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Food security is defined as a “situation that exists when all people, at all times, 
have physical, social, and economic access to sufficient, safe, and nutritious food 
that meets their dietary needs and food preferences for an active and healthy life” 
by the Food and Agriculture Organization (FAO 2002). Food security is highly 
related to economic growth, human rights, poverty, society security and stability, 
and human health. As such, to ensure a secure and sustainable future for everyone, 
the United Nations (UN) has formulated sustainable development goals (SDGs) for 
2030 highlighting sustainable agriculture and food security (in SDG 2) to be crucial 
pillars (UN 2015). However, in 2021, according to the FAO, 11.7% of the world's 
population experienced extreme food insecurity, and around 2.3 billion people were 
either moderately or severely food insecure (FAO 2022b; UN 2022). Despite the 
progress made from multiple perspectives towards SDG 2 (to ‘End hunger’), food 
insecurity, hunger, and malnutrition are still increasing in the world at the current 
state (FAO 2022b).  

To feed 9.1 billion people in 2050, global food production needs to increase by 70% by 
2050, and specifically that of developing counties to increase with 100% (FAO 
2009; Tilman et al. 2011). Meanwhile, 670 million people are projected to face 
hunger in 2030 (FAO 2022b). The overall food demand is projected to rise by 35% 
to 56% by 2050 compared to the 2010 base year while simultaneously climate 
change is estimated to increase the challenges for food production even further 
(van Dijk et al. 2021). We therefore need to increase the productivity (in particular 
those of small-scale food producers, SDG 2.2), while ensuring “Sustainable food 
production and resilient agricultural practices (SDG 2.4), by “implementing 
resilient agricultural practices that increase productivity and production, that help 
maintain ecosystems, that strengthen capacity for adaptation to pending disasters 
(e.g., climate change, drought, flooding, and others), and that progressively 
improve land and soil quality”. 

1.1 Threats to food production 

Agricultural crops are frequently subjected to a variety of environmental stresses, 
which limit agricultural productivity and decrease food production. These stresses 
fall into two categories, namely biotic stress (i.e. disease pathogens infection, 
herbivores attacks, etc.) and abiotic stress (i.e., water scarcity, metal toxicities, 
extreme temperature, etc.) (Oshunsanya et al. 2019; Summy et al. 2020). Abiotic 
stress such as drought, frost, heat waves, and salinity negatively impact crop 
growth, crop development as well as crop quality (Audil et al. 2019). Abiotic stress 
was observed to be the dominant factor impacting crop productivity worldwide and 
is estimated to cause annually 51% - 82% of crop yield loss worldwide (Arun-
Chinnappa et al. 2017; Mantri et al. 2012). Furthermore, climate change is 
expected to result in higher temperatures, altered rainfall patterns, and frequent 

https://en.wikipedia.org/wiki/Drought
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extreme weather (Wheeler and von Braun 2013). These patterns were projected to 
increase the risk of abiotic stress (including but not limited to flood, drought, heat, 
etc.) regionally and globally, thus posing major constraints on food availability, 
access, utilization as well as stability (Lorenz and Kunstmann 2012; Rosenzweig et 
al. 2014; Wheeler and von Braun 2013). Therefore, it is crucial to recognize and 
estimate the impact of abiotic stress on food production to ensure food security. 

As one of the major abiotic stresses, drought inhibits crop yield and distribution, 
causing substantial reductions in food production at a global scale (Eckardt et al. 
2022; Madadgar et al. 2017). Over 40% of the global land area is affected by 
drought (Dunn et al. 2020) and it was estimated to cause $124 billion economic 
loss annually worldwide (Tsegai et al. 2022). More than 2.3 billion people have 
experienced water stress in 2022, and approximately 160 million children have 
encountered severe and protracted droughts (Tsegai et al. 2022). Drought impacts 
three components of food security, namely availability (e.g. crop production), 
access (e.g. food price), and stability (sufficient access to food) both in direct and 
indirect ways (He et al. 2019). Over the previous four decades, droughts led to a 
loss in cereals production (i.e. maize, rice, and wheat) of 1820 million Mg globally 
(Lesk et al. 2016). Climate change is predicted to exacerbate drought frequency 
and severity, particularly in semi-arid regions already under severe water stress 
(Dai 2011, 2013). Meanwhile, there will be 700 million people in danger of being 
displaced by drought by 2030 (Tsegai et al. 2022). Thus, food security will be 
further threatened by frequent droughts in the future. Given this, there is a need to 
understand and evaluate drought effects on crops aiming to maintain food 
production.  

