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Abstract 

Global sustainable agricultural systems are under threat, due to increasing and co-
occurring drought and salinity stresses. Combined effects of these stresses on 
agricultural crops have traditionally been evaluated in small-scale experimental 
studies. Consequently, large-scale studies need to be performed to increase our 
understanding and assessment of the combined impacts in agricultural practice in 
real-life scenarios. This study aims to provide a new monitoring approach using 
remote-sensing observations to evaluate the joint impacts of drought and salinity 
on crop traits. In our tests over the Netherlands at a large spatial scale (138.74 km2), 
we calculated five functional traits for both maize and potato from Sentinel-2 
observations, namely leaf area index (LAI), the fraction of absorbed 
photosynthetically active radiation (FAPAR), the fraction of vegetation cover 
(FVC), leaf chlorophyll content (Cab), and leaf water content (Cw). Individual and 
combined effects of the stresses on the seasonal dynamics in crop traits were 
determined using both one-way and two-way analyses of variance (ANOVAs). We 
found that both stresses (individual and co-occurring) affected the functional traits 
of both crops significantly (with R2 ranging from 0.326 to 0.796) though with 
stronger sensitivities to drought than to salinity. While we found exacerbating 
effects within co-occurrent stresses, the impact level depended strongly on the 
moment in the growing season. For both crops, LAI, FAPAR, and FVC dropped the 
most under severe drought stress conditions. The patterns for Cab and Cw were 
more inhibited by co-occurring drought and salinity. Consequently, our study 
constitutes a way towards evaluating drought and salinity impacts in agriculture, 
with the possibility of potential large-scale application for sustainable food security. 
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3.1 Introduction 

Food production is required to increase by 70% to satisfy the growing population 
demand by the year 2050 (Godfray et al. 2010). Meanwhile, food security is 
becoming increasingly threatened due to the increasing abiotic stresses under the 
influence of global climate change; abiotic stresses including drought, soil salinity, 
nutrient stress, and heavy metals are estimated to constrain crop productivity by 
50%-80% (Shinozaki et al. 2015). Of these stresses, drought and salinity stress 
have been identified as the two main factors to limit crop growth, affecting 
respectively 40% and 11% of the global irrigated areas (Dunn et al. 2020; FAO 
2020). With drought and salinity forecasted to increase spatially and in severity 
(Rozema and Flowers 2008; Schwalm et al. 2017; Trenberth et al. 2013), and with 
predictions of higher co-occurrence around the world (Corwin 2020; Jones and van 
Vliet 2018; Wang et al. 2013b), food production will be more deeply challenged by 
both stresses. 

Numerous small-scale experimental studies for a large variety of crops have shown 
that the impact of co-occurring drought and salinity stress is exacerbated. Co-
occurrence of drought and salinity stress is found to decrease the yield of spinach 
(Ors and Suarez 2017) and the forage grass Panicum antidotale (Hussain et al. 
2020) more compared with the occurrence of one of these stresses only. Likewise, 
cotton root growth tends to be more inhibited under the co-occurrence of drought 
and salinity than by isolated occurrences (Zhang et al. 2013). Similarly, the 
exacerbating effect of co-occurring stresses limits both maize reproductive growth 
and grain formation (Liao et al. 2022). While these studies demonstrate the 
exacerbating effects of co-occurring drought and salinity stress, they have 
limitations in projecting the impact towards real farmers’ conditions due to their 
small-scale experimental nature. Thus, there is still a significant knowledge gap 
concerning the large-scale evaluation of the combined impacts of drought and 
salinity. 

Remote sensing (RS) provides a huge potential to close this knowledge gap due to 
its capability to monitor continuous large areas at frequent intervals. For this, 
remote sensing has traditionally used vegetation indices, such as the Normalized 
Difference Vegetation Index (NDVI) (Tucker 1979). However, such indices 
provide limited information on how the impact is achieved (e.g. in Chapter 2) and 
how it can be mitigated. With the launch of better multispectral and high-resolution 
satellite sensors (such as Sentinel-2), new RS methods (e.g., hyperspectral, thermal 
infrared, and microwave) have been identified to detect stress in both natural 
vegetation (Gerhards et al. 2019; Vereecken et al. 2012) as well as in agricultural 
applications (Homolova et al. 2013; Weiss et al. 2020). Specifically, these new RS 
methods allow for the retrieval of plant traits that directly link to plant processes, 
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such as leaf biochemistry and photosynthetic processes, and thereby provide high 
potential for agricultural applications. RS plant traits of specific interest to monitor 
crop health include leaf area index (LAI) (Wengert et al. 2021), canopy chlorophyll 
content (Cab*LAI) (Gitelson et al. 2005), canopy water content (Cw*LAI) 
(Kriston-Vizi et al. 2008), the fraction of absorbed photosynthetically active 
radiation (FAPAR) (Zhang et al. 2015), and the fraction of vegetation cover (FVC) 
(Yang et al. 2018). Canopy chlorophyll content and mean leaf equivalent water 
thickness (EWT) of maize differed remarkably under drought stress using 
hyperspectral remote-sensing data (Zhang and Zhou 2015). Using a lookup-table 
approach, LAI and chlorophyll content of wheat obtained from a radiative transfer 
model showed potential to assess drought levels (Richter et al. 2008). However, 
while there have been several attempts to monitor the response of crop health with 
either a drought or salinity focus, not much research has taken these factors into 
account simultaneously (Chapter 2). 

