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Abstract 

Drought and salinity stress are considered to be the two main factors limiting crop 
productivity. With climate change, these stresses are projected to increase, further 
exacerbating the risks to global food security. Consequently, to tackle this problem, 
better agricultural management is required on the basis of improved drought and 
salinity stress monitoring capabilities. Remote sensing makes it possible to monitor 
crop health at various spatiotemporal scales and extents. However, remote sensing 
has not yet been used to monitor both drought and salinity stresses simultaneously. 
The aim of this paper is to review the current ability of remote sensing to detect the 
impact of these stresses on vegetation indices (VIs) and crop trait responses. We 
found that VIs are insufficiently accurate (0.02 ≤ R2 ≤ 0.80) to characterize crop 
health under drought and salinity stress. In contrast, we found that plant functional 
traits have a high potential to monitor the impacts of such stresses on crop health, 
as they are more in line with the vegetation processes. However, we also found that 
further investigations are needed to achieve this potential. Specifically, we found 
that the spectral signals concerning drought and salinity stress were inconsistent for 
the various crop traits. This inconsistency was present (a) between studies utilizing 
similar crops and (b) between investigations studying different crops. Moreover, 
the response signals for joint drought and salinity stress overlapped spectrally, 
thereby significantly limiting the application of remote sensing to monitor these 
separately. Therefore, to consistently monitor crop responses to drought and 
salinity, we need to resolve the current indeterminacy of the relationships between 
crop traits and spectrum and evaluate multiple traits simultaneously. Using 
radiative transfer models (RTMs) and multi-sensor frameworks allows monitoring 
multiple crop traits and may constitute a way forward toward evaluating drought 
and salinity impacts. 
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2.1 Introduction 

Food security is a serious problem around the world with a significantly large 
number of food production systems currently at risk (FAO 2011). It is predicted 
that by 2030, the population suffering from food insecurity will rise to more than 
840 million. Meanwhile, it is projected that the ongoing COVID-19 could further 
worsen the number of undernourished people around the world (FAO 2020). 
Further exacerbating this food security problem, crop productivity itself also 
suffers great threats from stresses, such as drought stress, nutrient stress, and 
salinity stress, which reduce the yield at various locations by more than 50% 
(Anami et al. 2020). Moreover, crops frequently suffer from a combination of 
stress (Dresselhaus and Hückelhoven 2018), which further causes challenges for 
food production. In order to allow for sustainable agricultural production and 
mitigate the threat of global food shortages, the impact of these stressors needs to 
be monitored and alleviated. 

Water stress, in the form of droughts, has been identified as the most serious threat 
for global agriculture, approximately affecting 40% of the world’s land area (Dunn 
et al. 2020). Between 1980 and 2020, droughts have caused economic damages of 
around $6 billion per year in the United States, exceeding damages from other 
weather and climate disasters (Smith 2020). Likewise, in China, the average annual 
economic damage due to drought was $12.8 billion during 2006-2015 (Su et al. 
2018). In addition to drought, salinity has emerged as a major factor limiting the 
productivity of crops. Southwest United States, southern Asia (including India and 
Pakistan), eastern Asia (Western China), eastern Australia, and northwest Africa are 
the most affected areas (FAO/IIASA/ISRIC/ISSCAS/JRC 2012; Ivushkin et al. 
2019; Koohafkan 2012). The United Nations Food and Agriculture Organization 
(FAO) has estimated that 11% of the global irrigated area (34 Mha) is currently 
affected by different levels of salinity. Therein, China, the United States, Pakistan, 
and India hold more than 60% of the total area (21 Mha). 

While presently, drought and salinity already pose tremendous challenges for food 
production, it has been forecasted that both stressors will increase both spatially 
and in severity. Climate change will increase the frequency and severity of drought 
events in numerous regions (Cook et al. 2015; Mosley 2015; Schwalm et al. 2017; 
Trenberth et al. 2013), leading to dramatic impacts on crop growth and productivity 
(Trenberth et al. 2013). Specifically, higher temperatures and lower humidity have 
been shown to lead to an increasing water demand (in the form of crop 
evapotranspiration) and a reduced water availability from effective precipitation, 
while simultaneously, a lower and infrequent effective precipitation significantly 
reduces water availability, thereby negatively affecting food production (Mimi and 
Jamous 2010). Similarly, it has been suggested that salinity will impact 50% of the 
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cultivated land by 2050 (Butcher et al. 2016). Soil salinity levels have been shown 
to increase in arid lands because fresh water is not available to drain accumulated 
salts (Rozema and Flowers 2008), thus acting as a practically irreversible process. 
Moreover, soil salinization has been shown to increase with the expansion of 
agriculture to semi-arid and arid regions (Cramer et al. 2007; Oki and Kanae 2006; 
Rozema and Flowers 2008). Therefore, the increase in drought frequency and soil 
salinity under climate change further exacerbates the threat to crop production. 

Drought and salinity cannot be seen independently of each other. As an aspect of 
water quality, salinity has been proven to increase during drought periods (Hrdinka 
et al. 2012; Mosley 2015; van Vliet and Zwolsman 2008). Specifically, it has been 
shown that due to lower river levels, hydrological drought significantly increases 
the salinity in rivers (Jones and van Vliet 2018; Mosley 2015). Consequently, 
increased drought frequency and severity will exacerbate the accumulation of 
salinization and adversely affect crop yield and sustainable agricultural 
development (Wang et al. 2013b). As such, there are already numerous areas in the 
world where both drought and salinity stress co-occur (Figure 2.1). Furthermore, 
due to sea level rise in the future, cultivated land (and in particular coastal lowlands) 
will have a higher probability to suffer from both drought and salinity stress 
(Corwin 2020; Gopalakrishnan et al. 2019; Katschnig et al. 2013; Pankova and 
Konyushkova 2014). Therefore, drought and salinity should not be viewed 
independently, and the impacts of joint drought and salinity stress on agricultural 
production should be investigated. 

Figure 2.1 Global distribution of drought and salinity. In panel (a), the global map of soil salinity 
change is shown [10], while in panel (b) the global map of drought hazard (Carrão et al. 2016) is 
shown. Global soil salinity map was extracted from [10] and then transformed to the plate carrée 
projection by ArcGIS. 

