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Food security is defined as a “situation that exists when all people, at all times, 
have physical, social, and economic access to sufficient, safe, and nutritious food 
that meets their dietary needs and food preferences for an active and healthy life” 
by the Food and Agriculture Organization (FAO 2002). Food security is highly 
related to economic growth, human rights, poverty, society security and stability, 
and human health. As such, to ensure a secure and sustainable future for everyone, 
the United Nations (UN) has formulated sustainable development goals (SDGs) for 
2030 highlighting sustainable agriculture and food security (in SDG 2) to be crucial 
pillars (UN 2015). However, in 2021, according to the FAO, 11.7% of the world's 
population experienced extreme food insecurity, and around 2.3 billion people were 
either moderately or severely food insecure (FAO 2022b; UN 2022). Despite the 
progress made from multiple perspectives towards SDG 2 (to ‘End hunger’), food 
insecurity, hunger, and malnutrition are still increasing in the world at the current 
state (FAO 2022b).  

To feed 9.1 billion people in 2050, global food production needs to increase by 70% by 
2050, and specifically that of developing counties to increase with 100% (FAO 
2009; Tilman et al. 2011). Meanwhile, 670 million people are projected to face 
hunger in 2030 (FAO 2022b). The overall food demand is projected to rise by 35% 
to 56% by 2050 compared to the 2010 base year while simultaneously climate 
change is estimated to increase the challenges for food production even further 
(van Dijk et al. 2021). We therefore need to increase the productivity (in particular 
those of small-scale food producers, SDG 2.2), while ensuring “Sustainable food 
production and resilient agricultural practices (SDG 2.4), by “implementing 
resilient agricultural practices that increase productivity and production, that help 
maintain ecosystems, that strengthen capacity for adaptation to pending disasters 
(e.g., climate change, drought, flooding, and others), and that progressively 
improve land and soil quality”. 

1.1 Threats to food production 

Agricultural crops are frequently subjected to a variety of environmental stresses, 
which limit agricultural productivity and decrease food production. These stresses 
fall into two categories, namely biotic stress (i.e. disease pathogens infection, 
herbivores attacks, etc.) and abiotic stress (i.e., water scarcity, metal toxicities, 
extreme temperature, etc.) (Oshunsanya et al. 2019; Summy et al. 2020). Abiotic 
stress such as drought, frost, heat waves, and salinity negatively impact crop 
growth, crop development as well as crop quality (Audil et al. 2019). Abiotic stress 
was observed to be the dominant factor impacting crop productivity worldwide and 
is estimated to cause annually 51% - 82% of crop yield loss worldwide (Arun-
Chinnappa et al. 2017; Mantri et al. 2012). Furthermore, climate change is 
expected to result in higher temperatures, altered rainfall patterns, and frequent 

https://en.wikipedia.org/wiki/Drought
https://en.wikipedia.org/wiki/Flood
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extreme weather (Wheeler and von Braun 2013). These patterns were projected to 
increase the risk of abiotic stress (including but not limited to flood, drought, heat, 
etc.) regionally and globally, thus posing major constraints on food availability, 
access, utilization as well as stability (Lorenz and Kunstmann 2012; Rosenzweig et 
al. 2014; Wheeler and von Braun 2013). Therefore, it is crucial to recognize and 
estimate the impact of abiotic stress on food production to ensure food security. 

As one of the major abiotic stresses, drought inhibits crop yield and distribution, 
causing substantial reductions in food production at a global scale (Eckardt et al. 
2022; Madadgar et al. 2017). Over 40% of the global land area is affected by 
drought (Dunn et al. 2020) and it was estimated to cause $124 billion economic 
loss annually worldwide (Tsegai et al. 2022). More than 2.3 billion people have 
experienced water stress in 2022, and approximately 160 million children have 
encountered severe and protracted droughts (Tsegai et al. 2022). Drought impacts 
three components of food security, namely availability (e.g. crop production), 
access (e.g. food price), and stability (sufficient access to food) both in direct and 
indirect ways (He et al. 2019). Over the previous four decades, droughts led to a 
loss in cereals production (i.e. maize, rice, and wheat) of 1820 million Mg globally 
(Lesk et al. 2016). Climate change is predicted to exacerbate drought frequency 
and severity, particularly in semi-arid regions already under severe water stress 
(Dai 2011, 2013). Meanwhile, there will be 700 million people in danger of being 
displaced by drought by 2030 (Tsegai et al. 2022). Thus, food security will be 
further threatened by frequent droughts in the future. Given this, there is a need to 
understand and evaluate drought effects on crops aiming to maintain food 
production.  

Aside from drought, soil salinity is another major stress that negatively impacts 
agricultural production, particularly in the dry and semi-arid regions (El hasini et al. 
2019). There are 954 million hectares (Mha) of salt-affected soil in 120 countries 
worldwide, leading to approximately 7% - 8% agriculture productivity loss (Meena 
et al. 2019; Yadav 2003). Soil salinity affects approximately 20% of the total 
cultivated land and 33% of the irrigated agricultural areas globally (Jamil et al. 
2011; Metternicht and Zinck 2003) while the salt-affected area is predicted to 
expand at a rate of 1.0 - 2.0 Mha per year (ITPS and FAO 2015). With climate 
change in terms of changing rainfall patterns and increased temperature, water 
scarcity is expected to accelerate soil salinity in the near future (Eswar et al. 2021). 
Meanwhile, soil and groundwater salinity in arid regions and coastal regions can be 
exacerbated due to seawater intrusion caused by mean sea-level rise and excessive 
groundwater extraction (Dasgupta et al. 2015; Mukhopadhyay et al. 2021). 
Therefore, soil salinity urgently needs to be tackled to enable food security and a 
sustainable agriculture system to balance soil degradation and population 
expansion.  
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Although the impacts of drought and salinity stress on food production have been 
evaluated individually for a variety of crops, under natural conditions, crops 
normally face a combination of abiotic stresses in natural and agricultural 
ecosystems, such as drought and salinity, which result in greater yield loss than 
either stress alone (Mittler 2006). Drought and salinity interact to produce a 
combined effect when soil water evaporates and salt concentrations increase in the 
soil solution (Munns 2002). Salinity has been observed to considerably rise in 
rivers during hydrological droughts because of reduced river levels (Jones and van 
Vliet 2018; Mosley 2015). Moreover, salinity stress is expected to frequently 
accompany drought on cultivated land, especially in coastal, arid, and semi-arid 
regions (Angon et al. 2022; Corwin 2020). Thus, more frequent and severe 
droughts will therefore intensify the accumulation of salinization, a combination 
that leads to adverse impacts on food production and sustainable agricultural 
development. 

1.2 Impact pathways of drought and salinity 

Drought-induced water stress decreases crop yield by delaying crop maturation and 
slowing root growth, which results in less available food, especially in areas (like 
sub-Saharan Africa) that are heavily reliant on rain-fed agriculture (He et al. 2019). 
Moreover, drought directly impacts plant transpiration processes, leading to the 
short to long-term closure of the stomata, hampering photosynthesis and thus crop 
productivity (Farooq et al. 2009). In response to drought stress, plants are observed 
to reduce leaf area and leaf chlorophyll content, increase leaf thickness, and 
decrease the activities of photosynthetic enzymes (Yang et al. 2021). Due to altered 
plant-water interactions, CO2 assimilation, cell membrane damage, oxidative stress, 
and enzyme inhibition, drought stress decreases plant growth and productivity 
(Kousik et al. 2022). 

Salinity-induced stress negatively affects crop growth in two growth responses, 
namely osmotic stress and ion toxicity (Munns and Tester 2008; Shrivastava and 
Kumar 2015). The presence of high salt concentration in the soil solution can 
adversely impact the water acquisition capacity of crops. Moreover, salinity stress 
inhibits plant growth due to specific-ion toxicities (in particular induced by high 
concentrations of Na+) and the subsequent nutritional imbalances of other cations 
(such as K+ and Ca2+). The co-occurrence of reduced water uptake, ion toxicity, and 
nutrient imbalances results in a reduction in crop yields (Shrivastava and Kumar 
2015).   

The combination of salinity and drought exerts an even more detrimental effect on 
plant growth, photosynthesis, oxidative balance, and ionic balance compared to the 
individual stresses alone (Angon et al. 2022). Both drought and salinity impacts on 
crops are highly dependent on e.g. growth stage and cultivar (Hopmans et al. 2021; 
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Xu et al. 2019). Indeed, numerous studies indicate the detrimental effects of 
combined drought and salt stress on crops (Hussain et al. 2020; Ors and Suarez 
2017). However, these studies are limited to a few crop varieties and large regional 
uncertainties and do not consider real-life agriculture settings. Consequently, there 
is still a major gap in our knowledge regarding the comprehensive evaluation of the 
individual and collective impacts of co-occurring stresses (e.g., salinity and 
drought) on divergent crop varieties in real-life scenarios, especially on a large-
scale.   

1.3 Large-scale monitoring of food production 

To improve food security, agricultural productivity around the world (and in 
particular of small-scale food producers) needs to double (SDG 2.3). In order to 
track progress along this target, it requires detailed estimations of crop yield and 
production. Traditionally, crop yield and production are estimated on the basis of 
in-season variables from field surveys in combination with crop simulation models, 
statistical regression models, and historical data (Basso and Liu 2019; Calvao and 
Pessoa 2015). However, considering their time-consuming and substantial running 
cost, these methods are inefficient for large-scale applications (Calvao and Pessoa 
2015). Moreover, field estimates of soil salinity impacts on crops are limited by the 
small-scale nature of many experiments (Corwin and Scudiero 2019; Eswar et al. 
2021). 

There is a wide range of crop simulation models available, including DSSAT 
(Jones et al. 2003), EPIC (Williams et al. 1989), and WOFOST (Diepen et al. 1989). 
These models couple descriptions of eco-physiological processes (such as nutrient 
uptake, water uptake, and photosynthesis) to large-scale climate variables and 
management variables to estimate crop growth and crop yields. Most of these 
models include the impacts of water shortage on crop growth as one of their key 
elements. However, they are mostly unable to deliver accurate projections of the 
impacts of local climate variables as well as of extreme events (e.g. drought and 
storms) (Rauff and Bello 2015). Moreover, there exist only a few attempts to 
evaluate crop yield under salinity stress based on modified crop simulation models, 
such as CROPGRO, ORYZA v3, and APSIM-Oryza (Radanielson et al. 2018; 
Webber et al. 2010). Consequently, crop simulation models so far have been 
constrained by the simplification of the scenarios and uncertainties/availability of 
input parameters (Wang et al. 2013a). Finally, statistical regression models are 
likely unable to capture the interaction of the climate-soil-plant-management 
continuum in light of the increased number of extreme events with climate change, 
leading to inaccurate yield outcomes (Basso and Liu 2019). Hence, for large-scale 
applications, alternative methods are essential. Remote sensing poses a promising 

https://en.wikipedia.org/wiki/Agricultural_productivity
https://en.wikipedia.org/wiki/Smallholding
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tool to aid in the global food security, by providing reliable information on both the 
extent of arable land as well as the food production on those lands.  

1.3.1 Remote sensing estimation of arable land area extent 

Remote sensing already is used extensively to characterize the extent and reduction 
of agricultural areas under productive and sustainable agriculture, using land cover 
maps, such as Global Land Cover (GLC) 2000, CORINE Land Cover, GlobCover 
2009, GlobeLand30, etc (Radwan et al. 2021). Likewise, several more agricultural-
dedicated products have been produced, including the Global irrigated area map 
(GIAM) at 1km resolution (Thenkabail et al. 2009), Global Rain-fed, Irrigated, and 
Paddy Croplands (GRIPC) map at 500m resolution in 2005 (Salmon et al. 2015), 
and the European Space Agency’s Climate Change Initiative-Land Cover (ESA-
CCI) at 300 m resolution in 2000, 2005, and 2011 (Bontemps et al. 2013), to map 
irrigated area and non-irrigated area at global scale (Karthikeyan et al. 2020). In 
addition, remote sensing can not only be used to detect agricultural areas but it can 
also be applied to identify different crop types. The Cropland Data Layer 
(CDL) products covering the Continental United States were developed each year 
from 2008 to 2022 at 30m resolution by integrating multiple satellite imageries 
including Landsat 8, Landsat 9 OLI/TIRS, the ISRO ResourceSat-2 LISS-3, and 
Sentinel-2 during crop growing season (Boryan et al. 2011). While such remote 
sensing land cover maps provide an ideal manner to monitor the extent and change 
of suitable arable land, they do not provide information regarding the suitability of 
the land for agricultural production.  

In response, remote sensing has also been extensively used to estimate soil 
properties that affect crop growth and food production. Specifically remote soil 
properties, including soil minerals (e.g. clay minerals, carbonate minerals, silicate 
minerals), soil organic matter, soil surface roughness, and soil moisture, have been 
retrieved from different satellite platforms (e.g. ASTER (Nawar et al. 2015)) with 
high confidence (Wang et al. 2023a). This has allowed the production of various 
datasets (e.g. FAO soils portal, Global Soil Information System (GloSIS), Global 
Earth Observation System of Systems (GEOSS) portal) that provide maps of 
various soil properties at the regional scale to global scale (ISRIC 2023). In 
addition to monitoring the previous and current state of soil properties, remote 
sensing shows a high potential to predict soil property changes in future scenarios. 
Hassani et al. (2021) predicted soil salinity (ECe) under four different future 
scenarios in the 2050s and 2100s based on remote sensing data using Machine 
Learning (ML) algorithms. Hence, remote sensing does not only contribute to 
evaluating current food production at a large scale but also remote sensing can also 
be used to project future food production.  

 

https://en.wikipedia.org/wiki/Agriculture
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1.3.2 Remote sensing estimation of crop growth  

Remote sensing also poses a promising way to monitor agricultural production on 
arable lands with timely, synoptic, and reliable information covering multiple 
spatial and temporal scales (Calvao and Pessoa 2015; Karthikeyan et al. 2020). By 
characterizing crop growth on these lands, satellite remote sensing (e.g. Landsat, 
MODIS, SPOT-Vegetation, etc.) has been used to monitor crop productivity at 
medium- to high- resolutions (Basso and Liu 2019). Meanwhile, with the 
development of cloud-computing platforms (e.g., Amazon, Microsoft AI, and 
Google Earth Engine (GEE)), the capabilities of crop monitoring frameworks to 
access and process such satellite data have also been improved (Wu et al. 2023). 
Crop monitoring primarily focuses on providing qualitative information on crop 
conditions at the desired temporal-spatial scale, which is essential for policy-
making and supporting early warning systems for food security (López-Lozano and 
Baruth 2019). Crop biophysical characteristics are viewed as proxies for crop 
conditions. To monitor the growth status of crops, multispectral vegetation indices 
(VIs) have been established, which provide a simplified view on the morphological, 
physiological, and biophysical traits of crops (Wu et al. 2023).   

Normalized Difference Vegetation Index (NDVI) (Tucker 1979) is the most 
popular VI for assessing the dynamics and health of vegetation. NDVI has been 
used for evaluating crop growing conditions and predicting crop yield and can be 
retrieved from different satellites (Basso and Liu 2019). In addition to NDVI, other 
VIs such as Enhanced Vegetation Index (EVI) (Liu and Huete 1995), 
the Perpendicular Vegetation Index (PVI) (Rondeaux et al. 1996), the Soil Adjusted 
Vegetation Index (SAVI) (Huete 1988), and the Green-Red Vegetation Index 
(GRVI) (Motohka et al. 2010), are proposed to monitor crop growth and production. 
However, these VIs are usually affected by uncertainties due to differences in 
background (e.g. soil color), crop type, crop phenology, and crop rotation. For 
instance, NDVI is often affected by inherent nonlinear interactions with 
biophysical parameters and the background’s optical properties and saturates when 
it comes to high biomass levels (Calvao and Pessoa 2015; López-Lozano and 
Baruth 2019; Wu et al. 2023).  

In addition, drought (impact) indicators have been developed, e.g. the Vegetation 
Health Index (VHI) (Kogan 1997), the Vegetation Condition Index (VCI) (Kogan 
1995b), and the Normalized Difference Water Index (NDWI) anomalies (Gao 
1996). However, these drought indicators have their own distinct drawbacks that 
restrict their utility as drought early warning signals (Liu et al. 2016). Typically, 
there is a lag time between the onset of a drought and the subsequent response in 
vegetation. This lag time poses a challenge in accurately assessing the impact of 
drought on vegetation (Ji and Peters 2003; Zhang et al. 2016). Likewise, vegetation 
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indices, that are employed for monitoring crop salinity stress, are also subject to 
limitations in relation to background noise, the presence of halophytes, and spatial 
resolution (Allbed and Kumar 2013; Metternicht and Zinck 2003). As a 
consequence, the results obtained from different indices vary, and most 
applications utilizing these indicators focus on local scales and specific crop types. 
Thus, a method that can directly evaluate crop condition and health based on 
directly measured crop parameters under stress conditions is required to effectively 
monitor crop growth under stressed conditions using remote sensing.  

1.4 Remote sensing monitoring food security under stress based on plant traits 

Plant functional traits are identified as physiological, structural, biochemical, or 
phenological characteristics that impact plant species fitness by indirectly affecting 
growth, reproduction, resource use, survival, etc. (Cornelissen et al. 2003; Violle et 
al. 2007). Plant functional traits have been used to quantify species-specific 
responses and stress strategies to environmental stress (Kramp et al. 2022; Lavorel 
and Garnier 2002). Plant functional traits have been proposed to address plant 
responses to drought and salinity stress for a variety of plants. In particular, leaf 
water and economic traits are considered to demonstrate coordination in drought 
and saline environments (Anderegg et al. 2019; Kramp et al. 2022). However, most 
studies concentrated on the individual roles of a given trait functioning on a 
specific stress (Caruso et al. 2019). Given stress is frequently coupled and plant 
functional traits can express the tolerance of plants to various stresses (Sack and 
Buckley 2020), an approach that can simultaneously analyze multiple traits and 
multiple vegetation or crop types is required to evaluate the responses of plants to 
combined stresses at a large scale. 

Plant traits can be estimated qualitatively or quantitatively from remote sensing 
data. Qualitative methods involve the utilization of classification techniques that 
employ a predefined set of decision rules to assign image pixels with comparable 
spectral properties to distinct thematic vegetation classes. Qualitative approaches 
employed for the interpretation of optical remote sensing data can be classified into 
two groups: empirical methods (e.g. VI) and physical methods (e.g. radiative 
transfer models (RTMs)), or a combination of both (Homolova et al. 2013). In 
particular, hyperspectral data has been demonstrated to have a significant ability to 
identify biophysical and biochemical characteristics (Serbin et al. 2015; Serbin et al. 
2016). Plant traits such as leaf chlorophyll content (Cab), leaf water content (Cw), 
leaf area index (LAI), the fraction of absorbed photosynthetically active radiation 
(FAPAR), and the fraction of vegetation cover (FVC) have been assessed with high 
accuracy and fidelity from remote sensing (Colombo et al. 2008; Myneni et al. 
2002; Zarco-Tejada et al. 2004). Hence, remote sensing traits associated with 
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different functioning aspects provides a foundation for a comprehensive 
understanding of crop conditions at a large scale.  

Plant traits that can be assessed by remote sensing also show a tremendous 
potential for characterizing vegetative stress in different species (Gerhards et al. 
2019; Vereecken et al. 2012). Berger et al. (2022) reviewed the response of plants 
to drought stress with optimal sensing domains for different traits. The study 
indicated that the responses of crops to stress with different durations can be 
detected by remote sensing. LAI, Cab, Cw, FVC, and FAPAR retrieved from 
multiply satellites (e.g., MODIS, Sentinel-2, SPOT-VGT1/2, and PROBA-V) are 
identified as key variables in drought or salinity impact monitoring due to their 
sensitivity of vegetation stress (Berger et al. 2022; Jiao et al. 2021; Richter et al. 
2008; Zhang et al. 2015). Moreover, FAPAR anomalies serve as a crucial 
component in calculating comprehensive drought indicators: the Combined 
Drought Indicator (CDI) in the European Drought Observatory and the Risk of 
Drought Impact for Agriculture (RDrI-Agri) indicator in the Global Drought 
Observatory (Cammalleri et al. 2019). Although there are several studies evaluating 
crop response to drought and salinity stress based on remote sensing traits, these 
studies are limited to specific traits, crop types, and singular stress. Thus, there is 
still a challenge to simultaneously assess the co-occurrence stress impact on 
divergent crops based on traits assessed by remote sensing at a large scale. 

1.5 Research aims and questions 

This research aims to evaluate the impact of drought and salinity stress on 
agriculture and sustainable development goals using remote sensing technology. In 
this Ph.D. thesis, the following research questions have been addressed:  

• Which remote sensing features are available to monitor crops under 
drought and salinity stress and what are the shortcomings of the various 
features? (Chapter 2) 

• How can the impacts of drought and salinity stress on crop traits be 
evaluated simultaneously using remote sensing observations (Sentinel-2) in 
a quantitative way? (Chapter 3 & Chapter 4) 

• How to evaluate the tolerance of diverse crops to drought and salinity 
stress in real-life agriculture settings by remote sensing (Sentinel-2)? 
(Chapter 4) 

• How to utilize the salt-affected area by cultivating salt-tolerant potato to 
enhance global food production and secure SDG 2.4? (Chapter 5) 
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1.6 Thesis outline 

First, I illustrated an overview of food security and its associated threats, 
emphasizing the potential of remotely sensed plant functional traits to monitor crop 
responses under drought and salinity stress at large scale (Chapter 1). A systematic 
review was conducted to evaluate the current capacity of remote sensing to detect 
the impact of drought and salinity stress on crops based on vegetation indices (VIs) 
and plant traits (Chapter 2). Based on multiple plant traits retrieved from remote 
sensing observations, I developed a novel approach to estimate the impacts of 
drought, salinity, and their combination on crop growth in the Netherlands (Chapter 
3). Next, I upscaled this approach to assess the tolerance of eight crops to drought, 
salinity, and their combination based on five functional traits across the entire U.S. 
continent throughout the crop growing season from remote sensing (Chapter 4). 
Then, I quantified the viability and potential of enhancing food production and 
achieving SDG 2 by planting salt-tolerant potato in salt-affected areas in present 
and future scenarios (Chapter 5). Finally, the challenges and implications of remote 
sensing in agricultural applications for a sustainable future were discussed based on 
the principal findings of this thesis (Chapter 6). Figure 1.1 shows the conceptual 
scheme of this thesis.  

Figure 1.1 Conceptual scheme of the topics of Chapters 2, 3, 4, and 5. 

Chapter 1: General introduction 

This chapter provides a general introduction on food security and threats 
(particularly due to abiotic stress) for food security. Then, the chapter illustrates the 
high potential of remote sensing technologies in monitoring food production at a 
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large scale by their capacity to map land cover, detect soil properties, and monitor 
vegetation properties both in the present and the future. In addition, this chapter 
highlights the significance of remotely sensed plant functional traits to monitor 
crop responses under drought and salinity stress in real-life scenarios for large-
scale applications. The research aims, questions, and individual chapters of this 
thesis are outlined.  

Chapter 2: A review of remote sensing challenges for food security with 
respect to salinity and drought threats 

This chapter presents a systematic review on the current ability of remote sensing 
to identify and assess the impacts of drought and salinity stress on agricultural 
crops through vegetation indices and plant traits. We found that there are still 
several challenges remaining for using remote sensing to monitor drought and 
salinity stress impacts on crop growth. VIs do not provide consistently accurate 
estimation of these impacts while plant traits are promising to directly link to the 
biochemical/biophysical pathway of crop growth, thereby reflecting the stress 
response mechanisms.  

Chapter 3: Monitoring the combined effects of drought and salinity stress on 
crops using remote sensing in the Netherlands 

In this chapter, a novel approach is presented to evaluate the impacts of drought, 
salinity, and their combination on five crop traits, including leaf area index (LAI), 
leaf chlorophyll content (Cab), leaf water content (Cw), the fraction of absorbed 
photosynthetically active radiation (FAPAR) and the fraction of vegetation cover 
(FVC) using remote sensing in the Netherlands. The separate and combined effects 
of drought and salinity stress on five traits were quantitatively assessed. The results 
indicate that the exacerbating effects of co-occurring drought and salinity stress 
highly depended on the moment in the growing season. Moreover, LAI, FAPAR, 
and FVC impact most under severe drought conditions for maize and potato while 
Cab and Cw are generally more inhibited by combined drought and salinity stress. 
As a result, the proposed approach provides a way to simultaneously assess the 
impact of drought and salinity stress on crops from remote sensing with possible 
large-scale applications.  

Chapter 4: Evaluating crop-specific responses to drought and salinity stress 
from remote sensing 

Food security is facing a significant challenge by co-occurring stresses (e.g., 
salinity and drought) under global climate change. Extreme weather events are 
projected to become more frequent, impacting crop performance and reducing crop 
yields under these adverse conditions. Complementary to existing field trials of 
controlled small-scale experiments, this chapter assesses the responses of various 
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crops to the occurrence of drought and salinity stress, alone and collectively across 
the entire U.S. continent in real-life agricultural conditions, using five traits 
representative of different plant functions by remote sensing. The results show the 
differential responses of crops to these stresses. Stress impacts were highly time-
dependent, and crops were more susceptible to combined drought and salinity than 
to individual stresses, although stress impacts varied significantly between species 
and over time. Prior to decreasing their water or chlorophyll levels, most crops 
initially decreased primary production capability by decreasing LAI. This chapter 
creates a quantitative foundation to inform sustainable food production, aiding in 
monitoring food security upon global climate change. 

Chapter 5: Prospects of salt-tolerant potato to increase food productivity 
towards a zero hunger world 

Food security and sustainable agriculture are crucial elements of achieving the 
SDGs, but global climate change is threatening them increasingly. This chapter 
estimates the local suitability and the regional suitability areas for salt-tolerant 
potato cultivation in salt-affected soils to allow for achieving SDGs in current and 
future scenarios. The results reveal that Oceania (particularly Australia) has the 
greatest potential for enhancing food production through salt-tolerant potato 
cultivation in salt-affected soils. In addition, Kazakhstan, the Russian Federation, 
and Australia can address food shortage challenges and achieve sustainable 
development goals in the current state as well as in future scenarios. In this chapter, 
salt-tolerant potatoes are evaluated as a proxy for saline farming, allowing for 
increased food production in salt-affected areas and laying the groundwork for 
promoting saline farming practices to enhance agricultural resilience and ensure 
food security. 

Chapter 6: General discussion 

This chapter synthesizes the principal findings with a discussion on the limitations 
and prospects of this thesis. It emphasizes the potential and feasibility of 
monitoring food security by trait-based evaluation although there are still a few 
challenges remaining in agricultural applications from remote sensing. In addition, 
this chapter elaborates on the implications of remote sensing for securing 
sustainable goals at a global scale, both in the current state as well as in the future.  
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Abstract 

Drought and salinity stress are considered to be the two main factors limiting crop 
productivity. With climate change, these stresses are projected to increase, further 
exacerbating the risks to global food security. Consequently, to tackle this problem, 
better agricultural management is required on the basis of improved drought and 
salinity stress monitoring capabilities. Remote sensing makes it possible to monitor 
crop health at various spatiotemporal scales and extents. However, remote sensing 
has not yet been used to monitor both drought and salinity stresses simultaneously. 
The aim of this paper is to review the current ability of remote sensing to detect the 
impact of these stresses on vegetation indices (VIs) and crop trait responses. We 
found that VIs are insufficiently accurate (0.02 ≤ R2 ≤ 0.80) to characterize crop 
health under drought and salinity stress. In contrast, we found that plant functional 
traits have a high potential to monitor the impacts of such stresses on crop health, 
as they are more in line with the vegetation processes. However, we also found that 
further investigations are needed to achieve this potential. Specifically, we found 
that the spectral signals concerning drought and salinity stress were inconsistent for 
the various crop traits. This inconsistency was present (a) between studies utilizing 
similar crops and (b) between investigations studying different crops. Moreover, 
the response signals for joint drought and salinity stress overlapped spectrally, 
thereby significantly limiting the application of remote sensing to monitor these 
separately. Therefore, to consistently monitor crop responses to drought and 
salinity, we need to resolve the current indeterminacy of the relationships between 
crop traits and spectrum and evaluate multiple traits simultaneously. Using 
radiative transfer models (RTMs) and multi-sensor frameworks allows monitoring 
multiple crop traits and may constitute a way forward toward evaluating drought 
and salinity impacts. 
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2.1 Introduction 

Food security is a serious problem around the world with a significantly large 
number of food production systems currently at risk (FAO 2011). It is predicted 
that by 2030, the population suffering from food insecurity will rise to more than 
840 million. Meanwhile, it is projected that the ongoing COVID-19 could further 
worsen the number of undernourished people around the world (FAO 2020). 
Further exacerbating this food security problem, crop productivity itself also 
suffers great threats from stresses, such as drought stress, nutrient stress, and 
salinity stress, which reduce the yield at various locations by more than 50% 
(Anami et al. 2020). Moreover, crops frequently suffer from a combination of 
stress (Dresselhaus and Hückelhoven 2018), which further causes challenges for 
food production. In order to allow for sustainable agricultural production and 
mitigate the threat of global food shortages, the impact of these stressors needs to 
be monitored and alleviated. 

Water stress, in the form of droughts, has been identified as the most serious threat 
for global agriculture, approximately affecting 40% of the world’s land area (Dunn 
et al. 2020). Between 1980 and 2020, droughts have caused economic damages of 
around $6 billion per year in the United States, exceeding damages from other 
weather and climate disasters (Smith 2020). Likewise, in China, the average annual 
economic damage due to drought was $12.8 billion during 2006-2015 (Su et al. 
2018). In addition to drought, salinity has emerged as a major factor limiting the 
productivity of crops. Southwest United States, southern Asia (including India and 
Pakistan), eastern Asia (Western China), eastern Australia, and northwest Africa are 
the most affected areas (FAO/IIASA/ISRIC/ISSCAS/JRC 2012; Ivushkin et al. 
2019; Koohafkan 2012). The United Nations Food and Agriculture Organization 
(FAO) has estimated that 11% of the global irrigated area (34 Mha) is currently 
affected by different levels of salinity. Therein, China, the United States, Pakistan, 
and India hold more than 60% of the total area (21 Mha). 

While presently, drought and salinity already pose tremendous challenges for food 
production, it has been forecasted that both stressors will increase both spatially 
and in severity. Climate change will increase the frequency and severity of drought 
events in numerous regions (Cook et al. 2015; Mosley 2015; Schwalm et al. 2017; 
Trenberth et al. 2013), leading to dramatic impacts on crop growth and productivity 
(Trenberth et al. 2013). Specifically, higher temperatures and lower humidity have 
been shown to lead to an increasing water demand (in the form of crop 
evapotranspiration) and a reduced water availability from effective precipitation, 
while simultaneously, a lower and infrequent effective precipitation significantly 
reduces water availability, thereby negatively affecting food production (Mimi and 
Jamous 2010). Similarly, it has been suggested that salinity will impact 50% of the 
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cultivated land by 2050 (Butcher et al. 2016). Soil salinity levels have been shown 
to increase in arid lands because fresh water is not available to drain accumulated 
salts (Rozema and Flowers 2008), thus acting as a practically irreversible process. 
Moreover, soil salinization has been shown to increase with the expansion of 
agriculture to semi-arid and arid regions (Cramer et al. 2007; Oki and Kanae 2006; 
Rozema and Flowers 2008). Therefore, the increase in drought frequency and soil 
salinity under climate change further exacerbates the threat to crop production. 

