 2.12. The natural proliferation and apoptosis rate 
constants of AD and AI cells were expressed as functions of the androgen level [23]. The 
net growth rate of AD decreases when the androgen level decreases because of treatment, 
whereas that of AI cells increases. When the androgen level is normal, three cases of the 
net growth rate of AI cells were considered: larger than 0, equal to 0, and smaller than 0. 
This model was recently extended by accounting for competition between two kinds of 
cells and the finite carrying capacity environment [35].

The latter model structure assumes that besides AD cells, reversible and irreversible AI cells 
exist. All types of cells are assumed to proliferate and convert to each other exponentially. 
It is assumed that AD cells convert to both types of AI cells during on-treatment status 
and reversible AI cells convert back to AD cells during off-treatment status. The model 
structure is expressed with Eq. 2.13. This model has been applied to adequately describe 
patient data [37, 38].

3.1.3  Integration of biology process
Tumor growth models displayed by ODEs that additionally incorporate biological factors 
and processes have also been developed [6], such as integration of angiogenesis biomarkers 
and the dynamics of components in the immune system (Table 2.1). To apply these 
methods, apart from tumor burden measurements, knowledge related to the biological 
processes is also needed.
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Angiogenesis 

Concentration of vascular endothelial growth factor (VEGF) or soluble VEGF receptor may 
serve as biomarkers indicating the treatment effect for patients treated with angiogenesis 
inhibitors [11]. Incorporating the dynamics of angiogenesis biomarkers in tumor growth 
modeling enables better understanding and prediction of tumor progression. A model 
structure showed as Eq. 2.14, where the change of biomarkers from baseline affects the 
tumor decay rate, was applied in two studies [31, 39]. One study characterized the time 
course of SLD in patients with gastrointestinal stromal cancer undergoing sunitinib 
treatment. The natural growth of the tumor was described with the exponential model, 
and the model-predicted relative change of the biomarker’s amount was incorporated to 
affect the shrinkage of the tumor [39]. The other study well characterized the dynamics 
of tumor volume measured in neurofibromatosis patients undergoing bevacizumab and 
everolimus. The natural tumor growth was described by the combined exponential and 
linear model (Eq. 2.8), and the amount of unbound VEGF was considered to affect a first-
order apoptosis of the tumor [31].

Another way to account for angiogenesis effect on tumor growth is by assuming the carrying 
capacity of the tumor is determined by the effective tumor vascular support that is in turn 
affected by the tumor volume (Eqs. 2.15 and 2.16) [40, 41]. Logistic and Gompertz model 
structures were applied under this assumption. A model structure displayed by Eq. 2.15 was 
applied to well characterize the tumor growth in renal cell carcinoma (RCC) patients based 
on SLD measurements [40]. The carrying capacity in this study was assumed to expand 
because of proangiogenic factors. Another similar model structure is shown by Eq. 2.16. 
Although as far as we know there is no clinical study that utilized this model framework, 
it has been used to perform simulations to optimize the delivery of therapeutic agents for 
enhancing targeted therapies for liver cancer [41] and to investigate the optimization of 
antiangiogenic treatment [42].

Immune system

Apart from angiogenesis, the effect of the immune system has also been incorporated in 
the tumor growth model when patients were undergoing immunotherapy [43, 44]. The 
proposed model structure is presented in Eqs. 2.17 and 2.18, where the rate of first-order 
decline of tumor burden was assumed to depend on the amount of immune component 
and decrease while tumor burden was increasing. This model structure was adopted to 
characterize the growth of prostate cancer by accounting for the dynamics of the immune 
system. Tumor cells were assumed to proliferate exponentially, and the amount of cytotoxic 
T lymphocytes affected the cell decline rate (Eq. 2.17) [44]. The applicability of this model 
was validated by the results of a clinical trial where PSA measurements were obtained from 
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prostate cancer patients treated with a vaccine. Considering the effect of more than one 
immune component, another study developed a model structure to simulate the growth of 
bladder cancer undergoing immunotherapy [43]. The growth of tumor cells was described 
with a logistic model, and the cell decline rate was set to be linearly or nonlinearly related 
to the amount of immune components (Eq. 2.18).

Another concept model structure described tumor burden dynamics by a logistic growth, 
a first-order damage resulting from immune cells, and a first-order competition with 
normal cells (Eq. 2.19) [45]. This model structure was recently adopted to obtain an 
optimal dosing regimen for cancer patients based on simulation [46]. A model structure 
that omits the competition with normal cells (Eq. 2.20) was also proposed to investigate 
treatment optimization [47].

3.1.4  Treatment effect 

Empirical method

Tumor shrinkage resulting from drug treatment is typically quantified with an empirical 
drug-induced shrinkage term as has previously been summarized [10]. Commonly used 
equations identified from included papers are presented in Table 2.1. The time curves 
of these equations were simulated with R and are shown in Figure 2.2, assuming an 
exponential growth with the growth rate constant kg = 0.1. 

A log-kill pattern is commonly used for modeling treatment effect, which assumes that 
the shrinkage rate of the tumor as a result of drug treatment is proportional to tumor 
burden [6]. The simplest way to adopt this pattern is using Eq. 2.21, where kd is the drug-
induced tumor shrinkage rate constant. Such an equation has been used to well described 
the treatment effect of everolimus on metastatic RCC patients [18]. The estimates of kd in 
that study were different between two dose groups.

The rate of drug-induced shrinkage can also be considered to depend on drug exposure, 
i.e., drug concentration and area under the concentration-time curve or drug dose. A linear 
drug exposure-effect relationship can be quantified using Eq. 2.22 [22, 25]. Meanwhile, 
drug resistance can also be taken into consideration by introducing a e–λ⋅t term on the basis 
of Eq. 2.22 to quantify the decline of drug effect over time (Eq. 2.23; Figure 2.2). This 
model structure has been applied to characterize the effect of pazopanib on RCC patients 
[40]. Setting f (T) = kg ⋅ T, an exposure-driven TGI model was developed based on SLD 
measurements from colorectal cancer patients receiving capecitabine and fluorouracil [20]. 
It has then been widely applied to various cancer types and drugs as was reviewed previ-
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ously [11]. Two more recent studies also adopted this model structure to characterize the 
tumor SLD change in metastatic breast cancer patients treated with eribulin [48] and in 
metastatic ovarian cancer patients receiving carboplatin or gemcitabine plus carboplatin 
[49], respectively.

In addition, a damaged cell compartment (D) has also been introduced in studies to 
account for the damage on cell DNA as a result of the treatment, as is displayed by Eq. 2.24, 
which can result in a delay on drug onset (Figure 2.2). This model structure was used in 
two studies that characterized the MTD change in low-grade glioma patients treated with 
chemotherapy or radiotherapy [24, 25]. In these two studies, the damaged cell compartment 
was used to characterize the treatment effects on drug-sensitive cells [24] and quiescent 
cells [25] respectively. Part of the damaged cells eventually died, and the rest were assumed 
to become drug-resistant cells [24] and proliferative cells [25] respectively.

Apart from the linear drug exposure-effect relationship, a nonlinear drug exposure-effect 
relationship can also be considered to characterize treatment effect particularly for targeted 
anticancer treatment [21]. An Emax model is commonly used in this circumstance. An 
example equation is showed as Eq. 2.25, which was derived from a model where the studied 
medicine was assumed to inhibit the zero-order growth rate of advanced solid malignan-
cies following the nonlinear drug exposure-effect relationship [21]. 

Considering biomarkers 

When biomarkers that represent the drug-targeting system are incorporated in the tumor 
dynamic models, treatment effect can be added on the dynamics of biomarkers according 
to corresponding mechanisms. 

In the study where neurofibromatosis patients were treated with bevacizumab and 
everolimus, the decrease of the unbound VEGF amount because of the binding with 
bevacizumab was considered in the model [31]. Meanwhile, the inhibition of the zero-
order production rate of total VEGF because of everolimus was described with a nonlinear 

exposure-effect relationship: 𝑘𝑘′ � 𝑘𝑘 � � 𝐼𝐼𝐼𝐼50
𝐼𝐼𝐼𝐼50 � ��������� , where IC50 the drug exposure 

that produces 50% of the maximal inhibition effect. As a result of the quantity decrease 
of biomarkers, the shrinkage rate of tumor burden increased (Eq. 2.14). The delayed 
activation of tumor proliferation result from the continuous use of everolimus was also 
integrated in their model structure [31]. In the study where gastrointestinal stromal cancer 
patients were treated with sunitinib, the effect of sunitinib was described by a nonlinear 
inhibition on the zero-order production rate or first-order decline rate of biomarkers 

using 𝑘𝑘′ � 𝑘𝑘 ∙ �� � 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝐼𝐼𝐼𝐼50 � 𝐸𝐸𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� , where Imax is the maximal fraction of inhibition 
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[39]. The negative item in Eq. 2.23 was also included to quantify the treatment effect and 
resistance [39].

In addition, the effect of angiogenesis inhibition treatment can also be incorporated by 
introducing a first-order drug exposure dependent decline term (Eq. 2.22) on the dynamics 
of tumor vascular support [40, 41] when the vascular support was assumed to determine 
the carrying capacity of tumor (Eqs. 2.15 and 2.16).

Studies where patients were treated with immunotherapy have also considered drug inter-
action with the immune system. The presence of immunotherapeutic agents is frequently 
assumed to affect the dynamics of components in the immune system, and the amount of 

Figure 2.2:  Simulated time curves of total tumor burden (T) with tumor dynamic models incorporating 
treatment effect with Eqs. 2.21–2.25 and assuming an exponential growth (growth rate constant kg = 0.1). kd 
is the tumor shrinkage rate constant due to drug treatment, λ is the treatment efficacy decay rate constant, 
S is the drug sensitive cells, D represents the damaged cells, d is the death rate constant. Emax is the maximal 
fraction of inhibition, and IC50 is the drug exposure that produces 50% of Emax. The baseline of total tumor 
burden is 30. Parameter values used for the simulations are as follows: Model 1 (Eq. 2.21), kd = 0.4; Models 2–4 
(Eqs. 2.22–2.24), kd = 0.04; Model 3 (Eq. 2.23), λ = 0.1; Model 4 (Eq. 2.24), d = 0.1; Model 5 (Eq. 2.25), Emax = 2, IC50 = 5. 

Drug exposure was simulated with Hill’s equation: 𝐸𝐸�𝐸𝐸����� � 𝐸𝐸𝐸𝐸��� ∙ 𝑡𝑡���
𝐸𝐸𝐸𝐸𝐸𝐸����� � 𝑡𝑡��� � �0 ∙ 𝑡𝑡���

10��� � 𝑡𝑡��� ,  

where Epmax represents the maximum exposure at steady state and Ept50 represents the time when the 
exposure reaches half maximum value.

Model 4 (Eq.24): Damage compartment considered Model 5 (Eq.25): Non−linear drug exposure−effect

Model 1 (Eq.21) : First−order treatment effect Model 2 (Eq.22): Exposure−dependent
first−order treatment effect

Model 3 (Eq.23): Exposure−dependent
first−order treatment effect + resistance
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those components can affect the decrease rate of tumor burden (Eqs. 2.17 and 2.18) [43, 
44]. For example, the model structure proposed to describe PSA change in prostate cancer 
patients treated with a vaccine assumed that the presence of the vaccine upregulated the 
zero-order production rate of mature dendritic cells and therefore increased the number 
of cytotoxic T lymphocytes, which increased the decay of tumor tissue [44].

3.2  Algebraic equation
Besides using ODEs, model structures displayed by algebraic equations have also been 
developed to characterize the dynamics of tumor directly as is summarized in Table 2.1 
[50-54]. The simulated time curves of tumor dynamics given by these models are shown 
in Figure 2.3. Although these equations could be treated as analytical solutions of ODEs, 
they provided different shapes of time curves when compared with what was introduced 
previously.

A novel two-phase model that combines exponential tumor regrowth and regression was 
developed to interpret serial PSA measurements from AI prostate cancer patients [50] 
and metastatic castration-resistant prostate carcinoma patients undergoing combination 
therapy [51]. The corresponding model equation is shown in Eq. 2.26, where kg is the tumor 
regrowth rate constant and kd is the drug-dependent tumor regression rate constant. The 
same model structure was also utilized to assess the therapeutic efficacy of bevacizumab 
in patients with RCC using the sum of perpendicular diameter measurements [55]. On 
the bases of this model structure, an extra parameter τ has been introduced to account 
for the delayed tumor regrowth as presented in Figure 2.3 (Eq. 2.27) [50]. In addition, a 
parameter 𝜙 has also been introduced on the basis of Eq. 2.26 to differentiate the sensitive 
and resistant part of the tumor (Eq. 2.28) [55], which results in a less degree of tumor 
shrinkage at the early phase (Figure 2.3). This model structure was found to be applicable 
when sufficient data points were available, and the estimation of growth rate constant was 
similar to what was obtained by the original equation (Eq. 2.26).

Another model structure was proposed by Wang et al. to describe the time courses of 
tumor SLD data of non-small cell lung cancer (NSCLC) patients from four clinical trials 
treated with eight treatments/placebos [11, 52], as shown by Eq. 2.29. A and B represent 
the rate constants of exponential shrinkage as a result of treatment and linear growth, 
respectively. The treatment effect was also characterized as a drug-dependent manner. This 
model structure has been successfully applied afterward [11] and was recently applied to 
analyze SLD measurements collected from NSCLC patients from three clinical studies to 
identify the obstacles to wider use of quantitative measures [56].



Review of tumor dynamics and treatment resistance evolution models

35

2

A quadratic growth term with a coefficient C was later introduced to this model structure 
as is shown in Eq. 2.30 [53]. This model structure was demonstrated to have the best 
performance on characterizing the SLD measurements in RCC patients receiving pazopanib 
or placebo, and predictive patient-specific covariates were also identified [53]. Treatment 
effect, which is reflected by parameter A, was described in a dose-depended manner for 
one group of the patients in this case (Eq. 2.31).

In addition, a simplified version of the previously introduced TGI model, which was 
displayed by an algebraic equation, was also developed (Eq. 2.32) [54]. This model structure 
also assumes an exponential tumor growth with growth rate (kg) while the treatment effect 
is described in a drug-dependent manner with parameters account for tumor growth 
inhibition (kd) and drug resistance (λ). By applying this model structure, the tumor size 

Figure 2.3:  Simulated time curves of tumor burden (T) with tumor dynamic models displayed by algebraic 
equations that describe both tumor natural growth and treatment effect (Eqs. 2.26–2.30 and 2.32). kg is the 
tumor growth rate constant, kd is the tumor shrinkage rate constant due to drug treatment, τ is the delayed 
time of tumor regrowth, 𝜙 is the sensitive fraction of the tumor, A is the exponential shrinkage rate constant 
due to treatment, B is the linear growth rate constant, C is the coefficient of quadratic growth term, BASE is 
the baseline of tumor burden, and λ is the treatment efficacy decay rate constant. Parameter values used for 
the simulations are as follows: Models 1–3 (Eqs. 2.26–2.28), kg = 0.1, kd = 0.4, BASE = 30; Model 2 (Eq. 2.27), τ = 
10; Model 3 (Eq. 2.28), 𝜙 = 0.6; Models 4 and 5 (Eqs. 2.29 and 2.30), A = 0.4, B = 2, C = 0.05, BASE = 30; Model 
6 (Eq. 2.32), kg = 0.1, kd = 0.4, λ = 0.1.
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change in metastatic colorectal cancer patient treated with bevacizumab and chemotherapy 
was described satisfactorily [54]. This model structure has been well applied to describe 
tumor size change in metastatic RCC patients treated with cytokine, mammalian target of 
rapamycin inhibitor, and VEGF receptor inhibitors [57]; in NSCLC patients undergoing 
treatment of carboplatin/paclitaxel combining motesanib or not [58]; in NSCLC patients 
treated with bevacizumab and erlotinib [59]; and in gastric cancer patients treated with 
bevacizumab and chemotherapy [60].

3.3  Partial differential equation 

3.3.1  Natural growth
Partial differential equations (PDEs), which take the change of a dependent variable in 
time and space into consideration, have also been adopted in the modeling of solid tumor 
dynamics in clinical research. One common application is known as a proliferation-invasion 
model or a reaction-diffusion model, which hypothesize that it is the net proliferation 
and invasion that contribute to the growth of cancer [61]. This model formation has been 
typically used in studies where imaging observations of tumor, especially brain tumors, 
were available to describe and predict tumor expansion [8]. The equation of this structure 
is shown as Eq. 2.33 in Table 2.1, where the dynamics of tumor cell concentration/density 
at location x at time t (c (x, t)) is described [8, 61]. The tumor proliferation in this model can 
be expressed by exponential, logistic, or Gompertz functions [8, 61]. Moreover, this model 
mathematically regards the expansion of imaging detectable tumor edge as a “traveling 
wave,” and the velocity of tumor expansion is a constant that is determined by the diffusion 
coefficient (Dif) and growth rate constant ρ (Eq. 2.34) [61]. This linear radius/ diameter 
expansion was confirmed in a group of grade II gliomas patients with magnetic resonance 
image (MRI) measurements before any oncological treatment [62].

Studies applying the proliferation-invasion model to characterize tumor dynamics 
typically have interest in estimating the rate constants of net proliferation and invasion. 
An application of this model structure can be found in a study where the tumor volumes 
obtained from the MRI imaging were available for 70 patients with previously untreated 
glioblastoma [61]. The tumor proliferation was described by a logistic function (Eq. 2.5) 
with a growth rate constant ρ. The ratio Dif / ρ was estimated for each patient based on 
MRI observations. Subsequently, setting ρ as a reported mean value and estimating Dif, 
the velocity of tumor radial expansion was estimated, and the survival time of patients 
underwent tumor resection were satisfactorily predicted by the estimated time of reaching 
a target radius. The same model structure was also applied on serial available MRI data 
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from 32 glioblastoma patients before treatment [63]. The net proliferation and invasion 
rates they quantified were significantly associated with the survival of patients. Another 
study characterized tumor natural growth for nine patients with glioblastoma with the same 
model [64]. This study demonstrated that the parameter estimated based on pretreatment 
MRIs had high prediction accuracy for responses after treatment for these patients. Using 
the same model structure, the correlation between proliferation rate and hypoxic volumes 
based on imaging data from newly diagnosed glioblastomas patients was demonstrated 
[65]. This model structure was also recently used to investigate the personalization of 
radiotherapy strategy for brain cancer patients [66].

Setting f (c (x, t)) = ρ ⋅ c (x, t) a similar model structure was also used to simulate the growth 
of glioblastoma based on previous reported parameters estimated from patients and 
estimated the survival times of patients under different parameter settings [67].

Likewise, the proliferation-invasion model with logistic growth function was also success-
fully applied in breast cancer patients to characterize and predict their tumor burden. [68] 
The model developed based on MRI data that were available from the early treatment 
phase was demonstrated to be able to predict patient response at the end of treatment [69, 
70]. In these studies, an apparent diffusion coefficient was estimated based on diffusion-
weighted MRI data and was then transformed to an estimate of tumor cell number, which 
was the dependent variable in the model. Moreover, the inhibitory effect of tumor diffu-
sivity resulting from the stress and the deformation of surrounding tissue forced by the 
tumor cells were also considered in these studies [69, 70], which is called “mass effect” 
[8]. More examples of the application of the proliferation-invasion model can be found 
in a previous review [8].

Apart from taking the diffusion coefficient as a constant, the difference between diffusion 
rates in gray and white matter can also be considered, such as setting Dif as two different 
constants for the cells in gray and white matter, respectively [71]. The proportions of white 
and gray matter (i.e. Pw(x), Pg(x)) have also been taken into account when computing the 
diffusion coefficient with the following equation: Dif (x) = Pg(x) ⋅ Difg + Pw(x) ⋅ Difw. The 
prediction of the model was validated with clinical imaging data from one glioma patient 
case [72].

Recently, a threshold and a necrosis rate were also introduced into the proliferation-
invasion model structure, which assumes an exponential decay will occur once the tumor 
cell amount exceeds the threshold [73].
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3.3.2  Treatment effect
When using the proliferation-invasion model, the treatment effect can also be expressed 
by subtracting an extra term (corresponding equations are shown in Table 2.1). The effect 
of chemotherapy can be expressed with Eq. 2.35, where kd is the drug effect rate constant 
[67]. For radiotherapy, a linear-quadratic equation has been used to estimate the probability 
of tumor cell survival (Surv) after the administration of radiation with dose (Dose) (Eq. 
2.36). The effect of radiotherapy can thus be incorporated as presented by Eq. 2.37 [64]. 
In addition, it is also possible to incorporate the effect of resection in the proliferation-
invasion model to describe tumor growth after surgery. The resection can be simulated 
by setting the cell concentration in the resected region as zero at the time point of surgery 
[61]. Subtracting a surgical term (Eq. 2.38) was also found to be applied to simulate the 
resection of tumor [74].

4.  Tumor resistance evolution modelling 

4.1  Tumor clonal evolution
Theoretically, three models of tumor evolution have been reported. One is a selective 
sweep model, which is also known as “linear” model [14, 75]. It holds that during cancer 
initiation, mutations with fitness advantage are raised and then selectively take over the 
whole population sequentially [14, 75]. However, because intratumor heterogeneity was 
identified and evidence of branching growth was found from multibiopsy and genomewide 
studies, a branching evolution theory where multiple subclones are considered to present 
and compete was developed [14, 75]. Another “big bang” model of tumor evolution was 
observed in colorectal tumors, which suggests that advantage mutations arise and cumulate 
during the early phase of cancer development and the tumor then grows as a neutral single 
clonal [14, 75].

Mathematical models that characterize tumor initiation and progression as an evolving 
process, including stochastic models and deterministic models, were sufficiently intro-
duced in previous reviews [13, 14]. A well-mixed cell population is typically assumed [13]. 
Modeling strategies that focus on describing the evolution of cancer resistance have also 
been discussed [15, 17]. In the following sections, we will mainly give an introduction 
about different mathematical modeling strategies that were used to characterize cancer 
resistance with the tumor evolution principle. 
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4.2  Stochastic model

4.2.1  Probability model assuming the branching process
The branching process, which is also called the birth-death process, is a commonly 
adopted stochastic process that is used to characterize the evolving dynamics of cancer 
resistance [13, 15, 17]. The Markov property is adopted in this model. Normally, at least 
two cell types, i.e., sensitive cells and resistant cells, are considered. It assumes that a tumor 
grows exponentially and that each sensitive cell has a certain birth rate, death rate, and a 
mutation probability in one cell division, and each resistant cell also has a certain birth 
rate and death rate. The probability of cell number change from current generation to the 
next could therefore be expressed with these parameters, as is shown in Eq. 2.39 (Table 
2.2). n and m the numbers of sensitive cells and resistant cells, respectively. Substantially, 
stochastic simulation could be performed and the probability of resistance (the probability 
of at least one resistant cell is present; PR) and the expected number of resistant cells (ER) 
could be calculated with probability-generating function. 

Resistance evolution before treatment

By applying the branching process, the resistance evolution before treatment can be 
investigated. One study estimated the PR and ER of a cell population reached a certain 
size through the branching process starting with one sensitive cell [76]. The fitness of the 
resistant cells that is relative to sensitive cells was also taken into consideration [76]. The 
derived equations were later adopted to estimate the resistance probability of colorectal 
cancer prior to endothelial growth factor receptor (EGFR) antibody treatment, where the 
parameters were estimated based on longitudinal KRAS mutation amount measurements 
[77]. The results indicated that the resistant mutation was highly likely to be present prior 
to the initiation of treatment. The same process has also been applied to investigate the 
evolution of drug resistance in chronic lymphocytic leukemia before treatment [78], where 
the growth and death rates of cancer cells were set based on patient results. In this case, 
besides estimating PR and ER at the time of treatment start, a time needed for the resistant 
population to reach a detectable level after treatment was also estimated based on which 
disease progression was analyzed and compared with real patient data.

Another study proposed functions for estimating the expected and median cell numbers for 
each resistant subclone in a metastatic lesion containing a certain number of cells with the 
branching process starting with a single sensitive cell [79]. The predictions of relative cell 
numbers of resistant subclones assuming resistant cells were neutral were demonstrated to be in 
agreement with what was estimated based on the mutation concentrations in circulation tumor 
DNA (ctDNA) obtained from colorectal cancer patients treated with an EGFR blockade [79]. 
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Table 2.2: Modeling frameworks for characterizing tumor resistance evolution

Models Equations Ref.

Stochastic models

Probability 
model assuming 
branching 
process

⎩⎪
⎨
⎪⎧

𝑃𝑃�𝑛𝑛 � �𝑛 𝑚𝑚𝑛𝑛𝑛𝑛 𝑚𝑚� � 𝑏𝑏𝑠𝑠 ∙ �� � 𝑢𝑢� ∙ 𝑛𝑛 𝑛 𝑛𝑛𝑛
𝑃𝑃�𝑛𝑛 � �𝑛 𝑚𝑚𝑛𝑛𝑛𝑛 𝑚𝑚� � �𝑠𝑠 ∙ 𝑛𝑛 𝑛 𝑛𝑛𝑛

𝑃𝑃�𝑛𝑛𝑛 𝑚𝑚 � �𝑛𝑛𝑛𝑛 𝑚𝑚� � 𝑏𝑏𝑟𝑟 ∙ 𝑚𝑚 ∙ 𝑛𝑛𝑛 � 𝑏𝑏𝑠𝑠 ∙ 𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢  
𝑃𝑃�𝑛𝑛𝑛 𝑚𝑚 � �𝑛𝑛𝑛𝑛 𝑚𝑚� � �𝑟𝑟 ∙ 𝑚𝑚 𝑚𝑚𝑚𝑚

𝑃𝑃�𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛� � � � ��𝑏𝑏𝑠𝑠 � �𝑠𝑠� ∙ 𝑛𝑛 ∙ 𝑛𝑛𝑛 � �𝑏𝑏𝑟𝑟 � �𝑟𝑟� ∙ 𝑚𝑚 𝑚𝑚𝑚𝑚 �

  

Eq. 2.39 [76, 
81, 
83]
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𝐾𝐾� � 𝐶𝐶�

 
Eq. 2.40 [90]

Deterministic models 

Ordinary 
differential 
equation

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑘𝑘𝑔𝑔 � 𝑑𝑑 � 𝑘𝑘𝑑𝑑� ∙ 𝑆𝑆
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑘𝑘𝑔𝑔 � 𝑑𝑑� ∙ 𝑑𝑑 � � ∙ 𝑑𝑑

 

Eq. 2.41 [91]

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑘𝑘𝑔𝑔 ∙ �� � 𝑢𝑢� � 𝑑𝑑 � 𝑘𝑘𝑑𝑑� ∙ 𝑆𝑆
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑘𝑘𝑔𝑔 � 𝑑𝑑� ∙ 𝑑𝑑 � 𝑘𝑘𝑔𝑔 ∙ 𝑢𝑢 𝑢𝑢𝑢

 

Eq. 2.42 [88]

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑘𝑘𝑔𝑔 � 𝑘𝑘𝑑𝑑 ∙ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷� ∙ 𝑆𝑆
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � 𝑘𝑘𝑔𝑔 ∙ 𝑑𝑑 � 𝑘𝑘𝑔𝑔 ∙ 𝑢𝑢 𝑢𝑢𝑢

 

Eq. 2.43 [92]

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑘𝑘𝑔𝑔𝑔 � �1 � 𝑘𝑘𝑑𝑑𝑑 ∙ 𝐶𝐶𝐷𝐷� ∙ 𝑑𝑑 � �2 ∙ 𝑅𝑅

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � �𝑘𝑘𝑔𝑔𝑔 � �2� ∙ 𝑅𝑅 � �1 ∙ 𝑅𝑅

 

Eq. 2.44 [93]

Game theory 𝑊𝑊�𝑖𝑖� ���� ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑖𝑖𝑖𝑖� � � � �� � �� � �� � ��� ∙ �� Eq. 2.45 [94]

𝑊𝑊 ��𝑝𝑝𝑖𝑖 ∙ 𝑊𝑊�𝑖𝑖� Eq. 2.46

𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑 � 𝑑𝑑𝑖𝑖 � ���𝑖𝑖� � �� Eq. 2.47

Integral-
differential 
equation ⎩⎪

⎨
⎪⎧
𝜕𝜕𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�
𝜕𝜕𝜕𝜕 � �𝑟𝑟�𝑥𝑥� ∙ �� � �� � ��𝑥𝑥� � ��𝜌𝜌�𝑡𝑡�� ∙ 𝑑𝑑�𝑥𝑥�� ∙ 𝑛𝑛�𝑥𝑥𝑥 𝑥𝑥� � � ∙ � 𝑟𝑟�𝑦𝑦� ∙ 𝑀𝑀�𝑦𝑦𝑦𝑦𝑦 � ∙ 𝑛𝑛�𝑦𝑦𝑦𝑦𝑦 � ∙ 𝑑𝑑𝑑𝑑

�

�

𝜌𝜌�𝑡𝑡� � � 𝜕𝜕�𝑥𝑥𝑥 𝑥𝑥�𝑑𝑑𝑑𝑑
�

�

 
Eq. 2.48 [95, 

96]

n, numbers of sensitive cells; m, numbers of resistant cells; bs, birth rate of sensitive cells; ds, death rate of 
sensitive cells; u, mutation probability in one cell division; bs, birth rate of resistant cells; ds, death rate of 
resistant cells; P, probability of cell number changing from current generation to the next; S, sensitive cells, R, 
resistant cells, kg, kg1, kg2, growth rate constant; d, death rate constant; kd, shrinkage rate constant as a result of 
drug treatment; CD, drug concentration; KD, drug concentration that produces 50% of maximum treatment 
effect; dW1, stochastic cell diffusion in a small time interval (Wiener process); dN1, stochastic dissemination 
in a small time interval (Poisson process); σ1, diffusion rate; qM, dissemination rate; K, angiogenesis; u1, u2, 
mutation rate; W(i), fitness of type i cell; Payoff(ij), payoff of type i cells when they meet cell type j; pi , pj , 
proportion of cells; ri, cost of resistance; di , cost as a result of treatment; Xi, benefit for resistant cells when 
interacting with susceptible cells; x, y, resistance levels; n(x, t), cell density with resistance level x at time t; 
r(x), r(y), cell division rate; c(x), treatment effect; d(x), cell death rate; G(ρ(t)), a density dependence term; θ, 
mutation fraction; M (y,x), probability that cell y mutates to cell x.
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Resistance evolution during treatment 

The branching process has also been applied to simulate the evolving resistance during 
treatment. Regarding treatment initiation as the starting point, the dynamics of resistance 
evolution has been investigated with branching stochastic processes. Starting with a group of 
drug-sensitive cells, Foo and Michor [80] proposed functions of PR and ER during treatment 
depending on the length of treatment on and break time for continuous and pulsed dosing 
strategies. Treatment effect was incorporated by setting different birth and death rates 
for sensitive and resistant cells, if considering partial resistance, at on-treatment and off-
treatment periods, respectively. They also estimated PR, ER, and variance of resistance cell 
number during treatment as functions of time considering with or without preexisting 
resistant cells [81]. Treatment effect in this study was incorporated by making the birth and 
death rates of both sensitive and (partial) resistant cells affected by drug concentration. The 
treatment schedule could therefore be optimized by minimizing resistance risk or limiting 
the size of resistant clones. Corresponding equations were later adopted to simulate the 
time curve of ER and PR, and thereby to identify a relatively best treatment strategy for 
EGFR-mutant NSCLC patients receiving erlotinib [82]. In that study, the birth and death 
rates of different types of cells were obtained from in vitro experiments, and the birth rates 
were affected by drug concentration [82]. Three cases of mutation rate change because of 
drug dose were also considered in the study.

Cancer progression under combination therapies has also be investigated with evolution 
models to predict the outcome of multiple treatment strategies in EGFR-mutant lung 
cancer patients treated with two drugs [83]. Tumor evolution after treatment initiation was 
modeled as a branching process with at least three types of cells considered: one type of 
sensitive cell and two types of preexisting resistant cells that are resistant to only one of the 
two drugs, respectively. The expected numbers of each type of cells were thereby estimated 
and the sum of which was the total expected cancer cell number (treatment outcome). The 
treatment effect was described by decreasing the birth rates of cells depending on drug 
concentration, and drug interaction was also taken into consideration [83].

Besides separating tumor cells as being sensitive and resistant to treatment, one study also 
separated cells (subclones) according to resistant status and the number of accumulated 
drivers [84]. In the stochastic branching process of tumor progression, subclones were 
assumed to have probabilities of raising a driver mutation and a resistant mutation during 
division. The accumulation of driver mutations resulted in an increase in the fitness of 
cells, whereas resistance was related to a fitness cost, and the fitness of nonresistant cells 
decreased because of treatment. By modeling the probability change of each cell type, the 
expected tumor size and the average frequency of resistant cells were estimated as functions 
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of time. Subsequently, tumor detection time was calculated and used to compare the effect 
of prevention and postdiagnostic interventions [84]. 

Tumor eradication 

Considering that resistant mutations may die out as a result of stochastic drift during 
branching evolution, tumor eradication (treatment success) probability has also been 
investigated. One study modeled tumor progression as the following three phases: 
expansion with decreasing division rate until steady state, maintaining steady state, and 
treatment phase, starting with a single sensitive cell [85]. Treatment was assumed to decrease 
the division rate and increase the death rate of sensitive cells. A formula of the probability 
of resistant cells arising but becoming extinct by the end of the treatment in each phase 
was then proposed, and the overall probability of treatment success was estimated as the 
product of the three probabilities [85]. 

Multidrug resistance

The evolution of multidrug resistance has also been elucidated by a stochastic model 
where drug-sensitive and drug-resistant cells can divide, die (naturally and as a result of 
treatment), and mutate with certain probabilities [86, 87]. In this model, cells accumulate 
one mutation that leads to resistance to one drug each time, and all mutations must 
be accumulated to make a cell resistant to all drugs. The treatment success probability 
(probability of extinction) as well as the probabilities of resistance when resistant cells 
generated exclusively before and during treatment were estimated, respectively. Based on 
the derived equations, the tumor size at which a certain percentage of patients were treated 
successfully were investigated under various numbers of drugs, mutation rates, and the 
turnover rates of cancer cells [86, 87]. This model structure and the derived equation of 
treatment success probability were later utilized to optimize cyclic treatment scheduling 
[88]. Moreover, taking the contribution of quiescent tumor cells into consideration by 
incorporating the branching process of both cycling cells and quiescent cells, the effect 
of quiescent cells on the treatment outcome, such as the resistance probability, of chronic 
myelogenous leukemia patients has also been investigated [89].

4.2.2  Stochastic differential equation
In addition of the probability models, another stochastic modeling strategy that has been 
applied to characterize the development of resistance during treatment is by using stochastic 
differential equations. An example can be found in a study on melanoma cancer patients 
[90]. Three types of cancer cells, including sensitive, resistant, and metastasis cells, and 
angiogenetic cells were considered. The dynamics of the number of drug-sensitive cells 
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is described by Eq. 2.40 (Table 2.2). In this differential equation, cell growth, mutation, 
and death were described deterministically, whereas cell diffusion and dissemination were 
considered as stochastic processes. Logistic growth function was used to describe the growth 
of cells, and the mutation from sensitive to resistant cells is described with a first-order 
process. The death of sensitive cells was caused by drug treatment, and the nonlinear drug 
exposure-effect relationships was adopted (Eq. 2.40). Wiener process and Poisson process 
were incorporated to account for stochastic cell diffusion and dissemination, respectively. 
The effect of angiogenesis was also included. A drug-induced resistance factor, which 
depends on drug concentrations, was integrated to increase the growth and dissemination 
rates. The model predictions of the progression-free survival and number of metastasis 
cells were demonstrated to be, respectively, comparable with the observed progression-free 
survival and ctDNA level obtained from melanoma patients treated with B-Raf kinase and 
mitogen-activated protein kinase inhibitors [90].

4.3  Deterministic model

4.3.1  ODEs
Other than stochastic models, deterministic differential equations have also been used 
to study the evolution toward drug resistance, especially for a population with a large 
size that often behaves nearly deterministically [13]. The dynamics of sensitive cells and 
resistant cells can be modeled with ODEs similar to what were introduced in the “Tumor 
Heterogeneity” section, but the transition from resistant to sensitive cells is often neglected. 
The model structures that have been identified are shown in Table 2.2.

One model of resistance evolution displayed by ODEs is shown as Eq. 2.41, where drug 
resistance is considered to raise due to point mutations [91]. When considering multiple 
drug resistance, multiresistant cells were assumed to only be mutated from single-resistant 
cells. Starting with a certain number of sensitive cells, the resistance amount by the time 
of treatment initiation and during treatment was estimated under different conditions. 
The authors demonstrated that the simpler ODE model provided comparable results to 
previous models that were derived from more complicated stochastic models [91]. Another 
example can be seen in Eq. 2.42. This model was used to investigate the preferable treatment 
by controlling the total amount of fully resistant mutants, which can be acquired from 
sensitive cells and single-resistant cells [88]. In addition, a model with treatment effect 
being proportional to drug dose has also been used to model evolving tumor resistance (Eq. 
2.43) [92]. Multiresistant cells were also considered and were assumed to mutate only from 
single-resistant cells. Based on this model structure, the survival of patients undergoing 
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different treatment strategies, such as the strategy of minimizing the total cell population or 
minimizing the multiresistant population, was investigated [92]. Another model structure 
of resistance evolution that includes the transition from resistant to sensitive cells (Eq. 2.44) 
has also been adopted to investigate the optimization of treatment [93].

4.3.2  Game theory
Evolutionary game theory has also been used to investigate the evolution of cancer 
resistance, especially under combination therapy [94]. It assumes the fitness of one type 
of cell, which can be understood as the growth rate, changes when the cells interact with 
different types of other cells. This can be expressed with a payoff matrix, and the final 
fitness of one type of cell is their expected payoff of this “game” [13]. An example was 
found from a study where a well-mixed population and a deterministic dynamic of the 
evolving process were considered [94]. The evolutionary game theory was adopted to 
investigate and understand the evolving resistance for small cell lung cancer patients 
under a combination of chemotherapy and tumor suppressor p53 vaccine treatment 
[94]. Three cell populations, including cells that are sensitive to both treatments and cells 
that are resistant to one of the treatments but sensitive to the other, were considered to 
constitute the total tumor population. As presented in Table 2.2, the fitness of type i cell 
can be expressed as a sum of the product of the payoff of type i cell interacting with type 
j cell and the proportion of type j cell (Eq. 2.45), where a cost of resistance and a cost as 
a result of treatment was considered [94]. In addition, to account for the influence of cell 
interaction on cell sensitivity and fitness, an extra benefit for resistant cells when interacting 
with susceptible cells under treatment was also introduced (Eq. 2.45) [94]. The average 
fitness was expressed with Eq. 2.46, where pi is the proportion of each type of cells. The 
dynamics of each cell type under sequencing treatment was described using a replicator 
equation (Eq. 2.47), and the time curve of the proportion and fitness of each cell type are 
two main outcomes of the simulations in this study.

4.3.3  Integral-differential equation
An integral-differential equation, where the states of cancer resistance are described in a 
continuous way ranging from complete sensitivity to complete resistance, has also been used 
to characterize the evolution of cancer resistance [95, 96]. A model structure shown as Eq. 
2.48 has been used to describe the dynamics of cancer cell density with resistance level x 
at time t [95, 96], where cell division, cell death, treatment effect, and cell mutation were 
all incorporated (Table 2.2). Simulations were performed in these studies to illustrate the 
evolution of resistant level during treatment, but it has not yet been applied in clinical studies.
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5.  Model selection

Applying different model structures to characterize tumor dynamics and tumor resistance 
evolution may achieve different objectives and require different data input and knowledge 
(Table 2.3). The target cancer type and treatment option may also influence the selection 
of model structure (Table 2.3).

As for the tumor dynamics models displayed by ODEs and algebraic equations, most models 
are applicable to describe tumor size change in patients with various kinds of solid tumors 
and under different kinds of treatment (monotherapy or combination therapy). However, 
the models specifically developed for prostate cancer are mainly suitable to describe PSA 
level change, and the models incorporating angiogenesis biomarkers or immune compo-
nents are normally considered when patients are treated with antiangiogenesis treatment 
or immunotherapy, respectively.

Longitudinal tumor size data, such as the SLD of target lesions, MTD, or tumor volumes, 
or PSA measurements are required to estimate model parameters. A mixed-effect modeling 
approach has been applied to most model structures that are displayed by ODEs and 
algebraic equations to account for interindividual variability, whereas the parameters of 
other structures, such as the two-phase model, were normally estimated for each subject 
separately. In the former case, each subject in a group is normally required to contribute at 
least one measurement before treatment and one thereafter. More data points are preferred 
to enable the better estimate of all parameters. However, the latter method may require 
each subject to contribute enough data points to enable parameter estimates. In addition, 
if a study aims at developing a model incorporating biomarkers, longitudinal biomarker 
observations or previously reported models for treatment-biomarkers interaction are 
required. If no specific biological process is considered, the selection of model structures 
can also depend on the model fit to the data as long as the model is physiologically or 
biologically plausible.

Among the functions of the natural tumor growth (Eqs. 2.1–2.8), which are always part of 
the tumor dynamics models, the exponential growth model has been the most frequently 
selected in clinical studies. The logistic growth model was normally satisfactorily applied 
when the maximum tumor capacity was fixed. The selection of the basic functions could 
also depend on the model fit to the data. More than one available pretreatment tumor size 
measurement would be helpful to find the best fit natural growth model and would enable 
a more accurate estimate of the tumor natural growth rate.
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The treatment effect can be characterized in a drug-dependent manner or exposure-
dependent manner. If a study does not focus on investigating the exposure-effect rela-
tionship, using a model with drug-dependent tumor shrinkage will be enough and drug-
exposure information is not required. For studies aiming at characterizing the relationship 
between drug exposure/dose and tumor response and/or optimizing treatment regimens 
for patients based on simulations, the exposure-dependent (or dose-dependent) treatment 
effect structure should be applied. To estimate drug exposure, longitudinal concentra-
tion data for PK model development or a previously reported PK model are needed. In 
addition, the previous knowledge of the treatment mechanism may also be required to 
appropriately characterize the treatment effect, especially when applying models consid-
ering biological factors.

The proliferation-invasion model that is displayed by PDE has mainly been applied to 
investigate glioblastoma or breast cancer based on available MRI measurements. The 
required parameters can be estimated for each patient separately based on two sets of 
pretreatment MRI data or one before treatment and one thereafter. Simulations can then 
be performed to predict patient outcome with the model or with the velocity function of 
tumor radius expansion (Eq. 2.34). The mixed-effect modeling approach has not been 
found to be applied in these studies yet.

The model structures of tumor resistance evolution have been mainly applied to perform 
simulations to understand evolving resistance and optimize the treatment. The equations 
derived from the branching process can be applied to answer clinical questions. Available 
longitudinal or static ctDNA measurements can be utilized to determine the parameter 
values and to evaluate the simulation results. Although no mixed-effect modeling approach 
has been applied in these studies yet, the model structures displayed by ODEs, which can 
provide comparable results to stochastic models, are considered to be potentially able to 
account for interindividual variability.