Remote sensing (RS) is a key method for monitoring crop health due to its 
capability to monitor and detect effective changes of large areas at a relatively low 
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cost, in comparison to traditional methods (Wu et al. 2015). For this purpose, 
several vegetation indices (VIs) such as the Normalized Difference Vegetation 
Index (NDVI) (Tucker 1979), the Perpendicular Vegetation Index (PVI) (Rondeaux 
et al. 1996), and the Soil Adjusted Vegetation Index (SAVI) (Huete 1988) have 
been developed in the past to monitor agricultural production. In addition, drought 
(impact) indicators have been developed that account for seasonality effects (based 
on long-term standardized observations), e.g., the Vegetation Condition Index (VCI) 
(Kogan 1995b), the Vegetation Health Index (VHI) (Kogan 1997), and the 
Normalized Difference Water Index (NDWI) anomalies (Gao 1996). However, 
each of these drought indicators has specific limitations that limit its applicability 
as early warning signals of drought (Liu et al. 2016). As a consequence, results 
vary among different indices, and most applications with these indicators focus on 
local scales and individual crop types. As such, no comprehensive vegetation index 
has been developed that can be applied globally to investigate drought impact 
consistently (Liu et al. 2016). Similar to drought monitoring, vegetation indices, 
used to monitor crop salinity stress, are also affected by limitations regarding noise, 
halophyte presence, and spatial resolution (Allbed and Kumar 2013; Metternicht 
and Zinck 2003). In response, a more comprehensive measurement of the 
reflectance spectrum representing crop traits is required to monitor crop growth 
and health as affected by stress. In this regard, it has been shown that hyperspectral 
data have a strong potential to detect biophysical and biochemical parameters 
(Serbin et al. 2015; Serbin et al. 2016). In addition, various studies highlighted that 
other (multi-spectral) RS methods (e.g., microwave, thermal infrared (TIR), 
hyperspectral) show great promise in characterizing vegetation stress (Gerhards et 
al. 2019; Vereecken et al. 2012). However, the number of studies focusing on this is 
limited, and only part of these investigations focused on agricultural RS 
applications (Homolova et al. 2013; Weiss et al. 2020), while studies on the 
relationship between crop traits and spectral properties in relation to under drought 
or salinity stress are even more limited. Therefore, an in-depth analysis of the 
reflectance spectrum of crop traits under stress is required to better identify plant 
drought and salinity stress by remote sensing. 

The main objective of the study is to evaluate the current state and shortcomings in 
the RS monitoring of crops under drought and/or salinity stress. Based on a 
comprehensive analysis, we evaluate the potential of remote sensing to identify and 
assess agricultural ecosystems under drought and salinity stress through vegetation 
indices and plant traits. 

2.2 Methodology 

To evaluate the current state of monitoring drought and salinity stress by RS, we 
applied a thorough systematic review of recent scientific publications. For this, we 
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(a) collected a large representative set of scientific publications, and (b) analyzed
their results to identify the response patterns in vegetation indices and plant traits.
For the analysis of plant traits, we classified them according to underlying plant
functions (relating to primary production, hydrological processes, and osmosis).
This allows us to coherently investigate the potential of remote sensing for
monitoring the salinity/drought impact on biological pathways/processes.

2.2.1 Creating representative database through a systematic review 

In order to facilitate the analysis of a representative set of recent publications, we 
adopted an optimized systematic review approach (Berger et al. 2018). Specifically, 
we focused on scientific peer-reviewed papers published between 2005 and 2020 
through the Web of Science (WOS) and Google Scholar (GS) (Figure 2.2). This 
approach first requires the definition of a representative set of keywords. For our 
study, these keywords were “remote sensing”, “drought”, “salinity”, “agriculture”, 
and “traits”, as well as their synonyms (such as RS, food security, etc.). Afterwards, 
publications were selected from WOS and GS according to the occurrence of 
combinations of these keywords in the title, abstract, author keywords, and 
keywords plus, to create a first selection of publications, leading to 1184 selected 
records. Then, this set of publications was screened to capture only papers that 
analyzed (a) the impact of drought/salinity stress on VIs/traits of crops by remote 
sensing, and (b) included information on the spectral wavelength on which the 
analysis was based. This resulted in 78 unique records. Next, through snowballing 
these records (to capture papers that were missed in the first step), an additional 49 
publications were obtained. In total, 115 publications (Table S2-1) fitting these 
criteria were identified after removing 12 duplicates. More details on each step are 
provided in the supplementary information (Figure S2-1). Maps of co-authors and 
co-occurrences based on the results of the systematic review were created through 
VOSviewer (Figure S2-2). 
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Figure 2.2 Flowchart of the systematic review. 

2.2.2 Extraction of drought/salinity stress information 

From the full set of publications on drought and salinity stress of agricultural crops, 
we extracted the correlation strengths between vegetation indices/crop traits 
responding to drought and salinity stress and spectral bands/wavelengths. Finally, 
348 correlations were found, among which 102 traits were wavelength correlations, 
171 were VIs-wavelength correlations, and 75 traits were VIs correlations. All 171 
VIs-wavelength correlations that we found focused on drought, and no reviewed 
study provided correlations for salinity stress. 

2.2.3 Classification of plant traits and vegetation indices 

After the creation of our representative set of publications, we clustered the traits 
into four groups to relate the impact of drought/salinity stress on biological 
processes. Specifically, we classified the traits together on the basis of their 
definitions and the functional processes involved (Niinemets 2015; Pérez-
Harguindeguy et al. 2013). This provided us with four clusters, namely biomass 
traits, photosynthesis traits, water traits, and osmosis traits. Afterwards, each 
cluster was further divided into RS (directly measurable by RS) and In-RS 
(indirectly derived by RS) (Table 2.1).  

Table 2.1 Classification of plant traits included in this study. 