In this study, we propose a novel approach to estimate, compare, and evaluate the 
impacts of drought, salinity, and their combination on crop traits using remote 
sensing. To allow for a detailed evaluation of this approach, we applied it to 
analyze the impacts of the 2018 summer drought in the Netherlands on agricultural 
crops. In this, a stress co-occurrence map was created by overlaying a high-
resolution drought map of 2018 with a groundwater salinity map. Then, we 
characterized the response of maize and potato to different stress conditions based 
on five plant traits (LAI, FAPAR, FVC, Cab, and Cw). Two-way analyses of 
variance (ANOVAs) were adopted to test the main effects and the interactive effect 
between stress combinations and time on crop traits. Moreover, the effect of 
drought and salinity on crop traits was determined across the growing season with 
one-way ANOVAs. Consequently, this approach facilitates the simultaneous 
monitoring of crop health at various scales (regional, national, and continental) 
across multiple stresses (drought and salinity) and multiple species. 

3.2 Methodology 

To achieve our aim of monitoring the impacts of (co-occurring) drought and 
salinity on agricultural production, we developed a new approach to estimate crop 
traits from remote-sensing observations. Specifically, we developed an approach 
that integrates image-processing techniques, such as image classification, co-
registration, land surface parameter retrieval, and time-series analysis (Figure 3.1). 
Using these techniques, we were able to estimate the drought, salinity, and crop 
growth. 

To allow for a detailed evaluation, we focused on the 2018 summer drought in the 
Netherlands. This period was selected because of the extreme drought that affected 
a large part of Europe (Masante et al. 2018). Within parts of the selected area, 
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salinity was reported to increase during that same period (Broekhuizen 2018). 
Hence this study area provides us with the opportunity to investigate the combined 
impacts of these stresses on crops. In the following paragraphs, we provide more 
information on the specific processing steps. 

Figure 3.1 Technical workflow of the maps and data framework. 

3.2.1 Study area and data 

3.2.1.1 Drought map 

A drought map of the Netherlands in 2018 was created based on the standardized 
precipitation evapotranspiration index (SPEI) drought index, which was calculated 
from long-term precipitation data and potential evapotranspiration, from 2004 to 
2018 (Chen et al. 2022). Specifically, SPEI was estimated using a 3-month sliding 
time window, as this was found best to investigate the impacts on the local 
ecosystems. We have extracted SPEI-3 data from 1 April to 30 October, in total of 
214 days, as this coincided with the crop growth period of both maize and potato. 
Then, the drought map was resampled to 250m resolution using the nearest 
neighbor interpolation and reprojected to RD_new projection. The RD_new 
projection (EPSG:28992) is a projected coordinate reference system of the 
Netherlands. All maps were projected to RD_new projection to create consistent 
data layers. We defined -1 and -1.5 as daily thresholds for different drought 
severity classes according to previous classifications (McKee et al. 1993; Tao et al. 
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2014). Thus, (cumulative) SPEI for no drought should be between -214 and 0, 
SPEI for moderate drought should be between -321 and -214, and for severe 
drought, SPEI should be lower than -321 when calculated for the whole growing 
period (Figure 3.2a). 

3.2.1.2 Salinity map 

A topsoil salinity map of the Netherlands was created based on a nationwide fresh-
salt groundwater dataset, which derived chloride concentrations as a salinity 
indicator (https://data.nhi.nu/, last access: 8 April 2021). To obtain the salinity map 
of the topsoil, 15 layers of the groundwater salinity were extracted from the 3D 
groundwater salinity map. For each location, the layer closest to the location’s 
corresponding elevation (according to the digital elevation model), i.e., closest to 
the soil surface, was selected. The salinity map was resampled to 250m resolution 
and reprojected to RD_new projection Ultimately, the salinity map was classified 
into three levels namely no-salinity (0.1 g‧L-1to 0.8 g‧L-1), moderate salinity (0.8 
g‧L-1 to 2.5 g‧L-1), severe salinity (>= 2.5 g‧L-1) according to the salt-resistant 
capacity of various crops cultivated in the Netherlands (Mulder 2018; Stuyt 2016) 
(Figure 3.2b).  