6.  Discussion

Overcoming treatment resistance with a better understanding of cancer evolution and 
personalizing treatment brings opportunities to treat cancer as a chronic disease and has 
been increasingly studied in the oncology field. Model-based approaches incorporating 
tumor growth and resistance evolution may help achieve this goal. By applying math-
ematical models, prior knowledge derived from clinical trials and routine patients care can 
be utilized to quantitatively understand drug PK profiles, the drug-response relationship, 
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and evolving resistance in cancer patients. These profiles can be predicted accordingly for 
future patients, which could be beneficial for identifying optimized therapeutic regimens. 
Furthermore, by accounting for interindividual variability with a mixed-effect modeling 
approach, treatment individualization can also be designed and guided rationally [97].

In the current review, feasible model structures that have been used to describe and predict 
tumor dynamics and resistance evolution during treatment for patients with solid tumors 
are discussed. Models concerning tumor evolution in leukemia were included because 
they provide reference value for solid tumors. Apart from what has been introduced, more 
extensive models have also been found in the literature search, such as agent-based models 
and the cellular automata approach. The agent-based models often include components 
from two or more spatial or temporal scales, ranging from molecular to tissue [7], and 
the cellular automata approach adopts a discrete dynamical system of time and space [9]. 
Although tumor growth can be simulated in silico realistically with these approaches, 
because they require infeasible information input (e.g., cell location, nutrition distribu-
tion, and/or oxygen amount) from clinical patients, they were excluded from the current 
review. Studies applying the proliferation-invasion model, which are expressed with PDE, 
were not excluded, although tumor cell location is also one of the variables. It is because 
two main parameters in this model structure, the diffusion coefficient Dif and growth rate 
constant ρ, can be estimated directly based on MRI results obtained from patients, and 
the velocity of tumor radius expansion can then be estimated and utilized for prediction. 

Models displayed by ODEs, algebraic equations, and PDE are commonly reported for the 
modeling of tumor size change and, in the case of prostate cancer, PSA amount change. 
Five main basic natural tumor growth model structures were frequently reported. The 
diversity in model selection can be explained by the difficulties of assessing real long-term 
natural tumor growth pattern in patients [11]. Although setting the maximum boundaries 
of tumor growth is more biologically plausible, the models without such limits, especially 
the exponential growth models, have also been used extensively. The concept of linear 
growth is also reflected in the studies that applied the proliferation-invasion model, as the 
expansion of tumor radius has a constant velocity under such a model, and this concept 
has been used to predict tumor radius [63-65].

For characterizing treatment effect, empirical methods are relatively simple to apply for 
describing the effect of various kinds of drugs and are therefore more generally applicable. 
The shrinkage rate of tumor burden caused by treatment can be described to be propor-
tional to drug exposure/dose or by utilizing drug-dependent parameters, although the 
latter method does not allow differentiation among different dosing regimens. In addition, 
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when the dynamics of biomarkers are available and are incorporated in the tumor dynamics 
models, the treatment effect on the production of biomarkers can be integrated according 
to drug mechanism [31, 39]. Furthermore, the regrowth of a tumor during treatment can 
be considered in several ways. Studies applying algebraic equations generally characterize 
the decline and regrowth of a tumor by a single equation. For studies that used ODEs, 
tumor regrowth was mainly characterized by separating the tumor in two parts consisting 
of drug-sensitive cells and drug-resistant cells or by adding the e–λ⋅t term.

The resistance evolution of cancer has been mainly characterized by stochastic models 
within which the branching process is reported most frequently. However, in studies 
applying the branching process, the focus was mainly on the expected outcome of tumor 
evolution, such as the PR and ER. Therefore, relatively simpler deterministic models are 
considered to be good alternative choices. It has already been demonstrated that ODE 
models can provide comparable results to those that are derived from stochastic models 
[91]. Given that the goal is to characterize evolving tumor resistance based on clinical 
data, applying deterministic models might be more suitable given clinical available data 
generally represents the apparent response of each patient.

Among the studies included in this review, the detailed data of resistance evolution have 
not yet been incorporated in tumor size-based modeling of anticancer treatment response. 
However, genetic biomarkers that represent tumor heterogeneity and resistance evolution 
become increasingly available as a result of novel technologies. For example, in a clinical 
setting, a feasible genetic biomarker that is also correlated with tumor burden has been 
identified as ctDNA [98]. Three of the included studies have already utilized the available 
ctDNA data to support the estimation of parameters in the tumor evolution model or to 
evaluate the model simulation results [77, 79, 90]. It has also been demonstrated that the 
mutation in ctDNA, which represents treatment resistance, is detectable before disease 
progression [99], suggesting the predictive value of ctDNA to the development of drug 
resistance. By applying longitudinal monitoring of ctDNA, an adaptive treatment for 
individual patients may be achieved by selecting drugs that target emerging actionable 
mutations [98]. Therefore, it is feasible to obtain the information of evolving cancer resist-
ance and, to increase the chance to overcome treatment resistance, it would be helpful if 
such information could be incorporated in future model-based studies.

Based on what was learned from previous reported studies, as is introduced in this review, 
model structures displayed by ODEs are considered to be feasible for the characterization 
of both tumor size change and resistance evolution in cancer patients. A mathematical 
model can be developed based on the input data of tumor size, mutation load of ctDNA, 
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and treatment information over time. The emergence and dynamics of mutations in ctDNA 
can provide insight of the occurrence, growth, decay, and mutation for different tumor 
subclones. External data sets, if available, can be used to further evaluate the developed 
model structure. Subsequently, the effect of sequential treatment regimens with different 
dose levels or starting times of therapies can be explored with simulation and thereby 
to facilitate the identification of an optimal regimen. Moreover, because the parameter 
values can be estimated for each individual and the variability of which can be partially 
explained by patient characteristics, the treatment personalization can also be rationally 
guided based on the modeling and simulation results. These will be the ultimate output 
of the model-based study. 

However, challenges remain beyond what is already stated. First, in terms of data collec-
tion, previous knowledge of the mutations that represent resistant subclones is required. 
Second, if sequencing data of the subclones (ctDNA) over time are available, efforts need 
to be made to handle the vast amount of genetic data in a quantitative manner in relation 
to tumor size dynamics. Third, the optimal method on how to predict a newly acquired 
mutation that has not yet occurred in the data needs to be further explored. Finally, because 
in-depth knowledge is required from multiple aspects of tumor and clone dynamics as well 
as complex modeling and simulation, a multidisciplinary collaboration is essential to enable 
the achievement of the ultimate goal of optimizing and personalizing anticancer treatment.

In conclusion, based on a systematic search of studies from the literature, mathematical 
models that have been used to describe and predict tumor size change, drug effect, and 
resistance evolution based on clinically available data were introduced in this review. The 
results may facilitate the model-based anticancer treatment response analysis that accounts 
for both tumor growth inhibition and resistance evolution, although important challenges 
still need to be overcome. An ultimate model structure handling all of these aspects would 
be of great benefit for optimizing and personalizing anticancer treatment.
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Supplementary Material S2.1 

Literature searching method
As for tumor dynamic modelling, a search term: (“Models, Theoretical” [Majr:NoExp] 
OR “Computer Simulation”[Mesh] OR “Models, Biological*” [Majr:NoExp]) AND 
(“mathematical” [title/abstract] OR “computational”[title/abstract] OR “model-
based”[title/abstract] OR “model based” [title/abstract] OR “pharmacometric*”[title/
abstract] OR model framework[title/abstract] OR modelling framework[title/abstract] 
OR modeling framework[title/abstract] OR PK/PD model* [title/abstract] OR PK-PD 
model* [title/abstract]) AND (pharmacody* [title/abstract] OR tumor growth[title/
abstract] OR tumour growth[title/abstract] OR tumor dynamic[title/abstract] OR tumour 
dynamic[title/abstract] OR tumor dynamics[title/abstract] OR tumour dynamics[title/
abstract] OR tumor-growth[title/abstract] OR tumour-growth[title/abstract] OR “change 
in tumor size”[title/abstract] OR “change in tumour size”[title/abstract] OR “tumor 
growth inhibition”[title/abstract] OR “tumour growth inhibition”[title/abstract]) AND 
(“Neoplasms”[Majr:NoExp] OR “cancer”[title/abstract] OR “tumor*”[title/abstract] 
OR “tumour*”[title/abstract] OR malignan*[title/abstract] OR oncolog*[title/abstract]) 
AND “Humans”[Mesh] NOT “Animals”[Mesh:NoExp] NOT “Cells”[Mesh] AND 
English[Language] AND (Pharmacology OR oncology) was used to retrieve records from 
PubMed database. Papers published until the start of March 2018 were scanned based on 
their abstract and method part. Papers that met the following criteria were included: 1) 
published after 2000; 2) studies where longitudinal tumor size data obtained from patients 
with solid tumors was described with mathematical models; 3) studies where longitudinal 
PSA data from prostate cancer patients was characterized with mathematical models; 4) 
studies where tumor size data from patients were obtained to estimate model parameters; 
5) reviews that summarized equations of different tumor growth modelling structures; 6) 
simulation studies where the models are potentially applicable in clinical settings, i.e. well 
mixed cancer cell population were considered.

Exclusion criteria include: 1) studies published before 2000; 2) studies for which the full 
text was not available; 3) animal studies; 4) computer aided molecular studies; 5) studies 
with no equation reported; 6) studies characterizing disease progression; 7) studies that 
focus on MRI/PET/CT utility, optimization, or kinetics; 8) studies characterizing safety and 
toxicity profiles; 9) studies characterizing the dynamic of biomarkers or markers related 
to drug activity; 10) studies where the target cancer types are not solid tumor; 11) studies 
that modelled cell cycle kinetics or signaling pathway; 12) computational methodology 
studies; 13) studies characterizing tumor evolution; 14) introductory journal article; 15) 
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reviews discussing the application of mathematical models and/or have no equations 
reported; 16) other studies that are not focus on tumor growth analysis; 17) simulation 
studies where the models are potentially not feasible in clinical settings, including studies 
considered nutrition distribution, cellular automata, multiple scales, chemical potential, 
and in silico illustration of tumor growth .

As for tumor resistance evolution modelling, a search term: (“Models, Theoretical” [Mesh] 
OR “Computer Simulation”[Mesh] OR “Models, Biological*” [Mesh]) AND (“math-
ematical” [title/abstract] OR “computational”[title/abstract] OR “model-based”[title/
abstract] OR “model based”[title/abstract] OR “pharmacometric*”[title/abstract] OR 
model framework[title/abstract] OR modelling framework[title/abstract] OR modeling 
framework[title/abstract]) AND (“Neoplasms”[Majr:NoExp] OR “cancer”[title/
abstract] OR “tumor*”[title/abstract] OR “tumour*”[title/abstract] OR malignan*[title/
abstract] OR oncolog*[title/abstract]) AND “Humans”[Mesh] NOT “Cells”[Mesh] 
AND English[Language] AND (“Drug Resistance, Neoplasm”[mesh] OR “Biological 
Evolution”[Majr:NoExp] OR “Clonal Evolution”[Mesh]) AND (“Resistance”[title/abstract]  
OR “ heterogeneit* “[title/abstract] OR “evolution”[title/abstract] OR “clone”[title/abstract] 
OR microenvironment[title/abstract]) was used to retrieve records from PubMed database. 
Papers published until the start of March 2018 were scanned based on their abstract and 
method part. Papers that met the following criteria were included: 1) published after 2000; 
2) model-based studies on the evolution of tumor resistance and tumor progression; 3) 
reviews that summarized equations of different model structure.

Exclusion criteria include: 1) studies published before 2000; 2) articles that overlap with 
what we obtained from tumor growth modelling; 3) studies for which the full text was not 
available; 4) computational molecular studies; 5) network studies; 6) studies concerning 
P-glycoprotein and resistance protein; 7) studies focus on cell cycle kinetics or signaling 
pathway; 8) introductory journal article; 9) studies characterizing tumor growth; 10) 
studies with no equation reported; 11) reviews discussing the application of models and/
or have no equations reported; 12) other studies that are not focus on tumor evolution.

Studies concerning tumor dynamics and tumor resistance evolution that were retrieved 
by the other search term were also scanned and included according to their own corre-
sponding inclusion and exclusion criteria respectively. Included articles’ references which 
introduced corresponding original models or demonstrated application examples, which 
were not found in the included papers, of certain model structures were included as well.

The flow diagram of scanning literature is shown in Figure S2.1. 
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Figure S2.1:  Diagram of literature scanning for (A) tumor dynamics and (B) tumor resistance evolution.
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Software
Software that was applied in studies concerning tumor dynamics (TD) and tumor evolution 
(TE) to perform parameter estimation and data simulation is summarized in Table S2.1. 
As can be seen in the table, NONMEM and Matlab are two most frequently used software 
that performing model-based analysis concerning tumor dynamics. Studies applying non-
linear mixed-effect models (NLMEM) mostly utilized NONMEM software to estimate 
parameter values, while Matlab was popular when performing simulation with partial 
differential equations. Three other commonly used software packages for tumor dynamics 
modelling are Monolix, Phoenix NLME, and Sigmaplot. For studies performing tumor 
evolution analysis, only a few of them reported the software, namely Matlab and R.

Table S2.1: Software that was applied in studies concerning tumor dynamics (TD) and tumor evolution (TE) 
to perform parameter estimation and data simulation

Application Name Algorithm

TD NONMEM (ICON Development 
Solutions)

First-order conditional estimation with interaction 
(FOCE-I) algorithm

First-order conditional estimation (FOCE) algorithm

Laplacian algorithm

Stochastic approximation of expectation 
minimization (SAEM) algorithm

Matlab Ordinary differential equation solver

pdepe

ODE45 subroutine

A custom genetic algorithm

Monolix SAEM algorithm

Phoenix NLME FOCE algorithm

Sigmaplot (Systat Software Inc) Not mentioned

SPLUS Not mentioned

C programme Not mentioned

TE Matlab Not mentioned

R; coded with C++ Not mentioned
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Abstract

Quantitative characterization of evolving tumor resistance under targeted treatment 
could help identify novel treatment schedules, which may improve the outcome of 
anti-cancer treatment. In this study, a mathematical model which considers various 
clonal populations and evolving treatment resistance was developed. With parameter 
values fitted to the data or informed by literature data, the model could capture 
previously reported tumor burden dynamics and mutant KRAS levels in circulating 
tumor DNA (ctDNA) of patients with metastatic colorectal cancer treated with 
panitumumab. Treatment schedules, including a continuous schedule, intermit-
tent schedules incorporating treatment holidays, and adaptive schedules guided 
by ctDNA measurements were evaluated using simulations. Compared with the 
continuous regimen, the simulated intermittent regimen which consisted of 8-week 
treatment and 4-week suspension prolonged median progression-free survival (PFS) 
of the simulated population from 36 weeks to 44 weeks. The median time period in 
which the tumor size stayed below the baseline level (TTS<TS0) was prolonged from 52 
weeks to 60 weeks. Extending the treatment holiday resulted in inferior outcomes. 
The simulated adaptive regimens showed to further prolong median PFS to 56–64 
weeks and TTS<TS0 to 114–132 weeks under different treatment designs. A prospec-
tive clinical study is required to validate the results and to confirm the added value 
of the suggested schedules.
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1.  Introduction

Emerging treatment resistance during anti-cancer therapy is one of the major causes of 
cancer patients experiencing treatment failure [1, 2]. The occurrence of treatment resistance 
is mediated by a range of mechanisms [1, 2]. Evolutionary mechanisms driven by intra-
tumor heterogeneity and the evolving adaptation of tumor cells to the selection pressure 
of treatment are increasingly acknowledged as key factors related to the development of 
treatment resistance [3-7]. 

To improve the treatment outcome in cancer patients, it may be important to take the 
intra-tumor heterogeneity and evolutionary dynamics of tumors into consideration when 
designing treatment strategies. A clinical genetic biomarker that is useful to capture the 
tumor heterogeneity and to monitor the evolving treatment resistance in a quantitative way 
is circulating tumor DNA (ctDNA), i.e. tumor DNA fragments circulating in the blood-
stream [2, 8-10]. Different from tumor size, which is commonly used as an indicator of 
anti-cancer treatment effect [11], ctDNA can be detected from liquid biopsies and allows 
real-time monitoring with limited patient burden. It has been demonstrated that mutations 
present in multiple biopsies of primary tumor and metastasis can be detected in ctDNA 
including those being missed in certain biopsies[12]. In addition, the genetic alternations 
captured by ctDNA can also be quantified. The relative change of genetic alterations in 
serial ctDNA analysis could provide important insight into the molecular evolution of the 
tumor and reveal the mechanisms of resistance to targeted agents [8-10]. Previous studies 
of ctDNA in colorectal cancer patients have demonstrated a positive selection of mutant 
KRAS clones during epidermal growth factor receptor (EGFR) blockade [10, 13], and a 
decline in mutant KRAS clones upon the withdrawal of the therapy [9]. The concentration 
of ctDNA has also been shown to correlate with tumor burden and stage, and is associated 
with therapeutic response, such as disease progression and recurrence, in different kinds 
of cancers [8, 9, 14-18].

Monitoring tumor-specific genetic alternations can facilitate the selection and adjustment 
of drugs that target newly developed actionable mutations [2, 8]. Such adaptive treatment 
suppresses the proliferation of resistant tumor clones and thereby overcome or at least 
delay treatment resistance [2, 8]. 

Considering evolutionary dynamics, suppressing the emergence of resistance by applying 
intermittent treatment has also been previously proposed [19, 20]. Intermittent treatment 
allows sensitive cells to utilize their fitness advantage during the withdrawal of treatment 
to suppress the growth of the resistant population, so that the same treatment can remain 
effective when it is reinitiated, which is especially relevant in the metastatic setting when 



Chapter 3

68

cure is not possible [19, 21]. This principle was demonstrated in silico with game theory 
models and with a pilot study of abiraterone in prostate cancer patients [19]. For colorectal 
cancer, it has been shown that tumor genomes adapt dynamically to intermittent drug 
schedules and re-challenge of EGFR blockade can be efficient [9]. This strategy is also 
of emerging clinical interest and has been investigated in several clinical studies [22-27].

Mathematical modelling and simulation is a widely accepted tool in pharmaceutical 
research to characterize and understand the interaction among drug treatment, the human 
body, and disease [11, 28-30]. Various mathematical model structures have been used to 
characterize the tumor dynamics and drug resistance evolution for solid tumors [19, 31, 32]. 
Tumor proliferation, regression due to treatment, heterogeneity, and treatment resistance 
are key elements that are commonly considered in those models [32]. The dynamics of 
biomarkers can also be incorporated which enables better understanding and prediction 
of tumor progression [32]. A non-linear mixed-effect modeling approach is commonly 
applied to account for inter-individual variability (IIV) [32]. Studies developing models 
for tumor dynamics and evolving drug resistance are mostly aimed at optimizing and indi-
vidualizing current treatments. Furthermore, they are also aimed at better understanding 
of emerging drug resistance and identification of outcome predictors [32]. Connecting 
these models to patients’ survival and adverse effects with time-to-event modelling is 
also common to support the understanding of treatment efficacy and enables the explo-
ration of optimized dosing schedules [33]. These models could guide the interpretation 
and clinical decision making process based on observed tumor size dynamics and the 
associated evolution of tumor progression during treatment, and thereby supporting the 
identification of novel personalized strategies to optimize anti-cancer treatment schedules 
and overcome treatment resistance. 

The aim of the current study was to develop a mathematical model to quantitatively char-
acterize the dynamics of treatment response and evolving resistance, based on tumor sizes 
and mutant KRAS levels in ctDNA from metastatic colorectal cancer (mCRC) patients. 
We also aimed to evaluate anti-cancer treatment designs which consider cancer resistance 
evolution and demonstrate the use of ctDNA as a marker to guide adaptive treatment. These 
aspects might be beneficial to improve the treatment outcome, especially in the metastatic 
setting. Data identified from the literature were used for model development. Anti-cancer 
treatment schedules, including continuous, intermittent, and adaptive schedules guided by 
ctDNA measurements were designed to evaluate optimal treatment schedules. 
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2.  Results

2.1  Data and model evaluation
A dataset containing longitudinal tumor burden measurements and mutant KRAS levels 
in ctDNA was identified from 28 mCRC patients treated with the anti-EGFR inhibitor 
panitumumab in a previous clinical study [13] (Figure 3.1). Among the 28 patients, 25 
were identified to be initially KRAS wild-type and 9 of those 25 developed KRAS mutation 
after 5–34 weeks’ (median 22 weeks’) treatment. The remaining 3 patients had detectable 
mutant KRAS at the start of treatment. The characteristics of the patients are summarized 
in Supplementary Table S3.1. 

Figure 3.1:  Model evaluations results on the data of tumor burden (a, c) and mutant KRAS (b, d) collected 
from a previous clinical trial on patients with metastatic colorectal cancer who were identified to be initially 
KRAS wild-type (a, b) or had detectable mutant KRAS at the start of treatment (c, d); Model predicted mutant 
KRAS concentrations under a regimen of 20-week treatment and 20-week suspension (e).

The developed model consists of three clonal tumor populations, including Ts which was 
sensitive to anti-EGFR inhibitor (D1), TR1 which harbored KRAS mutation and was resistant 
to D1, and TR2 which was resistant to both D1 and a hypothetical second treatment targeting 
TR1 (D2), as well as two compartments for mutant KRAS (MctDNA1) and a hypothetical second 
mutation (MctDNA2) in ctDNA (Figure 3.2). MctDNA1 and MctDNA2 were assumed to emerge 
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during treatment. Shedding rates of ctDNA depended on the size of TR1 and TR2, and Hill 
equations with tumor size as independent variable were applied to describe the delayed 
emergence (or ability to detect) of mutant genes in ctDNA. Values of model parameters 
were obtained by fitting to the data or informed by literature (Table 3.1). Parameters 
describing tumor dynamics under D1 therapy were estimated based on the observed raw 
data and the results are shown in Supplementary Table S3.2. 

Figure 3.2:  The model that characterizes the dynamics of tumor size and mutation concentrations in 
ctDNA from metastatic colorectal cancer patients. Ts, TR1, and TR2 represent the sizes of three tumor clonal 
populations, respectively. MctDNA1 and MctDNA2 represent the concentration of mutant KRAS and a hypothetical 
mutation in ctDNA. kg1, kg2, kg3 represent the net growth rate constants of three clonal populations. ks1 and 
ks2 represent the tumor shrinkage rate due to treatments. kM1 and kM3 represent the mutation rate constant 
from drug susceptible clonal population to drug resistant clonal population during the course of anti-EGFR 
treatment (D1) and a hypothetical treatment (D2), respectively. kM2 and kM4 represent the transition rate 
constant from drug resistant clonal population to drug susceptible clonal population upon the withdrawal 
of treatments. k1 and k2 represent the shedding rate constant of ctDNA which carries mutations. ke represent 
the elimination rate constant of ctDNA.

ks1

kg1

MctDNA1

kM1, 
with anti-EGFR inhibitor

k1

kM3, 
with D2 which targets KRAS mutated 
colon cancer 

ke

k2

MctDNA2
ke
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kg3 TR2

kM2, without anti-
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The model evaluation results show that the 50th percentiles of the simulated time-courses 
of total tumor size (TS) and mutant KRAS (MctDNA1 ) concentrations were generally in line 
with the 50th percentiles of corresponding observations (Figure 3.1). The 50th percentiles 
of observations were also adequately covered by the 95% confidence intervals (CIs) of 
corresponding percentile obtained from the simulations. Upon a treatment suspension 
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after 20 weeks of treatment, a decay of KRAS levels that was observed in previous studies 
[9] could also be described by the model. The median and 90% prediction interval of 
corresponding simulations of 100 virtual patients were shown in Figure 3.1E. The predicted 
median half-life of KRAS levels was 4.98 months.

An available dataset on 16 non-small cell lung cancer (NSCLC) patients was utilized as an 
evaluation cohort (Supplementary Table S3.3) [14]. Patients included in this study had detect-
able EGFR L858R mutation / exon 19 deletion at the start of treatment and developed EGFR 
T790M mutation during treatment. The model used in the validation cohort was adjusted 
according to the findings of the study, the details of which can be found in Supplementary 
method and Supplementary Figure S3.1. Model evaluation results show that the distribu-
tion of the model simulations was also in line with the distribution of the tumor size and 
concentrations of mutant EGFR obtained from NSCLC patients (Supplementary Figure S3.2).

2.2  Treatment schedule evaluation 
Based on the developed model, multiple dosing schedules, including a continuous D1 
schedule, intermittent D1 schedules with different on- and off-dosing durations, and 
adaptive schedules where the use of D1 and D2 were guided by ctDNA measurements, were 
simulated and evaluated to identify optimal treatment designs (Table 3.2). For adaptive 
schedules, the treatment started with a continuous D1 and switched to a continuous D2 
when the ctDNA measurements increased to an upper limit for drug adjustment. When the 
mutation concentration decreased back to a lower limit for drug adjustment, the treatment 
was switched back to D1 and the loop continued.

Predicted median progression-free survival (PFS) and time until the tumor size had grown 
back to the baseline level (TTS<TS0) of the simulated population under all evaluated regimens 
are shown in Figure 3.3, the detailed results of which can be found in Supplementary 
Table S3.4. The median predicted PFS under continuous drug exposure was 36 weeks 
and median TTS<TS0 was 52 weeks. Five out of 9 designs of intermittent schedule prolonged 
median PFS and median TTS<TS0 compared with continuous treatment (Figure 3.3). Four- or 
8-week treatment suspension was introduced in these regimens. Extending the treatment 
holiday from 4 weeks to 4 weeks more than the treatment period mostly resulted in inferior 
results (Figure 3.3). A regimen consisting of 4-week treatment and 4-week suspension 
(Sinterm(4on_4off)) provided the longest median PFS (48 weeks), while a schedule consisting of 
8-week treatment and 4-week suspension (Sinterm(8on_4off)) provided the longest TTS<TS0 (60 
weeks). A survival prediction also illustrated a better clinical outcome provided by regimen 
Sinterm(8on_4off) than continuous regimen (Figure 3.4). 
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Table 3.2: Evaluated treatment schedules

Schedules Details

Continuous schedule (standard 
of care) 

D1 was continuously administered resulting in continuous drug 
exposure for 180 weeks

Intermittent schedules D1 was administered for N weeks and suspended for M weeks. Total 
treatment time was 180 weeks.

N (weeks) M (weeks)
4 4, 8 
8 4, 8, 12
12 4, 8, 12, 16

Adaptive schedules with a 
hypothetical second treatment

D1 was continuously given, and suspended and switched to 
D2 when the ctDNA measurement increased to higher than 
UP fragment/ml. Treatment switched back to D1 when ctDNA 
measurement decreased back to lower than LOW fragment/ml. 
Total treatment time was 180 weeks.

LOW (fragment/ml) UP (fragment/ml)
Monitoring frequency 
of ctDNA (weeks)

5 10, 15, 20, 25 4
10 15, 20, 25 4
5 10, 15, 20, 25 8
10 15, 20, 25 8
5 10, 15, 20, 25 12
10 15, 20, 25 12

D1, anti-EGFR inhibitor; D2, a hypothetical second treatment to which the newly acquired clone is suscep-
tible; ctDNA, circulating tumor DNA. Drug exposure variability was not considered in this study but only the 
presence (Dn = 1) or absence (Dn = 0) of a drug were considered.

Figure 3.3:  The predicted median progression-free survival (PFS) (a) and the time until the tumor size had 
grown back to the baseline level (TTS<TS0) (b) of evaluated regimens.
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As for the adaptive regimen guided by ctDNA measurements, all designs further prolonged 
median PFS to 56–64 weeks and TTS<TS0 to 114–132 weeks (Figure 3.3). Comparable results 
were obtained when the monitoring frequency of ctDNA altered and slightly longer median 
PFSs were observed when the monitoring frequency of ctDNA was once every 12 weeks. 
Under the same monitoring frequency, the different upper and lower ctDNA limits for 
drug adjustment only resulted in small changes in median PFS and TTS<TS0, especially when 
the ctDNA was less frequently monitored. Overall, the longest median PFS and TTS<TS0 
were mostly observed when the upper and lower ctDNA limits for drug adjustment were 
5 fragments/ml and 10 fragments/ml, respectively (Figure 3.3). A regimen with 5 and 10 
fragments/ml as ctDNA limits for drug adjustment and a monitoring frequency of once 
every 12 weeks (Sadapt(5_10_Freq12)) provided the longest median PFS. The survival prediction 
of Sadapt(5_10_Freq12) also showed a better clinical outcome than the regimen Sinterm(8on_4off) and 
the continuous regimen (Figure 3.4). 

Figure 3.5 shows the simulated time-curves of each tumor clonal population and each 
mutation in ctDNA over time from a typical subject under the continuous schedule, the inter-
mittent schedule Sinterm(8on_4off), and the adaptive schedule Sadapt(5_10_Freq12). The corresponding 

Figure 3.4:  The survival plot of 100 virtual patients under continuous treatment, intermittent treatment 
(8-week treatment and 4-week suspension), and adaptive treatment with the second hypothetical drug 
(ctDNA limits for drug adjustment: 5 and 10 fragments/ml, monitor frequency: 12 weeks).
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results of the simulated population are shown in Supplementary Figure S3.3. It can be seen 
that the schedule Sinterm(8on_4off) and Sadapt(5_10_Freq12) suppressed the growth of resistant clonal 
population TR1. In addition, predicted time until detectable mutation (Tmutant_test) under 
each evaluated regimen was evaluated. It was shown that MctDNA1 under both continuous 
and intermittent regimens could become detectable before disease progression (Figure 3.5, 
Supplementary Table S3.4). In the setting of adaptive treatment, as the MctDNA1 level was 
applied as a biomarker to guide the treatment switching, the median Tmutant_test of MctDNA2 was 
evaluated. The results indicate that MctDNA2 would be observed after disease progression has 
occurred but before the tumor size grows back to baseline level (Figure 3.5).

Figure 3.5:  The simulated time-curves of total tumor burden and each clonal population (a, d, g), 
mutation concentrations (b, e, h), and dosing strategies (c, f, i) of a typical subject with metastatic colorectal 
cancer undergoing continuous treatment (a, b, c), intermittent treatment (8-week treatment and 4-week 
suspension) (d, e, f ), and adaptive treatment with the second hypothetical drug (ctDNA limits for drug 
adjustment: 5 and 10 fragments/ml, monitor frequency: 12 weeks) (g, h, i). Estimated PFS (black dashed 
vertical line), TTS<TS0 (red dashed vertical line), and Tmutant_test (blue dash vertical line) are also shown in the 
figure.
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2.3  Sensitivity analysis
While the value of the parameters describing tumor dynamics were estimated based on 
the data or adapted from literature, that of other parameters were set based on a visual 
fit to the data since the amount of data did not support estimation of parameters. These 
parameter values may however not be optimal, and therefore the parameter sensitivity to the 
simulated curves was assessed by increasing or decreasing parameters by 50% one at a time. 

The predicted PFS and Tmutant_test derived from each time of simulation, which represent 
the dynamics of tumor burden and mutation concentrations in ctDNA respectively, are 
shown in Figure 3.6 and Supplementary Table S3.5. Both simulated tumor sizes and 
mutation concentrations were affected when any of the parameters characterizing the 
tumor burden dynamics, including net growth rate constants (kg), tumor shrinkage rate 
due to treatments (ks), and mutation rate constants (kM) varied. In contrast, the change of 

Figure 3.6:  Relative change (Δ) of predicted progression-free-survival (weeks) (a) and time until detectable 
mutation (weeks) (b) compared with using original parameters in the sensitivity analysis. No result, the 
mutant gene concentrations did not reach the detectable limit (5 fragments/ml) by the end of simulation 
time (180 weeks).
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the parameters characterizing the mutation concentrations, including the Hill coefficient 
(H), max releasing rates (kmax), the tumor size that provide half-maximal releasing rate 
(KT50), and elimination rate constant of ctDNA (ke), only affected the simulated mutation 
concentrations but not the simulated tumor size except for KT50 and H under an adaptive 
treatment design. The predicted PFS was mainly sensitive to parameters kg2 and kM1, and 
the predicted Tmutant_test was mainly sensitive to parameters ks1, kM1, H and KT50. Nonethe-
less, the intermittent regimen and the adaptive regimen still resulted in better treatment 
outcomes (i.e. longer PFS) than the continuous regimen, no matter how the parameter 
values varied (Supplementary Table S3.5). More detailed simulated time-curves of 
tumor burden and MctDNA1 concentrations under each setting, and the relative changes of 
predicted total tumor sizes and MctDNA levels compared with original results are shown in 
Supplementary Figure S3.4 and Figure S3.5.

3.  Discussion

In the current study, a mathematical model was developed to characterize the tumor size 
dynamics and tumor resistance development in response to treatment. The model was built 
based on findings from previously published studies and the collected raw data itself. The 
model well captured the reported time curves of tumor sizes and mutant KRAS levels in 
ctDNA from mCRC patients. A similar model could also characterize the time-curves of 
EGFR mutation and tumor sizes obtained from NSCLC patients. 

The current model assumed that for patients who had no detectable KRAS mutation pre-
treatment, there was no primary resistance, despite that the original study estimated that 
drug resistance is likely to be present prior to the initiation of treatment [13]. However, 
since the size of the resistant clonal population was estimated to only account for a small 
part of the total tumor cell population (2300 cells out of one billion cells) [13], the primary 
resistance was eventually not included in our model.  

During treatment interruption, a back transfer process from drug resistant clonal population 
to drug sensitive clonal population was incorporated to capture the recovery of sensitivity 
to the treatment. This assumption was supported by in vitro observations [9]. This process 
could also describe the phenomenon that in the absence of the drug, susceptible tumor cells 
have the benefit of growing back again at the expense of resistant tumor cells. When the back 
transfer process was removed (kM2 and kM4 fixed to 0), prolonged predicted median PFSs 
under the schedule Sinterm(4on_4off) and Sadapt(5_10_Freq12) compared with the continuous regimen 
were still observed, although not for schedule Sinterm(8on_4off) in contrast to when the back 
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transfer was allowed (Supplementary Figures S3.6, S3.7). However, the decline of ctDNA 
upon withdrawal of treatment, which has been observed in mCRC patients [9, 34], could 
not be captured when removing the back transfer process (Supplementary Figure S3.8). 
It was also observed that under this circumstance, the remaining susceptible cells had no 
growth advantage over the resistant cells during the withdrawal of treatment, hence tumor 
would not regain susceptibility (Supplementary Figures S3.7, S3.8). Therefore, the back 
transfer process is considered to be a reasonable assumption to describe the dynamics of 
and the competition among different clonal populations upon treatment withdrawal based 
on current available data. More data under intermittent therapy would be valuable to better 
characterize this dynamic process, and to better estimate parameters.

A delayed emergence of a mutation indicating treatment resistance in ctDNA was observed 
in both original studies on mCRC patients (after in median 22 weeks’ treatment) [13] 
and NSCLC patients (after in median 10.5 months’ treatment) [14]. This phenomenon 
was characterized by the Hill equations with tumor size as the independent variable (Eq. 
3.4 and 3.5) in the current study, assuming a delayed shedding of ctDNA from the tumor 
tissue. We also investigated a model where the delayed process was incorporated in the 
mutation from one clonal population to another by applying transit compartments. This 
model could also capture the delayed emergence of mutation in ctDNA. 

The designs of intermittent and adaptive regimens aim to prolong the duration of 
suppressing treatment resistance since they considered intra-tumor heterogeneity and 
evolving adaptation of tumor to treatment. In addition, the evaluated adaptive schedules 
also enabled the personalized design of therapy since the switch of drug was guided by 
individual ctDNA measurements. Here we focused explicitly on the use of ctDNA and 
therefore the change in tumor size was not considered as a criterion to switch therapy, 
despite the fact that tumor size is a common marker in clinical practice for the efficacy of 
anti-cancer treatment [11]. In the future, the help of tumor size could be further evaluated 
when data regarding ctDNA and tumor size dynamics under adaptive therapy are available 
to facilitate a better understanding of their relationship and refining the current model.

In the current study, the intermittent and adaptive regimens, with appropriate designs, 
were shown to outperform the conventional continuous treatment by simulations (i.e. 
median PFS was prolonged) (Figure 3.3). This is in line with the evolutionary principle of 
control and the findings from clinical observations. For example, an adaptive intermittent 
treatment of abiraterone based on prostate-specific antigen (PSA) levels was shown to result 
in a better clinical outcome than the typical continuous treatment [19], although the study 
design may need to be refined [35]. Another recent retrospective analysis demonstrated 
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that intermittent use of enzalutamide in metastatic castration-resistant prostate cancer 
patients prolonged the time to PSA failure and improved overall survival [20]. Traditional 
approaches to cancer therapy have not exploited these theoretical advantages. For example, 
current protocols typically apply a treatment agent or agents at the maximum tolerated 
dose (MTD) until there is unequivocal clinical evidence of progression [21]. 

The intermittent therapy has also been investigated in several clinical studies. In contrast to 
our simulation results and the clinical observations, these studies did not show improved 
outcomes in patients undergoing intermittent therapy [22-27]. One study on BRAF and 
MET inhibitors in melanoma patients even showed an inferior result under the intermit-
tent therapy compared to continuous therapy [22]. The underlined mechanism remains 
unclear. Nevertheless, in these cases, the developed mathematical model may be helpful 
for understanding these conflicting results. Further identification of optimal designs 
based on different resistance mechanisms and dynamics of cancers can be supported by 
the model-based approach. For example, a previous in silico study showed that an inter-
mittent abiraterone followed by a lead-in period was not beneficial for prostate cancer 
patients, and the adaptive intermittent treatment guided by PSA was demonstrated to 
be the best option [19]. Moreover, the simulation results derived from the current study 
suggest that although introducing a treatment holiday may improve the treatment outcome, 
the length of the treatment holiday still needs to be controlled. Extending the treatment 
holiday mostly resulted in inferior results, especially when the holiday was longer than the 
treatment period. This is in accordance with a previous finding that chemotherapy with 
shorter intervals (dose-dense therapy) resulted in better treatment outcome even though 
the total dose amounts were the same [36]. 

When evaluating the adaptive treatment, a second hypothetical treatment (D2) targeting 
TR1 was introduced. An example of this idea can be seen from the treatments of NSCLC 
patients. For NSCLC patients, acquisition of T790M mutation is the main mechanism of 
acquired resistance upon treatment of erlotinib/gefitinib, and osimertinib can be selected 
for T790M-positive patients [37]. Lately, the Food and Drug Administration (FDA) also 
granted accelerated approval to the first KRAS-blocking drug [38]. This indicates potential 
feasibility of the here suggested adaptive treatment design. Due to the use of D2, a hypo-
thetical newly acquired mutation (MctDNA2) was also considered in the model. Unlike MctDNA1 
(KRAS mutation), MctDNA2 only became detectable after disease progression in the current 
study. This brings on a question about the predictive value of mutations in ctDNA. Most 
likely the dynamics of the sensitive clones are also very important to predict emerging 
resistance at an earlier phase. However, to answer this question, more data is required to 
support the understanding of the dynamics of the hypothetical mutation. 
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With the sensitivity analysis, we showed that the choice of parameter values can affect the 
simulated curves. The predicted tumor sizes were mainly sensitive to the parameters kg2 and 
kM1 using the developed model, and the predicted mutation concentrations were mainly 
sensitive to the parameters ks1, kM1, H and KT50 (Figure 3.6). This suggests that an accurate 
estimation of these parameters is of importance for this model. However, the intermittent 
and adaptive treatment still provided better treatment outcome when parameter values 
varied, indicating that the value of the parameters didn’t affect the conclusion that the 
intermittent and adaptive regimens with a certain design outperform the conventional 
continuous treatment. 

To apply the novel treatment strategy, there are still some challenges. Firstly, for patients 
who had detectable KRAS mutation pre-treatment, the intermittent treatment provided 
similar treatment outcome compared to continuous treatment (Supplementary Figure 
S3.9). Therefore, for these patients, a better option will be to choose another treatment 
from start. In fact, in clinical practice panitumumab is contraindicated for patients with 
KRAS mutation. Secondly, to be able to monitor the development of resistance with 
ctDNA, the mutations that are associated with the resistance to a target treatment need 
to be acknowledged beforehand. If multiple mutations have been reported, a selection 
may be required based on the capability of the applied quantification technique, such as 
the selection of gene panel in the assay and the number of mutations that can be detected 
simultaneously. Thirdly, as can be seen from the previous study, only 9 out of 25 patients 
developed detectable KRAS mutations and the median disease progression time of the 9 
patients was the same as for the remaining 16 patients (23 weeks). It was also noticed when 
the individual results were compared, 4 out of 100 virtual patients were predicted to have 
longer PFS under a continuous schedule than under regimen Sinterm(8on_4off). Additionally, 
despite that adaptive regimens provided longer median PFS than intermittent regimens, 
31 out of 100 patients had longer PFS under regimen Sinterm(8on_4off) than under regimen 
Sadapt(5_10_Freq12). These results indicate that ctDNA guided treatment may not be feasible for 
all patients and variability between individuals can affect the choice of regimen. 

Our study has some limitations. First of all, the amount of data we obtained limited the 
ability to adequately estimate all parameters of the developed model. We were also not able 
to fully consider pre-treatment tumor heterogeneity and incorporate the eco-evolutionary 
dynamics in the model. Additionally, due to the lack of drug exposure records, dose- or 
exposure-response relationship was not incorporated in the model and was not investigated 
in this study. However, for panitumumab, it has been shown that with standard treatment 
regimens, even the trough concentrations are maintained above the 90% saturation levels, 
meaning almost maximum effect in all patients [39]. However, for other molecules such 
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as tyrosine kinase inhibitors (TKIs), drug levels are also important to be included in the 
analysis. In these cases, drug exposure measurements can be helpful for the understanding 
of exposure-response relationship under the evaluated regimens. Secondly, alternative 
mutations that are related to anti-EGFR treatment resistance in addition to the reported 
mutant genes were not considered in this study. However, KRAS mutation and EGFR 
mutation were the most commonly reported gene mutations that are associated with resist-
ance to anti-EGFR treatment in mCRC and NSCLC patients respectively [18]. Therefore, 
we mainly considered the most representative mutations. Thirdly, the idea of individual 
intermittent treatment could be further investigated. Because of the above limitations, an 
external dataset is needed to validate the results and a clinical pilot study is required to 
confirm the added value of the suggested schedules. 

In conclusion, a mathematical model incorporating evolving cancer resistance was 
developed to characterize tumor size dynamics and resistance development under 
treatment. The model well captured the clinical data from colorectal cancer patients as 
well as from NSCLC patients. Compared with a conventional continuous anti-cancer 
treatment schedule, intermittent and adaptive schedules were predicted to better suppress 
the evolving cancer resistance and suggested a potential improvement in clinical outcome. 
However, a prospective study is required to validate the results and to confirm the added 
value of the suggested approach. 

4.  Methods

4.1  Dataset 
A dataset containing longitudinal tumor burden measurements and mutant KRAS levels in 
ctDNA was identified from a published study where patients diagnosed with mCRC were 
treated with the anti-EGFR inhibitor panitumumab [13]. Patient demographic information, 
time-courses of tumor burden that was reported as the aggregate cross-sectional diameter of 
all index lesions (mm2), and the time-courses of mutant KRAS concentrations (fragments/
ml) of 28 patients were collected from the supplementary tables of the paper [13]. When 
corresponding time of a data point was not shown in the table, the time information was 
digitized from the corresponding supplementary figures using WebplotDigitizer (https://
apps.automeris.io/wpd/). 

All data in this study were collected from publicly available materials (i.e. supplementary 
material or figures) in literature from which the studies were approved by corresponding 
ethical committees and all informed consents were obtained. Therefore, for this study, no 
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additional ethical approval or written informed consent was required. All procedures in 
this study were performed in accordance with relevant guidelines. 