Aside from drought, soil salinity is another major stress that negatively impacts 
agricultural production, particularly in the dry and semi-arid regions (El hasini et al. 
2019). There are 954 million hectares (Mha) of salt-affected soil in 120 countries 
worldwide, leading to approximately 7% - 8% agriculture productivity loss (Meena 
et al. 2019; Yadav 2003). Soil salinity affects approximately 20% of the total 
cultivated land and 33% of the irrigated agricultural areas globally (Jamil et al. 
2011; Metternicht and Zinck 2003) while the salt-affected area is predicted to 
expand at a rate of 1.0 - 2.0 Mha per year (ITPS and FAO 2015). With climate 
change in terms of changing rainfall patterns and increased temperature, water 
scarcity is expected to accelerate soil salinity in the near future (Eswar et al. 2021). 
Meanwhile, soil and groundwater salinity in arid regions and coastal regions can be 
exacerbated due to seawater intrusion caused by mean sea-level rise and excessive 
groundwater extraction (Dasgupta et al. 2015; Mukhopadhyay et al. 2021). 
Therefore, soil salinity urgently needs to be tackled to enable food security and a 
sustainable agriculture system to balance soil degradation and population 
expansion.  
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Although the impacts of drought and salinity stress on food production have been 
evaluated individually for a variety of crops, under natural conditions, crops 
normally face a combination of abiotic stresses in natural and agricultural 
ecosystems, such as drought and salinity, which result in greater yield loss than 
either stress alone (Mittler 2006). Drought and salinity interact to produce a 
combined effect when soil water evaporates and salt concentrations increase in the 
soil solution (Munns 2002). Salinity has been observed to considerably rise in 
rivers during hydrological droughts because of reduced river levels (Jones and van 
Vliet 2018; Mosley 2015). Moreover, salinity stress is expected to frequently 
accompany drought on cultivated land, especially in coastal, arid, and semi-arid 
regions (Angon et al. 2022; Corwin 2020). Thus, more frequent and severe 
droughts will therefore intensify the accumulation of salinization, a combination 
that leads to adverse impacts on food production and sustainable agricultural 
development. 

1.2 Impact pathways of drought and salinity 

Drought-induced water stress decreases crop yield by delaying crop maturation and 
slowing root growth, which results in less available food, especially in areas (like 
sub-Saharan Africa) that are heavily reliant on rain-fed agriculture (He et al. 2019). 
Moreover, drought directly impacts plant transpiration processes, leading to the 
short to long-term closure of the stomata, hampering photosynthesis and thus crop 
productivity (Farooq et al. 2009). In response to drought stress, plants are observed 
to reduce leaf area and leaf chlorophyll content, increase leaf thickness, and 
decrease the activities of photosynthetic enzymes (Yang et al. 2021). Due to altered 
plant-water interactions, CO2 assimilation, cell membrane damage, oxidative stress, 
and enzyme inhibition, drought stress decreases plant growth and productivity 
(Kousik et al. 2022). 

Salinity-induced stress negatively affects crop growth in two growth responses, 
namely osmotic stress and ion toxicity (Munns and Tester 2008; Shrivastava and 
Kumar 2015). The presence of high salt concentration in the soil solution can 
adversely impact the water acquisition capacity of crops. Moreover, salinity stress 
inhibits plant growth due to specific-ion toxicities (in particular induced by high 
concentrations of Na+) and the subsequent nutritional imbalances of other cations 
(such as K+ and Ca2+). The co-occurrence of reduced water uptake, ion toxicity, and 
nutrient imbalances results in a reduction in crop yields (Shrivastava and Kumar 
2015).   