Group RS 
methods Traits 

Biomass traits 
RS LMA LAI -- -- -- -- -- -- 

In-RS FS SDW BDW BFW -- -- -- -- 

• Searching 
from web of 
science and 
google scholar

Identification

• 1184 records

Screening • 78 records 
retained

• 49 records 
added from 
snowballing

Eligibility

• 115 records 
included

Included
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Photosynthesis  
traits 

RS Chl Chla/Chlb -- -- -- -- -- -- 

In-RS A Pn  ΔF/Fm  Chl*ΔF
/Fm -- -- -- -- 

Water traits 
RS LCT CWC RWC EWT CWM -- 

In-RS Gs LOP Ψp LWP  Ψs E  Tl - Tair -- 

Osmosis traits 
RS -- -- -- -- -- -- -- -- 

In-RS Na+ Cl- K+ Ca2+ K+/Na+ TSS TA TSS/
TA 

Notes: leaf mass per unit area (LMA), leaf Area Index (LAI), fruit size (FS), shoot dry weight 
(SDW), biomass dry weight (BDW), biomass fresh weight (BFW), stomatal conductance (Gs), net 
gas exchange (A), leaf total chlorophyll (Chl), the quantum yield of photosystem II efficiency 
(ΔF/Fm), net photosynthesis rate (Pn), the difference between leaf and air temperature (Tl -Tair), 
transpiration rate (E), leaf water potential (LWP), stem water potential (Ψs), leaf osmotic potential 
(LOP), leaf canopy temperature (LCT), canopy water content (CWC), relative water content (RWC), 
leaf equivalent water thickness (EWT), pressure potential (Ψp), canopy water mass (CWM), Na+ 
contents in leaf (Na+), Cl- contents in leaf (Cl-), K+ contents in leaf (K+), Ca2+ contents in leaf (Ca2+), 
total soluble solids (TSS), tritatable acidity (TA). RS methods: directly derived by remote sensing 
(RS), indirectly derived by remote sensing (In-RS). 

In addition to individual plant functional traits, well-known RS vegetation indices 
have been related to the responses to drought and/or salinity stress. For 
consistency, we clustered the results of these studies on the basis of a functional 
classification, resulting in xanthophyll indices, water content indices, carotenoid 
indices and greenness indices (Table 2.2).  

Table 2.2 Classification, explanation, and equations of different vegetation indices (VIs) included in 
this study. 

VIs Meaning Equation Reference 

Xanthophyll Indices 

PRI570 Photochemical reflectance index (R531 - R570) / (R531 +R570) (Gamon et al. 1992) 

PRI515 Photochemical reflectance index (R531 - R515) / (R531 +R515) (Hernández-Clemente 
et al. 2011) 

PRI586 Photochemical reflectance index (R531 – R586) / (R531 + R586) (Panigada et al. 2014) 

PRI600 Photochemical reflectance index (R531-R602) / (R531 + R602) (Hernández-Clemente 
et al. 2011) 

PRI670 Photochemical reflectance index (R531-R668) / (R531 + R668) (Hernández-Clemente 
et al. 2011) 

Water Content Indices 

WI Water index R900 / R970 (Peñuelas et al. 1993) 

CWSI Crop Water Stress Index  CWSI = (Tleaf - Twet) / (Tdry - 
Twet) (Idso et al. 1981) 

Carotenoid Indices 

R520/R500 Carotenoid concentration (Zarco-Tejada et al. 
2012) 

R515/R570 Carotenoid concentration (Zarco-Tejada et al. 
2012) 

Greenness Indices 
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OSAVI Optimized Soil-Adjusted 
Vegetation Index 

(R800 −R670) / (R800 + R670 + 
0.16) (Rondeaux et al. 1996) 

TCARI The Transformed Chlorophyll 
Absorption in Reflectance Index  

TCARI = 3 ∙ [(R700 − R670) − 
0.2 ∙ (R700 − R550) ∙ 
(R700/R670)] 

(Haboudane et al. 2002) 

TCARI/OSAVI Normalized by OSAVI to obtain  

TCARI/OSAVI = [3 ∙ [(R700 − 
R670) − 0.2 ∙ (R700 − R550) ∙ 
(R700/R670)]]/ [(1 + 0.16) ∙ 
(R800 − R670) / (R800 + R670 
+ 0.16)] 

(Haboudane et al. 2002) 

CIgreen Green chlorophyll index (R750 / R550)–1 (Gitelson et al. 2005) 

CIred edge Red edge chlorophyll index (R750 / R710)–1 (Gitelson et al. 2005) 

SR Simple ratio R800 / R670 (Asrar et al. 1985) 
Red edge ratio 
index R700 / R670 (Zarco-Tejada et al. 

2013b) 
VOG1 The chlorophyll a +b index R740 / R720 (Vogelmann et al. 1993) 

ZM The chlorophyll a +b index R750 / R710 (Zarco-Tejada et al. 
2001) 

Notes: R means the reflectance of the band and T means temperature. While NDVI has been used 
frequently for drought monitoring at a regional scale, we did not include it in this review. The 
reasoning for this is that NDVI is considered as a greenness index related to chlorophyll instead of the 
water status of the vegetation. In support of this interpretation, NDVI has not been found to respond 
to rainfall or major precipitation events during the crop growth period (Rahimzadeh-Bajgiran et al. 
2012; Rahimzadeh Bajgiran et al. 2008). Therefore, NDVI was not included in the review. 

2.2.4 Analyses of Vegetation Responses 

After all functional clusters were defined, we aggregated the results from the 
different papers for each functional cluster (of VIs and plant traits) and proceeded 
to analyze their correlations. We first analyzed the spectral signatures of VIs under 
drought and their strengths. Afterwards, the distribution of spectral signatures of 
each functional traits cluster was investigated in the range of 400–2800 nm. Finally, 
we analyzed the correlations of different clusters of VIs and plant traits. 

2.3 Results 

2.3.1 Spectral signatures of vis under drought stress 

We found a wide range of correlations for the four clusters of VIs (defined within 
the spectral range of 500–1050 nm) under drought stress, as highlighted in Figure 
2.3. Specifically, xanthophyll indices showed their highest R2 at 531 nm (R2max = 
0.80) and 570–600 nm (R2max = 0.80), while greenness indices showed their 
highest R2 at 550 nm (R2max = 0.70), 670 nm (R2max = 0.76), 700–750 nm 
(R2max = 0.78), and 800 nm (R2max = 0.76), and water indices showed their 
highest R2 at 900 nm (R2max = 0.72) and 970 nm (R2max = 0.72). For carotenoid 
indices, no such region could be identified due to mostly low correlations (0.20 ≤ 
R2 ≤ 0.49). 
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Figure 2.3 Relationships between R2 and wavelength of different VIs clusters under drought stress. 
The red line indicates that R2 > 0.50. 

While we could identify specific regions where individual VIs provided a 
maximum sensitivity, we also found variation in this sensitivity. Although we 
identified studies that highlighted the potential of specific VIs for drought 
monitoring, we also found other studies reporting low R2 (R2 < 0.50) for the same 
VIs and wavelengths. Thus, there are undeniable limitations to identifying 
vegetation health using VIs under drought stress. 