Drought and salinity cannot be seen independently of each other. As an aspect of 
water quality, salinity has been proven to increase during drought periods (Hrdinka 
et al. 2012; Mosley 2015; van Vliet and Zwolsman 2008). Specifically, it has been 
shown that due to lower river levels, hydrological drought significantly increases 
the salinity in rivers (Jones and van Vliet 2018; Mosley 2015). Consequently, 
increased drought frequency and severity will exacerbate the accumulation of 
salinization and adversely affect crop yield and sustainable agricultural 
development (Wang et al. 2013b). As such, there are already numerous areas in the 
world where both drought and salinity stress co-occur (Figure 2.1). Furthermore, 
due to sea level rise in the future, cultivated land (and in particular coastal lowlands) 
will have a higher probability to suffer from both drought and salinity stress 
(Corwin 2020; Gopalakrishnan et al. 2019; Katschnig et al. 2013; Pankova and 
Konyushkova 2014). Therefore, drought and salinity should not be viewed 
independently, and the impacts of joint drought and salinity stress on agricultural 
production should be investigated. 

Figure 2.1 Global distribution of drought and salinity. In panel (a), the global map of soil salinity 
change is shown [10], while in panel (b) the global map of drought hazard (Carrão et al. 2016) is 
shown. Global soil salinity map was extracted from [10] and then transformed to the plate carrée 
projection by ArcGIS. 

Remote sensing (RS) is a key method for monitoring crop health due to its 
capability to monitor and detect effective changes of large areas at a relatively low 
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cost, in comparison to traditional methods (Wu et al. 2015). For this purpose, 
several vegetation indices (VIs) such as the Normalized Difference Vegetation 
Index (NDVI) (Tucker 1979), the Perpendicular Vegetation Index (PVI) (Rondeaux 
et al. 1996), and the Soil Adjusted Vegetation Index (SAVI) (Huete 1988) have 
been developed in the past to monitor agricultural production. In addition, drought 
(impact) indicators have been developed that account for seasonality effects (based 
on long-term standardized observations), e.g., the Vegetation Condition Index (VCI) 
(Kogan 1995b), the Vegetation Health Index (VHI) (Kogan 1997), and the 
Normalized Difference Water Index (NDWI) anomalies (Gao 1996). However, 
each of these drought indicators has specific limitations that limit its applicability 
as early warning signals of drought (Liu et al. 2016). As a consequence, results 
vary among different indices, and most applications with these indicators focus on 
local scales and individual crop types. As such, no comprehensive vegetation index 
has been developed that can be applied globally to investigate drought impact 
consistently (Liu et al. 2016). Similar to drought monitoring, vegetation indices, 
used to monitor crop salinity stress, are also affected by limitations regarding noise, 
halophyte presence, and spatial resolution (Allbed and Kumar 2013; Metternicht 
and Zinck 2003). In response, a more comprehensive measurement of the 
reflectance spectrum representing crop traits is required to monitor crop growth 
and health as affected by stress. In this regard, it has been shown that hyperspectral 
data have a strong potential to detect biophysical and biochemical parameters 
(Serbin et al. 2015; Serbin et al. 2016). In addition, various studies highlighted that 
other (multi-spectral) RS methods (e.g., microwave, thermal infrared (TIR), 
hyperspectral) show great promise in characterizing vegetation stress (Gerhards et 
al. 2019; Vereecken et al. 2012). However, the number of studies focusing on this is 
limited, and only part of these investigations focused on agricultural RS 
applications (Homolova et al. 2013; Weiss et al. 2020), while studies on the 
relationship between crop traits and spectral properties in relation to under drought 
or salinity stress are even more limited. Therefore, an in-depth analysis of the 
reflectance spectrum of crop traits under stress is required to better identify plant 
drought and salinity stress by remote sensing. 

The main objective of the study is to evaluate the current state and shortcomings in 
the RS monitoring of crops under drought and/or salinity stress. Based on a 
comprehensive analysis, we evaluate the potential of remote sensing to identify and 
assess agricultural ecosystems under drought and salinity stress through vegetation 
indices and plant traits. 

2.2 Methodology 

To evaluate the current state of monitoring drought and salinity stress by RS, we 
applied a thorough systematic review of recent scientific publications. For this, we 
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(a) collected a large representative set of scientific publications, and (b) analyzed
their results to identify the response patterns in vegetation indices and plant traits.
For the analysis of plant traits, we classified them according to underlying plant
functions (relating to primary production, hydrological processes, and osmosis).
This allows us to coherently investigate the potential of remote sensing for
monitoring the salinity/drought impact on biological pathways/processes.

2.2.1 Creating representative database through a systematic review 

In order to facilitate the analysis of a representative set of recent publications, we 
adopted an optimized systematic review approach (Berger et al. 2018). Specifically, 
we focused on scientific peer-reviewed papers published between 2005 and 2020 
through the Web of Science (WOS) and Google Scholar (GS) (Figure 2.2). This 
approach first requires the definition of a representative set of keywords. For our 
study, these keywords were “remote sensing”, “drought”, “salinity”, “agriculture”, 
and “traits”, as well as their synonyms (such as RS, food security, etc.). Afterwards, 
publications were selected from WOS and GS according to the occurrence of 
combinations of these keywords in the title, abstract, author keywords, and 
keywords plus, to create a first selection of publications, leading to 1184 selected 
records. Then, this set of publications was screened to capture only papers that 
analyzed (a) the impact of drought/salinity stress on VIs/traits of crops by remote 
sensing, and (b) included information on the spectral wavelength on which the 
analysis was based. This resulted in 78 unique records. Next, through snowballing 
these records (to capture papers that were missed in the first step), an additional 49 
publications were obtained. In total, 115 publications (Table S2-1) fitting these 
criteria were identified after removing 12 duplicates. More details on each step are 
provided in the supplementary information (Figure S2-1). Maps of co-authors and 
co-occurrences based on the results of the systematic review were created through 
VOSviewer (Figure S2-2). 
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Figure 2.2 Flowchart of the systematic review. 

2.2.2 Extraction of drought/salinity stress information 

From the full set of publications on drought and salinity stress of agricultural crops, 
we extracted the correlation strengths between vegetation indices/crop traits 
responding to drought and salinity stress and spectral bands/wavelengths. Finally, 
348 correlations were found, among which 102 traits were wavelength correlations, 
171 were VIs-wavelength correlations, and 75 traits were VIs correlations. All 171 
VIs-wavelength correlations that we found focused on drought, and no reviewed 
study provided correlations for salinity stress. 

2.2.3 Classification of plant traits and vegetation indices 

After the creation of our representative set of publications, we clustered the traits 
into four groups to relate the impact of drought/salinity stress on biological 
processes. Specifically, we classified the traits together on the basis of their 
definitions and the functional processes involved (Niinemets 2015; Pérez-
Harguindeguy et al. 2013). This provided us with four clusters, namely biomass 
traits, photosynthesis traits, water traits, and osmosis traits. Afterwards, each 
cluster was further divided into RS (directly measurable by RS) and In-RS 
(indirectly derived by RS) (Table 2.1).  

Table 2.1 Classification of plant traits included in this study. 

Group RS 
methods Traits 

Biomass traits 
RS LMA LAI -- -- -- -- -- -- 

In-RS FS SDW BDW BFW -- -- -- -- 

• Searching 
from web of 
science and 
google scholar

Identification

• 1184 records

Screening • 78 records 
retained

• 49 records 
added from 
snowballing

Eligibility

• 115 records 
included

Included
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Photosynthesis  
traits 

RS Chl Chla/Chlb -- -- -- -- -- -- 

In-RS A Pn  ΔF/Fm  Chl*ΔF
/Fm -- -- -- -- 

Water traits 
RS LCT CWC RWC EWT CWM -- 

In-RS Gs LOP Ψp LWP  Ψs E  Tl - Tair -- 

Osmosis traits 
RS -- -- -- -- -- -- -- -- 

In-RS Na+ Cl- K+ Ca2+ K+/Na+ TSS TA TSS/
TA 

Notes: leaf mass per unit area (LMA), leaf Area Index (LAI), fruit size (FS), shoot dry weight 
(SDW), biomass dry weight (BDW), biomass fresh weight (BFW), stomatal conductance (Gs), net 
gas exchange (A), leaf total chlorophyll (Chl), the quantum yield of photosystem II efficiency 
(ΔF/Fm), net photosynthesis rate (Pn), the difference between leaf and air temperature (Tl -Tair), 
transpiration rate (E), leaf water potential (LWP), stem water potential (Ψs), leaf osmotic potential 
(LOP), leaf canopy temperature (LCT), canopy water content (CWC), relative water content (RWC), 
leaf equivalent water thickness (EWT), pressure potential (Ψp), canopy water mass (CWM), Na+ 
contents in leaf (Na+), Cl- contents in leaf (Cl-), K+ contents in leaf (K+), Ca2+ contents in leaf (Ca2+), 
total soluble solids (TSS), tritatable acidity (TA). RS methods: directly derived by remote sensing 
(RS), indirectly derived by remote sensing (In-RS). 

In addition to individual plant functional traits, well-known RS vegetation indices 
have been related to the responses to drought and/or salinity stress. For 
consistency, we clustered the results of these studies on the basis of a functional 
classification, resulting in xanthophyll indices, water content indices, carotenoid 
indices and greenness indices (Table 2.2).  

Table 2.2 Classification, explanation, and equations of different vegetation indices (VIs) included in 
this study. 

VIs Meaning Equation Reference 

Xanthophyll Indices 

PRI570 Photochemical reflectance index (R531 - R570) / (R531 +R570) (Gamon et al. 1992) 

PRI515 Photochemical reflectance index (R531 - R515) / (R531 +R515) (Hernández-Clemente 
et al. 2011) 

PRI586 Photochemical reflectance index (R531 – R586) / (R531 + R586) (Panigada et al. 2014) 

PRI600 Photochemical reflectance index (R531-R602) / (R531 + R602) (Hernández-Clemente 
et al. 2011) 

PRI670 Photochemical reflectance index (R531-R668) / (R531 + R668) (Hernández-Clemente 
et al. 2011) 

Water Content Indices 

WI Water index R900 / R970 (Peñuelas et al. 1993) 

CWSI Crop Water Stress Index  CWSI = (Tleaf - Twet) / (Tdry - 
Twet) (Idso et al. 1981) 

Carotenoid Indices 

R520/R500 Carotenoid concentration (Zarco-Tejada et al. 
2012) 

R515/R570 Carotenoid concentration (Zarco-Tejada et al. 
2012) 

Greenness Indices 
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OSAVI Optimized Soil-Adjusted 
Vegetation Index 

(R800 −R670) / (R800 + R670 + 
0.16) (Rondeaux et al. 1996) 

TCARI The Transformed Chlorophyll 
Absorption in Reflectance Index  

TCARI = 3 ∙ [(R700 − R670) − 
0.2 ∙ (R700 − R550) ∙ 
(R700/R670)] 

(Haboudane et al. 2002) 

TCARI/OSAVI Normalized by OSAVI to obtain  

TCARI/OSAVI = [3 ∙ [(R700 − 
R670) − 0.2 ∙ (R700 − R550) ∙ 
(R700/R670)]]/ [(1 + 0.16) ∙ 
(R800 − R670) / (R800 + R670 
+ 0.16)] 

(Haboudane et al. 2002) 

CIgreen Green chlorophyll index (R750 / R550)–1 (Gitelson et al. 2005) 

CIred edge Red edge chlorophyll index (R750 / R710)–1 (Gitelson et al. 2005) 

SR Simple ratio R800 / R670 (Asrar et al. 1985) 
Red edge ratio 
index R700 / R670 (Zarco-Tejada et al. 

2013b) 
VOG1 The chlorophyll a +b index R740 / R720 (Vogelmann et al. 1993) 

ZM The chlorophyll a +b index R750 / R710 (Zarco-Tejada et al. 
2001) 

Notes: R means the reflectance of the band and T means temperature. While NDVI has been used 
frequently for drought monitoring at a regional scale, we did not include it in this review. The 
reasoning for this is that NDVI is considered as a greenness index related to chlorophyll instead of the 
water status of the vegetation. In support of this interpretation, NDVI has not been found to respond 
to rainfall or major precipitation events during the crop growth period (Rahimzadeh-Bajgiran et al. 
2012; Rahimzadeh Bajgiran et al. 2008). Therefore, NDVI was not included in the review. 

2.2.4 Analyses of Vegetation Responses 

After all functional clusters were defined, we aggregated the results from the 
different papers for each functional cluster (of VIs and plant traits) and proceeded 
to analyze their correlations. We first analyzed the spectral signatures of VIs under 
drought and their strengths. Afterwards, the distribution of spectral signatures of 
each functional traits cluster was investigated in the range of 400–2800 nm. Finally, 
we analyzed the correlations of different clusters of VIs and plant traits. 

2.3 Results 

2.3.1 Spectral signatures of vis under drought stress 

We found a wide range of correlations for the four clusters of VIs (defined within 
the spectral range of 500–1050 nm) under drought stress, as highlighted in Figure 
2.3. Specifically, xanthophyll indices showed their highest R2 at 531 nm (R2max = 
0.80) and 570–600 nm (R2max = 0.80), while greenness indices showed their 
highest R2 at 550 nm (R2max = 0.70), 670 nm (R2max = 0.76), 700–750 nm 
(R2max = 0.78), and 800 nm (R2max = 0.76), and water indices showed their 
highest R2 at 900 nm (R2max = 0.72) and 970 nm (R2max = 0.72). For carotenoid 
indices, no such region could be identified due to mostly low correlations (0.20 ≤ 
R2 ≤ 0.49). 
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Figure 2.3 Relationships between R2 and wavelength of different VIs clusters under drought stress. 
The red line indicates that R2 > 0.50. 

While we could identify specific regions where individual VIs provided a 
maximum sensitivity, we also found variation in this sensitivity. Although we 
identified studies that highlighted the potential of specific VIs for drought 
monitoring, we also found other studies reporting low R2 (R2 < 0.50) for the same 
VIs and wavelengths. Thus, there are undeniable limitations to identifying 
vegetation health using VIs under drought stress. 

2.3.2 Spectral signatures of plant traits under drought and salinity stress 

The reviewed studies focusing on plant trait signals showed that these crop 
responses were not constrained to specific wavelengths. Biomass, photosynthesis, 
water, and osmosis clusters of traits were identified across the full spectral range. 
These clusters showed few spectral patterns, even for those trait clusters that were 
supposedly directly measurable by RS (Figure 2.4). The only recognizable trends 
concern the osmosis traits cluster (with a significant response to salinity stress), 
with a slight tendency to occur more frequently at 550–750 nm, and the biomass 
traits and water traits occurring at 1400–1850 nm. As far as the few observations 
for drought do allow, those patterns did not seem to deviate much from those for 
salinity (Figure 2.4). 
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Figure 2.4 Drought and salinity stress responses of different trait clusters across the reflectance 
spectrum based on relationships with R2 > 0. Solid symbols indicate traits directly measured by RS; 
empty symbols are related to traits indirectly measured by RS. 

Moreover, while plant traits are more directly related to plant functioning and thus 
to stress, the correlations between the plant traits and the (drought and salinity) 
stress were not necessarily stronger (Figure 2.5). Biomass traits showed to have 
high R2 value to salinity stress at around 720 nm (R2max = 0.74), 1300–1800 nm 
(R2max = 0.88), and around 2500 nm (R2max = 0.88). Photosynthesis traits had 
high R2 values at 710 nm (R2max = 0.97), 800 nm (R2max = 0.89), 1200 nm, and 
around 2500 nm (R2max = 0.75). Interestingly, for both biomass and 
photosynthesis traits, the indirectly derived plant traits had generally higher R2 
values than the directly measurable RS traits. For water traits, we found different 
patterns from biomass traits and photosynthesis traits, with high R2 widely 
distributed between 500 and 2500 nm (R2max = 0.78). While high R2 peaked in the 
600–800 nm range, they were also highly variable (0.02 ≤ R2 ≤ 0.78). In contrast, 
osmosis traits (only indirectly retrievable) showed a very promising performance 
(all with R2 > 0.50) across the entire region of 500-2300 nm. Thus, it seemed that 
osmosis traits were most directly related to salinity stress responses. For drought 
stress, the number of studies that presented the wavelengths they used was too 
limited to draw clear conclusions. In general though, neither the range of R2 values 
nor the wavelengths at which traits responded to drought stress deviated much from 
those for salinity stress. 
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Figure 2.5 Relationship between R2 and wavelength of different trait clusters under drought/salinity 
stress. RS identifies traits that can be directly measured by RS; InRS identifies traits that can be 
indirectly measured by RS. The red line indicates R2 > 0.50. 

2.3.3 The relationship between vis and plant traits 

Vegetation indices have been shown to strongly correlate with individual plant 
traits (e.g., LAI and Chl), but the linkage between VIs, spectral reflectance, and 
crop traits remains inadequately understood. Thus, we analyzed the relationship 
between VIs and plant traits, and the results are shown in Table 2.3. For biomass 
traits, LAI showed high correlations with xanthophyll indices (R2max = 0.66) and 
greenness indices (R2max = 0.71) (particularly for OSAVI). Photosynthesis traits 
were also highly correlated with xanthophyll indices (R2max = 0.68) and greenness 
indices (R2max = 0.70). Especially, ∆F/Fm was highly correlated with 
TCARI/OSAVI (R2max = 0.70). Water traits showed a wide range of correlations 
(0.02 ≤ R2 ≤ 0.80) with VIs. Therein, Tl − Tair was highly correlated with PRI570 
(R2 = 0.74), PRI600 (R2 = 0.79), and TCARI/OSAVI (R2 = 0.80). CWC was highly 
correlated to three VIs, including WI (R2 = 0.72), CIgreen (R2 = 0.78), and CIred 
edge (R2 = 0.73). EWTcanopy was highly correlated to PRI586 (R2 = 0.75) and 
OSAVI (R2 = 0.76). LWP was highly correlated to CWSI (R2 = 0.78) and Gs was 
highly correlated with CWSI (R2 = 0.77). Osmosis traits were mainly highly 
correlated with PRI570 (R2max = 0.50). Thus, in general, the four trait clusters 
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were highly correlated with xanthophyll indices (0.50 ≤ R2max ≤ 0.79), while they 
showed lower correlations with carotenoid indices (0.20 ≤ R2 ≤ 0.49). Furthermore, 
water traits were correlated stronger with water indices (0.42 ≤ R2 ≤ 0.78) than 
with the other three trait groups (0.19 ≤ R2 ≤ 0.49). Greenness indices showed high 
correlations with biomass traits (R2max = 0.71), photosynthesis traits (R2max = 
0.70), and water traits (R2max = 0.80) but not with osmosis traits (R2max = 0.35). 
However, despite these general patterns, Table 2.3 also shows that variability in the 
relationships is high. 
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2.4 Discussion 

In this study, we systematically evaluated the usefulness of current monitoring 
approaches (i.e., vegetation indices and plant traits) for evaluating vegetation 
responses to drought and salinity stress. Vegetation indices have been developed to 
monitor vegetation health conditions since the 1980s (Rahimzadeh-Bajgiran et al. 
2012), and a review of drought indices can be found in (Zargar et al. 2011). In 
contrast, only over the past two decades, remote sensing techniques have advanced 
enough to retrieve plant traits, increasingly leading to remote sensing applications 
to monitor plant traits to characterize both natural vegetation and crop functioning 
(Moreno-Martínez et al. 2018). However, a systematic review on the extent to 
which these metrics can pick up drought and salinity stress has so far been missing. 

Our study reveals that most VIs reviewed are not accurate and consistent enough to 
detect changes in crop temporal and spatial responses under stress. This finding 
coincides with previous studies (Liu et al. 2016) that showed that simple VIs were 
hardly able to detect the impact of drought on crops. A possible explanation for this 
is that most VIs do not directly reflect the mechanism of crop responses to stress. 
While many VIs are related to (normalized) features of e.g., greenness, carotenoid, 
or xanthophyll concentrations, it seems that these features do not only vary because 
of the actual drought and salinity stress but also under the influence of various 
other local conditions. This may explain the wide range of R2 values in relation to 
drought or salinity stress. In order to comprehensively monitor stress, we should 
therefore focus on exploring the spectral characteristics of crop tolerance and stress 
response mechanisms to truly reflect the crop health condition under stress. 

Plant traits might provide an approach to measure these stress mechanisms, given 
that traits have proven to be indicators of plant and ecosystem functioning. While 
previous studies showed that RS could potentially address plant traits, in particular 
traits related to photosynthetic process, canopy structure, and leaf biochemistry 
(Homolova et al. 2013; Weiss et al. 2020), there are a few plant traits studies that 
focus on drought and salinity stress. More specifically, the number of drought and 
salinity studies evaluating plant traits is much lower than those using VIs. 
Irrespective of this dichotomy, our systematic review shows that neither the 
wavelengths at which traits are detected nor the strength of the relationship to 
drought and salinity stress is consistent within or between traits of different crops. 
In fact, a wide range of wavelengths used to detect plant traits was found 
(Homolova et al. 2013), which suggests that most relationships to spectral 
signatures are indirect at best. These indirect relationships, and thus the potential 
for confounding factors, may provide a partial explanation for the large variance 
we found in R2 values and the generally low explained variance. One of those 
confounding factors concerns that crop (biomass and water) responses to salinity 
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are to some extent similar to those to drought. This confounding factor leads to 
confusion in some results and has hitherto not been accounted for in previous 
studies. Furthermore, the relationship between traits and stress is further 
complicated by the fact the drought and salinity tolerance mechanisms of crops are 
complicated and multivariate. 

An exception to the low and varied R2 values is the osmotic traits as detected 
(indirectly) by remote sensing. In all evaluated studies, osmotic traits were strongly 
related to salinity stress. This phenomenon is linked to crop response mechanisms 
and is -in contrast to biomass and water responses- unique to salinity stress. 
Salinity stress inflicts damage to plants due to (a) the disruption of the ionic 
equilibrium, (b) an osmotic imbalance, and thereby (c) a decreased photosynthesis 
due to the toxicity of Na+. Likewise, evidence shows that an increased expression 
of K+, Ca2+, Salt Overly Sensitive (SOS) pathways, and glycine betaine are related 
to salinity stress tolerance (Mahajan and Tuteja 2005; Niu et al. 1995; Yeo 1998). 
Both drought and salinity stress cause osmotic stress and decrease cytosolic as well 
as vacuolar volumes. In the case of drought, this osmotic stress is the result of a 
displacement of membrane proteins and disruptions in cellular metabolism 
(Mahajan and Tuteja 2005). In addition, reactive oxygen species are produced, 
which have adverse effects on cellular structures and metabolism (Bartels and 
Sunkar 2005). Therefore, the responses of plants to drought and salinity are 
identical at the early stage. Consequently, osmotic traits show a high potential as a 
suitable indicator for drought and salinity stress RS monitoring. In particular, 
promising results have been found for detecting ionic concentrations of sodium, 
potassium, and chloride (El-Hendawy et al. 2019b; Zhang et al. 2017). 
Unfortunately, though, it seems that our understanding at which wavelengths the 
osmotic traits are expressed is still limited. 

As highlighted in the previous paragraph, plant functioning under stress is affected 
by various pathways. From that perspective, instead of focusing on individual VIs 
or traits, an alternative approach to monitoring drought and salinity stress is the 
consideration of multiple trait responses simultaneously. Although stresses have 
been investigated using many aspects, previous studies rarely utilized multiple 
variables to assess these pathways. Radiative transfer models (RTMs) may be 
particularly useful to retrieve such multiple variables from remote sensing 
observations. RTMs have been developed to study the relationship between 
vegetation biochemical and biophysical properties, and hyperspectral reflectance 
(Bayat et al. 2016; Botha et al. 2006). In the forward mode, RTMs simulate the 
vegetation spectrum based on known spectral signatures of vegetation biochemical 
and biophysical properties. Likewise, RTMs can retrieve vegetation properties 
from reflectance data in the inverse mode (Jacquemoud 2000; Lu et al. 2020a; 
Timmermans et al. 2009). Indeed, RTM inversion has been successfully applied to 
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monitor the changes in plant traits and reflectance upon drought (Bayat et al. 2016). 
By monitoring multiple traits simultaneously, through the inversion of RTMs, it 
will become possible to evaluate how multiple traits in concert are affected by 
drought and/or salinity stress. This may also provide additional insights into the 
plant strategies to deal with drought and/or salinity stress. Unfortunately, though, 
the ill-posedness of the inversion problem commonly puts major constraints on the 
generic applicability of RTMs for crop monitoring. Another major constraint, in the 
context of this review, is that osmosis traits are difficult to measure directly by 
remote sensing. Dissolved salts such as Na+, Cl−, K+, and Ca2+ are not directly 
tractable, although NaCl has a clearly defined spectrum in the infrared spectrum. 
This strongly limits its incorporation within RTMs, which indeed only focus on a 
limited number of vegetation traits such as LAI, Chl, and CWC. More research will 
be needed to evaluate the prospects of physical modeling of radiative transfer under 
the influence of known stress response mechanisms. Traditional multi- or high-
spectral field sensors to investigate the impacts of drought and salinity on crops in 
relation to in situ observed traits related to these stresses will be the way forward 
here. 

A final limitation to monitoring plant traits in response to drought and salinity 
stress is the spatiotemporal and spectral resolution of current satellites. Low 
spatiotemporal resolution and revisit periods are two main restraints for current 
satellite sensor applications in crop management (Berni et al. 2009), although this 
has strongly improved with the launch of the Sentinels satellites. The spectral 
resolution is currently probably more limiting. The inconsistency across multiple 
sensors of different satellites does not allow combining them in one retrieval (Liu 
et al. 2016). Hyperspectral missions, such as those foreseen in EnMAP, may 
provide such information. This may be particularly interesting if combined with 
Light Detection and Ranging (LiDAR) information (e.g., from Global Ecosystem 
Dynamics Investigation (GEDI)) or high-resolution information on temperature 
(e.g., the Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station 
(ECOSTRESS)). However, also, for a fruitful incorporation of such information 
sources, it will be essential to first characterize the spectral properties of traits 
directly related to the plant responses to drought and salinity stress. This will 
reduce the impacts of confounding factors that currently seem to dominate the 
patterns obtained, as seems apparent from Figures 2.3-2.5. 

2.5 Conclusions 

Based on a systematic review, we conclude that a significant number of challenges 
remain before RS can be used to monitor drought and salinity stress on crop health. 
Specifically, we found that VIs are insufficiently accurate to consistently estimate 
these effects. For plant traits, we found some positive correlations for individual 



33 

cases, confirming that plant traits indeed reflect stress response mechanisms. 
However, these cases were too few to accurately monitor the pathways for drought 
and salinity stress. Furthermore, we found that both spectral wavelengths and the 
strength of the relationship to drought and salinity stress varied strongly. Osmosis 
traits appear to be the exception to this and consequently have the potential to be 
used for monitoring the pathways along which drought and salinity impact crops. 
However, osmosis traits cannot be directly measured by RS. In order to fully 
capture the biophysical/biochemical pathways of drought/salinity stress on crop 
health, future research should focus on (1) advancing our capability to 
simultaneously monitor (through multi-sensor frameworks) the suite of crop traits 
that are connected to the different pathways affected by drought and salinity, and (2) 
expanding our characterization of the spectral properties of osmotic traits (through 
optimized RTMs). 
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Figure S2-2 Maps of co-authors and co-occurrences from the results of the systematic review. A 
bubble and a tag constitute an element. The size of an element depends on the number of nodes, the 
strength of the line, and the number of citations. The color of an element represents the cluster to 
which it belongs, and different clusters are represented by different colors. In the co-author map, it 
shows the network of co-authorship links between 115 publications from the systematic review. The 
“bubbles” represent authors. The size of an author bubble represents the number of publications. 
Colors represent authors groups that are clustered by co-authorship links (Perianes-Rodriguez et al. 
2016; Van Eck and Waltman 2011, 2014).  

It was noticed that very few people are focusing on the topic of using remote 
sensing to monitor crop response to drought and salt stress. Also, the connections 
among most authors were rather weak. Also, there was a very limited number of 
studies focusing on monitoring crop traits responses to drought and salinity using 
remote sensing techniques as the co-occurrence map showed that the connection of 
plant traits and spectra was rather weak. Therefore, we conclude that these topics 
need further investigation. 
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Table S2-1 115 publications identified from the systematic review 

No. Title Reference 

1 Detection of early plant stress responses in hyperspectral images (Behmann et al.
2014) 

2 A crop-specific drought index for corn: I. Model development 
and validation (Meyer et al. 1993) 

3 A field experiment on spectrometry of crop response to soil 
salinity (Leone et al. 2007) 

4 
A PRI-based water stress index combining structural and 
chlorophyll effects: Assessment using diurnal narrow-band 
airborne imagery and the CWSI thermal index 

(Zarco-Tejada et al. 
2013b) 

5 Advanced phenotyping offers opportunities for improved 
breeding of forage and turf species (Walter et al. 2012) 

6 
Advances in Remote Sensing of Agriculture: Context 
Description, Existing Operational Monitoring Systems and 
Major Information Needs 

(Atzberger 2013) 

7 Aerial canopy temperature differences between fast- and slow-
wilting soya bean genotypes 

(Bai and Purcell 
2018) 

8 Agricultural drought monitoring: Progress, challenges, and 
prospects (Liu et al. 2016) 

9 
Anatomy of a local-scale drought: Application of assimilated 
remote sensing products, crop model, and statistical methods to 
an agricultural drought study 

(Mishra et al. 2015) 

10 Application of vegetation index and brightness temperature for 
drought detection (Kogan 1995a) 

11 Application of visible and near-infrared spectrophotometry for 
detecting salinity effects on wheat leaves (Triticum aestivum L.) 