4.2  Model structure    
A mathematical model was developed to describe the obtained time-courses of tumor 
burden and mutant KRAS concentrations under anti-EGFR therapy. The model structure 
is shown in Figure 3.2. 

Six assumptions were made when developing the model structure: 

1.	 The growth of the tumor was assumed to follow an exponential growth pattern 
[40, 41]. 

2.	 Tumor tissue was assumed to consist of multiple clonal sub populations which 
are defined as sets of cancer cells that share a common genotype [5]. One clonal 
population (Ts) was defined to be sensitive to the anti-EGFR inhibitor panitu-
mumab (D1). Another clonal population (TR1) harbored KRAS mutation (MctDNA1)  
and was consequently resistant to D1. This is based on previous evidence where 
patients harboring RAS variant in pre-treatment ctDNA did not benefit from 
EGFR blockade [13, 42]. The emergence of KRAS mutation was also suggested 
to be a mediator of acquired resistance to EGFR blockade [13, 42]. 
For patients who were initially identified as KRAS wild-type in ctDNA (WT-KRAS 
patients), Ts was assumed to form the whole tumor at the start of treatment. While 
for patients who had detectable mutant KRAS in ctDNA pre-treatment (M-KRAS 
patients), tumor tissue was assumed to consist of both Ts and TR1 at the start of 
treatment. In addition, given that the resistant clonal population may have fitness 
cost [43], the proliferation rate of resistant clones was assumed to be lower than 
that of the sensitive clones [44].

3.	 A KRAS mutation could be acquired during the treatment of D1, as WT-KRAS 
patients could develop detectable mutations [13]. 

4.	 A hypothetical treatment next to panitumumab (D2) was incorporated in the 
current study and assumed to target KRAS-mutated colorectal cancer and 
thereby inhibiting the growth of TR1. In the meantime, a second mutation 
(MctDNA2) was able to be acquired which resulted in a third clonal population 
(TR2) that was resistant to D2. The mutation rate was assumed to be the same as 
that of the acquiring KRAS mutation clonal population. 

5.	 During treatment interruption, a back transfer process from the drug resistant 
clonal population to drug sensitive clonal population was assumed to be present 
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and was incorporated in the model with a rate lower than the mutation rate. This 
assumption was supported by a previous in vitro study in colorectal cancer (CRC) 
cells [9], which showed that CRC cells that acquired resistance to cetuximab 
with amplification of KRAS gene regained partial sensitivity to cetuximab when 
cultured in the absence of the drug [9]. This process could also be understood 
as the competition between drug susceptible and resistant cells in the absence 
of the drug. When the pressure of the drug was gone, the susceptible cells have 
the benefit to grow back again at the expense of resistant cells in the tumor.

6.	 ctDNA which carries the target mutations was shed from resistant clonal popu-
lations and the shedding rate depends on the corresponding tumor tissue size. 

In order to be able to capture the following features observed from clinical studies, two 
features were incorporated in the model structure:

1.	 The mutant KRAS concentration became detectable after 5–34 weeks’ (median 
22 weeks) treatment for WT-KRAS patients who developed detectable mutant 
KRAS [13]. Therefore, the Hill equations (Eq. 3.4 and 3.5) were applied to 
describe this delayed emergence (or ability to detect) of MctDNA1 and MctDNA2.

2.	 Mutant KRAS levels in ctDNA increased when challenged with D1 and declined 
upon the withdrawal of treatment [9]. The elimination half-life of resistance 
mutations is approximately 4 months [34, 42]. Therefore, in addition to the 
back transfer process, a first-order ctDNA elimination was incorporated. The 
half-life of a typical patient was confirmed to be 4.15 months with the given 
parameter values. 

The ordinary differential equations of the model were as follows:

𝑑𝑑𝑑𝑑𝑠𝑠
𝑑𝑑𝑑𝑑 � �𝑔𝑔𝑔 ∙ 𝑇𝑇𝑠𝑠 � �𝑠𝑠𝑠 ∙ 𝐷𝐷1 ∙ 𝑇𝑇𝑠𝑠 � �𝑀𝑀𝑀 ∙ 𝐷𝐷1 ∙ 𝑇𝑇𝑠𝑠 � �𝑀𝑀𝑀 ∙ �𝑔 � 𝐷𝐷1� ∙ 𝑑𝑑𝑅𝑅𝑅  (3.1)

𝑑𝑑𝑑𝑑𝑅𝑅𝑅
𝑑𝑑𝑑𝑑 � �𝑀𝑀𝑀 ∙ 𝐷𝐷1 ∙ 𝑇𝑇𝑠𝑠 � �𝑔𝑔𝑔 ∙ 𝑇𝑇𝑅𝑅𝑅 � �𝑠𝑠𝑠 ∙ 𝐷𝐷2 ∙ 𝑇𝑇𝑅𝑅𝑅 � �𝑀𝑀𝑀 ∙ �𝑅 � 𝐷𝐷1� ∙ 𝑑𝑑𝑅𝑅𝑅 � �𝑀𝑀𝑀 ∙ 𝐷𝐷2 ∙ 𝑇𝑇𝑅𝑅𝑅 � �𝑀𝑀𝑀 ∙ �𝑅 � 𝐷𝐷2� ∙ 𝑑𝑑𝑅𝑅𝑅  (3.2)

𝑑𝑑𝑑𝑑𝑅𝑅𝑅
𝑑𝑑𝑑𝑑 � �𝑀𝑀𝑀 ∙ 𝐷𝐷2 ∙ 𝑇𝑇𝑅𝑅𝑅 � �𝑔𝑔𝑔 ∙ 𝑇𝑇𝑅𝑅𝑅 � �𝑀𝑀𝑀 ∙ �𝑅 � 𝐷𝐷2� ∙ 𝑑𝑑𝑅𝑅𝑅  (3.3)

𝑘𝑘1 � 𝑘𝑘max _1 ∙ 𝑇𝑇𝑅𝑅𝑅𝐻𝐻� �𝑇𝑇𝑅𝑅𝑅𝐻𝐻 � �𝑇𝑇50𝐻𝐻�  (3.4)

𝑘𝑘2 � 𝑘𝑘max _2 ∙ 𝑇𝑇𝑅𝑅𝑅𝐻𝐻� �𝑇𝑇𝑅𝑅𝑅𝐻𝐻 � �𝑇𝑇50𝐻𝐻�  (3.5)

𝑑𝑑𝑑𝑑������
𝑑𝑑𝑑𝑑 � �� ∙ 𝑇𝑇�� � �� ∙ 𝑀𝑀������  (3.6)

𝑑𝑑𝑑𝑑������
𝑑𝑑𝑑𝑑 � �� ∙ 𝑇𝑇�� � �� ∙ 𝑀𝑀������  (3.7)

𝑇𝑇� � 𝑇𝑇𝑠𝑠 � 𝑇𝑇𝑅𝑅𝑅 � 𝑇𝑇𝑅𝑅𝑅  (3.8)
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TS represents the total tumor size as detected by CT scan. kg1, kg2, and kg3 represent the net 
growth rate constants of three clonal populations. ks1 and ks2 represent the tumor shrinkage 
rate due to treatments. Drug exposure variability was not considered in this study but only 
the presence (Dn = 1) or absence (Dn  = 0) of a drug were considered (n = 1 and 2 represent 
panitumumab and the hypothetical treatment, respectively). kM1 and kM3 represent the 
mutation rate constants governing the transfer from the drug susceptible clonal population 
to the drug resistant clonal population during D1 and D2 treatment, respectively. kM2 and 
kM4 represent the mutation rate constants from drug resistant clonal population to drug 
susceptible clonal population upon the withdrawal of treatments. k1 and k2 represent the 
shedding rate constants of ctDNA which carries mutations. Hill equations (Eq. 3.4 and 
3.5) was applied to capture the concentration change of MctDNA. kmax _1 and kmax _2 are max 
releasing rates, KT50 is the tumor size that provide half-maximal releasing rate, H is the 
Hill coefficient. ke represent the elimination rate constant of ctDNA.

When performing simulations, the baseline levels of TS (Eq. 3.8) and MctDNA1 were set to 
the median of the real observations in different patient groups (Supplementary Table 
S3.1). For WT-KRAS patients, the baseline TR1 (TR1_0) and TR2 (TR2_0) were both set to 0. 
For M-KRAS patients, TR2_0 were set to 0 while TR1_0 was set according to the median of 
observations.

4.3  Parameter values  
The values of all model parameters used in the simulation are shown in Table 3.1. 

To assist the setting of parameter values, the parameters describing tumor dynamics under 
D1 therapy (ks1  and kM1) were estimated by fitting the collected tumor sizes data using the 
first order conditional estimation method with interaction (FOCEI) implemented in the 
NONMEM software, version 7.4.1 (ICON Development Solutions). The detailed method 
on parameter estimates can be found from the Supplementary methods.

The estimated typical values of ks1 and kM1 were adopted to simulations. Assuming the 
tumor growth follows an exponential growth pattern, kg1 was fixed as 0.03/week (= ln2/
(6.8 months ⋅ 4 weeks/month)) according to a previously reported median placebo tumor 
doubling time of colorectal carcinomas, i.e. 6.8 months (range: 3–24 months) [40]. Accord-
ingly, kg2 was fixed as 0.021 /week (0.03⋅70%). kM2 was set to be lower than kM1 based on the 
5th assumption. The parameters that are related to the emergence of mutations (H, KT50, 
and kmax) were set by visually matching the slope of mutant KRAS time-courses and the 
detectable time of mutant KRAS. 
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Random IIV was incorporated on kg and baselines, which was assumed to be log-normally 
distributed, when performing the simulations (Table 3.1). It was due to the fact that patients 
in the dataset had different baseline tumor burden and mutant KRAS levels, and different 
growth rates of CRC were reported in different studies [13, 40]. If data from more patients 
can be included, the IIV on parameters will be able to be added to more parameters and 
be estimated. 

4.4  Model evaluation
To evaluate the suitability of the model, five hundred times of simulations were performed 
for TS and MctDNA1 concentrations under continuous drug exposure. The 50th percentiles and 
the corresponding 95% CIs of simulations derived from the model were plotted along with 
the real observation points and the 50th percentiles of observations. In addition, assuming 
D1 was administered continuously for 20 weeks (leading to a continuous drug exposure) 
and then stopped for 20 weeks, the time-course of MctDNA1 concentrations were simulated 
for 100 virtual patients to demonstrate if the decay upon the withdrawal of treatment could 
be captured by this model. 

The performance of the model was also evaluated using another dataset from a study on 
NSCLC patients receiving EGFR inhibitors (icotinib/gefitinib) with the same method as 
above [14]. The time curves of tumor size which was reported as the longest diameter 
(mm) and that of EGFR mutation (L858R, exon 19 deletion, and T790M) concentrations 
(mutation copies/ml plasma) detected from ctDNA were digitized from published figures 
using WebplotDigitizer (https://apps.automeris.io/wpd/). The model used in the evaluation 
cohort was adjusted according to the findings of the study. More detailed introduction of 
the model and parameter values is shown in Supplementary methods. 

4.5  Treatment schedule evaluation
Treatment schedules that were considered in the current study are shown in Table 3.2. 
These schedules were evaluated on WT-KRAS patients. 

A continuous schedule with D1 was first considered. The continuous schedule is the conven-
tional treatment strategy in clinical practice where a therapy is administered continuously 
until disease progression (i.e. in schedules leading to continuous drug exposure) [19]. 
Monitoring frequency, i.e. the frequency of taking blood samples for ctDNA analysis and 
assessing tumor sizes, was set as once every 4 weeks according to the frequency of the 
obtained data. 
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To identify an optimized anti-cancer treatment schedule that suppresses the develop-
ment of treatment resistance, intermittent schedules with D1and adaptive schedules with 
D1 and D2 guided by ctDNA measurements, as proposed in previous studies [2, 8, 19, 
21], were considered. For the intermittent schedules, drug-exposure interruption was 
introduced and multiple combinations of on- and off-dosing durations were evaluated. 
For the adaptive schedules, the ctDNA measurements were monitored and applied as a 
biomarker to determine the time point of switching treatment between D1 and D2. The 
treatment started with D1 and continued till the ctDNA measurements increased to an 
upper limit for drug adjustment. Then D1 was suspended and switched to a continuous 
D2. When the mutation concentration decreased back to a lower limit for drug adjust-
ment, the treatment was switched back to D1 and the loop continued. In this case, multiple 
monitoring frequencies of ctDNA and multiple threshold of mutation concentrations for 
treatment switching were explored for comparison. The frequency of assessing tumor sizes 
was set as once every 4 weeks.

Simulations were performed with the package RxODE (version 1.0.8) implemented in R 
(version 4.0.2). One hundred virtual patients were simulated under each regimen. PFS 
of each virtual patient under each schedule was derived from the simulated total tumor 
size at every monitoring time point. PFS was defined based on WHO criteria (i.e. 25% 
increase in TS) as was applied in the original study [13, 45]. The TTS<TS0 was also estimated 
to compare the effect of different regimens. In addition, Tmutant_test was estimated assuming 
a lower limit of quantification for target mutant genes in ctDNA of 5 fragments/ml which 
was set based on the observed data. This aimed to determine if detectable mutation in 
ctDNA can be a predictor of disease progression.   

4.6  Sensitivity analysis
A sensitivity analysis was performed to evaluate the impact of all parameter values on 
the model predictions. Every parameter was set as 50% or 150% of the original typical 
values one at a time. The continuous schedule, one intermittent schedule Sinterm(8on_4off), and 
one adaptive schedule Sadapt(5_10_Freq12) were simulated. IIV was not incorporated here. The 
sensitivity to the parameters was assessed by comparing the newly simulated time-courses of 
total tumor size and mutation concentrations together with the original simulation results. 
Median PFS and Tmutant_test derived from each simulation were also estimated for comparison. 



Treatment schedule optimization considering evolving resistance

87

3

References

1.	 Sun X, Hu B. Mathematical modeling and computational prediction of cancer drug resistance. 
Brief Bioinform. 2018;19(6):1382-99. doi:10.1093/bib/bbx065.

2.	 Nangalia J, Campbell PJ. Genome Sequencing during a Patient’s Journey through Cancer. N 
Engl J Med. 2019;381(22):2145-56. doi:10.1056/NEJMra1910138.

3.	 Zhao B, Hemann MT, Lauffenburger DA. Modeling Tumor Clonal Evolution for Drug 
Combinations Design. Trends Cancer. 2016;2(3):144-58. doi:10.1016/j.trecan.2016.02.001.

4.	 Gerlinger M, Swanton C. How Darwinian models inform therapeutic failure initiated by 
clonal heterogeneity in cancer medicine. British journal of cancer. 2010;103(8):1139-43. 
doi:10.1038/sj.bjc.6605912.

5.	 Beerenwinkel N, Schwarz RF, Gerstung M, Markowetz F. Cancer evolution: mathematical 
models and computational inference. Syst Biol. 2015;64(1):e1-25. doi:10.1093/sysbio/syu081.

6.	 Carr TH, McEwen R, Dougherty B, Johnson JH, Dry JR, Lai Z, et al. Defining actionable 
mutations for oncology therapeutic development. Nat Rev Cancer. 2016;16(5):319-29. 
doi:10.1038/nrc.2016.35.

7.	 Kim C, Gao R, Sei E, Brandt R, Hartman J, Hatschek T, et al. Chemoresistance Evolution in 
Triple-Negative Breast Cancer Delineated by Single-Cell Sequencing. Cell. 2018;173(4):879-
93 e13. doi:10.1016/j.cell.2018.03.041.

8.	 Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid 
biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 
2017;17(4):223-38. doi:10.1038/nrc.2017.7.

9.	 Siravegna G, Mussolin B, Buscarino M, Corti G, Cassingena A, Crisafulli G, et al. Clonal 
evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat 
Med. 2015;21(7):795-801. doi:10.1038/nm.3870.

10.	 Normanno N, Cervantes A, Ciardiello F, De Luca A, Pinto C. The liquid biopsy in the 
management of colorectal cancer patients: Current applications and future scenarios. Cancer 
Treat Rev. 2018;70:1-8. doi:10.1016/j.ctrv.2018.07.007.

11.	 Buil-Bruna N, Lopez-Picazo JM, Martin-Algarra S, Troconiz IF. Bringing Model-Based 
Prediction to Oncology Clinical Practice: A Review of Pharmacometrics Principles and 
Applications. Oncologist. 2016;21(2):220-32. doi:10.1634/theoncologist.2015-0322.

12.	 De Mattos-Arruda L, Weigelt B, Cortes J, Won HH, Ng CKY, Nuciforo P, et al. Capturing 
intra-tumor genetic heterogeneity by de novo mutation profiling of circulating cell-free tumor 
DNA: a proof-of-principle. Ann Oncol. 2014;25(9):1729-35. doi:10.1093/annonc/mdu239.

13.	 Diaz LA, Jr., Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, et al. The molecular 
evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 
2012;486(7404):537-40. doi:10.1038/nature11219.

14.	 Xiong L, Cui S, Ding J, Sun Y, Zhang L, Zhao Y, et al. Dynamics of EGFR mutations in 
plasma recapitulates the clinical response to EGFR-TKIs in NSCLC patients. Oncotarget. 
2017;8(38):63846-56. doi:10.18632/oncotarget.19139.

15.	 Herbreteau G, Vallee A, Charpentier S, Normanno N, Hofman P, Denis MG. Circulating 
free tumor DNA in non-small cell lung cancer (NSCLC): clinical application and future 
perspectives. J Thorac Dis. 2019;11(Suppl 1):S113-S26. doi:10.21037/jtd.2018.12.18.

16.	 Bergerot PG, Hahn AW, Bergerot CD, Jones J, Pal SK. The Role of Circulating Tumor DNA 
in Renal Cell Carcinoma. Curr Treat Options Oncol. 2018;19(2):10. doi:10.1007/s11864-018-
0530-4.

17.	 Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, et al. Analysis of circulating 
tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368(13):1199-209. 
doi:10.1056/NEJMoa1213261.



Chapter 3

88

18.	 Oliveira KCS, Ramos IB, Silva JMC, Barra WF, Riggins GJ, Palande V, et al. Current Perspectives 
on Circulating Tumor DNA, Precision Medicine, and Personalized Clinical Management of 
Cancer. Mol Cancer Res. 2020;18(4):517-28. doi:10.1158/1541-7786.MCR-19-0768.

19.	 Zhang J, Cunningham JJ, Brown JS, Gatenby RA. Integrating evolutionary dynamics into 
treatment of metastatic castrate-resistant prostate cancer. Nature Communications. 2017;8(1). 
doi:10.1038/s41467-017-01968-5.

20.	 Rowe M, Hidayat A, Walter S, Pollard A, Norris T, Victor D, et al. The use of intermittent 
enzalutamide dosing in the treatment of metastatic castrate-resistant prostate cancer. Journal 
of Clinical Oncology. 2020;38(6_suppl):81-. doi:10.1200/JCO.2020.38.6_suppl.81.

21.	 Gatenby RA, Brown JS. Integrating evolutionary dynamics into cancer therapy. Nature 
Reviews Clinical Oncology. 2020;17(11):675-86. doi:10.1038/s41571-020-0411-1.

22.	 Algazi AP, Othus M, Daud AI, Lo RS, Mehnert JM, Truong TG, et al. Continuous versus 
intermittent BRAF and MEK inhibition in patients with BRAF-mutated melanoma: a 
randomized phase 2 trial. Nat Med. 2020;26(10):1564-8. doi:10.1038/s41591-020-1060-8.

23.	 Alva A, Hussain M. Optimal pharmacotherapeutic management of hormone-sensitive 
metastatic prostate cancer. Drugs. 2013;73(14):1517-24. doi:10.1007/s40265-013-0106-3.

24.	 Cella D, Jensen SE, Hahn EA, Beaumont JL, Korytowsky B, Bhattacharyya H, et al. Fatigue 
in patients with advanced renal cell carcinoma receiving sunitinib on an intermittent versus 
continuous dosing schedule in a randomized phase II trial. Cancer Med. 2014;3(5):1353-8. 
doi:10.1002/cam4.286.

25.	 Colleoni M, Luo W, Karlsson P, Chirgwin J, Aebi S, Jerusalem G, et al. Extended adjuvant 
intermittent letrozole versus continuous letrozole in postmenopausal women with breast 
cancer (SOLE): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 
2018;19(1):127-38. doi:10.1016/s1470-2045(17)30715-5.

26.	 Jerusalem G, Farah S, Courtois A, Chirgwin J, Aebi S, Karlsson P, et al. Continuous versus 
intermittent extended adjuvant letrozole for breast cancer: final results of randomized 
phase III SOLE (Study of Letrozole Extension) and SOLE Estrogen Substudy. Ann Oncol. 
2021;32(10):1256-66. doi:10.1016/j.annonc.2021.07.017.

27.	 Sofen H, Gross KG, Goldberg LH, Sharata H, Hamilton TK, Egbert B, et al. A phase II, 
multicenter, open-label, 3-cohort trial evaluating the efficacy and safety of vismodegib in 
operable basal cell carcinoma. J Am Acad Dermatol. 2015;73(1):99-105.e1. doi:10.1016/j.
jaad.2015.03.013.

28.	 Kimko H, Pinheiro J. Model-based clinical drug development in the past, present and future: 
a commentary. Br J Clin Pharmacol. 2015;79(1):108-16. doi:10.1111/bcp.12341.

29.	 van Hasselt JG, van der Graaf PH. Towards integrative systems pharmacology models 
in oncology drug development. Drug Discov Today Technol. 2015;15:1-8. doi:10.1016/j.
ddtec.2015.06.004.

30.	 Barbolosi D, Ciccolini J, Lacarelle B, Barlesi F, Andre N. Computational oncology--
mathematical modelling of drug regimens for precision medicine. Nature Reviews Clinical 
Oncology. 2016;13(4):242-54. doi:10.1038/nrclinonc.2015.204.

31.	 Terranova N, Girard P, Klinkhardt U, Munafo A. Resistance Development: A Major Piece 
in the Jigsaw Puzzle of Tumor Size Modeling. CPT Pharmacometrics Syst Pharmacol. 
2015;4(6):320-3. doi:10.1002/psp4.45.

32.	 Yin A, Moes D, van Hasselt JGC, Swen JJ, Guchelaar HJ. A Review of Mathematical 
Models for Tumor Dynamics and Treatment Resistance Evolution of Solid Tumors. CPT 
Pharmacometrics Syst Pharmacol. 2019;8(10):720-37. doi:10.1002/psp4.12450.

33.	 Bender BC, Schindler E, Friberg LE. Population pharmacokinetic-pharmacodynamic 
modelling in oncology: a tool for predicting clinical response. Br J Clin Pharmacol. 
2015;79(1):56-71. doi:10.1111/bcp.12258.



Treatment schedule optimization considering evolving resistance

89

3

34.	 Parseghian CM, Loree JM, Morris VK, Liu X, Clifton KK, Napolitano S, et al. Anti-EGFR-
resistant clones decay exponentially after progression: implications for anti-EGFR re-
challenge. Ann Oncol. 2019;30(2):243-9. doi:10.1093/annonc/mdy509.

35.	 Mistry HB. On the reporting and analysis of a cancer evolutionary adaptive dosing trial. Nat 
Commun. 2021;12(1):316. doi:10.1038/s41467-020-20174-4.

36.	 Gray R, Bradley R, Braybrooke J, Liu Z, Peto R, Davies L, et al. Increasing the dose intensity 
of chemotherapy by more frequent administration or sequential scheduling: a patient-level 
meta-analysis of 37 298 women with early breast cancer in 26 randomised trials. The Lancet. 
2019;393(10179):1440-52. doi:10.1016/s0140-6736(18)33137-4.

37.	 Nagano T, Tachihara M, Nishimura Y. Mechanism of Resistance to Epidermal Growth Factor 
Receptor-Tyrosine Kinase Inhibitors and a Potential Treatment Strategy. Cells. 2018;7(11):212. 
doi:10.3390/cells7110212.

38.	 FDA Approval of KRAS Inhibitor Sotorasib for Lung Cancer Hailed as Milestone. 2021 
June 25 [cited 2021 July12th]; Available from: https://www.cancer.gov/news-events/cancer-
currents-blog/2021/fda-sotorasib-lung-cancer-kras

39.	 Yang BB, Lum P, Chen A, Arends R, Roskos L, Smith B, et al. Pharmacokinetic and 
pharmacodynamic perspectives on the clinical drug development of panitumumab. Clin 
Pharmacokinet. 2010;49(11):729-40. doi:10.2165/11535970-000000000-00000.

40.	 Blagoev KB, Wilkerson J, Burotto M, Kim C, Espinal-Dominguez E, Garcia-Alfonso P, et al. 
Neutral evolution of drug resistant colorectal cancer cell populations is independent of their 
KRAS status. PLoS One. 2017;12(10):e0175484. doi:10.1371/journal.pone.0175484.

41.	 Claret L, Gupta M, Han K, Joshi A, Sarapa N, He J, et al. Evaluation of tumor-size response 
metrics to predict overall survival in Western and Chinese patients with first-line metastatic 
colorectal cancer. J Clin Oncol. 2013;31(17):2110-4. doi:10.1200/JCO.2012.45.0973.

42.	 Xie H, Kim RD. The Application of Circulating Tumor DNA in the Screening, Surveillance, 
and Treatment Monitoring of Colorectal Cancer. Ann Surg Oncol. 2020. doi:10.1245/s10434-
020-09002-7.

43.	 Basanta D, Gatenby RA, Anderson AR. Exploiting evolution to treat drug resistance: 
combination therapy and the double bind. Molecular pharmaceutics. 2012;9(4):914-21. 
doi:10.1021/mp200458e.

44.	 Zhou J, Liu Y, Zhang Y, Li Q, Cao Y. Modeling Tumor Evolutionary Dynamics to Predict 
Clinical Outcomes for Patients with Metastatic Colorectal Cancer: A Retrospective Analysis. 
Cancer Res. 2020;80(3):591-601. doi:10.1158/0008-5472.CAN-19-1940.

45.	 Choi JH, Ahn MJ, Rhim HC, Kim JW, Lee GH, Lee YY, et al. Comparison of WHO and RECIST 
criteria for response in metastatic colorectal carcinoma. Cancer Res Treat. 2005;37(5):290-3. 
doi:10.4143/crt.2005.37.5.290.



Chapter 3

90

Supplementary Methods

Parameter estimate

To assist the setting of parameter values, the values of parameter describing tumor dynamics 
under anti-EGFR inhibitor (D1) therapy were estimated by fitting the collected tumor sizes 
data [1] using the first order conditional estimation method with interaction (FOCEI) 
implemented in NONMEM software, version 7.4.1 (ICON Development Solutions). 

A non-linear mixed-effect model was developed. Parameters were assumed to be log-
normally distributed and were expressed using Eq. S3.1. Pi represents the parameter of 
ith individual, Ppop represents typical value of the parameter, and ηi represents the random 
inter-individual variability (IIV) which was normally distributed with mean of 0 and 
variance of ω2. The residual error was characterized with a proportional error model as 
is shown in Eq. S3.2, where Obs represents observations, IPRED represents individual 
predictions, and ε1 represents the proportional residual error which was assumed to be 
normally distributed with mean of 0 and variance of σ1

2.

		  Pi = Ppop ⋅ e
ηi					     Eq. S3.1

		  Obs = IPRED ⋅ (1 + ε1)				    Eq. S3.2

Assuming the tumor growth follows an exponential growth pattern, kg1 was fixed as 0.03/
week (= ln2/(6.8 months ⋅ 4 weeks/month)) according to a previously reported median 
placebo tumor doubling time colorectal carcinomas, i.e. 6.8 months (range: 3–24 months) 
[2]. kg2, as was assumed, was fixed as 0.021 /week (0.03⋅70%). The baseline levels of TS 
and mutant KRAS (MctDNA1 ) were fixed according to real observations of each patient. For 
WT-KRAS patients, the baseline of TR1 were set to 0. For M-KRAS patients, the baseline 
of TR1 was estimated and the baseline of Ts equals the difference between the observed 
baseline and estimated baseline TR1. 

Model in an evaluation cohort
The model used in the evaluation cohort was adjusted according to the findings of the study: 

1.	 The detectable EGFR L858R mutation or exon 19 deletion in ctDNA at the start 
of treatment indicates the tumor is sensitive to anti-EGFR inhibitor. Therefore, 
the sensitive clonal population (Ts) was assumed to carry one of these two 
mutations (MctDNA1); 
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2.	 L858R mutation or exon 19 deletion became undetectable when EGFR inhibitor 
(D1) started and raised back again together with the newly developed EGFR 
T790M mutation (MctDNA2) during treatment [3], which indicates the emergence 
of treatment resistance. Therefore the acquired resistant clonal population under 
D1 (TR1) was assumed to carry both MctDNA1 and MctDNA2; 

3.	 A hypothetical treatment next to anti-EGFR inhibitor (D2) was incorporated 
and assumed to target T790M positive NSCLC cancer (TR1). In the meantime, a 
third mutation (MctDNA3) was able to be acquired which resulted in a third clonal 
population (TR2) that were resistant to D2.

More details of the model and the parameters are shown in Supplementary Figure S3.1 
and Supplementary Table S3.6.

The values of parameters regarding tumor dynamics were estimated using the collected 
time curves of tumor sizes as described above. The residual error was characterized with 
an additive error model as is shown in Eq. S3.3, where Obs represents observations, IPRED 
represents individual predictions, and ε2 represents the additive residual error which was 
assumed to be normally distributed with mean of 0 and variance of σ2

2. The parameter 
estimate results can be found in Supplementary Table S3.7. 

		  Obs = IPRED + ε2					     Eq. S3.3
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Supplementary Figures
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Figure S3.1:  The model structure that characterize the dynamics of tumor size and mutation concentra-
tions in ctDNA from NSCLC patients. Ts, TR1, and TR2 represent the sizes of the three tumor clonal populations, 
respectively. kg1, kg2, kg3 represent the net growth rates of three clonal populations. ks1 and ks2 represent the 
tumor decay rate due to treatments. kM1 and kM3 represent the mutation rate constant from drug susceptible 
clonal population to drug resistant clonal population during the course of anti-EGFR inhibitor (D1) and the 
hypothetical treatment (D2), respectively. kM2 and kM4 represent the transition rate constant from drug resis-
tant clonal population to drug susceptible clonal population upon the withdrawal of treatments. k1, k2, k3, 
and k4 represent the shedding rate constant of ctDNA which carries mutations.

Figure S3.2:  Model evaluation results on the time-courses of tumor diameters (a) and EGFR mutation 
concentrations including L858R mutation/ exon 19 deletion (b) and T790M mutation (c) collected from a 
previous clinical study where patients with non-small cell lung cancer were treated with anti-EGFR inhibitor 
icotinib/gefitinib.
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Figure S3.3:  The simulated total tumor burden (a, c, e) and mutation concentrations (b, d, f ) under 
continuous treatment (a, b), intermittent treatment (8-week treatment and 4-week suspension) (c, d), 
and adaptive treatment with the second hypothetical drug (ctDNA limits for drug adjustment: 5 and 10 
fragments/ml, monitor frequency: 12 weeks) (e, f ) for 100 colorectal cancer patients. Median total tumor 
sizes (black lines), MctDNA1 (light sea green lines), and MctDNA2 (salmon lines) were plotted together with 
corresponding 90% prediction intervals. Median PFS (black dashed vertical line), TTS<TS0 (red dashed vertical 
line), and Tmutant_test (blue dash vertical line) were also shown in the figure.
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Figure S3.5:  Relative change (Δ) of predicted minimum total tumor size (a), of total tumor size at the last 
simulated time point (180 weeks) (b), and of MctDNA1 or MctDNA2 concentrations at the last simulated time point 
(180 weeks) (c) compared with using original parameters in the sensitivity analysis.
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Figure S3.6:  When fixing kM2 and kM4 to zero, the predicted median progression-free survival (PFS) (a) and 
the time until the tumor size had grown back to the baseline level (TTS<TS0) (b) of evaluated regimens.
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Figure S3.7:  When fixing kM2 and kM4 to zero, the simulated time-curves of total tumor burden and each 
clonal population (a, d, g), mutation concentrations (b, e, h), and dosing strategies (c, f, i) of a typical subject 
with metastatic colorectal cancer undergoing continuous treatment (a, b, c), intermittent treatment (8-
week treatment and 4-week suspension) (d, e, f ), and adaptive treatment with the second hypothetical 
drug (ctDNA limits for drug adjustment: 5 and 10 fragments/ml, monitor frequency: 12 weeks) (g, h, i). 
Estimated PFS (black dashed vertical line), TTS<TS0 (red dashed vertical line), and Tmutant_test (blue dash vertical 
line) are also shown in the figure.
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Figure S3.8:  When fixing kM2 and kM4 to zero, model predicted total tumor burden and each clonal 
population (a) and mutant KRAS concentrations (b) under a regimen of 20-week treatment and 20-week 
suspension.
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Figure S3.9:  The simulated total tumor burden under continuous treatment (a) and intermittent treatment 
(8-week treatment and 4-week suspension) (b) for 100 colorectal cancer patients with detectable KRAS 
mutation pre-treatment. Median total tumor sizes (black lines) were plotted along with 90% prediction 
intervals. Median PFS (black dashed vertical line) and TTS<TS0 (red dashed vertical line) were also shown in 
the figure.
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Supplementary Tables

Table S3.1: Characteristics of the dataset collected from patients with metastatic colorectal cancer 

WT-KRAS patients M-KRAS patients

Number of patients 25 3

Gender (Male (%)) 15 (60%) 0 (0%)

Age (years) (median (range)) 59 (42–78) 56 (48–78)

TS0 (mm2) (median (range)) 5649 (396–38006) 1714 (1312–1849)

Baseline mutant KRAS (fragments/ml) (median (range)) 0 411 (23–810)

PFS (week) (median (range)) 23 (7–52) 7 (7–11)

Mutant KRAS detectable time (week) (median (range)) 22 (5–34) (N = 9) 0

TS0, baseline tumor size; PFS, progression-free survival; WT-KRAS patients, patients who were identified to 
be initially KRAS wild-type; M-KRAS patients, patients who had detectable mutant KRAS pre-treatment.

Table S3.2: Parameter estimates of the tumor dynamics model based on the dataset collected from 
patients with metastatic colorectal cancer

Parameters Estimate (RSE) IIV (CV%) [shrinkage]

WT-KRAS patients -

TS_0 (mm2) TSObs (fixed) -

TR1_0 (mm2) 0 (fixed) -

M-KRAS patients

TS_0 (mm2) TSObs  – TR1_0_Est -

TR1_0 (mm2) 1830 (17%) 0 (fixed)

kg1 (/week) 0.03 (fixed) 68.6% [14%]

kg2 (/week) 0.7 ⋅ kg1 (fixed) -

ks1 (/week) 0.127 (5%) -

kM1 (/week) 0.0459 (18%) -

Residual error -

Prop (CV%) 21.7% (11%)

TSObs, observed total tumor size, TR1_0_Est, estimated baseline of TR1, WT-KRAS patients, patients who were 
identified to be initially KRAS wild-type; M-KRAS patients, patients who had detectable mutant KRAS pre-
treatment. RSE, relative standard error, CV, coefficient of variation, IIV, inter-individual variability, Prop, 
proportional residual error. Relative standard errors (RSEs) of parameter estimates were all within an 
acceptable range (< 30%).
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Table S3.3: Characteristics of the dataset collected form patients with non-small cell lung cancer (NSCLC)

Values

Number of patients 16

TS0 (mm) (median (range)) 33.92 (16.97–87.96)

Baseline EGFR L858R mutation /exosome 19 deletion concentration  
(copies/ml) (median (range))

438.75 (42–9555.56)

PFS (months) (median (range)) 12 (4–25)

EGFR T790M mutation detectable time (months) (median (range)) 10.5 (3–27.5)

TS0, baseline tumor size; PFS, progression-free survival.
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Table S3.4: The results of each evaluated schedule in patients who were identified to be initially KRAS 
wild-type

Schedules

Median PFS* 
(90% interval) 
(weeks)

Median TTS<TS0 

(90% interval) 
(weeks)

Median Tmutant_test 
(90% interval)
(weeks)

Continuous schedule (standard of care) 36 (32–44) 52 (36–72) 18 (8–52.6)

Intermittent schedules  
D1 was administered for N weeks and suspended for M weeks. Total treatment time was 180 weeks.

N (weeks) M (weeks)

4 4 48 (24–80) 56 (24–112.8) 28 (8–92.8)

4 8 12 (12–72.6) 24 (12–96) 32 (8–112.4)

8 4 44 (32–60) 60 (36–104.2) 20 (8–80)

8 8 38 (16–64) 60 (32–113.2) 24 (8–93.2)

8 12 20 (16–20) 40 (20–116.4) 28 (8–108)

12 4 40 (32–56) 60 (36–92.2) 24 (8–68.4)

12 8 40 (20–60) 60 (36–112.2) 28 (8–88)

12 12 24 (20–49.0) 64 (24–116.2) 32 (8–100.4)

12 16 24 (20–28) 52 (24–108.4) 32 (8–96)

Adaptive schedules with a hypothetical second treatment 
D1 was continuously given, and suspended and switched to D2 when the ctDNA measurement increased 
to higher than UP fragment/ml. Treatment switched back to D2 when ctDNA measurement decreased 
back to lower than LOW fragment/ml. Total treatment time was 180 weeks.

LOW 
(fragment/
ml)

UP  
(fragment/
ml)

Monitoring 
frequency of 
ctDNA (weeks)

5 10 4 62 (36–118.4)  124 (45.2–170.8)  100 (36–169.2) 

5 15 4 60 (32–116.4)  132 (45.8–176)  108 (36–172) 

5 20 4 60 (32–112.4)  124 (46.8–180)  102 (36–168) 

5 25 4 60 (32–112.4)  120 (44–172.4)  102 (36–168.2) 

10 15 4 56 (32–124)  124 (47.2–172.8)  108 (42.4–172.8) 

10 20 4 56 (32–108.4)  120 (47.8–172.2)  108 (44–176) 

10 25 4 56 (32–108.8)  114 (44–172.2)  110 (44–175.8) 

5 10 8 60 (32–112.4)  120 (44.8–163.2)  96 (40–163.2) 

5 15 8 60 (32–104.8)  120 (44–169)  96 (40–170.4) 

5 20 8 56 (32–100.4)  120 (44–168)  96 (40–168) 

5 25 8 56 (32–104.4)  116 (44.8–168)  96 (40–168) 

10 15 8 60 (32–104.4)  120 (44–168)  96 (45.61–70.4) 

10 20 8 56 (32–108.4)  120 (44–164.4)  96 (45.6–168) 

Table S3.4 continues on next page.
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Table S3.4: Continued

LOW 
(fragment/
ml)

UP  
(fragment/
ml)

Monitoring 
frequency of 
ctDNA (weeks)

10 25 8 56 (32–104.8)  118 (44.2–160)  104 (47.2–168) 

5 10 12 64 (32–108)  128 (44–164)  96 (48–180) 

5 15 12 60 (36–120)  124 (44–176)  102 (48–168) 

5 20 12 60 (32–104.2)  120 (44–157.6)  108 (48–180) 

5 25 12 60 (32–104)  120 (44–156)  108 (48–168) 

10 15 12 62 (32–108.2)  124 (44–176)  102 (48–168) 

10 20 12 60 (32–108)  120 (44–157.6)  108 (48–168) 

10 25 12 60 (36–104.2)  120 (44–156)  108 (48–168) 

*Disease progression was defined by WHO criteria. 
D1, anti-EGFR inhibitor; D2, a hypothetical second treatment to which the newly acquired clone is susceptible; 
PFS, Progression-free survival; Tmutant_test, time until detectable mutation; TTS<TS0, the time until the tumor size 
had grown back to the baseline level; ctDNA, circulating tumor DNA.
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Table S3.5: Predicted progression-free-survival and time until detectable mutation in the sensitivity analysis

Continuous schedule

Intermittent schedule
(8-week treatment and 
4-week suspension) 

Adaptive schedule
(ctDNA limits for drug 
adjustment: 5 and 10 
fragments/ml, monitor 
frequency 12 weeks)

PFS (weeks) (Relative change*)

Parameters
Increase 
50%

Decrease 
50%

Increase 
50%

Decrease 
50%

Increase 
50%

Decrease 
50%

kg1 - - 36 (-8) 48 (+4) 96 (+32) -
kg2 28 (-8) 52 (+16) 32 (-12) 84 (+40) 56 (-8) 76 (+12)
kg3 - - - - 60 (-4) -
ks1 - - - 32 (-12) 36 (-28) 60 (-4)
ks2 - - - - - 60 (-4)
kM1 32 (-4) 44 (+8) 36 (-8) 60 (+16) 84 (+20) 44 (-20)
kM2 - - 48 (+4) 40 (-4) - 60 (-4)
kM3, kM4 - - - - - -
ke - - - - - -
H - - - - - 96 (+32)
KT50 - - - - 36 (-28) 84 (+20)
kmax_1 - - - - - -
kmax_2 - - - - - -

Tmutant_test of MctDNA1 (weeks) 
(Relative change*)

Tmutant_test of MctDNA2 (weeks) 
(Relative change*)

Parameters
Increase 
50%

Decrease 
50%

Increase 
50%

Decrease 
50%

Increase 
50%

Decrease 
50%

kg1 - 20 (+4) - 24 (+4) 120 (-48) 180 (+12)
kg2 - 20 (+4) - 28 (+8) 108 (-60) No result
kg3 - - - - 120 (-48) No result
ks1 24 (+8) 12 (-4) 32 (+12) 16 (-4) No result 72 (-96)
ks2 - - - - No result 108 (-60)
kM1 12 (-4) 32 (+16) 16 (-4) 44 (+24) 144 (-24) No result
kM2 - - - - - 132 (-36)
kM3 - - - - 120 (-48) No result
kM4 - - - - No result 132 (-36)
ke - - - - - 132 (-36)
H 20 (+4) 12 (-4) 28 (+8) 16 (-4) - 120 (-48)
KT50 28 (+12) 8 (-8) 32 (+12) 8 (-12) 180 (+12) 96 (-72)
kmax_1 - 20 (+4) - 24 (+4) - 180 (+12)
kmax_2 - - - - 132 (-36) -

PFS, Progression-free survival; Tmutant_test, time when mutation concentration became detectable; MctDNA1, 
KRAS mutation; MctDNA2, the second hypothesis mutation; -, result same as that under the original parameter 
setting; No result, the mutant gene concentrations did not reach the detectable limit (5 fragments/ml) by 
the end of simulation time (180 week).
*With original parameters, the predicted PFS were 36, 44, and 64 weeks under continuous, intermittent, 
and adaptive schedule, respectively, and the predicted Tmutant_test were 16, 20, and 168 weeks, respectively.
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Table S3.6: Parameters values of the developed model characterizing the dynamics of tumor size and 
mutation concentrations in NSCLC patients 

Parameters Description Typical 
values 

Ref.