3.2.1.3 Crop map 

The crop map of the Netherlands in 2018 was collected from the Key Register of 
Parcels (BRP) of the Netherlands Enterprise Agency 
(https://www.pdok.nl/introductie/-/article/basisregistratie-gewaspercelen-brp-). The 
crop map was resampled to 250m resolution and reprojected to RD_new projection 
(Figure 3.2d). 

3.2.1.4 Co-occurrence map of drought and salinity 

The drought map and the salinity map were overlain to evaluate co-occurrences of 
drought and salinity of the Netherlands in 2018 (Figure 3.2c). By classifying the 
three stress levels for the individual occurrences, we obtained nine stress classes of 
co-occurring drought and salinity, namely no stress, moderate drought only (MD), 
severe drought only (SD), moderate salinity only (MS), severe salinity only (SS), 
moderate drought and moderate salinity (MD+MS), moderate drought and severe 
salinity (MD+SS), severe drought and moderate salinity (SD+MS), and severe 
drought and severe salinity (SD+SS). 

3.2.1.5 Study area selection 

Based on the national map of the Netherlands (Figure 3.2c), a single region with 
similar soil type, climate, tillage systems, and irrigation methods was chosen to 
minimize the interference of these factors on the observed trait expressions. The 
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province of North Holland was selected because it contained the most (seven out of 
nine) combinations of drought and salt stress (Figure 3.2c), namely no stress, MD, 
SD, MS, SS, MD+MS, and SD+SS. Moreover, both maize and potato were 
cultivated across all stress combinations in this province. For further analysis, MS 
and SS were grouped into a new class of salinity stress since the area of MS and SS 
was quite limited. Therefore, six classes of stress combinations, namely no stress, 
MD, SD, salinity (MS+SS), MD+MS, and MD+SS, were analyzed for the study 
area. 

Figure 3.2 Map of the Netherlands overlaying a) drought and b) salinity to show c) the co-occurrence 
of drought and salinity in 2018. The selected study area is indicated by black lines in panel c. d) The 
associated crop map of the study area in 2018. 

3.2.2 Traits retrieval 

3.2.2.1 Satellite data 

The Sentinel-2 mission consists of two satellites equipped with the high-resolution 
Multispectral Instrument (MSI) in the same orbit. This sensor acquires 13 spectral 
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bands (with varying spatial resolutions) in the visible and near-infrared spectrum at 
5 days of revisit times (ESA 2015). In our study, we used both the 10 and 20m 
Level 2A observations, downloaded from the Copernicus Open Access Hub 
(https://scihub.copernicus.eu/, last access: 20 May 2021), to facilitate the 
requirement of the Sentinel Application Platform (SNAP) toolbox for both optical 
and near-infrared observations to be available for determining the functional traits. 
To create consistency across the bands, those with a 20m resolution (B5, B6, B7, 
B8A, B11, and B12) were resampled to the 10m resolution of B3 and B4. In total, 
eight cloud-free scenes were found (21 April 2018, 6 May 2018, 26 May 2018, 30 
June 2018, 15 July 2018, 13 September 2018, 13 October 2018, and 28 October 
2018) to cover the crop growth cycle. Although additional cloud-free scenes were 
found in August (4, 9, 14, 19, 24, and 29 August 2018), none were of high quality, 
and we therefore chose to omit August from our analysis. 

3.2.2.2 Trait selection 

Plant traits (e.g., LAI, FAPAR, FVC, Cab, and Cw) were selected in consideration 
of their corresponding impacts on crop functioning and their potential for 
assessment by remote sensing. LAI is a critical vegetation structural trait related to 
various plant functioning processes, such as primary productivity, photosynthesis, 
and transpiration (Asner et al. 2003; Boussetta et al. 2012; Fang et al. 2019; Jarlan 
et al. 2008). FAPAR depends on vegetation structure, energy exchange, and 
illumination conditions, while FAPAR is also an important parameter to assess 
primary productivity (Liang 2020; Weiss et al. 2016). FVC is a promising 
parameter corresponding to the energy balance process such as temperature and 
evapotranspiration (Weiss et al. 2016). Cab is an effective indicator of stress and is 
strongly related to photosynthesis and resource strategy (Croft et al. 2017). Cw 
plays an important role in transpiration, stomatal conductance, photosynthesis, and 
respiration (Bowman 1989; Zhu et al. 2017), as well as in drought assessment 
(Steidle Neto et al. 2017). 