(Mokhtari M. H. et 
al. 2014) 

12 Applying hyperspectral imaging to explore natural plant 
diversity towards improving salt stress tolerance (Sytar et al. 2017) 

13 Assessing canopy PRI for water stress detection with diurnal 
airborne imagery (Suarez et al. 2008) 

14 Assessing canopy PRI from airborne imagery to map water 
stress in maize (Rossini et al. 2013) 

15 
Assessment of Photochemical Reflectance Index as a Tool for 
Evaluation of Chlorophyll Fluorescence Parameters in Cotton 
and Peanut Cultivars Under Water Stress Condition 

(Yoshizumi et al. 
2010) 

16 Assessment of the water status of mandarin and peach canopies 
using visible multispectral imagery 

(Kriston-Vizi et al. 
2008) 

17 
Associated changes in physiological parameters and spectral 
reflectance indices in olive (Olea europaea L.) leaves in 
response to different levels of water stress 

(Sun et al. 2008) 

18 Biophysical properties and biomass production of elephant 
grass under saline conditions (Wang et al. 2002a) 

19 Broadband Spectral Reflectance Models of Turfgrass Species 
and Cultivars to Drought Stress 

(Jiang and Carrow 
2007) 

20 
Can chlorophyll-a fluorescence parameters be used as bio-
indicators to distinguish between drought and salinity stress in 
Tilia cordata Mill 

(Kalaji et al. 2018) 

21 Canopy temperature as a crop water stress indicator (Jackson et al. 1981) 
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22 
Characterization of Crop Canopies and Water Stress Related 
Phenomena using Microwave Remote Sensing Methods: A 
Review 

(Vereecken et al. 
2012) 

23 
Chlorophyll fluorescence performance of sweet almond [Prunus 
dulcis (Miller) D. Webb] in response to salinity stress induced 
by NaCl 

(Ranjbarfordoei et al. 
2006) 

24 Chlorophyll, anthocyanin, and gas exchange changes assessed 
by spectroradiometry in Fragaria chiloensis under salt stress. (Garriga et al. 2014) 

25 

Comparative evaluation of the Vegetation Dryness Index (VDI), 
the Temperature Vegetation Dryness Index (TVDI) and the 
improved TVDI (iTVDI) for water stress detection in semi-arid 
regions of Iran 

(Rahimzadeh-
Bajgiran et al. 2012) 

26 Computational water stress indices obtained from thermal 
image analysis of grapevine canopies (Fuentes et al. 2012) 

27 Crop yield prediction under soil salinity using satellite derived 
vegetation indices 

(Satir and Berberoglu 
2016) 

28 Data fusion of spectral, thermal and canopy height parameters 
for improved yield prediction of drought stressed spring barley 

(Rischbeck et al. 
2016) 

29 Detecting salinity stress in tall fescue based on single leaf 
spectrum (Gao and Li 2012) 

30 Detecting water stress effects on fruit quality in orchards with 
time-series PRI airborne imagery (Suárez et al. 2010) 

31 Detection of water stress in an olive orchard with thermal 
remote sensing imagery 

(Sepulcre-Canto et al. 
2006) 

32 
Detection of water stress in orchard trees with a high-resolution 
spectrometer through chlorophyll fluorescence In-Filling of the 
O2-A band 

(Pérez-Priego et al. 
2005) 

33 
Determining the Canopy Water Stress for Spring Wheat Using 
Canopy Hyperspectral Reflectance Data in Loess Plateau 
Semiarid Regions 

(Wang et al. 2015) 

34 Drought and Salinity Impacts on Bread Wheat in a Hydroponic 
Culture: A Physiological Comparison 

(Movahhedi Dehnavi 
et al. 2017) 

35 

Drought stress effects on photosystem I content and 
photosystem II thermotolerance analyzed using Chl a 
fluorescence kinetics in barley varieties differing in their 
drought tolerance 

(Oukarroum et al. 
2009) 

36 Early drought stress detection in cereals: Simplex Volume 
Maximization for hyperspectral image analysis (Römer et al. 2012) 

37 Effect of different concentrations of diluted seawater on yield 
and quality of lettuce (Turhan et al. 2014) 

38 Effects of four types of sodium salt stress on plant growth and 
photosynthetic apparatus in sorghum leaves (Zhang et al. 2018) 

39 Effects of saline reclaimed waters and deficit irrigation on 
Citrus physiology assessed by UAV remote sensing 

(Romero-Trigueros et 
al. 2017) 

40 
Effects of salinity on physiological responses and the 
photochemical reflectance index in two co-occurring coastal 
shrubs 

(Zinnert et al. 2012) 

41 Estimating crop water stress with ETM+ NIR and SWIR data (Ghulam et al. 2008) 

42 Estimating growth and photosynthetic properties of wheat 
grown in simulated saline field conditions using hyperspectral 

(El-Hendawy et al. 
2019a) 
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reflectance sensing and multivariate analysis 

43 Estimating Yields of Salt- and Water-Stressed Forages with 
Remote Sensing in the Visible and Near Infrared (Poss et al. 2006) 

44 
Estimation of Canopy Water Content by Means of 
Hyperspectral Indices Based on Drought Stress Gradient 
Experiments of Maize in the North Plain 

(Zhang and Zhou 
2015) 

45 Estimation of Water Stress in Grapevines Using Proximal and 
Remote Sensing Methods (Matese et al. 2018) 

46 
Evaluation of agronomic traits and spectral reflectance in 
Pacific Northwest winter wheat under rain-fed and irrigated 
conditions 

(Gizaw et al. 2016) 

47 Evaluation of Hyperspectral Reflectance Parameters to Assess 
the Leaf Water Content in Soybean (Kovar et al. 2019) 

48 
Evaluation of wavelengths and spectral reflectance indices for 
high-throughput assessment of growth, water relations and ion 
contents of wheat irrigated with saline water 

(El-Hendawy et al. 
2019b) 

49 Fluorescence excitation spectra of drought resistant and 
sensitive genotypes of triticale and maize (Grzesiak et al. 2007) 

50 Fluorescence Spectroscopy to Detect Water Stress in Orange 
Trees (Lins et al. 2005) 

51 Fluorescence, PRI and canopy temperature for water stress 
detection in cereal crops (Panigada et al. 2014) 

52 
Fluorescence, temperature and narrow-band indices acquired 
from a UAV platform for water stress detection using a micro-
hyperspectral imager and a thermal camera 

(Zarco-Tejada et al. 
2012) 

53 Fluorescence-based sensing of drought-induced stress in the 
vegetative phase of four contrasting wheat genotypes (Bürling et al. 2013) 

54 Genes and salt tolerance: bringing them together (Munns 2005) 

55 Ground-based canopy sensing for detecting effects of water 
stress in cotton 

(Stamatiadis et al. 
2010) 

56 High-throughput field phenotyping in dry bean using small 
unmanned aerial vehicle based multispectral imagery 

(Sankaran et al. 
2018) 

57 Hyperspectral Reflectance Response of Freshwater 
Macrophytes to Salinity in a Brackish Subtropical Marsh (Tilley et al. 2007) 

58 
Hyperspectral remote sensing of salinity stress on red 
(Rhizophora mangle) and white (Laguncularia racemosa) 
mangroves on Galapagos Islands 

(Song et al. 2011) 

59 
Hyperspectral remote sensing to assess the water status, 
biomass, and yield of maize cultivars under salinity and water 
stress 

(Elsayed and 
Darwish 2017) 

60 Identifying leaf traits that signal stress in TIR spectra (Acevedo et al. 2017) 

61 Image-Derived Traits Related to Mid-Season Growth 
Performance of Maize Under Nitrogen and Water Stress (Dodig et al. 2019) 

62 Imaging chlorophyll fluorescence with an airborne narrow-band 
multispectral camera for vegetation stress detection 

(Zarco-Tejada et al. 
2009) 

63 
Integrating satellite optical and thermal infrared observations 
for improving daily ecosystem functioning estimations during a 
drought episode 

(Bayat et al. 2018) 

64 Interpretation of salinity and irrigation effects on soybean (Wang et al. 2002b) 
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canopy reflectance in visible and near-infrared spectrum domain 

65 Landsat images and crop model for evaluating water stress of 
rainfed soybean (Sayago et al. 2017) 

66 
Leaf chlorophyll fluorescence, reflectance, and physiological 
response to freshwater and saltwater flooding in the evergreen 
shrub, Myrica cerifera 

(Naumann et al. 
2008b) 

67 Leaf-rolling in maize crops: from leaf scoring to canopy-level 
measurements for phenotyping (Baret et al. 2018) 

68 
Linking leaf chlorophyll fluorescence properties to 
physiological responses for detection of salt and drought stress 
in coastal plant species 

(Naumann et al. 
2007) 

69 

Linking physiological responses, chlorophyll fluorescence and 
hyperspectral imagery to detect salinity stress using the 
physiological reflectance index in the coastal shrub, Myrica 
cerifera 

(Naumann et al. 
2008a) 

70 Measurement of leaf relative water content by infrared 
reflectance (Hunt Jr et al. 1987) 

71 
Melon crops (Cucumis melo L., cv. Tendral) grown in a 
mediterranean environment under saline-sodic conditions: Part 
I. Yield and quality

(Tedeschi et al. 2011) 

72 
Meta-analysis assessing potential of steady-state chlorophyll
fluorescence for remote sensing detection of plant water,
temperature and nitrogen stress

(Alexander et al. 
2015) 

73 Modelling PRI for water stress detection using radiative transfer 
models (Suarez et al. 2009) 

74 Monitoring agricultural drought for arid and humid regions 
using multi-sensor remote sensing data (Rhee et al. 2010) 

75 
Monitoring stomatal conductance of Jatropha curcas seedlings 
under different levels of water shortage with infrared 
thermography 

(Maes et al. 2011) 

76 
Monitoring water stress and fruit quality in an orange orchard 
under regulated deficit irrigation using narrow-band structural 
and physiological remote sensing indices 

(Stagakis et al. 2012) 

77 Monitoring yield and fruit quality parameters in open-canopy 
tree crops under water stress. Implications for ASTER 

(Sepulcre-Canto et al. 
2007) 

78 
Natural selection and neutral evolutionary processes contribute 
to genetic divergence in leaf traits across a precipitation 
gradient in the tropical oak Quercus oleoides 

(Ramírez‐Valiente et 
al. 2018) 

79 NDWI—A normalized difference water index for remote 
sensing of vegetation liquid water from space (Gao 1996) 

80 New phenotyping methods for screening wheat and barley for 
beneficial responses to water deficit (Munns et al. 2010) 

81 Normalizing the stress-degree-day parameter for environmental 
variability (Idso et al. 1981) 

82 Perspectives for Remote Sensing with Unmanned Aerial 
Vehicles in Precision Agriculture 

(Maes and Steppe 
2019) 

83 Phenotyping for Abiotic Stress Tolerance in Maize (Masuka et al. 2012) 

84 Photochemical reflectance index as a mean of monitoring early 
water stress 

(Sarlikioti et al. 
2010) 
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85 
Photochemistry, remotely sensed physiological reflectance 
index and de-epoxidation state of the xanthophyll cycle in 
Quercus coccifera under intense drought 

(Peguero-Pina et al. 
2008) 

86 
Photosynthetic gas exchange, chlorophyll fluorescence and 
some associated metabolic changes in cowpea (Vigna 
unguiculata) during water stress and recovery 

(Souza et al. 2004) 

87 Potential and constraints of different seawater and freshwater 
blends as growing media for three vegetable crops (Atzori et al. 2016) 

88 
Radiation use efficiency, chlorophyll fluorescence, and 
reflectance indices associated with ontogenic changes in water 
limited Chenopodium quinoa leaves 

(Winkel et al. 2002) 

89 Recovery responses of photosynthesis, transpiration, and 
stomatal conductance in kidney bean following drought stress 

(Miyashita et al. 
2005) 

90 
Relationships between net photosynthesis and steady-state 
chlorophyll fluorescence retrieved from airborne hyperspectral 
imagery 

(Zarco-Tejada et al. 
2013a) 

91 
Relationships between stomatal behavior, spectral traits and 
water use and productivity of green peas (Pisum sativum L.) in 
dry seasons 

(Nemeskéri et al. 
2015) 

92 Remote sensing of soil salinity: potentials and constraints (Metternicht and 
Zinck 2003) 

93 Risk identification of agricultural drought for sustainable 
Agroecosystems (Dalezios et al. 2014) 

94 Salinity tolerance and the decoupling of resource axis plant 
traits 

(Eallonardo Jr et al. 
2013) 

95 Seasonal and drought-related changes in leaf area profiles 
depend on height and light environment in an Amazon forest (Smith et al. 2019) 

96 Seasonal patterns of reflectance indices, carotenoid pigments 
and photosynthesis of evergreen chaparral species (Stylinski et al. 2002) 

97 
Simple reflectance indices track heat and water stress-induced 
changes in steady-state chlorophyll fluorescence at the canopy 
scale 

(Dobrowski et al. 
2005) 

98 
Soil salinity mapping and hydrological drought indices 
assessment in arid environments based on remote sensing 
techniques 

(Elhag and Bahrawi 
2017) 

99 Spatial–spectral processing strategies for detection of salinity 
effects in cauliflower, aubergine and kohlrabi (Rud et al. 2013) 

100 Spectral assessments of wheat plants grown in pots and 
containers under saline conditions (Hackl et al. 2013) 

101 Spectral indicators for salinity effects in crops: a comparison of 
a new green-indigo ratio with existing indices (Rud et al. 2011) 

102 Spectral indices for the detection of salinity effects in melon 
plants 

(Hernández et al. 
2014) 

103 
Spectral Reflectance for Indirect Selection and Genome-Wide 
Association Analyses of Grain Yield and Drought Tolerance in 
North American Spring Wheat 

(Gizaw et al. 2018) 

104 
Steady-State and Maximum Chlorophyll Fluorescence 
Responses to Water Stress in Grapevine Leaves: A New Remote 
Sensing System 

(Flexas et al. 2000) 

105 The influence of diluted seawater and ripening stage on the (Sgherri et al. 2007) 
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content of antioxidants in fruits of different tomato genotypes 

106 The influence of soil salinity, growth form, and leaf moisture on 
the spectral radiance o 

(Klemas and Smart 
1983) 

107 The Photochemical Reflectance Index (PRI) as a water-stress 
index (Thenot et al. 2002) 

108 
The relationships between electrical conductivity of soil and 
reflectance of canopy, grain, and leaf of rice in northeastern 
Thailand 

(Touch et al. 2015) 

109 The use of infrared thermal imaging as a non-destructive 
screening tool for identifying drought-tolerant lentil genotypes (Biju et al. 2018) 

110 The Vegetation Drought Response Index (VegDRI): A New 
Drought Monitoring Approach for Vegetation (Wardlow et al. 2008) 

111 Thermal and Narrowband Multispectral Remote Sensing for 
Vegetation Monitoring From an Unmanned Aerial Vehicle (Berni et al. 2009) 

112 Use of thermal and visible imagery for estimating crop water 
status of irrigated grapevine (Möller et al. 2007) 

113 
Using paired thermal and hyperspectral aerial imagery to 
quantify land surface temperature variability and assess crop 
stress within California 

(Shivers et al. 2019) 

114 
Utilization of a high-throughput shoot imaging system to 
examine the dynamic phenotypic responses of a C-4 cereal crop 
plant to nitrogen and water deficiency over time 

(Neilson et al. 2015) 

115 Water stress detection in potato plants using leaf temperature, 
emissivity, and reflectance (Gerhards et al. 2016) 
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Abstract 

Global sustainable agricultural systems are under threat, due to increasing and co-
occurring drought and salinity stresses. Combined effects of these stresses on 
agricultural crops have traditionally been evaluated in small-scale experimental 
studies. Consequently, large-scale studies need to be performed to increase our 
understanding and assessment of the combined impacts in agricultural practice in 
real-life scenarios. This study aims to provide a new monitoring approach using 
remote-sensing observations to evaluate the joint impacts of drought and salinity 
on crop traits. In our tests over the Netherlands at a large spatial scale (138.74 km2), 
we calculated five functional traits for both maize and potato from Sentinel-2 
observations, namely leaf area index (LAI), the fraction of absorbed 
photosynthetically active radiation (FAPAR), the fraction of vegetation cover 
(FVC), leaf chlorophyll content (Cab), and leaf water content (Cw). Individual and 
combined effects of the stresses on the seasonal dynamics in crop traits were 
determined using both one-way and two-way analyses of variance (ANOVAs). We 
found that both stresses (individual and co-occurring) affected the functional traits 
of both crops significantly (with R2 ranging from 0.326 to 0.796) though with 
stronger sensitivities to drought than to salinity. While we found exacerbating 
effects within co-occurrent stresses, the impact level depended strongly on the 
moment in the growing season. For both crops, LAI, FAPAR, and FVC dropped the 
most under severe drought stress conditions. The patterns for Cab and Cw were 
more inhibited by co-occurring drought and salinity. Consequently, our study 
constitutes a way towards evaluating drought and salinity impacts in agriculture, 
with the possibility of potential large-scale application for sustainable food security. 
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3.1 Introduction 

Food production is required to increase by 70% to satisfy the growing population 
demand by the year 2050 (Godfray et al. 2010). Meanwhile, food security is 
becoming increasingly threatened due to the increasing abiotic stresses under the 
influence of global climate change; abiotic stresses including drought, soil salinity, 
nutrient stress, and heavy metals are estimated to constrain crop productivity by 
50%-80% (Shinozaki et al. 2015). Of these stresses, drought and salinity stress 
have been identified as the two main factors to limit crop growth, affecting 
respectively 40% and 11% of the global irrigated areas (Dunn et al. 2020; FAO 
2020). With drought and salinity forecasted to increase spatially and in severity 
(Rozema and Flowers 2008; Schwalm et al. 2017; Trenberth et al. 2013), and with 
predictions of higher co-occurrence around the world (Corwin 2020; Jones and van 
Vliet 2018; Wang et al. 2013b), food production will be more deeply challenged by 
both stresses. 

Numerous small-scale experimental studies for a large variety of crops have shown 
that the impact of co-occurring drought and salinity stress is exacerbated. Co-
occurrence of drought and salinity stress is found to decrease the yield of spinach 
(Ors and Suarez 2017) and the forage grass Panicum antidotale (Hussain et al. 
2020) more compared with the occurrence of one of these stresses only. Likewise, 
cotton root growth tends to be more inhibited under the co-occurrence of drought 
and salinity than by isolated occurrences (Zhang et al. 2013). Similarly, the 
exacerbating effect of co-occurring stresses limits both maize reproductive growth 
and grain formation (Liao et al. 2022). While these studies demonstrate the 
exacerbating effects of co-occurring drought and salinity stress, they have 
limitations in projecting the impact towards real farmers’ conditions due to their 
small-scale experimental nature. Thus, there is still a significant knowledge gap 
concerning the large-scale evaluation of the combined impacts of drought and 
salinity. 

Remote sensing (RS) provides a huge potential to close this knowledge gap due to 
its capability to monitor continuous large areas at frequent intervals. For this, 
remote sensing has traditionally used vegetation indices, such as the Normalized 
Difference Vegetation Index (NDVI) (Tucker 1979). However, such indices 
provide limited information on how the impact is achieved (e.g. in Chapter 2) and 
how it can be mitigated. With the launch of better multispectral and high-resolution 
satellite sensors (such as Sentinel-2), new RS methods (e.g., hyperspectral, thermal 
infrared, and microwave) have been identified to detect stress in both natural 
vegetation (Gerhards et al. 2019; Vereecken et al. 2012) as well as in agricultural 
applications (Homolova et al. 2013; Weiss et al. 2020). Specifically, these new RS 
methods allow for the retrieval of plant traits that directly link to plant processes, 
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such as leaf biochemistry and photosynthetic processes, and thereby provide high 
potential for agricultural applications. RS plant traits of specific interest to monitor 
crop health include leaf area index (LAI) (Wengert et al. 2021), canopy chlorophyll 
content (Cab*LAI) (Gitelson et al. 2005), canopy water content (Cw*LAI) 
(Kriston-Vizi et al. 2008), the fraction of absorbed photosynthetically active 
radiation (FAPAR) (Zhang et al. 2015), and the fraction of vegetation cover (FVC) 
(Yang et al. 2018). Canopy chlorophyll content and mean leaf equivalent water 
thickness (EWT) of maize differed remarkably under drought stress using 
hyperspectral remote-sensing data (Zhang and Zhou 2015). Using a lookup-table 
approach, LAI and chlorophyll content of wheat obtained from a radiative transfer 
model showed potential to assess drought levels (Richter et al. 2008). However, 
while there have been several attempts to monitor the response of crop health with 
either a drought or salinity focus, not much research has taken these factors into 
account simultaneously (Chapter 2). 

In this study, we propose a novel approach to estimate, compare, and evaluate the 
impacts of drought, salinity, and their combination on crop traits using remote 
sensing. To allow for a detailed evaluation of this approach, we applied it to 
analyze the impacts of the 2018 summer drought in the Netherlands on agricultural 
crops. In this, a stress co-occurrence map was created by overlaying a high-
resolution drought map of 2018 with a groundwater salinity map. Then, we 
characterized the response of maize and potato to different stress conditions based 
on five plant traits (LAI, FAPAR, FVC, Cab, and Cw). Two-way analyses of 
variance (ANOVAs) were adopted to test the main effects and the interactive effect 
between stress combinations and time on crop traits. Moreover, the effect of 
drought and salinity on crop traits was determined across the growing season with 
one-way ANOVAs. Consequently, this approach facilitates the simultaneous 
monitoring of crop health at various scales (regional, national, and continental) 
across multiple stresses (drought and salinity) and multiple species. 

3.2 Methodology 

To achieve our aim of monitoring the impacts of (co-occurring) drought and 
salinity on agricultural production, we developed a new approach to estimate crop 
traits from remote-sensing observations. Specifically, we developed an approach 
that integrates image-processing techniques, such as image classification, co-
registration, land surface parameter retrieval, and time-series analysis (Figure 3.1). 
Using these techniques, we were able to estimate the drought, salinity, and crop 
growth. 

To allow for a detailed evaluation, we focused on the 2018 summer drought in the 
Netherlands. This period was selected because of the extreme drought that affected 
a large part of Europe (Masante et al. 2018). Within parts of the selected area, 
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salinity was reported to increase during that same period (Broekhuizen 2018). 
Hence this study area provides us with the opportunity to investigate the combined 
impacts of these stresses on crops. In the following paragraphs, we provide more 
information on the specific processing steps. 

Figure 3.1 Technical workflow of the maps and data framework. 

3.2.1 Study area and data 

3.2.1.1 Drought map 

A drought map of the Netherlands in 2018 was created based on the standardized 
precipitation evapotranspiration index (SPEI) drought index, which was calculated 
from long-term precipitation data and potential evapotranspiration, from 2004 to 
2018 (Chen et al. 2022). Specifically, SPEI was estimated using a 3-month sliding 
time window, as this was found best to investigate the impacts on the local 
ecosystems. We have extracted SPEI-3 data from 1 April to 30 October, in total of 
214 days, as this coincided with the crop growth period of both maize and potato. 
Then, the drought map was resampled to 250m resolution using the nearest 
neighbor interpolation and reprojected to RD_new projection. The RD_new 
projection (EPSG:28992) is a projected coordinate reference system of the 
Netherlands. All maps were projected to RD_new projection to create consistent 
data layers. We defined -1 and -1.5 as daily thresholds for different drought 
severity classes according to previous classifications (McKee et al. 1993; Tao et al. 



49 

2014). Thus, (cumulative) SPEI for no drought should be between -214 and 0, 
SPEI for moderate drought should be between -321 and -214, and for severe 
drought, SPEI should be lower than -321 when calculated for the whole growing 
period (Figure 3.2a). 

3.2.1.2 Salinity map 

A topsoil salinity map of the Netherlands was created based on a nationwide fresh-
salt groundwater dataset, which derived chloride concentrations as a salinity 
indicator (https://data.nhi.nu/, last access: 8 April 2021). To obtain the salinity map 
of the topsoil, 15 layers of the groundwater salinity were extracted from the 3D 
groundwater salinity map. For each location, the layer closest to the location’s 
corresponding elevation (according to the digital elevation model), i.e., closest to 
the soil surface, was selected. The salinity map was resampled to 250m resolution 
and reprojected to RD_new projection Ultimately, the salinity map was classified 
into three levels namely no-salinity (0.1 g‧L-1to 0.8 g‧L-1), moderate salinity (0.8 
g‧L-1 to 2.5 g‧L-1), severe salinity (>= 2.5 g‧L-1) according to the salt-resistant 
capacity of various crops cultivated in the Netherlands (Mulder 2018; Stuyt 2016) 
(Figure 3.2b).  

3.2.1.3 Crop map 

The crop map of the Netherlands in 2018 was collected from the Key Register of 
Parcels (BRP) of the Netherlands Enterprise Agency 
(https://www.pdok.nl/introductie/-/article/basisregistratie-gewaspercelen-brp-). The 
crop map was resampled to 250m resolution and reprojected to RD_new projection 
(Figure 3.2d). 

3.2.1.4 Co-occurrence map of drought and salinity 

The drought map and the salinity map were overlain to evaluate co-occurrences of 
drought and salinity of the Netherlands in 2018 (Figure 3.2c). By classifying the 
three stress levels for the individual occurrences, we obtained nine stress classes of 
co-occurring drought and salinity, namely no stress, moderate drought only (MD), 
severe drought only (SD), moderate salinity only (MS), severe salinity only (SS), 
moderate drought and moderate salinity (MD+MS), moderate drought and severe 
salinity (MD+SS), severe drought and moderate salinity (SD+MS), and severe 
drought and severe salinity (SD+SS). 

3.2.1.5 Study area selection 

Based on the national map of the Netherlands (Figure 3.2c), a single region with 
similar soil type, climate, tillage systems, and irrigation methods was chosen to 
minimize the interference of these factors on the observed trait expressions. The 
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province of North Holland was selected because it contained the most (seven out of 
nine) combinations of drought and salt stress (Figure 3.2c), namely no stress, MD, 
SD, MS, SS, MD+MS, and SD+SS. Moreover, both maize and potato were 
cultivated across all stress combinations in this province. For further analysis, MS 
and SS were grouped into a new class of salinity stress since the area of MS and SS 
was quite limited. Therefore, six classes of stress combinations, namely no stress, 
MD, SD, salinity (MS+SS), MD+MS, and MD+SS, were analyzed for the study 
area. 

Figure 3.2 Map of the Netherlands overlaying a) drought and b) salinity to show c) the co-occurrence 
of drought and salinity in 2018. The selected study area is indicated by black lines in panel c. d) The 
associated crop map of the study area in 2018. 

3.2.2 Traits retrieval 

3.2.2.1 Satellite data 

The Sentinel-2 mission consists of two satellites equipped with the high-resolution 
Multispectral Instrument (MSI) in the same orbit. This sensor acquires 13 spectral 
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bands (with varying spatial resolutions) in the visible and near-infrared spectrum at 
5 days of revisit times (ESA 2015). In our study, we used both the 10 and 20m 
Level 2A observations, downloaded from the Copernicus Open Access Hub 
(https://scihub.copernicus.eu/, last access: 20 May 2021), to facilitate the 
requirement of the Sentinel Application Platform (SNAP) toolbox for both optical 
and near-infrared observations to be available for determining the functional traits. 
To create consistency across the bands, those with a 20m resolution (B5, B6, B7, 
B8A, B11, and B12) were resampled to the 10m resolution of B3 and B4. In total, 
eight cloud-free scenes were found (21 April 2018, 6 May 2018, 26 May 2018, 30 
June 2018, 15 July 2018, 13 September 2018, 13 October 2018, and 28 October 
2018) to cover the crop growth cycle. Although additional cloud-free scenes were 
found in August (4, 9, 14, 19, 24, and 29 August 2018), none were of high quality, 
and we therefore chose to omit August from our analysis. 

3.2.2.2 Trait selection 

Plant traits (e.g., LAI, FAPAR, FVC, Cab, and Cw) were selected in consideration 
of their corresponding impacts on crop functioning and their potential for 
assessment by remote sensing. LAI is a critical vegetation structural trait related to 
various plant functioning processes, such as primary productivity, photosynthesis, 
and transpiration (Asner et al. 2003; Boussetta et al. 2012; Fang et al. 2019; Jarlan 
et al. 2008). FAPAR depends on vegetation structure, energy exchange, and 
illumination conditions, while FAPAR is also an important parameter to assess 
primary productivity (Liang 2020; Weiss et al. 2016). FVC is a promising 
parameter corresponding to the energy balance process such as temperature and 
evapotranspiration (Weiss et al. 2016). Cab is an effective indicator of stress and is 
strongly related to photosynthesis and resource strategy (Croft et al. 2017). Cw 
plays an important role in transpiration, stomatal conductance, photosynthesis, and 
respiration (Bowman 1989; Zhu et al. 2017), as well as in drought assessment 
(Steidle Neto et al. 2017). 

3.2.3 Dataset processing 

The biophysical processor within the SNAP toolbox derives the five traits, namely 
LAI, FAPAR, FVC, canopy chlorophyll content (CCC), and canopy water content 
(CWC), for each pixel from the Sentinel-2 top of canopy reflectance data at a 10m 
resolution for each month. This processor utilizes an artificial neural network 
(ANN) approach, trained using the PROSAIL simulated database (Weiss et al. 
2016). This training utilized canopy traits rather than leaf traits (estimated by 
multiplication with LAI) to improve their neural network performance. To obtain 
their leaf counterparts (Cw and Cab), to create fully independent variables, CCC 
and CWC thus need to be divided by LAI to obtain Cab (i.e., CCC/LAI) and Cw 
(i.e., CWC/LAI). Pixels with quality flags were eliminated from the dataset. It was 
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observed that in April no crop had yet been planted. Instead, we observed that only 
along the edge of the plots, e.g., in ditches, was vegetation found. This feature was 
used to generate a ditch map and mask out pixels in trait maps for the other months. 
For each variable and each date, only data within the 95% confidence interval were 
taken to increase data robustness. 

3.2.4 Analysis 

Since the pixel counts of the six classes of stress combinations, namely no stress, 
MD, SD, salinity, MDCMS, and MDCSS, were (highly) different, drought and 
salinity were not considered two independent factors. Instead, a two-way analysis 
of variance (ANOVA) was applied to test the main effects and the interactive effect 
between stress combinations (consisting of six levels) and time (5 months) on each 
individual crop trait. Significant effects of the main stress condition were 
investigated through post hoc tests to test whether interaction effects between 
drought and salinity had occurred. Two-way ANOVAs were run separately for each 
trait and each crop type (maize and potato) as we expected different patterns. In the 
Netherlands, potato and maize are planted between mid-April and early May. 
Crops are surfacing in May and harvested in October. Therefore, to evaluate the 
response of crops to stresses across the growing season, the effect of drought and 
salinity on crop traits was determined for May, June, July, and September with a 
one-way ANOVA. Tukey’s honest significant difference (HSD) post hoc tests were 
performed to identify the differences among the six stress combinations. All 
statistical analyses were performed with SPSS 27.0 (SPSS Inc., USA). 

3.3 Results 

3.3.1 Stress impacts depend on the moment in the growing season 

The two-way ANOVAs revealed strong effects of date and stress level on the five 
traits with effect sizes of the response (R2) ranging from 0.326 to 0.796 for the five 
traits, which was similar for maize and potato. For both maize and potato, R2 values 
were lowest for Cab and highest for LAI, FAPAR, and FVC. For maize, we found a 
significant main effect of both date and stress (p < 0.05) for Cab, Cw, FAPAR, and 
FVC. In contrast, LAI was not significantly different across the different stress 
conditions. For potato, all main effects of date and stress were significant for all 
five crop traits (Table 3.1). 

For all traits and both crops, the interaction between the effects of time and stress 
conditions was significant (p < 0.05) (Table 3.1), indicating that the impact of 
stress depended on the moment in the growing season. Despite the significant 
interaction terms, the partial Eta squared values (Table 3.1) showed that the effects 
of time in the growing season were much stronger than those of stress or the 
interaction of date and stress. The effects of date for maize were stronger than for 
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potato. Interestingly, the effects of the interaction between date and stress were 
stronger than those of the main effects of stress, suggesting strong time-specific 
impacts of stress on the crop traits investigated. The interaction terms were 
strongest for FVC.  

Table 3.1 Two-way ANOVA for different crop traits by time series and stress interactions. 

