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Abstract

Donor characteristics, such as donor sex and age, have been implicated in adverse 
outcomes following red blood cell transfusions. There is a vast body of evidence 
supporting a role for sex-mismatch in solid organ and stem cell transplantation. 
Most of these findings suggest the strongest effect of sex-mismatch between 
multiparous female donors and male recipients. In this review, we discuss the 
available evidence from transfusion, solid organ transplantation, and stem cell 
transplantation medicine. We suggest several possible biological mechanisms 
behind the association of donor pregnancy and transfusion recipient mortality 
that can be further investigated in future research. Foremost, we claim donor 
microchimeric cell-mediated immune modulation is the most likely explanation 
for the observed associations in transfusion medicine.

Key words: blood transfusion, transplantation, pregnancy, sex mismatch



25

Donor sex and recipient outcomes

2

Introduction

Blood products from female donors are associated with adverse outcomes after 
transfusion[1, 2]. Initially, the association between donor sex and transfusion 
recipient mortality was limited to plasma-rich products, which were implicated 
in causing transfusion-related acute lung injury (TRALI)[3, 4]. TRALI is caused by 
the transfer of donor alloantibodies that react with human neutrophil antigens 
(HNA) or class I or class II human leukocyte antigens (HLA)[5] of recipient cells 
and tissue. These antibodies are induced by exposure to alloantigens, which can 
occur during pregnancy, transfusion, and transplantation[6-9]. In TRALI, donor 
antibodies originating from leukocytes and located in the plasma fraction of the 
blood product cause neutrophil priming and activation in the pulmonary vascu-
lature, resulting in edema and acute dyspnea[10]. Therefore, the use of plasma-
rich products from female donors has been restricted, resulting in a reduction of 
the incidence of TRALI[11]. 

However, an association between transfusions from female donors and subse-
quent adverse outcomes was also seen for other blood products, which contain 
a limited amount of plasma[12-18]. We furthermore observed increased death 
rates among young male recipients of packed red blood cell transfusions from 
ever-pregnant female donors[16]. In search of potential biological mechanisms 
to explain these observations, we reviewed the literature on the role of donor 
and recipient sex-mismatch in outcomes in blood transfusion, solid organ and 
stem cell transplantation. We summarize the possible mechanisms behind the 
frequently seen association between female donor sex and adverse events in 
(predominantly male) recipients. 

Donor sex and pregnancy in hematopoietic stem cell 
transplantation

Although allogeneic hematopoietic stem cell transplantation can be a life-saving 
therapy for hemato-oncologic malignancies, serious complications frequently 
occur[19]. Graft-versus-host disease (GVHD) is a potentially lethal complica-
tion which is caused by the attack of the host by T-cells originating from the 
allogeneic graft[20]. However, the occurrence of GVHD is also associated with a 
graft-versus-leukemia or graft-versus-tumor effect, with lower relapse incidence 
in patients with this condition[21-23]. Lower relapse and increased GVHD risk 
go hand in hand: the outcome of allogeneic transplantation depends heavily on 
HLA and minor histocompatibility antigen (miHA) mismatches between donor 



Chapter 2

26

and recipient, and the amount of functional and mismatch reactive T-cells within 
the transplant[24, 25].

Sex-mismatch has been studied in the context of allogeneic stem cell transplanta-
tion in aplastic anemia[26], acute myeloid leukemia[27, 28], acute lymphoblastic 
leukemia[27, 28], chronic myeloid leukemia[28, 29], and multiple myeloma[30]. 
Female-to-male allogeneic transplantations were associated with increased risk 
of death in allogeneic stem cell transplant recipients, due to a higher rate of 
acute and chronic GVHD, and increased non-relapse mortality[26-29, 31]. How-
ever, the increase in chronic GVHD related to female donors was also observed 
in female recipients[32]. 