2.3.2 Spectral signatures of plant traits under drought and salinity stress 

The reviewed studies focusing on plant trait signals showed that these crop 
responses were not constrained to specific wavelengths. Biomass, photosynthesis, 
water, and osmosis clusters of traits were identified across the full spectral range. 
These clusters showed few spectral patterns, even for those trait clusters that were 
supposedly directly measurable by RS (Figure 2.4). The only recognizable trends 
concern the osmosis traits cluster (with a significant response to salinity stress), 
with a slight tendency to occur more frequently at 550–750 nm, and the biomass 
traits and water traits occurring at 1400–1850 nm. As far as the few observations 
for drought do allow, those patterns did not seem to deviate much from those for 
salinity (Figure 2.4). 
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Figure 2.4 Drought and salinity stress responses of different trait clusters across the reflectance 
spectrum based on relationships with R2 > 0. Solid symbols indicate traits directly measured by RS; 
empty symbols are related to traits indirectly measured by RS. 

Moreover, while plant traits are more directly related to plant functioning and thus 
to stress, the correlations between the plant traits and the (drought and salinity) 
stress were not necessarily stronger (Figure 2.5). Biomass traits showed to have 
high R2 value to salinity stress at around 720 nm (R2max = 0.74), 1300–1800 nm 
(R2max = 0.88), and around 2500 nm (R2max = 0.88). Photosynthesis traits had 
high R2 values at 710 nm (R2max = 0.97), 800 nm (R2max = 0.89), 1200 nm, and 
around 2500 nm (R2max = 0.75). Interestingly, for both biomass and 
photosynthesis traits, the indirectly derived plant traits had generally higher R2 
values than the directly measurable RS traits. For water traits, we found different 
patterns from biomass traits and photosynthesis traits, with high R2 widely 
distributed between 500 and 2500 nm (R2max = 0.78). While high R2 peaked in the 
600–800 nm range, they were also highly variable (0.02 ≤ R2 ≤ 0.78). In contrast, 
osmosis traits (only indirectly retrievable) showed a very promising performance 
(all with R2 > 0.50) across the entire region of 500-2300 nm. Thus, it seemed that 
osmosis traits were most directly related to salinity stress responses. For drought 
stress, the number of studies that presented the wavelengths they used was too 
limited to draw clear conclusions. In general though, neither the range of R2 values 
nor the wavelengths at which traits responded to drought stress deviated much from 
those for salinity stress. 
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Figure 2.5 Relationship between R2 and wavelength of different trait clusters under drought/salinity 
stress. RS identifies traits that can be directly measured by RS; InRS identifies traits that can be 
indirectly measured by RS. The red line indicates R2 > 0.50. 

2.3.3 The relationship between vis and plant traits 

Vegetation indices have been shown to strongly correlate with individual plant 
traits (e.g., LAI and Chl), but the linkage between VIs, spectral reflectance, and 
crop traits remains inadequately understood. Thus, we analyzed the relationship 
between VIs and plant traits, and the results are shown in Table 2.3. For biomass 
traits, LAI showed high correlations with xanthophyll indices (R2max = 0.66) and 
greenness indices (R2max = 0.71) (particularly for OSAVI). Photosynthesis traits 
were also highly correlated with xanthophyll indices (R2max = 0.68) and greenness 
indices (R2max = 0.70). Especially, ∆F/Fm was highly correlated with 
TCARI/OSAVI (R2max = 0.70). Water traits showed a wide range of correlations 
(0.02 ≤ R2 ≤ 0.80) with VIs. Therein, Tl − Tair was highly correlated with PRI570 
(R2 = 0.74), PRI600 (R2 = 0.79), and TCARI/OSAVI (R2 = 0.80). CWC was highly 
correlated to three VIs, including WI (R2 = 0.72), CIgreen (R2 = 0.78), and CIred 
edge (R2 = 0.73). EWTcanopy was highly correlated to PRI586 (R2 = 0.75) and 
OSAVI (R2 = 0.76). LWP was highly correlated to CWSI (R2 = 0.78) and Gs was 
highly correlated with CWSI (R2 = 0.77). Osmosis traits were mainly highly 
correlated with PRI570 (R2max = 0.50). Thus, in general, the four trait clusters 
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were highly correlated with xanthophyll indices (0.50 ≤ R2max ≤ 0.79), while they 
showed lower correlations with carotenoid indices (0.20 ≤ R2 ≤ 0.49). Furthermore, 
water traits were correlated stronger with water indices (0.42 ≤ R2 ≤ 0.78) than 
with the other three trait groups (0.19 ≤ R2 ≤ 0.49). Greenness indices showed high 
correlations with biomass traits (R2max = 0.71), photosynthesis traits (R2max = 
0.70), and water traits (R2max = 0.80) but not with osmosis traits (R2max = 0.35). 
However, despite these general patterns, Table 2.3 also shows that variability in the 
relationships is high. 
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T
able 2.3 The relationship betw

een traits and V
Is under drought stress 

N
ote: bold num

bers indicate that R
2 >0.50. * m

eans the traits could be directly m
easured by R

S.
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Is 
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Photosynthesis Traits 

W
ater Traits 
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osis Traits 
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FS 
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hl* 
ΔF/Fm
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W
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R
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T* 
EW
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TA
 

TSS/TA
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anthophyll Indices 
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0.66 
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-- 
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-- 
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-- 
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2.4 Discussion 

In this study, we systematically evaluated the usefulness of current monitoring 
approaches (i.e., vegetation indices and plant traits) for evaluating vegetation 
responses to drought and salinity stress. Vegetation indices have been developed to 
monitor vegetation health conditions since the 1980s (Rahimzadeh-Bajgiran et al. 
2012), and a review of drought indices can be found in (Zargar et al. 2011). In 
contrast, only over the past two decades, remote sensing techniques have advanced 
enough to retrieve plant traits, increasingly leading to remote sensing applications 
to monitor plant traits to characterize both natural vegetation and crop functioning 
(Moreno-Martínez et al. 2018). However, a systematic review on the extent to 
which these metrics can pick up drought and salinity stress has so far been missing. 

Our study reveals that most VIs reviewed are not accurate and consistent enough to 
detect changes in crop temporal and spatial responses under stress. This finding 
coincides with previous studies (Liu et al. 2016) that showed that simple VIs were 
hardly able to detect the impact of drought on crops. A possible explanation for this 
is that most VIs do not directly reflect the mechanism of crop responses to stress. 
While many VIs are related to (normalized) features of e.g., greenness, carotenoid, 
or xanthophyll concentrations, it seems that these features do not only vary because 
of the actual drought and salinity stress but also under the influence of various 
other local conditions. This may explain the wide range of R2 values in relation to 
drought or salinity stress. In order to comprehensively monitor stress, we should 
therefore focus on exploring the spectral characteristics of crop tolerance and stress 
response mechanisms to truly reflect the crop health condition under stress. 