Crops Traits Factors F p Partial Eta Squared R2 

Maize 

LAI 
date 2144.5 0.000 0.636 

0.766 
stress 1.4 0.226 0.001 

date*stress 8.5 0.000 0.033 

Cab 
date 333.9 0.000 0.222 

0.326 
stress 10.7 0.000 0.008 

date*stress 3.6 0.000 0.015 

Cw 
date 952.1 0.000 0.449 

0.590 
stress 9.9 0.000 0.007 

date*stress 4.0 0.000 0.017 

FAPAR 
date 1865.9 0.005 0.603 

0.738 
stress 3.3 0.000 0.002 

date*stress 8.5 0.000 0.033 

FVC 
date 2022.5 0.000 0.622 

0.761 
stress 22.1 0.000 0.015 

date*stress 28.7 0.000 0.105 

Potato 

LAI 
date 752.1 0.000 0.273 

0.782 
stress 13.7 0.000 0.006 

date*stress 8.1 0.000 0.020 

Cab 
date 96.4 0.000 0.050 

0.329 
stress 54.2 0.000 0.024 

date*stress 8.7 0.000 0.023 

Cw 
date 347.4 0.000 0.158 

0.571 
stress 68.1 0.000 0.030 

date*stress 10.3 0.000 0.027 

FAPAR 
date 612.7 0.000 0.234 

0.744 
stress 25.8 0.000 0.011 

date*stress 14.0 0.000 0.034 

FVC 
date 844.0 0.000 0.297 

0.796 
stress 18.8 0.000 0.008 

date*stress 13.6 0.000 0.033 
Note: F indicates the test statistic of the F-test; p indicates whether the effect is statistically significant 
in comparison to the significance level (p < 0.05); Partial Eta Squared indicates the effect size of 
different factors; R2 indicates the percentage that the model coincides with the data.  
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3.3.2 Response of LAI, FAPAR, and FVC to drought and salinity 

Given the significance of both date and stress and their interactions, subsequent 
one-way ANOVAs were performed to compare the effects of drought and salinity 
on LAI, FAPAR, and FVC for maize and potato in May, June, July, and September 
separately (Figure 3.3). The patterns for LAI, FAPAR, and FVC were very similar, 
although they differ in detail and were therefore treated together. 

For maize, all of LAI, FAPAR, and FVC obtained their lowest value under MD+SS 
stress conditions in May. In June, both LAI and FVC dropped the most under 
salinity stress and it was significantly (p < 0.05) different from MD, MD+MS, and 
MD+SS conditions, but not significantly different from no-stress conditions. In 
contrast, FAPAR also reached its lowest value (under MD+MS stress conditions) in 
June but had a significant difference (p < 0.05) compared with no stress conditions. 
Both in July and September, LAI, FAPAR, and FVC all had the lowest value under 
SD conditions, and the difference was significant compared with no-stress 
conditions.  

For potato, LAI, FAPAR, and FVC had the lowest (p < 0.05) value under MD+MS 
and MD+SS stress conditions in May. In June, LAI, FAPAR as well as FVC 
reached the lowest value under SD conditions and were significantly lower than in 
most other stress conditions even though the difference was not significant from 
no-stress conditions. In July, there was a tendency for LAI, FAPAR, and FVC to be 
lower under stress conditions, although none of the effects were significant. In 
September, however, LAI, FAPAR, and FVC significantly decreased under MD, 
MD+MS, and MD+SS conditions, and the difference was significant compared 
with no-stress conditions. In addition, the difference was not significant among 
these three stress conditions.   

Therefore, both for maize and potato, LAI, FAPAR, and FVC dropped the most 
under SD stress conditions when they reached their respective maximum value, 
compared with other stress conditions. At the same time, maize and potato were 
more sensitive to drought than salinity since no significant change was observed 
between drought conditions and conditions with a combination of drought and 
salinity stress.  
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Figure 3.3 Expressions of LAI, FAPAR, and FVC under various stress conditions in May, June, July, 
and September 2018. Different letters in each panel indicate significant differences (p < 0.05). MD, 
moderate drought only; Salinity, salinity only; MD+MS, moderate drought, and moderate salinity; 
MD+SS, moderate drought and severe salinity (MD+SS); SD, severe drought only.  
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3.3.3 Response of leaf chlorophyll and water content to drought and salinity 

The one-way ANOVAs revealed that there were significant (p < 0.05) impacts of 
the various stress conditions on Cab and Cw (Figure 3.4). For maize, Cab obtained 
its lowest value under salinity stress in May and June while it was not significantly 
different from no-stress conditions. However, in July, Cab reached the lowest value 
under MD+MS conditions although the difference was not significant from other 
stress conditions. There were no significant changes observed for Cab in September. 
For potato, Cab dropped the most under salinity conditions in May although the 
difference was not significant from no-stress conditions. Furthermore, Cab 
significantly decreased under MD+SS conditions in June and July, compared with 
other conditions. Although Cab dropped the most under salinity conditions in 
September, the difference was not significantly different from other conditions. In 
addition, compared with no stress, potato had the lowest Cab under MD+SS 
conditions while there was no significant difference between MD+SS and salinity 
conditions in most growing periods. 

Cw decreased under all stress conditions in May, June, and July for both maize and 
potato, except for SD conditions in May, compared with no-stress conditions. At 
the same time, Cw reached its lowest value under MD+SS conditions and it was 
significantly different from under no-stress conditions. Nonetheless, there were 
different changes for maize and potato in September. Cw was not significantly 
different among any conditions for maize while it was the lowest under salinity 
conditions for potato.  

Therefore, this analysis illustrates that salinity affected maize less than drought 
since crop responses were more obvious to drought than salinity for Cw. In contrast, 
salinity showed a more severe effect on maize and potato at the early growth stages 
for Cab. Meanwhile, Cab was affected by co-occurring drought and salinity in June 
and July for potato. It seems that there was a non-additive effect of drought and 
salinity for Cw since the changes were not significant between MD+MS, MD+SS, 
MD, and salinity conditions. 
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Figure 3.4 Expressions of Cab and Cw under various stress conditions in May, June, July, and 
September 2018. Different letters in each panel indicate significant differences (p < 0.05). MD, 
moderate drought only; Salinity, salinity only; MD+MS, moderate drought, and moderate salinity; 
MD+SS, moderate drought and severe salinity (MD+SS); SD, severe drought only. 
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3.4 Discussion 

In this study, we quantified the large-scale impacts of co-occurring drought and 
salinity on a variety of crop traits using satellite remote sensing. We observed that  
-in contrast to our expectations- the impacts of salinity were not highly pronounced
at this scale, with most strong impacts originating due to drought stress during the
2018 drought. At specific moments in the growing season, salinity and/or the
combined effects of salinity and drought pronouncedly affected individual crop
traits. In this way, with increasing salinity driven by more intensive droughts, water
allocation should not only be governed by the amount of water shortage but also
the salinity of the remaining water. In this paper, we provide the first evidence that
those impacts can be monitored through remote sensing. This might provide a basis
towards a monitoring system for multiple crops with multiple stresses as well as
better governance policies to ameliorate this problem.

3.4.1 Drought stress is more important than salinity stress in farmers’ 
conditions 

The exacerbating effects of co-occurrent drought and salinity (Figure 3.3 and 
Figure 3.4) that we found are consistent with findings of small-scale experiments 
(e.g. greenhouses). Consistent with our results, synergistic effects of co-occurring 
water stress and salinity stress have been found on maize reproductive growth and 
grain formation in a field study (Liao et al. 2022). Spinach (Spinaciaoleracea L., cv. 
Racoon) yield decreased more under co-occurring water-salinity stress in 
comparison with separate water stress and salinity (Ors and Suarez 2017). The co-
occurring drought and salinity stress was more harmful to cotton root growth 
compared to their individual effects (Zhang et al. 2013). Moreover, the combined 
negative effect of drought and salinity stress on Panicum antidotale was stronger 
than that of single stress (Hussain et al. 2020).  Our research showed that the 
outcomes of these small-scale experimental studies also apply to real large-scale 
environments, where different sources of variance are present. Specifically, we 
show that in real farmers’ conditions, the co-occurrence of drought and salinity 
indeed can constitute a severe threat due to its interactive effects on crop growth.  

In addition, we evaluated whether drought or salinity stress has more impact on 
crop performance. We observed that maize and potato were generally more 
sensitive to drought than salinity in this study (Figure 3.3 and Figure 3.4). This is 
consistent with results of previous studies that highlight that drought impacts are 
generally more detrimental than salinity stress for crops, e.g. for sesame (Sesamum 
indicum) (Harfi et al. 2016), Mentha pulegium L. (Azad et al. 2021), durum wheat 
(Sayar et al. 2010), grass pea (Tokarz et al. 2020), and sweet sorghum (Patane et al. 
2013). However, given that the threshold of salinity at which crop damage occurs 
(according to the FAO guidelines (Ayers and Westcot 1985)) was surpassed in all 
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situations in which salinity stress was imposed (including in our study), we initially 
expected salinity to be a stronger explanatory variable than drought. As such, 
salinity impacts on crop performance (by the FAO) may have been overestimated. 
Indeed, in an experimental field situation in which drought stress was carefully 
avoided, higher thresholds of salinity-induced damage were observed for potato 
(van Straten et al. 2021). 

In combination, the results from our study (supported by results from other studies) 
suggest that salinity particularly induces adverse effects when co-occurring with 
drought stress. The impact of water stress on photosynthesis and the biomass of 
plants was extenuated by salinity since salinity enhances the synthesis of ATP and 
NADPH by promoting photosynthetic pigments and photosystem II efficiency. The 
impacts of combined drought and salinity stress on plant growth, chlorophyll 
content, water use efficiency, and photosynthesis were less severe compared to 
drought alone. This indicates compensating effects on carbon assimilation due to 
osmotic adjustments induced by Na+ and Cl– (Hussain et al. 2020). Thus, the 
detrimental effect of single drought stress on crop growth is considered to be 
mitigated by salinity. 

3.4.2 Drought and salinity stress differ between growth stages 

The responses to drought and salinity stress were different at different growth 
stages of the crops. This was expressed by the significant interactions between the 
effects of time and stress conditions for all of our crop responses (Table 3.1). We 
found that during the grain filling (maize) and tuber bulking phase (potato), the 
sensitivities of these crops are expressed distinctly in the non-harvested 
aboveground tissues (Figure 3.3 and Figure 3.4), with clear differences in the 
remote sensing plant traits.  

Given that we were not able to monitor the harvestable products, multiple 
mechanisms may explain these patterns. The relatively high leaf coverage (as 
related to LAI, FAPAR, and FVC) at salinity and severe drought conditions at the 
end of the growing season may be an expression of a compensation process. 
Specifically, early and prolonged drought could have led to more assimilates 
allocated to non-harvestable potato parts for drought resistance since the number of 
tubers reduced (Jefferies 1995; Schittenhelm et al. 2006). In that case, we should 
consider their higher leaf coverage at the end of the season as a survival 
mechanism, rather than true drought tolerance, leading to reduced tuber yields 
(Daryanto et al. 2016b). Future studies that combine remote sensing with 
harvesting data may be able to evaluate this mechanism in more detail.  

In our study, different response patterns of maize and potato occurred to the 
different stresses over the growing season. This is consistent with previous studies 
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focusing on the impact of drought and/or salinity onsets. For potato, it has been 
suggested that tuber yields particularly decreased when drought stress occurs 
during the vegetative and tuber initiation stages than during the tuber bulking stage 
(Wagg et al. 2021), although another study observed the reverse pattern (Daryanto 
et al. 2016b). For maize, on the other hand, drought seems to have the most 
detrimental impact during the maturation stage (Mi et al. 2018; Zhang et al. 2019), 
and the reproductive phase (Daryanto et al. 2016a; Daryanto et al. 2017).  
Considering the additional co-varying factors within our ‘real-life’ study, it is very 
probable that we were able to detect similar effects. This suggests that we may use 
satellite remote sensing -albeit less spatially precise than e.g. sensing through 
drones- as a cost-effective early warning signal for detecting drought and salinity 
stress at moments during the growing season when differences in crop performance 
are still subtle.  

3.4.3 Crop responses to stress can be better understood with a multi-trait 
approach 

In addition to facilitating the evaluation of crop performance during multiple stages 
of the growing season (in contrast to most destructive methods), remote sensing 
also allows a multi-trait approach to better understand the mechanisms involved in 
crop responses. Each of the five traits is associated with different functions of 
plants that might be individually impacted by the different stresses. Therefore, 
focusing on only one individual metric (as commonly done, see Chapter 2 for a 
review) limits our capacity to gain full insight into drought and salinity responses. 
Hence, given that individual crop traits may respond differently to drought and 
salinity reflecting its stress resistance and tolerance strategy, the evaluation of these 
distinct responses may help to understand this strategy.  

In this study, Cw was consistently lower in all drought and salinity treatments as 
compared to no-stress conditions in May, June, and July. Indeed, this is a common 
response of plants in response to drought and salinity (e.g. Chapter 2). In this 
respect, it is interesting that no decrease in Cw was observed at the end of the 
growing season, in September. Whether the phenomenon is related to the survival 
mechanism mentioned above or to the lower transpiration demands at the end of 
the season because of lower aboveground biomass, cannot be concluded from these 
data. Some evidence pointing to the survival mechanism is the finding (Ghosh et al. 
2001; Levy 1992) that the leaf dry matter increased for potato under 
drought/salinity stress (like in our study) while the dry matter of the tubers 
appeared to have a greater decline.  

With respect to chlorophyll contents, we observed a decline in Cab under salinity 
conditions in May and the MS+SS treatment in June and July, while no decrease 
was observed in any of the treatments exposed to drought only. This indicates that 
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while total leaf area was not (much) affected by salinity, the salinity did negatively 
affect crop performance. It has been reported that chlorophyll content in maize was 
significantly reduced upon salinity, along with other plant traits including plant 
height, shoot/root biomass, and leaf numbers (Fatima et al. 2021; Mahmood et al. 
2021). Likewise, similar patterns were obtained in potato plants in saline soil 
(Efimova et al. 2018). Hence, this implies that soil salinity tends to negatively 
affect crop growth and restrict nutrient uptake.  

Cab and Cw responses to drought and salinity were distinct from responses of LAI, 
FAPAR, and FVC (Figure 3.3 and Figure 3.4). LAI, FAPAR, and FVC showed 
similar patterns to stress due to their highly physical correlation (Hu et al. 2020). 
The different patterns of Cw and Cab point to different drought and salinity 
resistance strategy components associated with these traits: LAI (and FAPAR/FVC) 
reflect the decrease in biomass due to stress, partly because stress directly and 
negatively impacts growth and partly because having lower biomass decreases the 
evapotranspiration demands of the crop, which increases the resilience of the crop 
to deal with drought. Cw represents another pathway to reduce evapotranspiration 
demands, i.e. by reducing the amount of water per gram of leaves. Also, this 
response may be a direct effect of the more negative pressure heads due to drought 
or due to increased osmotic pressures (due to salinity). It may also be part of the 
adaptive strategy of the crop to increase its resilience. Cab also responds to drought 
and salinity, but in its own way, i.e. by adapting its photosynthetic capacity while 
being affected by a lower stomatal conductance (due to drought and/or salinity). 
See e.g. Wright et al. (2003) for a framework explaining these nitrogen-water 
interactions. 

In addition, our approach gives the insight to analyze the effect of stresses on yield 
based on the five traits, even though yield cannot directly be derived from remote 
sensing. Traits including Cab, LAI, and FAPAR, have been used (either separately 
or in combination) as a proxy for final yield estimates from remote sensing in many 
studies. For instance, NDVI -which is based on the combination of LAI and Cab- is 
extensively used to estimate crop yield (Huang et al. 2014; Mkhabela et al. 2011; 
Vannoppen et al. 2020). Also, LAI itself has been used for predicting the final yield 
(Dente et al. 2008; Doraiswamy et al. 2005; Sun et al. 2017). Meanwhile, Cab and 
FAPAR were also proven to be highly correlated with crop yield (Ghimire et al. 
2015; López-Lozano et al. 2015). Thus, while yield cannot be estimated directly 
from remote sensing or ground truth data at the desired high spatial resolution, our 
indicators do relate to yield and can be used in more application-based contexts to 
inform on yield impacts. 
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3.4.4 Implications for future research and management 

The number of studies that evaluate the effects of drought and salinity stress on 
crops is limited (Chapter 2). In general, studies focus on small-scale experimental 
studies under strict control of all variables with only a limited number of crops 
(Hussain et al. 2020; Ors and Suarez 2017). To our knowledge, this is the first 
study that uses satellite remote sensing to investigate drought and salinity impacts 
for a large area under real-life conditions necessary for constructing stress 
management policies.  

In such real-life conditions, as investigated here, irrigation of crops is commonly 
applied as management practice during drought events to reduce the severity of 
drought impacts (Deb et al. 2022; Lu et al. 2020b). In this study, however, we have 
evidence that irrigation did not play a major role in the patterns found since all 
croplands included in our research area were identified as rainfed cropland 
(according to the ESA/CCI land cover map in 2018; 
https://maps.elie.ucl.ac.be/CCI/viewer/, last access: 19 April 2022). In addition, 
while farmers in the area are known to irrigate their cropland, the Dutch 
government announced a temporary national irrigation ban in 2018 (for various 
areas including our research area) to spare water (Perry de Louw 2020). As a 
consequence, we could not analyze the impacts of irrigation management on the 
combined effects of drought and salinity. This might potentially be solved by 
investigating other drought historic events with moderate severity in Europe, such 
as the year 2003 (Ciais et al. 2005) or 2015 (Ionita et al. 2017) in Europe, when 
such a ban was not executed. Unfortunately, satellite remote sensing observations 
with the required 20-30m resolutions of these events are limited, as Sentinel-2 was 
only launched in 2015 and the Landsat satellites provide a too coarse temporal 
resolution.  

Likewise, the impacts of salinity and drought are moderated by crop selection. 
Traditionally, farmers do not plant highly vulnerable crops in moderate/high 
salinity areas. In fact, we found crops sensitive to salinity such as apple (Ivanov 
1970) and broccoli (Bernstein and Ayers 1949) to be abundant in non-saline areas 
but only little in saline areas. To ensure an accurate evaluation of salinity impacts, 
we only investigated those crops with a significant abundance in all available stress 
conditions. More sensitive crops might even respond more strongly. 

3.5 Conclusions 

In this study, we present the first attempt to evaluate the real-life effects of drought, 
salinity, and their combination on crop health using multiple traits from remote 
sensing monitoring during 2018 over the Netherlands. Our approach gives new 
insights for monitoring crop growth under co-occurring stresses at a large scale 
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with high-resolution data. We found that while in general temporal patterns             
-reflecting crop growth dynamics- were stronger than effects of stress conditions,
stress impacts depended on the time of the growing season. Furthermore, we also
found that the temporal dynamics in crop responses to drought and salinity were
different for maize vs. potato. In general, the five investigated traits were more
negatively affected by a combination of drought and salinity stress compared to
individual stress. Meanwhile, both maize and potato responded more prominently
to drought, thus demonstrating a stronger sensitivity, than to salinity. Specifically,
LAI, FAPAR, and FVC dropped the most under severe drought stress conditions.
Consequently, the proposed new approach poses a facilitated way for
simultaneously monitoring the effect of drought and salinity on crops in large-scale
agricultural applications.

3.6 Author contributions 

Conceptualization, JT, PVB, and WW; methodology, JT, QC, WW, and PVB.; 
investigation, WW and QC; writing--original draft preparation, WW; writing--
review and editing, PVB. and JT; supervision, PVB, and JT All authors have read 
and agreed to the published version of the manuscript. 



64 



65 

Chapter 4 

Evaluating crop-specific responses to salinity and drought stress from 
remote sensing 

Wen Wen, Joris Timmermans, Qi Chen, Peter M. van Bodegom 

International Journal of Applied Earth Observation 

 and Geoinformation, 2022, 26: 4537–4552. 

https://doi.org/10.1016/j.jag.2023.103438 



66 



67 

Abstract 

Food security is projected to be threatened by increasing co-occurring stresses (e.g., 
drought and salinity) under global climate change. To mitigate major impacts on 
food production, the tolerances and vulnerabilities of crops to these threats need to 
be characterized. The aim of this research is to assess the tolerances of crops to the 
combination of drought and salinity stress across plant functions under real-life 
settings. Using five traits, we evaluated the impacts of drought and salinity 
tolerance on a multitude of crops throughout the United States. We assessed the 
dominant stress as well as the onset of combined and individual effects of drought 
and salinity from March to October. We indeed observed that stress impacts 
strongly depended on time. In addition, we observed that crops were more sensitive 
to combined salinity and drought than to individual stresses, although stress 
impacts significantly varied between time and species. Of the individual traits, LAI 
was triggered first by stresses, followed by FVC and FAPAR, and Cw and Cab 
were the last to respond to stresses. In comparison to other species, almond 
demonstrated greater resilience to combined drought and salinity, whereas soybean 
and maize were more drought tolerant. In combination, our study provides a way of 
assessing the tolerance of various crops to co-occurrent stresses both independently 
and in combination. By allowing applications to other co-occurring stresses and 
vegetation types, our approach creates a quantitative foundation to inform 
sustainable food production. 
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4.1 Introduction 

Crops are continuously exposed to a variety of abiotic stresses. Extreme 
occurrences including floods, droughts, and heat waves are forecasted to increase 
as a result of global climate change (Wang et al. 2022). These occurrences not only 
directly lower agricultural yield but also increase the susceptibility of crop 
production to future events (Zscheischler et al. 2018). Salinity and drought are two 
major factors that constrain crop yield and are expected to increase in frequency. 
By 2050, salinity is expected to affect half of the arable land, most of which is on 
dry or semi-arid land (Angon et al. 2022). More frequent droughts will further 
increase yield loss risk in the future, with rice, soybeans, wheat, and maize being 
particularly vulnerable (Leng and Hall 2019). Therefore, food security is expected 
to be more threatened by the co-occurrence of stress (i.e. salinity and drought) 
under global climate change. Although singular stress impacts on crops have been 
extensively studied, co-occurrence stress impacts are still considered challenging 
due to their complexity (Mehrabi et al. 2022). Thus, to mitigate major impacts on 
food production, the tolerances and vulnerabilities of crops to these threats need to 
be characterized. 

Traditionally, the tolerance of crops is estimated for a limited number of crop types 
in highly controlled small-scale experiments. Maas and Grattan (1999) published a 
list of salt tolerance of 81 crops based on the electrical conductivity of the saturated 
paste (ECe) under simulated conditions. However, there is evidence showing that 
the tolerance of some crops to salinity had been underestimated in such conditions 
(van Straten et al. 2021). Apart from isolated drought or salinity stress, several 
studies evaluated the tolerance of combined drought and salinity stress of various 
crops. In contrast, in wheat, the combination of mild salinity and drought stress was 
found to cause a stronger inhibition of wheat yield compared with singular stress 
(Paul et al. 2019). However, in these pot experiments, there was a large difference 
among various wheat cultivars concerning their tolerance to combined drought and 
salinity stress (Paul et al. 2019). Suarez et al. (2019) estimated the salt tolerance of 
grape rootstock in a simulated water stress environment for four years. They came 
to the conclusion that it was difficult to forecast the combined impacts of salinity 
and water stress based on the quantification of isolated effects of salinity or water 
stress from tests. Therefore, it is important to evaluate the simultaneous response to 
co-occurring stressors in real-life scenarios for a wide range of crop types.   

Plant traits can serve as indicators for assessing crop health and crop responses, 
given that plant traits are associated with various plant functions involving leaf 
biochemistry and biophysics processes as well as photosynthetic processes. Leaf 
area index (LAI), the fraction of absorbed photosynthetically active radiation 
(FAPAR), and the fraction of vegetation cover (FVC) are critical traits related to 
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primary productivity, vegetation structure, photosynthesis, and transpiration (Asner 
et al. 2003; Fang et al. 2019; Weiss et al. 2016). Leaf chlorophyll content (Cab) is 
closely related to the process of photosynthesis and resource management strategy 
(Croft et al. 2017). Leaf water content (Cw) is a trait related to transpiration, 
stomatal conductance, and the respiration process and has been linked to drought 
impacts on crops in many studies (Bowman 1989; Zhu et al. 2017). LAI, FAPAR, 
and Cab have been shown to have a strong correlation with crop yield and are thus 
used to estimate final yield (Dente et al. 2008; Doraiswamy et al. 2005; Ghimire et 
al. 2015; López-Lozano et al. 2015). Therefore, to enhance our understanding of 
actual agricultural tolerances, and associated plant functioning, it is crucial to 
evaluate the performance of functional traits in real-life. 

Remote sensing has a great potential for monitoring stresses on a large scale, if 
current challenges are met (Jiao et al. 2021; West et al. 2019). In particular for 
agricultural applications, satellites with multispectral sensors in high-resolution, 
such as Sentinel-2, allow stress detection based on retrieved plant traits (Weiss et al. 
2020). Two common approaches to retrieving plant traits relevant for analyzing 
plant stress effects rely on statistical and physical modeling (Bayat et al. 2016). 
Statistical approaches involve parametric regressions based on the relationship 
between spectral bands/vegetation indices (VIs) and functional traits as linked to 
vegetation stress. Moreover, physical modeling approaches, such as radiative 
transfer models (RTM), show promising potential to retrieve plant traits related to 
stress from remote sensing (Wocher et al. 2020). Traits including LAI, FAPAR, 
FVC, Cw, and Cab retrieved from remote sensing have been applied to evaluate the 
response of vegetation to either drought or salinity stress (Bayat et al. 2016; Zhang 
et al. 2020). Instead of relying on individual traits to evaluate crop resistance 
mechanisms, remote sensing has demonstrated a way to monitor crop responses to 
stresses based on a multi-trait approach (Berger et al. 2022). Therefore, compared 
to most destructive methods with restricted capacity to detect mechanisms of stress 
in crops, remote sensing is a crucial tool that can simultaneously monitor plant 
functional traits across a wide range of crop types. Moreover, with remote sensing, 
such monitoring can be achieved over large spatial scales, at high temporal 
resolution, and in real-life agricultural settings. However, despite attempts to assess 
the impact of drought and salinity stress on crops using remote sensing traits, these 
studies are often limited in terms of the number of traits, crop types, and individual 
stress factors considered. 

This study addresses the challenge of simultaneously evaluating the response of 
diverse crops to the co-occurrence of drought and salinity stress in real-life settings 
at a large scale. To achieve this, we generated a comprehensive co-occurrence map 
of drought and salinity across the entire United States. To isolate the effects of 
stress, we employed a pair-wise method to compare stressed and unstressed 
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observations while eliminating the impacts of other factors including soil, climate 
zone, and region. Based on five retrieved traits including LAI, FVC, FAPAR, Cw, 
and Cab using Sentinel-2 observations, we characterized the response of eight 
crops to various drought and salinity stress conditions, as well as their interactions 
with other impacting factors throughout the growing season. We also analyzed the 
onset of stress (drought, salinity, and their combination) on five traits for each crop 
individually. Ultimately, our study provides valuable guidance to local farmers and 
governments by supplying timely information on crop responses to co-occurring 
stresses, both individually and collectively. 

4.2 Methodology 

According to the U.S. Drought Monitor (USDM), drought attacked the USA on a 
national scale throughout 2021 (NCEI and NOAA 2021). Around half of the 
contiguous USA experienced different strengths of drought from January onwards, 
and the west and middle of the USA which are typically used for farming crops 
suffered more severe drought (NCEI and NOAA 2021). In this study, we integrated 
multiple techniques to evaluate the response of diverse crops to salinity and 
drought stress at various levels simultaneously across the contiguous USA. In a 
previous paper (Chapter 3), we developed a novel approach to evaluate the 
expression of five crop traits under salinity and drought stress conditions in the 
Netherlands for only two crops. In this study, by adopting a pair-wise method to 
assess trait expressions concerning drought, salinity, and their combined impacts 
compared to non-stressed conditions, we captured stress impacts more precisely for 
a much larger range of crops and spatial conditions (Figure 4.1 and Figure S4-1).  

Figure 4.1 Conceptualisation of the technical workflow.  
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4.2.1 Study area and stress map 

4.2.1.1 Drought map 

A drought map of the contiguous USA in 2021 was generated based on the 
standardized precipitation evapotranspiration index (SPEI) drought index. The 
monthly SPEI with 3-month sliding time windows was collected from The West 
Wide Drought Tracker (https://wrcc.dri.edu/wwdt/about.php) (Abatzoglou et al. 
2017). We extracted SPEI-3month data from March to October to coincide with 
various crop growth periods. Next, SPEI-3month maps for each month were 
combined to create the drought map for 2021. Then, the drought map with NAD 
1983 Contiguous USA Albers projection was resampled to 30m resolution by using 
nearest neighbor interpolation. We define -8 and -12 as cumulative SPEI thresholds 
for no drought (-8 to 0), moderate drought (-12 to -8), and severe drought (< -12) in 
the whole growth season (McKee et al. 1993; Tao et al. 2014) (Figure 4.2a). 

Figure 4.2 a) Drought map in the contiguous USA in 2021. b) Salinity map in the contiguous USA in 
2021. c) co-occurrence map of drought and salinity in the contiguous USA in 2021. d) Map of stress-
no stress pairs at 1km resolution. 

4.2.1.2 Salinity map 

A soil salinity map of the United States was generated from Gridded National Soil 
Survey Geographic Data (gNATSGO)
(https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcseprd1
464625). We extracted the attribute Electrical Conductivity (EC) data for the 
topsoil with a 30m map unit raster. Based on EC, we developed the soil salinity 
map using the lookup function. Afterwards, the soil salinity map was reclassified to 
three levels namely no-salinity (0 dS‧m-1 to 4 dS‧m-1), moderate salinity (4 dS‧m-1 
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to 8 dS‧m-1), and severe salinity (> 8 dS‧m-1) according to estimated salinity effects 
on crop growth (Richards 1954) (Figure 4.2b).  

4.2.1.3 Co-occurrence map of drought and salinity 

The co-occurrence of drought and salinity map for the COUNS in 2021 was 
created by overlaying the drought map and soil salinity map (Figure 4.2c). Given 
separative three levels of drought (no drought, moderate drought, and severe 
drought) and salinity stress (no salinity, moderate salinity, and severe salinity) 
(section 4.2.1.1 and section 4.2.1.2), we obtained nine classes of stress 
combinations, namely no stress, moderate salinity only (MS), severe salinity only 
(SS), moderate drought only (MD), severe drought only (SD), moderate salinity 
and moderate drought (MS+MD), moderate salinity and severe drought (SD+MS), 
severe salinity and moderate drought (MD+SS), and severe salinity and severe 
drought (SD+SS). In some cases, there were limited salinity observations for 
specific combination conditions. Therefore, these observations were merged with 
the closest classification into an overall category. For instance, MS+MD and 
SS+MD were reclassified to the MD+Salinity category.  

4.2.2 Crop dataset 

4.2.2.1 Crop map 

The crop map of the contiguous USA in 2021 was collected from the Cropland Data 
Layer program (CDL) in the United States Department of Agriculture (USDA) 
(https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php). 
The crop map is in 30m resolution with NAD 1983 Contiguous USA Albers 
projection.   