The combination of salinity and drought exerts an even more detrimental effect on 
plant growth, photosynthesis, oxidative balance, and ionic balance compared to the 
individual stresses alone (Angon et al. 2022). Both drought and salinity impacts on 
crops are highly dependent on e.g. growth stage and cultivar (Hopmans et al. 2021; 
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Xu et al. 2019). Indeed, numerous studies indicate the detrimental effects of 
combined drought and salt stress on crops (Hussain et al. 2020; Ors and Suarez 
2017). However, these studies are limited to a few crop varieties and large regional 
uncertainties and do not consider real-life agriculture settings. Consequently, there 
is still a major gap in our knowledge regarding the comprehensive evaluation of the 
individual and collective impacts of co-occurring stresses (e.g., salinity and 
drought) on divergent crop varieties in real-life scenarios, especially on a large-
scale.   

1.3 Large-scale monitoring of food production 

To improve food security, agricultural productivity around the world (and in 
particular of small-scale food producers) needs to double (SDG 2.3). In order to 
track progress along this target, it requires detailed estimations of crop yield and 
production. Traditionally, crop yield and production are estimated on the basis of 
in-season variables from field surveys in combination with crop simulation models, 
statistical regression models, and historical data (Basso and Liu 2019; Calvao and 
Pessoa 2015). However, considering their time-consuming and substantial running 
cost, these methods are inefficient for large-scale applications (Calvao and Pessoa 
2015). Moreover, field estimates of soil salinity impacts on crops are limited by the 
small-scale nature of many experiments (Corwin and Scudiero 2019; Eswar et al. 
2021). 

There is a wide range of crop simulation models available, including DSSAT 
(Jones et al. 2003), EPIC (Williams et al. 1989), and WOFOST (Diepen et al. 1989). 
These models couple descriptions of eco-physiological processes (such as nutrient 
uptake, water uptake, and photosynthesis) to large-scale climate variables and 
management variables to estimate crop growth and crop yields. Most of these 
models include the impacts of water shortage on crop growth as one of their key 
elements. However, they are mostly unable to deliver accurate projections of the 
impacts of local climate variables as well as of extreme events (e.g. drought and 
storms) (Rauff and Bello 2015). Moreover, there exist only a few attempts to 
evaluate crop yield under salinity stress based on modified crop simulation models, 
such as CROPGRO, ORYZA v3, and APSIM-Oryza (Radanielson et al. 2018; 
Webber et al. 2010). Consequently, crop simulation models so far have been 
constrained by the simplification of the scenarios and uncertainties/availability of 
input parameters (Wang et al. 2013a). Finally, statistical regression models are 
likely unable to capture the interaction of the climate-soil-plant-management 
continuum in light of the increased number of extreme events with climate change, 
leading to inaccurate yield outcomes (Basso and Liu 2019). Hence, for large-scale 
applications, alternative methods are essential. Remote sensing poses a promising 

https://en.wikipedia.org/wiki/Agricultural_productivity
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tool to aid in the global food security, by providing reliable information on both the 
extent of arable land as well as the food production on those lands.  

