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Chapter 2 - Determining the Spike–Wave Index using automated 
detection software 

 

Abstract 

Purpose: The spike–wave index (SWI) is a key feature in the diagnosis of electrical status 
epilepticus during slow-wave sleep. Estimating the SWI manually is time-consuming and is 
subject to interrater and intrarater variability. Use of automated detection software would 
save time. Thereby, this software will consistently detect a certain EEG phenomenon as 
epileptiform and is not influenced by human factors. To determine noninferiority in 
calculating the SWI, we compared the performance of a commercially available spike 
detection algorithm (P13 software, Persyst Development Corporation, San Diego, CA) with 
human expert consensus.  

Method: The authors identified all prolonged EEG recordings for the diagnosis or follow-up 
of electrical status epilepticus during slow-wave sleep carried out from January to December 
2018 at an epilepsy tertiary referral center. The SWI during the first 10 minutes of sleep was 
estimated by consensus of two human experts. This was compared with the SWI calculated 
by the automated spike detection algorithm using the three available sensitivity settings: 
“low,” “medium,” and “high.” In the software, these sensitivity settings are denoted as 
perception values.  

Results: Forty-eight EEG recordings from 44 individuals were analyzed. The SWIs estimated 
by human experts did not differ from the SWIs calculated by the automated spike detection 
algorithm in the “low” perception mode (P = 0.67). The SWIs calculated in the “medium” and 
“high” perception settings were, however, significantly higher than the human expert 
estimated SWIs (both P < 0.001).  

Conclusion: Automated spike detection (P13) is a useful tool in determining SWI, especially 
when using the “low” sensitivity setting. Using such automated detection tools may save 
time, especially when reviewing larger epochs.  
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Introduction 

A key feature in the diagnosis of electrical status epilepticus during slow-wave sleep (ESES) is 
the amount of epileptiform activity occurring during sleep, usually expressed as a “spike– 
wave index” (SWI) [1]. In 1971, ESES was originally described as an epileptic encephalopathy 
characterized by sleep-induced activation of epileptiform activity on the EEG [2]. In 1989, the 
International League Against Epilepsy (ILAE) defined the characteristic EEG pattern in ESES 
as continuous diffuse spike– waves during slow-wave sleep [3]. This condition mainly affects 
children and is associated with cognitive decline involving a wide spectrum of developmental 
and neurocognitive domains [4]. The underlying etiology can be structural or genetic [5]. The 
ILAE definition of ESES does not include a specific cut-off percentage regarding the amount 
of epileptiform activity in the EEG. A recent guideline, however, suggested a criterion of at 
least 50% epileptiform activity during sleep, especially if the clinical symptoms are compatible 
with an ESES-related syndrome [6]. The same guideline also mentions a cut-off of at least 85% 
epileptiform activity, mainly to facilitate comparison with existing literature. The methods 
used to determine the SWI varies, especially regarding the amount of sleep EEG which is 
analyzed (from 100 seconds to a whole sleep cycle) [6,7]. Automated spike detection 
algorithms have long been available [8]. They are useful in reviewing EEG recordings by 
detecting interictal epileptiform discharges, to quantify spike density, and possibly to 
distinguish different epileptiform morphologies [9]. Experts’ confidence in these systems 
are, however, low [10]. Future users need independent research with this software to gain 
confidence. An issue in validating such algorithms is the lack of a gold standard in EEG review, 
mainly because of large interrater and intrarater variability seen in identifying spikes or sharp 
waves in the same EEG recording [11]. Factors that play a role are, for example, reader style, 
fatigue, and loss of concentration. The lack of an objective gold standard creates difficulties 
in assessing whether a detection algorithm is performing well [12]. The Persyst 13 (P13) is one 
of the available software packages for EEG visualization that has an automated spike and 
seizure detection feature. The spike detection algorithm is a neural network that attempts to 
mimic the perception-based marking of human experts (HEs) [13,14]. For users, the precise 
details of the algorithm and the neural network rules are mostly unknown except for some 
technical aspects [14]. The algorithm uses different sensitivity settings to present the output; 
these are denoted as perception values, ranging from zero to one. Ambiguous epileptiform 
features are assigned nearzero values, and clear epileptiform abnormalities are assigned 
nearone values [13]. P13 has three different settings: “high,” “medium,” and “low.” The 
“high” setting has a perception threshold setting of 0.1, the “medium” of 0.4, and the “low” 
of 0.9. Counting spikes manually is a time-consuming task [15]. Estimating the SWI using 
automated detection software could save time, as a detection algorithm is able to calculate 
a SWI in few seconds (after the record is processed). This is independent of the size of the 
epoch. Thus, the time saved is larger when reviewing longer EEG recordings. Thereby, an 
automated detection algorithm will consistently detect a certain EEG phenomenon as 
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epileptiform and is not influenced by individual reader style or other reader factors such as 
fatigue. A recent report found that the software-calculated SWI using P13 was noninferior to 
experts’ estimates [16]. This report, however, was based on a small number of 
nonheterogeneous recordings from ESES patients. Thereby, the “high” perception setting 
was used instead of the “medium” setting, which the Persyst Development Corporation 
states is the default mode. Furthermore, this report did not provide information about 
accurate quantification of lower SWIs, which can be useful for follow-up of patients. The 
algorithm, therefore, needs further validation. In this study, we compared the performance 
of the P13 algorithm versus HE consensus in a heterogeneous set of recordings, reviewing all 
three perception value settings (‘high’, ’medium’  or ‘low’).  