Ts _0 (mm) Baseline of Ts 35 Data
Mutation was 
assumed to be 
acquired during 
treatment

TR1_0 (mm) Baseline of TR1 0

TR2_0 (mm) Baseline of TR2 0

MctDNA1_0 (copies/ml) Baseline of EGFR L858R mutation or exon 19 
deletion (MctDNA1)

450

MctDNA2_0 (copies/ml) Baseline of EGFR T790M mutation (MctDNA2) 0

MctDNA3_0 (copies/ml) Baseline of a third hypothetical mutation (MctDNA3) 0

kg1 (/month) Growth rate constant of Ts 0.07 Estimated

kg2 (/month) Growth rate constant of TR1 0.049

kg3 (/month) Growth rate constant of TR2 0.035

ks1 (/month) Tumor shrinkage rate constant due to D1 (anti-
EGFR inhibitor)

0.8 Estimated

ks2 (/month) Tumor shrinkage rate constant due to D2 (the 
second hypothetical treatment)

0.8 ks1  

kM1 (/month) Mutation rate from Ts to TR1 when D1 = 1 0.6 Estimated

kM2 (/month) Mutation rate from TR1 to Ts when D1 = 0 0.4 Lower than kM1

kM3 (/month) Mutation rate from TR1 to TR2 when D2 = 1 0.6 kM1 

kM4 (/month) Mutation rate from TR2 to TR1 when D2 = 0 0.4 kM2 

H Hills coefficient 5 Visually 
matching the 
slope of T790M 
mutation time-
courses

KT50 (mm) The size of tumor that provide half-maximal 
shedding rate of ctDNA

30

kmax_1 (copies /ml/
(month*mm))

Maximum shedding rate of MctDNA1 120

kmax_2 (copies /ml/
(month*mm))

Maximum shedding rate of MctDNA2 50

kmax_3 (copies /ml/
(month*mm))

Maximum shedding rate of MctDNA3 50

ke  (/month) ctDNA eliminate rate constant 2

IIV_B (ω1) Standard deviation of IIV of baselines 0.6

IIV_kg (ω2) Standard deviation of IIV of kg 0.2

ctDNA, circulating tumor DNA; IIV, inter-individual variability.
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Table S3.7: Parameter estimates of the tumor dynamics model based on the dataset collected form 
patients with NSCLC

Parameters Estimate (RSE%) IIV (CV%) [shrinkage]

Ts_0 (mm) TS0_Obs (fixed)

TR1_0 (mm) 0 (fixed)

kg1 (/month) 0.0675 (45%) 105.4% [6%]

kg2 (/month) 0.7 ⋅  kg1 (fixed) -

ks1 (/month) 0.835 (23%) 74% [3%]

kM1 (/month) 0.553 (28%) -

Residual error -

Add (mm) 2.67 (34%)

RSE, relative standard error; CV, coefficient of variation; IIV, inter-individual variability; Add, additive residual 
error.
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Abstract

Insight into the development of treatment resistance can support the optimization 
of anti-cancer treatments. This study aims to characterize the tumor dynamics and 
development of drug resistance in non-small cell lung cancer (NSCLC) patients 
treated with erlotinib, and investigate the relationship between baseline circulating 
tumor DNA (ctDNA) data and tumor dynamics. Data obtained for the analysis 
included 1) intensively sampled erlotinib concentrations from 29 patients from two 
previous pharmacokinetic (PK) studies, and 2) tumor sizes, ctDNA measurements, 
and sparsely sampled erlotinib concentrations from 18 patients from the START-TKI 
study. A two-compartment population PK model was first developed which well 
described the PK data. The PK model was subsequently applied to investigate the 
exposure-tumor dynamics relationship. To characterize the tumor dynamics, models 
accounting for intra-tumor heterogeneity and acquired resistance with or without 
primary resistance were investigated. Eventually, the model assumed acquired 
resistance only resulted in an adequate fit. Additionally, models with or without 
exposure-dependent treatment effect were explored, and no significant exposure-
response relationship for erlotinib was identified within the observed exposure range. 
Subsequently, the correlation of baseline ctDNA data on EGFR and TP53 variants 
with tumor dynamics parameters was explored. The analysis indicated that higher 
baseline plasma EGFR mutation levels correlated with increased tumor growth rates, 
and the inclusion of ctDNA measurements improved model fit. This result suggests 
that quantitative ctDNA measurements at baseline have the potential to be a predictor 
of anti-cancer treatment response. The developed model can potentially be applied 
to design optimal treatment regimens that better overcome resistance.  

Keywords: oncology, quantitative modeling, intra-tumor heterogeneity, tumor 
dynamics, resistance development, non-small cell lung cancer, circulating tumor 
DNA
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1.  Introduction

The occurrence of anticancer treatment resistance due to intra-tumor heterogeneity and 
evolving adaptation of tumor cells to the treatment can limit the long-lasting efficacy of 
targeted anticancer treatment [1, 2]. In order to improve the anti-cancer treatment outcome, 
it is important to have detailed insight into the tumor progression during treatment since 
it enables designing of alternative treatment strategies. 

In patients with non-small cell lung cancer (NSCLC), erlotinib, a tyrosine kinase inhibitor 
(TKI), is one of the effective treatment options especially for patients with EGFR exon 19 
deletions or exon 21 mutations [3-5]. However, the occurrence of acquired drug resistance, 
which is most frequently due to the acquisition of the EGFR p.T790M mutation, and the 
possible presence of drug-resistant component pre-treatment (primary resistance) can 
limit its efficacy and result in relapse [3-6]. Thus, understanding the evolving progression 
of NSCLC during the treatment and identifying predictive biomarkers would be beneficial 
to optimize the treatment of NSCLC. 

Pharmacometric modeling allows quantitative characterization and prediction of pharma-
cokinetic (PK) – pharmacodynamic (PD) profiles of drugs and thus facilitates treatment 
design [7-9]. With the help of a model-based approach, studies on evolving tumor progres-
sion can be conducted based on available data on tumor sizes and genetic biomarkers, and 
optimal treatment designs can be evaluated. Our previous study has proven such a concept 
based on data from metastatic colorectal cancer patients as well as from NSCLC patients 
[10]. Further incorporating the exposure of therapeutic agents in the model can support 
the investigation and understanding of exposure-tumor inhibition relationship and the 
evolutionary tumor dynamics in relation to drug exposure during anti-cancer treatment.   

Circulating tumor DNA (ctDNA), which are DNA fragments in the circulation (circulating 
free DNA (cfDNA)) that are of tumor origin, is a clinically available and emerging genetic 
biomarker [11]. It has shown to be able to provide detailed insight into the molecular 
alterations and evolving progression of tumor under treatment [4, 5, 11]. In patients with 
NSCLC, numerous studies have shown that a decrease in mutant gene levels in ctDNA 
correlates to the therapeutic response of TKIs [5]. In another model-based study, the relative 
change of concentrations of driver mutation in ctDNA from the estimated baseline was 
shown to be predictive to disease progression of NSCLC patients [12]. Further research 
on the correlation between ctDNA measurements and tumor size dynamics would be 
beneficial to understanding the evolutionary development of treatment resistance and 
the value of ctDNA. 
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In the current study, we aimed to develop a model to understand and characterize tumor 
dynamics and the development of drug resistance in NSCLC patients treated with erlotinib. 
First, a population PK model of erlotinib was developed and thereafter applied to inves-
tigate the exposure-tumor inhibition relationship of erlotinib. Tumor dynamics models 
accounting for tumor heterogeneity, with or without a pre-existing resistance component, 
and drug exposure-dependent treatment effects, were evaluated. Subsequently, we aimed 
to explore the correlation of the extent of somatic driver mutation in ctDNA at baseline 
with the tumor dynamics in NSCLC patients. 

2.  Method

2.1  Patients and data

2.1.1  Intensively sampled PK data 
The study included intensively sampled erlotinib concentration-time curves from two 
previous PK studies in patients with NSCLC who were treated with erlotinib for an 
activating EGFR mutation [13, 14]. Erlotinib was administrated orally once daily with a 
dosage of 50–150 mg. PK samples were collected before drug intake and at 0.5, 1, 1.5, 2, 
2.5, 3, 3.5, 4, 6, 8, 12, and 24 hours after drug administration at steady state. The studies 
were performed at the Erasmus MC Cancer Institute in Rotterdam, the Netherlands, and 
the details of the studies’ design can be found in previous publications [13, 14]. For the 
current study, only the data in the control arms that were sampled after receiving erlotinib 
with water and without concomitant esomeprazole were included, which aimed to be 
consistent with real world patients. 

Patients’ demographic information, including age, sex, weight, height, and additional 
laboratory test results, including creatinine, estimated glomerular filtration rate (eGFR), 
albumin, total bilirubin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), 
and alkaline phosphatase (ALP) were collected for covariate analysis.

2.1.2  PK-PD data 
Longitudinal measured tumor sizes under standard clinical care conditions as well as 
sparsely sampled intended trough erlotinib concentrations from real-world NSCLC 
patients who participated in the START-TKI study (NCT05221372), which is a prospective, 
observational multicenter study [6], were also included in this analysis. Erlotinib was 
administrated orally once daily with a dosage of 75–150 mg. The tumor size measurements, 
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i.e. the sum of the longest diameters (SLD, mm) of target lesions, were assessed by Response 
Evaluation Criteria In Solid Tumors (RECIST version 1.1 [15]). Additional data of dosing 
information, ctDNA data on variant allele frequency (VAF) of mutant genes over time, and 
concentrations of cfDNA over time from these patients were also collected. The detailed 
methods of cfDNA isolation and next-generation sequencing process have earlier been 
described [6]. Patients demographic information and lab test results as above mentioned 
were also collected for potential covariate analysis. 

The studies from which the data were obtained were previously approved by local ethics 
committee and were registered in the Dutch Trial Registry. Written informed consent 
was obtained from all patients prior to these studies, including the use of data for further 
studies. For the current study, the data were shared anonymously and all procedures were 
performed in accordance with relevant guidelines and the Declaration of Helsinki, so no 
additional informed consent had to be obtained.

2.2  Population PK model
Based on the collected PK data, a population PK model was developed to characterize 
the erlotinib PK profiles of included patients. The intensively sampled PK data and the 
sparsely sampled PK data from patients involved in the START-TKI study were combined 
for the model development. 

One- and two-compartment models with first-order absorption, with or without lag time, 
and first-order elimination were explored as the structural model. A combined propor-
tional and additive model was applied to characterize the residual error. Parameters were 
assumed to be log-normally distributed. To account for the inter-individual variability 
(IIV) in bioavailability (F) which is shared by the estimated apparent PK parameters, 
the IIV on F was estimated while the typical value of F was fixed to 1. The structural 
model was selected based on biological plausibility and the objective function value  
(OFV). 

Patients’ demographic information and lab test results were then investigated as covari-
ates using the stepwise covariate modeling (SCM) function of Perl-speaks NONMEM 
(version 4.9). The effect of all covariates on erlotinib clearance and that of weight, height, 
and albumin on apparent distribution volume of the central compartment were investi-
gated. The relationship between F and dose level was not explored since the majority of 
patients received the same dose level. Model selection was based on the reduction in OFV 
(a likelihood ratio test) assuming a χ2 distribution, a reduction in IIV, and physiological 
plausibility. The p values were set as 0.05 and 0.01 for the forward selection and backward 
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elimination process, respectively. A more detailed description of the covariates analysis 
can be found in Supplementary Material S4.1.

The final model was evaluated with goodness-of-fit (GOF) plots, visual predictive checks 
(VPC) based on 1000 simulations, and bootstrap with 1000 resampled datasets. In addition, 
the percentage where the predicted area under the curve (AUC) falls within 80–120% of 
the corresponding observed AUC (estimated with trapezoidal rules method) was calculated 
for the full concentration-time curves to evaluate the model. The percentage where the 
predicted trough concentrations fall within 80–120% of the corresponding observations 
was also estimated for the data from the START-TKI study. 

2.3  Tumor dynamics model 
The dynamics of tumor sizes during erlotinib treatment, which was represented by sum 
of longest diameters (SLD, mm) of target lesions, was characterized accounting for tumor 
heterogeneity. Tumor tissue was assumed to consist of a sensitive clonal population (Ts) 
and a resistant clonal population (TR). Models considering 1) only acquired resistance 
and no primary resistance (i.e. baseline TR (TR_0) = 0), and 2) both primary and acquired 
resistance (i.e. TR_0 ≠ 0 and was estimated), with or without a drug exposure-dependent 
decay, were explored. Considering the amount of the available data, the baseline tumor sizes 
were fixed to the observed values to ensure the stability of the model. The model structure 
is shown in Figure 4.1 and Eqs. 4.1–4.4, where kg represents the growth rates of Ts and 
TR, km represents mutation rate, and kd represents tumor decay rate due to treatment. For 
the models exploring the exposure-dependent treatment effect, the tumor decay rate was 
assumed to depend on drug exposure and a simple linear relationship was assumed (Eq. 
4.2). A non-linear relationship with Emax model was also explored. The drug exposure 
was defined as the trough concentration, which is the exposure metrics of interest for 
erlotinib exposure-response analysis and is relatively easy to measure in clinical practice. 
The trough concentrations were predicted by the individual PK parameters obtained from 
the PK model. The IIV of parameters were evaluated and parameters were assumed to be 
log-normally distributed. The combined proportional and additive model was applied to 

Figure 4.1:  Graphical structure of the tumor dynamics model.

kd

TSkg TRkg
km
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characterize the residual error. The model fit was evaluated by OFV and Akaike information 
criterion (AIC). The best fitted model was evaluated with GOF plots and VPC considering 
the censoring of data due to progression defined by RECIST version 1.1 [15].

𝑑𝑑𝑑𝑑�
𝑑𝑑𝑑𝑑 � �� ∙ 𝑇𝑇� � �� ∙ 𝑇𝑇� � �� ∙ 𝑇𝑇�  Eq. 4.1 

𝑘𝑘� � � 𝑘𝑘�� ��� ��� ����� ������� �������� � ��������� �����
 𝑘𝑘� � ��������� ��� ��� ����� ���� �������� � ��������� �����   Eq. 4.2

𝑑𝑑𝑑𝑑�
𝑑𝑑𝑑𝑑 � �� ∙ 𝑇𝑇� � �� ∙ 𝑇𝑇�  Eq. 4.3

  Eq. 4.4

2.4  Genetic biomarkers and tumor dynamics 
The correlation of baseline ctDNA measurements, including EGFR mutation levels and the 
presence of TP53 mutations, with tumor dynamics parameters (kg , km, and kd) were explored 
graphically. Patients were separated into groups based on 1) whether their baseline mutant 
EGFR VAF was < or ≥ the median value, or the measurements were unavailable, or 2) 
whether patients had a TP53 mutation at baseline or not, or the results were unavailable. The 
correlation between baseline cfDNA concentrations and tumor dynamics parameters was 
also explored by separating patients into groups based on the median value to investigate 
informativeness of cfDNA compared to ctDNA. 

Furthermore, the influence of baseline ctDNA measurements and cfDNA concentrations 
on kg, km, and kd were evaluated as categorical covariates in the tumor dynamics model. 
The EGFR mutation levels and the cfDNA concentrations were categorized based on the 
corresponding median values as is described above. When a sample is missing, it was 
assigned to the third category and a sensitivity analysis was performed by evaluating models 
with and without the covariate for a dataset where the data from patients with missing 
covariates were removed. A significant correlation was defined as a decrease in OFV by 
more than 3.84 (p < 0.05, degree of freedom = 1, assuming χ2 distribution).   

2.5  Software and estimation methods
The population modeling analysis in this study was performed with NONMEM (version 
7.4.4, ICON Development Solutions, Ellicott City, MD, USA). Parameters were estimated 
using the first order conditional estimation method with interaction (FOCEI). Data 
management and plots generation were performed with R statistics software (version 4.2.1, 
R Foundation for Statistical Computing, Vienna, Austria). 
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3.  Results

3.1  Patients and data
The intensively sampled erlotinib concentration-time curves were obtained from 29 
patients (N = 377, 13 samples per patient). The SLD measurements (N = 155) as well as 
additionally sampled erlotinib concentrations (N = 146), ctDNA measurements (N = 50), 
and cfDNA concentrations (N = 50) were collected from 18 real-world NSCLC patients 
from the START-TKI study. For these 18 patients, the median time period when the SLD 
measurements were available is 264 days since the start of the treatment (range from 
20–1168 days), and all patients had an event of disease progression or death where data 
were censored afterwards. 

The obtained erlotinib concentration data over time are presented in Figure S4.1. None 
of the collected data was below the lower limit of quantification. The median baseline 
tumor size (SLD) of the included patients was 76.6 mm (range 29–116 mm). Out of the 146 
obtained concentrations, 125 were measured at ≥ 20 hours after last drug intake (trough 
concentrations) with a median of 842 ng/mL and range of 318–1834 ng/mL. Activating 
EGFR variants (including exon 19 deletions (N = 11) and EGFR p.L858R (N = 6) and 
p.K852R (N = 1) mutations) were detected in the tumor biopsies of all 18 patients [6]. The 
plasma cfDNA samples at the start of treatment were available from 12 out of 18 patients. 
The median baseline cfDNA concentration was 1.44 ng/µL (range from 0.77–3.65 ng/µL). 
The primary EGFR variants were detected from baseline cfDNA samples from 8 out of 12 
patients, which include exon 19 deletions (N = 6) and EGFR p.L858R (N = 1) and p.K852R 
(N = 1) mutations. The median baseline EGFR VAF was 1.74% (range from 0–62.74%). The 
obtained VAF of primary EGFR variants over time are shown in Figure S4.2. Furthermore, 
a TP53 mutation was detected in 4 patients at baseline and the EGFR p.T790M mutation 
was detected in 3 patients during erlotinib treatment. The baseline characteristics and the 
data contributed by each patient are summarized in Table 4.1. 

3.2  Population PK model
A two-compartment population PK model with first-order absorption with lag time 
and first-order elimination was developed and showed to best fit the obtained PK data. 
Compared to the one-compartment model, the OFV of the selected model decreased by 
27.5 (p < 0.01, degree of freedom = 3), indicating an improvement in the model fit. None 
of the tested covariates was identified to have significant effect on the PK parameters. The 
parameter estimates of the PK model are presented in Table 4.2. The relative standard 
errors (RSEs) were ≤ 25% for all parameters except for apparent distribution clearance 



Tumor dynamics and resistance development in NSCLC patients

117

4

Table 4.1: Baseline characteristics of patients and the collected data 

Intensively sampled PK data
(N = 29)

PK/PD data
(N = 18)

Median Range Median Range

Age (years) 63 35–78 66 48–78
Sex (N (%))

Male 13 (44.8%) 5 (27.8%)
Female 16 (55.2%) 13 (72.2%)

Weight (kg) 74 50–102 69.5 46.1–109
Height (cm) 173 152–202 169 154–180
Serum creatinine (μmol/L) 82 47–138 66 59–192
eGFR (ml/(min.1.73 m2)) 71 46–100 84.5 23–103
AST (IU/L) 29 13–40 21.5 14–37
ALT (IU/L) 25 10–83 18 6–43
Albumin (g/L) 41 32–48 42.5 34–51
ALP (U/L) 85 53–157 87.5 3–798
Bilirubin (μmol/L) 8 3–58 6.5 3–14
Erlotinib starting dose (N (%))

150 mg 25 (86.2%) 18 (100%)
100 mg 3 (10.3%) 0
50 mg 1 (3.4%) 0

N of concentration per patient 13 13–13 8 (N = 2 no data ) 1–20
N of SLD per patient - - 7 2–18
N of ctDNA or cfDNA data per 
patient

- - 3 1–4

eGFR, estimated glomerular filtration rate; AST, aspartate aminotransferase; ALT, alanine aminotransferase; 
ALP, alkaline phosphatase; ctDNA, circulating tumor DNA; cfDNA, circulating free DNA; SLD, sum of longest 
diameters.

(Q/F) (40%), indicating acceptable estimation precision. High estimates for IIV on Q/F 
and absorption rate constant (Ka) were observed (coefficient of variation (CV%) > 100 
%), with shrinkages < 30%. The parameter estimates were also in good agreement with 
the bootstrap results (Table 4.2).

The GOF plots of the final PK model demonstrated a good concordance between the 
model predictions and observations (Figure S4.3). The conditional weighted residual 
errors (CWRES) randomly distributed around zero without obvious trends over popula-
tion predictions, but with a slight trend over time between 6–8h after last drug intake. The 
VPC plot (Figure 4.2) shows that the observed data can be adequately predicted by the 
developed model. Additionally, 100% of the model predicted AUC and 82.4% of the model 
predicted trough concentrations were within 80–120% of their corresponding observations.
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Table 4.2: Parameter estimates of the population pharmacokinetic model

Parameters Explanation
Estimate 
(RSE%)

IIV (CV%) (RSE%) 
[shrinkage%]

Bootstrap

Median 95% CI

CL/F (L/h) Apparent clearance 4.10 (5%) 15.7% (31%) [48%] 4.09 3.68– 4.47
Vc/F (L) Apparent distribution 

volume of the central 
compartment

142 (7%) 20.3% (31%) [43%] 142 125– 162

Vp/F (L) Apparent distribution 
volume of the periph-
eral compartment

2420 (12%) - 2462 1768– 8043

Q/F (L/h) Apparent distribution 
clearance

0.548 (40%) 194.4% (15%) [28%] 0.542 0.188–1.24

Ka (/h) Absorption rate 
constant

1.61 (23%) 124.5% (15%) [18%] 1.68 1.03–2.65

Tlag (h) Absorption lag time 0.400 (5%) - 0.400 0.358– 0.428
F Bioavailability 1 fixed 16.3% (31%) [37%] 1 fixed -
Residual errors

Prop. Err. 
(CV%)

proportional residual 
error

15.4 (6%) [10%]* 15.3 -

Add. Err. 
(SD, ng/ml)

additive residual error 44.5 (25%) [10%]*

43.4
-

RSE, relative standard error; IIV, inter-individual variability; CI, confidence interval; CV, coefficient of 
variation; SD, standard deviation.
* Epsilon shrinkage.

Figure 4.2:  Visual predictive check (VPC) of the developed population PK model. Blue dashed lines 
represent 95th and 5th percentiles of the observations, red dashed line represents the 50th percentile of the 
observations, blue shaded areas represent 95% confidence interval of the 95th and 5th percentiles based on 
the simulations respectively, and red shaded area represents 95% confidence interval of the 50th percentile 
based on the simulations.
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3.3  Tumor dynamics model
The tumor dynamics modeling results showed that the model accounting for acquired 
resistance only could adequately fit the data. The model that assumed the presence of 
primary resistance did not show an improved fit to the available data (p > 0.05, OFV 
decreased by 0.731 and AIC increased by 1.269, degree of freedom = 1). The typical estimate 
of TR_0 in this model was 4.51 mm which account for a small proportion (5.9%) of the 
median baseline tumor size (Table S4.1). Therefore, the pre-exiting resistance component 
was ultimately not included in the model. Furthermore, the OFV and AIC of the model 
incorporating an exposure-dependent decay increased by 1.441 compared with the base 
model, indicating no improvement in the model fit. Therefore, the exposure-dependent 
drug effect was not included in the final model.

The parameter estimates of the final tumor dynamics model are shown in Table 4.3 (model 
code in Supplementary Material S4.2). The RSEs of the parameter estimates were all < 
30%, indicating acceptable estimation precision. High estimates for IIV of the estimated 
tumor dynamics parameters were observed (CV% > 60 %). The GOF plots demonstrated 
a sufficient fit of the developed model to the data (Figure S4.4). The VPC considering the 
censoring of data due to progression showed that the model predicted intervals adequately 
captured the distribution of observations (Figure 4.3).

Figure 4.3:  Visual predictive check (VPC) considering drop out of the developed tumor dynamics model. 
Blue dashed lines represent 95th and 5th percentiles of the observations, red dashed line represents the 50th 
percentile of the observations, blue shaded areas represent 95% confidence interval of the 95th and 5th 
percentiles based on the simulations respectively, and red shaded area represents 95% confidence interval 
of the 50th percentile based on the simulations.
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3.4  Genetic biomarkers and tumor dynamics 
The baseline results regarding ctDNA measurements and cfDNA concentrations were 
available from 12 out of 18 patients and missing for 6 patients. No correlation was 
observed between baseline mutant EGFR VAF and cfDNA concentrations. According to 
the exploratory plots, patients with baseline mutant EGFR VAF ≥ 1.74% had relatively high 
kg and km estimates, and slightly higher kd estimates than patients with mutant EGFR VAF 
< 1.74% (Figure 4.4). In addition, for patients with a TP53 mutation at baseline, the kg 
and km estimates were relatively high compared to patients without TP53 mutations, and 
comparable kd estimates were observed (Figure 4.4). The association between baseline 
cfDNA concentrations and tumor dynamics parameters is shown in Figure S4.5. Patients 
with baseline cfDNA concentration ≥ 1.44 ng/µL showed to have higher kg and lower kd 

Table 4.3: Parameter estimates of the tumor dynamics models without or with baseline ctDNA data 
incorporated

Parameters Description

Model without covariate
Model with baseline ctDNA 
data as a covariate

Estimate 
(RSE%)

IIV (CV%) 
(RSE%) 
[shrinkage%]

Estimate 
(RSE%)

IIV (CV%) 
(RSE%) 
[shrinkage%]

kg (/day) Tumor growth rate 
constant 

0.000799 
(13%)

60.3% (27%) 
[26%]

0.00204 
(25%)

16.6% (152%) 
[57%]

f1 kg change fraction 
when mutant EGFR 
VAF < 1.74%

- - 0.334 
(28%)

-

f2 kg change fraction 
when baseline ctDNA 
data was unavailable

- - 0.281 
(28%)

-

kd (/day) Tumor decay rate 
constant 

0.0121 
(19%)

68.4% (26%) 
[8%]

0.0123 
(18%)

66.2% (22%) 
[7%]

km (/day) Mutation rate constant 0.00911 
(2%)

56.5% (25%) 
[19%]

0.00824 
(18%)

57.9% (32%) 
[15%]

TS_0 (mm) Baseline size of 
sensitive clonal 
population 

Observed 
baseline

- Observed 
baseline

-

TR_0 (mm) Baseline size of 
resistant clonal 
population

0 fixed - 0 fixed -

Residual errors
Prop. Err. 
(CV%)

Proportional residual 
error

7.54% 
(13%)

[12%]* 7.67% 
(14%)

[12%]*

Add. Err. 
(SD, mm)

Additive residual error 1.17 (38%) [12%]* 1.13 (9%) [12%]*

RSE, relative standard error; IIV, inter-individual variability; CV, coefficient of variation; SD, standard 
deviation, VAF, variant allele frequency.
* Epsilon shrinkage.
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estimate than patients with baseline cfDNA concentration < 1.44 ng/µL, and comparable 
km estimates were observed. 

When exploring the covariate effect of the baseline genetic biomarkers in the tumor 
dynamics model, the correlation between baseline mutant EGFR VAF and kg was iden-
tified to be most significant when assigning the missing values as a separate category 
(OFV decreased by 11.6, p < 0.01, degree of freedom = 2). This correlation remained 
to be significant when removing the data of patients with missing covariate from the 
dataset (OFV decreased by 4.6, p < 0.05 degree of freedom = 1). The differences in km or 
kd among patient groups with different baseline mutant EGFR VAF levels were shown to 
be not significant. Additionally, the correlations between the presence of a TP53 mutation 
and tumor dynamics parameters were also not significant in the covariate analysis. The 
parameter estimates of the model with baseline mutant EGFR VAF as the covariate are 
shown in Table 4.3. The typical kg estimate in patients with baseline EGFR VAF ≥ 1.74% 
was 0.00204 day-1, which is higher than the estimate for the whole population (0.000799 
day-1). The typical kg estimate in patients with baseline EGFR VAF < 1.74% was 33.4% of 
that in patients with baseline EGFR VAF ≥ 1.74%, while the difference between patients 
with baseline EGFR VAF < 1.74% and with unknown mutant EGFR level was not signifi-
cant. The inclusion of mutant EGFR VAF in the model decreased the CV% of IIV in kg 
from 60.3% to 16.6%, while the corresponding RSE increased. The population predictions 
of the model also improved according to the GOF plots (Figure S4.6).  

4.  Discussion

In this study, the tumor dynamics and the development of drug resistance in NSCLC 
patients undergoing erlotinib treatment was characterized with a mathematical model 
accounting for tumor heterogeneity. Incorporating the erlotinib exposure into the model 
was also explored. The potential correlation between baseline genetic biomarkers and 
parameters that characterize tumor dynamics was identified with exploratory plots and 
confirmed with the model. 

To facilitate the investigation on the exposure-tumor inhibition relationship, a population 
PK model of erlotinib was first developed. The estimated clearance is comparable to what 
has been reported previously (4.10 L/h vs 3.64–4.71 L/h) [16-19]. Due to lack of data, previ-
ously reported covariates on erlotinib PK, including the smoking status, co-medications, 
and alpha-1-acid glycoprotein, could not be investigated in our analysis [16, 19]. The CV% 
of IIV in Ka and Q/F was estimated to exceed 100%. For Ka, this high IIV estimate might 
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because it covers the variability in the lag time of absorption. Considering the amount of 
available data, these IIV estimates may not be precise. However, this does not affect the 
predictive ability of the PK model for the intended use in this study. The performance of 
the model were confirmed by the model evaluation results. However, a trend in CWRES 
over time between 6–8h after last drug intake was observed. This is considered to be due to 
the double peaks that were observed in the obtained data: data from 18 out of 29 patients 
who provided intensively sampled PK data demonstrate increased drug concentrations 
at 6-8 hours. The possible explanation could be the delayed disintegration of the tablets, 
food intake [20, 21], or possible enterohepatic circulation, although the latter has not been 
reported in literature before. This observed double peaks could not be captured by the 
current PK model, nor by a model considering dual first-order absorption with different 
lag times. Nevertheless, the model showed to be able to adequately predict the AUC of 
individual concentration-time curves as well as the trough concentrations which are of 
interest to be linked to the tumor dynamics. Therefore, the developed PK model was 
considered to be valid to support our study.

For the tumor size dynamics, a model accounting for intra-tumor heterogeneity and 
acquired resistance showed to adequately fit the obtained data, and considering primary 
resistance was not favored based on the available data. This may indicate that for patients 
with NSCLC with an activating EGFR mutation, it is mainly the acquired resistance, 
which may be due to the acquisition of EGFR p.T790M mutation or other mechanisms, 
that limits the treatment response. Among previously reported model-based studies on 
tumor size dynamics in NSCLC patients undergoing erlotinib treatment, one study also 
considered tumor heterogeneity [22]. Their results also showed that the models with and 
without primary resistance could describe the data equally well even though erlotinib was 
used as a second-line treatment in their study [22]. However, it is worth noting that the 
model presented in the current study is empirical and simplifies the complex process of 
the emergence of treatment resistance. Previously, several mechanistic models have been 
proposed to provide quantitative insight into this process [23, 24]. The relatively limited 
amount of data in the current analysis prohibits the implementation of more mechanistic 
models and therefore may limit the mechanistic interpretation. In fact, the presence of 
TP53 mutations may indicate the presence of primary resistance [25, 26]. However, TP53 
mutations were only detected in 4 out of 18 patients which may be unable to provide 
significant impact to our model. Nonetheless, this more empirical approach does take into 
account the existence and interaction among multiple clonal populations which are crucial 
for understanding resistance development [24]. We do consider this approach relevant for 
exploring optimal guided drug treatment in real world clinical oncology practice where 
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extensive data is normally sparse. Furthermore the current approach can serve as a basis 
for building more mechanistic-based models when more extensive data is available [24]. 
The growth rates of treatment sensitive and resistant clonal populations were assumed to 
be the same in the model. This was because of the lack of identifiability of separate growth 
rates due to the limited amount of data.

The current study did not identify a clear exposure-tumor inhibition relationship within the 
current concentration range (the median predicted drug concentrations at the tumor size 
monitoring time points was 992 ng/ml (range of 284–1554 ng/mL)), neither when assuming 
a non-linear relationship with the Emax model. A dose-tumor inhibition relationship was 
also explored but no clear relationship was identified. This might be because the treatment 
effect has already been saturated. The dose level selected for erlotinib (i.e. 150 mg daily) 
is the maximum tolerated dose, under which the average trough concentration at steady 
state is well above what is required for the required erlotinib activity and considered to be 
sufficient to provide a high anti-neoplastic effect [27]. This lack of relationship is in line 
with previous clinical studies where no significant correlation between erlotinib exposure 
and response has been identified [28-30]. One study also showed that increased erlotinib 
exposure had less impact on the antitumor effects in EGFR mutation-positive patients 
[31]. As an exposure-response relationship was not identified, we could not investigate 
the influence of drug exposure on the evolving tumor progression in this case. However, 
this result suggests that there is a potential option to decrease the dose of erlotinib to 
target for a lower concentration range that still ensures sufficient efficacy but can be better 
tolerated, especially since a significant proportion of erlotinib-treated patients can have 
severe toxicity [6]. The U.S. Food and Drug Administration (FDA) has recently proposed 
the Project Optimus which also encourages to improve dose selection and optimization 
for oncology drugs by accounting for both efficacy and tolerability rather than automati-
cally selecting the maximum tolerated dose [32, 33]. A recent study has already suggested 
an optimized starting dose of 50–60 mg/day for erlotinib and a concentration range of 
150–310 ng/mL for personalized erlotinib treatment in NSCLC patients considering both 
efficacy and tolerability [34].

The correlation between baseline genetic biomarkers and parameters in tumor dynamics 
model was investigated in this study. The VAF’s of mutant EGFR and the presence of TP53 
mutations in ctDNA at baseline showed to have potential correlation with the estimated 
parameters in the tumor dynamics model (mainly kg and km), especially that higher 
baseline EGFR VAF was significantly correlated with increased growth rate constant kg. 
This indicates that patients with higher EGFR VAF at baseline may have a worse response 
to the treatment, which is in line with the clinical findings from a EGFR cohort in the 
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START-TKI study, i.e. patients without detectable ctDNA at baseline had a lower rate of 
radiological progression [6]. An explanation could be the association between ctDNA levels 
and tumor burden [11, 35]. Our result is also in line with previous findings that baseline 
concomitant TP53 mutations may relate to worse clinical outcome in patients with NSCLC 
[6]. After incorporating baseline ctDNA measurements, the developed tumor dynamics 
model could better predict the tumor sizes dynamics in response to erlotinib treatment in 
NSCLC patients. This finding also demonstrates the potential to use baseline ctDNA as 
an early biomarker to support decision making for the treatment of NSCLC patients [36]. 

This study also has some limitations. The results found in the current study are based on 
limited data from a limited number of patients, especially for genetic biomarkers. The 
unavailability of baseline cfDNA samples in 6 out of 18 patients could also impact the 
interpretation of the results, as well as the determination of the threshold value of EGFR 
VAF which was associated with increased growth rates. However, this study is one of the 
first that investigated the relationships among PK, tumor dynamics, and ctDNA measure-
ments. Furthermore, since the data on detectable mutation levels in ctDNA are limited, 
development of a model for describing longitudinal ctDNA data was not feasible and 
only the baseline ctDNA measurements were included in the analysis, which however 
explored the value of ctDNA as an early biomarker. Additionally, the mutant EGFR VAF 
was only investigated as a categorical covariate while the data range from 0% to 62.74% 
and correspond to multiple variants. Therefore, further analysis with more extensive data 
is warranted to validate the current results and to explore the correlation between the 
longitudinal ctDNA measurements and tumor size dynamics with models. 

In conclusion, our study demonstrated that the model accounting for intra-tumor hetero-
geneity and acquired resistance can well characterize the tumor size dynamics in NSCLC 
patients during erlotinib treatment. No clear exposure-tumor inhibition relationship was 
identified within the current concentration range. A correlation between baseline ctDNA 
measurements and tumor growth rates was however identified which suggests that quan-
titative ctDNA measurements at baseline have potential to be predictive of anti-cancer 
treatment response, and further study on more extensive longitudinal data is warranted. 
The developed model can potentially be further applied to design optimal treatment 
regimens that better overcome resistance.  
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Study highlights 

What is the current knowledge on the topic?
Insight into the evolutionary development of treatment resistance can support 
optimization of anti-cancer treatments. This is also the case in non-small cell lung cancer 
(NSCLC) patients. A model-based approach can support such study based on data on 
pharmacokinetics, tumor sizes and genetic biomarkers

What question did this study address?
We aimed to quantitatively characterize the tumor dynamics and evolving resistance 
development in NSCLC patients treated with erlotinib, and investigate the relationship 
between baseline circulating tumor DNA (ctDNA) measurements and tumor dynamics.

What does this study add to our knowledge?
A model accounting for intra-tumor heterogeneity and acquired resistance well 
characterized the tumor size dynamics in NSCLC patients during erlotinib treatment. No 
exposure-tumor inhibition relationship was identified in the identified exposure range. 
Baseline ctDNA data on mutant EGFR levels correlate with tumor growth rate and the 
inclusion of ctDNA data improved model prediction.  

How might this change drug discovery, development, and/or therapeutics?
Our findings suggest that baseline ctDNA measurements have the potential to be a predictor 
of anti-cancer treatment response, which encouraged to use ctDNA as an early biomarker. 
The developed model can further be applied to design optimal treatment regimens to 
better overcome resistance. 
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Supplementary Material S4.1 

Population PK analysis - covariate analysis methods
In the population PK analysis, patients’ demographic information, including age, sex, 
weight, height, and laboratory test results, including creatinine, estimated glomerular 
filtration rate (eGFR), albumin, total bilirubin, aspartate aminotransferase (AST), alanine 
aminotransferase (ALT), and alkaline phosphatase (ALP) were investigated as covariates. 
The stepwise covariate modeling (SCM) function of Perl-speaks NONMEM (version 
4.9) was applied to perform the covariate analysis. The effect of all covariates on erlotinib 
clearance and that of weight, height, and albumin on apparent distribution volume of 
the central compartment were investigated. Model selection was based on the reduction 
in objective function value (OFV) (a likelihood ratio test) assuming a χ2 distribution, a 
reduction in IIV, and physiological plausibility. The p values were set as 0.05 and 0.01 for 
the forward selection and backward elimination process, respectively. 

The effects of continuous covariates were investigated with both linear relation (Eq. 
S4.1) and power relation (Eq. S4.2), where Pi represents the parameter of ith individual, 
Pt represents typical value of the parameter, and ηi represents the individual variability, 
θCOV  represents the estimate of covariate effect, COVi represents the covariate value of ith 
individual, COVm is the median value of the covariate. Categorical covariates (e.g. sex) were 
analyzed with Eq. S4.3, where θCOV was set as 1 for reference category (e.g. males) and was 
estimated for other categories (e.g. females).

𝑃𝑃� � 𝑃𝑃� ∙ �� � ���� ∙ �𝐶𝐶𝐶𝐶𝐶𝐶� � 𝐶𝐶𝐶𝐶𝐶𝐶��� ∙ ���   Eq. S4.1 

𝑃𝑃� � 𝑃𝑃� ∙ � 𝐶𝐶𝐶𝐶𝐶𝐶�𝐶𝐶𝐶𝐶𝐶𝐶��
���� ∙ e��   Eq. S4.2

𝑃𝑃� � 𝑃𝑃� ∙ 𝜃𝜃��� ∙ e��   Eq. S4.3
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Supplementary Material S4.2 

NONMEM code for the tumor dynamics model

$INPUT  
C ID DROP TIME TAD AMT ADDL II CMT EVID DV 
UNDERTREAT; if treatment started: 1, yes
DROP DROP Dose; dose
DROP AGE SEX HT WT DROP BMI 
baseTS;  baseline tumor size
T790M; T790M: 1, yes 
TP53_base; presence of TP53: 1, yes 
basecfDNA; baseline cfDNA concentration
baseVAF; baseline EGFR mutant levels
DROP DROP DROP DROP DROP DROP DROP
ICL IV2 IV3 IQ IKA IALAG1 IF1; individual PK parameters

$DATA START_all6.csv IGNORE=C IGNORE=(CMT.GT.4) IGNORE=(CMT.EQ.2); only 
data of tumor sizes

$SUBROUTINES ADVAN13 TOL=4

$MODEL
COMP = (DEPOT)
COMP = (CENTRAL,DEFOBS)
COMP = (PRIPH)
COMP = (TUMOR)
COMP = (TUMOR2)

$PK
KG1 = THETA(1)* EXP(ETA(1))/100
KD1 = THETA(2)* EXP(ETA(2))/100
KM1 = THETA(5)* EXP(ETA(3))/100
;IF(baseVAF.GE.0.AND.baseVAF.LT.1.74) KG1=THETA(6)*KG1
;IF(baseVAF.LT.0) KG1=THETA(7)*KG1; no sample group

CL = ICL*24; change unit from L/h to L/day
V2 = IV2 
V3 = IV3
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Q = IQ *24
ALAG1 = IALAG1 /24
KA = IKA*24
F1 = IF1
K=CL/V2
K23=Q/V2
K32=Q/V3

BASES = baseTS
A_0(4)=BASES
A_0(5)=0

$DES
DADT(1) = -KA*A(1); can simulate drug concentrations, if needed
DADT(2)= KA*A(1) - K*A(2) -K23*A(2) +K32*A(3); can simulate drug concentrations, 
if needed
DADT(3) = K23*A(2)- K32*A(3); can simulate drug concentrations, if needed 
DADT(4) = KG1*A(4)-KD1* UNDERTREAT *A(4) - KM1* UNDERTREAT *A(4)
DADT(5) = KM1* UNDERTREAT *A(4)+ KG1* UNDERTREAT *A(5)

$ERROR
TS=A(4)+A(5)
IPRED = TS
    W = SQRT(THETA(3)**2*IPRED**2 + THETA(4)**2)
    Y = IPRED + W*EPS(1)
 IRES = DV-IPRED
IWRES = IRES/W

$THETA  
(0.001,0.1,1); KG1
(0.1,1,5); KD
(0.01,0.1,1); Prop err
(0.1,1,10); Add err
(0.01,1, 5); KM1
;(0.05,0.5,2); VAF < 1.74
;(0.05,0.5,2); VAF not available

$OMEGA
0.1; IIV KG
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0.1; IIV KD
0.1; IIV KM1

$SIGMA  1  FIX; 
$ESTIMATION METHOD=1 INTER MAXEVAL=9999 NOABORT SIG=3 PRINT=10 
POSTHOC
$COV print=E

$TABLE ID TIME TAD MDV EVID UNDERTREAT Dose baseTS T790M TP53_base 
basecfDNA baseVAF baseTS KG1 KD1 KM1 TS IPRED IW
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Supplementary figures and table

Figure S4.1:  The collected data on erlotinib concentrations over time.
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Figure S4.2:  The collected variant allele frequency of primary EGFR variants detected from circulating free 
DNA (cfDNA) (ctDNA data) over time.
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Figure S4.3:  Goodness-of-fit plots of the developed population PK model, including observations versus 
individual predictions (a) and population predictions (b), and conditional weighted residual errors (CWRES) 
versus populations predictions (c) and versus time after last dose (d). The red dashed lines represent y = x 
(a, b) and y = 0 (c, d). Black dashed lines represent corresponding loess regressions.
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Figure S4.4:  Goodness-of-fit plots of the developed tumor dynamics model, including observations 
versus individual predictions (a) and population predictions (b), and conditional weighted residual errors 
(CWRES) versus populations predictions (c) and versus time (d). The red dashed lines represent y = x (a, b) 
and y = 0 (c, d). Black dashed lines represent corresponding loess regressions.
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Figure S4.6:  Goodness-of-fit plots of the tumor dynamics model with ctDNA as a covariate, including 
observations versus individual predictions (a) and population predictions (b), and conditional weighted 
residual errors (CWRES) versus populations predictions (c) and versus time (d). The red dashed lines 
represent y = x (a, b) and y = 0 (c, d). Black dashed lines represent corresponding loess regressions.
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Table S4.1: Parameter estimates of the tumor dynamics model considering pre-existing resistance 
component (primary resistance)

Parameters Description Estimate (RSE%)
IIV (CV%) (RSE%) 
[shrinkage%]

kg (/day) Tumor growth rate constant 0.000801 (22%) 60.4% (29%) [26%]
kd (/day) Tumor decay rate constant 0.0129 (21%) 73.6% (27%) [8%]
km (/day) Mutation rate constant 0.00756 (28%) 66.6% (34%) [19%]
TS_0 (mm) Baseline size of sensitive clonal 

population 
Observed baseline - TR_0 -

TR_0 (mm) Baseline size of resistant clonal 
population

4.51 (39%) 0 fixed

Residual errors
Prop. Err. (CV%) Proportional residual error 7.44% (18%) [12%]*

Add. Err. (SD, 
mm)

Additive residual error 1.19 (21%) [12%]*

Supplementary Table
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Abstract

In real-world patients, anti-cancer drugs frequently show substantial variability in 
pharmacokinetics (PK) and pharmacodynamics (PD). Especially for anti-cancer 
drugs that exhibit a narrow therapeutic window, these characteristics lead to an 
increased risk of suboptimal therapy and toxicity. This highlights the need for more 
individualized dosing in cancer patients. Model-informed precision dosing (MIPD) 
is an advanced quantitative approach which applies pharmacometric models to 
guide optimal dose selection and enables individualized therapy. This expert opinion 
article introduces the current application of MIPD in supporting optimal anti-cancer 
treatment, and discusses the challenges and future perspectives of implementing 
MIPD in this field.
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1.  Introduction 

Pharmacokinetic (PK) and pharmacodynamic (PD) characteristics of anti-cancer drugs 
can be highly variable in real-world patients [1, 2]. Due to the correlations between drug 
exposure and treatment response (efficacy and toxicity), such variability can result in 
suboptimal treatment outcomes for a considerable part of the patients especially when the 
therapeutic window is narrow [1, 2]. Moreover, since the dose selection for most oncology 
drugs is based on the maximum tolerated dose (MTD) or maximal administered dose 
(MAD) paradigm, the use of standard dosing according to the drug label can result in 
negative consequences for real-world patients. This leads to a demand for dose modifica-
tion processes [3]. Therefore, the necessity for dose individualization and optimization 
in anti-cancer therapies is highlighted, and a useful tool to support the decision making 
is warranted.