4.2.2.2 Crop selection 

To ensure the highest availabilities of pairs subjected to multiple levels of stress 
throughout the growing season, eight crops including alfalfa, almond, grape, maize, 
sorghum, soybean, spring wheat, and sugar beet, were selected out of over 70 crop 
types because they contained most pairs of observations with comparable stress 
combinations (Table S4-1). These eight crops were classified into three categories 
according to their tolerance for drought and salinity stress from the literature 
(Table S4-2). 

4.2.3 Remote sensing traits retrieval 

In this study, we derived geospatial maps of functional traits by using remote 
sensing. We used Sentinel-2 observations composited scenes in 60m resolution 
(sun azimuth, sun zenith, view azimuth mean, view zenith mean, B03, B04, B05, 
B06, B07, B08A, B11, and B12) with 10-days periods (from 11th to 20th) for each 
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month from The Sentinel-2 Global Mosaic 2 (S2GM-2) service 
(https://s2gm.land.copernicus.eu/mosaic-hub). Then, all scenes were processed 
by the biophysical processor in the Sentinel Application Platform (SNAP) toolbox 
API for python to retrieve five traits namely LAI, FVC, FAPAR, canopy water 
content (CWC), and canopy chlorophyll content (CCC) for each observation. 
Trait tiles were purged of observations raised with quality flags. After that, 
maps for the contiguous USA for each trait were accomplished by mosaicking 
all trait tiles from March to October to capture the full phenology of each crop. 
CCC and CWC were divided by LAI to acquire the independent leaf counterparts 
Cab (=CCC / LAI) and Cw (=CWC / LAI). To eliminate outliers for Cab and Cw 
created by extremely low values of LAI, observations with LAI values lower 
than 0.5 were excluded from the calculation of Cw and Cab. In order to 
maintain consistency for all five trait maps, LAI, FAPAR, and FVC maps were 
additionally screened for observations of LAI values less than 0.5. 

4.2.4 Pairwise dataset processing 

We adopted a pairwise method to eliminate the impacts of potentially confounding 
factors as much as possible. To ensure capturing representative crop responses on 
the basis of high-resolution data (section 4.2.3), we defined our pixels at 1km 
resolution. For this purpose, the crop map in 30m resolution was resampled to 1km 
using majority interpolation. The drought and salinity maps were resampled to 1km 
using the nearest neighbor interpolation. Subsequently, a fishnet comprising 
attributes of stress conditions, soil type, climate zone, state, and crop type, was 
created in 1 km resolution. Next, within a 30 km buffer, each observation in a 
stressed condition at the 1km resolution fishnet was coupled with several non-
stressed observations that met the same criteria (crop type, soil taxonomy, climate 
zone, and state). The threshold of the buffer was determined by a semi-variogram 
based on LAI considering the spatial correlations and the presence of multiple 
stress combinations. To calculate the corresponding trait value for the 1km 
resolution fishnet, we extracted observations in a 30m resolution map with the 
same five attributes as the fishnet using raster calculator. Then, the average trait 
value at 1km resolution was determined by the mean value of the traits in 30m 
resolution using the zonal statistic. Next, we quantified the difference between 
stressed and non-stressed observations for the five traits based on the available 
pairs in the 1km resolution fishnet (Figure 4.2d) using the field calculation. Finally, 
we calculated the mean difference in trait values of each stressed observation 
involved in multiple pairs with unstressed conditions according to its unique 
(stressed observation) ID.   
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4.2.5 Data analysis 

To minimize the impact of outliers, the median value for each stress class for five 
traits was calculated across the growth period. Considering the planting and harvest 
time of crops differs in the southern and northern part regions of the contiguous 
USA, we evaluated the response of crops to salinity and drought stress on crop 
traits from March to October to capture the whole growing period for different 
crops. The main effect of factors -stress condition, time, soil type, climate zone, 
state, and crop types) and their two-way interaction effects on each trait were 
determined by an analysis of variance (ANOVA) with SPSS 27.0. Post-hoc tests 
were performed to determine the significance of individual levels within factors. 
Partial Eta Square was determined to indicate the effect size of different factors. 
Since the interaction effects with crop type were omnipresent and to understand 
those better, we subsequently ran ANOVAs for each crop individually (Table S4-4 
and Table S4-5). For eight crops, ANOVAs on stress condition, time, soil type, 
climate zone, state, and their two-way interactions were conducted for each trait, 
respectively. Since the interactions of other factors with stress were consistently 
smaller than those with time, we focused on the two-way ANOVAs of stress and 
time in the results. In addition, to evaluate which type of stress - salinity, drought, 
and combined salinity and drought - has the strongest impact on crops, the 
dominant stress without considering different strengths of stress was determined 
based on the median value of each trait throughout the growing season. Meanwhile, 
the onset of stress was determined as the first time during the growing season when 
a negative impact was observed on an individual trait. The onset of drought, 
salinity, and combined stress for eight crops was estimated for all five traits.  

4.3 Results 

4.3.1 Crop response commonalities to stress 

The two-way ANOVAs of stress and time revealed a strongly time-dependent 
impact of stress on the five traits, as expressed by strong interaction effects (Figure 
4.3). Each trait varied significantly (p < 0.05) over time for soybean, maize, 
almond, alfalfa, sugar beet, and spring wheat. However, the impact of time was 
always insignificant for sorghum. Stress significantly (p < 0.05) impacted FAPAR, 
FVC, and LAI for all crops. Except in Cw for sorghum, and in Cab for soybean and 
spring wheat, other crops had significant (p < 0.05) differences in Cab and Cw in 
all stress conditions across the growing season. In addition, for all traits and crops, 
the impacts of stress varied significantly (p < 0.05) over time except in Cw and 
LAI for sorghum. Among all crops, we found that both the main effect and 
interaction effect were always significant (p < 0.05) in all five traits for maize, 
almond, alfalfa, and sugar beet, indicating that the impacts of drought and salinity 
on their performance depended on the moment in the growing season. Interestingly, 
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sorghum had the highest number of insignificant effects of both the main effect of 
stress and time as well as their interaction effect for the five traits. In particular, Cw 
was not significant (p < 0.05) in either main effects or interaction effects, 
suggesting sorghum had a stronger resilience to drought and salinity over the whole 
growing season. Moreover, time and stress were similarly important (as expressed 
by the partial eta square value) across five traits for soybean, maize, almond, spring 
wheat, and sorghum. In general, time, stress, and time*stress explained more of the 
variance in the trait values for grape, almond, alfalfa, sugar beet, and sorghum 
compared to soybean, maize, and spring wheat, indicating stronger impacts on the 
first group of crops. Furthermore, the interaction effect between stress and time 
was more important or equally important as the separate main effects, indicating 
that the impact of stress showed complicated dynamics that highly depended on the 
moment of the growing season.  
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Figure 4.3 Results from two-way ANOVAs for different crop traits by stress, time, and their 
interactions, highlighting which effects are significant and which are not. ST+DS indicates salt-
tolerant and drought-sensitive crops; SS+DT indicates salt-sensitive and drought-tolerant crops; 
ST+DT indicates salt-tolerant and drought-tolerant crops; PES indicates the partial eta square, i.e. the 
strength of the relationship.  

4.3.2 Crop structural trait differences to stress in the growing season 

Given the strong interaction effects of stress and time, the effects of salinity and 
drought on LAI, FVC, and FAPAR for crops from March to October were 
evaluated separately (Figure 4.4 and Figure S4-2). The patterns for FVC and 
FAPAR were similar to the pattern for LAI, even though the impacts of stresses 
were stronger for LAI throughout the growing season compared to FAPAR and 
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FVC. Therefore, they are presented in the supplementary information (Figure S4-3, 
Figure S4-4, Figure S4-7, and Figure S4-8). 

Figure 4.4 The pattern of LAI, expressing the severest stress conditions in different months. ST+DS 
indicates salt-tolerant and drought-sensitive crops; SS+DT indicates salt-sensitive and drought-
tolerant crops; ST+DT indicates salt-tolerant and drought-tolerant crops; in strength, low indicates a 
difference between stress pixels and control pixels smaller than 0.1 m2 leaf per m2 surface, moderate 
indicates a difference between stress pixels and control pixels between 0.1 m2 leaf per m2 surface and 
0.5 m2 leaf per m2 surface, and high indicates a difference between stress pixels and control pixels 
greater than 0.5 m2 leaf per m2 surface; positive effect and negative effect indicate the direction of the 
pair-wise differences between stress pixels and control pixels.  

The patterns of LAI, FVC, and FAPAR under drought and salinity stress varied 
strongly between different crops and at different moments (Figure 4.4, Figure S4-2, 
and Figure S4-3) as well as between different states (Figure S4-9, Figure S4-10, 
and Figure S4-11). For all crops, the combination of salinity and drought stress 
commonly had the biggest impact on the performance of LAI, FAPAR, and FVC 
over the whole growing season, even though occasionally in parts of the growing 
season positive effects on individual traits were observed. Drought stress alone had 
the lowest amount of impact among the three stress factors (and particularly 
affected sorghum). These results suggest that in general salinity was more 
important in determining crop performance than drought. Salinity stress showed 
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negative impacts on all crops for LAI in all months. However, for FAPAR and FVC, 
salinity stress showed positive impacts on almond, alfalfa, and sorghum during the 
growing season (Figure S4-2).  

The importance of individual and combined stresses varied among the different 
crops. In many crops, the combination of stresses really mattered. However, for 
almond and sorghum, there were only independent drought and salinity stress 
impacts on LAI, FVC, and FAPAR throughout the whole growing season. All crops 
except for grape and sugar beet responded consistently negatively to stresses for 
LAI from April to August. Thus, the responses of crops to drought and salinity 
differed between species and over time. Importantly, none of these patterns seemed 
to relate to their perceived tolerance to salinity or drought (Table S4-2).  

4.3.3 Crop physiological traits difference to stress in the growing season  

The patterns of Cab and Cw under salinity and drought stress varied between 
different crops and at different moments (Figure 4.5, Figure 4.6, Figure S4-5, and 
Figure S4-6) as well as between different states (Figure S4-12, and Figure S4-13). 
For all crops, the combined drought and salinity stress had the highest impact as 
the severest stress for Cab over the whole growing season. Drought stress alone 
was the most important stress factor in the least number of occasions. For almond 
and sorghum, only drought and salinity stress alone impacted Cab.  Salinity stress 
tended to show positive impacts on soybean, almond, and sugar beet for Cab at the 
beginning and end of the growing season. Also, drought stress and the combination 
of salinity and drought stress showed negative impacts as well as positive impacts 
on crops for Cab without clear patterns in terms of the timing of the positive and 
negative effects. Crops including maize, almond, and alfalfa, responded negatively 
to stresses for Cab from April to August. All crops showed complex dynamic 
responses to stresses for Cab from March to October.  



79 

Figure 4.5 The pattern of Cab (Chlorophyll a/b), expressing the severest stress conditions in different 
months. ST+DS indicates salt-tolerant and drought-sensitive crops; SS+DT indicates salt-sensitive 
and drought-tolerant crops; ST+DT indicates salt-tolerant and drought-tolerant crops; in strength, low 
indicates a difference between stress pixels and control pixels smaller than 1 ug.cm-2, moderate 
indicates a difference between stress pixels and control pixels between 1 ug.cm-2 and 5 ug.cm-2, high 
indicates a difference between stress pixels and control pixels greater than 5 ug.cm-2; positive effect 
and negative effect indicate the direction of the pair-wise differences between stress pixels and control 
pixels. 

Similar to Cab, Cw was mostly affected by the combination of salinity and drought 
stress over the whole growing season, while drought stress alone occurred in the 
least number of occasions as the most important stress factor among all crops. 
Interestingly, sorghum was the only crop that was most impacted by the 
independent effects of salinity and drought stress for Cw across the whole growing 
season. Drought stress always caused negative impacts on Cw, except for spring 
wheat and sorghum. In contrast, salinity stress and combined salinity and drought 
stress showed both negative and positive impacts on crops for Cw during the 
growing season, the direction of the impact as well as the most important stress 
factor varied strongly over time. Crops including maize, grape, alfalfa, and spring 
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wheat responded consistently negatively to stresses for Cw in the later phase of the 
growing season, i.e., from July to October.  

 
Figure 4.6 The pattern of Cw (concentration of water in leaves), expressing the severest stress 
conditions in different months. ST+DS indicates salt-tolerant and drought-sensitive crops; SS+DT 
indicates salt-sensitive and drought-tolerant crops; ST+DT indicates salt-tolerant and drought-tolerant 
crops; in strength, low indicates a difference between stress pixels and control pixels smaller than 
0.001 g.cm-2, moderate indicates a difference between stress pixels and control pixels between 0.001 
g.cm-2 and 0.005 g.cm-2, high indicates a difference between stress pixels and control pixels greater 
than 0.005 g.cm-2; positive effect and negative effect indicate the direction of the pair-wise differences 
between stress pixels and control pixels. 

4.3.4 The onset of drought and salinity impacts in the growing season  

As crops responded in different ways to salinity and drought stress, the onset of 
stresses was analyzed to further compare the differences among crops and traits 
(Figure 4.7). We found for most crops that stress impacts were triggered in March 
and April, indicating on average crops suffered from stresses throughout most of 
the growing season. Although the onset of separate drought and salinity differed 
among crops as well as among traits, the onset of all crops to combined drought 
and salinity stress was similar to or later than drought for all traits except for Cab in 
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alfalfa. Furthermore, among the five traits, LAI was the first trait to respond to 
stresses for all crops, except for almond under combined salinity and drought stress 
conditions. FAPAR and FVC showed similar onset timing to stress. On average, 
Cw and Cab were the last to respond to stresses, compared to other traits.  

Figure 4.7 The onset of crop responses to stresses in the growing season. D indicates drought stress; 
S indicates salinity stress; D+S indicates combined drought and salinity stress; ST+DS indicates salt-
tolerant and drought-sensitive crops; SS+DT indicates salt-sensitive and drought-tolerant crops; 
ST+DT indicates salt-tolerant and drought-tolerant crops. 

4.4 Discussion 

4.4.1 Crop responses to salinity and drought differ between species and growth 
stages 

A key finding of our research is that the combined effects of drought and salinity 
stress on crop growth are more pronounced than the effects of drought or salinity 
stress individually. Consistent with our previous study (Chapter 3) and various 
small-scale experiments, co-occurring salinity and drought showed exacerbating 
effects on crop traits in most cases (Ors and Suarez 2017; Zhang et al. 2013).  

While exacerbated impacts of co-occurring stresses are commonly observed, we 
additionally show how the impacts of stresses on crops vary strongly over the 
growing season (Figure 4.4, Figure 4.5, and Figure 4.6), a finding that would not be 
possible to obtain from small-scale experiments focusing on yield impacts only. 
Moreover, even the dominant stress on crop traits varied throughout the growing 
season. This indicates that the crop responses to drought and salinity are highly 
dependent on the moment. Such variation is consistent with physiological 
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knowledge showing that the sensitivity to specific drivers depends on the growth 
stage (Saqib et al. 2013). For instance, previous studies showed that drought has a 
higher impact on maize during the reproductive phase (Daryanto et al. 2017), while 
the impacts of drought stress were strongest during the tuber bulking phase in 
potato (Chapter 3). Such impacts of (drought and salinity) stress are not commonly 
evaluated but are of crucial importance to evaluating those impacts and for taking 
mitigating measures. Our study shows how we can use remote sensing as a 
convenient tool to enable real-time dynamic monitoring and evaluating crop 
performance to regulate crop management.  

Aside from the significant impact of the moment in the growing season, drought 
and salinity also affect crops differently depending on their species. A number of 
controlled experiments studies have shown that a variety of crops such as barley 
(Toker et al. 1999), reed (Sánchez et al. 2015), durum wheat (Houshmand et al. 
2014), etc., respond differently to salinity and drought. Likewise, seven pepper 
accessions showed a wide variability of responses to salinity, drought, and their 
combination treatments (López-Serrano et al. 2017) These different responses of 
crops to drought and salinity likely link to their differences in tolerance to these 
stresses, which were shown in this study through the trait expressions of the 
various crops studied. For instance, almond -known to be sensitive to salinity and 
tolerant to drought- showed a higher sensitivity to salinity stress for LAI, FVC, 
FAPAR, and Cab during the growing season than to drought and or the 
combination of drought and salinity (Figure 4.4, Figure S4-2, Figure S4-3, and 
Figure 4.5), while sorghum responded more strongly to drought. Nevertheless, the 
responses of individual crops to salinity and drought stress were not fully 
consistent with expected tolerances based on controlled experiments. For instance, 
sorghum was expected to be tolerant to both drought and salinity (but mainly 
responded to drought) and almond was expected to be mainly sensitive to salinity. 
Thus, given the multitude of responses for different traits and crops that might not 
always be consistent with assumed tolerance to these stresses, our study shows that 
a comprehensive evaluation of responses to drought and salinity in a real-life 
agricultural setting across multiple crop types, growth conditions, and management 
is essential. In light of the projected future increase in drought and salinity stress, 
our remote sensing approach may be an appropriate tool to give timely guidance to 
government and local farmers.  

4.4.2 Patterns in growth stage-dependent responses to stress 

Although the responses of crops to drought and salinity differed between species 
and growth stages, there were commonalities among various crop types. In general, 
for all eight crops, LAI was triggered first by drought and salinity stress, followed 
by FVC and FAPAR, and Cw and Cab were the last to respond (Figure 4.7). 
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Therefore, it indicates that -depending on the growth stage- crops employ a 
different strategy to resist drought and salinity or vary in the sensitivity of traits to 
these stresses. Generally, our results suggest that most crops prefer to remove some 
leaves first before decreasing the vegetation cover as a whole to capture as much 
sunlight as possible, maintaining energy and nutrient uptake. When they cannot 
deal with water stress anymore, they reduce leaf chlorophyll content and leaf water 
content at last. This general sequence in trait responses -which we describe for the 
first time- with chlorophyll and leaf water responding when conditions get severe 
for a longer period of time, may explain why several studies concluded that 
chlorophyll content has a high correlation with drought or salinity stress 
(Schlemmer et al. 2005). Our results, showing that LAI responds first, explain why 
LAI -as the most well-known trait- provides a highly sensitive stress detection for 
vegetation (Li et al. 2022). Given their similar responsiveness, also FAPAR and 
FVC have the capability to determine and monitor stress impact on crop growth 
(Cammalleri et al. 2022; Mohammed and Algarni 2020).  

Given that crops employ different strategies to resist drought and salinity stress 
(section 4.4.1) and given the growth-stage dependent trait responses to drought and 
salinity (this section), our study shows the importance of evaluating multiple traits 
simultaneously. Several studies focus on the spatiotemporal variation of individual 
traits, but the responses of crops from the beginning to the end of the growing 
season are rarely considered or compared. This limited coverage in time and traits 
may limit their findings to the restricted range of crop varieties and growth stages. 
Instead, in this study, we obtained a detailed description of crop tolerances to 
drought and salinity thanks to the combination of multiple measurements during 
the growing season and the assessment of multiple traits simultaneously. Such 
quantification is of importance for understanding crop responses to stress in real-
life agricultural systems. 

4.4.3 Local impacts on crop responses to salinity and drought stress 

Despite the strong significance of all patterns described above, the effect sizes of 
the crop responses to salinity and drought stress were limited. Additionally 
accounting for the potential effects of differences in soil type, climate zone, and 
region between our observation pairs hardly improved our explanatory power of 
the effects of stress (Figure 4.3, Table S4-4, and Table S4-5), even though local 
conditions affected crop responses to stress (Figure S4-9, Figure S4-10, Figure S4-
11, Figure S4-12, and Figure S4-13). The interaction effects of e.g. soil type or 
climate zone with stress were however significant in many cases (Table S4-5). This 
may be explained by the fact that soil moisture and soil salinity variations are 
known to be controlled by various factors, including soil type, climatic conditions, 
and local management policy (Ben Ahmed et al. 2012). Ben Rouina et al. (2007) 
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pointed out that the response of the olive tree to drought stress varied in soil type, 
due to the higher water-holding capacity in clay soils than in sandy soils. In most 
crops and for the five traits investigated, the impacts of soil type on the effects of 
stress were stronger than the impacts of climate zones or specific regions thereon. 
Together, they provide a partial explanation for the strong variation in crop 
responses to salinity and drought stress in the contiguous USA. However, even soil 
type did not affect the expression of impacts of salinity or drought stress as much 
as time did. This reinforces our assessment of the importance of time-dependent 
impacts of drought and salinity stress (section 4.4.1) and the generic patterns in the 
timing of the trait responses (section 4.4.2). In combination, our results indicate 
that a high variation in responses to drought and salinity is an outcome of the 
complex interaction of different crop responses and strategies over time in a broad 
spectrum of environmental conditions.  

4.4.4 Future implications 

The remote sensing approach developed and employed in this study to evaluate 
crop tolerance to combined salinity and drought stress by assessing multiple traits 
linked to crop performance also provides possibilities for application to other stress 
combinations (e.g., flood, heat, frost). Given the general nature of the traits used 
and of its generic assessment methodology, such applications are not only feasible 
for crops but for all kinds of vegetation types. Our approach is complementary to 
existing small-scale and experimental approaches by focusing on large-scale 
settings in local agricultural settings. Our approach shows that it is able to capture 
the high variation in crop performance in the contiguous USA at relatively high 
resolution. This suggests that it can be an interesting approach for local farmers or 
the government to timely assess crop health. In this way, it gives farmers an open-
source tool to monitor crop growth conditions and adjust field management based 
on evidence. For larger to global scale applications, our approach allows evaluating 
food security and associated stress factors to may constrain food security, many of 
which are likely to become more prominent in the near future.  

4.5 Conclusions 

In this study, we evaluated the responses of multiple crops to salinity, drought, and 
their combination based on five functional traits across the entire U.S. continent 
throughout crop growing season in 2021 from remote sensing. We found that stress 
impacts were highly dependent on the moment in the growing season. Moreover, 
different crops showed divergent responses to these stresses over time. In general, 
crops were more sensitive to the combined effects of salinity and drought stress 
compared to the individual effects of salinity and drought stress. Most crops first 
reduced their primary production capacity through reducing LAI before reducing 
water or chlorophyll contents. In combination, we established a quantitative 
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foundation for simultaneously assessing the responses of various crops to the 
occurrence of stresses, alone and collectively at large scale and under actual 
agricultural conditions. Consequently, we contribute to monitor food security and 
guide food production in a timely and non-destructive way by remote sensing. 
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4.7 Supporting information 

Table S4-1. Number of observation pairs in the final selection for crops during the growing season 
from March to October. 

March April May June July August September October Total 

Soybean 405 1500 6994 13810 18402 22975 21824 12392 98302 

Maize 911 2827 6227 10293 14460 16228 16341 9497 76784 

Alfalfa 1678 4265 8144 8402 6932 6517 7702 5868 49508 

Spring 
wheat 14 35 3298 11391 9093 6925 7695 5604 44055 

Sugar 
beet 101 140 289 755 1014 1187 1153 1036 5675 

Almond 405 728 709 705 707 705 699 739 5397 

Grape 340 352 391 452 466 527 587 622 3737 

Sorghum 9 12 58 111 176 180 144 127 817 
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Table S4-2. Crop stress-tolerance characteristics. 

Crop 
Drought tolerance 

(Idowu et al. 2012; Wei 
et al. 2018) 

Salinity tolerance 
(Grieve et al. 2011) Category 

Soybean drought-sensitive (DS) salinity-tolerant (ST) ST+DS 

Maize drought-tolerant (DT) salinity-sensitive (SS) SS+DT 

Grape drought-tolerant (DT) salinity-sensitive (SS) SS+DT 

Almond drought-tolerant (DT) salinity-sensitive (SS) SS+DT 

Alfalfa drought-tolerant (DT) salinity-sensitive (SS) SS+DT 

Sugar beet drought-tolerant (DT) salinity-tolerant (ST) ST+DT 

Spring wheat drought-tolerant (DT) salinity-tolerant (ST) ST+DT 

Sorghum drought-tolerant (DT) salinity-tolerant (ST) ST+DT 
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Table S4-3. Two-way ANOVA results by time series and stress interactions for different crop traits 
(sig.= significance with ** p < 0.01; * p < 0.05; ns = not significant).  

Crops Factors 

LAI FAPAR FVC Cab Cw 

sig. 
Partial 
Eta 
Squared 

sig. 
Partial 
Eta 
Squared 

sig. 
Partial 
Eta 
Squared 

sig. 
Partial 
Eta 
Squared 

sig. 
Partial 
Eta 
Squared 

Alfalfa 

time ** 0.001 ** 0.001 ** 0.001 ** 0.001 ** 0.001 

stress ** 0.002 ** 0.002 ** 0.002 ** 0.004 ** 0.013 

time*stress ** 0.012 ** 0.014 ** 0.014 ** 0.014 ** 0.073 

Almond 

time ** 0.007 * 0.030 * 0.004 * 0.003 ** 0.010 

stress ** 0.014 ** 0.016 ** 0.020 * 0.004 ** 0.018 

time*stress ** 0.037 ** 0.036 ** 0.035 ** 0.030 ** 0.045 

Grape 

time * 0.007 ns 0.003 ns 0.003 * 0.005 ns 0.001 

stress ** 0.010 * 0.004 * 0.005 ** 0.012 ** 0.010 

time*stress ** 0.048 ** 0.028 ** 0.033 ** 0.027 ** 0.028 

Maize 

time ** 0.000 ** 0.001 ** 0.001 ** 0.001 ** 0.001 

stress ** 0.001 ** 0.001 ** 0.001 ** 0.001 * 0.000 

time*stress ** 0.003 ** 0.002 ** 0.002 ** 0.002 ** 0.002 

Sorghum 

time ns 0.007 ns 0.014 ns 0.011 ns 0.010 ns 0.006 

stress ** 0.026 * 0.014 * 0.015 * 0.018 ns 0.001 

time*stress ns 0.020 * 0.028 * 0.026 * 0.035 ns 0.009 

Soybean 

time ** 0.001 ** 0.000 ** 0.001 ** 0.002 ** 0.001 

stress ** 0.000 ** 0.000 ** 0.000 ns 0.000 ** 0.000 

time*stress ** 0.001 ** 0.001 ** 0.001 ** 0.002 ** 0.001 

Spring 
wheat 

time ** 0.001 ** 0.001 ** 0.001 ** 0.003 ** 0.002 

stress * 0.000 * 0.000 * 0.000 ns 0.000 * 0.000 

time*stress ** 0.002 ** 0.002 ** 0.002 ** 0.002 ** 0.001 

Sugar 
beet 

time ** 0.023 ** 0.014 ** 0.019 ** 0.006 ** 0.006 

stress ** 0.007 ** 0.005 ** 0.007 ** 0.008 ** 0.010 

time*stress ** 0.053 ** 0.028 ** 0.033 ** 0.026 ** 0.040 
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Table S4-4. Multi-way ANOVA for different crop traits including only main effects of time, stress, 
soil type, climate zone, and state (sig. = significance with ** p < 0.01; * p < 0.05; ns = not significant). 

Crops Factors 

Cab Cw FAPAR FVC LAI 

sig. 
Partial 

Eta 
Squared 

sig. 
Partial 

Eta 
Squared 

sig. 
Partial 

Eta 
Squared 

sig. 
Partial 

Eta 
Squared 

sig. 
Partial 

Eta 
Squared 

Alfalfa 

time ** 0.004 ** 0.011 ** 0.002 ** 0.004 ** 0.002 

stress ** 0.002 ** 0.011 ** 0.001 ** 0.001 ** 0.001 
soil 
type ** 0.012 ** 0.005 ** 0.010 ** 0.010 ** 0.005 

climate 
zone ** 0.003 ** 0.002 ** 0.002 ** 0.002 ** 0.002 

state ** 0.006 ** 0.009 ** 0.005 ** 0.005 ** 0.004 

Almond 

time ** 0.039 ** 0.055 ** 0.081 ** 0.084 ** 0.067 

stress ** 0.005 ** 0.010 * 0.003 ** 0.007 ** 0.006 
soil 
type ** 0.078 ** 0.115 ** 0.050 ** 0.040 ** 0.040 

climate 
zone ** 0.030 ** 0.075 ** 0.013 ** 0.013 ** 0.020 

state -- -- -- -- -- -- -- -- -- -- 

Grape 

time ** 0.013 ** 0.016 ** 0.047 ** 0.051 ** 0.087 

stress ** 0.014 ** 0.015 ** 0.006 * 0.004 * 0.004 
soil 
type ** 0.025 ** 0.023 ** 0.042 ** 0.045 ** 0.044 

climate 
zone ** 0.077 ** 0.019 ** 0.078 ** 0.096 ** 0.137 

state ns 0.000 * 0.004 ** 0.007 ** 0.010 ** 0.029 

Maize 

time ** 0.007 ** 0.004 ** 0.004 ** 0.004 ** 0.005 

stress ** 0.002 * 0.000 ** 0.001 ** 0.001 ** 0.001 
soil 
type ** 0.003 ** 0.008 ** 0.003 ** 0.003 ** 0.004 

climate 
zone ** 0.001 ** 0.001 ** 0.001 ** 0.001 ** 0.001 

state ** 0.003 ** 0.004 ** 0.002 ** 0.002 ** 0.003 

Sorghum 

time ** 0.037 ns 0.015 ** 0.053 ** 0.044 ** 0.037 

stress * 0.009 ns 0.000 ns 0.001 ns 0.001 ns 0.000 
soil 
type * 0.026 ns 0.008 ns 0.016 ns 0.013 * 0.020 

climate 
zone ns 0.013 ns 0.008 ns 0.014 ns 0.012 * 0.028 

state * 0.026 * 0.019 ns 0.015 ns 0.014 ** 0.040 

Soybean 

time ** 0.011 ** 0.006 ** 0.004 ** 0.004 ** 0.007 

stress ** 0.001 ns 0.000 ** 0.001 ** 0.001 ** 0.001 
soil 
type ** 0.001 ** 0.001 ** 0.003 ** 0.004 ** 0.005 

climate 
zone ** 0.000 ** 0.000 ** 0.000 ** 0.000 * 0.000 

state ** 0.002 0.001 ** 0.001 ** 0.001 ** 0.001 
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Spring 
Wheat 

time ** 0.014 ** 0.002 ** 0.004 ** 0.003 ** 0.006 

stress ** 0.002 ns 0.000 ** 0.000 ** 0.001 ** 0.001 
soil 
type ** 0.005 ** 0.003 ** 0.002 ** 0.003 ** 0.005 

climate 
zone ** 0.001 ns 0.000 ** 0.002 ** 0.002 ** 0.002 

state ** 0.002 * 0.001 ** 0.002 ** 0.001 ** 0.003 

Sugar 
beet 

time ** 0.073 ** 0.029 ** 0.051 ** 0.066 ** 0.089 

stress ns 0.001 ** 0.015 * 0.002 * 0.002 * 0.003 
soil 
type ns 0.002 * 0.004 ** 0.006 ** 0.006 ** 0.006 

climate 
zone * 0.002 ** 0.004 ** 0.004 ** 0.004 ** 0.010 

state ** 0.009 ** 0.005 ** 0.009 ** 0.008 ** 0.016 
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Table S4-5. Multi-way ANOVA for different crop traits including main effects of time, stress, soil 
type, climate zone, and states and the interactions of stress and time with other factors (sig. = 
significance, ** p < 0.01; * p < 0.05; ns = not significant). 