3.2.3 Dataset processing 

The biophysical processor within the SNAP toolbox derives the five traits, namely 
LAI, FAPAR, FVC, canopy chlorophyll content (CCC), and canopy water content 
(CWC), for each pixel from the Sentinel-2 top of canopy reflectance data at a 10m 
resolution for each month. This processor utilizes an artificial neural network 
(ANN) approach, trained using the PROSAIL simulated database (Weiss et al. 
2016). This training utilized canopy traits rather than leaf traits (estimated by 
multiplication with LAI) to improve their neural network performance. To obtain 
their leaf counterparts (Cw and Cab), to create fully independent variables, CCC 
and CWC thus need to be divided by LAI to obtain Cab (i.e., CCC/LAI) and Cw 
(i.e., CWC/LAI). Pixels with quality flags were eliminated from the dataset. It was 
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observed that in April no crop had yet been planted. Instead, we observed that only 
along the edge of the plots, e.g., in ditches, was vegetation found. This feature was 
used to generate a ditch map and mask out pixels in trait maps for the other months. 
For each variable and each date, only data within the 95% confidence interval were 
taken to increase data robustness. 

3.2.4 Analysis 

Since the pixel counts of the six classes of stress combinations, namely no stress, 
MD, SD, salinity, MDCMS, and MDCSS, were (highly) different, drought and 
salinity were not considered two independent factors. Instead, a two-way analysis 
of variance (ANOVA) was applied to test the main effects and the interactive effect 
between stress combinations (consisting of six levels) and time (5 months) on each 
individual crop trait. Significant effects of the main stress condition were 
investigated through post hoc tests to test whether interaction effects between 
drought and salinity had occurred. Two-way ANOVAs were run separately for each 
trait and each crop type (maize and potato) as we expected different patterns. In the 
Netherlands, potato and maize are planted between mid-April and early May. 
Crops are surfacing in May and harvested in October. Therefore, to evaluate the 
response of crops to stresses across the growing season, the effect of drought and 
salinity on crop traits was determined for May, June, July, and September with a 
one-way ANOVA. Tukey’s honest significant difference (HSD) post hoc tests were 
performed to identify the differences among the six stress combinations. All 
statistical analyses were performed with SPSS 27.0 (SPSS Inc., USA). 

3.3 Results 

3.3.1 Stress impacts depend on the moment in the growing season 

The two-way ANOVAs revealed strong effects of date and stress level on the five 
traits with effect sizes of the response (R2) ranging from 0.326 to 0.796 for the five 
traits, which was similar for maize and potato. For both maize and potato, R2 values 
were lowest for Cab and highest for LAI, FAPAR, and FVC. For maize, we found a 
significant main effect of both date and stress (p < 0.05) for Cab, Cw, FAPAR, and 
FVC. In contrast, LAI was not significantly different across the different stress 
conditions. For potato, all main effects of date and stress were significant for all 
five crop traits (Table 3.1). 

For all traits and both crops, the interaction between the effects of time and stress 
conditions was significant (p < 0.05) (Table 3.1), indicating that the impact of 
stress depended on the moment in the growing season. Despite the significant 
interaction terms, the partial Eta squared values (Table 3.1) showed that the effects 
of time in the growing season were much stronger than those of stress or the 
interaction of date and stress. The effects of date for maize were stronger than for 
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potato. Interestingly, the effects of the interaction between date and stress were 
stronger than those of the main effects of stress, suggesting strong time-specific 
impacts of stress on the crop traits investigated. The interaction terms were 
strongest for FVC.  

Table 3.1 Two-way ANOVA for different crop traits by time series and stress interactions. 

Crops Traits Factors F p Partial Eta Squared R2 

Maize 

LAI 
date 2144.5 0.000 0.636 

0.766 
stress 1.4 0.226 0.001 

date*stress 8.5 0.000 0.033 

Cab 
date 333.9 0.000 0.222 

0.326 
stress 10.7 0.000 0.008 

date*stress 3.6 0.000 0.015 

Cw 
date 952.1 0.000 0.449 

0.590 
stress 9.9 0.000 0.007 

date*stress 4.0 0.000 0.017 

FAPAR 
date 1865.9 0.005 0.603 

0.738 
stress 3.3 0.000 0.002 

date*stress 8.5 0.000 0.033 

FVC 
date 2022.5 0.000 0.622 

0.761 
stress 22.1 0.000 0.015 

date*stress 28.7 0.000 0.105 

Potato 

LAI 
date 752.1 0.000 0.273 

0.782 
stress 13.7 0.000 0.006 

date*stress 8.1 0.000 0.020 

Cab 
date 96.4 0.000 0.050 

0.329 
stress 54.2 0.000 0.024 

date*stress 8.7 0.000 0.023 

Cw 
date 347.4 0.000 0.158 

0.571 
stress 68.1 0.000 0.030 

date*stress 10.3 0.000 0.027 

FAPAR 
date 612.7 0.000 0.234 

0.744 
stress 25.8 0.000 0.011 

date*stress 14.0 0.000 0.034 

FVC 
date 844.0 0.000 0.297 

0.796 
stress 18.8 0.000 0.008 

date*stress 13.6 0.000 0.033 
Note: F indicates the test statistic of the F-test; p indicates whether the effect is statistically significant 
in comparison to the significance level (p < 0.05); Partial Eta Squared indicates the effect size of 
different factors; R2 indicates the percentage that the model coincides with the data.  