1.3.1 Remote sensing estimation of arable land area extent 

Remote sensing already is used extensively to characterize the extent and reduction 
of agricultural areas under productive and sustainable agriculture, using land cover 
maps, such as Global Land Cover (GLC) 2000, CORINE Land Cover, GlobCover 
2009, GlobeLand30, etc (Radwan et al. 2021). Likewise, several more agricultural-
dedicated products have been produced, including the Global irrigated area map 
(GIAM) at 1km resolution (Thenkabail et al. 2009), Global Rain-fed, Irrigated, and 
Paddy Croplands (GRIPC) map at 500m resolution in 2005 (Salmon et al. 2015), 
and the European Space Agency’s Climate Change Initiative-Land Cover (ESA-
CCI) at 300 m resolution in 2000, 2005, and 2011 (Bontemps et al. 2013), to map 
irrigated area and non-irrigated area at global scale (Karthikeyan et al. 2020). In 
addition, remote sensing can not only be used to detect agricultural areas but it can 
also be applied to identify different crop types. The Cropland Data Layer 
(CDL) products covering the Continental United States were developed each year 
from 2008 to 2022 at 30m resolution by integrating multiple satellite imageries 
including Landsat 8, Landsat 9 OLI/TIRS, the ISRO ResourceSat-2 LISS-3, and 
Sentinel-2 during crop growing season (Boryan et al. 2011). While such remote 
sensing land cover maps provide an ideal manner to monitor the extent and change 
of suitable arable land, they do not provide information regarding the suitability of 
the land for agricultural production.  

In response, remote sensing has also been extensively used to estimate soil 
properties that affect crop growth and food production. Specifically remote soil 
properties, including soil minerals (e.g. clay minerals, carbonate minerals, silicate 
minerals), soil organic matter, soil surface roughness, and soil moisture, have been 
retrieved from different satellite platforms (e.g. ASTER (Nawar et al. 2015)) with 
high confidence (Wang et al. 2023a). This has allowed the production of various 
datasets (e.g. FAO soils portal, Global Soil Information System (GloSIS), Global 
Earth Observation System of Systems (GEOSS) portal) that provide maps of 
various soil properties at the regional scale to global scale (ISRIC 2023). In 
addition to monitoring the previous and current state of soil properties, remote 
sensing shows a high potential to predict soil property changes in future scenarios. 
Hassani et al. (2021) predicted soil salinity (ECe) under four different future 
scenarios in the 2050s and 2100s based on remote sensing data using Machine 
Learning (ML) algorithms. Hence, remote sensing does not only contribute to 
evaluating current food production at a large scale but also remote sensing can also 
be used to project future food production.  
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1.3.2 Remote sensing estimation of crop growth  

Remote sensing also poses a promising way to monitor agricultural production on 
arable lands with timely, synoptic, and reliable information covering multiple 
spatial and temporal scales (Calvao and Pessoa 2015; Karthikeyan et al. 2020). By 
characterizing crop growth on these lands, satellite remote sensing (e.g. Landsat, 
MODIS, SPOT-Vegetation, etc.) has been used to monitor crop productivity at 
medium- to high- resolutions (Basso and Liu 2019). Meanwhile, with the 
development of cloud-computing platforms (e.g., Amazon, Microsoft AI, and 
Google Earth Engine (GEE)), the capabilities of crop monitoring frameworks to 
access and process such satellite data have also been improved (Wu et al. 2023). 
Crop monitoring primarily focuses on providing qualitative information on crop 
conditions at the desired temporal-spatial scale, which is essential for policy-
making and supporting early warning systems for food security (López-Lozano and 
Baruth 2019). Crop biophysical characteristics are viewed as proxies for crop 
conditions. To monitor the growth status of crops, multispectral vegetation indices 
(VIs) have been established, which provide a simplified view on the morphological, 
physiological, and biophysical traits of crops (Wu et al. 2023).   

Normalized Difference Vegetation Index (NDVI) (Tucker 1979) is the most 
popular VI for assessing the dynamics and health of vegetation. NDVI has been 
used for evaluating crop growing conditions and predicting crop yield and can be 
retrieved from different satellites (Basso and Liu 2019). In addition to NDVI, other 
VIs such as Enhanced Vegetation Index (EVI) (Liu and Huete 1995), 
the Perpendicular Vegetation Index (PVI) (Rondeaux et al. 1996), the Soil Adjusted 
Vegetation Index (SAVI) (Huete 1988), and the Green-Red Vegetation Index 
(GRVI) (Motohka et al. 2010), are proposed to monitor crop growth and production. 
However, these VIs are usually affected by uncertainties due to differences in 
background (e.g. soil color), crop type, crop phenology, and crop rotation. For 
instance, NDVI is often affected by inherent nonlinear interactions with 
biophysical parameters and the background’s optical properties and saturates when 
it comes to high biomass levels (Calvao and Pessoa 2015; López-Lozano and 
Baruth 2019; Wu et al. 2023).  