Plant traits might provide an approach to measure these stress mechanisms, given 
that traits have proven to be indicators of plant and ecosystem functioning. While 
previous studies showed that RS could potentially address plant traits, in particular 
traits related to photosynthetic process, canopy structure, and leaf biochemistry 
(Homolova et al. 2013; Weiss et al. 2020), there are a few plant traits studies that 
focus on drought and salinity stress. More specifically, the number of drought and 
salinity studies evaluating plant traits is much lower than those using VIs. 
Irrespective of this dichotomy, our systematic review shows that neither the 
wavelengths at which traits are detected nor the strength of the relationship to 
drought and salinity stress is consistent within or between traits of different crops. 
In fact, a wide range of wavelengths used to detect plant traits was found 
(Homolova et al. 2013), which suggests that most relationships to spectral 
signatures are indirect at best. These indirect relationships, and thus the potential 
for confounding factors, may provide a partial explanation for the large variance 
we found in R2 values and the generally low explained variance. One of those 
confounding factors concerns that crop (biomass and water) responses to salinity 
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are to some extent similar to those to drought. This confounding factor leads to 
confusion in some results and has hitherto not been accounted for in previous 
studies. Furthermore, the relationship between traits and stress is further 
complicated by the fact the drought and salinity tolerance mechanisms of crops are 
complicated and multivariate. 

An exception to the low and varied R2 values is the osmotic traits as detected 
(indirectly) by remote sensing. In all evaluated studies, osmotic traits were strongly 
related to salinity stress. This phenomenon is linked to crop response mechanisms 
and is -in contrast to biomass and water responses- unique to salinity stress. 
Salinity stress inflicts damage to plants due to (a) the disruption of the ionic 
equilibrium, (b) an osmotic imbalance, and thereby (c) a decreased photosynthesis 
due to the toxicity of Na+. Likewise, evidence shows that an increased expression 
of K+, Ca2+, Salt Overly Sensitive (SOS) pathways, and glycine betaine are related 
to salinity stress tolerance (Mahajan and Tuteja 2005; Niu et al. 1995; Yeo 1998). 
Both drought and salinity stress cause osmotic stress and decrease cytosolic as well 
as vacuolar volumes. In the case of drought, this osmotic stress is the result of a 
displacement of membrane proteins and disruptions in cellular metabolism 
(Mahajan and Tuteja 2005). In addition, reactive oxygen species are produced, 
which have adverse effects on cellular structures and metabolism (Bartels and 
Sunkar 2005). Therefore, the responses of plants to drought and salinity are 
identical at the early stage. Consequently, osmotic traits show a high potential as a 
suitable indicator for drought and salinity stress RS monitoring. In particular, 
promising results have been found for detecting ionic concentrations of sodium, 
potassium, and chloride (El-Hendawy et al. 2019b; Zhang et al. 2017). 
Unfortunately, though, it seems that our understanding at which wavelengths the 
osmotic traits are expressed is still limited. 

As highlighted in the previous paragraph, plant functioning under stress is affected 
by various pathways. From that perspective, instead of focusing on individual VIs 
or traits, an alternative approach to monitoring drought and salinity stress is the 
consideration of multiple trait responses simultaneously. Although stresses have 
been investigated using many aspects, previous studies rarely utilized multiple 
variables to assess these pathways. Radiative transfer models (RTMs) may be 
particularly useful to retrieve such multiple variables from remote sensing 
observations. RTMs have been developed to study the relationship between 
vegetation biochemical and biophysical properties, and hyperspectral reflectance 
(Bayat et al. 2016; Botha et al. 2006). In the forward mode, RTMs simulate the 
vegetation spectrum based on known spectral signatures of vegetation biochemical 
and biophysical properties. Likewise, RTMs can retrieve vegetation properties 
from reflectance data in the inverse mode (Jacquemoud 2000; Lu et al. 2020a; 
Timmermans et al. 2009). Indeed, RTM inversion has been successfully applied to 
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monitor the changes in plant traits and reflectance upon drought (Bayat et al. 2016). 
By monitoring multiple traits simultaneously, through the inversion of RTMs, it 
will become possible to evaluate how multiple traits in concert are affected by 
drought and/or salinity stress. This may also provide additional insights into the 
plant strategies to deal with drought and/or salinity stress. Unfortunately, though, 
the ill-posedness of the inversion problem commonly puts major constraints on the 
generic applicability of RTMs for crop monitoring. Another major constraint, in the 
context of this review, is that osmosis traits are difficult to measure directly by 
remote sensing. Dissolved salts such as Na+, Cl−, K+, and Ca2+ are not directly 
tractable, although NaCl has a clearly defined spectrum in the infrared spectrum. 
This strongly limits its incorporation within RTMs, which indeed only focus on a 
limited number of vegetation traits such as LAI, Chl, and CWC. More research will 
be needed to evaluate the prospects of physical modeling of radiative transfer under 
the influence of known stress response mechanisms. Traditional multi- or high-
spectral field sensors to investigate the impacts of drought and salinity on crops in 
relation to in situ observed traits related to these stresses will be the way forward 
here. 

A final limitation to monitoring plant traits in response to drought and salinity 
stress is the spatiotemporal and spectral resolution of current satellites. Low 
spatiotemporal resolution and revisit periods are two main restraints for current 
satellite sensor applications in crop management (Berni et al. 2009), although this 
has strongly improved with the launch of the Sentinels satellites. The spectral 
resolution is currently probably more limiting. The inconsistency across multiple 
sensors of different satellites does not allow combining them in one retrieval (Liu 
et al. 2016). Hyperspectral missions, such as those foreseen in EnMAP, may 
provide such information. This may be particularly interesting if combined with 
Light Detection and Ranging (LiDAR) information (e.g., from Global Ecosystem 
Dynamics Investigation (GEDI)) or high-resolution information on temperature 
(e.g., the Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station 
(ECOSTRESS)). However, also, for a fruitful incorporation of such information 
sources, it will be essential to first characterize the spectral properties of traits 
directly related to the plant responses to drought and salinity stress. This will 
reduce the impacts of confounding factors that currently seem to dominate the 
patterns obtained, as seems apparent from Figures 2.3-2.5. 