54 

3.3.2 Response of LAI, FAPAR, and FVC to drought and salinity 

Given the significance of both date and stress and their interactions, subsequent 
one-way ANOVAs were performed to compare the effects of drought and salinity 
on LAI, FAPAR, and FVC for maize and potato in May, June, July, and September 
separately (Figure 3.3). The patterns for LAI, FAPAR, and FVC were very similar, 
although they differ in detail and were therefore treated together. 

For maize, all of LAI, FAPAR, and FVC obtained their lowest value under MD+SS 
stress conditions in May. In June, both LAI and FVC dropped the most under 
salinity stress and it was significantly (p < 0.05) different from MD, MD+MS, and 
MD+SS conditions, but not significantly different from no-stress conditions. In 
contrast, FAPAR also reached its lowest value (under MD+MS stress conditions) in 
June but had a significant difference (p < 0.05) compared with no stress conditions. 
Both in July and September, LAI, FAPAR, and FVC all had the lowest value under 
SD conditions, and the difference was significant compared with no-stress 
conditions.  

For potato, LAI, FAPAR, and FVC had the lowest (p < 0.05) value under MD+MS 
and MD+SS stress conditions in May. In June, LAI, FAPAR as well as FVC 
reached the lowest value under SD conditions and were significantly lower than in 
most other stress conditions even though the difference was not significant from 
no-stress conditions. In July, there was a tendency for LAI, FAPAR, and FVC to be 
lower under stress conditions, although none of the effects were significant. In 
September, however, LAI, FAPAR, and FVC significantly decreased under MD, 
MD+MS, and MD+SS conditions, and the difference was significant compared 
with no-stress conditions. In addition, the difference was not significant among 
these three stress conditions.   

Therefore, both for maize and potato, LAI, FAPAR, and FVC dropped the most 
under SD stress conditions when they reached their respective maximum value, 
compared with other stress conditions. At the same time, maize and potato were 
more sensitive to drought than salinity since no significant change was observed 
between drought conditions and conditions with a combination of drought and 
salinity stress.  
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Figure 3.3 Expressions of LAI, FAPAR, and FVC under various stress conditions in May, June, July, 
and September 2018. Different letters in each panel indicate significant differences (p < 0.05). MD, 
moderate drought only; Salinity, salinity only; MD+MS, moderate drought, and moderate salinity; 
MD+SS, moderate drought and severe salinity (MD+SS); SD, severe drought only.  
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3.3.3 Response of leaf chlorophyll and water content to drought and salinity 

The one-way ANOVAs revealed that there were significant (p < 0.05) impacts of 
the various stress conditions on Cab and Cw (Figure 3.4). For maize, Cab obtained 
its lowest value under salinity stress in May and June while it was not significantly 
different from no-stress conditions. However, in July, Cab reached the lowest value 
under MD+MS conditions although the difference was not significant from other 
stress conditions. There were no significant changes observed for Cab in September. 
For potato, Cab dropped the most under salinity conditions in May although the 
difference was not significant from no-stress conditions. Furthermore, Cab 
significantly decreased under MD+SS conditions in June and July, compared with 
other conditions. Although Cab dropped the most under salinity conditions in 
September, the difference was not significantly different from other conditions. In 
addition, compared with no stress, potato had the lowest Cab under MD+SS 
conditions while there was no significant difference between MD+SS and salinity 
conditions in most growing periods. 

Cw decreased under all stress conditions in May, June, and July for both maize and 
potato, except for SD conditions in May, compared with no-stress conditions. At 
the same time, Cw reached its lowest value under MD+SS conditions and it was 
significantly different from under no-stress conditions. Nonetheless, there were 
different changes for maize and potato in September. Cw was not significantly 
different among any conditions for maize while it was the lowest under salinity 
conditions for potato.  