Model-informed precision dosing (MIPD) is a promising tool which adopts pharmaco-
metric models to guide optimal and individualized dose selection, the goal of which is 
to improve efficacy and reduce the risk of toxicity [2, 4]. Pharmacometric models enable 
quantitative characterization and prediction of drug PK and PD in target populations 
under certain dosing regimens [5, 6]. With a mixed-effect modeling (population modeling) 
approach, variability between and within patients can be quantified and predictive covari-
ates can be identified [5, 6]. Once data of patients are known, the Bayesian framework of the 
population model would enable more precise description and prediction of individual PK/
PD characteristics with individual parameters [2]. Combined with simulations, treatment 
strategies that are likely to achieve the therapeutic targets and desired clinical outcome can 
therefore be derived with the model. The value of MIPD in supporting cancer treatment 
optimization has gained increasing interest in oncology research and clinical practice. 
However, challenges still remain in the implementation of MIPD.

The current article aims to introduce the application and benefits of MIPD in supporting 
anti-cancer treatment optimization and individualization, and discuss the challenges and 
future perspectives of implementing MIPD in cancer therapies. 

2.  MIPD application  

Insight into the correlation between drug or surrogate biomarker concentration and the 
clinical effect in real-world patients can facilitate determining a therapeutic target or range 
that is associated with sufficient efficacy and less risk of toxicity. This pre-defined target 
can then be incorporated in the algorithm of MIPD to derive optimal dosing regimens. 
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2.1  Starting dose selection 
The benefits of MIPD in anti-cancer treatment have been demonstrated in many studies [2, 
7]. First of all, MIPD can be applied to guide (starting) dose selection based on identified 
covariates [7]. Population modeling allows the identification of covariates that influence 
model parameters and explain the inter- and intra-patient variability in drug PK/PD 
profiles. Data from various studies can also be pooled in one analysis to facilitate a more 
in-depth exploration on relevant covariates. Before any data on PK or PD biomarkers 
are available to inform the individual parameters, the model can guide dose tailoring 
considering the value of relevant covariates for each individual patient, which would 
increase the chance to achieve the therapeutic target and reduce inter-individual variability. 
This can be especially helpful for determining the optimal starting dose. 

The current standard practice to individualize the dose of anti-cancer drugs (normally 
for cytotoxic chemotherapy) is based on body surface area (BSA) [7, 8]. However, BSA 
may not be a relevant covariate that correlates with the PK variability of these drugs [7, 
8]. Dosing based on BSA can thus still lead to substantial PK variability and cause under 
or over drug exposure, which may lead to less efficacy or a higher risk of toxicity. The 
model-informed approach allows investigating the impact of a wide range of factors, 
including patients’ characteristics, renal or kidney function, disease related indicators, and 
co-medications, identifying real covariates that should be accounted for dose adjustment 
[7]. It also allows taking multiple influential factors into consideration at the same time. 
The impact of pharmacogenetic variants on drug PK profile can also be investigated and 
incorporated in MIPD to further refine the dose selection [7]. 

A clinical trial on busulfan in pediatric hematopoietic cell transplantation (HCT) patients 
has confirmed the advantage of model-informed dosing in guiding starting dose selection 
[9]. This trial compared conventional strategies for determining initial busulfan dose 
(based on weight), calculating AUC following TDM (trapezoidal rule), and determining 
the following dose (proportional scaling) with the model-informed approach. Their 
results show that receiving initial doses that were calculated by the PK model enabled 
more patients to achieve the exposure target at the time of first PK collection, especially 
in the cohort where the initial dose was guided with an updated PK model (75% vs. 25% 
in conventional group). 

2.2  Adaptive dose selection during treatment
Secondly, MIPD also presents a potential to guide dose selection and adaptation during 
anti-cancer treatment, which has shown to outperform the conventional therapy in terms of 
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target attainment and clinical outcome. Such dose selection is typically guided by population 
PK models that possess sufficient predictive ability. Once measured drug concentrations 
and individual characteristics of the patient are available, individual parameters can be 
estimated (empirical Bayesian estimates) which could capture the current and forecast 
future individual PK time curves, given the applied dosage [2, 10]. Thus, with the aim to 
achieve the defined exposure target, the optimal dosage for the following treatment can be 
determined rationally. A recent perspective on MIPD has listed several motivating examples 
[2]. One study in breast cancer patients performed simulations to compare different dosing 
strategies of tamoxifen [11]. The results demonstrated that compared with standard dosing 
(20 mg QD) or CYP2D6-guided dosing, the MIPD strategy (individual maintenance dose 
was derived with MIPD using three monitored drug concentrations) could reduce the 
proportion of patients failing to reach the predefined target endoxifen (active metabolite) 
exposure (22.2% (standard dosing) to 7.19%) and the inter-individual variability.

In addition to drug concentrations, monitoring other biomarkers to inform dose selection 
can potentially also be accomplished with a model-informed approach.

The benefit of MIPD in guiding anti-cancer treatment dose adaptation has also been 
confirmed in clinical trials. For instance, Joerger et al. have performed a randomized 
study in advance non-small cell lung cancer (NSCLC) patients to compare standard pacli-
taxel dosing (per BSA) and PK-guided paclitaxel dosing which was proposed from their 
previous simulation-based study (initial paclitaxel dose was adjusted according to patients 
characteristics and subsequent doses were guided considering previous-cycle paclitaxel 
exposure estimated with a PK model) [12]. The study demonstrated that that PK-guided 
dosing can significantly reduce paclitaxel-associated neuropathy while having the similar 
response rate as standard dosing, thus suggesting an improved benefit-risk profile [12].      

2.3  Model-informed TDM 
Therapeutic drug monitoring (TDM) is a clinical practice of adjusting drug dosing regimen 
for an individual patient based on measured drug concentrations in biological fluid (typically 
plasma, serum, urine, or whole blood) [10]. For anti-cancer therapies, TDM-based dosing has 
been partially implemented for a small number of agents, including carboplatin, methotrexate, 
busulfan, and mitotane [13]. The benefits and feasibility of TDM for many other drugs 
have also been demonstrated in clinical studies, including imatinib, sunitinib, pazopanib, 
5-fluorouracil, and tamoxifen [8, 13]. Implementing TDM for other kinase inhibitors, which 
are typically administrated at fixed doses, has also been recommended due to the high PK 
variability and clear relationships between exposure and treatment outcomes [1]. 
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MIPD, which is able to guide dose adaptation with population PK models and Bayesian 
forecasting, can be combined with TDM to ensure optimal dose adjustment. This model-
informed TDM has already been implemented in clinical practice, although not yet widely 
adopted [4]. The exposure metrics that were of interest included trough concentrations, 
area under the concentration-time curve (AUC), or concentrations at a certain time point. 
Compared with conventional TDM, the model-informed approach provides the decision 
support in a quantitative manner and the advantage is multifaceted [2, 8]. First, the indi-
vidual parameters estimated based on the monitored concentrations (Bayesian estimates) 
would enable the prediction of whole drug concentration-time curves for each individual 
patient following the current or subsequent doses. In this way, the concentrations at any 
time point of interest can be obtained based on the monitored sample. This approach 
has proved to be able to provide more precise prediction on trough concentrations than 
normal log extrapolation as is used in conventional TDM [14]. In addition, this approach 
also allows more accurate estimation of AUC, and flexible limited sampling strategies 
can be applied. Second, MIPD provides the ability to account for non-linear PK behavior 
and guide dose adjustment when steady state is not yet reached. This is because MIPD 
supports the dose adaptation based on the forecasting of drug exposure after dose adjust-
ment. In conventional TDM, the decision on dose adjustment is simply made by scaling 
the previous dose with the ratio of the observed and target exposures, assuming a linear 
PK profile [7, 10]. This requires the concentration profile to be at steady state [10]. Finally, 
with the help of the pharmacometric models and simulations, different TDM strategies 
can be explored and the most optimal strategy can be identified for further exploration 
and/or clinical implementation [8].

The clinical trial on busulfan in pediatric HCT patients has strengthened the clinical utility 
of model-informed dosing and TDM for supporting personalized busulfan dosing and 
target exposure attainment [9]. In addition to the benefit of selecting the initial dose using 
the PK model, in the cohort where busulfan AUC and subsequent doses were estimated 
with the MIPD platform during TDM, the achievement of the goal exposure (cumulated 
AUC) has shown to be significantly improved (100% vs. 66% in conventional group) and 
the variability among patients was reduced (from 14.8% to 4.1%), which is expected to 
improve clinical outcomes [9]. 

3.  Challenges and perspectives 

Challenges still have to be overcome to implement MIPD of cancer therapies in clinical 
practice. A previous perspective has provided a comprehensive overview on the chal-
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lenges that hinder the implementation of MIPD in clinical practice in general, as well as 
corresponding recommendations and future opportunities, from multiple aspects [2]. 
Here, we highlight a few challenges and provide future perspectives specifically for anti-
cancer therapies. 

3.1  Therapeutic target identification 
A pre-defined therapeutic target of drug or biomarker exposure that is associated with 
optimal treatment outcome is fundamental for MIPD to estimate optimal dosing regimens. 
A therapeutic target can be determined based on the PK/PD study outcomes in registration 
files or clinical studies. Developing a PK-PD model on exposure-response relationship 
based on retrospective data can also facilitate the identification of an optimal therapeutic 
target for real-world cancer patients. The therapeutic target can be an exposure range, as 
is traditionally aimed at during drug TDM, or a specific exposure value which can relate 
to a specific PD target [10]. For anti-cancer drugs, the potential PD target of interest can 
relate to the change in tumor burden or PD biomarkers. Typically, one therapeutic target is 
being used for one whole patient population. For future studies and practices, personalizing 
dosage based on an individual target determined with the help of population PK/PD 
modeling and Bayesian forecasting would be of interest. 

3.2  Model selection  
In order to implement MIPD, selecting a suitable model that presents sufficient predictive 
ability to the target patient population is essential. Whether a model matches the target 
patient population, regarding e.g. age (adult or pediatric), body composition (normal or 
obese), indications (cancer types and drugs), or dose levels, need to be considered when 
selecting the model [15]. The intention to use the model should also be taken into account. 
For example, if a population PK model was developed based on trough concentrations, it 
may not be able to adequately capture the drug absorption and distribution phase, thus 
may be suboptimal to support AUC estimation [8]. 

At times, identifying one model that already has sufficient predictive ability to the target 
population is difficult. This can be due to the sample size of the study population, or the 
lack of ability to cover all potential influential factors (e.g. different genotypes or the use 
of co-medications) in one study [8, 10]. In this case, pooling data of the same drug and 
cancer type to develop a model, or updating the model (structure or parameters) with 
newly collected data during TDM allows to derive a model that can better fit the target 
population [2, 15]. The clinical study on MIPD application in busulfan treatment has proved 
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that a model updated with additional patient data can improve the performance of MIPD 
on therapeutic target attainment [9]. A recent study also proposed a continued learning 
framework which uses a sequential hierarchical Bayesian framework to update the model 
during MIPD. With this method, the prior model used within MIPD is improved as new 
data from the target patient population are integrated [16].  

Nowadays advanced approaches such as machine learning (ML) approaches have also 
shown to be able to assist with model selection for MIPD [17]. 

Model evaluation is also essential for selecting a model that is most suitable. This can be 
done using the historical data considering the intention to use the model (TDM or starting 
dose) [15]. In the case where inter-occasion variability (IOV, which represents intra-patient 
variability) is considered, the predictive value of the historical data (covariate value, data 
points from much earlier) to subsequent treatment courses needs to be evaluated [15].    

3.3  User-friendly MIPD program
To motivate clinicians and clinical pharmacists to implement MIPD and remove the 
barrier due to the lack of knowledge in quantitative pharmacology, translating the research 
findings into user-friendly MIPD software would be beneficial and can also be challenging 
[2]. Luckily, there are already multiple programs available and some are already integrated 
with local electronic health records [2, 18]. The user‐friendliness of 3 Bayesian forecasting 
programs (TDMx, InsightRx and DoseMe) in a clinical setting has also been evaluated and 
confirmed [19]. Moreover, many of the available programs also allow including new PK 
models and adjust PK/PD targets [18]. In order to guide anti-cancer treatment, a program 
that already has a validated model available for the intention drugs in the intention patient 
population, or allows including such a new model would be ideal to be selected. Developing 
a program for local use could also be an option, which can be facilitated by the increasingly 
available program packages. In addition, training and education are still needed to increase 
the uptake of MIPD into routine clinical practice [2].    

3.4  Prospective clinical trials   
To promote the implementation of MIPD in clinical practice, a necessity for prospective 
clinical trials comparing standard dosing strategies versus MIPD has been highlighted 
[4]. It is pointed out that the clinical evidence supporting the benefit of the MIPD tools 
in improving patient outcomes is crucial for the integration of MIPD into clinical care 
[4]. Although clinical trials will continue to take an important role, given the repeatedly 
occurring evidence on the advantage of MIPD tools in cancer treatment from clinical trials 
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and the ability of pharmacometric methods to provide the most likely beneficial strategy, 
the requirement for largescale trials can decrease [8].   

4.  Conclusion 

Substantial PK/PD variability and suboptimal dosing of anti-cancer drugs highlight the 
need for precision dosing in real-world cancer patients. MIPD is a promising tool which 
adopts pharmacometric models to guide precision dose selection aiming for improved 
therapeutic target attainment and optimal treatment outcome. Many research and clinical 
trials have demonstrated the benefits of applying MIPD in anti-cancer treatment, including 
guiding dose selection and adaptation, as well as TDM. To promote the implementation 
of MIPD in clinal cancer treatment, challenges regarding optimal target identification, 
suitable model selection, available programs, and the necessity of prospective clinical 
trials need to be addressed.    
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Abstract

Background: Mitotane is the only approved treatment for patients with adrenocor-
tical carcinoma (ACC). A better explanation for the variability in the pharmacoki-
netics (PK) of mitotane, and the optimization and individualization of mitotane 
treatment, is desirable for patients.

Objectives: This study aims to develop a population PK (PopPK) model to char-
acterize and predict the PK profiles of mitotane in patients with ACC, as well as to 
explore the effect of genetic variation on mitotane clearance. Ultimately, we aimed 
to facilitate mitotane dose optimization and individualization for patients with ACC.

Methods: Mitotane concentration and dosing data were collected retrospectively 
from the medical records of patients with ACC taking mitotane orally and partici-
pating in the Dutch Adrenal Network. PopPK modelling analysis was performed 
using NONMEM (version 7.4.1). Genotypes of drug enzymes and transporters, 
patient demographic information, and clinical characteristics were investigated 
as covariates. Subsequently, simulations were performed for optimizing treatment 
regimens.

Results: A two-compartment model with first-order absorption and elimination 
best described the PK data of mitotane collected from 48 patients. Lean body weight 
(LBW) and genotypes of CYP2C19*2 (rs4244285), SLCO1B3 699A>G (rs7311358), 
and SLCO1B1 571T>C (rs4149057) were found to significantly affect mitotane 
clearance (CL/F), which decreased the coefficient of variation (CV%) of the random 
inter-individual variability of CL/F from 67.0 to 43.0%. Fat amount (i.e. body weight 
- LBW) was found to significantly affect the central distribution volume. Simulation 
results indicated that determining the starting dose using the developed model is 
beneficial in terms of shortening the period to reach the therapeutic target and limit 
the risk of toxicity. A regimen that can effectively maintain mitotane concentration 
within 14–20 mg/L was established. 

Conclusions: A two-compartment PopPK model well-characterized mitotane PK 
profiles in patients with ACC. The CYP2C19 enzyme and SLCO1B1 and SLCO1B3 
transporters may play roles in mitotane disposition. The developed model is beneficial 
in terms of optimizing mitotane treatment schedules and individualizing the initial 
dose for patients with ACC. Further validation of these findings is still required.
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1.  Introduction

Adrenocortical carcinoma (ACC) is a rare endocrine malignancy (1 per million per year) 
with a poor prognosis and limited treatment options [1]. Mitotane, a highly lipophilic 
compound, is the only treatment approved by the US FDA and the European Medicines 
Agency for ACC [1]. Mitotane is developed as an orally administered treatment and its 
absorption is improved by concomitant intake of fat-rich food [2]. The bioavailability of 
mitotane is around 35–40% [3]. Mitotane has a high volume of distribution and the primary 
distribution site is fat [3, 4]. The half-life of mitotane elimination ranges from 18 to 159 
days, with a median of 53 days [2, 3].

The efficacy and toxicity of mitotane are related to the plasma concentration [1, 3]. In 
order to ensure efficacy and avoid increased toxicity, the mitotane plasma concentration 
should be between the therapeutic range of 14 and 20 mg/L, which requires therapeutic 
drug monitoring (TDM) [1].

However, due to the large distribution volume and long half-life of mitotane, a long-time 
interval (around 3–5 months [1]) is usually required for patients to reach the effective 
concentration [3], which limits the clinical utility of mitotane. The inability to reliably predict 
mitotane plasma concentrations may result in a prolonged time to reach the target value, 
hence causing a significant delay in tumour treatment, or may give rise to drug toxicity. In 
addition, it has been demonstrated that only half of the patients who received a high-dose 
regimen for 3 months achieved the target [5], suggesting a demand for individualized 
treatment and a presence of high inter-individual variability (IIV) in the pharmacokinetics 
(PK) of mitotane. Currently, the dosage titration is largely expert-based, making it prone 
to errors. Therefore, a tool enabling mitotane concentration prediction and an optimized 
treatment regimen for individual patients, which shortens the period required to reach the 
target concentration while limiting the toxicity, would be desirable for patients with ACC.

A population PK (PopPK) modelling approach with mixed-effect models enables quan-
titative characterization and prediction of drug PK profiles for both the study population 
and individuals [6]. The development of a PopPK model of mitotane would be beneficial 
for the characterization and understanding of mitotane PK, as well as for the optimization 
and personalization of mitotane treatment. Until now, two studies have performed PopPK 
modelling analysis on mitotane in patients with ACC [3, 7]; one-compartment models 
were developed in these two studies. One study assuming a self-induced clearance and a 
body mass index (BMI) was found to be a covariate of mitotane distribution volume [3], 
while the other study identified the effects of triglyceride and high-density lipoprotein on 
mitotane clearance [7]. Another model-based PK study of mitotane developed a three-
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compartment model and showed weak correlations of age, sex, body weight, height, and 
body surface area with model parameters [8].

In order to further elucidate the variability of mitotane PK, it would be beneficial to explore 
the effect of pharmacogenetic polymorphisms [8]. Although the exact PK pathway of 
mitotane and the enzymes involved in mitotane metabolism remain unknown [9], two 
studies suggested possible roles for cytochrome P450 (CYP) 2B6 and CYP2C9 [10, 11]. 
One study demonstrated that the genotype of CYP2B6*6 (rs3745274) was significantly 
correlated with mitotane plasma concentrations at 3 and 6 months after the initiation of 
treatment [10]. The other study showed that one patient with high mitotane concentra-
tion was a CYP2C9 intermediate metabolizer [11]. Further analysis of the relationship 
between genes encoding for PK enzymes and transporters and mitotane PK profiles, 
and incorporating these variables into a PopPK model, may allow better explanation of 
mitotane PK variability.

In the current study, a PopPK analysis was performed for mitotane in patients with ACC 
utilizing the retrospectively collected PK data. The effect of genes encoding drug absorp-
tion, distribution, metabolism, and elimination (ADME), patient demographic informa-
tion, and clinical characteristics on mitotane PK were investigated as covariates. We aimed 
to develop a PopPK model to describe and predict the PK of mitotane in patients with 
ACC, as well as to explore the effect of genetic variation on mitotane clearance. Moreover, 
we intended to better explain mitotane PK variability using the developed model and to 
facilitate treatment optimization and individualization for patients with ACC.   

2.  Methods

2.1  Patients
Forty-nine adult patients diagnosed with ACC (≥18 years old), who were enrolled in the 
Dutch Adrenal Network Registry, had been treated with mitotane, had provided consent, 
and had available mitotane dosing information as well as concentration data were included 
in this PopPK analysis. One patient was eventually excluded because of missing information 
regarding starting dose.

The study was approved by the Medical Ethical Committee of the Máxima Medical Center, 
Veldhoven (2015), and approval for the inclusion of patients in other institutes was obtained 
from the local boards. The required informed consents were obtained from all patients. 
All procedures performed in this study were in accordance with the ethical standards of 
the institutional Medical Ethical Committee and the 1964 Helsinki Declaration.
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2.2  Pharmacokinetic (PK) data
Data on mitotane plasma concentrations, including concentrations from routine TDM, data 
sampled during one treatment interval, and data collected after treatment discontinuation, 
as well as all mitotane dosing data, were collected retrospectively from patients’ medical 
records. Patients administrated mitotane orally were advised to take mitotane with fat-
rich food. Concomitant medication information was not included in the current analysis 
since the data were not complete. The mitotane plasma concentrations were determined 
by a validated gas-chromatography/ mass spectrometry assay at the Department of 
Clinical Pharmacy and Toxicology, Leiden University Medical Center (LUMC) [12]. The 
lower limit of quantification (LLOQ) was 2 mg/L. In addition, patients’ demographic 
information, including age, sex, and body weight (WT) and height (HT) at the start of 
treatment, were collected. Furthermore, levels of serum aspartate transaminase (ASAT), 
alanine transaminase (ALAT), gamma-glutamyltransferase (γGT), total cholesterol, and 
estimated glomerular filtration rate (GFR; recorded as 0 if the result was ≥ 60 mL/min/1.73 
m2, otherwise 1) were also collected in our analysis.

Lean body weight (LBW) and fat amount (FAT) were also calculated for each patient. 
LBW was estimated using the Boer formula [13] and FAT was obtained by subtracting 
LBW from WT.

2.3  Genotyping method
The DNA of included patients was isolated from EDTA blood samples using Maxwell 
(Promega, Leiden, The Netherlands) or MagNAPure compact (Roche, Almere, The 
Netherlands). Genotyping of patients was performed using the Drug Metabolizing Enzymes 
and Transporters (DMET™) Plus array (Affymetrix UK Ltd, High Wycombe, UK), which 
contains 1936 genetic variants (1931 single nucleotide polymorphisms [SNPs] and 5 copy 
number variations [CNVs]) of ADME-related enzymes and transporters [14], according to 
the manufacturers’ protocol. The method has been previously described in detail [15, 16].

A preset selection was performed using the DMETTM console software that generates fully 
annotated marker reports based on a translation file as recommended by Affymetrics® [17]. 
The reports include commonly recognized, haplotype-based allele calls commonly cited in 
Medline reference studies [18-20]. The DMETTM Plus allele translation software produces 
a comprehensive genotyping report containing pharmacogenomic reference data on all 
probes. This step leads to the selection of 959 SNPs from the total of 1931 SNPs present 
on the DMETTM platform. Subsequently, the SNPs that deviated from Hardy-Weinberg 
equilibrium (p < 0.0001), with a call rate below 97% or with a minor allele frequency 
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(MAF) < 0.1, as well as tri-allelic SNPs and SNPs of genes located on the X chromosome, 
were excluded from further analysis.

2.4  Population PK model development
Based on the obtained mitotane concentration data, a non-linear mixed-effects model was 
developed. Parameters were estimated using the first-order conditional estimation method 
with interaction (FOCEI) implemented in NONMEM software version 7.4.1 (ICON 
Development Solutions, Ellicott City, MD, USA). One-, two- and three-compartment 
models with first-order absorption and first-order elimination were explored as the 
structural model. Data points below the LLOQ were omitted since they only contributed 
to 3.6% of the observations [21, 22].

Since the majority of collected data were trough concentrations, and data regarding the 
absorption phase were limited, the absorption rate constant (KA) was first estimated based 
on a sub-dataset containing data of the patients who contributed multiple data points 
during one treatment interval at steady state. The KA estimate was then fixed to analyze 
the full dataset. Inter-occasion variability (IOV) was incorporated on apparent systemic 
clearance (CL/F) and every 200 days of treatment was defined as an occasion. In addition, 
to simplify the situation, all patients were assumed to receive a single dose once daily at 
8:00 am, with the dose amount being equal to the total daily dose.

A further detailed description of the PopPK modelling methods is shown in Online 
Resource 6.1.

2.5  Identify potential correlated single nucleotide polymorphisms and covariate 
analysis

Since knowledge regarding the relationship between mitotane clearance and pharma-
cogenetic polymorphisms is limited, an exploratory analysis was first performed to find 
potential SNPs that were correlated with mitotane clearance. The estimates of random IIV 
of CL/F (ηIIVi_CL) from the basic model and the genotyping results were utilized. For each 
SNP, when the number of patients in a minor homozygous group was < 4, the results of 
these patients were combined with the corresponding heterozygote group for the associa-
tion analysis assuming a dominant allele effect. Additionally, when the number of patients 
with genotype results of ‘zero copy number’ or ‘possible rare allele’ was less than four, or 
when patients had ‘NoCall’ results, the results were not included for statistical analysis. 
A one-way analysis of variance (ANOVA) test and a two-sided t test were performed 
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using R version 3.6.1 (The R Foundation for Statistical Computing Vienna, Austria) to 
evaluate the difference in ηIIVi_CL across genotype groups for each SNP. Selection of the test 
method depended on the number of genotype groups of each SNP after the combination. 
The SNPs were considered to correlate with mitotane clearance if the p-value was < 0.05. 
Correction for multiple testing was not performed due to the exploratory characteristics 
of the current analysis.

The identified SNPs, as well as patient demographic information and clinical character-
istics, were considered in the covariate analysis. The stepwise covariate modelling (SCM) 
function implemented with Perl-Speaks-NONMEM (version 4.7.0) [23] was applied. Both 
forward inclusion (p < 0.05) and backward elimination processes (p < 0.01) were performed 
to identify significant covariates. A more detailed description of the covariates analysis is 
shown in Online Resource 6.1.

2.6  Model evaluation
The predictability and stability of the final model was evaluated using goodness-of-fit (GOF) 
plots, prediction-corrected visual predictive checks (pcVPC) [24], and non-parametric 
bootstrap. Normalized prediction distribution errors (NPDEs) were also applied for 
evaluation. All figures were created using R (The R Foundation for Statistical Computing). 
A detailed description of the evaluation methods is shown in Online Resource 6.1.

2.7  Simulations for treatment optimization  
Based on the final model, simulations were performed to optimize mitotane dosing regimen 
and starting dose determination, in order to shorten the target-reaching time while limiting 
the risk of toxicity. The simulation was performed for patients included in this study, as 
they are considered to be able to represent the corresponding adult patient population. 
The individual parameters of each patient were used to simulate the ‘real’ mitotane 
concentrations (Csim_real) under each regimen. The residual errors were not considered. 
Different strategies of adjusting the dose according to Csim_real are shown in Figure 6.1. All 
simulations were performed using R (The R Foundation for Statistical Computing) and the 
differential equations were solved using the RxODE package (version 0.6-1) [25]. A detailed 
description of the regimens and simulation methods are shown in Online Resource 6.1.

On the basis of the simulated PK curves, for patients who originally reached the target, 
the mean and maximum time needed to reach the target (Ttarget, the first day when Csim_real 
≥ 14 mg/L), the mean percentage of days when Csim_real was higher than 20 mg/L in the 
first 200 days (Ptoxicity), and the mean percentages of Csim_real located outside the thera-
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Figure 6.1:  Designed treatment regimens that were evaluated by simulation. (a) A previously reported 
dosing regimen (Regimen 1), where the dose started as 1.5 g/day and increased up to 6 g/day in 4 days 
and continued until the next dose adjustment. The dosage was adjusted each time according to the 
monitored mitotane concentration level. (b) Regimens where all patients started with 2 g (Regimen 2–2 g), 
4 g (Regimen 2–4 g) or 6 g (Regimen 2–6 g) per day. Dosage increased by 0.5 g every 21 days till the target 
was reached or 126 days if Csim_real < 14 mg/L. Thereafter, the dosage increased by 1.5 g if Csim_real < 14 mg/L, 
remained unchanged if 14 mg/L ≤ Csim_real < 18 mg/L, decreased by 1 g if 18 mg/L ≤ Csim_real < 20 mg/L, 
and decreased by 3 g if Csim_real ≥ 20 mg/L. (c) Regimens where patients started with an individualized dose 
that allowed Csim_pred on day 77 (Regimen 3–77 day), 98 (Regimen 3–98 day), or 119 (Regimen 3–119 day) 
reach the target. The remaining dose-adjustment strategies were the same as Regimen 2. (d) Regimens 
where patients started with 4 g/day (Regimen 4) or an individualized dose (Regimen 5) and the dosage 
decreased by 4 g, or 50%, if Csim_real ≥ 20 mg/L. The remaining dose-adjustment strategies were the same 
as Regimen 2. (e) Regimens where patients started with 4 g/day (Regimen 6) or an individualized dose 
(Regimen 7) and the dosage increased by 1 g after reaching target or 126 days if Csim_real < 14 mg/L (Regimen 
6–1 and 7–1), or increased by 1 g until reaching target or 126 days if Csim_real < 14 mg/L (Regimen 6–2 and 
7–2). The remaining dose-adjustment strategies were the same as Regimen 2. (f) A regimen where patients 
started with an individualized dose that remained unchanged until reaching target or 105 days if Csim_real 
< 14 mg/L. The remaining dose-adjustment strategies were the same as Regimen 2. (g) A regimen where 
patients started with 4 g/day for the first 21 days and the next dosage was determined that allowed Csim_ipred 
on day 98 to reach the target (Regimen 9). The remaining dose-adjustment strategies were the same as 
Regimen 8. Csim_real, simulated ‘real’ mitotane concentrations based on individual parameters, Csim_pred, model 
predictions based on patient characteristics, Csim_ipred, model predictions using individual parameters, i.e. 
incorporating the inter-individual variability (ηIIVi) estimated based on the first monitored concentration.

peutic window after reaching the target (Po.window), were calculated and compared across 
different strategies. Ptoxicity represents the probability of causing toxicity in the early phase 
of treatment, and Po.window represents the ability to maintain the concentration within the 
therapeutic window. Meanwhile, the median maximum and minimum Csim_real, as well as 
the range of determined starting doses, were also collected and evaluated. As an optimized 
regimen is expected to be able to ensure a shorter target-reaching time and well-maintain 
the concentration within the therapeutic window while not causing much toxicity, the 
optimization target was defined as the mean Ttarget ≤ 90 days (3 months), the mean Ptoxicity 
≤ 10%, and the mean Po.window ≤ 15%.

Using the optimized regimen, a Shiny application was created based on the Shiny package 
(version 1.4.0) and the RxODE package in R (The R Foundation for Statistical Computing) 
in order to perform simulation for a random patient and to elucidate an option of providing 
treatment advice for a new patient based on the model. A detailed description is shown 
in Online Resource 6.2.
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3.  Results

3.1  Patients and data
Data from 48 patients with ACC (21 males and 27 females) were included in the PopPK 
analysis. The characteristics of patients are summarized in Table 6.1. Patients received 
mitotane treatment between 2002 and 2017, and the median duration of treatment was 
713.5 days (range 90–2856). The total daily dosage ranged from 0.5 to 16 g/day and was 
divided into one to four doses. Five (two patients), six (one patient), and eight (one patient) 
daily dosages were also applied occasionally. Forty-one patients reached the concentration 
target during treatment, among whom 16 patients reached the target after 150 days. In total, 
914 concentration data points were collected from patients’ electronic hospital records, 

Table 6.1: Patient characteristics (n = 48)

Characteristic Value/mean SD Range

Patient characteristics
No. of patients 48
Sex, male [n (%)] 21 (43.8)
Age, yearsa 52.0 12.1 22.6–76.8
Weight, kga (n = 2 no record) 80.0 15.9 52.5–120
Height, cma (n = 5 no record) 172 10.0 154–193
BMI, kg/m2a (n = 5 no record) 27.1 4.48 18.2–38.3
LBW, kga (n = 5 no record) 55.8 10.0 39.7–78.5
ASAT, IU/Lb (n = 1 no record) 45.15 35.3 16–185
ALAT, IU/Lb (n = 1 no record) 42.68 35.6 9–197
γGT, IU/Lb (n = 1 no record) 278.70 215.9 55–898
GFR, > 50% of records were normal [n (%)] (n = 7 no record) 39 (95.1)
Cholesterol, mmol/Lb (n = 11 no record) 6.54 1.56 3.6–11.6

Disease characteristics [n (%)]
ENSAT I, patients 2 (4.2)
ENSAT II, patients 19 (39.6)
ENSAT III, patients 10 (20.8)
ENSAT IV, patients 17 (35.4)

Target-reaching characteristics
No. of patients who reached the target 41
150 days [n (%)] 16 (39.0)
≤ 90 days [n (%)] 19 (46.3)
Target-reaching time, days 142 113.9 24–579
Duration of treatment, days 742 553.2 90–2856

SD, standard deviation; BMI, body mass index; LBW, lean body weight; ASAT, aspartate transaminase; ALAT, 
alanine transaminase; γGT, gamma-glutamyl transferase; GFR, glomerular filtration rate; ENSAT, European 
Network for the Study of Adrenal Tumors.
a At the start of treatment.
b Mean record of each patient.
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33 of which were below the LLOQ. The time-course of collected mitotane concentrations 
is shown in Figure 6.2. Nine patients contributed multiple sampling data within one 
treatment interval and 13 patients had more than one data point collected after treatment 
discontinuation. The median number of data points contributed by each patient was 16.5, 
ranging from 2 to 47.

Data from 48 patients with ACC (21 males and 27 females) were included in the PopPK 
analysis. The characteristics of patients are summarized in Table 6.1. Patients received 
mitotane treatment between 2002–2017 and the median duration of treatment was 713.5 
days (range from 90–2856 days). The total daily dosage ranged from 0.5–16 g per day and 
was divided into one to four doses. Five (2 patients), six (1 patient), and eight (1 patient) 
daily dosages were also applied occasionally. Forty-one patients reached the concentration 
target during treatment, among whom 16 patients reached the target after 150 days. In total, 
914 concentration data points were collected from patients’ electronic hospital records, 
33 of which were below the LLOQ. The time-course of collected mitotane concentrations 
was shown in Figure 6.2. Nine patients contributed multiple sampling data within one 
treatment interval and 13 patients have more than one data point collected after treatment 
discontinuation. The median number of data points contributed by each patient was 16.5, 
ranging from 2 to 47.

Figure 6.2:  Mitotane concentration-time curve collected from patients on logarithmic scale. Inserts show 
the data during the first 600 days of treatment.
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3.2  The basic model
Based on the sub-dataset containing data from the nine patients with multiple sampling 
data within one treatment interval, the KA was estimated as 22.1 (/day) and 15.0 (/day) 
under a one-compartment and a two-compartment model structure, respectively. A 
three-compartment model could not be identified, since (1) the time-course of mitotane 
concentration did not meet the characteristics of a three-compartment model; and (2) when 
running the three-compartment model, the parameters were shown to be unidentifiable. 
The basic models were then developed by fitting the full dataset with fixed KA and 
incorporating IOV on CL/F. The relative standard error (RSE) parameter estimates of 
both two-model structures were all within the acceptable range (< 30%). The objective 
function value (OFV) of the two-compartment model was reduced by 92.13 compared 
with that of the one-compartment model (p < 0.001, degree of freedom = 4), suggesting an 
improvement on the model fitness. Therefore, the two-compartment model was ultimately 
selected for describing mitotane PK profiles in patients with ACC in this study. The model 
structure is shown in Online Resource 6.1, Figure S6.1. The parameter estimates of the 
basic model are shown in Table 6.2. The high percentage coefficient of variation (CV%) 
of IIV for all parameters was identified, and the CV% of IIV for the apparent distribution 
rate constant (Q/F) was even higher than 100%.

3.3  Pharmacogenetic analysis
For each patient, the genotyping results of the 959 SNPs from the DMETTM platform 
were obtained. A list of these SNPs can be found in Online Resource 6.3. All SNPs 
were in Hardy–Weinberg equilibrium (p ≥ 0.0001). A flow diagram of the selection of 
genetic variants is shown in Figure 6.3. Eventually, 172 SNPs were included for further 
investigation. Among these 172 SNPs, 55 had less than four patients belonging to the 
minor homozygous group. The ‘NoCall’ result was reported in one patient in 19 SNPs 
and the ‘Possible Rare Allele’ result was reported in one patient in one SNP. The results of 
these patients were thus not included in the association analysis of corresponding SNPs. In 
contrast, the ‘Zero Copy Number’ result occurred in three SNPs in 8, 24, and 24 patients, 
respectively. Thus, patients with a ‘Zero Copy Number’ were treated as a different genotype 
group in the association analysis of these three SNPs.

Finally, the result of the association test showed that 11 SNPs, as shown in Online Resource 
6.1, Table S6.1, were potentially related to mitotane clearance (p ≤ 0.05). Among these 
11 SNPs, the genotyping results of CYP2C18 1154C>T (rs2281891) and CYP2C19*2 
(rs4244285) were shown to be 100% in linkage disequilibrium in our dataset, which was 
the same as the genotyping results of SLCO1B3 334G>T (rs4149117), 699A>G (rs7311358), 
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and 1557G>A (rs2053098) and that of the three SNPs located on VKORC1 (283+124G>C, 
174-136C>T, and -1639G>A). The results of the 11 identified SNPs were subsequently 
combined into the full dataset for stepwise covariate analysis.

Figure 6.3:  Selection of the genetic variants. Excl. excluding, Ch X chromosome X, DMET™ Drug Metabolizing 
Enzymes and Transporters, CNVs copy number variations, SNPs single nucleotide polymorphisms.

959 SNPs

Excl. 57 SNPs call rate < 0.97

902 SNPs

Excl. 20 SNPs on Ch X

882 SNPs

881 SNPs

Excl. 709 SNPs Minor allele frequency <0.1

Excl. 1 Triallelic SNP

172 SNPs

1931 SNPs

Excl. 972 SNPs based on a 
translation file recommended 
by Affymetrics®

1936 genetic variant
from DMETTM plus array

Excl. 5 CNVs

3.4  The final model
The parameter estimates of the final model are shown in Table 6.2. The CYP2C19*2 
(rs4244285), SLCO1B3 699A>G (rs7311358), and SLCO1B1 571T>C (rs4149057) 
genotypes, and LBW at the start of treatment, with power relation, were found to have a 
significant effect on the CL/F of mitotane (Table 6.2). Carrying the ‘A’ variant in CYP2C19*2 
reduced the CL/F by 44.9%, and carrying ‘G’ variant in SLCO1B3 699A>G resulted in a 
39.9% reduction in CL/F (Table 6.2). As for SLCO1B1 571T>C, the CL/F of patients carrying 
one ‘C’ variant decreased to 40.2% that of wild-type patients, while the CL/F of patients 
carrying two ‘C’ variants decreased to 30.2%. The distribution of ηIIVi_CL derived from the 
basic model in each genotype group of the above three SNPs is shown in Online Resource 
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6.1, Figure S6.2. In addition, FAT at the start of treatment with power relation was found 
to significantly influence the apparent distribution volume of the central compartment 
(Vc/F). The inclusion of these covariates decreased the CV% of CL/F and Vc/F from 67.0% 
and 68.1% to 43.0% and 47.2%, respectively. Overall, the parameter estimates were shown 
to be in good agreement with the bootstrap results (Table 6.2).

The GOF plots (Figure 6.4) show that the individual predictions of the final model are 
in good accordance with the observations, while the population predictions are slightly 
deviated from the observations. The conditional weighted residual errors (CWRES) 
randomly distributed around zero, without obvious trends over time or across population 
predictions. The pcVPC plot (Figure 6.5) shows that the 5th, 50th, and 95th percentiles of 

Figure 6.4:  Goodness-of-fit plots of the final population pharmacokinetic model of mitotane in patients 
with adrenocortical carcinoma, including observations versus (a) population predictions and (b) individual 
predictions, and CWRES versus (c) time and (d) populations predictions. The black dotted lines represent y = 
x (a, b) and y = 0 (c, d), and the black dashed lines represent the corresponding LOESS regressions. CWRES; 
conditional weighted residual errors; LOESS, locally estimated scatterplot smoothing.
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prediction-corrected concentrations can be mostly adequately covered by the 95% confi-
dence interval (CI) of the corresponding percentiles of simulations, although a few large 
prediction-corrected concentrations are present. The NPDE results are shown in Online 
Resource 6.1, Figure S6.3. 

3.5  Simulation results 
The simulation results of different regimens in included patients who originally reached 
the target (n = 41) are summarized in Table 6.3.

The previously suggested high-dose regimen (Regimen 1) resulted in the lowest Ttarget but 
the highest Ptoxicity. The Csim_real can also not be well-maintained within the therapeutic range. 

As for the newly designed strategies, if all patients started with the same dosage (Regimen 
2–2 g, 2–4 g and 2–6 g), the increase in the starting dosage reduced the Ttarget but increased 
Ptoxicity and weakened the ability of maintaining Csim_real within the therapeutic range. When 
determining the starting dose individually (Regimen 3–77 day, 3–98 day and 3–119 day), 
Regimen 3–98 day fulfilled the optimization target and resulted in a lower Ttarget but higher 
Ptoxicity and Po.window compared with Regimen 2–4 g. The range of determined starting dose 
was in accordance with what is currently recommended [26] (Table 6.3). 