2.5 Conclusions 

Based on a systematic review, we conclude that a significant number of challenges 
remain before RS can be used to monitor drought and salinity stress on crop health. 
Specifically, we found that VIs are insufficiently accurate to consistently estimate 
these effects. For plant traits, we found some positive correlations for individual 
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cases, confirming that plant traits indeed reflect stress response mechanisms. 
However, these cases were too few to accurately monitor the pathways for drought 
and salinity stress. Furthermore, we found that both spectral wavelengths and the 
strength of the relationship to drought and salinity stress varied strongly. Osmosis 
traits appear to be the exception to this and consequently have the potential to be 
used for monitoring the pathways along which drought and salinity impact crops. 
However, osmosis traits cannot be directly measured by RS. In order to fully 
capture the biophysical/biochemical pathways of drought/salinity stress on crop 
health, future research should focus on (1) advancing our capability to 
simultaneously monitor (through multi-sensor frameworks) the suite of crop traits 
that are connected to the different pathways affected by drought and salinity, and (2) 
expanding our characterization of the spectral properties of osmotic traits (through 
optimized RTMs). 
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Figure S2-2 Maps of co-authors and co-occurrences from the results of the systematic review. A 
bubble and a tag constitute an element. The size of an element depends on the number of nodes, the 
strength of the line, and the number of citations. The color of an element represents the cluster to 
which it belongs, and different clusters are represented by different colors. In the co-author map, it 
shows the network of co-authorship links between 115 publications from the systematic review. The 
“bubbles” represent authors. The size of an author bubble represents the number of publications. 
Colors represent authors groups that are clustered by co-authorship links (Perianes-Rodriguez et al. 
2016; Van Eck and Waltman 2011, 2014).  

It was noticed that very few people are focusing on the topic of using remote 
sensing to monitor crop response to drought and salt stress. Also, the connections 
among most authors were rather weak. Also, there was a very limited number of 
studies focusing on monitoring crop traits responses to drought and salinity using 
remote sensing techniques as the co-occurrence map showed that the connection of 
plant traits and spectra was rather weak. Therefore, we conclude that these topics 
need further investigation. 
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Table S2-1 115 publications identified from the systematic review 

No. Title Reference 

1 Detection of early plant stress responses in hyperspectral images (Behmann et al.
2014) 

2 A crop-specific drought index for corn: I. Model development 
and validation (Meyer et al. 1993) 

3 A field experiment on spectrometry of crop response to soil 
salinity (Leone et al. 2007) 

4 
A PRI-based water stress index combining structural and 
chlorophyll effects: Assessment using diurnal narrow-band 
airborne imagery and the CWSI thermal index 

(Zarco-Tejada et al. 
2013b) 

5 Advanced phenotyping offers opportunities for improved 
breeding of forage and turf species (Walter et al. 2012) 

6 
Advances in Remote Sensing of Agriculture: Context 
Description, Existing Operational Monitoring Systems and 
Major Information Needs 

(Atzberger 2013) 

7 Aerial canopy temperature differences between fast- and slow-
wilting soya bean genotypes 

(Bai and Purcell 
2018) 

8 Agricultural drought monitoring: Progress, challenges, and 
prospects (Liu et al. 2016) 

9 
Anatomy of a local-scale drought: Application of assimilated 
remote sensing products, crop model, and statistical methods to 
an agricultural drought study 

(Mishra et al. 2015) 

10 Application of vegetation index and brightness temperature for 
drought detection (Kogan 1995a) 

11 Application of visible and near-infrared spectrophotometry for 
detecting salinity effects on wheat leaves (Triticum aestivum L.) 

(Mokhtari M. H. et 
al. 2014) 

12 Applying hyperspectral imaging to explore natural plant 
diversity towards improving salt stress tolerance (Sytar et al. 2017) 

13 Assessing canopy PRI for water stress detection with diurnal 
airborne imagery (Suarez et al. 2008) 

14 Assessing canopy PRI from airborne imagery to map water 
stress in maize (Rossini et al. 2013) 

15 
Assessment of Photochemical Reflectance Index as a Tool for 
Evaluation of Chlorophyll Fluorescence Parameters in Cotton 
and Peanut Cultivars Under Water Stress Condition 

(Yoshizumi et al. 
2010) 

16 Assessment of the water status of mandarin and peach canopies 
using visible multispectral imagery 

(Kriston-Vizi et al. 
2008) 

17 
Associated changes in physiological parameters and spectral 
reflectance indices in olive (Olea europaea L.) leaves in 
response to different levels of water stress 

(Sun et al. 2008) 

18 Biophysical properties and biomass production of elephant 
grass under saline conditions (Wang et al. 2002a) 

19 Broadband Spectral Reflectance Models of Turfgrass Species 
and Cultivars to Drought Stress 

(Jiang and Carrow 
2007) 

20 
Can chlorophyll-a fluorescence parameters be used as bio-
indicators to distinguish between drought and salinity stress in 
Tilia cordata Mill 

(Kalaji et al. 2018) 

21 Canopy temperature as a crop water stress indicator (Jackson et al. 1981) 
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22 
Characterization of Crop Canopies and Water Stress Related 
Phenomena using Microwave Remote Sensing Methods: A 
Review 

(Vereecken et al. 
2012) 

23 
Chlorophyll fluorescence performance of sweet almond [Prunus 
dulcis (Miller) D. Webb] in response to salinity stress induced 
by NaCl 

(Ranjbarfordoei et al. 
2006) 

24 Chlorophyll, anthocyanin, and gas exchange changes assessed 
by spectroradiometry in Fragaria chiloensis under salt stress. (Garriga et al. 2014) 

25 

Comparative evaluation of the Vegetation Dryness Index (VDI), 
the Temperature Vegetation Dryness Index (TVDI) and the 
improved TVDI (iTVDI) for water stress detection in semi-arid 
regions of Iran 

(Rahimzadeh-
Bajgiran et al. 2012) 

26 Computational water stress indices obtained from thermal 
image analysis of grapevine canopies (Fuentes et al. 2012) 

27 Crop yield prediction under soil salinity using satellite derived 
vegetation indices 

(Satir and Berberoglu 
2016) 

28 Data fusion of spectral, thermal and canopy height parameters 
for improved yield prediction of drought stressed spring barley 

(Rischbeck et al. 
2016) 

29 Detecting salinity stress in tall fescue based on single leaf 
spectrum (Gao and Li 2012) 

30 Detecting water stress effects on fruit quality in orchards with 
time-series PRI airborne imagery (Suárez et al. 2010) 