In addition, drought (impact) indicators have been developed, e.g. the Vegetation 
Health Index (VHI) (Kogan 1997), the Vegetation Condition Index (VCI) (Kogan 
1995b), and the Normalized Difference Water Index (NDWI) anomalies (Gao 
1996). However, these drought indicators have their own distinct drawbacks that 
restrict their utility as drought early warning signals (Liu et al. 2016). Typically, 
there is a lag time between the onset of a drought and the subsequent response in 
vegetation. This lag time poses a challenge in accurately assessing the impact of 
drought on vegetation (Ji and Peters 2003; Zhang et al. 2016). Likewise, vegetation 
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indices, that are employed for monitoring crop salinity stress, are also subject to 
limitations in relation to background noise, the presence of halophytes, and spatial 
resolution (Allbed and Kumar 2013; Metternicht and Zinck 2003). As a 
consequence, the results obtained from different indices vary, and most 
applications utilizing these indicators focus on local scales and specific crop types. 
Thus, a method that can directly evaluate crop condition and health based on 
directly measured crop parameters under stress conditions is required to effectively 
monitor crop growth under stressed conditions using remote sensing.  

1.4 Remote sensing monitoring food security under stress based on plant traits 

Plant functional traits are identified as physiological, structural, biochemical, or 
phenological characteristics that impact plant species fitness by indirectly affecting 
growth, reproduction, resource use, survival, etc. (Cornelissen et al. 2003; Violle et 
al. 2007). Plant functional traits have been used to quantify species-specific 
responses and stress strategies to environmental stress (Kramp et al. 2022; Lavorel 
and Garnier 2002). Plant functional traits have been proposed to address plant 
responses to drought and salinity stress for a variety of plants. In particular, leaf 
water and economic traits are considered to demonstrate coordination in drought 
and saline environments (Anderegg et al. 2019; Kramp et al. 2022). However, most 
studies concentrated on the individual roles of a given trait functioning on a 
specific stress (Caruso et al. 2019). Given stress is frequently coupled and plant 
functional traits can express the tolerance of plants to various stresses (Sack and 
Buckley 2020), an approach that can simultaneously analyze multiple traits and 
multiple vegetation or crop types is required to evaluate the responses of plants to 
combined stresses at a large scale. 

Plant traits can be estimated qualitatively or quantitatively from remote sensing 
data. Qualitative methods involve the utilization of classification techniques that 
employ a predefined set of decision rules to assign image pixels with comparable 
spectral properties to distinct thematic vegetation classes. Qualitative approaches 
employed for the interpretation of optical remote sensing data can be classified into 
two groups: empirical methods (e.g. VI) and physical methods (e.g. radiative 
transfer models (RTMs)), or a combination of both (Homolova et al. 2013). In 
particular, hyperspectral data has been demonstrated to have a significant ability to 
identify biophysical and biochemical characteristics (Serbin et al. 2015; Serbin et al. 
2016). Plant traits such as leaf chlorophyll content (Cab), leaf water content (Cw), 
leaf area index (LAI), the fraction of absorbed photosynthetically active radiation 
(FAPAR), and the fraction of vegetation cover (FVC) have been assessed with high 
accuracy and fidelity from remote sensing (Colombo et al. 2008; Myneni et al. 
2002; Zarco-Tejada et al. 2004). Hence, remote sensing traits associated with 
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different functioning aspects provides a foundation for a comprehensive 
understanding of crop conditions at a large scale.  