Figure 6.5:  Prediction-corrected visual predictive check plot of the final model on the logarithmic scale. 
Black dashed lines represent the 50th, 95th and 5th percentiles of the prediction- corrected observations; light-
grey shading represents the 95% confidence interval of the 95th and 5th percentiles of the simulations; and 
dark-grey shading represents the 95% confidence interval of the 50th percentiles of the simulations.
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Compared with Regimens 2–4 g and 3–98 day, increasing the dose reduction amount to 4 
g when Csim_real > 20 mg/L reduced the Ptoxicity and Po.window, whereas setting a 50% deduction 
when Csim_real > 20 mg/L reduced the Po.window but increased the Ptoxicity (Regimen 4 and 5). 
Both of these changes did not affect Ttarget. In contrast, when adjusting the dose change 
amount when Csim_real < 14 mg/L, the evaluated regimens did not provide better results 
(Regimens 6 and 7). 

Regimen 8, where a constant starting dose determined by the model was applied, provided 
generally better results compared with starting with 4 g/day for all patients (Regimen 2–4 
g) in terms of Ttarget, Ptoxicity, and the ability to maintain concentration within the therapeutic 
range. The suggested starting dose range (3–7 g, median 5 g) was slightly beyond the 
current recommended range but was considered to be acceptable. In comparison, when 
determining a constant dose using individual PK parameters (incorporating IIV estimates) 
[Regimen 9], the Po.window and maximum Ttarget  decreased. Although Ptoxicity increased, it was 

Table 6.3: Simulation results of different treatment regimens for included patients who originally reached 
the target (n = 41)

Regimen 
(Figure 6.1)

Mean 
Ttarget (day)

Max  
Ttarget (day)

Mean  
Ptoxicity 
(%)

Mean  
Po.window (%)

Median  
max / min 
Csim_real (mg/L)

Starting 
dose range 
(g) 

1 54.22 125 23.6 18.35 22.3 / 13.11 -
2–2 g 133.98 236 4.16 12.6 20.65 / 13.14 2
2–4 g 89.8 182 7.01 13.15 20.90 / 13.20 4 *
2–6 g 60.61 149 13.85 15.13 21.13 / 13.09 6
3–77 day 73 173 10.63 12.7 21.07 / 13.29 3.5–7
3–98 day 85.07 182 9.26 14.35 21.03 / 13.16 3–6 *
3–119 day 97.9 191 6.44 12.22 20.96 / 13.21 2.5–5
4–(-4 g) 89.8 182 5.96 12.66 20.91 / 13.22 4 *
4–50% 89.8 182 8.82 12.37 20.91 / 13.22 4 *
5–(-4 g) 85.07 182 7.92 13.01 20.84 / 13.14 3–6 *
5–50% 85.07 182 11.13 12.21 20.84 / 13.22 3–6
6–1 91.12 194 6.61 13.37 20.84 / 12.91 4
6–2 74.32 151 14.34 16.26 21.57 / 13.02 4
7–1 86.12 194 8.52 14.69 21.03 / 12.96 3–6 *
7–2 80.27 160 14 15.53 21.46 / 12.87 2.5–5
8 87.85 191 5.05 11.26 20.34 / 13.30 3.5–7 *
9 87.8 161 5.56 10.72 20.33 / 13.09 3–10 *

Ttarget, target reaching time (the day when simulated mitotane concentration ≥ 14 mg/L), Ptoxicity , percentage 
of days when simulated mitotane concentrations were higher than the upper limit of mitotane therapeutic 
window (20 mg/L) in the first 200 days, Po.window, percentage of simulated mitotane concentrations located 
outside the therapeutic window after reaching the target, max maximum, min minimum, * indicates the 
regimen fulfills the optimization target, Csim_real simulated ‘real’ mitotane concentrations based on individual 
parameters.
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still low enough. The suggested doses under Regimen 9 were relatively higher (3–10 g) 
since IIV was taken into account.

Overall, Regimens 2–4 g, 3–98 day, 4–(-4 g), 4–(-50%), 5–(-4 g), 7–1, 8, and 9 fulfilled the 
optimization target. The individualized starting dose resulted in a lower Ttarget but higher 
Ptoxicity compared with the fixed starting dose. Regimens 3–98 day and 5–(-4 g) provided 
the lowest mean Ttarget, while regimen 5–(-4 g) resulted in lower Ptoxicity. Regimen 8 provided 
the lowest Ptoxicity and Regimen 9 provided the lowest maximum Ttarget and mean Po.window. 
Based on these results, Regimen 5–(-4 g) and Regimen 8 were considered to be more 
beneficial, while Regimen 9 could also be applied, considering the patients’ tolerance to 
the level of dose increase.

The Shiny app was established based on the final model, and the treatment strategy 5–(− 4 
g) was applied since this regimen provided the lowest mean Ttarget. A reduced model where 
the effect of pharmacogenetic variation was not included was also built in to serve as an 
alternative option for patients when genotyping results were not available. The results are 
shown in Online Resource 6.2.

4.  Discussion

In the current study, a two-compartment PopPK model was developed that adequately 
described the PK profile of mitotane in patients with ACC. The covariates identified 
explained 24% and 20.9% of random variability in mitotane clearance and distribution 
volume, respectively. As mitotane distributes in most body tissues, predominantly in the 
fat [1], the two-compartment model structure is considered to also be in line with the PK 
characteristics of mitotane, although the wide 95% CI of the Q/F parameter still indicates 
uncertainty in the estimation. A three-compartment model structure, which has been 
previously applied on mitotane [8], could not be identified in this study as the time-course 
of mitotane concentration did not meet the characteristics of a three-compartment model 
and parameter estimates for the three-compartment model were found to be unidentifiable.

Because of the limited data in the absorption phase, KA was first estimated based on a 
sub-dataset and then fixed to analyze the full dataset. Precise KA estimation was unidentifi-
able if estimating based on the full dataset. The estimates of Vc/F and Vp/F were relatively 
large, which is in accordance with previous reports and the fact that mitotane distributes 
in many body tissues [1, 3]. The separate effects of LBW and FAT on mitotane distribution 
volumes were of interest in this study as they are more realistic covariates physiologically 
[3, 4]. As a result, FAT was found to be a significant covariate on the Vc/F. The estimated 
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half-life of mitotane in the included patients ranged from 16.4 to 700.6 days, with a 
median of 101.5 days. This range is wider than what has been previously reported [1, 2], 
which may be explained by the larger number of patients included in the current study 
than in the original study [2]. Incorporating IOV on CL/F in the current study explained 
the intrasubject variability. The estimates of IOV indicate an overall increasing clearance 
during the first 500 days, followed by a decrease thereafter (Online Resource 6.1, Figure 
S6.4). This dynamic indicates that a self-induction in mitotane clearance, which has been 
suggested previously [3], may exist temporarily.

For the first time, the current study explored and quantified the potential effect of pharmaco-
genetic variation on mitotane clearance in patients with ACC. Due to the lack of knowledge 
regarding the PK pathway of mitotane, a wide range of SNPs from the DMET™ Plus array 
were considered. However, because of the limited number of patients, it was decided to 
focus on the SNPs with known functionality by adopting a preset selection [17], although 
an exploratory analysis based on all genetic variants from the DMET™ Plus array was also 
performed. The flow diagram of the SNP selection and the nine additional SNPs that are 
potentially correlated to mitotane clearance if the preset selection was not considered are 
shown in Online Resource 6.1, Table S6.2 and Figure S6.5. Genes located on the X chromo-
some were excluded since only the general influence of sex on mitotane PK was considered.

Eventually, three SNPs, i.e. CYP2C19*2 (rs4244285), SLCO1B3 699A>G (rs7311358), and 
SLCO1B1 571T>C (rs4149057), were included in the final model and were considered 
as the pharmacogenetic polymorphisms that should be considered for mitotane dose 
selection. This result also suggests that the CYP2C19 enzyme and SLCO1B3 and SLCO1B1 
transporters for drug uptake in the liver might be involved in the mitotane PK pathways, 
but further confirmation is required.

In fact, in our dataset, CYP2C19*2 was in 100% linkage disequilibrium with CYP2C18 
1154C>T (rs2281891), which was the same as SLCO1B3 699A>G with SLCO1B3 334G>T 
(rs4149117) and SLCO1B3 1557G>A (rs2053098). Comparable high linkage disequilibrium 
was also found in 1000 Genomes CEU population (Utah residents with Northern and 
Western European ancestry). Compared with CYP2C18 1154C>T, for which no sufficient 
evidence has been found regarding the effect on the drug PK, the ‘A’ variant of CYP2C19* is 
known to be a nonfunctioning variant and has been demonstrated to decrease the activity 
of CYP2C19 [27, 28]. Similarly, the variants of SLCO1B3 699A>G with SLCO1B3 334G>T 
have been reported to be associated with a decrease in drug clearance, and SLCO1B3 
699A>G has a stronger level of clinical annotations [29, 30]. Therefore, CYP2C19*2 and 
SLCO1B3 699A>G were included in the final model.  
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CYP2B6*6, which has been reported to be related to mitotane plasma concentrations 
detected at 3 and 6 months [10], was not found to have a significant effect on mitotane 
clearance in the current study. Among the five SNPs located on CYP2B6 that were included 
in the association analysis, none were significantly related to mitotane clearance (p > 0.05). 
This discrepancy may be due to the much longer observation period in the present study. 
One SNP located on CYP2C9, CYP2C9*2 (rs1799853), was also not found to be significant; 
however, the evidence of the involvement of CYP2C9 is in fact insufficient.

The predictability and stability of the final model were confirmed to be acceptable. In the 
pcVPC plot, a few prediction-corrected concentrations are inadequately covered by the 
simulations. A possible explanation is that the observations at corresponding time points 
are from a single patient and the population prediction of this patient is much smaller than 
real observations. The deviation of population predictions from observations can also be 
seen in the GOF plots. Patients’ adherence and other unknown factors may also introduce 
additional bias. Identification of additional covariates, such as the effect of co-medication 
and food intake, might improve the population predictions.

Based on the final PopPK model, several mitotane treatment strategies were designed and 
evaluated by simulations. A regimen with a bolus dose followed by a maintenance dose 
was not considered as this regimen requires a high dosage, which is not tolerable for some 
patients. Among the regimens that fulfilled the optimization target, applying the individual 
starting dose determined by the model was demonstrated to shorten the time to achieve 
the therapeutic window compared with starting with a fixed dose for all patients. Under 
the setting of individualized starting dose, the regimens with a stepwise increasing dose at 
start required less time to reach the therapeutic target, while the regimen with a constant 
starting dose demonstrated the lowest risk of having toxicity. The determined individual 
starting dose was also acceptable. In addition, the newly designed dose-adjustment strate-
gies were able to satisfactorily keep the mitotane concentrations within the therapeutic 
range. Therefore, determining the starting dose using the developed model is considered 
to be most beneficial in terms of shortening the time to reach the therapeutic target and 
limit the risk of toxicity. However, due to the fact that a shorter Ttarget is normally paired 
with a higher Ptoxicity, it is suggested to consider, based on a patient’s condition, whether the 
increased risk of having toxicity can be tolerated in order to gain the benefit of a shorter 
time to reach the therapeutic target when selecting a dosing regimen.

Obtaining individual parameters based on one (or more) TDM result with the PopPK 
model, and determining the dose amount accordingly, can also decrease the risk of toxicity 
while providing a satisfactory target reaching time; thus, this is also a promising strategy. 
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However, patients’ tolerance to the high level of dose increase needs to be considered when 
applying this strategy. This method can also be useful to estimate an adequate dose for 
the drug concentration level maintenance after reaching the therapeutic window, thereby 
decreasing the frequency of dose adjustment.

Simulation results also indicate that in order to reduce the risk of having toxicity and to 
effectively maintain mitotane concentration within the therapeutic range, a better strategy 
is to set the concentration boundary of dose decreases at 18 mg/L instead of 20 mg/L. This 
early dose adjustment takes into consideration the 7-day period when the monitoring result 
is unknown and the dose is not adjusted. The concentration boundary of dose increases 
needs to be 14 mg/L since it affects the adequacy of maintaining the plasma concentra-
tion above 14 mg/L. The frequency of TDM was set at once every 21 days, as suggested by 
the guideline in the simulation. If TDM is performed less frequently, a larger dose change 
step will be required.

The current study has some limitations. First, the small number of patients included in 
this study and the exploratory characteristics of this analysis may influence the power 
of covariate analysis, especially for pharmacogenetic analysis. However, as the dataset 
consisted of concentrations on different occasions for each patient, which enabled differ-
entiation between IIV and intrasubject variability (i.e. IOV) in clearance, the certainty of 
the possible genotype effect on clearance, which is more likely to be covered by IIV since 
genotype is a constant factor in patients, was increased. Nonetheless, further validation 
with an external dataset to replicate the findings is warranted to confirm the identified 
associations and to translate the findings into a clinical recommendation. However, since 
ACC is a very rare disease (1 per million per year), the collection of another comparable 
or even larger dataset will be challenging. Therefore, an in vitro assay might be more 
feasible in future studies to substantiate the activity of the suggested enzymes in mitotane 
PK. Second, the model lacks a strong ability to accurately predict high concentrations 
(e.g., peak concentrations) due to the limited data input in the absorption and distribution 
phase. Furthermore, the accuracy of parameter estimates may be affected by our simpli-
fication of multiple daily dosing to a single dose. However, the prediction of mitotane 
trough concentrations and the suggestion of daily dose based on the model will not be 
significantly affected. Therefore, we believe this model is still fit for the current applica-
tion. Third, the impact of coadministrated drugs and food intake on mitotane PK was not 
taken into account in this study due to the lack of data.
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5.  Conclusions

The current study presents a two-compartment PopPK model that well-characterizes 
mitotane PK profiles in patients with ACC. The polymorphisms of CYP2C19*2 (rs4244285), 
SLCO1B3 699G>A (rs7311358), and SLCO1B1 571T>C (rs4149057) were found to be 
correlated to mitotane PK. Further external or in vitro evaluation is suggested to confirm 
the results. Moreover, optimized mitotane treatment schedules for patients with ACC were 
identified by simulation and the developed model can be of help to individualize the initial 
dose. These strategies should be confirmed in a prospective study 

Key points

•	 A two-compartment population pharmacokinetic (PK) model with first-order absorp-
tion and elimination was developed for mitotane based on PK data collected from 48 
adrenocortical carcinoma patients.

•	 The pharmacogenetic variation of CYP2C19*2 (rs4244285), SLCO1B3 699A>G 
(rs7311358), and SLCO1B1 571T>C (rs4149057) was found to have a significant effect 
on mitotane clearance. Fat amount, which was defined as the difference between total 
body weight and lean body weight, had a significant effect on the central distribution 
volume.

•	 With the help of the model, mitotane treatment can be guided and optimized for indi-
vidual patients. Further validation of the findings is warranted to confirm the results.

Code availability

PopPK analysis was performed using the FOCEI method implemented in NONMEM 
software version 7.4.1 (ICONDevelopment Solutions). Statistical analysis, plot generation, 
and simulations were performed using R version 3.6.1 (The R Foundation for Statistical 
Computing). The R script of the Shiny application established in this study for simulation 
can be found at https://github.com/AnyueYin/Shiny-app-script-for-model-simulation-
--Population-PK-and-PG-analysis-of-mitotane. 
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Online Resource 6.1: Supplementary methods, figures and tables

Supplementary population PK analysis methods
One-, two- and three-compartment models, with first-order absorption and first-order 
elimination, were explored as the structural model. Relative standard error (RSE) of 
parameters, which represent the precision of parameter estimates, and the objective 
function value (OFV) were considered when evaluating the structural models. The one 
with acceptable RSE and lower OFV was selected as the final basic model structure. 

Inter-individual variability (IIV) of parameters were estimated with Eq. 6.1, where Pi 
represents the parameter of ith individual and was assumed to be log-normally distributed, 
Pt represents typical value of the parameter, and ηIIV represents the random IIV which 
was assumed to be normally distributed with mean of 0 and variance of ωi

2. In addition, 
inter-occasion variability (IOV), which reflects the intra-individual variability, of apparent 
systematic clearance (CL/F) was also included when analyzing the full dataset. As is shown 
in Eq. S6.1, ηIOV represents the random IOV. The distribution of ηIOV in each occasion was 
assumed to be similar and normally distributed with mean of 0 and variance of ω2

2. In 
this study, every 200 days of treatment was defined as an occasion as the total observation 
periods of the patients were long. 

The residual error was characterized with a combined proportional and additive model 
as is shown in Eq. S6.2, where Obs represents observations, IPRED represents individual 
predictions, and ε1 and ε2 represent the proportional residual error and additive residual 
error respectively which were assumed to be normally distributed with mean of 0 and 
variance of σ1

2 and σ2
2, respectively.

								        Eq. S6.1

								        Eq. S6.2

As for the covariate analysis, the identified SNPs, as well as patients’ demographic informa-
tion and clinical characteristics were considered. For continuous covariates, for each patient 
the mean values of all measurements during the monitoring period were taken. In case of 
missing continuous covariates, the corresponding median value of all patients was assigned. 
For patients who only missed HT but not WT, LBW was calculated using real WT and 
imputed HT. For GFR, 0 (normal) was assigned if ≥ 50% of the collected patient’s records 
were 0 otherwise 1 was assigned. Patients who missed GFR measurements, 0 was assigned.
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The effect of all above covariates on mitotane CL/F and the effect of WT, LBW, FAT, and 
gender on apparent distribution volumes (V/F) were investigated using stepwise covariate 
modelling (SCM) function implemented with Perl-Speaks-NONMEM (version 4.7.0) [1]. 
Both a forward inclusion (p < 0.05) and a backward elimination process (p < 0.01) were 
performed to identify significant covariates. For SNPs that were in 100% linkage disequi-
librium, if they were included during the SCM analysis, the more clinically relevant ones 
would be selected in the final model. The effects of continuous covariates were investigated 
with both linear relation (Eq. S6.3) and power relation (Eq. S6.4), where Pi represents the 
parameter of ith individual, Pt represents typical value of the parameter, and ηi represents 
the individual variability, θCOV represents the estimate of covariate effect, COVi represents 
the covariate value of ith individual, COVm is the median value of the covariate. Categorical 
covariates were analyzed with Eq. S6.5, where θCOV was set as 1 for reference category and 
was estimated for other categories.

								        Eq. S6.3 

								        Eq. S6.4

								        Eq. S6.5

Supplementary model evaluation methods
pcVPC was performed by 1000 times of simulation and the data points, 5th, 50th, and 
95th percentiles of prediction-corrected observations were plotted together with 95% 
confidence intervals (CI) of 5th, 50th, and 95th percentiles of simulations. NPDE evaluation 
was performed with npde package (version 2.0) implemented in R statistics software based 
on 1000 times of simulations. The bootstrap was conducted by 1000 runs of bootstrap 
replicates sampled from original dataset with replacement, which was stratified on whether 
the subject contributed more than two data points after the end of treatment. The median as 
well as 95% CI of parameters were derived and compared with original parameter estimates.

Supplementary simulation method
Based on the final model structure, simulations were performed to evaluate different 
designed treatment strategies and approaches of starting dose determination. Patients were 
assumed to receive treatment as long as their last mitotane concentration monitoring time. 
The blood samples were assumed to be collected once every 2 weeks after knowing the 
result of the last sample, and the concentration of mitotane was assumed to be known 7 
days after blood collection, which is in accordance with the optimal scenario in the clinical 
practice. The dose amount was subsequently adjusted accordingly. 
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As a comparison, a previous recommended ‘high-dose’ starting regimens, where the 
mitotane dose starts with 1.5 g per day and increases up to 6 g per day in 4 days, were 
simulated (Regimen 1) [2]. 

As for the newly designed regimens, the starting dose was 1) set as 2 g, 4 g, or 6 g for all 
patients according to the guideline [3] (Regimen 2, 4, and 6) or 2) set individually consid-
ering patients’ characteristics with the help of the model (Regimen 3, 5, 7, and 8). As the 
expected time to reach the therapeutic target of mitotane is 3 to 5 months, the individually 
starting daily mitotane dose was estimated as the dose that allows the predicted mitotane 
concentrations on day 98 (Csim_pred98) reach the therapeutic target. The Csim_pred98 was obtained 
by performing simulation under a regimen of 6 g per day increasing by 0 g (Regimen 8), 0.5 
g (Regimen 2, 3, 4, 5, 6–1, and 7–1), or 1 g (Regimen 6–2 and 7–2) once every 21 days till 
the 98th day of treatment, with only typical parameter values and covariate effects consid-
ered. Given the linear PK feature of mitotane, the suggested starting daily dose (Dose) was 
therefore determined by Eqs. S6.6 and S6.7, where ⌈X⌉ represents the least integer greater 
than or equal to X, ⌊X⌋ represents the greatest integer less than or equal to X. Determining 
the starting dose based on the Csim_pred on day 77 and 119 were also used for comparison.

								        Eq. S6.6

								        Eq. S6.7

Besides the above regimens, since individual parameters could be estimated after knowing 
one TDM result, Regimen 9 was also designed and evaluated. In this strategy, patients were 
assumed to start with 4 g per day until the first TDM result was obtained. Csim_real of each 
patient on day 14 was simulated, based on which the ηIIVi and ηIOVi were estimated for each 
patient using NONMEM with the POSTHOC function. Subsequently, the next daily dose 
of each patient was determined with Eqs. S6.6–S6.7 according to the individual Csim_pred98 
(Csim_ipred98) under the daily dosing of 6 g, based on the model incorporating ηIIVi as was 
suggested in a previous study [4]. The constant starting regimen was applied in this regimen. 

In Regimen 2 to 8, the dose increasing amount when Csim_real < 14 mg/L was set differ-
ently before and after the target was reached (starting and maintenance regimen), in order 
to limit the toxicity at start and maintain the mitotane trough concentration within the 
therapeutic range at a later phase. The combination of 0 g/1.5 g, 0.5 g/1.5 g, 0.5 g/1 g, and 1 
g/1.5 g were simulated and evaluated. Regimen 2 to 7 applied stepwise increasing starting 
regimen and Regimen 8 applied constant starting regimen. A maximum number of days 
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that follows the starting regimen was set as 126 (around 4 months) and 105 (98+7 days) 
for the stepwise increasing or constant starting regimens, respectively.

When Csim_real reached 20 mg/L, a 50% dose reduction was suggested in Regimen 1. In 
comparison, both fixed dose amount reduction (3 g or 4 g) and 50% reduction were 
evaluated in the newly designed regimens (Regimen 2 to 9). If a reduction resulted in a dose 
level lower than 0 g, then 0 g was applied. Besides, an additional concentration threshold 
of dose reduction, 18 mg/L, with 1 g dose reduction was introduced in Regimen 2 to 9, 
since a 7-day period of no dose adjustment presented.
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Table S6.1: Potential SNPs out of the 959 SNPs that are correlated to mitotane clearance based on the 
association analysis

Gene Common name dbSNP.RS.ID P value

1 CYP2C18 CYP2C18_c.1154C>T(T385M) rs2281891 0.020
2 CYP2C19 CYP2C19*2_19154G>A(P227P) rs4244285 0.020
3 SLCO1B3 SLCO1B3_c.334G>T(A112S) rs4149117 0.027
4 SLCO1B3 SLCO1B3_c.699A>G(I233M) rs7311358 0.027
5 SLCO1B3 SLCO1B3_c.1557G>A(A519A) rs2053098 0.027
6 SLCO1B1 SLCO1B1_c.571T>C(L191L) rs4149057 0.020
7 VKORC1 VKORC1_c.*134G>A(3'UTR) rs7294 0.050
8 VKORC1 VKORC1_c.283+124G>C rs8050894 0.030
9 VKORC1 VKORC1_c.174-136C>T rs9934438 0.030
10 VKORC1 VKORC1_c.-1639G>A(Promoter) rs9923231 0.030
11 UGT1A6 UGT1A6_c.315A>G(L105L) rs1105880 0.042

Supplementary Tables

Table S6.2: Additional potential SNPs that are correlated to mitotane clearance based on the association 
analysis, if the pre-set selection based on a translation file as recommended by Affymetrics® was not 
considered

Gene Common name dbSNP.RS.ID P value

1 CA5P CA5P_A>G(rs11859842) rs11859842 0.029
2 SLC16A1 SLC16A1_c.*1942T>C rs9429505 0.0067
3 CHST10 CHST10_c.*381G>A rs1530031 0.040
4 CYP20A1 CYP20A1_50767C>T(L346F) rs1048013 0.014
5 SLC22A13 SLC22A13_c.*8336G>A rs4679028 0.032
6 UGT2A1 UGT2A1_c.1305-109A>C rs2288741 0.042
7 ADH6 ADH6_c.-930T>C rs10002894 0.012
8 ADH6 ADH6_c.-2874T>C rs6830685 0.012
9 SLCO5A1 SLCO5A1_c.97C>T(L33F) rs3750266 0.015
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Supplementary Figures

Figure S6.1:  The population PK model structure of mitotane. CL/F represents apparent system clearance, 
KA represents absorption rate constant, Vc/F represents apparent distribution volume of central 
compartment, Vp/F represents apparent distribution volume of peripheral compartment, Q/F represents 
apparent distribution rate constant.

Figure S6.2:  The boxplots of estimated ηIIVi_CL in each genotype group of SNP (a) CYP2C19*2 (rs4244285), 
(b) SLCO1B3 699A>G (rs7311358), and (c) SLCO1B1 571T>C (rs4149057).
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Figure S6.3:  Normalized prediction distribution error (NPDE) results of the final population PK model of 
mitotane in patients with ACC, including the quantile–quantile plot (a), the distribution histogram of NPDE 
(b), and the NPDE versus time (c) and population predictions (d). The NPDE results are shown to distribute 
around a mean of 0.03616 with a variance of 1.134.
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Figure S6.4:  The estimates of inter-occasion variability (IOV) over time. Red dashed lines represent loess 
regression result.

Figure S6.5:  Flow diagram of the genetic variants selection if the pre-set selection based on a translation 
file as recommended by Affymetrics® was not considered. Excl. represents excluding, Ch X represents 
chromosome X, DMETTM represent Drug Metabolizing Enzymes and Transporters, CNVs represents copy 
number variations.
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Online Resource 6.2: Shiny app establishing method and results

Shiny app establishment 
Based on the final mitotane population pharmacokinetic model, a Shiny app was established 
for the simulation for a random patient and to elucidate an example of the model application 
on guiding treatment for a new patient. Package shiny (version 1.4.0) and RxODE (version 
0.6-1) in R statistics software (version 3.4.2; R Foundation for Statistical Computing, Vienna, 
Austria) were utilized. The R script can be found through: https://github.com/AnyueYin/
Shiny-app-script-for-model-simulation---Population-PK-and-PG-analysis-of-mitotane. 
Patient gender, weight, and height, which were used to estimate lean body weight (LBW) 
and fat amount (FAT), as well as the results of three SNPs were in the input panel, based 
on which the starting dose was suggested. One hundred times of simulation under an 
optimized mitotane treatment regimen, Regimen 5–(– 4 g), were performed given the 
input information. The 90% prediction interval, 50th percentile of the predictions, target 
reaching time, and suggested starting dose were plotted in the output figure. The residual 
errors were not considered in the simulation. 

Screen shots of the developed shiny app is shown in Figure S6.6. The result shows that 
for a male patient with 85 kg weight and 180 cm height who carries G/G, A/A, and T/C 
for CYP2C19*2 (rs4244285), SLCO1B3 699A>G (rs7311358), and SLCO1B1 571T>C 
(rs4149057), respectively, the 90% prediction interval can nicely locate within the thera-
peutic window of mitotane. The starting dose was suggested as 5.5 g per day and the 
50th percentile of the predictions reached the target on day 92. If the genotype result of 
CYP2C19*2 (rs4244285) changed to G/A, the suggested starting dose became 4 g per day 
and the 50th percentile of the predictions reached the target on day 94. 

In addition, a model with FAT effect on central distribution volume as the only covariate 
(Table S6.3) was also built in the Shiny app as an alternative option to allow dosing advice 
and concentration prediction for patients when genotyping results are not available (Figure 
S6.6c). 
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Table S6.3: Parameter estimates of the final model without genotyping results as covariates

Final model

Parameters Estimate (RSE%) IIV (CV%) [shrinkage, %] IOVa (CV%)

KA (/day) 15.0 fixed - -
CL/F (L/day) 217 (9) 66.3 [7] 31.2
Vc/F (L) 8450 (16) 63.5 [37] -
Vc_FAT (power) 1.12 (18) - -
Vp/F (L) 15500 (15) 80.4 [36] -
Q/F (/day) 609 (28) 100.5 [38] -
Residual errors
PRO (CV%) 16.7 (6) - -
ADD (mg/L) 0.907 (16) - -

FAT, fat amount; RSE, relative standard error; CV, coefficient of variation; IIV, inter-individual variability; IOV, 
inter-occasion variability; PRO, proportional residual error; ADD, additive residual error; CL/F, apparent 
system clearance; KA, absorption rate constant; Vc/F, apparent distribution volume of central compartment; 
Vp/F, apparent distribution volume of peripheral compartment; Q/F, apparent distribution rate constant. 
a Every 200 days of dosing was defined as an occasion.
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Figure S6.6:  Screen shot of the shiny app established based on the final model. (a) A male patient with 85 
kg weight and 180 cm height who carries G/G, A/A, and T/C for CYP2C19*2 (rs4244285), SLCO1B3 699A>G 
(rs7311358), and SLCO1B1 571T>C (rs4149057), respectively. (b) A male patient with 85 kg weight and 180 
cm height who carries G/A, A/A, and T/C for CYP2C19*2 (rs4244285), SLCO1B3 699A>G (rs7311358), and 
SLCO1B1 571T>C (rs4149057), respectively. (c) A male patient with 85 kg weight and 180 cm height whose 
genotyping results are unknown.
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Online Resource 6.3: List of 959 SNPs from DMETTM array of 
which the genotyping results were obtained for each patient

The online version of this article (https ://doi.org/10.1007/s4026 2-020-00913 -y) contains 
this supplementary material, which is available to authorized users.
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Abstract

Background: High-dose methotrexate (HD-MTX) based polychemotherapy is 
widely used for patients with central nervous system (CNS) lymphoma. The phar-
macokinetic (PK) variability and unpredictable occurrence of toxicity remain major 
concerns in HD-MTX treatment. 

Objectives: This study aimed to characterize the population PK of HD-MTX in 
patients with CNS lymphoma and to identify baseline predictors and exposure 
thresholds that predict a high risk of renal and hepatotoxicity. 

Methods: Routinely monitored serum MTX concentrations after intravenous 
infusion of HD-MTX and MTX dosing information were collected retrospectively. 
Acute event of toxicity was defined according to the Common Terminology Criteria 
for Adverse Events (CTCAE) version 5.0. A population PK model was developed 
in NONMEM. Toxicity data were analyzed using a logistic regression model and 
potential baseline and exposure-related predictors were investigated. 

Results: In total 1584 MTX concentrations from 110 patients were available for the 
analysis. A two-compartment population PK model adequately described the data. 
Estimated glomerular filtration rate (eGFR), treatment regimen, albumin, alkaline 
phosphatase, and body weight were identified as significant covariates that explain 
PK variability of HD-MTX. Baseline eGFR and sex were identified as significant 
predictors for renal toxicity, and MTX dose (mg/m2) was the strongest predictor for 
hepatotoxicity. The MTX area under the concentration-time curve (AUC24-∞) and 
concentration at 24 hours (C24h) showed to correlate with renal toxicity only, and 
AUC24-∞ > 109.5 μmol/L*h and C24h > 8.64 μmol/L were potential exposure thresholds 
predicting a high risk. 

Conclusion: A population PK model was developed for HD-MTX in patients 
with CNS lymphoma. The toxicity analysis showed that low baseline eGFR and 
male sex, and high MTX dose are associated with increased risk of acute renal and 
hepatotoxicity, respectively. AUC24-∞ > 109.5 μmol/L*h and C24h > 8.64 μmol/L were 
potential exposure thresholds predicting a high risk of renal toxicity. The models 
hold the potential to guide HD-MTX dosage individualization and better prevent 
acute toxicity.
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1.  Introduction

High-dose methotrexate (HD-MTX)-based polychemotherapy is the standard therapy for 
patients with primary central nervous system (CNS) lymphoma [1, 2]. It is also widely used 
for patients with secondary CNS involvement of diffuse large B-cell lymphoma (DLBCL), 
mainly for those who are naive for HD-MTX [3].   

The standard dose of HD-MTX for patients with CNS lymphoma is 3 g/m2 and is admin-
istrated by intravenous infusion. Methotrexate (MTX) has approximately 50% protein 
binding and is eliminated primarily unchanged by renal excretion (> 80%) while a small 
fraction is eliminated as an metabolite 7-hydroxymethotrexate [4, 5]. 

In routine HD-MTX treatment, MTX concentrations are monitored after each admin-
istration until they reach a safe target (< 0.2 µM). Although HD-MTX dose is based on 
patients’ body surface area (BSA), significant inter- and intra-individual variability in its 
pharmacokinetics (PK) is observed [6-8]. Delayed elimination of MTX due to impaired 
renal function or extravascular fluid collections can occur which will result in a prolonged 
period of MTX exposure and a higher risk of toxicity [4, 7, 8]. Furthermore, the unpredict-
able occurrence of acute toxicity during HD-MTX treatment, including kidney dysfunc-
tion and hepatotoxicity, may result in treatment interruption or delay which could cause 
unfavorable treatment outcome [6, 7]. To improve the outcomes of HD-MTX therapy, 
further individualizing HD-MTX dosage and identifying factors that predict a high risk 
of HD-MTX induced toxicity are desired.  

The risk factors that have been identified for HD-MTX induced renal toxicity in patients 
with lymphoid or hematological malignancy are mostly dose- or exposure-related: doses 
≥ 6 g/m2, area under the concentration-time curve (AUC) in the first administration cycle, 
and dose-normalized concentration at 24 and 48 hours [9-11]. For HD-MTX induced 
hepatotoxicity, studies on risk factors are limited but one study suggested that AUC of 
HD-MTX is associated with hepatotoxicity [12]. Yet, an exposure threshold for toxicity 
which would facilitate better supportive care and treatment individualization for HD-MTX 
is still missing. Moreover, the predictors at baseline for HD-MTX induced toxicities are less 
studied. One study showed that baseline lactate dehydrogenase and albumin correlated with 
the risk of acute kidney injury [13]. Further exploration of potential risk factors at baseline 
for both renal and hepatotoxicity would therefore be beneficial to guide HD-MTX therapy.

Population PK-pharmacodynamic (PD) modeling with mixed-effect models enables to 
quantitatively characterize as well as predict drug PK, response, or toxicity profiles and 
their relationships in both population and individual levels. This approach also enables 
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identification of covariates that explain the observed inter- and intra-individual variabilities 
[14]. Combined with simulations, the developed model can be applied to guide treatment 
rationally [15]. Until now, several population PK models of HD-MTX in patients with 
lymphoid malignancy have been published but many were not specifically focused on 
patients with CNS lymphoma [8, 10, 12, 16-21]. Subsequent toxicity analysis of HD-MTX 
for patients with CNS lymphoma with a model-based approach is still lacking.    

In the current study, based on retrospectively collected data, we performed a population PK 
analysis to characterize HD-MTX PK in patients with CNS lymphoma who received various 
treatment regimens, and explored covariates that explain the variability. Subsequently, the 
occurrence of acute renal and hepatotoxicity were analyzed with a model-based approach 
which aims to identify baseline predictors and exposure threshold that predict a high risk 
of toxicity for each HD-MTX administration cycle.   

2.  Method

2.1  Patients and data
Patients who were diagnosed with CNS lymphoma, treated with HD-MTX based 
polychemotherapy with available dosing information and MTX concentrations in the 
period ranging from 2010 to March 2021 from the Leiden University Medical Center 
(LUMC), Erasmus Medical Center (EMC), and University Medical Center Groningen 
(UMCG) were included. Patients received HD-MTX by intravenous infusion and were 
dosed per body surface area (BSA). All medications that have potential drug-drug 
interaction with MTX (e.g. benzimidazoles and nonsteroidal anti-inflammatory drugs 
(NSAIDs)) were stopped 72 hours prior to the use of HD-MTX.  

The routinely monitored MTX concentrations were retrospectively collected from the labora-
tory information system (LIS). MTX concentrations were analyzed with ARKTM assay [22] 
with a lower limit of quantification (LLOQ) of 18.2 μg/L (0.04 μmol/L) in the LUMC and the 
EMC and 15 μg/L in the UMCG. If the detected MTX was above 50 μmol/L at 24 hours, or 
above 5 μmol/L at 48 hours, or above 0.2 μmol/L at 72 hours after administration of HD-MTX, 
it was defined as delayed elimination [4]. Patients’ demographic characteristics, drug dosing 
information (i.e. treatment regimen, infusion hours, and dose), and laboratory results (i.e. 
serum creatinine (SCr), alkaline phosphatase (ALP), aspartate aminotransferase (ASAT), 
alanine aminotransferase (ALAT), albumin, bilirubin) were collected from patients’ electronic 
health care records. Based on the available data, estimated glomerular filtration rate (eGFR) 
was also estimated with the CKD-EPI creatinine equation and included in the analysis [23].   
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This study is approved by the local Ethical Committee of each institute (number G20.126), 
and did not fall within the scope of the WMO (Medical Scientific Research Act). A waiver 
for informed consent was granted. All performed procedures were in accordance with the 
ethical standards of the institutional medical ethical committee and the 1964 Declaration 
of Helsinki and its later amendments. 

2.2  Population PK modeling
A population PK model was developed based on the available MTX PK data. The unit of 
MTX concentrations was unified to μg/L by multiplying the data reported in μmol/L by 
the molar mass of MTX (454.44 g/mol). The data that were below LLOQ were omitted 
from the analysis due to the small proportion (< 10%) [24]. 

One-, two- and three-compartment models with first-order elimination were explored as 
the structural model. Parameters were assumed to be log-normally distributed and inter-
individual variability (IIV) was quantified. Inter-occasion variability (IOV) was incorpo-
rated on the PK parameter clearance (CL) to account for the intra-individual variability, 
and each administration cycle was defined as an occasion. A combined proportional and 
additive error model was applied to characterize the residual errors. The residual errors of 
data from different medical centers were set to follow the same distribution. The structural 
model was selected based on goodness-of-fit (GOF), objective function value (OFV) and 
the stability of the model.

Subsequently, the covariate effects of patients’ demographic information, treatment 
regimen, time-varying laboratory results on CL, and body size related characteristics 
on volumes of distribution were investigated. The stepwise covariate modelling (SCM) 
function was applied with assistance of Perl-speaks NONMEM (version 4.9) [25]. Model 
selection was based on a reduction in OFV assuming a χ2 distribution, a reduction in IIV 
or IOV, and physiological plausibility. Both a forward inclusion (p < 0.05, ΔOFV < -3.84, 
degrees freedom = 1) and a backward elimination process (p < 0.01, ΔOFV > 6.64, degrees 
freedom = 1) were performed to identify significant covariates. 

2.3  Toxicity analysis 
At each HD-MTX administration cycle, the renal and hepatotoxicity were graded based 
on monitored SCr and ALAT results according to the NCI Common Terminology Criteria 
for Adverse Events (CTCAE) version 5.0, respectively [26]. The ≥ grade 1 toxicity was 
defined as a toxicity event. The data were analyzed with a logistic regression model where 
the probability of having toxicity was estimated. The logit function is shown in Eqs. 7.1–7.3, 
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where base represents baseline logit score, θ is the typical population probability operator, 
ηi represents the random IIV which was assumed to be normally distributed with mean 
of 0 and variance of ω2.

Individual PK parameters obtained from the final PK model were applied to simulate and 
estimate the MTX exposure metrics of interest: AUC between 24 hours after drug admin-
istration to infinity (AUC24- ∞) and MTX concentration at 24 hours (C24h). The AUC24-∞ 
were estimated by integrating the individual concentration-time curves from 24 hours to 
last sample time plus AUC from the last sample time to infinity which was approximated 
as last concentration divided by terminal elimination rate constant (β). 

The baseline predictors and exposure-related predictors were investigated by being 
included linearly into the logit function (Eq. 7.4). The evaluated baseline factors include 
patients’ demographic information, baseline eGFR, ALAT, ASAT, and albumin of each 
administration cycle, dose amount, treatment regimen, dose divided by baseline CL as 
an AUC approximation (AUCbase) of each administration cycle, AUC24-∞ from previous 
administration course (pAUC24-∞), and C24h from previous administration course (pC24h). 
The toxicity status in the previous administration course was also evaluated as a potential 
predictive factor. The inclusion of covariates was based on the reduction in OFV and 
physiological plausibility. A forward inclusion process was performed when investigating 
baseline predictors. Factors that result in a ΔOFV < -3.84 were considered to be significant 
(p < 0.05, degrees freedom = 1). 
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2.4  Model evaluation
The final PK model was evaluated with GOF plots, prediction-corrected visual predictive 
check (pcVPC), and a bootstrap based on 1000 runs of replicated datasets sampled from 
original dataset with replacement. 
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The pcVPC plot was generated based on 1000 times of simulation. MTX concentrations 
were commonly monitored at 24 hours, 48 hours, and 72 hours, and thereafter every 24 
hours after the start of infusion until the concentration was below a threshold. Consequently, 
patients with delayed elimination had a longer follow-up and more samples per patient. 
The same sampling strategy was applied when performing simulations for the pcVPC plot, 
i.e., if the simulated concentration after day 3 fell below 0.1 μmol/L, the next data point 
would not be sampled. The set threshold of 0.1 μmol/L is the median of the second last 
monitored concentration of the collected data after day 3.  

The adequacy of the toxicity model was evaluated with a visual predictive check (VPC). 
The original dataset was simulated 500 times to derive the 90% prediction interval of the 
proportion of patients having toxicity at each administration cycle and over a range of 
covariate values. The prediction interval was compared with the observed results. 

2.5  Software and estimation method
The population modelling analysis was performed with NONMEM (version 7.4.4, ICON 
Development Solutions, Ellicott City, MD, USA) aided with Perl-speaks-NONMEM 
(PsN)  (version 4.9, Uppsala University, Uppsala, Sweden) [27]. Parameters of the 
population PK model were estimated using the first order conditional estimation method 
with interaction (FOCEI). Conditional Laplacian method was used to approximate the 
marginal likelihood in the toxicity analysis. Data management and plots generation were 
performed with R statistics software (version 4.2.1, R Foundation for Statistical Computing, 
Vienna, Austria). 

3.  Results 

3.1  Patients and PK data
In total 110 patients with CNS lymphoma (56 males and 54 females) were included from 
the LUMC (n = 75), the UMCG (n = 17), and the EMC (n = 18). Among the included 
patients, 80 patients (73%) were diagnosed with primary CNS lymphoma, 11 patients (10%) 
were diagnosed with secondary CNS lymphoma, and 11 patients (10%) had secondary 
CNS involvement of systemic DLBCL. The baseline characteristics of the included patients 
from 3 medical centers are shown in Table 7.1. 