Non-relapse mortality in male patients receiving a hematopoietic stem cell 
transplantation from a female donor was associated with pregnancy history of 
the female donor, and particularly with a prior pregnancy with a male child[33]. 
During pregnancy, there is exchange of fetal and maternal cells across the 
placenta[34-36]. After pregnancy, allogeneic cells can thus persist in the host, 
leading to microchimerism[37]. Parous women can mount an immune response 
against these chimeric cells through the inherited paternal HLA antigens (IPA) or 
paternal miHA, and in the case of a pregnancy with a boy through the Y-chromo-
some encoded miHA (HY-antigens)[38-40]. The introduction of HY-specific donor 
T-cells[41] via the stem cell transplant is associated with both acute and chronic 
GVHD in male allogeneic stem cell transplant recipients[41]. Next to HY-specific 
helper T cells and cytotoxic T cells, also anti-HY antibodies involved in antibody-
dependent cellular cytotoxicity could be demonstrated in females with male 
children. 

Donor sex and pregnancy in solid organ transplant

In solid organ transplantation medicine, the role of donor sex on allograft engraft-
ment and function has been extensively described[42]. Overall, a worse graft 
outcome has been identified for female donor allografts[42]. This association 
has been observed in both cadaveric and living-donor liver transplantation[43, 
44]. A decreased overall survival was observed in male recipients receiving a fe-
male donor heart, compared to a male donor heart[45]. Overall, renal allografts 
from female donors are associated with poor survival both in male and female 
recipients[42, 46].
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Several biological mechanisms were postulated to explain these findings. First, 
the increased mortality in recipients of female liver allografts has been ascribed 
to deprivation of estrogen, which provides protection to ischemic injury, and 
promotes cholangiocyte proliferation in the liver[43, 44]. Second, increased 
mortality among recipients of heart transplants from female donors could be 
due to graft under sizing, commonly attributed to sex mismatching[47, 48]. This 
effect could be further exacerbated by a progressive loss of 1g of myocytes per 
year partially compensated by a reactive hypertrophic response, which has been 
observed in healthy male hearts, but not in females[49, 50]. Finally, increased 
mortality among male recipients of female kidneys has been attributed to the 
lower nephron mass of female donor kidneys, and higher functional demand of 
male recipients, resulting in allograft hyperfiltration injury[51, 52]. 

However, kidney allografts from male donors in female recipients, compared to all 
other donor-recipient combinations, were also associated with increased adverse 
outcomes[53-57]. These adverse effects of sex-mismatch in kidney transplanta-
tion are postulated to again relate to higher antibody titers against HY-antigens 
observed in female recipients[58, 59]. HY-antigen mismatch is hypothesized to 
lead to sensitization, allogeneic transplant rejection, and ultimately transplant 
failure[56]. Some studies have also shown a detrimental effect of HY-antigen 
mismatch on acute immunological rejection in corneal transplantation[60], 
lung[61], liver[62] kidney[63] and heart transplantation[64, 65]. Overall, these 
findings suggest a role for HY-antigens in solid organ transplantation, through 
an immunological female-anti-male H-Y effect[53].

Donor sex and pregnancy and red blood cell recipient 
mortality

The first study reporting an association between donor sex and transfusion 
recipient mortality after transfusion of plasma poor, leukoreduced red blood 
cell products was published in 2011[17]. This study noted an especially strong 
association of young male transfusion recipient mortality and female donor 
transfusions. Since then, several other studies have also observed this associa-
tion[12-15, 18].

Figure 1 shows the results of all studies reporting the association of donor sex 
with transfusion recipient mortality for male and female transfusion recipients 
separately (adapted from[66]). The pooled hazard ratio for mortality of male 
transfusion recipients after red blood cell transfusions from female donors, 
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compared to male donors was 1.15 (95% confidence interval (CI): 1.01 to 1.30). 
For female recipients, this hazard ratio was 1.01 (95% CI: 0.94 to 1.08). 