Therefore, this analysis illustrates that salinity affected maize less than drought 
since crop responses were more obvious to drought than salinity for Cw. In contrast, 
salinity showed a more severe effect on maize and potato at the early growth stages 
for Cab. Meanwhile, Cab was affected by co-occurring drought and salinity in June 
and July for potato. It seems that there was a non-additive effect of drought and 
salinity for Cw since the changes were not significant between MD+MS, MD+SS, 
MD, and salinity conditions. 
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Figure 3.4 Expressions of Cab and Cw under various stress conditions in May, June, July, and 
September 2018. Different letters in each panel indicate significant differences (p < 0.05). MD, 
moderate drought only; Salinity, salinity only; MD+MS, moderate drought, and moderate salinity; 
MD+SS, moderate drought and severe salinity (MD+SS); SD, severe drought only. 
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3.4 Discussion 

In this study, we quantified the large-scale impacts of co-occurring drought and 
salinity on a variety of crop traits using satellite remote sensing. We observed that  
-in contrast to our expectations- the impacts of salinity were not highly pronounced
at this scale, with most strong impacts originating due to drought stress during the
2018 drought. At specific moments in the growing season, salinity and/or the
combined effects of salinity and drought pronouncedly affected individual crop
traits. In this way, with increasing salinity driven by more intensive droughts, water
allocation should not only be governed by the amount of water shortage but also
the salinity of the remaining water. In this paper, we provide the first evidence that
those impacts can be monitored through remote sensing. This might provide a basis
towards a monitoring system for multiple crops with multiple stresses as well as
better governance policies to ameliorate this problem.

3.4.1 Drought stress is more important than salinity stress in farmers’ 
conditions 

The exacerbating effects of co-occurrent drought and salinity (Figure 3.3 and 
Figure 3.4) that we found are consistent with findings of small-scale experiments 
(e.g. greenhouses). Consistent with our results, synergistic effects of co-occurring 
water stress and salinity stress have been found on maize reproductive growth and 
grain formation in a field study (Liao et al. 2022). Spinach (Spinaciaoleracea L., cv. 
Racoon) yield decreased more under co-occurring water-salinity stress in 
comparison with separate water stress and salinity (Ors and Suarez 2017). The co-
occurring drought and salinity stress was more harmful to cotton root growth 
compared to their individual effects (Zhang et al. 2013). Moreover, the combined 
negative effect of drought and salinity stress on Panicum antidotale was stronger 
than that of single stress (Hussain et al. 2020).  Our research showed that the 
outcomes of these small-scale experimental studies also apply to real large-scale 
environments, where different sources of variance are present. Specifically, we 
show that in real farmers’ conditions, the co-occurrence of drought and salinity 
indeed can constitute a severe threat due to its interactive effects on crop growth.  

In addition, we evaluated whether drought or salinity stress has more impact on 
crop performance. We observed that maize and potato were generally more 
sensitive to drought than salinity in this study (Figure 3.3 and Figure 3.4). This is 
consistent with results of previous studies that highlight that drought impacts are 
generally more detrimental than salinity stress for crops, e.g. for sesame (Sesamum 
indicum) (Harfi et al. 2016), Mentha pulegium L. (Azad et al. 2021), durum wheat 
(Sayar et al. 2010), grass pea (Tokarz et al. 2020), and sweet sorghum (Patane et al. 
2013). However, given that the threshold of salinity at which crop damage occurs 
(according to the FAO guidelines (Ayers and Westcot 1985)) was surpassed in all 
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situations in which salinity stress was imposed (including in our study), we initially 
expected salinity to be a stronger explanatory variable than drought. As such, 
salinity impacts on crop performance (by the FAO) may have been overestimated. 
Indeed, in an experimental field situation in which drought stress was carefully 
avoided, higher thresholds of salinity-induced damage were observed for potato 
(van Straten et al. 2021). 

In combination, the results from our study (supported by results from other studies) 
suggest that salinity particularly induces adverse effects when co-occurring with 
drought stress. The impact of water stress on photosynthesis and the biomass of 
plants was extenuated by salinity since salinity enhances the synthesis of ATP and 
NADPH by promoting photosynthetic pigments and photosystem II efficiency. The 
impacts of combined drought and salinity stress on plant growth, chlorophyll 
content, water use efficiency, and photosynthesis were less severe compared to 
drought alone. This indicates compensating effects on carbon assimilation due to 
osmotic adjustments induced by Na+ and Cl– (Hussain et al. 2020). Thus, the 
detrimental effect of single drought stress on crop growth is considered to be 
mitigated by salinity. 

3.4.2 Drought and salinity stress differ between growth stages 

The responses to drought and salinity stress were different at different growth 
stages of the crops. This was expressed by the significant interactions between the 
effects of time and stress conditions for all of our crop responses (Table 3.1). We 
found that during the grain filling (maize) and tuber bulking phase (potato), the 
sensitivities of these crops are expressed distinctly in the non-harvested 
aboveground tissues (Figure 3.3 and Figure 3.4), with clear differences in the 
remote sensing plant traits.  