In total, 1584 monitored MTX concentrations from 412 administration cycles were 
collected, of which 124 (7.8%) were below the LLOQ and were omitted from the analysis. 
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Table 7.1: Baseline characteristics of the patients included in the current study 

Item N (%) / Median (Range)

Center LUMC UMCG EMC
Number of patients 75 17 18
Age (year) 66 (22–83) 66 (52–73) 67 (51–76)
Sex

Male 42 (56%) 6 (35%) 8 (44%)
Female 33 (44%) 11 (65%) 10 (56%)

Body weight (kg) 78 (53.4–115) 76.5 (46.4–108) 70.1 (49.5–96.3)
Height (cm) 176 (155–195) 169 (158–192) 168 (148–186)
Body mass index (kg/m2) 25.0 (17.6–38.0) 25.0 (17.9–35.4) 23.7 (18.9–34.5)
Body surface area (m2) 1.94 (1.58–2.34) 1.94 (1.44–2.40) 1.8 (1.41–2.05)
ASAT (IU/L) 20 (9–100) 20.3 (10–53) 22.5 (14–58)
ALAT (IU/L) 30.5 (9–286) 43 (16–213) 41 (13–215)
SCr (μmol/L) 64 (37–125) 66 (43–94) 65 (45–98)
eGFR (ml/(min*1.73 m2)) a 93.8 (52.9–159) 89.3 (54–113) 90.3 (66.9–115)
Albumin (g/L) 38.5 (28–49) 37.5 (32.5–45.4) 40 (34–49)
ALP (U/L) 67 (25–297) 60 (44–82) 62.5 (28–118)
Bilirubin (μmol/L) 8 (3–23) 7.7 (3–25.3) 8 (4–19)
Disease type

PCNSL 45 (60%) 17 (100%) 18 (100%)
SCNSL 11 (14.7%) 0 0 
Stage IV DLBCL with CNS involvement 11 (14.7%) 0 0 
Other lymphoma with CNS 
involvement b

8 (10.7%) 0 0

Number of administration cycles per 
patient 

4 (1–8) 4 (3–4) 4 (1–8)

Dose of MTX (mg/m2) 3000 (1500–8000) 3000 (1950–3000) 3000 (1500–3200)
Treatment regimens c

RMP 35 (46.7%) 0 0
MATRIX 40 (53.3%) 0 0
MBVP 0 17 (100%) 18 (100%)

ALAT, alanine aminotransferase; ALP, alkaline phosphatase; ASAT, aspartate aminotransferase; CNS, central 
nervous system; DLBCL, diffuse large B-cell lymphoma; eGFR, estimated glomerular filtration rate; MTX, 
methotrexate; PCNSL, primary CNS lymphoma; SCNSL, secondary CNS lymphoma; SCr, serum creatinine.
a eGFR was estimated with the CKD-EPI creatinine equation.
b Including T cell lymphoma, Follicular lymphoma, and Burkitt lymphoma
c RMP, contains high-dose MTX (HD-MTX), rituximab and procarbazine; MATRIX, contains HD-MTX, high-
dose cytarabine (HD-AraC), thiotepa, and rituximab; MBVP, contains HD-MTX, teniposide, carmustine, 
prednisolone, with or without rituximab or HD-AraC. Details can be found in Online Resource, Table S7.1.

The concentrations were monitored daily after the start of MTX infusion until the concen-
trations fell to a level below 0.2 μmol/L or the LLOQ. The median number of concentra-
tions contributed by each patient to the analysis was 12, ranging from 2 to 35. The delayed 
elimination was observed in 47 (31.3%) patients and the longest follow-up time during one 
administration cycle was 454 hours. Five patients had a treatment interruption of more 
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than 2.5 months and their data before and after the interruption were treated as data from 
two separate subjects. This resulted in 115 subjects in the dataset eventually. The time-
course of all collected MTX concentrations is shown in Online Resource 7.1, Figure S7.1. 

The treatment regimen differs among medical centers (Table 7.1, Online Resource 7.1, 
Table S7.1). The LUMC patients were separated into 2 treatment groups. Older and/or less 
fit patients received HD-MTX with rituximab and procarbazine (RMP). For younger and 
fit patients (< 70 years old), HD-MTX was given with high-dose cytarabine (HD-AraC), 
thiotepa, and rituximab (MATRIX). As for the UMCG and the EMC patients, HD-MTX 
was administered with teniposide, carmustine, prednisolone, with or without rituximab 
or HD-AraC (MBVP). Details about the treatment regimens including infusion durations 
can be found in Online Resource 7.1, Table S7.1. 

3.2  Population PK model
A two-compartment population PK model with first-order elimination provided the best 
fit to the obtained data in HD-MTX in patients with CNS lymphoma. Compared with the 
one-compartment model, the objective function value (OFV) of the two-compartment 
model was 1843.772 units lower (p < 0.01, degree of freedom = 4). Although the three-
compartment model showed to further improve the model fit, the estimated relative 
standard errors (RSEs) of parameters indicated unreliable parameter estimates. Therefore, 
the two-compartment model was selected as the structural model. 

The covariate analysis identified eGFR, treatment regimen, albumin, and ALP are signifi-
cant covariates on CL of MTX (p < 0.01). Body weight was a significant covariate on the 
volume of distribution of the central compartment (V1). The RSEs indicate an acceptable 
precision (< 40%) of most parameters except for the coefficient of ALP effect (Table 7.2). 
The typical MTX CL in patients in the RMP group was estimated to be 16.0 % lower than 
that in the MATRIX group, while the CL differences between the MATRIX and MBVP 
groups were not significant (Table 7.2, Online Resource 7.1, Figure S7.2). The coefficient 
of variation (CV%) of random IIV and IOV for CL decreased from 29.2% and 23.1% to 
15.5% and 12.3%, respectively, after covariate inclusions. The inclusion of IIV on V1 became 
insignificant after covariate inclusions and was therefore fixed to zero (OFV increased by 
2.265). The estimated standard deviation (SD) of the additive residual error approached 
zero and was therefore fixed to 0.0001 μg/L.

The GOF plots in both normal and logarithmic scale showed that the model predictions 
were generally in good accordance with the observations, while the population predictions 
underpredicted the observations at lower concentrations (Figure 7.1). The deviations 
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between model predictions and observations were also observed when the concentrations 
were above 20,000 μg/L. However, when it was explored to remove these data points, the 
new parameter estimates were still within the estimated 95% confidence interval (CI) 
of the current parameter estimates. The conditional weighted residual errors (CWRES) 
were distributed around zero without obvious trends over time, but trends over popula-
tion predictions at lower concentrations can be observed (Figure 7.1). The pcVPC plot 
demonstrated an adequate predictability of the model (Figure 7.2). The final parameter 
estimates were in good agreement with the bootstrap results (Table 7.2).  

Table 7.2: Parameter estimates of the final population PK model of HD-MTX in patients with CNS lym-
phoma

Estimate (RSE)
IIV (CV%) (RSE%) 
[shrinkage]

IOV (CV%) 
(RSE%)

Bootstrap

Median 95% CI

CL (L/h) 21.2 (13%) 15.5 (8%) [10%] 12.3 (6%) 21.4 [17.2, 27.2]
θeGFR 0.0104 (5%) - 0.0104 [0.0093, 0.011]
θTREAT

MATRIX 1 - - -
RMP 0.840 (4%) - 0.839 [0.772, 0.913]
MBVP 1.03 (3%) - 1.03 [0.952, 1.11]

θALB 0.225 (28%) - 0.225 [0.0715, 0.369]
θALP -0.0624 (41%) - -0.0656 [-0.115, -0.0186]

V1 (L) 125 (16%) 0 FIX 126.4 [98.1, 172]
θWT 0.00370 (34%) - 0.00369 [0.00127, 0.00629]

V2 (L) 36.7 (27%) 55.7 (11%) [13%] 38.1 [23.9, 62.4]
Q (L/h) 0.593 (21%) 30.2 (15%) [15%] 0.605 [0.418 0.920]
Residual errors

Prop. (CV%) 25.2% (4%) [18%]a 25.0% [23.0%, 26.9%]
Add. (SD, µg/L) 0.0001 FIX - 0.0001 FIX -

Add., additive residual error; ALB, albumin; ALP, alkaline phosphatase; CI, confidence interval; CL, clearance; 
CV, coefficient of variation; eGFR, estimated glomerular filtration rate; IIV, inter-individual variability; IOV, 
inter-occasion variability; Prop., proportional residual error; Q, distribution clearance; RSE, relative standard 
error; SD, standard deviation; V1, distribution volume of the central compartment; V2, distribution volume 
of the peripheral compartment; WT, weight; MATRIX, RMP, and MBVP, three different treatment regimens.
a Epsilon shrinkage.
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Figure 7.1:  Goodness-of-fit plots of the developed population PK model, including observations versus 
individual predictions in both normal (a) and logarithmic scale (c), observations versus population 
predictions in both normal (b) and logarithmic scale (d), and conditional weighted residual errors (CWRES) 
versus populations predictions (e) and time after last dose (f ). The red dashed lines represent y = x (a, b, c, 
d) and y = 0 (e, f ). Black dashed lines represent corresponding loess regressions.
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3.3  Toxicity analysis
Among the 115 subjects, 51 (44.3%) and 76 (66.1%) subjects developed acute renal and 
hepatotoxicity during at least one administration cycle, respectively. The majority of subjects 
received ≤ 4 courses of treatment (98/115, 85.2%). The observed proportion of patients 
having each grade of renal or hepatotoxicity during each administration cycle were shown 
in Online Resource 7.1, Figure S7.3. The dose was reduced in 13 subjects after they had 
either renal or hepatotoxicity or both. 

The modelling analysis of renal toxicity showed that among the investigated baseline 
factors, the inclusion of age, sex, dose in mg/m2, AUCbase, pC24h, pAUC24-∞, or eGFR resulted 
in a significant decrease in OFV in the univariable covariate analysis, among which the 
baseline eGFR was the most significant predictor (ΔOFV = -52.8). The inclusion of toxicity 
status of the previous administration course did not result in a significant decrease in OFV. 
The treatment regimen itself was also not identified to affect the toxicity probability. The 
final model of renal toxicity included baseline eGFR (range: 40.2–158.7 mL/min/1.73m2, 
maximum predicted probability change (maxΔP) = -0.929) and sex (for female, ΔP = 
-0.103) as significant covariates. 

As for the hepatotoxicity model, AUCbase, dose in mg, and dose in mg/m2 resulted in 
significant decreases in OFV in the univariable covariate analysis, among which dose 

Figure 7.2:  Prediction-corrected visual predictive check (pcVPC) of the final HD-MTX pharmacokinetic 
model. Black points represent observations, black dashed lines represent 95th and 5th percentile of 
the observations, red dashed line represents the 50th percentile of the observations, grey shaded areas 
represent 95% confidence interval of the 95th and 5th percentiles of the simulations, and red shaded area 
represents 95% confidence interval of the 50th percentile of the simulations.
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in mg/m2 showed to be the most significant predictor (ΔOFV = -14.7). The inclusion of 
toxicity status of the previous administration cycle did not decrease OFV significantly. No 
additional covariates were significant after the inclusion of dose in mg/m2, i.e. the final 
model of hepatotoxicity only included dose in mg/m2 (range 1500–8000 mg/m2, maxΔP 
= 0.86) as the most significant covariate. 

The parameter estimates of the base and final toxicity models are shown in Table 7.3. The 
RSE of all parameters are < 40% indicating acceptable precision. The inclusion of covariates 
largely reduced the variance of the random IIV in both models. The VPC plots demon-
strated an adequate model predictability for the probability of having renal toxicity, while 
the decreasing trend of hepatotoxicity over treatment courses was not well captured (Online 
Resource 7.1, Figure S7.4). The wider 90% prediction interval after the 4th administration 
cycle was due to the relatively small sample size at those cycles. Figure 7.3 demonstrated 
the change of observed and predicted renal and hepatotoxicity probability as predictor 
values change. The simulation results showed that the median predicted probability of 
having renal toxicity decreased to less than 25% when baseline eGFR was higher than 66.6 
mL/min/1.73m2, and the median predicted probability of having hepatotoxicity increase 
to above 38.5% when dose raised above 3500 mg/m2.

Table 7.3: Parameter estimates of the base and final logistic regression model of renal and hepatotoxicity

Base model Final model

Estimate RSE (%) / [Shrinkage (%)] Estimate RSE (%) / [Shrinkage (%)]

Renal toxicity model
θ 0.112 29% 0.0595 26%

θeGFR - - -3.06 9%

θSEX -1.32 32%

IIV (ω2) 3.29 43% [35%] 1.11 61% [50%]

Hepatotoxicity model

θ 0.289 11% 0.118 15%

θDOSE - - 2.25 38%

IIV (ω2) 0.922 48% [41%] 0.708 52% [45%]

BSA, body surface area; IIV, inter-individual variability; RSE, relative standard error; eGFR, estimated 
glomerular filtration rate.

The exposure metrics C24h and AUC24-∞ were identified to correlate with renal toxicity 
(ΔOFV = -75.3 and -85.6, respectively) in the univariable covariate analysis but not for 
hepatotoxicity. The parameter estimates can be found in Online Resource 7.1, Table S7.2. 
The observed proportion of patients with renal toxicity was 61% when C24h > 8.64 μmol/L 
and 68.3% when AUC24-∞ > 109.5 μmol/L*h. According to the model simulations, the 
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Figure 7.3:  Visual predictive check of the model for renal toxicity probability over estimated glomerular 
filtration rate (eGFR) (a) and hepatotoxicity probability over dose (mg/m2) (b). Black points represent the 
observations and shaded areas are the 90% prediction interval of the final models where binning was done 
based on the number of observations
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predicted median proportions of renal toxicity decreased from 61% to < 29.3% when C24h 
decreased to ≤ 8.64 μmol/L, and from 61% to < 26.8% when AUC24-∞ decreased to ≤ 109.5 
μmol/L*h, respectively. The distribution of estimated AUC24-∞ and C24h of all treatment 
cycles and observed and predicted probability of renal toxicity over AUC24-∞ and C24h were 
shown in Figure 7.4. 

4.  Discussion   

In this study, a population PK model was developed for HD-MTX in patients with CNS 
lymphoma and covariates that explains HD-MTX PK variability were identified. Toxicity 
analysis identified baseline predictors for renal and hepatotoxicity, and the models allow to 
estimate the toxicity probability before each administration cycle. Additionally, potential 
exposure thresholds of AUC24-∞ and C24h that indicate a high risk of renal toxicity were 
suggested to support better HD-MTX treatment. 

The identified covariates on CL of MTX in the final model includes albumin and indicators 
of renal function, which are in accordance with the known PK characteristics of MTX [4, 5]. 
In addition, the CL of MTX also showed to vary among treatment regimens, which might 
suggest a need to alter the dose when targeting to the same level of exposure. The possible 
explanations for this finding could be the differences in infusion duration / rate of HD-MTX, 
patients’ status, and the combined medications among these treatment groups. However, the 
impact of those factors cannot be distinguished as they highly overlapped with each other. A 
potential correlation between infusion duration/rate and MTX clearance has been mentioned 
previously. In those studies, higher CL or lower AUC has been observed in patients receiving 
HD-MTX with long infusion durations (24 hours) compared to short infusion durations 
(2–6 hours) [10, 28, 29]. In our study, high CL estimates under 24-hour infusion were also 
observed. In addition, a 4-hour infusion showed to correlate with low CL estimates compared 
with 1- or 3.25-hour infusion in our results (Online Resource 7.1, Figure S7.2). However, 
a clear physiological explanation for this observed phenomenon could not be found, and 
therefore dose alterations based on infusion duration specifically are not recommended.   

Currently HD-MTX was dosed per BSA in CNS lymphoma patients. However, our study 
demonstrated that the influence of BSA on MTX PK is less significant than that of body 
weight, although these two factors are highly correlated and BSA has been identified as 
a covariate in previous PK studies [17, 20]. The estimated MTX AUC24-∞ and C24h in our 
study population also showed an increasing trend over BSA (Online Resource 7.1, Figure 
S7.5). A few other studies have also pointed out that BSA is not the most predictive factor 
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to MTX PK, and BSA-guided dosing should be reconsidered especially for overweight 
patients [10, 30, 31]. Moreover, a dose reduction for HD-MTX has been suggested for 
patients with reduced renal function [7, 32]. Taking these facts into account, adjusting 
the MTX dose with the developed PK model which involves multiple covariates including 
renal function is considered to be more rational and accurate than BSA-guided dosing, 
and can help to further reduce PK variability.  

The GOF plot of the final PK model showed that the population predictions underpredicted 
the lower concentrations (data points collected after 200 hours after last drug intake) while 
the individual predictions fitted well to the observations. These underpredicted concen-
trations all came from the treatment cycles where delayed elimination was observed. 
This suggests that the model structure could still be improved to better characterize the 
concentration-time curves in case of a delayed elimination. For example, an interac-
tion between renal function and MTX PK, which may result in a time dependent MTX 
elimination, and non-linear elimination at low concentrations can be considered [33, 34]. 
A three-compartment model could also slightly better capture the delayed elimination. 
However, a reliable and stable three-compartment model could not be identified based 
on the current dataset. Since the individual fit of our model is considered to be adequate, 
a more complicated model was eventually not applied. 

The toxicity analysis identified baseline predictors for HD-MTX-induced renal and hepa-
totoxicity which allow estimation of the toxicity probability before administration cycle. 
eGFR and sex were identified as significant baseline predictors for renal toxicity probability. 
Dose (mg/m2) and age were also identified as significant predictors in the univariable 
analysis, which is consistent with previous findings [11, 13]. However, their influence did 
not remain significant after including eGFR in the model. Our findings suggest that to lower 
the probability of renal toxicity, the use of HD-MTX for patients with CNS lymphoma is 
recommended when eGFR > 66.6 mL/min/1.73m2. This is in accordance with a previous 
review which indicated that renal function is a key prognostic factor for the tolerance of 
HD-MTX [32]. Accurately estimating the renal function of the patients before HD-MTX 
treatment may therefore be key in preventing toxicity during HD-MTX treatment. In 
patients with relatively low muscle mass, other eGFR measurement techniques such as a 
iohexol eGFR test could be applied [35]. Patients with a higher risk of toxicity that still 
need HD-MTX treatment should be carefully monitored and rescue therapy with high 
dose folate or in severe cases glucarpidase could be considered [36-38]. 

The dose of HD-MTX (mg/m2) was identified to be the strongest predictor of hepatotoxicity. 
The results suggest that a high risk for hepatotoxicity in patients with CNS lymphoma is 
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foreseeable if the administrated dose of HD-MTX is higher than 3500 mg/m2. In addition, 
the probability of hepatotoxicity appeared to decrease over treatment cycles which was not 
fully captured by the model. A possible explanation could be that patients tend to tolerate 
MTX better when treated for a longer period of time. Drop out due to toxicity is considered 
to be a less possible reason since less than 50% of subjects who stopped treatment after 
the first to third treatment courses had hepatotoxicity. Since the information on reason of 
drop out was not available, it was not considered in the analysis.      

MTX exposure metrics was only identified to correlate with renal toxicity in patients with 
CNS lymphoma. To avoid the impact of possible inaccurate prediction of peak concen-
trations, AUC24-∞ was estimated and included in the analysis instead of AUC0-∞. We also 
investigated the correlation between C24h and toxicity as a threshold on C24h is valuable 
for early identification of patients at risk and early application of rescue treatment. Our 
results show that AUC24-∞ > 109.5 μmol/L*h or C24h > 8.66 μmol/L correlate with high risk 
of renal toxicity in CNS lymphoma patients (> 60%). The threshold of C24h is also in line 
with what was found in a previous study (10 μmol/L) [7].     

Although high MTX exposure can result in toxicity, sufficient exposure is still essential to 
guarantee the efficacy. To better apply our findings to facilitate the individualization and 
optimization of HD-MTX therapy in patients with CNS lymphoma, an investigation on 
exposure-efficacy relationship is still needed. A previous study suggested that AUC0-∞ > 
1100 μmol/L*h is associated with a favorable treatment outcome [12]. Due to an identified 
correlation of AUC0-∞ with C24h, the same group recommend a C24h target of 4–5 μmol/L 
[16]. Nonetheless, the direct relationship between C24h or AUC24-∞ and the efficacy has not 
been reported. Thus, a further investigation on the relationship between C24h or AUC24-∞ 
and efficacy would be beneficial to establish a therapeutic range for HD-MTX to support 
the individualization of HD-MTX dosage.

The current study has some limitations. First of all, due to the lack of data sampled in the 
first 12 hours after the start of MTX infusion, the developed model may not be able to well 
capture peak concentrations and provide a precise estimate of AUC0-∞. Nevertheless, our 
study demonstrated that AUC24-∞ and C24h estimated with the model are also predictive to 
HD-MTX induced renal toxicity. Secondly, since this study was based on real-world data, 
the possibility of data not being recorded adequately enough may impact our analysis. 
Nevertheless, our findings may be more representative of real-world patients and are more 
translatable to clinical practice. Finally, although identified predictors have explained a 
large proportion of variability in HD-MTX induced toxicities, the unexplained variability 
remains large. Identifying covariates for the remained variability would be beneficial to 
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further improve the prediction. Previous studies have reported the influence of ABCC2 on 
PK of HD-MTX and the potential association of gene MTHFR, SLC19A1 and ABCB1 with 
MTX-induced hepatic toxicity [8, 21, 39]. Thus, the potential impact of pharmacogenetic 
polymorphisms would be of interest for future studies. 

5.  Conclusion

A population PK model was developed which adequately characterized the PK profile of 
HD-MTX in patients with CNS lymphoma. eGFR, treatment regimen, albumin, ALP, and 
body weight were identified as significant covariates that explain inter- and intra-individual 
variabilities in PK of HD-MTX. The toxicity analysis identified lower eGFR and male 
sex, and higher MTX dose (mg/m2) as baseline predictors that are associated with higher 
risk of acute renal and hepatotoxicity, respectively. AUC24-∞ > 109.5 μmol/L*h and C24h > 
8.64 μmol/L were suggested to be potential exposure thresholds that predict a high risk 
of renal toxicity. These results hold a great potential for further individualizing HD-MTX 
dosage and preventing acute organ toxicity, which can improve HD-MTX therapy in CNS 
lymphoma patients. 

Key points

•	 A population pharmacokinetic (PK) model was developed for high-dose methotrexate 
(HD-MTX) based on data collected from patients with central nervous system (CNS) 
lymphoma and subsequently used for exposure-toxicity analysis.

•	 Lower baseline eGFR and male sex are associated with increased risk of acute renal 
toxicity (grade ≥ 1). Higher MTX dose (mg/m2) is associated with increased risk of 
acute hepatotoxicity (grade ≥ 1).

•	 The analysis identified that the MTX exposure metrics correlate with renal toxicity 
only, and area under the concentration-time curve from 24h to infinite (AUC24-∞) > 
109.5 μmol/L*h and concentration at 24 hours (C24h) > 8.64 μmol/L predicted a high 
risk of renal toxicity. 
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Online Resource 7.1: Supplementary figures and tables

Figure S7.1:  The collected methotrexate concentration-time curves in patients with CNS lymphoma on 
semi-logarithmic scale (n = 110 patients).
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Figure S7.3:  Observed percentage of renal (a) and liver (b) toxicity under each treatment cycle separated 
by the toxicity grade.
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Figure S7.5:  Estimated area under the concentration-time curve between 24 hours after drug 
administration to infinity (AUC24-∞) (a) and concentration at 24 hours (b) versus body surface area of the 
included patients.
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Table S7.1: Characteristics of the HD-MTX treatment regimens of the included patients

N of administrations (%) / Median (Range)

Treatment regimen RMP MATRIX MBVP
Age of patients (years) 72 (28–83) 58.5 (22–67) 66 (51–76)
Infusion duration 

a.	 4 hours 133 (93.7%) 6 (4.5%) 0
b.	 14–25% dose 15 mins, and the 

rest 3 hours
9 (6.3%) 126 (94.0%) 0

c.	 10% dose 1 hour, and the rest 
23 hours

0 2 (1.5%) 0

d.	 1 hour 0 0 136 (100%)
Infusion rate (mg/m2/h) 750 (375–1077) 1076 (125–2000) 3000 (1500–3200)
Dose of MTX (mg/m2) 3000 (1500–3650) 3500 (1750–8000) 3000 (1500–3200)
Dose intensity (days) 14.0 (12.9–54.1) 23.0 (11.0–66.9) 15.0 (6–45)
Co-medications rituximab and 

procarbazine
high-dose 
cytarabine, 
thiotepa, and 
rituximab

teniposide, 
carmustine, 
prednisolone 
with/without 
rituximab or high 
dose cytarabine

Table S7.2: Parameter estimates of the logistic regression model of renal toxicity with exposure metrics 
included as predictors

Estimate RSE (%) / [Shrinkage (%)]

Renal toxicity model with AUC24-∞ 

θ 0.0135 61%
θAUC24-∞ 0.746 11%

IIV (ω2) 5.69 55% [38%]
Renal toxicity model with C24h

θ 0.0132 64%
θC24h

0.851 10%

IIV (ω2) 6.04 55% [37%]

IIV, inter-individual variability; RSE, relative standard error; AUC24- ∞, area under the concentration-time 
curve between 24 hours after drug administration to infinity; C24h, MTX concentration at 24 hours after 
drug administration. 

Supplementary Tables





General discussion   

Chapter 8





General discussion   

223

8

Introduction 

Although anti-cancer treatments have significantly advanced over the past decades, 
obstacles to accomplishing successful treatment still exist. The occurrence of treatment 
resistance is one of the major factors that limit the long-lasting efficacy of anti-cancer 
therapies [1, 2]. Evolutionary mechanisms are increasingly acknowledged as key factors that 
contribute to the occurrence of treatment resistance [2-5]. A better characterization and 
understanding of evolutionary tumor progression, and subsequent use of this knowledge 
to design new treatment regimens would increase the chance to suppress the develop-
ment of cancer treatment resistance. Another important factor that challenges successful 
treatment is the substantial variability in pharmacokinetics (PK) / pharmacodynamics (PD) 
of anti-cancer drugs, which is especially frequently observed in real-world patients. This 
can result in suboptimal treatment outcomes for part of the patients especially when the 
therapeutic window is narrow [6, 7]. Moreover, the typically applied maximum tolerated 
dose (MTD) paradigm in cancer treatment may not be optimal for real-world patients due 
to high risk of toxicity [8]. These factors highlight the need to gain more insight into the 
PK/PD profiles and variability of anti-cancer drugs in real-world patients, and to further 
develop optimized and individualized treatment regimens. 

Quantitative modeling with mixed-effect models is widely applied in pharmaceutical 
research which enables quantitative characterization and prediction of the PK and PD 
of therapeutic agents. It also allows quantifying inter- and intra-individual variability 
and identify covariates that explain the variability [9, 10]. With a Bayesian framework, 
individual parameters can be obtained based on prior knowledge from the model and 
patient characteristics and data, which can be used to capture and predict individual PK/
PD characteristics [7]. In oncology research, the model-based approach is a helpful tool 
to make use of longitudinal data, such as drug concentrations, tumor burden, and other 
PD biomarkers, to gain knowledge about the interaction between drug treatment and 
the human body, as well as cancer progression. This knowledge and developed models 
can subsequently support the identification of optimal therapeutic regimens and guide 
individualized treatment rationally (model-informed precision dosing, MIPD) [7, 11, 12].    

The studies presented in this thesis applied quantitative modeling approaches to charac-
terize the evolutionary tumor progression and PK/PD of anti-cancer drugs. The developed 
models were subsequently applied to evaluate and develop optimal and individualized 
regimens for oncology patients.
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Better understanding of evolutionary tumor progression      

Intra-tumor heterogeneity 
Intra-tumor heterogeneity, which suggests distinct cells exist in the same tumor, is 
considered to be one of the main factors that drive the evolving adaptation of cancer to 
treatment. Capturing intra-tumor heterogeneity is therefore of importance for a better 
understanding of evolutionary treatment resistance. As summarized in chapter 2, various 
kinds of quantitative models have been applied to describe and predict tumor dynamics 
and resistance evolution in cancer patients. Among the reported tumor dynamics models, 
intra-tumor heterogeneity has been considered when describing tumor regrowth by 
separating the tumor into components consisting of cells that are sensitive or resistant to 
therapy. The interaction between sensitive and resistant cells is also the cornerstone for 
the models that characterize the evolutionary development of drug resistance.

In the studies in section I, intra-tumor heterogeneity has served as a key element in the 
applied models to support the understanding of evolving tumor progression. The presence 
of pre-existing resistant components (primary resistance) and/or acquired resistance and 
their interaction have also been frequently discussed. In chapter 3, a model that accounted 
for various clonal populations was developed and it well captured the tumor sizes and 
mutant KRAS levels in circulating tumor DNA (ctDNA) versus time curves from patients 
with metastatic colorectal cancer (mCRC). In addition to the clonal populations that are 
sensitive or resistant to the original treatment, a hypothetical third clonal population was 
also introduced in the model to describe tumor response to multiple treatments. The 
same structure was also applied to characterize the dynamics of tumor sizes and ctDNA 
measurements in non-small cell lung cancer (NSCLC) patients. The inclusion of primary 
or acquired resistance in this study was supported by the detected mutation in ctDNA, 
which was suggested to be a mediator of acquired resistance [13, 14]. The model therefore 
included acquired resistance, and primary resistance was only considered for patients with 
detectable KRAS mutation pre-treatment. The developed model allowed us to capture 
not only the dynamics of total tumor size but also that of sub-clones in the tumor, which 
reflects the evolutionary progression of the tumor.  

The study presented in chapter 4 further characterized the tumor dynamics in NSCLC 
patients treated with erlotinib while considering tumor heterogeneity. In this study, we 
explored models with or without primary resistance while including an acquired resist-
ance for both. The results indicated that the model assuming no primary resistance could 
adequately fit the obtained data, and estimating primary resistance did not improve the 
model fit. This might indicate that for NSCLC patients with an activating EGFR mutation, 
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it is mainly the acquired resistance, which was due to the acquisition of EGFR p.T790M 
mutation or other mechanisms, that limits the treatment response. Among previously 
reported model-based studies on tumor size dynamics in NSCLC patients treated with 
erlotinib, one study also considered tumor heterogeneity [15]. Their results also showed 
that the models with or without primary resistance could describe the data equally well 
even though erlotinib was used as a second-line treatment in their study [15]. 

In fact, studies on the probability of having resistance at the start of treatment have been 
performed. They demonstrated that such probability increased as tumor burden increased 
and it could reach up to > 90% [16, 17]. The study that provided the original data for 
chapter 3 also suggested that drug resistance is likely to be present prior to the initiation 
of anti-cancer drug treatment [13]. Yet, the estimated baseline size of the resistance clonal 
population only accounted for a small part of the total tumor cell population [13]. In 
chapter 4, the estimated baseline size of primary resistance accounted for a small propor-
tion (5.9%) of the baseline tumor size. Therefore, although resistance may be present prior 
to the treatment, considering the small proportion and the complexity of the model, the 
primary resistance has been omitted in the models used in our studies. In addition, the 
data of genetic biomarkers is believed to be viable evidence to support the differentiation 
of heterogeneous components in the tumor when modeling tumor dynamics considering 
tumor-heterogeneity [18]. 

Interaction among clonal populations and treatment  	   
In addition to intra-tumor heterogeneity, capturing the interaction among clonal 
populations in the tumor and anti-cancer drug treatment is also a cornerstone when 
describing evolving development of resistance in tumor. We have addressed such interaction 
by accounting for the differences in proliferation rates of tumor cells, the response of 
tumor cells to the therapy, and the transition between sensitive and resistant tumor cells 
in response to treatment. 

In order to obtain resistance to treatment, tumor may give up some proliferation capability, 
which is represented by a fitness cost [19]. Due to this fitness cost, the proliferation rate of 
the resistant clonal population can be lower than that of the sensitive clonal population [19, 
20]. In chapter 3, we adopted this concept and assumed that the growth rate of resistant 
cells was 70% of the sensitive cells. In chapter 4, we have also estimated separate growth 
rates for different cell populations during model development. The estimated growth 
rate of sensitive cells was 2.19 fold higher than that of the resistant cells. However, the 
high relative standard error (RES) (104%) indicated a high uncertainty in the estimation. 
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Therefore, the growth rates of treatment sensitive and resistant clonal populations were 
eventually set to be the same in this study. This lack of identifiability of separate growth 
rates is considered to be caused by the limited amount of data. 

The response of tumor cells to the therapy has been mainly addressed by adding a regres-
sion term on drug susceptible tumor cells. In chapter 3, we have included treatment effect 
with a drug-dependent regression term. This is due to the lack of data on drug exposure 
or dose in this study. In the meantime, the trough concentrations of the used monoclonal 
antibody therapy have shown to be able to reach above 90% of the saturation levels at 
standard treatment regimens, suggesting almost a maximum effect in all patients [21]. 
However, for other molecules the exposure of which correlates to response, such as tyrosine 
kinase inhibitors (TKIs), drug levels are important to be included in the analysis. This 
would be beneficial for the understanding the exposure-response relationship and how 
drug exposure is driving the evolutionary progression of tumor. Therefore, we explored a 
model that incorporated exposure-dependent treatment effect in chapter 4. However, we 
did not identify a clear exposure-tumor inhibition relationship within the studied concen-
tration range (the median predicted drug concentrations at the tumor size monitoring time 
points was 992 ng/ml (range of 284–1554 ng/mL)). A dose-tumor inhibition relationship 
was also not identified. This lack of relationship between erlotinib exposure and responses, 
which may be because of the saturated treatment effect, is in line with previous findings 
[6, 22-24]. Although the influence of drug exposure on the evolving tumor progression 
could not be investigated in this case, the results may suggest a potential option to decrease 
the dose of erlotinib to target a lower concentration that still ensures sufficient efficacy 
but can be better tolerated, especially since a significant proportion of erlotinib-treated 
patients can have severe toxicity [25].    

Because of the selection pressure of anti-cancer drug treatment, our studies in chapter 
3 and 4 assumed that mutations were able to be acquired which resulted in a transition 
from sensitive to resistant cell population. A back transfer process from drug resistant to 
sensitive clonal population was also introduced in chapter 3 during the treatment inter-
ruption periods. This assumption allowed capturing the recovery of sensitivity to the 
treatment upon withdrawal of treatment, which was supported by in vitro observations 
[26]. This process could also describe the phenomenon that in the absence of the drug, 
susceptible tumor cells have the benefit of growing back again at the expense of resistant 
tumor cells. When the back transfer process was removed, the simulation outcomes of 
evaluated regimens were only slightly affected but the decline of ctDNA upon withdrawal 
of treatment, which has been observed in mCRC patients [26, 27], could not be captured 
anymore. It was also observed that under this circumstance, the remaining susceptible 
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tumor cells had no growth advantage over the resistant tumor cells during the withdrawal 
of treatment, hence the tumor would not regain susceptibility. Therefore, the introduction 
of a transition between clonal populations in this study allowed the description of the 
dynamics of and the competition among different clonal populations based on current 
available data. More data under intermittent therapy would be valuable to better charac-
terize this dynamic process, and to better estimate parameters. 

Insight provided by ctDNA
Clinically available genetic biomarkers such as ctDNA have been shown to be able to 
provide insight into tumor heterogeneity and evolution of resistance, and also correlate 
with tumor burden [18]. Studies have already utilized the available ctDNA data to 
support the estimation of parameters that are required in the tumor evolution model or 
to evaluate the simulation results of the models [13, 28, 29]. Thus, we see opportunities to 
incorporate the ctDNA measurements in model-based tumor dynamics studies to enable 
better understanding and prediction on the tumor progression and dynamics of tumor 
sub-clones. Such models would be of help in investigating treatment regimens that increase 
the chance of overcoming treatment resistance. The model developed in chapter 3 enabled 
the characterization of the time-curves of both tumor sizes and ctDNA measurements in 
patients with mCRC. The link between the generation of genetic variants in ctDNA and 
tumor burden was accounted by a sub-clonal tumor-size dependent shedding rate which 
was expressed with Hill equations with tumor size as the independent variable. This model 
allowed us to describe the delayed emergence of genetic variants in ctDNA indicating 
treatment resistance as well as the earlier emergence of detectable mutation than disease 
progression, which was observed in the original studies [13, 30]. The ctDNA measurements 
also informed the inclusion of primary or acquired resistance. 

The study in chapter 4 demonstrated that in NSCLC patients treated with erlotinib, the 
baseline ctDNA measurements on variant allele frequency (VAF) of mutant EGFR and the 
presence of a TP53 mutation have a potential correlation with the estimated parameters 
related to tumor dynamics (mainly the growth rate constant kg and mutation rate constant 
km), especially that higher baseline EGFR VAF was significantly correlated with increased 
growth rate constant kg. This indicates that patients with higher EGFR VAF at baseline 
may have a worse response to the treatment, which is in line with the clinical findings 
from an EGFR cohort in the START-TKI study, i.e. patients without detectable ctDNA at 
baseline had a lower rate of radiological progression [25]. An explanation could be the 
association between ctDNA levels and tumor burden [18, 31]. Our result also supports 
previous findings suggesting that baseline concomitant TP53 mutations may relate to 
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worse clinical outcomes in patients with NSCLC [25]. After incorporating baseline ctDNA 
measurements, the developed tumor dynamics model could better predict the tumor size 
dynamics in response to erlotinib treatment in NSCLC patients. This finding also demon-
strates the potential to use ctDNA as an early biomarker to support decision making for 
the treatment of NSCLC patients [32]. 

Design treatment to overcome resistance

Designing treatment with gained knowledge on treatment resistance evolution and applying 
personalized treatment would increase the chance of overcoming cancer treatment resist-
ance [2, 33]. Based on this concept, adaptive treatments where drug selection is guided 
by the mutation detected in ctDNA, and intermittent treatment which utilizes the fitness 
advantage of sensitive cells during the withdrawal of treatment to regain sensitivity to 
treatment have been suggested for better treating cancer patients [18, 33, 34]. This also 
brings forward opportunities to treat cancer as a chronic disease and has been increas-
ingly studied in the oncology field. Traditional approaches of anti-cancer therapy have not 
exploited these theoretical advantages. Current protocols typically apply treatment agents 
at the MTD until evidence of progression [33]. 

The study presented in chapter 3 evaluated different designs of adaptive and intermittent 
treatment regimens with simulations based on the developed model. These regimens 
aim to prolong the duration of suppressing treatment resistance and thereby overcoming 
treatment resistance. The adaptive schedules also enabled the personalized design of 
therapy since the switch of drugs was guided by individual ctDNA measurements. The 
results of this study showed that the adaptive and intermittent treatment regimens, with 
appropriate designs, outperformed the conventional continuous treatment. The simulated 
intermittent regimen which consisted of an 8-week treatment and a 4-week suspension 
prolonged median progression-free survival (PFS) of the simulated population from 36 
weeks to 44 weeks. The simulated adaptive regimens were shown to further prolong median 
PFS to 56–64 weeks. 

Our results are in line with the evolutionary principle, and evidence that supports the 
feasibility of suggested regimens is present. An example of the adaptive therapy can be 
seen from the treatments of NSCLC patients. Acquisition of T790M mutation is the main 
mechanism of acquired resistance upon treatment of erlotinib/gefitinib in NSCLC patients, 
and osimertinib can be selected for T790M-positive patients [35]. In the study, we intro-
duced a second hypothetical treatment targeting the resistant population that harbors KRAS 
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mutation. Lately, the U.S. Food and Drug Administration (FDA) also granted accelerated 
approval to the first KRAS-blocking drug [36]. This indicates the potential feasibility of 
successfully implementing the suggested adaptive treatment. 

As for the intermittent treatment, the advantage has been seen from some clinical obser-
vations. A study has shown that adaptive intermittent treatment of abiraterone based on 
prostate-specific antigen (PSA) levels resulted in a better clinical outcome than the typical 
continuous treatment [34], although the study design may need to be refined [37]. Another 
retrospective analysis demonstrated that intermittent use of enzalutamide in metastatic 
castration-resistant prostate cancer patients prolonged the time to PSA failure and improved 
overall survival [38]. In patients with colorectal cancer, a re-challenge of EGFR blockade 
has shown to be efficient again [26]. Yet, several clinical studies failed to show improved 
outcomes in patients undergoing intermittent therapy and the underlined mechanism 
remains unclear [39-44]. We believe that, in this case, a model-based approach may be 
helpful for understanding these conflicting results and support identification of the optimal 
designs. For example, a previous in silico study indicated that an intermittent abiraterone 
followed by a lead-in period was not beneficial for prostate cancer patients, while the 
adaptive intermittent treatment guided by PSA was the best option [34]. Moreover, the 
results derived from our study also raised attention to the length of the treatment holiday 
if improved treatment outcome is desired, as extending the treatment holiday can result 
in inferior results. 

Model-informed precision dosing (MIPD)

Quantify variabilities and identify covariates 
Our studies in section II demonstrated that with the population modeling approach, the 
variabilities in PK/PD of a therapeutic agent as well as the influence of relevant covariates 
can be quantified. This would be of great importance to guide dose tailoring for an 
individual patient prior to the start of treatment to achieve personalized therapy. In chapter 
6, we have developed a two-compartment population PK model which well described 
the PK of mitotane in patients with ACC. The covariates that significantly correlate 
with mitotane PK have been identified, which explained 35.8% and 30.7% of random 
inter-individual variabilities (IIV) on apparent clearance (CL/F) and central distribution 
volume (Vc/F), respectively. In this study, we were able to investigate separate effects of lean 
body weight (LBW) and fat amount (total body weight – LBW) on mitotane distribution 
volumes, as they are more physiologically plausible covariates [45, 46]. Furthermore, the 
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inter-occasion variability (IOV) on CL/F was also incorporated to capture the intra-subject 
variability. The estimates of IOV indicate an overall increasing clearance during the first 
500 days followed by a decrease thereafter. This dynamic indicates that a self-induction in 
mitotane clearance, which has been suggested previously [45], may exist temporarily. This 
study also for the first time explored and quantified the potential effect of pharmacogenetic 
variation on mitotane clearance. Eventually, three SNPs, i.e. CYP2C19*2 (rs4244285), 
SLCO1B3 699A>G (rs7311358), and SLCO1B1 571T>C (rs4149057), were included in 
the final model. The model estimated that carrying ‘A’ variant in CYP2C19*2 reduced the 
mitotane CL/F by 44.9%. This is in line with the fact that the ‘A’ variant of CYP2C19*2 is a 
nonfunctioning variant and has been demonstrated to decrease the activity of CYP2C19 
[47, 48]. The power of pharmacogenetic analysis may be influenced by the small number 
of included patients and the exploratory characteristic of this analysis. However, as the 
dataset enabled differentiation between IIV and IOV, the certainty of the possible genotype 
effect on clearance, which is more likely to be covered by IIV, was increased. Our result 
suggests that enzyme CYP2C19 and transporters SLCO1B3 and SLCO1B1 for drug uptake 
in the liver might be involved in mitotane PK pathways, and their polymorphisms should 
be considered for mitotane dose selection, but further validation is required to translate 
the findings into an implementable clinical recommendation.      