Some studies did not find this association between donor sex and adverse 
outcomes following transfusion[67-69]. Differences in study population, chosen 
comparisons, and production methods of blood products could explain these dif-
ferences and potentially modify the risk associated with receiving blood products 
from female donors. Namely, one of these studies investigated cardiovascular 
disease patients only[68]. Furthermore, a recent publication reported a positive 
association between red cell transfusions from ever-pregnant donors and mor-
tality of young male recipients[16]. Although this finding is tentative and was not 
corroborated by another more recent study, it is consistent with the observation 
that female donors are associated with adverse outcomes in male transfusions 
recipients[69]. It could also explain why some studies did not find an associa-
tion between female donors and mortality; the donor populations in different 
countries have different demographics. Different statistical analysis techniques 
could further explain why not all studies showed an effect of sex-mismatched 
transfusions. The methods used to adjust for confounding variables, such as the 

Figure 1 - Publications on the association of recipient mortality female blood donors, stratified 
by recipient sex
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total number of transfusions, were theorized to explain some of these differ-
ences[69]. We also cannot rule out that the length of follow-up, which varied 
widely between studies, may have influenced the observed point estimates. 

Transfusion-associated microchimerism (TA-MC) has been proposed as a possible 
explanation for higher mortality after sex-mismatched transfusions[16, 70, 71]. 
Donor cells have been detected in transfusion recipients up to 60 years after 
transfusions[72]. Interestingly, transfused trauma patients have been shown 
to be significantly more sensitive to persistent microchimerism[73]. Trauma 
patients receiving transfusions are often males (84%), and relatively young (77% 
under 44 years of age)[74]. It is therefore plausible, that the increased tendency 
of young male transfusion recipients to develop long-lasting microchimerism 
might be implicated in the apparent susceptibility of this patient group to sex-
mismatched blood transfusions. 

Universal leukoreduction of donated blood products is thought to reduce the 
risks associated with blood transfusion, and has been indicated to reduce post-
operative mortality after open-heart surgery[75, 76]. Strikingly, the occurrence 
of TA-MC remained unchanged after the introduction of universal leukoreduc-
tion[77]. Also, the number of transfusions did not determine whether microchi-
meric cells persist[78]. Finally, prolonged storage of the blood product had no 
apparent effect on the occurrence of TA-MC, even though the leukocyte content 
in some blood products decreased to undetectable levels during storage[79]. 
These findings indicate, TA-MC may not be leukocyte dose dependent. 

Summarizing the findings from observed associations in transfusion and trans-
plantation research, a compelling theory emerges. Mortality after transfusion 
from female donors is related to pregnancy history of the donor and age and sex 
of the recipients[16]. Parity is known to be associated both with cellular and hu-
moral HY-immunity in women[38], while this transferred immunity is associated 
with GVHD in male recipients[40, 41, 80]. After transfusion, microchimerism can 
be detected more often in trauma patients[77], which are predominantly young 
and male[74]. Thus, we hypothesize HY- and other Y coded (minor) antigen-
directed alloimmunity is unintentionally transferred with parous female donor 
blood products, and may play a role in causing mortality and morbidity in male 
transfusion recipients. 
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Other raised mechanisms for the association between 
donor sex and transfusion recipient mortality

Hemoglobin 
Lower hemoglobin concentrations of female donors may also affect transfusion 
recipient mortality[81]. Less hemoglobin in the product could result in the need 
for more transfusions; donor and recipient sex are significant predictors of he-
moglobin increments[82]. However, a higher number of transfusions does not 
explain why blood products from ever-pregnant female donors could be harmful, 
or why this association should be limited to young male transfusion recipients. 
Although hemoglobin levels are affected by pregnancy, these effects are tran-
sient and hemoglobin levels return to normal after childbirth[83]. 

The higher levels of hemoglobin of red blood cell units from male donors are 
actually postulated to be harmful to female transfusion recipients[84]. The 
excess hemoglobin, in the form of toxic free hemoglobin, might overwhelm the 
scavenging capacity of female haptoglobin, resulting in a temporary depletion of 
nitric oxide, inducing endothelial dysfunction, platelet aggregation and oxidative 
injury[85-87]. Also, this free hemoglobin may trigger pro-inflammatory effects 
through toll-like receptor 4[88]. 