Given that we were not able to monitor the harvestable products, multiple 
mechanisms may explain these patterns. The relatively high leaf coverage (as 
related to LAI, FAPAR, and FVC) at salinity and severe drought conditions at the 
end of the growing season may be an expression of a compensation process. 
Specifically, early and prolonged drought could have led to more assimilates 
allocated to non-harvestable potato parts for drought resistance since the number of 
tubers reduced (Jefferies 1995; Schittenhelm et al. 2006). In that case, we should 
consider their higher leaf coverage at the end of the season as a survival 
mechanism, rather than true drought tolerance, leading to reduced tuber yields 
(Daryanto et al. 2016b). Future studies that combine remote sensing with 
harvesting data may be able to evaluate this mechanism in more detail.  

In our study, different response patterns of maize and potato occurred to the 
different stresses over the growing season. This is consistent with previous studies 
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focusing on the impact of drought and/or salinity onsets. For potato, it has been 
suggested that tuber yields particularly decreased when drought stress occurs 
during the vegetative and tuber initiation stages than during the tuber bulking stage 
(Wagg et al. 2021), although another study observed the reverse pattern (Daryanto 
et al. 2016b). For maize, on the other hand, drought seems to have the most 
detrimental impact during the maturation stage (Mi et al. 2018; Zhang et al. 2019), 
and the reproductive phase (Daryanto et al. 2016a; Daryanto et al. 2017).  
Considering the additional co-varying factors within our ‘real-life’ study, it is very 
probable that we were able to detect similar effects. This suggests that we may use 
satellite remote sensing -albeit less spatially precise than e.g. sensing through 
drones- as a cost-effective early warning signal for detecting drought and salinity 
stress at moments during the growing season when differences in crop performance 
are still subtle.  

3.4.3 Crop responses to stress can be better understood with a multi-trait 
approach 

In addition to facilitating the evaluation of crop performance during multiple stages 
of the growing season (in contrast to most destructive methods), remote sensing 
also allows a multi-trait approach to better understand the mechanisms involved in 
crop responses. Each of the five traits is associated with different functions of 
plants that might be individually impacted by the different stresses. Therefore, 
focusing on only one individual metric (as commonly done, see Chapter 2 for a 
review) limits our capacity to gain full insight into drought and salinity responses. 
Hence, given that individual crop traits may respond differently to drought and 
salinity reflecting its stress resistance and tolerance strategy, the evaluation of these 
distinct responses may help to understand this strategy.  

In this study, Cw was consistently lower in all drought and salinity treatments as 
compared to no-stress conditions in May, June, and July. Indeed, this is a common 
response of plants in response to drought and salinity (e.g. Chapter 2). In this 
respect, it is interesting that no decrease in Cw was observed at the end of the 
growing season, in September. Whether the phenomenon is related to the survival 
mechanism mentioned above or to the lower transpiration demands at the end of 
the season because of lower aboveground biomass, cannot be concluded from these 
data. Some evidence pointing to the survival mechanism is the finding (Ghosh et al. 
2001; Levy 1992) that the leaf dry matter increased for potato under 
drought/salinity stress (like in our study) while the dry matter of the tubers 
appeared to have a greater decline.  

With respect to chlorophyll contents, we observed a decline in Cab under salinity 
conditions in May and the MS+SS treatment in June and July, while no decrease 
was observed in any of the treatments exposed to drought only. This indicates that 
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while total leaf area was not (much) affected by salinity, the salinity did negatively 
affect crop performance. It has been reported that chlorophyll content in maize was 
significantly reduced upon salinity, along with other plant traits including plant 
height, shoot/root biomass, and leaf numbers (Fatima et al. 2021; Mahmood et al. 
2021). Likewise, similar patterns were obtained in potato plants in saline soil 
(Efimova et al. 2018). Hence, this implies that soil salinity tends to negatively 
affect crop growth and restrict nutrient uptake.  

Cab and Cw responses to drought and salinity were distinct from responses of LAI, 
FAPAR, and FVC (Figure 3.3 and Figure 3.4). LAI, FAPAR, and FVC showed 
similar patterns to stress due to their highly physical correlation (Hu et al. 2020). 
The different patterns of Cw and Cab point to different drought and salinity 
resistance strategy components associated with these traits: LAI (and FAPAR/FVC) 
reflect the decrease in biomass due to stress, partly because stress directly and 
negatively impacts growth and partly because having lower biomass decreases the 
evapotranspiration demands of the crop, which increases the resilience of the crop 
to deal with drought. Cw represents another pathway to reduce evapotranspiration 
demands, i.e. by reducing the amount of water per gram of leaves. Also, this 
response may be a direct effect of the more negative pressure heads due to drought 
or due to increased osmotic pressures (due to salinity). It may also be part of the 
adaptive strategy of the crop to increase its resilience. Cab also responds to drought 
and salinity, but in its own way, i.e. by adapting its photosynthetic capacity while 
being affected by a lower stomatal conductance (due to drought and/or salinity). 
See e.g. Wright et al. (2003) for a framework explaining these nitrogen-water 
interactions. 