Crops Factors 

Cab Cw FAPAR FVC LAI 

sig
. 

Partial 
Eta 

Square
d 

sig
. 

Partial 
Eta 

Square
d 

sig
. 

Partial 
Eta 

Square
d 

sig
. 

Partial 
Eta 

Square
d 

sig
. 

Partial 
Eta 

Square
d 

Alfalfa 

time ns 0.000 * 0.000 * 0.000 * 0.000 * 0.000 
stress ns 0.000 ns 0.000 ns 0.000 ns 0.000 ns 0.000 

soil type ** 0.000 ** 0.002 ** 0.003 ** 0.003 ** 0.002 
climate zone * 0.002 ** 0.001 ns 0.000 ns 0.000 * 0.000 

state ** 0.001 ** 0.002 ** 0.002 ** 0.002 ** 0.002 
time*stress ** 0.006 ** 0.026 ** 0.009 ** 0.004 ** 0.006 

time*soil type ** 0.013 ** 0.026 ** 0.018 ** 0.022 ** 0.018 
time*state ** 0.014 ** 0.027 ** 0.019 ** 0.020 ** 0.022 

time*climate 
zone ** 0.007 ** 0.013 ** 0.007 ** 0.008 ** 0.008 

stress*soil 
type ** 0.008 ** 0.002 ** 0.006 ** 0.007 ** 0.006 

stress*climate 
zone * 0.001 ** 0.001 * 0.001 ns 0.001 ns 0.001 

stress*state ** 0.006 ** 0.003 ** 0.005 ** 0.006 ** 0.005 

Almond 

time ** 0.012 ** 0.008 ** 0.005 ** 0.007 ** 0.019 
stress ** 0.008 ** 0.011 ** 0.007 ** 0.013 ** 0.013 

soil type ** 0.017 ** 0.025 ** 0.017 ** 0.016 ** 0.017 
climate zone ** 0.022 ** 0.013 ** 0.019 ** 0.025 ** 0.035 

state -- -- -- -- -- -- -- -- -- -- 
time*stress ** 0.020 ** 0.027 ** 0.018 ** 0.018 ** 0.022 

time*soil type ** 0.060 ** 0.094 ** 0.061 ** 0.056 ** 0.043 
time*state -- -- -- -- -- -- -- -- -- -- 

time*climate 
zone ** 0.055 ** 0.064 ** 0.046 ** 0.047 ** 0.066 

stress*soil 
type * 0.005 ** 0.006 ** 0.008 ** 0.009 ** 0.010 

stress*climate 
zone ** 0.008 ** 0.006 * 0.004 ** 0.009 ** 0.010 

stress*state -- -- -- -- -- -- -- -- -- -- 

Maize 

time * 0.000 ** 0.000 ns 0.000 ns 0.000 * 0.000 
stress * 0.000 * 0.000 ns 0.000 ns 0.000 * 0.000 

soil type ** 0.001 ** 0.003 ** 0.001 ** 0.002 ** 0.002 
climate zone * 0.000 ns 0.000 ns 0.000 ns 0.000 * 0.000 

state ** 0.001 ** 0.002 ** 0.001 ** 0.001 ** 0.001 
time*stress ** 0.002 ** 0.001 ** 0.001 ** 0.001 ** 0.001 

time*soil type ** 0.032 ** 0.018 ** 0.021 ** 0.021 ** 0.033 
time*state ** 0.015 ** 0.016 ** 0.011 ** 0.011 ** 0.018 

time*climate 
zone ** 0.005 ** 0.003 ** 0.004 ** 0.004 ** 0.005 

stress*soil 
type ** 0.001 ns 0.000 ** 0.001 ** 0.001 ** 0.002 

stress*climate 
zone ns 0.000 ** 0.001 * 0.000 * 0.001 ** 0.001 

stress*state ** 0.001 * 0.001 ** 0.001 ** 0.001 ** 0.002 
time ** 0.010 * 0.005 ** 0.011 ** 0.010 * 0.007 
stress * 0.004 ns 0.002 ns 0.002 * 0.003 ** 0.007 
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Grape 

soil type ** 0.038 ** 0.018 ** 0.042 ** 0.045 ** 0.061 
climate zone ** 0.041 ** 0.010 ** 0.029 ** 0.026 ** 0.030 

state ns 0.000 * 0.003 * 0.002 * 0.003 ** 0.010 
time*stress ** 0.013 * 0.011 * 0.011 ** 0.013 ** 0.018 

time*soil type ** 0.102 ** 0.043 ** 0.054 ** 0.054 ** 0.061 
time*state * 0.005 * 0.004 ** 0.006 ** 0.007 * 0.004 

time*climate 
zone ** 0.065 ** 0.034 ** 0.072 ** 0.082 ** 0.142 

stress*soil 
type ns 0.001 * 0.001 ns 0.000 ns 0.000 ns 0.000 

stress*climate 
zone ** 0.009 ** 0.008 ns 0.001 ns 0.001 ns 0.001 

stress*state ns 0.000 ns 0.000 ns 0.000 ns 0.000 ns 0.000 

Sorghum 

time * 0.021 ns 0.014 * 0.025 * 0.024 * 0.024 
stress ns 0.007 ns 0.001 ns 0.003 ns 0.006 ns 0.002 

soil type * 0.022 ns 0.006 * 0.020 * 0.019 ** 0.035 
climate zone ns 0.003 ns 0.004 ns 0.003 ns 0.005 ns 0.003 

state * 0.015 ns 0.007 ns 0.010 ns 0.013 ns 0.008 
time*stress ** 0.049 ns 0.012 * 0.036 * 0.035 * 0.033 

time*soil type ns 0.032 ns 0.029 * 0.059 ns 0.056 ns 0.034 
time*state ns 0.016 ns 0.011 ns 0.016 ns 0.022 ns 0.033 

time*climate 
zone ns 0.021 ns 0.008 ns 0.038 ns 0.035 ns 0.031 

stress*soil 
type * 0.021 ns 0.010 ns 0.010 * 0.016 * 0.018 

stress*climate 
zone ns 0.002 ns 0.001 ns 0.001 ns 0.000 ns 0.000 

stress*state ns 0.001 ns 0.001 ns 0.001 ns 0.002 ns 0.006 

Soybean 

time * 0.000 * 0.000 * 0.000 * 0.000 ** 0.000 
stress ns 0.000 ns 0.000 ns 0.000 ns 0.000 ns 0.000 

soil type * 0.000 ** 0.001 ns 0.000 * 0.000 ns 0.000 
climate zone ns 0.000 ** 0.000 ns 0.000 ns 0.000 ns 0.000 

state ** 0.000 * 0.000 * 0.000 * 0.000 * 0.000 
time*stress ** 0.001 ** 0.001 * 0.001 ** 0.001 ** 0.001 

time*soil type ** 0.013 ** 0.011 ** 0.009 ** 0.009 ** 0.010 
time*state ** 0.007 ** 0.005 ** 0.005 ** 0.005 ** 0.006 

time*climate 
zone ** 0.002 ** 0.001 ** 0.002 ** 0.002 ** 0.002 

stress*soil 
type ns 0.000 ns 0.000 ns 0.000 ns 0.000 * 0.000 

stress*climate 
zone * 0.000 * 0.000 * 0.000 ** 0.000 * 0.000 

stress*state * 0.000 * 0.000 * 0.000 * 0.000 ** 0.000 

Spring 
wheat 

time ** 0.001 ** 0.002 ** 0.001 ** 0.001 ** 0.003 
stress ns 0.000 * 0.000 ns 0.000 ns 0.000 * 0.000 

soil type ** 0.001 ** 0.003 ns 0.000 * 0.001 ** 0.001 
climate zone ** 0.001 ns 0.000 ns 0.000 ns 0.000 * 0.000 

state * 0.000 * 0.000 * 0.000 * 0.000 * 0.001 
time*stress ** 0.003 ** 0.001 * 0.001 * 0.001 * 0.001 

time*soil type ** 0.011 ** 0.010 ** 0.008 ** 0.007 ** 0.011 
time*state ** 0.007 ** 0.003 ** 0.007 ** 0.007 ** 0.011 

time*climate 
zone ** 0.005 ** 0.002 ** 0.004 ** 0.004 ** 0.005 

stress*soil 
type * 0.001 * 0.001 ns 0.000 ns 0.000 ns 0.001 

stress*climate 
zone ns 0.000 ns 0.000 ns 0.000 ns 0.000 ns 0.000 

stress*state ** 0.001 ns 0.000 * 0.001 * 0.001 ** 0.001 
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Sugar 
beet 

time ns 0.002 * 0.003 ns 0.003 ns 0.001 ns 0.001 
stress ns 0.001 ns 0.001 ** 0.004 * 0.003 ** 0.004 

soil type * 0.003 * 0.003 ns 0.002 * 0.002 ns 0.001 
climate zone ns 0.001 ** 0.003 * 0.002 * 0.002 ** 0.007 

state ns 0.001 ** 0.005 * 0.003 * 0.003 ** 0.006 
time*stress * 0.007 ** 0.009 ** 0.010 ** 0.011 ** 0.012 

time*soil type ** 0.015 ** 0.020 ** 0.017 ** 0.019 ** 0.017 
time*state ** 0.014 ** 0.012 ** 0.020 ** 0.020 ** 0.019 

time*climate 
zone ** 0.007 * 0.005 ** 0.012 ** 0.012 ** 0.012 

stress*soil 
type * 0.002 ns 0.001 ns 0.001 ns 0.001 ** 0.004 

stress*climate 
zone ns 0.001 ns 0.001 ns 0.001 ns 0.001 * 0.003 

stress*state ns 0.001 * 0.002 * 0.003 ** 0.003 ** 0.005 
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Figure S4-1 Technical workflow of pairwise dataset processing. 
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Figure S4-2. Expressions of LAI under various stress conditions for eight crops from March to 
October in 2021. MS, moderate salinity only; SS, severe salinity only; MD, moderate drought only; 
SD, severe drought only; MD+MS, moderate drought and moderate salinity; SD+MS, severe drought 
and moderate salinity; MD+SS, moderate drought and severe salinity; SD+SS, severe drought and 
severe salinity; MD+Salinity, moderate drought and salinity; SD+Salinity, severe drought and salinity; 
NA, the stress condition is not applicable to that month.   
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Figure S4-3. Expressions of FAPAR under various stress conditions for eight crops from March to 
October in 2021. MS, moderate salinity only; SS, severe salinity only; MD, moderate drought only; 
SD, severe drought only; MD+MS, moderate drought and moderate salinity; SD+MS, severe drought 
and moderate salinity; MD+SS, moderate drought and severe salinity; SD+SS, severe drought and 
severe salinity; MD+Salinity, moderate drought and salinity; SD+Salinity, severe drought and salinity; 
NA, the stress condition is not applicable to that month.   
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Figure S4-4. Expressions of FVC under various stress conditions for eight crops from March to 
October in 2021. MS, moderate salinity only; SS, severe salinity only; MD, moderate drought only; 
SD, severe drought only; MD+MS, moderate drought and moderate salinity; SD+MS, severe drought 
and moderate salinity; MD+SS, moderate drought and severe salinity; SD+SS, severe drought and 
severe salinity; MD+Salinity, moderate drought and salinity; SD+Salinity, severe drought and salinity; 
NA, the stress condition is not applicable to that month.   
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Figure S4-5. Expressions of Cab under various stress conditions for eight crops from March to 
October in 2021. MS, moderate salinity only; SS, severe salinity only; MD, moderate drought only; 
SD, severe drought only; MD+MS, moderate drought and moderate salinity; SD+MS, severe drought 
and moderate salinity; MD+SS, moderate drought and severe salinity; SD+SS, severe drought and 
severe salinity; MD+Salinity, moderate drought and salinity; SD+Salinity, severe drought and salinity; 
NA, the stress condition is not applicable to that month.   
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Figure S4-6. Expressions of Cw under various stress conditions for eight crops from March to 
October in 2021. MS, moderate salinity only; SS, severe salinity only; MD, moderate drought only; 
SD, severe drought only; MD+MS, moderate drought and moderate salinity; SD+MS, severe drought 
and moderate salinity; MD+SS, moderate drought and severe salinity; SD+SS, severe drought and 
severe salinity; MD+Salinity, moderate drought and salinity; SD+Salinity, severe drought and salinity; 
NA, the stress condition is not applicable to that month.   
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Figure S4-7. The pattern of FAPAR, expressing the severest stress conditions in different months. 
ST+DS indicates salt-tolerant and drought-sensitive crop; SS+DT indicates salt-sensitive and drought-
tolerant crop; ST+DT indicates salt-tolerant and drought-tolerant crop; in strength, low indicates a 
difference between stress pixels and control pixels smaller than 0.05 (unitless), moderate indicates a 
difference between stress pixels and control pixels between 0.05 and 0.1, high indicates a difference 
between stress pixels and control pixels greater than 0.1; positive effect and negative effect indicate 
the direction of the pair-wise differences between stress pixels and control pixels. 
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Figure S4-8. The pattern of FVC, expressing the severest stress conditions in different months. 
ST+DS indicates salt-tolerant and drought-sensitive crop; SS+DT indicates salt-sensitive and drought-
tolerant crop; ST+DT indicates salt-tolerant and drought-tolerant crop; in strength, low indicates a 
difference between stress pixels and control pixels smaller than 0.05 (unitless), moderate indicates a 
difference between stress pixels and control pixels between 0.05 and 0.1, high indicates a difference 
between stress pixels and control pixels greater than 0.1; positive effect and negative effect indicate 
the direction of the pair-wise differences between stress pixels and control pixels. 
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Figure S4-9. The spatial variation of LAI by states for eight crops.  
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Figure S4-10. The spatial variation of FAPAR by states for eight crops. 
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Figure S4-11. The spatial variation of FVC by states for eight crops.  
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Figure S4-12. The spatial variation of Cab by states for eight crops. 
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Figure S4-13. The spatial variation of Cw by states for eight crops. 
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Chapter 5 

Prospects of salt-tolerant potato to increase food productivity towards a 
zero hunger world 
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Abstract 

Sustainable agriculture and food security are critical aspects of the sustainable 
development goals (SDGs), but they are increasingly vulnerable to the impacts of 
global climate change. While salt-induced stress on crop growth and food 
production has been extensively studied, the quantification of the contribution of 
the utilization of saline soil to agricultural production (i.e., saline farming) on a 
global scale is still highly uncertain. This study aims to address this gap by 
evaluating the local and regional suitability areas for salt-tolerant potato cultivation 
in affected soils, thereby assessing the contribution of salt-tolerant potatoes to the 
current and future SDGs. We found that Oceania, out of all other continents, 
currently exhibits the greatest potential for enhancing food production through salt-
tolerant potato cultivation in salt-affected soils. In particular, Australia emerges as 
the country with the most substantial increase in the local suitability and regional 
suitability area. Meanwhile, Kazakhstan, the Russian Federation, Iraq, and Lesotho 
also possess the capacity to address food shortage challenges and work towards 
achieving SDG targets by utilizing salt-tolerant potato cultivation. Furthermore, 
under various future scenarios, the extent of local suitability area for salt-tolerant 
potato will consistently expand despite the increasing severity of soil salinity. 
Hence, also under future climatic and salinity conditions, salt-tolerant crops may 
help to enhance food production and to successfully achieve SDG targets (with a 
100% increase for countries like Kazakhstan and the Russian Federation) across 
various future scenarios. In combination, our study provides a way of evaluating 
salt-tolerant potato as a proxy of saline farming, enabling enhanced food 
production in salt-affected soils, thereby establishing the backbone for promoting 
saline farming practices, with the ultimate goal of ensuring food security and 
enhancing agricultural resilience. 
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5.1 Introduction 

To ensure a safe and sustainable future for all, the United Nations (UN) has 
established the sustainable development goals (SDGs) for 2030, with sustainable 
agriculture and food security being essential components. Within this framework, 
SDG-2 specifies aims to improve agriculture system resilience to e.g. climate 
change, drought, and soil quality, to ensure sustainable food production by 2030 
(UN 2015). To attain SDG-2 requires significant improvements to agricultural 
production both in terms of size and efficiency. However, SDG-2 is also 
persistently challenged by frequently occurring extreme events, sluggish 
economics, conflicts, inequality, and poverty. Hence, despite considerable progress, 
the world remains off track in achieving the zero hunger world goal under global 
climate change and there are still 1/10 people suffering from hunger in 2021 (UN 
2022). Therefore, there is a pressing need for improved agricultural practices and 
optimal utilization of the available land area to ensure food security. 

Salt affects approximately 11% of the world's irrigated area while soil salinity is 
projected to increase to 50% of the arable land by 2050 (Butcher et al. 2016; FAO 
2011). Most of these increases are on arid or semi-arid lands where increasingly 
frequent extreme events (e.g., drought) are projected to increase soil salinity 
impacts (Chapter 2). Meanwhile, the availability of water suitable for irrigation is 
projected to be exacerbated in the coastal area due to sea-level rise and seawater 
intrusion in the near future (Chen and Mueller 2018). Salinity is a major pressure 
limiting crop growth and yield, resulting in an annual economic loss of 27.3 billion 
US dollars globally (Qadir et al. 2014). Thus, improving the utilization of salt-
affected soils can be a critical step to contribute to a sustainable agricultural system. 
Although various attempts have been made to assess salt-affected soil areas at a 
regional scale or global scale (Corwin and Scudiero 2019; Hassani et al. 2021), 
there is not any regional or global analysis to couple soil salinity with food 
productivity in a quantitative way.  

To address this challenge, salt farming has emerged as a new practice to promote 
crop utilization and contribute to food security in the present and foreseeable future. 
Salt-affected soils have been reclaimed through applications of various 
amendments, halophytes, and microorganisms, and optimizations in land use as 
well as irrigation and drainage strategies (Mukhopadhyay et al. 2021). Next to 
reclaiming salt-affected soils, cultivating salt-tolerant crops is a promising solution 
to tackle this problem (Rozema and Flowers 2008). Crops such as rice, wheat, 
maize, etc., have been screened for salt-tolerant genotypes with stable 
productivities (Farooq et al. 2015; Genc et al. 2019; Reddy et al. 2017). However, 
most of these salt-tolerant cereal cultivars have been primarily tested in local 
experimental settings, indicating a limited understanding of salt-tolerant crops’ 
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application on a large scale.  Compared to these cereals, potato delivers higher 
calories per unit of water (Renault and Wallender 2000). Salt-tolerant potato, in 
particular, has a high value due to its high productivity and water-use efficiency 
allowing it to better utilize salt-affected soils (van Straten et al. 2020;2022). 

Currently, several studies indicated that the cropland suitability for saline farming 
on the global and regional scale. A study using Global Agro-Ecological Zones 
(GAEZ) was conducted to evaluate potato suitability at a global scale based on the 
crop suitability index (FAO and IIASA 2012). However, neither the land suitability 
for salt-tolerant crops in moderate saline areas nor the potential impacts of such 
cultivation on global food productivity have been estimated over the world. 
Therefore, the estimation of suitable areas for salt-tolerant crops (e.g. potatoes) 
provides a critical foundation for the utilization of salt-affected soils for saline 
farming.   

In response, we aim to evaluate the suitable area for salt-tolerant potato in salt-
affected soils and assess the potential of cultivating salt-tolerant potato in these 
areas with respect to the UN sustainable development goals for the present and the 
near future in this study. For this, we generated a global suitability map for salt-
tolerant potato taking multiple constraining factors including land cover, soil 
quality, and essential potato growing conditions into account. Then, the 
contribution of salt-tolerant potato was estimated at the continent level and country 
level to highlight the areas that benefit most towards achieving their SDGs. 
Moreover, in order to evaluate the future contribution of salt-tolerant potato, the 
changes in potentially suitable areas of salt-tolerant potato cultivation between the 
current state and different future scenarios were further analyzed. Consequently, 
our study provides insights into a better utilization of salt-affected soils by 
cultivating salt-tolerant potato to improve food security and agriculture resilience.  

5.2 Methodology  

5.2.1 Data collection 

5.2.1.1 Land cover map 

A global land cover map was obtained from the GlobCover Portal 
(http://due.esrin.esa.int/page_globcover.php). The land cover map was generated 
by observations from the MERIS sensor in 300m resolution with the ENVISAT 
satellite mission. The land cover map included 22 classes which we reclassified as 
suitable or not suitable for crop cultivation based on the possibilities for agriculture 
practices (Table S5-1). Four classes were defined as suitable land types for potato 
cultivation, and given new code=1, water bodies were designated to code = 2, and 
the rest classes were designated to code = 0 (not suitable) (Table S5-3). The land 

http://due.esrin.esa.int/page_globcover.php
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cover map was resampled to 0.83 degrees with WGS84 projection using 
interpolation based on the majority method.  

5.2.1.2 Potato distribution map 

A potato harvest map in 2010 was created from the MapSPAM data center 
(https://mapspam.info/index.php/data/). The potato harvest dataset was reclassified 
to code 1(= distributed area, harvest area > 0 ha) and code 0 (= non-distributed area, 
harvest area > 0 ha). Afterward, based on the reclassified soil salinity map, we 
identified the area within 30 km surrounding current potato production lands as the 
buffer area (code = 2) (Table S5-3). Due to data limitations, this study did not take 
farmers’ willingness for potato cultivation into account. Instead, it is assumed that 
in areas close to current potato production lands, the likelihood of potato adoption 
is high as it is presumably part of the local tradition.   

5.2.1.3 World map 

The world country map was obtained from ArcGIS HUB, named “World Countries 
(Generalized)” provided by ESRI (https://services.arcgis.com/P3ePLMYs2RVChkJ 
x/arcgis/rest/services/World_Countries_(Generalized)/FeatureServer) for the world 
shapefile in 2022. 

5.2.1.4 Soil quality map 

Based on the soil parameters published by the Harmonized World Soil Database 
(HWSD), six soil attributes for crop cultivation, including nutrient availability 
(SQ1), nutrient retention capacity (SQ2), rooting conditions (SQ3), oxygen 
availability to roots (SQ4), toxicities (SQ6), and workability (SQ7) were extracted 
(https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-
world-soil-database-v12/en/). Each of the six soil qualities was distributed into 
seven quantitative classes, including no or slight limitations=code 1, moderate 
limitations = code 2, sever limitations = code 3, very severe limitations = code 4, 
mainly non-soil = code 5, permafrost area = code 6, water bodies = code 7 (Fischer 
et al. 2008). All six soil quality maps were reclassified to two new classes, namely 
suitable (code = 1, no or slight limitations) or not suitable area (code = 0, all other 
classifications) (Table S5-2). The six soil quality maps were resampled to 0.83 
degree with WGS84 projection using the interpolation of the nearest method.  

5.2.1.5 Soil salinity map 

A soil salinity map was created based on excess salts (SQ5) in HWSD 
(https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-
world-soil-database-v12/en/). Soil salinity is measured by Electric Conductivity 
(EC, dS/m) or saturation of the exchange complex with sodium ions (Fischer et al. 

https://mapspam.info/index.php/data/
https://services.arcgis.com/P3ePLMYs2RVChkJx/arcgis/rest/services/World_Countries_(Generalized)/FeatureServer
https://services.arcgis.com/P3ePLMYs2RVChkJx/arcgis/rest/services/World_Countries_(Generalized)/FeatureServer
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
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2008). Future soil salinity maps were created based on four scenarios at a 0.5° 
resolution, including Representative Concentration Pathways (RCP) 4.5, RCP 8.5, 
Shared Socio-economic Pathways 2 (SSP2)-4.5, and SSP5-8.5 for two periods (the 
2050s and 2100s) (Hassani et al. 2021). The RCP 4.5 and RCP 8.5 scenarios 
represent radiative forcing of 4.5 and 8.5 W m−2 in the year 2100 compared to pre-
industrial conditions in the ensemble of CMIP5 (Coupled Model Inter-comparison 
Project Phase 5) data project with eight Global Circulation Models (GCMs) outputs. 
The SSP 2-4.5 and SSP 5-8.5 scenarios represent the projections forced by RCP 4.5 
and RCP 8.5 global forcing pathways for SSP2 and SSP5 to the ensemble of 
CMIP6 (CMIP Phase 6) with eight Global Circulation Models (GCMs) outputs. 
Soil salinity maps of the current state and future scenarios were resampled to 0.83 
degree with WGS84 projection using the interpolation of the nearest method.  

5.2.1.6 Salt-tolerant potato suitability for salinity 

Although the salt tolerance of potato is defined as 1.7 dS/m according to FAO 
investigation, some potato varieties are more tolerant of salinity than expected. 
Based on several years of field experiments, potato variety ‘927’ showed no yield 
reduction up to 5.9 dS/m salinity level (de Vos et al. 2016; Oosterbaan 2019; van 
Straten et al. 2021). Considering that crops would probably already be grown when 
soil salinity varies between 0 dS/m to 2 dS/m, there is no added value for salt-
tolerant potato to be cultivated there. So, the salt-tolerant potato's profitable salinity 
range was defined between 2.0 dS/m and 6.0 dS/m. Moreover, considering there is 
no distinction within “severe limitations - 4 dS/m to 8 dS/m-” of soil salinity (SQ5) 
from FAO, the soil salinity maps were reclassified to three classes, namely code0 = 
not suitable (< 2 dS/m or >  8 dS/m), code1 = high-suitable salinity (2 dS/m to 4 
dS/m), and code2 = moderate-suitable salinity (4 dS/m to 8 dS/m) (Table S3).  

5.2.2 The algorithm of soil suitability for salt-tolerant potato 

The suitable map was generated based raster calculator in ArcGIS Pro using the 
following equation:  

Suitability index = LSAL× LLC × LPD× LNA×LNRC × LRC × LOAR × LTOX × 
LWOR                                                                                                                     (1) 

LSAL = layer of soil salinity, LLC = layer of landcover, LPD = layer of potato 
distribution, LNA= layer of nutrient availability, LNRC = layer of nutrient 
retention capacity, LRC = layer of rooting conditions, LOAR = layer of oxygen 
availability to roots, LTOX = layer of toxicities, LWOR = layer of workability.  

Thus, the local suitability area was determined on the occasions of LSALH =1 
(high-suitable salinity, 2 dS/m to 4 dS/m) or LSALM = 2 (moderate-suitable 
salinity, 4 dS/m to 8 dS/m) with other layers’ codes equalling 1. Though LPD = 1 
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suggests the presence of potato cultivation in the pixel, it should be noted that there 
are also salt-affected parts within the pixel. Meanwhile, the regional suitability area 
was determined when occurring in the buffer area close to current potato fields 
(LPD = 2) while LSALH =1(high-suitable salinity, 2 dS/m to 4 dS/m) or LSALM = 
2 (moderate-suitable salinity, 4 dS/m to 8 dS/m), and other layers’ codes equalling 
1. According to different constraints, the suitability map was grouped into 12
categories (Table S5-4). Finally, the local suitability area and the regional
suitability area were calculated at the continent level and country level based on
zonal statistics in ArcGIS Pro (Figure 5.1).

Figure 5.1 Technical workflow of the maps and data framework. 

5.2.3 Data analysis 

To investigate the contribution of salt-tolerant potato to salt-affected soils at the 
current state and in future scenarios at the global scale, the availability was 
calculated based on the following equation: 

    PCTi =    𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝+ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖

  × 100%        (2) 

Where PCTi is the percentage, Areap is the current potato harvest area 
(https://mapspam.info/index.php/data/), and Areai is the local /regional suitability 
area of the salt-tolerant potato.  

https://mapspam.info/index.php/data/
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According to the latest sustainable development goals report in 2022 by the United 
Nations (UN 2022), it is evident that approximately 1 in 10 people globally are 
currently experiencing hunger, while almost 1 in 3 people lack consistent access to 
sufficient food. In response, international frameworks, such as the "Kunming-
Montreal Global Biodiversity Framework" (GBF), aim to enhance the resilience of 
agricultural systems and improve food security (CBD 2022) for the year 2030. 
Specifically, Target 10 of the GBF, emphasizes that 30% of the world's land 
requires restoration to ensure sustainable management of the agriculture system. 
Thus, given the current gap in food production in terms of SDG 2 and GBF, we 
define 10% and 30% increasement as two thresholds to analyze the contribution of 
salt-tolerant potato cultivating in salt-affected areas. By focusing on the 10% and 
30% increasement in food production, we aim to assess the viability and potential 
of this salt-tolerant crop in achieving the objectives of both SDG 2 and GBF. To 
investigate the critical countries where salt-tolerant potato helps to achieve the 
SDGs and GBF in the near future, the contribution was calculated based on the 
following equation: 

       PCTt =    𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

  × 100%        (3) 

Where PCTt is the percentage, Areai is the local/regional suitability area of the salt-
tolerant potato, and Areatotal is the total harvest area of all crops in 2021 
(https://www.fao.org/faostat/en/#data/QCL).  

The relative change between the local/regional suitability area under future 
scenarios and the current state was calculated based on the following equation: 

          PCTr =    𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓+ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖

  × 100%        (4) 

Where PCTr is the relative change, Areaf is the future local/regional suitability area 
of the salt-tolerant potato, and Areai is the current local/regional suitability area of 
the salt-tolerant potato. In order to be consistent with the future soil salinity map’ 
resolution, we compare the relative change at 0.5° (～ 55km) resolution. Given the 
coarse pixel size of the scenarios, both local and regional suitability were 
aggregated for future scenarios.  

5.3 Results  

5.3.1 Global suitability of salt-tolerant potato for salt-affected area 

A global suitability map of salt-tolerant potato in salt-affected areas was created, as 
shown in Figure 5.2a. The highest suitability areas were concentrated around 
Kazakhstan, the Russian Federation, and northern India while some pieces were 
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distributed in the western part of Australia. Thus, compared to other continents, 
Asia showed a larger extent of local suitability area for salt-tolerant cultivation.  

In order to compare the contributions of salt-tolerant potato to salt-affected areas 
among different continents and countries, the availability of productive land for 
saline potato farming was further analyzed (Figure 5.2b and Figure 5.2c). Here, 
Oceania showed the highest availability of local and regional suitability areas, 
allowing to increase potato production by 99.24% and 98.28% in the local 
suitability area of highly (dS/m 2-4) and moderately (dS/m 4-8) saline conditions, 
and by 97.50% and 94.35% in regional suitability area of highly (dS/m 2-4), and 
moderately (dS/m 4-8) saline conditions, respectively. In contrast, Europe has the 
lowest availability in both locally and regionally suitable areas, with 44.08% more 
local land available that is highly suitable (dS/m 2-4), and 2.51% that is moderately 
suitable (dS/m 4-8), and 17.09% more regional land available that is highly suitable 
(dS/m 2-4), and 0.85% that is moderately suitable (dS/m 4-8).  

At the country level, we found the top 15 countries (i.e., Australia, Mozambique, 
Pakistan, Argentina, Iran, Kazakhstan, India, Russian Federation, Canada, Senegal, 
United States, Zimbabwe, Chad, Spain, and Syria) that benefit greatly from 
cultivating salt-tolerant potatoes. Among these countries, Australia has the highest 
potential, with land area increases of 99.43% in the local suitability area (dS/m 2-4), 
98.11% in the local suitability area (dS/m 4-8), 98.67% in the regional suitability 
area (dS/m 2-4), and 95.69% in the regional suitability area (dS/m 4-8), 
respectively. Interestingly, Senegal does not have any local suitability area for salt-
tolerant potato while Senegal showed notable regional suitability areas at the 
current state. In addition, Chad had only local suitability areas at two salinity levels 
without any regional suitability areas.  