The study in chapter 7 performed a population PK analysis for high-dose methotrexate 
(HD-MTX) in patients with central nervous system (CNS) lymphoma based on data from 
3 medical centers. In addition to the impact of patients’ demographics and physiological 
condition on HD-MTX PK, the study also enabled an investigation on the variation among 
patients from different medical centers receiving different treatment regimens. The results 
show that the identified covariates on clearance (CL) of MTX are in accordance with 
the known PK characteristics of MTX [49, 50]. Moreover, the CL of MTX also showed 
to vary among treatment regimens, and the difference in CL was able to be quantified. 
This might suggest a need to alter the dose when targeting to the same level of exposure. 
The possible factors that contributed to this result could be the differences in infusion 
duration / rate of HD-MTX, patients’ status, and the combined medications among these 
treatment groups. However, the impact of those factors cannot be distinguished as they 
highly overlapped with each other. The included covariates in the final model explained 
46.9% of the variability on CL between and within patients. Additionally, body weight was 
identified as a significant covariate on distribution volume of central comparment which 
reduced random IIV significantly. Currently, HD-MTX is dosed per body surface area 
(BSA) in CNS lymphoma patients. However, our study demonstrated that the influence 
of BSA on MTX PK is less significant, although BSA has been identified as a covariate in 
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previous PK studies [51, 52]. A few previous studies have also pointed out that BSA is not 
the most predictive factor to MTX PK, and BSA-guided dosing should be reconsidered 
especially for overweight patients [53-55]. In our study population, an increasing trend of 
the estimated MTX area under the concentration-time curve (AUC) from 24 hours after 
drug administration to infinity (AUC24-∞) and MTX concentration at 24 hours (C24h) over 
BSA has also been observed. Additionally, a dose reduction for HD-MTX has already 
been suggested for patients with reduced renal function [56, 57]. Taking these facts into 
account, a potential to dose HD-MTX with a model-based approach that involves multiple 
covariates including renal function is implied. This is considered to be more rational and 
accurate than BSA-guided dosing, and can help to further reduce PK variability.  

Better prediction of toxicity 
Toxicity can cause unfavorable outcomes in the treatment of cancer patients. Because of 
this, studies on risk factors and thresholds that predict high toxicity are of great importance. 
In chapter 7, the baseline predictors as well as exposure thresholds that predict a high risk 
of renal and hepatotoxicity in patients with CNS lymphoma treated with HD-MTX were 
identified with the model-based approach. Based on the modeling and simulation results, 
we recommended a baseline eGFR target of > 66.6 mL/min/1.73 m2 for patients with CNS 
lymphoma to use HD-MTX in order to lower the probability of renal toxicity. This is in 
accordance with a previous review which indicated that renal function is a key prognostic 
factor for the tolerance of HD-MTX [57]. Additionally, a higher risk for hepatotoxicity in 
CNS lymphoma patients is foreseeable if the administrated dose of HD-MTX is higher than 
3500 mg/m2. The study also identified correlations between MTX exposure metrics and 
renal toxicity. In addition to the AUC of MTX, C24h was also investigated as an exposure 
metric, as a threshold on C24h is valuable for early identification of patients at risk and 
early application of rescue treatment. The modeling results provided potential exposure 
thresholds that correlate with a high risk of renal toxicity in patients with CNS lymphoma 
(> 60%). The threshold of C24h (8.66 μmol/L) is also in line with what was found in a 
previous study (10 μmol/L) [56]. For patients with a higher risk of toxicity that still need 
HD-MTX treatment, they should be carefully monitored and rescue therapy with high 
dose folate or, in severe cases, glucarpidase could be considered [58-60]. In addition, due 
to the feature of mixed-effect modeling, once patients’ toxicity results of the first cycle 
are known, the model can also be applied to provide individual threshold that predicts 
high toxicity. In this circumstance, we believe our study holds great potential for further 
individualizing HD-MTX dosage and preventing acute organ toxicity, which can improve 
HD-MTX therapy in CNS lymphoma patients.
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Guide individualized treatment 
Based on the identified covariates and pre-defined therapeutic targets, coupled with 
Bayesian forecasting, MIPD can be applied to guide optimal initial dose selection and 
dose adaptation for cancer patients. The optimal therapeutic drug monitoring (TDM) 
strategies can also be explored. The study presented in chapter 6 designed and evaluated 
several mitotane dosing strategies, given that TDM was performed, by simulating with 
the final population PK model. The results indicated that determining the starting dose 
with the developed model considering included covariates is most beneficial in terms of 
shortening the time to reach the therapeutic target, compared with starting with the fixed 
dose for all patients. This design can also limit the risk of toxicity to a relatively low level, 
together with the designed TDM strategies. Under the setting of individualized starting 
dose, the regimens with stepwise increasing dose at the start required less time to reach 
the therapeutic target, while the one with constant starting dose demonstrated the lowest 
risk of having toxicity. However, due to the fact that a shorter time to reach the therapeutic 
target is normally paired with a higher probability of toxicity, it is suggested to consider 
patients’ condition on whether the increased risk of having toxicity can be tolerated in 
order to gain the benefit of reaching the therapeutic target quicker when selecting a dosing 
regimen. A regimen with a loading dose followed by a maintenance dose would also be 
desired to allow a fast target attainment. However, we didn’t consider this regimen in our 
study as it requires a high dosage which is not tolerable for most patients. When one (or 
more) TDM result becomes available, individual parameters could be estimated with the 
population PK model. The dose amount for subsequent drug administrations can then 
be determined according. This approach is also demonstrated to be a promising strategy 
which was predicted to further decrease the risk of toxicity while providing a satisfactory 
target reaching time. Only that patients’ tolerance to the high level of dose increase 
needs to be considered when applying this strategy. Potentially, with the individual PK 
parameters, an adequate dose for maintaining a steady drug concentration level after 
reaching the therapeutic window can be estimated so that the frequency of dose adaptation 
can be decreased. In chapter 7, our findings imply that dosing HD-MTX with a model-
based approach would potentially be more rational for further reducing PK variability. 
In addition, on the basis of our results on toxicity analysis, further investigation on the 
exposure-response relationship of MTX would be of interest for establishing a therapeutic 
range for HD-MTX for future model-based personalized dosing.
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Challenges and future perspectives

Addressing treatment resistance considering evolutionary resistance development and 
applying precision treatment would be beneficial to improve the treatment outcome for 
oncology patients. The results presented in this thesis show that with the quantitative 
models, the evolutionary tumor progression and PK/PD of anti-cancer drugs can be char-
acterized and predicted, thereby optimal treatment strategies can be designed and evaluated 
for oncology patients. However, beyond what has been demonstrated and discussed, 
challenges still remain regarding data availability, model development, and validation and 
implementation of the results. Further research and collaborations are needed to overcome 
the challenges and facilitate better implementation of the findings in the clinic. 

Section I

Knowledge and data availability	    
In order to make use of genetic biomarkers to understand the dynamics of tumor sub-clones, 
previous knowledge of the genetic variants that reflect treatment sensitivity is required. 
Available data is also essential for developing models to characterize the correlation between 
anti-cancer treatment responses and biomarkers, and to support decision making. As for 
ctDNA, although its value in oncology treatment has now been increasingly acknowledged, 
ctDNA monitoring has not yet been widely applied in routine clinical practice and the 
availability and collection of longitudinal ctDNA data are limited [31, 32, 61]. Whether 
patients had metastatic disease and the available sequencing assay and gene panel can also 
impact the availability of ctDNA data. In chapter 3, detectable mutant KRAS concentrations 
were only available from 9 patients out of 25 mCRC patients. In chapter 4, detectable mutant 
EGFR VAFs were available in 13 out of 18 NSCLC patients. The limited capability to develop 
a ctDNA dynamics model and adequately estimate all parameters. The missing data, such as 
the missing baseline ctDNA measurements in chapter 4, may also affect the interpretation 
of the results. Therefore, more and more detailed data is desired to validate our findings. 
Since ctDNA is being increasingly studied and the analysis method is improving, together 
with active collaborations, we see opportunities in the future to gain sufficient knowledge 
and data on longitudinal ctDNA measurements. This will better support the development 
of models capturing ctDNA dynamics and the incorporation of ctDNA time curves in the 
tumor dynamics model, which would benefit the in-depth study on evolutionary resistance 
development. In addition, once an adequate model is developed, sparsely sampled data 
can also be well utilized and missing data can be imputed rationally. Currently, effort is 
being made to establish standards and best practices to better systematize the evaluation 



Chapter 8

234

of ctDNA kinetics [31]. Moreover, if sequencing data of multiple variants are available, 
efforts need to be made to handle these data in a quantitative manner and a selection of 
variants to be included in the analysis may be required.  

Model development for evolutionary tumor progression     
When modeling tumor dynamics in our studies, the sum of the longest diameters (SLD) of 
all target lesions has been the observation of interest. Nevertheless, the dynamics of each 
separate lesion would also be suitable for supporting the investigation of the progression 
of heterogeneous tumors, especially when differences can be observed between primary 
and metastatic lesions. Thus, further investigation on the dynamics of separate lesions 
and comparing the findings with what is presented in this thesis can be of interest for 
future studies. 

In addition to what are proposed in this thesis, other modeling strategies that characterize 
evolutionary tumor dynamics are also available, which can be applied in studies having 
different focuses. One example would be game theory models which have a stronger focus 
on the interaction and payoff matrix among different cell populations. The changes in the 
fitness of cells (fitness cost or benefit) when interacting with therapy and other types of cells 
are accounted for in game theory models [19, 34]. Another commonly applied modeling 
strategy is stochastic models which allow describing the stochastic process of proliferation, 
death, and mutation of tumor cells in the tumor, although the expected outcome can be 
comparable to those that are derived from ordinary differential equations [62]. In addition, 
the studies presented in this thesis assumed tumor cells accumulate one mutation that 
leads to resistance to one drug each time. The possibility of acquiring multiple mutations 
at a time which leads to multi-drug resistance has not been included in the analysis. This 
can also be a point of consideration for future studies.   

In terms of modelling the time-curves of ctDNA measurements, our study presented in 
chapter 3 proposed a concept model for capturing ctDNA dynamics which consists of 
a sub-clonal tumor-size dependent generation and a first-order elimination. The model 
considered the correlation between tumor size and ctDNA amount and well characterized 
the data from mCRC and NSCLC patients. We have also seen recent studies applying models 
that are classically used to capture tumor size to describe ctDNA time course dynamics. 
One study characterized the time-curves of mutant EGFR in ctDNA in NSCLC patients 
with a model with zero-order increase, first-order decay, and time-dependent regrowth, 
and tumor size dynamic was not incorporated [63]. Another study successfully modeled 
the ctDNA time course using a bi-exponential model (first-order increase and first-order 
decay) [64]. The correlation between tumor shrinkage and ctDNA drop has been observed 
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and described by linking the decay rates of tumor sizes and ctDNA data [64]. These studies 
provide more simple model options with fewer parameters for future pharmacometric 
studies. However, the underlying biology and tumor heterogeneity were not considered 
[64]. Moreover, in addition to characterizing the observed data, the prediction of newly 
acquired mutation which has not yet occurred in the data would also be interesting to be 
further explored.  

Validation and extrapolation of the proposed model and treatment design
The studies in section I illustrated how quantitative models can support the study on 
evolving tumor progression and treatment optimization so that anti-cancer resistance 
can be better overcome. However, due to the characteristics of being based on limited 
data, further validation with external datasets is required to confirm the performance 
of the model and the added value of the suggested schedules. In addition, prospective 
clinical studies are warranted before the application of the suggested treatment designs. 
The validation should concern not only the predictability on the observed time-curves 
of data, but also on the treatment outcome such as PFS. Regarding clinical trials, several 
clinical studies on intermittent therapies have been reported, which however failed to 
show improved outcomes and the underlined mechanism remains unclear [39-44]. The 
need for clinical trials on adaptive therapy guided by ctDNA is however not met yet [31]. 
Currently, our group is carrying out a clinical study on intermittent enzalutamide therapy in 
prostate cancer patients (NCT05393791). The findings would be of great value to evaluate 
the concept proved in our study.   

In addition, our studies were mainly performed in mCRC and NSCLC patients treated with 
anti-EGFR therapies, and focused explicitly on the use of tumor size measurements and 
ctDNA data. It would be of interest for future studies to extrapolate the concept models 
and findings to other targeted treatments and cancer types. Moreover, other oncologic 
biomarkers would in principle also be valuable to provide insight into the evolutionary 
dynamics of tumor and guide treatment. A previous study has demonstrated the value of 
PSA in guiding the intermittent treatment of prostate cancer patients [34]. 

Furthermore, to support further research and enable the achievement of the ultimate goal 
of optimizing and personalizing anti-cancer treatment, a multidisciplinary collaboration 
is essential. This is due to the requirement of in-depth knowledge about tumor and clonal 
dynamics as well as skills needed for complex modeling and simulation.
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Implementation of proposed treatment design 
Challenges also remain to apply the proposed novel treatment strategies in chapter 3 
that could better overcome resistance in clinical practice. First of all, our study indicated 
that intermittent therapy may only work for the responders to certain targeted treatment. 
Thus, for patients who had detectable resistance mutation pre-treatment, a better option 
would be to choose another treatment from start. Moreover, despite that the intermittent 
regimens were predicted to provide better treatment outcome than the continuous 
regimen in a population level, opposite results can be seen when looking at simulated 
subjects individually, same as when comparing adaptive and intermittent regimens. This 
indicates that variability between individuals can affect the choice of regimen. Thus, the 
idea of individual intermittent treatment, the concept of which has been proposed in the 
treatment of prostate cancer patients [34], could be further investigated.   

Furthermore, in order to apply adaptive treatment guided by ctDNA measurements, the 
mutations indicating sensitivity to treatment need to be acknowledged beforehand. If 
multiple mutations have been reported, a selection may be required based on the strength 
of evidence and capability of the quantification technique, such as the gene panel in the 
assay and the number of mutations that can be detected simultaneously. To strengthen 
clinical implementation of ctDNA in the future, the turnaround times of the sequencing 
assays should also be short. In chapter 3, the study focused on the most representative 
mutation that is associated with resistance. However, not all patients developed detect-
able KRAS mutation during the course of treatment. This indicates that in order to better 
implement adaptive treatment, multiple relevant mutations may need to be considered. 
In addition, our study demonstrated that the frequency of monitoring ctDNA and the 
thresholds of adjusting treatment also matters when implementing adaptive treatment 
to improve treatment outcome. We have evaluated frequencies of once every 4–12 weeks 
which has been shown to be feasible [13, 65], but there is no clear validated optimal time 
point for ctDNA analysis [31]. The sampling frequency can also depend on the disease, 
therapy, sequencing assays, financial burden, and burden on the patients. After validation, 
the proposed computational model can be of help to inform the best practice on monitoring 
ctDNA and guide optimized treatment accordingly [31].  
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Section II

Implementation of MIPD
As discussed in chapter 5, to facilitate the implementation of MIPD in clinical practice, 
efforts are still required to overcome several challenges, such as to evaluate the model and 
to translate the research findings into user-friendly MIPD software [7]. Currently, multiple 
programs have been developed and are already in use for model-informed TDM [7, 66]. 
In chapter 6, we have also developed a Shiny app to elucidate how precision dosing advice 
of mitotane for ACC patients can be informed by the developed population PK model. We 
have implemented the final PK model and an optimized individualized dosing regimen 
into this app. With this program, based on the input of the characteristics of a certain 
patient, an individualized starting dose can be determined by the model and be visualized 
together with the predicted mitotane concentration-time curves for this patient. Currently, 
the build-in algorithm only allows the determination of the starting dose according to the 
input information corresponding to the included covariates. As a R package that supports 
empirical Bayesian estimation is now available [67], we see a potential to implement the 
regimen where a more precise dose amount can be determined according to individual 
parameters estimated based on available TDM results. Nevertheless, this app is currently 
intended for research purpose only. Validation in hospital settings is still needed for its 
application in clinic or transferring the model to a commercial platform. 

Moreover, given that programs are available for model-informed TDM, the developed 
models in our studies are believed to be able to be further applied to support model-based 
TDM of mitotane and high-dose MTX. 

Further PK/PD analysis for precision dosing
In addition to PK, variabilities in PD should also be taken into consideration when 
implementing precision treatment. FDA recently proposed the Project Optimus which 
encourages improving dose selection and optimization for oncology drugs by accounting 
for both efficacy and tolerability rather than automatically selecting the MTD [8, 68]. In 
chapter 7, we have developed a toxicity model which allows quantifying the probability 
of having renal or hepatotoxicity in patients with CNS lymphoma treated with HD-MTX 
given the value of risk factors. The identified exposure thresholds on C24h can also be 
applied to guide the early use of rescue therapy. Nevertheless, in order to better guide 
personalized treatment, further PK/PD analyses are still warranted. Firstly, in addition to 
already investigated factors, the impact of pharmacogenetic polymorphisms on the PK 
and toxicity probability in patients with CNS lymphoma treated with HD-MTX would 
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be of interest to future studies. Previous studies have demonstrated the influence of 
ABCC2 polymorphisms on the PK of HD-MTX in patients with lymphoid malignancy 
[69, 70]. Gene MTHFR, SLC19A1, and ABCB1 were reported to potentially associate 
with an increased risk for hepatic toxicity [71]. Exploring the impact of pharmacogenetic 
polymorphisms has the potential to better explain inter-patient variability. Additionally, 
studies on the penetration of MTX to the CNS would also be of interest as CNS is the target 
site of MTX and neurotoxicity is also a major problem for patients receiving HD-MTX 
treatment. This goal can be achieved by applying physiologically based pharmacokinetic 
modelling (PBPK) approach [72]. Furthermore, although high drug exposure can result 
in toxicity, sufficient exposure is still essential to guarantee the efficacy. In our study, 
an exposure-efficacy relationship was not investigated. A previous study suggested that 
AUC0-∞ > 1100 μmol/L*h is associated with a favorable treatment outcome [73]. Due to 
an identified correlation of AUC0-∞ with C24h, the same group recommended a C24h target 
of 4–5 μmol/L [74]. Nonetheless, the direct relationship between C24h and the efficacy has 
not been reported. Therefore, further investigation is warranted to explore the possibility 
of establishing a therapeutic range for HD-MTX, which could better facilitate future 
personalized dosing. 

Conclusion

Addressing treatment resistance considering evolutionary resistance development and 
applying personalized drug treatment would be beneficial to improve the treatment 
outcome for oncology patients. This thesis has applied the quantitative modeling approach 
to characterize the evolutionary tumor dynamics and ctDNA dynamics and quantify PK/
PD variabilities for anti-cancer drugs. The developed model can facilitate the identifica-
tion of optimal treatment designs and guide individualized treatment rationally, although 
challenges remain for the results implementation and further research and more data is 
warranted to validate the findings and support better practice of personalized treatment.  
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Summary 

Quantitative modeling with mixed-effect models has been increasingly applied in phar-
maceutical research. It allows quantitative description and prediction of pharmacokinetics 
(PK) and pharmacodynamics (PD) of therapeutic agents, as well as to quantify and explain 
inter- and intra- individual variability. In oncology research, the model-based approach can 
be applied to make use of longitudinal data to learn about the interaction between drug 
treatment and the human body, as well as cancer progression. The developed model can 
subsequently support the identification of the optimal regimen and facilitate individual-
ized treatment. 

In cancer treatment, the occurrence of treatment resistance is one of the major causes of 
treatment failure in patients. An insight into the inter- and intra-tumor heterogeneity and 
evolutionary dynamics of tumors, and subsequent use of this knowledge for designing 
treatment strategies would be beneficial for optimizing targeted anti-cancer treatment. In 
Section I of this thesis, we applied the model-based approach to specifically interpret tumor 
size dynamics and evolutionary resistance development during treatment, and explored 
optimal regimens that can better suppress the development of resistance. 

In order to identify opportunities and challenges of quantitatively characterizing anti-
cancer treatment response accounting for tumor dynamics and evolutionary resistance 
development, an overview of currently available model structures is needed. In chapter 
2, we performed a systematic search and comprehensively summarized the mathematical 
models that have been used to describe and predict tumor growth (inhibition) dynamics 
and evolutionary resistance development. We particularly focused on models that are 
applicable to clinical data. In this review, tumor dynamic models displayed by ordinary 
differential equations, algebraic equations, and partial differential equations were identified 
and summarized. Tumor proliferation, regression due to treatment, tumor heterogeneity 
and treatment resistance are key elements that are commonly considered in those models. 
The dynamics of biomarkers can also be incorporated which enables better understanding 
and prediction of tumor progression. As for models for evolutionary tumor resistance, 
stochastic and deterministic models were identified and summarized. The required data 
and knowledge as well as the applicability of the models to different cancer types and 
treatment options were also summarized. The results of this review may facilitate a novel 
model-based analysis of anti-cancer treatment response and the occurrence of resistance, 
which incorporates both tumor dynamics and evolutionary resistance development.   

Among the studies included in this review, detailed data regarding evolutionary resistance 
has not yet been incorporated in tumor size-based modeling of anti-cancer treatment 
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response. Given that genetic biomarkers, such as circulating tumor DNA (ctDNA), become 
increasingly available, there is an opportunity to make use of such data to support the 
development of a tumor dynamics model that accounts for evolutionary resistance for 
cancer patients. The developed model could subsequently support the optimization and 
personalization of anti-cancer therapy with simulations. 

In order to test this concept, in chapter 3, a mathematical model incorporating various 
clonal populations and evolving cancer resistance was developed to characterize tumor size 
dynamics and resistance development under treatment. With parameter values fitted to the 
data or informed by literature data, the model well captured previously reported tumor sizes 
and mutant KRAS levels in ctDNA of patients with metastatic colorectal cancer (mCRC) 
treated with panitumumab. Subsequently, we evaluated anti-cancer treatment schedules 
the design of which considered the evolving progression of tumor and demonstrated the 
use of ctDNA as a marker to guide adaptive treatment. The simulation results indicated 
that compared with a conventional continuous treatment schedule, intermittent schedules 
with treatment holidays and adaptive schedules guided by ctDNA could better suppress the 
evolving cancer resistance. Intermittent and adaptive schedules were also predicted to result 
in improved clinical outcomes, i.e. the predicted median progression-free survival (PFS) 
and time period in which the tumor size stayed below the baseline level were prolonged. 
With the sensitivity analysis, we identified parameters of which the accurate estimation is 
important for the model to capture the observed dynamics of tumor sizes and mutation 
concentrations. Nevertheless, the intermittent and adaptive treatment still provided better 
treatment outcomes when parameter values varied. 

In chapter 4, we further characterized the tumor dynamics considering intra-tumor hetero-
geneity and explored the correlation between ctDNA measurements and tumor dynamics 
parameters based on data from non-small cell lung cancer (NSCLC) patients treated with 
erlotinib. The study included intensively sampled erlotinib PK curves from 29 patients, and 
tumor sizes, ctDNA measurements, and sparsely sampled erlotinib concentrations from 18 
patients from the START-TKI study. A population PK model of erlotinib was first developed 
and subsequently applied to investigate the exposure-tumor dynamics relationship. To 
characterize the tumor dynamics, models accounting for intra-tumor heterogeneity and 
acquired resistance with or without a pre-existing resistance component were investigated. 
Eventually, a model with acquired resistance only resulted in an adequate fit to the data. 
Additionally, no significant exposure-response relationship for erlotinib was identified 
within the observed exposure range. Subsequently, the correlation of baseline ctDNA 
measurements on EGFR and TP53 variants with tumor dynamics parameters was explored. 
The analysis indicated that higher baseline plasma EGFR mutation levels correlated with 
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increased tumor growth rates, and the inclusion of ctDNA data improved model fit. This 
result suggests that quantitative ctDNA measurements have the potential to be a predictor 
of anti-cancer treatment response, which encouraged to use ctDNA as an early biomarker. 

Since high PK/PD variabilities of anti-cancer drugs are present in real-world patients 
which may result in unfavorable treatment outcomes, a better understanding of such 
variabilities would be beneficial to improve anti-cancer therapy for individual patients. In 
Section II of this thesis, we demonstrated the application of pharmacometric modeling in 
characterizing the PK/PD profiles and variabilities of anti-cancer drugs, and in supporting 
precision treatment for real-world patients. We first introduced model-informed precision 
dosing (MIPD) and the current application and benefit of MIPD in supporting optimal 
and precision anti-cancer treatment in chapter 5. MIPD adopts pharmacometric models 
to guide precision dose selection aiming for improved therapeutic target attainment and 
optimal treatment outcome. MIPD can be applied to rationally guide initial dose selection 
and dose adaptation during anti-cancer treatment, as well as therapeutic drug monitoring 
(TDM). The advantage of MIPD over conventional strategies in cancer treatment has 
been demonstrated in many research and clinical trials. However, challenges still have to 
be overcome to implement MIPD of cancer therapies in clinical practice. We highlighted 
a few challenges and provided future perspectives regarding optimal target identification, 
suitable model selection, available programs, and the necessity of prospective clinical trials. 

In chapter 6, we performed a population PK analysis to characterize and predict mitotane 
PK in patients with adrenocortical carcinoma (ACC). Additionally, we explored and 
quantified the potential effect of pharmacogenetic variations on mitotane clearance for 
the first time to better explain the PK variability of mitotane. A two-compartment PK 
model was developed based on retrospectively collected data from 48 patients. For each 
patient, the genotyping results of 172 SNPs from the DMETTM platform were included in 
the analysis. The exploratory analysis identified 11 SNPs that were potentially related to 
mitotane clearance. The final stepwise covariate analysis identified the lean body weight 
(LBW), genotypes of CYP2C19*2 (rs4244285), SLCO1B3 699A>G (rs7311358), and 
SLCO1B1 571T>C (rs4149057) as significant covariates on mitotane clearance (CL/F). 
This suggests that enzyme CYP2C19 and transporter SLCO1B1 and SLCO1B3 may play 
roles in mitotane disposition but further external or in vitro evaluation is warranted to 
confirm the results. Based on the developed model, various dosing regimens and the TDM 
process were simulated to investigate optimal and individualized mitotane regimens for 
patients with ACC. The results indicated that determining the starting dose individually 
with the developed model is beneficial to shorten the period for mitotane to reach the 
therapeutic target and limit the risk of toxicity. Regimens that can effectively maintain 
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mitotane concentration within its therapeutic range, i.e., 14–20 mg/L, were established. 
One optimal regimen was then built in a Shiny app to elucidate an option of providing 
treatment advice for a new patient based on the model.  

In chapter 7, we performed a population PK analysis on high-dose methotrexate (HD-MTX) 
in patients with central nervous system (CNS) lymphoma. Data from 110 patients from 3 
medical centers were available in this study. A two-compartment population PK model was 
developed and shown to adequately describe the PK data. Estimated glomerular filtration 
rate (eGFR), treatment schedule, albumin, alkaline phosphatase, and body weight were 
identified as significant covariates. The results suggest that adjusting the HD-MTX dose 
with a model-based approach may be more rational to further reduce PK variability than 
dosing only based on body surface area (BSA). Subsequently, a (exposure-)toxicity analysis 
was performed to identify predictive factors for acute renal and liver toxicity. eGFR and 
sex were identified to be significant baseline predictors for renal toxicity, and HD-MTX 
dose (mg/m2) was the strongest baseline predictor of liver toxicity. Simulation results 
suggest that starting HD-MTX when eGFR > 66.6 mL/min/1.73m2 is recommended for 
patients with CNS lymphoma, and a dose higher than 3500 mg/m2 predicted a high risk of 
liver toxicity. The exposure metrics of methotrexate (MTX) including the area under the 
concentration-time curve (AUC24-∞) and concentration at 24 hours (C24h) were identified 
to correlate with renal toxicity but not with liver toxicity. AUC24-∞ > 109.5 μmol/L*h and 
C24h > 8.64 μmol/L were suggested to be potential exposure thresholds that predict a high 
risk of toxicity. These findings would be beneficial for further individualizing HD-MTX 
dosage and preventing acute organ toxicity, which can improve HD-MTX therapy in CNS 
lymphoma patients. 

Finally, in chapter 8, we discussed the results of this thesis and potential challenges and 
perspectives for future studies. We have shown that with the quantitative models, the 
evolutionary progression of tumor can be characterized and predicted, accounting for 
interactions among heterogeneous tumor cells and supported by mutant gene variants 
detected in ctDNA. In addition, population PK/PD modeling allows for a quantitative 
description of the PK and PD of anti-cancer drugs at both population and individual 
levels. The developed model can further facilitate the identification of optimal treatment 
designs and guide individualized treatment rationally for oncology patients. However, 
challenges still remain for data collection (especially for ctDNA data), model develop-
ment and validation, and results implementation (including suggested regimens and the 
models). Further research is warranted to validate the findings and support better practice 
of personalized treatment.
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Kwantitatieve modellering met zogenaamde gemengde-effect modellen wordt steeds vaker 
toegepast in farmaceutisch onderzoek. Het maakt het mogelijk om de farmacokinetiek 
(PK) en farmacodynamiek (PD) van geneesmiddelen kwantitatief te beschrijven en te 
voorspellen. Daarnaast kan met deze methode de inter- en intra-individuele variabiliteit 
gekwantificeerd en verklaard worden. In oncologisch onderzoek kan de op modellen 
gebaseerde benadering worden toegepast om longitudinale gegevens te benutten om 
meer te weten te komen over de interactie tussen medicamenteuze behandeling en het 
menselijk lichaam, evenals de progressie van kanker. Het ontwikkelde model kan vervol-
gens de identificatie van het optimale behandelingsregime ondersteunen en individuele 
behandeling vergemakkelijken.

Bij kankerbehandeling is de opkomst van behandelingsresistentie één van de belangrijkste 
oorzaken van therapiefalen bij patiënten. Inzicht in de inter- en intra-tumor heterogeniteit 
en evolutionaire dynamiek van tumoren, en het daaropvolgende gebruik van deze kennis 
voor het ontwerpen van behandelstrategieën, zou zeer gunstig zijn voor het optimaliseren 
van gerichte antikankerbehandeling. In Sectie I van dit proefschrift hebben we deze op 
modellen gebaseerde benadering specifiek toegepast om de dynamiek van tumorgrootte 
en evolutionaire resistentieontwikkeling tijdens de behandeling te interpreteren, en 
optimale behandelregimes te verkennen die de ontwikkeling van resistentie beter kunnen 
onderdrukken.

Om kansen en uitdagingen te identificeren bij het kwantitatief karakteriseren van de reactie 
op antikankerbehandeling rekening houdend met tumordynamiek en evolutionaire resis-
tentieontwikkeling, is een overzicht van momenteel beschikbare modelstructuren nodig. In 
hoofdstuk 2 hebben we een systematische zoektocht uitgevoerd en de wiskundige modellen 
die zijn gebruikt om de dynamiek van tumor(groei) en evolutionaire resistentieontwikkeling 
te beschrijven en voorspellen, uitgebreid samengevat. We richtten ons met name op modellen 
die toepasbaar zijn op klinische data. In deze review werden tumordynamische modellen 
weergegeven door gewone differentiaalvergelijkingen, algebraïsche vergelijkingen en partiële 
differentiaalvergelijkingen geïdentificeerd en vervolgens samengevat. Tumorproliferatie en 
regressie als gevolg van behandeling, tumorheterogeniteit en behandelingsresistentie zijn 
belangrijke elementen die doorgaans in die modellen worden meegenomen. De dynamiek 
van biomarkers kan ook worden opgenomen in de modellen, wat een beter begrip en voor-
spelling van de tumorontwikkeling mogelijk maakt. Wat betreft modellen voor evolutionaire 
tumorresistentie, werden stochastische en deterministische modellen geïdentificeerd en 
samengevat. De benodigde gegevens en kennis, evenals de toepasbaarheid van de modellen 
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op verschillende kankersoorten en behandelingsmogelijkheden, werden ook samengevat. 
De resultaten van deze review kunnen een nieuwe op modellen gebaseerde analyse van de 
reactie op antikankerbehandeling en het optreden van resistentie vergemakkelijken, waarbij 
zowel tumordynamiek als evolutionaire resistentieontwikkeling worden meegenomen.

Onder de studies die in deze review zijn opgenomen, is gedetailleerde informatie over 
evolutionaire resistentie nog niet opgenomen in de op tumoromvang gebaseerde model-
lering van de reactie op antikankerbehandeling. Gezien het feit dat genetische biomarkers, 
zoals circulerend tumor-DNA (ctDNA), steeds meer beschikbaar worden, is er een moge-
lijkheid om dergelijke gegevens te gebruiken ter ondersteuning van de ontwikkeling van 
een tumordynamisch model dat rekening houdt met evolutionaire resistentie bij kanker-
patiënten. Het ontwikkelde model kan vervolgens de optimalisatie en personalisatie van 
antikankertherapie ondersteunen met behulp van simulaties.

Om dit concept te testen, is in hoofdstuk 3 een wiskundig model ontwikkeld dat verschil-
lende klonale populaties en evoluerende kankerresistentie meeneemt om de dynamiek van 
tumorgrootte en resistentieontwikkeling onder behandeling te karakteriseren. Met para-
meterwaarden afgestemd op de beschikbare data of geïnformeerd door literatuurgegevens, 
beschreef het model eerder gerapporteerde tumorgroottes en mutante KRAS-niveaus in 
ctDNA van patiënten met gemetastaseerde dikkedarmkanker (mCRC) die met panitu-
mumab waren behandeld redelijk goed. Vervolgens evalueerden we behandelingsschema’s 
die rekening hielden met de voortschrijdende progressie van tumoren en toonden we aan 
dat het gebruik van ctDNA als marker om adaptieve behandeling te begeleiden in potentie 
kan worden gebruikt. De simulatieresultaten gaven aan dat vergeleken met een conven-
tioneel continu behandelingsschema, onderbroken schema’s met behandelingspauzes en 
adaptieve schema’s begeleid door monitoring van ctDNA de evoluerende kankerresis-
tentie beter konden onderdrukken. Er werd ook voorspeld dat onderbroken en adaptieve 
schema’s zouden resulteren in verbeterde klinische resultaten, d.w.z. de voorspelde mediane 
progressievrije overleving (PFS) en de periode waarin de tumorgrootte onder het basale 
niveau bleef, werden verlengd. Met de gevoeligheidsanalyse identificeerden we parame-
ters waarvan de nauwkeurige schatting belangrijk is voor het model om de waargenomen 
dynamiek van tumorgroottes en mutatieconcentraties vast te leggen. Desalniettemin 
boden de onderbroken en adaptieve behandeling betere behandelingsresultaten wanneer 
de parameterwaarden varieerden.

In hoofdstuk 4 karakteriseerden we de tumordynamiek verder, waarbij rekening werd 
gehouden met intra-tumor heterogeniteit, en onderzochten we de correlatie tussen ctDNA-
metingen en tumordynamiekparameters op basis van gegevens van patiënten met niet-
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kleincellige longkanker (NSCLC) die met erlotinib werden behandeld. De studie omvatte 
intensief gesamplede erlotinib PK-curves van 29 patiënten, en tumorgrootte meetwaarden, 
ctDNA-metingen en spaarzaam gesamplede erlotinib-concentraties van 18 patiënten uit 
de START-TKI-studie. Een populatie-PK-model van erlotinib werd eerst ontwikkeld en 
vervolgens toegepast om de relatie tussen blootstelling en tumordynamiek te onderzoeken. 
Om de tumordynamiek te karakteriseren, werden modellen onderzocht die rekening 
houden met intra-tumor heterogeniteit en verworven resistentie met of zonder een vooraf 
bestaand resistentiecomponent. Uiteindelijk resulteerde een model met alleen verworven 
resistentie in een adequate overeenkomst met de beschikbare gegevens. Bovendien werd 
geen significante blootstellings-responsrelatie voor erlotinib geïdentificeerd binnen het 
waargenomen blootstellingsbereik. Vervolgens werd de correlatie van baseline ctDNA-
metingen van EGFR- en TP53-varianten met tumordynamiekparameters onderzocht. 
De analyse gaf aan dat hogere plasma-EGFR-mutatieniveaus bij aanvang correleerden 
met verhoogde tumorgroeisnelheden, en de opname van ctDNA-gegevens verbeterde de 
modelaanpassing. Dit resultaat suggereert dat kwantitatieve ctDNA-metingen het poten-
tieel hebben om een vroege voorspeller te zijn van de reactie op antikankerbehandeling, 
wat stimuleert om ctDNA te gebruiken als een vroege biomarker in de klinische praktijk.

Aangezien er in de praktijk hoge PK/PD-variabiliteit van antikankermedicijnen aanwezig is 
bij patiënten, wat kan leiden tot ongunstige behandelingsresultaten, zou een beter begrip van 
dergelijke variabiliteit gunstig zijn om de antikankertherapie voor individuele patiënten te 
verbeteren. In Sectie II van dit proefschrift hebben we de toepassing van farmacometrische 
modellering laten zien bij het karakteriseren van de PK/PD-profielen en variabiliteit van 
antikankermedicijnen, en bij het ondersteunen van precisiebehandeling voor patiënten 
in de klinische praktijk. We hebben eerst model-geïnformeerde precisiedosering (MIPD) 
geïntroduceerd en de huidige toepassing en voordelen van MIPD in het ondersteunen 
van optimale en precieze antikankerbehandeling besproken in hoofdstuk 5. MIPD maakt 
gebruik van farmacometrische modellen om precisiedosering te begeleiden met als doel 
een verbeterde therapeutische blootstelling en daaropvolgende optimale behandelingsresul-
taten. MIPD kan worden toegepast om rationeel de initiële dosiskeuze en dosisaanpassing 
tijdens antikankerbehandeling vast te stellen, net als therapeutic drug monitoring (TDM). 
Het voordeel van MIPD ten opzichte van conventionele strategieën in de behandeling 
van kanker is aangetoond in veel onderzoeken en klinische trials. Er moeten echter nog 
obstakels worden overwonnen om MIPD van kankertherapieën in de klinische praktijk te 
implementeren. We hebben een aantal uitdagingen benadrukt en toekomstperspectieven 
geboden met betrekking tot optimale doelidentificatie, geschikte modelselectie, beschikbare 
programma’s en de noodzaak van prospectieve klinische onderzoeken.
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In hoofdstuk 6 hebben we een populatie-PK-analyse uitgevoerd om de PK van mitotaan te 
karakteriseren en voorspellen bij patiënten met bijnierschorscarcinoom (ACC). Bovendien 
hebben we voor de eerste keer het potentiële effect van farmacogenetische variaties op 
mitotaanklaring kwantitatief onderzocht om de PK-variabiliteit van mitotaan beter te 
verklaren. Er werd een tweecompartimenten-PK-model ontwikkeld op basis van retrospec-
tief verzamelde gegevens van 48 patiënten. Voor elke patiënt werden de genotyperesultaten 
van 172 SNPs van het DMET™-platform opgenomen in de analyse. De verkennende analyse 
identificeerde 11 SNPs die potentieel gerelateerd waren aan mitotaanklaring. De uiteinde-
lijke stapsgewijze covariaatanalyse identificeerde het lichaamsgewicht zonder vet (LBW), 
genotypen van CYP2C19*2 (rs4244285), SLCO1B3 699A>G (rs7311358) en SLCO1B1 
571T>C (rs4149057) als significante covariaten voor schijnbare mitotaanklaring (CL/F). Dit 
suggereert dat het enzym CYP2C19 en de transporters SLCO1B1 en SLCO1B3 mogelijk een 
rol spelen in de verdeling van mitotaan, maar verdere externe of in vitro-evaluatie is nodig 
om de resultaten te bevestigen. Op basis van het ontwikkelde model werden verschillende 
doseringsschema’s en het TDM-proces gesimuleerd om optimale en geïndividualiseerde 
mitotaanregimes voor patiënten met ACC te onderzoeken. De resultaten gaven aan dat 
het individueel bepalen van de startdosis met het ontwikkelde model gunstig is om de 
periode voor mitotaan om het therapeutische doel te bereiken te verkorten en het risico 
op toxiciteit te beperken. Regimes die effectief mitotaan concentratie binnen het therapeu-
tische bereik kunnen handhaven (14–20 mg/L) werden vastgesteld. Eén optimaal regime 
werd vervolgens gebouwd in een Shiny-app om een optimaal behandelingsadvies voor een 
nieuwe patiënt op basis van het model te genereren en te visualiseren.

In hoofdstuk 7 hebben we een populatie PK-analyse uitgevoerd op hoge doses methotrexaat 
(HD-MTX) bij patiënten met lymfoom van het centrale zenuwstelsel (CZS). Gegevens van 
110 patiënten uit drie academische medische centra waren beschikbaar in deze studie. 
Er werd een tweecompartimenten populatie PK-model ontwikkeld en getoond om de 
PK-gegevens adequaat te beschrijven. Geschatte glomerulaire filtratiesnelheid (eGFR), 
behandelschema, albumine, alkalische fosfatase en lichaamsgewicht werden geïdenti-
ficeerd als significante covariaten. De resultaten suggereren dat het aanpassen van de 
HD-MTX-dosering met een op modellen gebaseerde benadering mogelijk rationeler is 
om de PK-variabiliteit verder te verminderen dan dosering alleen op basis van lichaams-
oppervlak (BSA). Vervolgens werd een (blootstellings-)toxiciteitsanalyse uitgevoerd om 
voorspellende factoren voor acute nier- en levertoxiciteit te identificeren. eGFR bij start 
behandeling en geslacht werden geïdentificeerd als significante basale voorspellers voor 
niertoxiciteit, en de HD-MTX-dosering (mg/m2) was de sterkste basale voorspeller van 
levertoxiciteit. Simulatieresultaten suggereren dat om niertoxiciteit te voorkomen het 



255

9

Nederlandse samenvatting

aanbevolen is om alleen te starten met een volledig dosis van HD-MTX wanneer patiënten 
met CZS-lymfoom een eGFR > 66,6 mL/min/1,73m2 hebben. Een dosis hoger dan 3500 
mg/m2 voorspelde een verhoogd risico op levertoxiciteit. De blootstellingsmetingen van 
methotrexaat (MTX), waaronder de oppervlakte onder de concentratie-tijdcurve (AUC24-∞) 
en de concentratie na 24 uur (C24h), werden geïdentificeerd als correlerend met niertoxi-
citeit, maar niet met levertoxiciteit. AUC24-∞ > 109,5 μmol/L*uur en C24h > 8,64 μmol/L 
werden voorgesteld als mogelijke blootstellingsdrempels die een hoog risico op toxiciteit 
voorspellen. Deze bevindingen zouden nuttig kunnen zijn voor verdere individualisering 
van de HD-MTX-dosering en het voorkomen van acute orgaantoxiciteit, wat de HD-MTX-
therapie bij patiënten met CZS-lymfoom kan verbeteren.

Tenslotte, in hoofdstuk 8, hebben we de resultaten van deze scriptie en potentiële uitda-
gingen en perspectieven voor toekomstige studies besproken. We hebben aangetoond 
dat met kwantitatieve modellen de evolutionaire progressie van tumoren kan worden 
gekarakteriseerd en voorspeld, rekening houdend met interacties tussen heterogene 
tumorcellen en ondersteund door gemuteerde genvarianten die zijn gedetecteerd in ctDNA. 
Bovendien maakt populatie PK/PD-modellering een kwantitatieve beschrijving mogelijk 
van de PK en PD van antikankergeneesmiddelen op zowel populatie- als individueel 
niveau. Het ontwikkelde model kan verder bijdragen aan de identificatie van optimale 
behandelingsontwerpen en het rationeel begeleiden van geïndividualiseerde behandeling 
voor oncologiepatiënten. Er blijven echter uitdagingen bestaan voor gegevensverzameling 
(vooral voor ctDNA-gegevens), modelontwikkeling en validatie, en de implementatie van 
resultaten (inclusief voorgestelde behandelingsregimes en modellen). Verder onderzoek 
is nodig om de bevindingen te valideren en een betere praktijk van gepersonaliseerde 
behandeling te ondersteunen.
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