In addition, our approach gives the insight to analyze the effect of stresses on yield 
based on the five traits, even though yield cannot directly be derived from remote 
sensing. Traits including Cab, LAI, and FAPAR, have been used (either separately 
or in combination) as a proxy for final yield estimates from remote sensing in many 
studies. For instance, NDVI -which is based on the combination of LAI and Cab- is 
extensively used to estimate crop yield (Huang et al. 2014; Mkhabela et al. 2011; 
Vannoppen et al. 2020). Also, LAI itself has been used for predicting the final yield 
(Dente et al. 2008; Doraiswamy et al. 2005; Sun et al. 2017). Meanwhile, Cab and 
FAPAR were also proven to be highly correlated with crop yield (Ghimire et al. 
2015; López-Lozano et al. 2015). Thus, while yield cannot be estimated directly 
from remote sensing or ground truth data at the desired high spatial resolution, our 
indicators do relate to yield and can be used in more application-based contexts to 
inform on yield impacts. 
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3.4.4 Implications for future research and management 

The number of studies that evaluate the effects of drought and salinity stress on 
crops is limited (Chapter 2). In general, studies focus on small-scale experimental 
studies under strict control of all variables with only a limited number of crops 
(Hussain et al. 2020; Ors and Suarez 2017). To our knowledge, this is the first 
study that uses satellite remote sensing to investigate drought and salinity impacts 
for a large area under real-life conditions necessary for constructing stress 
management policies.  

In such real-life conditions, as investigated here, irrigation of crops is commonly 
applied as management practice during drought events to reduce the severity of 
drought impacts (Deb et al. 2022; Lu et al. 2020b). In this study, however, we have 
evidence that irrigation did not play a major role in the patterns found since all 
croplands included in our research area were identified as rainfed cropland 
(according to the ESA/CCI land cover map in 2018; 
https://maps.elie.ucl.ac.be/CCI/viewer/, last access: 19 April 2022). In addition, 
while farmers in the area are known to irrigate their cropland, the Dutch 
government announced a temporary national irrigation ban in 2018 (for various 
areas including our research area) to spare water (Perry de Louw 2020). As a 
consequence, we could not analyze the impacts of irrigation management on the 
combined effects of drought and salinity. This might potentially be solved by 
investigating other drought historic events with moderate severity in Europe, such 
as the year 2003 (Ciais et al. 2005) or 2015 (Ionita et al. 2017) in Europe, when 
such a ban was not executed. Unfortunately, satellite remote sensing observations 
with the required 20-30m resolutions of these events are limited, as Sentinel-2 was 
only launched in 2015 and the Landsat satellites provide a too coarse temporal 
resolution.  

Likewise, the impacts of salinity and drought are moderated by crop selection. 
Traditionally, farmers do not plant highly vulnerable crops in moderate/high 
salinity areas. In fact, we found crops sensitive to salinity such as apple (Ivanov 
1970) and broccoli (Bernstein and Ayers 1949) to be abundant in non-saline areas 
but only little in saline areas. To ensure an accurate evaluation of salinity impacts, 
we only investigated those crops with a significant abundance in all available stress 
conditions. More sensitive crops might even respond more strongly. 

3.5 Conclusions 

In this study, we present the first attempt to evaluate the real-life effects of drought, 
salinity, and their combination on crop health using multiple traits from remote 
sensing monitoring during 2018 over the Netherlands. Our approach gives new 
insights for monitoring crop growth under co-occurring stresses at a large scale 
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with high-resolution data. We found that while in general temporal patterns             
-reflecting crop growth dynamics- were stronger than effects of stress conditions,
stress impacts depended on the time of the growing season. Furthermore, we also
found that the temporal dynamics in crop responses to drought and salinity were
different for maize vs. potato. In general, the five investigated traits were more
negatively affected by a combination of drought and salinity stress compared to
individual stress. Meanwhile, both maize and potato responded more prominently
to drought, thus demonstrating a stronger sensitivity, than to salinity. Specifically,
LAI, FAPAR, and FVC dropped the most under severe drought stress conditions.
Consequently, the proposed new approach poses a facilitated way for
simultaneously monitoring the effect of drought and salinity on crops in large-scale
agricultural applications.
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