Overall, Oceania had the highest possibility to improve food production while 
Europe had the least capacity for increasing production by salt-tolerant potato 
cultivation in salt-affected soils.  
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Figure 5.2 a) Global suitability map for the salt-tolerant potato. b)  The availability of local and 
regional suitability areas for salt-tolerant potato at the continent level. c) The availability of local and 
regional suitability areas for salt-tolerant potato at the country-level.  

5.3.2 Contribution of salt-tolerant potato to SDGs 

As there were various countries showing promising potential to increase food 
production by better utilizing salt-affected soils, the contribution of local suitability 
and regional suitability areas for achieving SDGs was analyzed (Figure 5.3a and 
Figure 5.3b). When making use of the local suitability area for saline potato 
farming, Kazakhstan, the Russian Federation, Australia, Iraq, and Lesotho could 
already achieve their SDG2 targets (of a 10% increase to deal with current food 
shortages). 

In particular, Kazakhstan showed the highest possibility for achieving the SDG2 
target as well as the GBF target thanks to its availability of 41.88% local suitability 
area compared to the current crop harvested area. Based on the sum of the local 
suitability and regional suitability area, additional countries including New Zealand, 
Mozambique, and Pakistan can succeed in achieving the SDG2 target while 
Kazakhstan was still the only country that can accomplish the GBF target.  
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Figure 5.3 The critical countries with a high contribution of salt-tolerant potato in terms of a) the 
local suitability area, b) local suitability area + regional suitability area. The red line (10%) indicates 
the SDG2 target in the 2030 agenda. The Blue line (30%) indicates the GBF target for 2030.  

5.3.3 Global suitability of salt-tolerant potato in the future 

Given that soil salinity was projected to increase with global climate change, the 
relative change in the local suitability areas for salt-tolerant potato cultivation 
under future scenarios was evaluated for two different future periods, namely 2050 
and 2100 (Figure 5.4). The relative change patterns of the four scenarios were 
similar, even though they differed in detail. Thus, the relative change under RCP85 
was chosen to represent the local suitability area changes in the future while other 
results are presented in the supplementary information (Figure S5-1). In both 
periods, more salt-affected soil was detected under different future scenarios (i.e. 
the area with dS/m 2-4 and dS/m 4-8 will increase more than the area with dS/m>8) 
and therefore resulted in consistently increased the local suitability area for salt-
tolerant potato in comparison to the present. Although the local suitability area in 
Asia was the largest under the four scenarios, North America was projected to have 
the average highest increase compared with the current local suitability area. 
Meanwhile, South America showed overall the lowest increase in the local 
suitability area in future scenarios both for 2050 and 2100. Moreover, there was a 
higher increase in the local suitability area in dS/m 2-4 in Asia and Europe while 
other continents including South America, Oceania, Africa, and North America 
showed a higher incense in the local suitability area in dS/m 4-8 in 2050 as well as 
2100.  
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Figure 5.4 (a) Relative change in suitability for saline farming under the RCP85 scenario in the 2050s. 
(b) The increase in the local suitability area for salt-tolerant potato in the 2050s under different
scenarios at the continent level. (c) Relative change in suitability in the 2100s under the RCP85
scenario. (d) The increase in the local suitability area for salt-tolerant potato in 2100s under different
scenarios at the continent level.

5.3.4 Contributions of salt-tolerant potato to SDGs in the future 

As all continents showed an increase in the local suitability area for salt-tolerant 
potato, the contribution of these increases for the sustainability targets was 
analyzed (Figure 5.5). The contributions varied slightly for the different future 
scenarios. In general, the contributions were higher for most countries under the 
SSP245 and SSP585 scenarios, compared to the RCP45 and RCP85 scenarios. 
There were 20 countries with an average increase of over 10% (i.e. achieving 
SDG-2) under different scenarios in the 2050s and 2100s around the world. 
Kazakhstan, Russian Federation, Ukraine, Hungry, and Romania were projected to 
be the top 5 countries with an average high increase of more than 30% both in the 
2050s and 2100s. These increases indicate that these countries achieve their GBF 
target as well. There was even an increase of over 100% for Kazakhstan and the 
Russian Federation under all scenarios in the 2050s and 2100s. Therefore, 
Kazakhstan, the Russian Federation, Ukraine, Hungry, and Romania were critical 
countries to improve food production and achieve sustainable agriculture system by 
cultivating salt-tolerant potato in salt-affected soil in the future. Moreover, 
Kazakhstan and the Russian Federation even showed significant potential to secure 
sustainable food production with over 100% increasement by extending salt-
tolerant potato cultivation in the salt-affected area across all four scenarios.  
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Figure 5.5 The critical countries with high contributions of salt-tolerant potato in a) 2050s, b) 2100s. 
The blue line (30%) indicates the GBF target for 2030. The green line (100%) indicates doubling the 
current harvested area. * indicates absent scenarios for that country.

5.4 Discussion  

5.4.1 Hotspot areas for salt-tolerant potato cultivation 

Among the six continents, Oceania had the highest relative amounts of the local 
suitability area for saline farming while Asia had the largest (absolute) area for 
growing salt-tolerant potato on salt-affected soil (Figure 5.2). Salt-affected area has 
been mapped regionally and globally using various technologies. Asia is commonly 
identified as the continent with the highest risks of saline soils in the current state 
and the near future (e.g. Ivushkin et al. 2019; Hassani et al. 2020). Nevertheless, 
considering the current potato cultivated area, Oceania showed higher potential 
than Asia, for promoting salt-tolerant potato on salt-affected soil given its 
suitability. This might be due to the current relatively low potato cultivation in 
Oceania with only 0.5% market share in global potato production (Bartosz 
Mickiewicz et al. 2022).  

At the country level, Australia, Mozambique, Pakistan, Argentina, Iran, Kazakhstan, 
India, Russian Federation, Canada, Senegal, United States, Zimbabwe, Chad, Spain, 
and Syria were critical countries with high capacity for enhancing food production 
by promoting salt-tolerant potato cultivation in salt-affected soil (Figure 5.2). This 
is in line with various studies indicating that these countries have a significant salt-
induced soil degradation problem (e.g. Hassani et al. 2020) and major economic 
costs due to salt-induced soil degradation (Qadir et al. 2014; Rengasamy, 2002; 
Rengasamy, 2006). Moreover, consistent with our results, Russia, Argentina, China, 
the United States, and Kazakhstan were identified as the most promising countries 
to develop saline agriculture (ECe > 4 dS/m) based on an analysis taking suitable 
conditions for agriculture into account (Negacz et al. 2022). Therefore, these 
hotspot areas with a high potential to better utilize salt-affected soil by cultivating 
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salt-tolerant potato match with the high-risk areas in terms of soil salinity while 
their potential strength might differ due to their current potato cultivation status.  

Our assessment of the regional suitability contribution of salt-tolerant potato for 
global food production in salt-affected areas is based on limitations due to salt 
tolerance only. However, over 70% of the global salt-affected soil area is 
distributed in arid and semi-arid regions, including but not limited to Pakistan, 
India, Australia, Egypt, and Central Asia (Li et al. 2016). Thus, most regions that 
suffer from soil salinity stress are expected to experience the frequently 
compounded impact of both drought and salinity (Chapter 2 & Chapter 3). In this 
study, the threshold of salt-tolerant potato was determined under strict conditions 
without drought. Given that the side effect of drought is excluded in our current 
analysis, the local suitability area might be overestimated for arid and semi-arid 
regions unless irrigation water is available. Another critical assumption is that 
farmers close to or in buffer areas of 30km around current potato production 
regions are willing to adopt (salt-tolerant) potato cultivation. This assumption may 
be most likely for developing nations that struggle with food security. In contrast, 
developed countries may prefer high-value halophytes with high-end markets such 
as Salicornia, which fetches up to 12 GBP/kg in the United Kingdom (Negacz et al. 
2021). Despite these assumptions, we believe that the results of our study are 
generally robust.  

5.4.2 The role of salt-tolerant potato towards SDGs 

Cultivating salt-tolerant potato is a promising way to close the current food 
production gap to achieve SDG-2 targets for various countries. Negacz et al. (2021) 
conclude that saline agriculture can foster achieving SDGs, especially for SDG2 
and SDG8 in saline soils for those regions with high salt-induced problems and that 
struggle with food security and water scarcity. These countries were estimated to 
have to increase over 10% of the current food production to satisfy their food 
requirements with an increasing population. Countries like Kazakhstan (and others) 
show that they may easily comply with such requirements when embracing salt-
tolerant potato (Figure 5.3). According to FAO (2017), the salt-affected irrigation 
area in Kazakhstan is about 19.6% of the total irrigated area and has grown by 
almost 44% in 20 years (1997-2017). Although innovative technologies e.g., 
drainage, allowed to reclaim soil salinity and maintain crop production (FAO 
2022a; Tanirbergenov et al. 2020), the cost and efficiency need to be further 
evaluated. This study suggests and provides an alternative solution for improving 
sustainable food supply through cultivating salt-tolerant potato in salt-affected soils.    

Cultivating salt-tolerant potato does not only benefit food production within the 
SDG-2 target but also contributes to achieving the GBF target. Salinity has shown 
negative impacts on plant species variety and below-ground biodiversity, including 
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the quantity and activity of soil microbes (IPCC 2019; Rahman et al. 2011). In 
order to control soil salinity and reduce its adverse effects on biodiversity, the 
replacement by salinity-tolerant species and revegetation where necessary have 
been adopted as main measures in forest systems (IPCC 2019; Rahman 2020). 
Likewise, we found that salt-tolerant crop cultivation may be profitable for 
achieving the GBF target (e.g. target 10) by preventing soil degradation, especially 
for the regions that suffered from salt-induced stress. In addition to increasing the 
revenue through greater yields than with conventional crops, the management of 
saline soils can mitigate economic and climate migration (SDG 8) (Negacz et al. 
2021). Moreover, managing soil salinization is essential to accomplishing SDG15 
"Life on Land", with particular emphasis on target 15.3 -combat desertification, 
and restore degraded land and soil- (Singh 2021). Meanwhile, saline farming may 
reduce the demand for high-quality irrigation water, which facilitates having 
enough drinking water (SDG6) (Keesstra et al. 2018) for other agricultural 
applications. Therefore, considering SDGs in close connection to each other shows 
that salt-tolerant potato is not only a proxy for success in food production (SDG2), 
but can also make a crucial contribution to other SDGs.  

5.4.3 Salt farming contributes to a sustainable future world  

In addition, our study also shows how salt-tolerant potato growth may have a 
notable contribution to sustainable food production with future climate change. It is 
expected that salt-affected soils are growing at a rate of 1-2 Mhectares per year 
(Abbas et al. 2013) and the rate was predicted to speed up shortly as a result of 
climate change (Hassani et al. 2021). Interestingly, despite the increase in salinity, 
there will be more suitable areas for salt-tolerant potato (Figure 5.4 and Figure S5-
1), suggesting that the increase in moderate saline areas is larger than the increase 
in severely affected areas. This provides additional opportunities for saline farming. 
The changes observed in the local suitability area, while transitioning from the 
current state to different future scenarios, exhibited a degree of resemblance. 
However, a stronger increase in the local suitability area was evident under CMIP6 
models (SSP245 and SSP585) compared to CMIP5 models (RCP4.5 and RCP8.5). 
This difference can be driven by different predictors and GCMs involved in CMIP5 
and CMIP6 models (Eyring et al. 2016; Hassani et al. 2021).  

Saline farming, which salt-tolerant potato is a part of, contributes to creating a 
more sustainable world. In this study, salt-tolerant potato showed to be a promising 
crop to improve food production in salt-affected areas both in the current state and 
future scenarios and therefore achieving various sustainability targets in different 
ways (Figure 5.4 and Figure 5.5). Salicornia, as a typical halophyte, was identified 
as one the most important genera that have high adaptability to saline environments 
and therefore applied could be in food, pharmacy, bioenergy, and ecology field as a 
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sustainable crop (Cárdenas-Pérez et al. 2021). However, saline farming is more 
than growing Salicornia but also has a potential contribution to food security as a 
whole (e.g. salt-tolerant potato). There have been several studies conducted to test 
the opportunity of producing food through saline farming based on several salt-
tolerant crops including rice, barley, quinoa, beetroot, etc. (de Vos et al. 2021; 
ICBA 2015; Wang et al. 2013b). Although these studies demonstrated the potential 
application of divergent salt-tolerant crops for saline farming, they were currently 
fragmented in space, only covering a limited area. Given the impact of climate 
change, saline farming would be a promising global solution for salt-affected 
regions. Thus, our study provides a backbone to get more insight into how saline 
farming contributes to sustainable development with future climate change threats 
on a global scale.  

5.5 Conclusions 

In this study, we assessed the viability and potential of cultivating salt-tolerant 
potatoes in salt-affected soils, aiming to explore the role of salt-tolerant potato 
varieties in achieving sustainable development goals in the present and future 
climate. We found that Oceania showed the greatest potential for enhancing food 
production through salt-tolerant potato cultivation in salt-affected soils, while 
Europe demonstrated the lowest capacity for increasing production in this regard 
under the current state. Under different future scenarios, all continents show an 
expansion in the areas suitable for salt-tolerant potato cultivation. Moreover, we 
identified a number of countries that could crucially benefit through the promotion 
of salt-tolerant potato cultivation in salt-affected soils for enhancing food 
production. Specifically, Kazakhstan, the Russian Federation, Australia, Iraq, and 
Lesotho possess the capability to address their food shortage challenges and 
achieve sustainable development goals by cultivating salt-tolerant potatoes under 
the current state.  Meanwhile, Kazakhstan, the Russian Federation, Ukraine, 
Hungary, and Romania were crucial countries by growing salt-tolerant potatoes in 
salt-affected soil for enhancing food production and achieving a sustainable 
agriculture system in the future. Consequently, our study proposed valuable 
insights into growing salt-tolerant potato to optimize the utilization of salt-affected 
soils, and therefore built the foundation for saline farming globally to secure food 
security and strengthen agricultural resilience. 
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5.7 Supporting information 

Table S5-1. Reclassification of land cover classes 

Value Label Reclassification 

11 Post-flooding or irrigated croplands (or aquatic) Suitable 
14 Rainfed croplands Suitable 

20 Mosaic cropland (50-70%) / vegetation 
(grassland/shrubland/forest) (20-50%) Suitable 

30 Mosaic vegetation (grassland/shrubland/forest) (50-70%) / 
cropland (20-50%)  Suitable 

40 Closed to open (>15%) broadleaved evergreen or semi-
deciduous forest (>5m) Not suitable 

50 Closed (>40%) broadleaved deciduous forest (>5m) Not suitable 
60 Open (15-40%) broadleaved deciduous forest/woodland (>5m) Not suitable 
70 Closed (>40%) needleleaved evergreen forest (>5m) Not suitable 

90 Open (15-40%) needleleaved deciduous or evergreen forest 
(>5m) Not suitable 

100 Closed to open (>15%) mixed broadleaved and needleleaved 
forest (>5m) Not suitable 

110 Mosaic forest or shrubland (50-70%) / grassland (20-50%) Not suitable 
120 Mosaic grassland (50-70%) / forest or shrubland (20-50%)  Not suitable 

130 Closed to open (>15%) (broadleaved or needleleaved, 
evergreen or deciduous) shrubland (<5m) Not suitable 

140 Closed to open (>15%) herbaceous vegetation (grassland, 
savannas or lichens/mosses) Not suitable 

150 Sparse (<15%) vegetation Not suitable 

160 Closed to open (>15%) broadleaved forest regularly flooded 
(semi-permanently or temporarily) - Fresh or brackish water Not suitable 

170 Closed (>40%) broadleaved forest or shrubland permanently 
flooded - Saline or brackish water Not suitable 

180 
Closed to open (>15%) grassland or woody vegetation on 
regularly flooded or waterlogged soil - Fresh, brackish or saline 
water 

Not suitable 

190 Artificial surfaces and associated areas (Urban areas >50%) Not suitable 
200 Bare areas Not suitable 
210 Water bodies Not suitable 
220 Permanent snow and ice Not suitable 
230 No data (burnt areas, clouds) Not suitable 
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Table S5-2. Classification of soil qualities. Only classes 1 to class 4 correspond to an evaluation of 
soil constraints for plant growth. 

Qualitative 
classes 

Salinity 
(dS/m) 

Growth 
potential 

(%) 

Organic 
carbon 

(%) 

Impermeable 
layer 
(cm) 

Cation 
exchange 
capacity 

(cmol/kg) 

Obstacle 
to roots 

(cm) 

Toxicities 
(pH) 

CaCO3 
content 

(%) 

1. No or 
slight 
limitations

< 2 80-100 > 2.0 0-150 > 40 60-80 5.5-7.2 < 2 

2. Moderate
limitations 2-4 60-80 1.2-2.0 80-150 20-40 40-60 7.2-8.5 2-5

3. Sever 
limitations 4-8 40-60 0.6-1.2 40-80 10-20 20-40 4.5-5.5 5-25

4. Very 
severe 
limitations

8-16 < 40 0.2-0.6 < 40 4-10 0-80 > 8.5 25-40

5. Mainly 
non-soil > 16 0 < 0.2 0 < 4 0-20 < 4.5 > 40

6. Permafrost 
area -- -- -- -- -- -- -- -- 

7. Water 
bodies -- -- -- -- -- -- -- -- 
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Table S5-3. Reclassification of constraint variables. 

Data Layer Raw value Suitable y(1)/n(0) 

Land cover 
40-230 0 
11, 14, 20, 30 1 
210 2 

Potato distribution 
Buffer_30km 2 
1 1 
0 0 

Excess salt (SQ5) 
1, 4-7 0 
2 (2-4 dS/m) 1 
3 (4-8 dS/m) 2 

Nutrient availability 
(SQ1) 

2-7 0 
1 1 

Nutrient retention 
capacity (SQ2) 

2-7 0 
1 1 

Rooting conditions 
(SQ3) 

2-7 0 
1 1 

Oxygen availability to 
roots (SQ4) 

2-7 0 
1 1 

Toxicities (SQ6) 
2-7 0 
1 1 

Workability (SQ7) 
2-7 0 
1 1 
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Table S5-4. Labels of suitability index based on reclassifications of constraints. 

Label Necessary conditions 

No data Lall = 0 

Not suitable Lx = 0 

Land cover constraints LLC = 0  

Water bodies LLC = 2 

Potato distribution constraints LLC = 1 and LPD = 0 

dS/m <2 or > 8 LLC = 1, LPD = 1, and LSAL = 0 
dS/m 2-4 (soil quality 
restrictions) LLC = 1, LPD = 1, LSALH = 1, and Lx = 0 

Local area with high suitability 
(dS/m 2-4) 

LLC = 1, LPD = 1, LSALH = 1, LNA= 1, LNRC = 1, LRC =1, LOAR =1, LTOX =1, 
LWOR = 1 

Regional area with high 
suitability (dS/m 2-4) 

LLC = 1, LPD = 2, LSALH = 1, LNA= 1, LNRC = 1, LRC =1, LOAR =1, LTOX =1, 
LWOR = 1 

dS/m 4-8 (soil quality 
restrictions) LLC = 1, LPD = 1, LSALM = 2, and Lx = 0 

Local area with moderate 
suitability (dS/m 4-8) 

LLC = 1, LPD = 1, LSALM = 2, LNA= 1, LNRC = 1, LRC =1, LOAR =1, LTOX =1, 
LWOR = 1 

Regional area with moderate 
suitability (dS/m 4-8) 

LLC = 1, LPD = 2, LSALM = 2, LNA= 1, LNRC = 1, LRC =1, LOAR =1, LTOX =1, 
LWOR = 1 

LSAL = layer of soil salinity, LLC = layer of landcover, LPD = layer of potato distribution, LNA= layer of 
nutrient availability, LNRC = layer of nutrient retention capacity, LRC = layer of rooting conditions, 
LOAR = layer of oxygen availability to roots, LTOX = layer of toxicities, LWOR = layer of workability, Lx 
= any layers, Lall = all layers  
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Figure S5-1. a) - d) maps of relative change in suitability in 2050 under different scenarios. e) - h) 
Relative change in suitability in 2100 under different scenarios. 
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Chapter 6 

General discussion 
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Food security is projected to be challenged by the increasing co-occurrence of 
stresses with global climate change. Of these stresses drought and salinity are 
considered to be the main constraints for food production by their impacts on crop 
growth. Large-scale monitoring and quantification of the individual and combined 
impacts of drought and salinity stress on crop growth give rise to significant 
challenges related to spatial-temporal variability, data integration, crop variability, 
etc. Remote sensing offers potential solutions through detailed and timely detection 
of crop health. In this thesis, I evaluated the impact of drought and salinity stress 
on agriculture and sustainable development goals using remote sensing technology. 
Specifically, I assessed (i) which remote sensing features are available to monitor 
crops under drought and salinity stress, (ii) how drought and salinity stress on crop 
traits can be evaluated using remote sensing observations, (iii) what the tolerance 
of diverse crops in respect to drought and salinity stress was in real-life agriculture 
settings, and (iv) where cultivating salt-tolerant potato could be introduced to 
enhance global food production and secure. This chapter aims to synthesize the 
main findings of these research questions and provide a comprehensive discussion 
on the limitations and prospects for future studies, and implications to achieve 
sustainable development goals. Our insights can be used to enhance crop 
management and hence food security.  

To answer the research question, I first reviewed the current capacity of remote 
sensing to detect the impacts of drought and salinity stress on crops based on the 
use of vegetation indices (VIs) and plant traits (Chapter 2). Next, a novel approach 
that utilized multiple plant traits derived from remote sensing data was used to 
estimate the effects of drought, salinity, and their combination on crop growth in 
the Netherlands (Chapter 3). Based on the approach developed in Chapter 3, the 
tolerance of eight different crops to drought, salinity, and their combined stress was 
assessed across the entire U.S. continent throughout the crop growing season from 
sentinel-2 observations (Chapter 4). Finally, to answer where the biggest 
opportunity exists (with respect to achieving Sustainable Development Goal 2), I 
quantified the potential of enhancing food production by cultivating salt-tolerant 
potato species in salt-affected areas under present and future scenarios (Chapter 5).  

The findings of this thesis highlight the potential of remote sensing-derived traits 
for evaluating crop growth under stress conditions (explored in more detail in 
section 6.1). Through a systematic review, positive correlations were identified 
between specific plant traits and stress response mechanisms, indicating the 
potential of plant traits as indicators (Chapter 2). However, the spectral signals 
related to drought and salinity stress exhibited inconsistencies across various crop 
traits due to variations in growth stage, soil properties, stress severity and duration, 
and environmental conditions. In response, a novel workflow that integrates 
multiple traits derived from remote sensing was developed to evaluate the real-life 
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impacts of drought, salinity, and their combined influence on crop growth in the 
Netherlands (Chapter 3). By employing a pair-wise method within this workflow, I 
quantified the stress impacts over a select range of crops and growth conditions. 
Afterwards, I upscaled this workflow to cover a wider range of crops and spatial 
conditions and applied it across the entire U.S. continent throughout the crop 
growing season in 2021 (Chapter 4). In this analysis, I found stress impacts to be 
significantly dependent on the specific moment in the growing season, with crops 
are generally more sensitive to the combined effects of salinity and drought stress 
compared to the singular stress (Chapter 3 & Chapter 4). Nevertheless, the 
observed stress impacts showed significant variations over time and among 
different crop species. Notably, most crops experienced an initial reduction in 
primary production capacity through a decrease in Leaf Area Index (LAI) before 
experiencing reductions in water or chlorophyll contents (Chapter 4). Finally, we 
assessed how the above-mentioned information could be used in combating food 
insecurity by identifying areas where salt-tolerant crops (i.e., potato) could be 
cultivated. Out of six continents, Oceania was found to exhibit the greatest 
potential for enhancing food production through better utilization of the salt-
affected area (Chapter 5). In addition, Kazakhstan, the Russian Federation, 
Australia, Iraq, and Lesotho also show a potential to address their food shortage 
challenges and achieve sustainable development goals by cultivating salt-tolerant 
potatoes. Furthermore, under various future scenarios, the local suitability area for 
salt-tolerant potato consistently expanded, with Kazakhstan, the Russian Federation, 
Ukraine, Hungary, and Romania emerging as crucial countries to enhance food 
production and accomplish SDG targets. In combination, the thesis shows from 
review to application how remote sensing techniques may be applied to detect 
stress responses and mitigate the impacts of those stresses on global crop 
production.  

Despite proving the potential to detect stress responses of crops with functional 
traits by remote sensing, I found that the effectiveness of such monitoring varied 
across different plant species and growth stages (Chapter 2, Chapter 3, and Chapter 
4). Consequently, there are several challenges left open that need to be addressed in 
future studies. One such challenge is the need for a better understanding of 
representative traits that can accurately reflect specific stress conditions at specific 
moments during the growing season (Chapter 2, Chapter 3, and Chapter 4). This 
challenge will be explained in more detail in section 6.1. Moreover, current remote 
sensing for agricultural applications still faces challenges regarding spatial-
temporal resolutions and integration of multi-platform data. These limitations and 
the prospects to deal with them will be treated in section 6.2. Remote sensing is 
promising to effectively monitor the achievement of SDGs and ensure food 
security on a global scale, involving different stakeholders and policymakers 
(Chapter 5). My suggestion to implement these societal implications is treated in 
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section 6.3. Overall, this comprehensive investigation explored various aspects of 
remote sensing-based monitoring of crop responses to stress, offering valuable 
insights into the viability of using remote sensing for improving food security and 
addressing sustainable development goals. 

6.1 Open challenges regarding the Trait-based evaluation method 

Plant functional traits are associated with various adaptation pathways to the 
environment, as they indicate a set of plant features that represent strategies for a 
variety of stress conditions (Andrew et al. 2022). Thus, plant functional traits allow 
us to quantify the extent of the adaptation to various environmental pressures (i.e., 
drought and salinity stress). Connecting vegetation function (including primary 
production) with environmental stress by trait-based evaluation methods has shown 
to provide significant promises (Zakharova et al. 2019). Functional traits are 
intimately linked to stress tolerance, carbon storage, water regulation, and climate 
regulation (Lavorel and Grigulis 2012). Thus, functional trait-based research plays 
a pivotal role in comprehending the structure and function of agroecosystems 
including crop productivity, agroecosystem dynamics, non-crop biodiversity, other 
biogeochemical cycles, and crop vulnerability to climate change (Martin et al. 
2015). However, large-scale research on functional traits across a wide variety of 
crops remains quite limited. For instance, leaf economics trait information is 
unavailable for over 70% of the important agricultural species in the TRY database 
(Martin et al. 2015).  

Even though trait-based methods show promising potential to evaluate stress 
impacts on plants, it remains challenging to identify a proper selection of 
appropriate traits that detect specific signals for different stresses (Griffin-Nolan et 
al. 2018). Specifically, diverse stresses may manifest similar symptoms in plants 
(He et al. 2020), while different plant strategies (to resist these stresses) might lead 
to different expressions of functional traits (even for the same stress). According to 
Chaves et al. (2009), most plant species tend to lower transpiration and avoid more 
severe stress by decreasing their leaf area both for drought and salinity stress. 
Functional traits such as specific leaf area (SLA), leaf dry matter content (LDMC), 
leaf area (LA), turgor loss point (TLP), relative water content (RWC), leaf 
chlorophyll content (Cab) are essential for plant drought tolerance (Kramp et al. 
2022; Mwamahonje et al. 2021). Meanwhile, most of these traits are used to 
evaluate salinity stress impacts as well (Zhou et al. 2021). In addition, it was 
reported that any abiotic stress decreases leaf size (El-Moneim et al. 2020). 
Likewise, there is no significant difference in the expression of traits for drought vs. 
salinity in our study (Chapter 2, Chapter 3, and Chapter 4).    

Salinity (in the first growing phase) affects plants in a comparable way as droughts, 
namely through water stress/osmotic stress. Therefore, additional traits are required 
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to make these distinctions. For example, salinity also has clear impacts with regard 
to toxic stress/ion stress (Munns 2002). Thus, the traits related to toxic stress 
tolerance may provide a breakthrough to distinguish salinity stress from drought 
stress. In melon plants, the levels of phenylalanine, histidine, proline, and the 
Na+/K+ ratio emerge as key distinguishing traits for salinity tolerance (Chevilly et 
al. 2021). Moreover, the Na+/K+ ratio is one of the most important traits in 
controlling salinity tolerance in rice (Kanawapee et al. 2012) while Na+/K+ was not 
significantly affected in wheat (Garcia et al. 1997; Pires et al. 2015). In addition, 
physiological traits related to chlorophyll fluorescence might be another option to 
distinguish drought and salinity stress impacts, as these stresses are found to have 
varying effects on photosynthetic performance (Lazarevic et al. 2021). Meanwhile, 
Lazarevic et al. (2021) pointed out that the plant growth stage during which the 
stress impacts the plant is another factor that needs to be taken into account when 
choosing a set of traits to differentiate plant tolerance mechanisms between drought 
and salinity stress. Likewise, the impact of drought and salinity on crop traits is 
found to be highly dependent on the moment in the growing season (Chapter 3 & 
Chapter 4). Moreover, although LAI, FAPAR, and FVC exhibit comparable 
patterns in response to drought and salinity stress, Cab and Cw appear to have 
distinct patterns from other traits (Chapter 3 & Chapter 4). Thus, distinct traits 
representing different stress strategies are varied in species, between stress 
strengths as well as between growth stages. 

Given trait multifunctionality, traits may not line up with environmental gradients 
as expected when only taking the tolerance of individual stress into account (Sack 
and Buckley 2020). Indeed, plant stresses frequently occur in combination, and 
thus a functional trait confers tolerances to multiple stresses simultaneously. In 
general, co-occurrence stresses (e.g. salinity and drought stress) exert a more 
pronounced negative impact on plant growth (Chapter 3 & Chapter 4), 
photosynthesis, ionic balance, and oxidative balance, compared to the effects of 
either stress alone (Angon et al. 2022). However, it is important to note that in 
certain cases, salinity may have a more pronounced negative effect than drought 
stress, while in other instances, drought stress may outweigh the impact of salinity 
(Angon et al. 2022; Ibrahim et al. 2019; Zhou et al. 2021). In addition, Sack and 
Buckley (2020) indicated that the relative importance of multifunctional traits is 
highly contingent on the environmental context such as stress levels and their 
interactions under the co-occurrence stress environment. LAI, FAPAR, and FVC 
exhibited the most significant reductions under severe drought stress conditions for 
both maize and potato crops, underscoring their heightened sensitivity to drought 
compared to salinity (Chapter 3). Moreover, the interaction effects of stress (e.g., 
drought and salinity) and environmental factors (e.g., soil type and climate zone) 
were significant in many cases (Chapter 4), indicating that the severity of stress and 
its impact on crops were affected by diverse environmental conditions. Therefore, 
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when assessing plant tolerance to co-occurrence stress using a traits-based 
approach, it is important to consider a number of variables, including the plant 
species, the severity and duration of each stress, and the specific physiological 
responses of the plant to the combined stress conditions.  