 

Method 

All prolonged EEG recordings made with an ESES or follow-up of ESES referral question in 
children or teenagers (age 0–18 years) between January 1, 2018 and December 31, 2018 were 
included. Informed consent was not obtained because of the study’s retrospective nature. 
Thereby, only anonymized data, and no video data, were used. This study was approved by 
the institutional review board. The HEs were a clinical neurophysiologist and a physician 
assistant each with more than five years of experience in reviewing EEGs. The education of 
this particular physician assistant contained multiple years of medical training combined with 
dedicated EEG training, supervised by board-certified clinical neurophysiologists. The HEs 
were masked to the initial video-EEG monitoring report. The two HEs reviewed the EEGs 
together and only viewed the first 10 minutes of NREM sleep (starting point at 50% decrease 
of posterior dominant rhythm, appearance of lateral eye movements or drowsiness, and/or 
vertex waves). They estimated a SWI for each recording defined as the average percentage 
of each 1-second epoch containing the sharp component of an epileptiform discharge. 
Interictal epileptiform discharges were defined as paroxysmal, sharply contoured, wave 
forms, clearly distinguished from the background activity, had a field, and a duration of less 
than 200 milliseconds [17]. In the SWI estimation, both generalized and focal discharges were 
included. Both experts had to agree on the presence of the interictal epileptiform discharge 
for it to be counted. The SWI was estimated without explicit time constraints, and the EEG 
traces could be reformatted as in the clinical setting. All EEGs were reviewed with the 
SystemPLUS Evolution software (Micromed, Veneto, Italy) using standard 10 to 20 
International electrode recording and 256 Hz sample frequency. The time of the manual count 
by the HEs was measured for each EEG record. For the automated spike detection, we used 
the P13 software (Persyst Development Corporation, San Diego, CA). The SWI was calculated 
using all three different perception settings. An SWI calculated by the detection software was 
also defined as the average percentage of each 1-second epoch that contained an 
epileptiform discharge. Continuous variables were analyzed using the Wilcoxon signed rank 
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test for nonparametric data using SPSS (IBM SPSS Statistics for Windows, Version 23.0. 
Armonk, NY). 

 

Results  

A total of 48 recordings from 44 patients (24 male) were identified. The mean patient age 
was 7.8 years (SD 2.4 years; range, 3–11 years). Human experts estimated an SWI in a median 
time of 4 minutes 54 seconds (range, 30 seconds–14 minutes 37 seconds) per record. 
According to the HEs, 28 recordings included spikes. The SWIs estimated by the HEs did not 
significantly differ from the SWI calculations of the algorithm in the ‘low’ perception settings 
(Tables 1 and 2). 

 

Table 1. Median SWI (in %) of all recordings (N=48) 

 Median    
SWI in % 

Range (%) Percentile difference  
from HE (p-value) min max Q1 Q3 

HE consensus 18 0 99 0 80  

P13 (low1) 16 0 96 1 78 p=0.67 

P13 (median1) 28 1 98 6 82 p=0.000 

P13 (high1) 36 3 99 36 83 p=0.000 
1 sensitivity setting, HE = human experts, P13 = Persyst 13 spike detection 
 

Table 2. Median SWI (in %) of recordings containing spikes (N=28) 