31 Detection of water stress in an olive orchard with thermal 
remote sensing imagery 

(Sepulcre-Canto et al. 
2006) 

32 
Detection of water stress in orchard trees with a high-resolution 
spectrometer through chlorophyll fluorescence In-Filling of the 
O2-A band 

(Pérez-Priego et al. 
2005) 

33 
Determining the Canopy Water Stress for Spring Wheat Using 
Canopy Hyperspectral Reflectance Data in Loess Plateau 
Semiarid Regions 

(Wang et al. 2015) 

34 Drought and Salinity Impacts on Bread Wheat in a Hydroponic 
Culture: A Physiological Comparison 

(Movahhedi Dehnavi 
et al. 2017) 

35 

Drought stress effects on photosystem I content and 
photosystem II thermotolerance analyzed using Chl a 
fluorescence kinetics in barley varieties differing in their 
drought tolerance 

(Oukarroum et al. 
2009) 

36 Early drought stress detection in cereals: Simplex Volume 
Maximization for hyperspectral image analysis (Römer et al. 2012) 

37 Effect of different concentrations of diluted seawater on yield 
and quality of lettuce (Turhan et al. 2014) 

38 Effects of four types of sodium salt stress on plant growth and 
photosynthetic apparatus in sorghum leaves (Zhang et al. 2018) 

39 Effects of saline reclaimed waters and deficit irrigation on 
Citrus physiology assessed by UAV remote sensing 

(Romero-Trigueros et 
al. 2017) 

40 
Effects of salinity on physiological responses and the 
photochemical reflectance index in two co-occurring coastal 
shrubs 

(Zinnert et al. 2012) 

41 Estimating crop water stress with ETM+ NIR and SWIR data (Ghulam et al. 2008) 

42 Estimating growth and photosynthetic properties of wheat 
grown in simulated saline field conditions using hyperspectral 

(El-Hendawy et al. 
2019a) 
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reflectance sensing and multivariate analysis 

43 Estimating Yields of Salt- and Water-Stressed Forages with 
Remote Sensing in the Visible and Near Infrared (Poss et al. 2006) 

44 
Estimation of Canopy Water Content by Means of 
Hyperspectral Indices Based on Drought Stress Gradient 
Experiments of Maize in the North Plain 

(Zhang and Zhou 
2015) 

45 Estimation of Water Stress in Grapevines Using Proximal and 
Remote Sensing Methods (Matese et al. 2018) 

46 
Evaluation of agronomic traits and spectral reflectance in 
Pacific Northwest winter wheat under rain-fed and irrigated 
conditions 

(Gizaw et al. 2016) 

47 Evaluation of Hyperspectral Reflectance Parameters to Assess 
the Leaf Water Content in Soybean (Kovar et al. 2019) 

48 
Evaluation of wavelengths and spectral reflectance indices for 
high-throughput assessment of growth, water relations and ion 
contents of wheat irrigated with saline water 

(El-Hendawy et al. 
2019b) 

49 Fluorescence excitation spectra of drought resistant and 
sensitive genotypes of triticale and maize (Grzesiak et al. 2007) 

50 Fluorescence Spectroscopy to Detect Water Stress in Orange 
Trees (Lins et al. 2005) 

51 Fluorescence, PRI and canopy temperature for water stress 
detection in cereal crops (Panigada et al. 2014) 

52 
Fluorescence, temperature and narrow-band indices acquired 
from a UAV platform for water stress detection using a micro-
hyperspectral imager and a thermal camera 

(Zarco-Tejada et al. 
2012) 

53 Fluorescence-based sensing of drought-induced stress in the 
vegetative phase of four contrasting wheat genotypes (Bürling et al. 2013) 

54 Genes and salt tolerance: bringing them together (Munns 2005) 

55 Ground-based canopy sensing for detecting effects of water 
stress in cotton 

(Stamatiadis et al. 
2010) 

56 High-throughput field phenotyping in dry bean using small 
unmanned aerial vehicle based multispectral imagery 

(Sankaran et al. 
2018) 

57 Hyperspectral Reflectance Response of Freshwater 
Macrophytes to Salinity in a Brackish Subtropical Marsh (Tilley et al. 2007) 

58 
Hyperspectral remote sensing of salinity stress on red 
(Rhizophora mangle) and white (Laguncularia racemosa) 
mangroves on Galapagos Islands 

(Song et al. 2011) 

59 
Hyperspectral remote sensing to assess the water status, 
biomass, and yield of maize cultivars under salinity and water 
stress 

(Elsayed and 
Darwish 2017) 

60 Identifying leaf traits that signal stress in TIR spectra (Acevedo et al. 2017) 

61 Image-Derived Traits Related to Mid-Season Growth 
Performance of Maize Under Nitrogen and Water Stress (Dodig et al. 2019) 

62 Imaging chlorophyll fluorescence with an airborne narrow-band 
multispectral camera for vegetation stress detection 

(Zarco-Tejada et al. 
2009) 

63 
Integrating satellite optical and thermal infrared observations 
for improving daily ecosystem functioning estimations during a 
drought episode 

(Bayat et al. 2018) 

64 Interpretation of salinity and irrigation effects on soybean (Wang et al. 2002b) 
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canopy reflectance in visible and near-infrared spectrum domain 

65 Landsat images and crop model for evaluating water stress of 
rainfed soybean (Sayago et al. 2017) 

66 
Leaf chlorophyll fluorescence, reflectance, and physiological 
response to freshwater and saltwater flooding in the evergreen 
shrub, Myrica cerifera 

(Naumann et al. 
2008b) 

67 Leaf-rolling in maize crops: from leaf scoring to canopy-level 
measurements for phenotyping (Baret et al. 2018) 

68 
Linking leaf chlorophyll fluorescence properties to 
physiological responses for detection of salt and drought stress 
in coastal plant species 

(Naumann et al. 
2007) 

69 

Linking physiological responses, chlorophyll fluorescence and 
hyperspectral imagery to detect salinity stress using the 
physiological reflectance index in the coastal shrub, Myrica 
cerifera 

(Naumann et al. 
2008a) 

70 Measurement of leaf relative water content by infrared 
reflectance (Hunt Jr et al. 1987) 

71 
Melon crops (Cucumis melo L., cv. Tendral) grown in a 
mediterranean environment under saline-sodic conditions: Part 
I. Yield and quality

(Tedeschi et al. 2011) 