Plant traits that can be assessed by remote sensing also show a tremendous 
potential for characterizing vegetative stress in different species (Gerhards et al. 
2019; Vereecken et al. 2012). Berger et al. (2022) reviewed the response of plants 
to drought stress with optimal sensing domains for different traits. The study 
indicated that the responses of crops to stress with different durations can be 
detected by remote sensing. LAI, Cab, Cw, FVC, and FAPAR retrieved from 
multiply satellites (e.g., MODIS, Sentinel-2, SPOT-VGT1/2, and PROBA-V) are 
identified as key variables in drought or salinity impact monitoring due to their 
sensitivity of vegetation stress (Berger et al. 2022; Jiao et al. 2021; Richter et al. 
2008; Zhang et al. 2015). Moreover, FAPAR anomalies serve as a crucial 
component in calculating comprehensive drought indicators: the Combined 
Drought Indicator (CDI) in the European Drought Observatory and the Risk of 
Drought Impact for Agriculture (RDrI-Agri) indicator in the Global Drought 
Observatory (Cammalleri et al. 2019). Although there are several studies evaluating 
crop response to drought and salinity stress based on remote sensing traits, these 
studies are limited to specific traits, crop types, and singular stress. Thus, there is 
still a challenge to simultaneously assess the co-occurrence stress impact on 
divergent crops based on traits assessed by remote sensing at a large scale. 

1.5 Research aims and questions 

This research aims to evaluate the impact of drought and salinity stress on 
agriculture and sustainable development goals using remote sensing technology. In 
this Ph.D. thesis, the following research questions have been addressed:  

• Which remote sensing features are available to monitor crops under 
drought and salinity stress and what are the shortcomings of the various 
features? (Chapter 2) 

• How can the impacts of drought and salinity stress on crop traits be 
evaluated simultaneously using remote sensing observations (Sentinel-2) in 
a quantitative way? (Chapter 3 & Chapter 4) 

• How to evaluate the tolerance of diverse crops to drought and salinity 
stress in real-life agriculture settings by remote sensing (Sentinel-2)? 
(Chapter 4) 

• How to utilize the salt-affected area by cultivating salt-tolerant potato to 
enhance global food production and secure SDG 2.4? (Chapter 5) 
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1.6 Thesis outline 

First, I illustrated an overview of food security and its associated threats, 
emphasizing the potential of remotely sensed plant functional traits to monitor crop 
responses under drought and salinity stress at large scale (Chapter 1). A systematic 
review was conducted to evaluate the current capacity of remote sensing to detect 
the impact of drought and salinity stress on crops based on vegetation indices (VIs) 
and plant traits (Chapter 2). Based on multiple plant traits retrieved from remote 
sensing observations, I developed a novel approach to estimate the impacts of 
drought, salinity, and their combination on crop growth in the Netherlands (Chapter 
3). Next, I upscaled this approach to assess the tolerance of eight crops to drought, 
salinity, and their combination based on five functional traits across the entire U.S. 
continent throughout the crop growing season from remote sensing (Chapter 4). 
Then, I quantified the viability and potential of enhancing food production and 
achieving SDG 2 by planting salt-tolerant potato in salt-affected areas in present 
and future scenarios (Chapter 5). Finally, the challenges and implications of remote 
sensing in agricultural applications for a sustainable future were discussed based on 
the principal findings of this thesis (Chapter 6). Figure 1.1 shows the conceptual 
scheme of this thesis.  

Figure 1.1 Conceptual scheme of the topics of Chapters 2, 3, 4, and 5. 

Chapter 1: General introduction 

This chapter provides a general introduction on food security and threats 
(particularly due to abiotic stress) for food security. Then, the chapter illustrates the 
high potential of remote sensing technologies in monitoring food production at a 
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large scale by their capacity to map land cover, detect soil properties, and monitor 
vegetation properties both in the present and the future. In addition, this chapter 
highlights the significance of remotely sensed plant functional traits to monitor 
crop responses under drought and salinity stress in real-life scenarios for large-
scale applications. The research aims, questions, and individual chapters of this 
thesis are outlined.  