 Median    
SWI in % 

Range (%) Percentile difference  
from HE (p-value) min max Q1 Q3 

HE consensus 76 1 99 52 92  

P13 (low1) 75 2 96 51 88 p=0.19 

P13 (median1) 79 6 98 61 93 p=0.001 

P13 (high1) 79 11 99 64 94 p=0.000 
1 sensitivity setting, HE = human experts, P13 = Persyst 13 spike detection 
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The SWI estimated by the HEs differed significantly from the ‘medium’ perception settings 
and the ‘high’ perception settings. The SWIs calculated in these modes were higher than the 
HE-estimated SWIs. The largest difference in calculated SWI within one subject in the ‘low’ 
perception setting was 10% (the P13 algorithm calculated 51% vs. 61% for the HEs). The largest 
difference in calculated SWIs within an individual between the P13 algorithm in the ‘medium’ 
setting was 18% and in the ‘high’ perception setting was 29%. The differences between SWIs 
calculated by HEs and the three perception settings were, in most cases, smaller for the 
higher SWIs (especially above 70%) than in the lower SWIs. This is shown in Figure 1.  

 

 

HE = human experts; P13 = Persyst 13 spike detection; SWI = spike–wave index. 

Figure 1. SWI Calculated by HEs and P13.  
 

Based on the SWIs estimated by the HEs, 22 recordings met the ESES criteria of ≥ 50% of 1-
second epochs containing spikes (Table 3). All were also identified with an SWI ≥ 50% by the 
P13 algorithm using the ‘low’ setting: thus, sensitivity was 100% (confidence interval, 82%–
100%) and specificity was also 100% (confidence interval, 52%–100%). In one recording, the 
algorithm in ‘medium’ and ‘high’ settings calculated a SWI ≥ 50%, where the HEs calculated a 
SWI < 50%: thus, in ‘medium’ and ‘high’ perceptions settings, the sensitivity is 100% 
(confidence interval, 82%–100%) and the specificity is 83% (confidence interval, 36%–99%). No 
spikes were seen by HEs in 20 recordings. The algorithm, however, detected spikes in most 
of these recordings. It calculated SWIs ranging from 0% to 6% in the ‘low’ setting, from 1% to 
20% in the ‘medium’ setting, and from 3% to 33% in the ‘high’ setting.  



2

Determining the spike-wave index 

21 
 

Table 3. Number of records meeting ESES-criteria, calculated by HEs and by P13 

 
P13 (low1) P13 (medium and high1) 

P13 ≥ 50% P13 < 50% P13 ≥ 50% P13 < 50% 

HE >=50% 22 0 22 0 

HE >0% and <50% 0 6 1 5 
1 sensitivity setting, HE = human experts, P13 = Persyst 13 spike detection 

 

Discussion 

We showed that calculating SWI using the spike detection algorithm P13 in the ‘low’ 
perception setting is non-inferior to estimating SWI by HEs. The perception setting matters 
especially in the lower SWIs because the differences between the settings are small in the 
higher SWIs. We also showed that using the spike detection software may save HEs time in 
comparison with human estimation. Thereby, the software makes it easy to estimate SWI for 
larger epochs, such as a first sleep cycle or even a whole night. Another advantage is that the 
algorithm will always detect the same event as epileptiform and thus eliminate human factors 
such as reader style or fatigue. There are limitations to our study. We tried to generate a 
heterogeneous dataset with SWIs in all ranges. There were, however, few recordings with an 
SWI around the cut-off point of 50%. At group level, the SWI estimated by HEs and the P13 in 
‘low’ perception setting did not differ, but we did see some individual differences between 
the calculated SWIs. In practice, this can mean the difference in reaching or not reaching the 
criterion of at least 50% epileptiform activity. However, in ESES-related syndromes, the SWI is 
only part of the diagnostic criteria, as the clinical symptoms are also taken into account. 
Thereby, the SWI criterion of 50% is arbitrary. Another issue when testing the reliability of a 
spike detection algorithm is that the interrater agreement between EEG reviewers is low, so 
our HE estimated SWI is not the gold standard. We approached this by estimating the SWI in 
consensus, instead of using a single individual to estimate SWIs (which is current practice in 
our center). A disadvantage of using this algorithm is that it has false detections, usually sharp 
physiologic sleep phenomena, especially K-complexes. This was especially noticeable in 
(near-) normal EEG recordings. The P13 calculated SWI of these normal EEGs is up to 6% in 
‘low’ perception settings and up to 33% in ‘high’ perception settings and reviewers must 
always be aware of this especially when reviewing EEGs of children, who often have sharp 
sleep phenomena. Spike detection software is an useful tool in obtaining SWI and can help 
reducing the burden of manual estimation. Further validation of the software is needed in 
larger cohorts, multiple centers, and by multiple HEs.   
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