72 
Meta-analysis assessing potential of steady-state chlorophyll
fluorescence for remote sensing detection of plant water,
temperature and nitrogen stress

(Alexander et al. 
2015) 

73 Modelling PRI for water stress detection using radiative transfer 
models (Suarez et al. 2009) 

74 Monitoring agricultural drought for arid and humid regions 
using multi-sensor remote sensing data (Rhee et al. 2010) 

75 
Monitoring stomatal conductance of Jatropha curcas seedlings 
under different levels of water shortage with infrared 
thermography 

(Maes et al. 2011) 

76 
Monitoring water stress and fruit quality in an orange orchard 
under regulated deficit irrigation using narrow-band structural 
and physiological remote sensing indices 

(Stagakis et al. 2012) 

77 Monitoring yield and fruit quality parameters in open-canopy 
tree crops under water stress. Implications for ASTER 

(Sepulcre-Canto et al. 
2007) 

78 
Natural selection and neutral evolutionary processes contribute 
to genetic divergence in leaf traits across a precipitation 
gradient in the tropical oak Quercus oleoides 

(Ramírez‐Valiente et 
al. 2018) 

79 NDWI—A normalized difference water index for remote 
sensing of vegetation liquid water from space (Gao 1996) 

80 New phenotyping methods for screening wheat and barley for 
beneficial responses to water deficit (Munns et al. 2010) 

81 Normalizing the stress-degree-day parameter for environmental 
variability (Idso et al. 1981) 

82 Perspectives for Remote Sensing with Unmanned Aerial 
Vehicles in Precision Agriculture 

(Maes and Steppe 
2019) 

83 Phenotyping for Abiotic Stress Tolerance in Maize (Masuka et al. 2012) 

84 Photochemical reflectance index as a mean of monitoring early 
water stress 

(Sarlikioti et al. 
2010) 
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85 
Photochemistry, remotely sensed physiological reflectance 
index and de-epoxidation state of the xanthophyll cycle in 
Quercus coccifera under intense drought 

(Peguero-Pina et al. 
2008) 

86 
Photosynthetic gas exchange, chlorophyll fluorescence and 
some associated metabolic changes in cowpea (Vigna 
unguiculata) during water stress and recovery 

(Souza et al. 2004) 

87 Potential and constraints of different seawater and freshwater 
blends as growing media for three vegetable crops (Atzori et al. 2016) 

88 
Radiation use efficiency, chlorophyll fluorescence, and 
reflectance indices associated with ontogenic changes in water 
limited Chenopodium quinoa leaves 

(Winkel et al. 2002) 

89 Recovery responses of photosynthesis, transpiration, and 
stomatal conductance in kidney bean following drought stress 

(Miyashita et al. 
2005) 

90 
Relationships between net photosynthesis and steady-state 
chlorophyll fluorescence retrieved from airborne hyperspectral 
imagery 

(Zarco-Tejada et al. 
2013a) 

91 
Relationships between stomatal behavior, spectral traits and 
water use and productivity of green peas (Pisum sativum L.) in 
dry seasons 

(Nemeskéri et al. 
2015) 

92 Remote sensing of soil salinity: potentials and constraints (Metternicht and 
Zinck 2003) 

93 Risk identification of agricultural drought for sustainable 
Agroecosystems (Dalezios et al. 2014) 

94 Salinity tolerance and the decoupling of resource axis plant 
traits 

(Eallonardo Jr et al. 
2013) 

95 Seasonal and drought-related changes in leaf area profiles 
depend on height and light environment in an Amazon forest (Smith et al. 2019) 

96 Seasonal patterns of reflectance indices, carotenoid pigments 
and photosynthesis of evergreen chaparral species (Stylinski et al. 2002) 

97 
Simple reflectance indices track heat and water stress-induced 
changes in steady-state chlorophyll fluorescence at the canopy 
scale 

(Dobrowski et al. 
2005) 

98 
Soil salinity mapping and hydrological drought indices 
assessment in arid environments based on remote sensing 
techniques 

(Elhag and Bahrawi 
2017) 

99 Spatial–spectral processing strategies for detection of salinity 
effects in cauliflower, aubergine and kohlrabi (Rud et al. 2013) 

100 Spectral assessments of wheat plants grown in pots and 
containers under saline conditions (Hackl et al. 2013) 

101 Spectral indicators for salinity effects in crops: a comparison of 
a new green-indigo ratio with existing indices (Rud et al. 2011) 

102 Spectral indices for the detection of salinity effects in melon 
plants 

(Hernández et al. 
2014) 

103 
Spectral Reflectance for Indirect Selection and Genome-Wide 
Association Analyses of Grain Yield and Drought Tolerance in 
North American Spring Wheat 

(Gizaw et al. 2018) 

104 
Steady-State and Maximum Chlorophyll Fluorescence 
Responses to Water Stress in Grapevine Leaves: A New Remote 
Sensing System 

(Flexas et al. 2000) 

105 The influence of diluted seawater and ripening stage on the (Sgherri et al. 2007) 
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content of antioxidants in fruits of different tomato genotypes 

106 The influence of soil salinity, growth form, and leaf moisture on 
the spectral radiance o 

(Klemas and Smart 
1983) 

107 The Photochemical Reflectance Index (PRI) as a water-stress 
index (Thenot et al. 2002) 

108 
The relationships between electrical conductivity of soil and 
reflectance of canopy, grain, and leaf of rice in northeastern 
Thailand 

(Touch et al. 2015) 

109 The use of infrared thermal imaging as a non-destructive 
screening tool for identifying drought-tolerant lentil genotypes (Biju et al. 2018) 

110 The Vegetation Drought Response Index (VegDRI): A New 
Drought Monitoring Approach for Vegetation (Wardlow et al. 2008) 

111 Thermal and Narrowband Multispectral Remote Sensing for 
Vegetation Monitoring From an Unmanned Aerial Vehicle (Berni et al. 2009) 

112 Use of thermal and visible imagery for estimating crop water 
status of irrigated grapevine (Möller et al. 2007) 

113 
Using paired thermal and hyperspectral aerial imagery to 
quantify land surface temperature variability and assess crop 
stress within California 

(Shivers et al. 2019) 

114 
Utilization of a high-throughput shoot imaging system to 
examine the dynamic phenotypic responses of a C-4 cereal crop 
plant to nitrogen and water deficiency over time 

(Neilson et al. 2015) 

115 Water stress detection in potato plants using leaf temperature, 
emissivity, and reflectance (Gerhards et al. 2016) 
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