Cell-free DNA 
Blood products with short storage duration are possibly associated with post-
transfusion mortality[89-91]. As the blood product ages, less cell-free DNA is 
present in the product[92], possibly due to degradation by DNases[93]. Different 
blood product production methods also resulted in different concentrations of 
cell-free DNA[92], with the main differences being the timing of the leukoreduc-
tion procedure. Cell-free DNA is known to be released by neutrophils in neutrophil 
extracellular traps[94]. Increased cell-free DNA levels have been associated with 
impaired fibrinolysis in septic patients[95]. Pro-coagulant, platelet-stimulating 
and pro-inflammatory properties all have been ascribed to cell-free DNA[93, 
96-98]. Thus, a role for cell-free DNA in the adverse events linked to very fresh 
blood products is conceivable. This principally applies to products which were 
manufactured using the whole-blood filtration method, which were shown to 
contain high cell-free DNA concentrations[92]. 

However, no link to donor pregnancy history and presence of cell-free DNA in 
blood products has been established. A novel, yet unknown effect of cell-free 
DNA from (ever-pregnant) female donors on mortality could be studied by in-
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vestigating effect modification by storage time on the effect of ever-pregnant 
donors on mortality. However, preliminary investigations into this subject sug-
gested that older units may actually potentiate the effect of ever-pregnant 
donors[99].

Hormones
There are indications that hormones act differently on red blood cells in men 
and in women[100, 101]. The membrane rigidity of female erythrocytes was 
shown to increase following adrenaline stimulation, while in male erythrocytes it 
decreases[100]. Increased membrane rigidity was shown to reduce white blood 
cell adhesion to an inflamed endothelium, potentially inducing a susceptibility 
to infection[102]. Furthermore, higher membrane deformability was observed 
during the luteal phase of menstruation, which is known for higher estrogen and 
progesterone levels[101]. 

Although the impact of hormones on red blood cell deformability and membrane 
rigidity has been demonstrated, it is unclear whether these findings have clinical 
implications. No research has been performed on the effect of female fertility 
on outcomes after transfusions. However, although the differential effects of 
hormones could play a role in the short-term effects of blood transfusions, it is 
unlikely these would play a role in long-term outcomes of transfusion recipients. 

Conclusions and clinical implications

In transfusion medicine, donor sex is associated with recipient outcomes; not only 
for alloantibodies containing plasma products but also for plasma-poor products. 
We hypothesized that HY-directed immunity is unintentionally transferred to 
male transfusion recipients. This hypothesis is fueled by findings in transplanta-
tion medicine, where HY-mismatch is a bad prognostic factor for chronic GVHD 
in allogeneic stem cell transplantation and for solid organ transplant rejection. 
Alternatively, immunity against other antigens could be implicated. Pregnancy 
primes for IPA and paternal miHA[39]. If trauma is capable of inducing a ‘suscep-
tibility’ to persistent microchimerism, any fetal antigen recognizing cells could 
potentially engraft in a trauma patient, regardless of patient sex. (Table 1)
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We proposed donor microchimeric cell-mediated immune modulation as the 
most likely explanation for the observed association between donor pregnancy 
history and adverse outcomes in transfusion medicine. Other mechanisms that 
could explain the association between donor sex and recipient mortality were 
also discussed. However, none of these explain how parity of female donors 
would influence recipient outcomes. In order to provide guidance for blood 
banking, improve safety, and maintain the continuity of the blood supply, it is 
necessary to first specify which donors and patients are implicated in these ad-
verse events. Future research investigating donor characteristics on a molecular 
and cellular level should be encouraged, in addition to well-designed random-
ized clinical trials to determine the clinical impact of sex-mismatched red blood 
cell transfusions. Ultimately, this can pave the way for personalized transfusion 
strategies that will minimize both side effects and associated mortality of recipi-
ents of transfusions, while still maintaining a blood inventory that is as flexible 
and broad as possible.
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