Chapter 2: A review of remote sensing challenges for food security with 
respect to salinity and drought threats 

This chapter presents a systematic review on the current ability of remote sensing 
to identify and assess the impacts of drought and salinity stress on agricultural 
crops through vegetation indices and plant traits. We found that there are still 
several challenges remaining for using remote sensing to monitor drought and 
salinity stress impacts on crop growth. VIs do not provide consistently accurate 
estimation of these impacts while plant traits are promising to directly link to the 
biochemical/biophysical pathway of crop growth, thereby reflecting the stress 
response mechanisms.  

Chapter 3: Monitoring the combined effects of drought and salinity stress on 
crops using remote sensing in the Netherlands 

In this chapter, a novel approach is presented to evaluate the impacts of drought, 
salinity, and their combination on five crop traits, including leaf area index (LAI), 
leaf chlorophyll content (Cab), leaf water content (Cw), the fraction of absorbed 
photosynthetically active radiation (FAPAR) and the fraction of vegetation cover 
(FVC) using remote sensing in the Netherlands. The separate and combined effects 
of drought and salinity stress on five traits were quantitatively assessed. The results 
indicate that the exacerbating effects of co-occurring drought and salinity stress 
highly depended on the moment in the growing season. Moreover, LAI, FAPAR, 
and FVC impact most under severe drought conditions for maize and potato while 
Cab and Cw are generally more inhibited by combined drought and salinity stress. 
As a result, the proposed approach provides a way to simultaneously assess the 
impact of drought and salinity stress on crops from remote sensing with possible 
large-scale applications.  

Chapter 4: Evaluating crop-specific responses to drought and salinity stress 
from remote sensing 

Food security is facing a significant challenge by co-occurring stresses (e.g., 
salinity and drought) under global climate change. Extreme weather events are 
projected to become more frequent, impacting crop performance and reducing crop 
yields under these adverse conditions. Complementary to existing field trials of 
controlled small-scale experiments, this chapter assesses the responses of various 
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crops to the occurrence of drought and salinity stress, alone and collectively across 
the entire U.S. continent in real-life agricultural conditions, using five traits 
representative of different plant functions by remote sensing. The results show the 
differential responses of crops to these stresses. Stress impacts were highly time-
dependent, and crops were more susceptible to combined drought and salinity than 
to individual stresses, although stress impacts varied significantly between species 
and over time. Prior to decreasing their water or chlorophyll levels, most crops 
initially decreased primary production capability by decreasing LAI. This chapter 
creates a quantitative foundation to inform sustainable food production, aiding in 
monitoring food security upon global climate change. 

Chapter 5: Prospects of salt-tolerant potato to increase food productivity 
towards a zero hunger world 

Food security and sustainable agriculture are crucial elements of achieving the 
SDGs, but global climate change is threatening them increasingly. This chapter 
estimates the local suitability and the regional suitability areas for salt-tolerant 
potato cultivation in salt-affected soils to allow for achieving SDGs in current and 
future scenarios. The results reveal that Oceania (particularly Australia) has the 
greatest potential for enhancing food production through salt-tolerant potato 
cultivation in salt-affected soils. In addition, Kazakhstan, the Russian Federation, 
and Australia can address food shortage challenges and achieve sustainable 
development goals in the current state as well as in future scenarios. In this chapter, 
salt-tolerant potatoes are evaluated as a proxy for saline farming, allowing for 
increased food production in salt-affected areas and laying the groundwork for 
promoting saline farming practices to enhance agricultural resilience and ensure 
food security. 

Chapter 6: General discussion 

This chapter synthesizes the principal findings with a discussion on the limitations 
and prospects of this thesis. It emphasizes the potential and feasibility of 
monitoring food security by trait-based evaluation although there are still a few 
challenges remaining in agricultural applications from remote sensing. In addition, 
this chapter elaborates on the implications of remote sensing for securing 
sustainable goals at a global scale, both in the current state as well as in the future.  
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