Network theory presents an effective approach toward resolving the relationships 
among multiple plant traits and their significance (He et al. 2020). The concept of 
plant traits networks (PTNs) provides a multidimensional framework for 
comprehensively evaluating the responses of plants across diverse lineages, life 
forms, ontogenetic stages, and environmental conditions (He et al. 2020). In plant 
trait networks, certain economic traits were found more important than other traits. 
Particularly in dryland ecosystems, where nutrients and water are scarce, plants 
prioritize those links between their economic traits that increase the effectiveness 
of storing carbon and nitrogen and thus enhance their resilience against shortages 
and their competitiveness (Wang et al. 2023b; Wilcox et al. 2021). However, this is 
not valid for all conditions. For example, herbaceous plants emphasize the 
connections between structural traits to increase leaf structural resilience and to 
lessen physical damage from drought, whereas woody plants favor connections 
between economic traits to resist drought stress (Wang et al. 2023b). Although 
various studies have analyzed the key traits for plant functioning based on PTNs, 
the application to agriculture systems is still unclear and there is no comprehensive 
framework established to quantify the relative significance of each trait function 
under co-occurrence stress environmental circumstances. Even so, our results on 
multiple crops suggest that these herbaceous crops exhibit a prioritization of 
reducing their structural traits including LAI, FAPAR, and FVC, before undergoing 
reductions in water or chlorophyll contents (Chapter 4). This demonstrates leaf 
water content and leaf chlorophyll content are considered to be key traits for 
agricultural crops to maintain crop health and resilience to drought and salinity 
stress at an early stage. 

Overall, the trait-based method has proven to be a promising way to evaluate plant 
tolerances to diverse stresses.  Hence there is a great opportunity for creating a 
system that can monitor crops in real-time across a wide variety of crops at various 
scales (local, regional, national, and global). This system requires however a spatial 
and temporal resolution that is presently not offered by traditional monitoring 
platforms. To address this need, the integration of remote sensing technologies, 
such as satellites, offers a compelling solution to extend the implementation of 
trait-based methods in agriculture. By leveraging remote sensing capabilities, 
timely and comprehensive monitoring of agricultural systems can be achieved, 
enabling a more effective and efficient evaluation of crop responses to stresses on a 
broader spatial and temporal scale. 
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6.2 Prospects of remote sensing for agricultural applications 

Remote sensing has become increasingly relevant in the field of sustainable 
agriculture and emerged to improve food security in developing countries with its 
global coverage characteristics (Berger et al. 2022). With enhanced spatial, 
temporal, and spectral capacities based on various launched platforms and sensors, 
remote sensing studies, focused on agricultural applications, have increased 
significantly (Weiss et al. 2020). Although remote sensing technologies show 
significant advantages compared to traditional methods, there are constraints that 
remain to limit their application in agriculture.  

High-resolution maps for stresses and crops are still not fully available at a global e
xtent. While high-resolution stress maps (e.g. drought and salinity) have been gener
ated using remote sensing observations, they focus mostly on regional or continent
al extents. For example, Aadhar and Mishra (2017) created a drought map for Sout
h Asia based on the Standardized precipitation index (SPI) and Standardized Precip
itation Evapotranspiration Index (SPEI). AghaKouchak et al. (2015) reviewed the p
rogress of monitoring drought using satellite remote sensing observations, highlight
ing the limitations including data continuity, unquantified uncertainty, sensor chang
es, community acceptability, and data maintenance in drought monitoring by curren
t satellite missions for the application at different regions. And while specific count
ries have developed their local-scale programs to track crop systems, such as the N
etherlands (Key Register of Parcels (BRP), https://www.pdok.nl/introductie/-/article/
basisregistratie-gewaspercelen-brp-) (as used in Chapter 3) and the United States 
(Cropland Data Layer program (CDL), https://www.nass.usda.gov/Research_and_
Science/Cropland/Release/index.php) (as used in Chapter 4), similar maps at differ
ent locations are not widely accessible. This significantly limits the monitoring of c
rop performance under salinity and drought stress, and the quantification of food se
curity in developing countries. To address this issue, high-resolution crop maps nee
d to be created. Compared with other maps (e.g., stress map, landcover map, etc.), 
crop mapping asks for higher spatial resolution (e.g., 10m ~ 30m) considering the d
iversity of crop types and fragmented cultivation plots. Although there is a program
 Global Agricultural Monitoring Initiative-Best Available Crop Specific Masks (GE
OGLAM-BACS) that generates crop type map at 0.05 degree on a global scale, it o
nly contains four main crop types (wheat, maize, rice, and soybeans) and have certa
in limitations (Becker-Reshef et al. 2023). Additionally, differences in phenology, c
ultivation practices, cloud cover, and weather across different regions pose challeng
es to the quality and quantity of satellite images for crop mapping (Wu et al. 2023).
 As new-generation satellite spectrometers (e.g. HysIRI spectrometer) characterized
 by high spatial resolution (8-30 m) and spectral resolution (~10 nm) are being laun
ched, future applications in precision farming and environmental monitoring are pr
omising to be enhanced in the coming years (Lassalle 2021). With such crop maps, 



137 

coupled with (remote sensing derived) maps of environmental stresses, approaches 
such as those developed in this thesis may be further refined and globally applied. 

Remote sensed traits show potential for evaluating crop responses to stress. Various 
trait retrieval methods have been investigated to detect plant responses to stress by 
optical remote sensing observations (Verrelst et al. 2015). Most approaches are 
developed based on parametric regressions, specifically employing spectral bands, 
vegetation indices (VIs), and spectral ratios to establish correlations with functional 
traits associated with plant stress (Berger et al. 2022). However, the number of 
traits that can be directly retrieved from remote sensing imagery is limited. For 
instance, osmotic traits were found to be promising to detect drought and salinity 
stress, but so far neither parametric approaches nor physically based methods (i.e., 
radiative transfer models (RTMs)) have been able to retrieve these traits with 
remote sensing. Instead, in our approach we relied on traits that could be quantified 
by RTMs. PROSAIL is a well-known RTM that integrates a leaf optical properties 
model (PROSPECT) (Jacquemoud and Baret 1990) and a canopy bidirectional 
reflectance model (SAIL) (Verhoef 1984). PROSAIL has been widely to estimate 
canopy biophysical, and structural traits in agriculture at different scales 
(Chaabouni et al. 2021). For future research, it would be interesting to evaluate 
whether additional traits such as osmotic traits may be derived from RTMs. 
Additionally, it becomes possible to retrieve biochemical traits based on a modified 
RTM. For instance, Zhu et al. (2014)  developed a modified PROSPECT model 
integrating the specific absorption coefficient of the copper ion to retrieve copper 
ion traits. Therefore, by integrating RTMs with local experimental results of 
indirect traits' optical properties, it is projected to be more effective in retrieving 
stress-related traits. With the launch of multi-sensor satellites (e.g. Sentinel-2) with 
a short revisit period, the spatial-temporal resolution has been enhanced. This thesis 
evaluates crop response to stress only based on satellite remote sensing (Chapter 3 
& Chapter 4). Apart from satellite remote sensing, other remote sensing 
technologies including microwave data and unmanned aerial vehicles (UAVs) play 
a crucial role in providing valuable insights for agricultural applications. Active 
microwave radiometers have predominantly been employed for the characterization 
of various biophysical traits, water content, leaf area index (LAI), vegetation height, 
aboveground biomass, crop type mapping, and monitoring crop growth (Vereecken 
et al. 2012). Meanwhile, UAV-based remote sensing (UAV-RS) shows high 
potential to complement and validate satellite remote sensing thanks to its high 
spatial resolution and high frequency, and economical friendly (Wang et al. 2023a). 
Zhou et al. (2020) quantified soybean traits under drought stress based on UAV 
imagery to identify drought tolerance genotypes.  

Another new development involves the integration of remote sensing data from 
multiple platforms and sensors. Through this integration, a more comprehensive 



138 

and detailed understanding of the intricate interaction of stress combinations and 
affected crop traits can be obtained (Berger et al. 2022). The synergistic utilization 
of optical and microwave data enables the detection of more accurate and 
additional land surface properties and traits. Also, microwave observations can be 
interpreted and corrected using optical data and the resulting parameters 
(Vereecken et al. 2012). Numerous approaches have been proposed to integrate 
remote sensing data from multiple platforms, encompassing microwave data (both 
active and passive), as well as optical data spanning from visible, near-infrared, and 
thermal spectra (Vereecken et al. 2012). However, there are several factors that 
need to be considered for this integrated framework application. Data collected 
from various sensors for the same location often exhibit redundancy. This 
redundancy arises from the distinct characteristics and physical diffusion 
mechanisms inherent in different sensors (Le Hegarat-Mascle et al. 2000; Li et al. 
2021). As a result, multiple sensors may capture similar or overlapping information, 
leading to a significant amount of time consumption to fuse remote sensing data. 
This time-consuming process can potentially limit the efficiency of data analysis 
and interpretation. Moreover, the integration framework involves data from various 
platforms/sensors, each with distinct spatial and spectral resolutions, acquisition 
frequencies, and calibration procedures. This heterogeneity necessitates meticulous 
data preprocessing and calibration to ensure compatibility and consistency during 
integration (Mura et al. 2015).  

In addition, by combining remote sensing data with artificial intelligence 
techniques like Machine Learning (ML), it is possible to identify and predict crop 
trait changes with stress. Lassalle (2021) reviewed six categories of machine 
learning algorithms including Partial Least Square Regression (PLSR), Random 
Forest (RF), Linear or Quadratic Discriminant Analysis (LDA/QDA), Support 
Vector Machines (SVM), Neural Networks (NNs), and Elastic net (ENET) 
regression. These algorithms were utilized to monitor plant stress using 
hyperspectral remote sensing. Ion traits including Na+, Cl-, K+, and Ca2+ 
concertation were determined for wheat with salinity stress by employing PLSR on 
canopy reflectance data (El-Hendawy et al. 2019b). ML has demonstrated a strong 
performance in detecting crop stress signals at an early stage using hyperspectral 
data (Zarco-Tejada et al. 2018). These algorithms have also shown their relevance 
in distinguishing between different stresses that have similar effects on plant 
reflectance (Lassalle et al. 2019). Furthermore, certain machine learning algorithms 
are capable of handling nonlinear relationships between stress intensity and the 
spectral response of plants, thus providing new opportunities for quantitative 
monitoring (Lassalle 2021). Finally, the integration of ML and RTM has shown 
promise in accurately and rapidly mapping crop traits across extensively cultivated 
regions (Danner et al. 2021). This way, this combination of techniques highlights 
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the potential to quantity and monitor stress-related crop traits at the global scale 
(Berger et al. 2022; Verrelst et al. 2019). 

Finally, combining crop growth models with remote sensed traits enables timely 
and accurately predict stress impact on food security in crop production. Crop 
growth models simulate the relationship between crop physiological processes and 
the environment, aiming to assess the potential impacts of climate change on crop 
growth and yield in different regions (Kasampalis et al. 2018). Gaining early 
insights into the impacts of extreme weather events on crops can assist farmers and 
decision-makers in minimizing risks and enhancing food security. However, 
current crop growth models have certain limitations. They lack spatial scale 
information and suffer from the absence or inaccuracy of relevant data such as soil 
conditions and weather parameters (Kasampalis et al. 2018; Palosuo et al. 2011; 
Wallach et al. 2006). To enhance yield predictions by crop models, remote sensing 
technology can provide the missing spatial information required by crop growth 
models. Variables in the crop growth model can be replaced or adjusted using 
remote sensing data through data assimilation (Maas 1988). A review conducted by 
Jin et al. (2018) highlighted the capability of assimilating remote sensing data to 
enhance the accuracy of predictions and estimations in crop growth models, 
ultimately leading to improved understanding and management of agricultural 
systems. Hence, more accurate predictions of crop growth and yield may in the 
future be achieved by integrating remote sensing data with crop models, thereby 
improving agricultural production and ensuring food security. 

6.3 Implications to sustainability goals 

Remote sensing can significantly contribute to achieving the Sustainable 
Development Goals (SDGs) by providing data to track the progress of key 
indicators and assess policy efficiency. Specifically, three major gaps in SDGs 
indicators are expected to be filled by integrating remote sensing data, including 
environmental indicators, multi-resolution spatial indicators, and indicators 
coupling environmental and societal or economic data (Cochran et al. 2020; Griggs 
et al. 2014; Scott and Rajabifard 2017). With respect to securing SDG 2 (zero 
hunger), remote sensing earth observations can strengthen the monitoring of food 
security by providing crop growth models with timely input variables to better 
predict crop production. Already several international monitoring systems, such as 
the GEOGLAM, have been developed to track crop growth and evaluate the 
progress toward achieving SDG 2(Singh Parihar et al. 2012). The GEOGLAM 
Crop Monitor provides monthly assessments of crop conditions for wheat, maize, 
rice, and soybeans in 49 countries (Anderson et al. 2017), and thereby creates the 
ability to use its products within SDG indicators (e.g. target 2.C) (Anderson et al. 
2017; Whitcraft et al. 2019). In addition, the Crop Monitor for Early Warning 
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(CM4EM) within GEOGLAM monitors the risk of food insecurity in over 80 
countries, and serves as an early warning tool for agriculture monitoring, 
enhancing resilience to climate-related extreme events (Becker-Reshef et al. 2020). 
Through this, CM4EM is possible to detect crop growth in a drought-stressed 
environment and provide timely updates on food production challenges (Becker-
Reshef et al. 2020). This way, CM4EM contributes towards not only SDG 2 (target 
2.1), but also SDG 1(target 1.5), SDG 3 (target 3.D), and SDG 13 (target 13.3) 
(Becker-Reshef et al. 2020). However, these international monitoring systems 
focus solely on droughts without incorporating the effects of salinity. Co-occurring 
drought and salinity give rise to a more pronounced -inhibitory- impact on crop 
growth (Chapter 3 & Chapter 4) than their individual impacts. Given the increasing 
possibility of co-occurring drought and salinity stress with climate change, there is 
a compelling need to take these co-occurring stresses into account and enhance our 
understanding of crop monitoring on a global scale. By integrating the evaluation 
of salinity impact on crops with the current GEOGLAM framework, it provides 
crucial open-source benefits to diverse stakeholders engaged in agricultural 
research, policy, and practice. Notably, in arid and semi-arid regions where water 
scarcity and soil salinization pose formidable barriers to sustainable crop 
production, leveraging the GEOGLAM program with the integration of salinity 
evaluation can prove instrumental in developing targeted strategies for resilient 
agriculture.  

As part of the SDGs, improving agricultural resilience and food production within 
limited arable land under global climate change is a significant challenge to 
addressing food security. In this regard, saline agriculture poses a promising future 
to enhance the utilization of salt-affected areas. Specifically, saline agriculture is 
considered to significantly contribute to achieving several SDGs, including food 
security (SDG 2), freshwater resources utilization (SDG 6), sustainable livelihoods 
(SDG 8), climate change adaption (SDG 13), and life on Land (SDG15) (Negacz et 
al. 2021; Singh 2021). The most promising areas for saline agriculture are Africa, 
the Middle East, Central Asia, the United States, and Australia (Negacz et al. 2022). 
Additionally, Kazakhstan, the Russian Federation, Australia, Iraq, and Lesotho 
exhibit significant potential to address their food shortage challenges and work 
towards achieving sustainable development goals through the cultivation of salt-
tolerant potatoes (Chapter 5). Given these regions with different soil properties, 
climate conditions, and water availability, salt-tolerant variates of major crops (e.g. 
potato) in addition to halophytes (e.g. Salicornia europaea) are accessible options 
for broader application at the global scale, particularly for developing countries 
(Chapter 5). However, given the high frequency of co-occurrent stress (e.g. salinity 
and drought), saline agriculture needs to further take the risk of co-occurring 
impacts (e.g., with drought) into account. Therefore, this asks for understanding 
and managing the combined effects of stress on crop productivity, soil health, water 
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availability, and overall system resilience to ensure sustainable and effective 
agricultural practices in saline environments. With the impact of climate change, 
there will be an expansion of suitable areas for saline farming in response to the 
increase in salinity. Salt-tolerant potato, as a part of saline farming, is proven to be 
a promising crop to improve food production in salt-affected areas both in the 
current state and future scenarios, and therefore achieving various sustainability 
targets in different ways (Chapter 5). By quantifying the contribution of saline 
farming to sustainable development in the face of impending climate change 
threats on a global scale, it provides valuable insights into optimizing the 
utilization of salt-affected soils. Consequently, it establishes a foundation for the 
promotion and widespread implementation of saline farming practices, bolstering 
food security and fortifying agricultural resilience at the global scale. 

6.4 Concluding remarks 

Remote sensing has shown promise in monitoring crop growth and health using 
vegetation indices (VIs) and plant functional traits, although the results may vary 
depending on spectral wavelengths and stress intensity. Plant functional traits 
derived from remote sensing data can serve as proxies for monitoring the effects of 
drought and salinity stress on crop health, as they align closely with vegetation 
processes. A novel approach was developed to quantify the impact of drought, 
salinity, and their combination on multiple crops at a large scale using remote 
sensing traits. The impact of stress varies across species, growth stages, and stress 
conditions. The interaction between drought and salinity stress is complex, and 
their combined effect generally exacerbates the impact on crops compared to 
individual stress. Most crops tend to reduce their primary production capacity 
before experiencing reductions in water and chlorophyll content. In order to 
mitigate the impact of salinity on crop productivity and improve food production, 
salt-tolerant potato -as a proxy of saline agriculture-, can contribute to enhancing 
the use of salt-affected areas and support the achievement of SDG2. This thesis 
provides a promising perspective on the application of remote sensing in 
agriculture systems to monitor food production with stress and improve agricultural 
resilience. 
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Summary 

Food security is challenged by a growing global population and by climate change. 
Already, agricultural crops encounter various environmental stresses, limiting 
productivity and decreasing food production. Of these stresses, drought and soil 
salinity are considered the most important ones that inhibit crop yield and 
distribution. Worryingly, climate change is predicted to increase not only their 
frequency and severity, but also their co-occurrence, exacerbating their impacts. 
This also leads to increases in events where both stresses co-occur. This co-
occurrence results in substantially more yield losses than individual stressors. 
While detrimental effects of combined drought and salinity stress on crops have 
been highlighted in small-scale experiments (with only a limited number of crop 
varieties), large regional uncertainties remain for real-life agricultural settings. 
Assessing these large-scale impacts using traditional methods is, however, not 
feasible. In contrast, satellite observations offer a promising perspective for 
enhancing global food security by providing reliable information on arable land 
extent and food production. Remote sensing has already been used to monitor crop 
productivity at multiple spatial and temporal scales, though not for yet 
characterizing crop growth under co-occurring drought and salinity stress. This 
thesis aims to assess the impact of drought and salinity on agriculture and 
sustainable development goals using remote sensing technology. 

In Chapter 2, a systematic review was conducted to evaluate the current ability of 
remote sensing to identify and assess the impacts of drought and salinity stress on 
agricultural crops through vegetation indices (VIs) and plant traits. The results 
indicate that challenges still persist in utilizing satellite monitoring of these stress 
impacts. Specifically, traditional VIs do not consistently estimate these impacts 
accurately. In addition, plant traits, although promising in linking directly to the 
biochemical and biophysical pathways of crop growth, are not widely used to 
reflect upon stress response mechanisms. Osmosis traits in particular have high 
potential for monitoring the pathways through which drought and salinity affect 
crops but cannot be directly measured by remote sensing. Other remotely sensed 
plant traits are highlighted to contain significant potential -to assess the combined 
impacts of drought and salinity effects on agricultural crops- but only in small-
scale experimental studies. Consequently, large-scale studies are necessary to 
showcase the relevance of remote sensing for assessing combined impacts under 
real-life agricultural scenarios.  

In Chapter 3, a novel approach was proposed that utilized satellite remote sensing 
observations to estimate the impacts of drought, salinity, and their combination on 
five crop traits, including leaf area index (LAI), leaf chlorophyll content (Cab), leaf 
water content (Cw), the fraction of absorbed photosynthetically active radiation 
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(FAPAR) and the fraction of vegetation cover (FVC) using remote sensing. The 
approach was first tested in the Netherlands, and results indicate that the 
exacerbating effects of co-occurring drought and salinity stress highly depended on 
the moment in the growing season. Moreover, LAI, FAPAR, and FVC were 
impacted most under severe drought conditions for maize and potato while Cab and 
Cw were generally more inhibited by combined drought and salinity stress. Thus, 
this approach facilitates simultaneous monitoring of the effect of drought and 
salinity on crops in large-scale agricultural applications. 

The approach presented in Chapter 3 was adapted to suit the assessment of a larger 
spatial extent and multiple crops, by applying a pair-wise method of retrieving 
stressed and non-stressed crops (Chapter 4). Furthermore, multiple techniques were 
integrated to assess trait expressions concerning drought, salinity, and their 
combined impacts compared to control conditions, to allow evaluating stress 
impacts more precisely for a much larger range of crops and spatial conditions. The 
results across the United States indicate that stress impacts were highly time-
dependent and that crops were more susceptible to combined drought and salinity 
than to individual stress. However, stress impacts also varied significantly between 
species. Most crops initially decrease primary production capability by reducing 
LAI before decreasing water or chlorophyll contents. In combination, a quantitative 
foundation was established for simultaneously assessing crop responses to the 
occurrence of stresses, both alone and collectively at large scale and under actual 
agricultural conditions, contributing in monitoring food security upon global 
climate change. 

In Chapter 5, we explored how some of the findings related to large-scale salinity 
tolerance could be used to aid in achieving sustainable development goals (SDGs). 
Sustainable agriculture and food security are critical components of sustainable 
development goals, yet they are increasingly vulnerable to global climate change 
impacts. While salt-induced stress on crop growth and food production has been 
extensively studied, quantifying the potential contribution of saline farming on a 
global scale remains uncertain. In Chapter 5, the local and regional suitability areas 
for salt-tolerant potato cultivation in salt-affected soils were evaluated, thereby 
assessing the potential contribution of salt-tolerant potatoes to the current and 
future SDGs. The results reveal that Oceania (particularly Australia) has the 
greatest potential for enhancing food production through salt-tolerant potato 
cultivation in salt-affected soils. Moreover, other countries like Kazakhstan, the 
Russian Federation, and Australia can address food shortage challenges and 
achieve SDGs in the current state as well as in future scenarios. Furthermore, the 
suitability area for salt-tolerant potato is expected to expand even under future 
climatic and salinity conditions, potentially doubling food production in 
Kazakhstan and the Russian Federation. Consequently, salt-tolerant potato -as a 
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proxy for saline farming- can promote increased food production in salt-affected 
areas. Saline farming may thus enhance agricultural resilience and ensure food 
security. 

This thesis emphasizes the potential of remote sensing-derived traits for evaluating 
crop growth under stress conditions. While it demonstrates the potential of remote 
sensing to detect stress responses through functional traits, its effectiveness varies 
across plant species and growth stages, indicating that several challenges are left 
open to be addressed in future studies. In particular, the identification and selection 
of representative traits need to be improved to more accurately reflect specific 
stress conditions at different moments during the growing season. Moreover, 
current remote sensing for agricultural applications faces challenges related to the 
increased demands for high spatial-temporal resolutions. We propose multi-
platform data integration to improve the accuracy of observations and data fusion 
in future studies.  

In conclusion, remote sensing offers a huge promise for effectively monitoring the 
attainment of SDGs and ensuring global food security, involving various 
stakeholders and policymakers. This thesis demonstrates how remote sensing 
techniques can be applied to detect stress responses and mitigate the impacts of 
those stresses on global crop production from review to application, offering 
valuable insights into the potential of remote sensing to enhance food security and 
address sustainable development goals. 
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Samenvatting 

Onze voedselzekerheid staat onder druk door een groeiende wereldbevolking en 
door klimaatverandering. Momenteel hebben landbouwgewassen te maken met 
verschillende verstoringen, die de productiviteit beperken en de voedselproductie 
verminderen. Van de verschillende verstoringen worden droogte en 
bodemverzilting als de belangrijkste beschouwd, die de gewasopbrengst en -
verspreiding belemmeren. Zorgwekkend is dat klimaatverandering naar 
verwachting beide verstoringen verder zal verergeren en de frequentie en ernst van 
beiden zal verhogen. Dit leidt ook tot een toename van gebeurtenissen waarin beide 
verstoringen samen voorkomen. Deze samenloop resulteert in aanzienlijk grotere 
opbrengstverliezen dan individuele stressfactoren. Hoewel de schadelijke effecten 
van de gecombineerde stress door droogte en verzilting op gewassen al zijn 
beschreven in kleinschalige experimenten (met slechts een beperkt aantal 
gewasvariëteiten), blijven er grote regionale onzekerheden bestaan voor 
landbouwsituaties in de praktijk. Het beoordelen van deze grootschalige gevolgen 
is echter niet haalbaar met behulp van traditionele methoden. In tegenstelling 
hiermee bieden satellietwaarnemingen een veelbelovend perspectief om de 
wereldwijde voedselzekerheid te verbeteren door betrouwbare informatie te 
verstrekken over de omvang van landbouwgronden en voedselproductie. Remote 
sensing wordt al gebruikt om de gewasproductiviteit op meerdere ruimtelijke en 
temporale schalen te monitoren, maar nog niet voor het karakteriseren van 
gewasgroei onder gelijktijdige droogte- en verziltingsstress. Dit proefschrift heeft 
tot doel de impact van droogte en verzilting op landbouw en de Sustainable 
Development Goals (SDGs) te beoordelen met behulp van remote sensing-
technologie. 

In Hoofdstuk 2 werd een systematische review uitgevoerd om de huidige 
mogelijkheden van remote sensing te evalueren om de impact van droogte- en 
verziltingsstress op landbouwgewassen te identificeren en te beoordelen via 
vegetatie-indices (VI's) en de eigenschappen van planten. De resultaten laten zien 
aan dat er nog steeds uitdagingen zijn bij het nauwkeurig monitoren van de impacts 
van stress met behulp van remote sensing via satellieten. De traditionele VI’s laten 
niet toe deze impacts consistent en nauwkeurig te schatten. Daarentegen zijn 
planteigenschappen veelbelovend omdat ze rechtstreeks verbonden zijn met de 
biochemische en biologische processen van gewasgroei en 
stressresponsmechanismen weerspiegelen. Met name planteigenschappen 
gerelateerd aan osmose hebben een groot potentieel voor het monitoren van de 
manieren waarop droogte en verzilting gewassen beïnvloeden, maar kunnen niet 
rechtstreeks worden gemeten door remote sensing. Andere met remote sensing 
waargenomen planteigenschappen werden aangestipt als potentieel waardevol om 
de gecombineerde effecten van droogte- en verziltingseffecten op 
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landbouwgewassen te beoordelen, maar zijn alleen gebruikt in kleinschalige 
experimentele studies. Daarom zijn grootschalige studies noodzakelijk om de 
relevantie van remote sensing voor het beoordelen van gecombineerde effecten 
onder echte landbouwcondities te laten zien. 

In Hoofdstuk 3 werd een nieuwe benadering voorgesteld die gebruikmaakte van 
satelliet remote sensing waarnemingen om de impact van droogte, verzilting en hun 
combinatie op vijf gewaseigenschappen te schatten, waaronder totale 
bladoppervlakte (Leaf Area Index; LAI), bladchlorofielgehalte (Cab), het 
watergehalte in bladeren (Cw), de fractie van geabsorbeerd fotosynthetisch actieve 
straling (FAPAR) en de fractie van vegetatiebedekking (FVC) met behulp van 
remote sensing. De benadering werd eerst getest in Nederland, en de resultaten 
geven aan dat de verergerende effecten van gelijktijdige droogte- en 
verziltingsstress sterk afhankelijk zijn van het moment in het groeiseizoen. 
Bovendien werden LAI, FAPAR en FVC het meest beïnvloed onder ernstige 
droogteomstandigheden voor maïs en aardappelen, terwijl Cab en Cw over het 
algemeen meer werden beïnvloed door gecombineerde droogte- en verziltingsstress. 
Deze benadering maakt dus gelijktijdige monitoring van het effect van droogte en 
verzilting op gewassen mogelijk in grootschalige landbouwtoepassingen. 

In Hoofdstuk 4 werd de benadering van Hoofdstuk 3 aangepast om de beoordeling 
van een grotere ruimtelijke omvang en van meerdere gewassen mogelijk te maken, 
door paarsgewijs gestreste en niet-gestreste gewassen te vergelijken. Bovendien 
werden meerdere technieken geïntegreerd om planteigenschappen in relatie tot 
droogte, verzilting en hun gecombineerde effecten te vergelijken met die van 
controleomstandigheden. Zo kon het effect van stress nauwkeuriger geëvalueerd 
worden voor een veel groter scala aan gewassen en ruimtelijke omstandigheden. 
De resultaten voor de Verenigde Staten geven aan dat het effect van stress sterk 
afhankelijk was van de tijd in het groeiseizoen en dat gewassen gevoeliger waren 
voor de gecombineerde effecten van droogte en verzilting dan voor individuele 
stress. De stressimpact varieerde echter ook aanzienlijk tussen soorten. De meeste 
gewassen verminderden aanvankelijk hun primaire productiecapaciteit door de LAI 
te verlagen voordat ze water- of chlorofylgehalten verminderden. Door deze 
combinatie van methoden werd een kwantitatieve basis gelegd om tegelijktijdig de 
reacties van gewassen op stress te beoordelen, zowel afzonderlijk als in combinatie 
op grote schaal en onder werkelijke landbouwomstandigheden, zo bijdragend aan 
het monitoren van de voedselzekerheid bij wereldwijde klimaatverandering. 

In Hoofdstuk 5, hebben we de resultaten - omtrent het verbouwen van zout-
tolerante gewassen – gebruikt om te kijken hoe duurzame ontwikkelingsdoelen 
(SDG) bereikt kunnen worden. Duurzame landbouw en voedselzekerheid zijn 
cruciale componenten van de SDGs, maar ze zijn steeds kwetsbaarder voor de 
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gevolgen van wereldwijde klimaatverandering. Hoewel stress veroorzaakt door 
zout op gewasgroei en voedselproductie uitgebreid is bestudeerd, blijft de 
kwantificering van de mogelijke bijdrage van zouttolerante landbouw op 
wereldschaal onzeker. In Hoofdstuk 5 werden de lokaal en regionaal de geschikthe 
gebieden voor zouttolerante aardappelteelt op zoute bodems geëvalueerd, waarbij 
de mogelijke bijdrage van zouttolerante aardappelen aan de huidige en toekomstige 
SDGs werd beoordeeld. De resultaten tonen aan dat Oceanië (met name Australië) 
het grootste potentieel heeft om de voedselproductie te verbeteren door 
zouttolerante aardappelteelt op zoute bodems. Bovendien kunnen andere landen 
zoals Kazachstan, de Russische Federatie en Australië tekorten in het 
voedselaanbod aanpakken en SDGs bereiken zowel in de huidige omstandigheden 
als in scenario’s van de toekomst. Bovendien wordt verwacht dat het gebied dat 
geschikt is voor zouttolerante aardappel onder toekomstige klimatologische en 
zoutgehalteomstandigheden zich zelfs zal uitbreiden, wat mogelijk de 
voedselproductie in Kazachstan en de Russische Federatie kan verdubbelen. Zo 
kan een zouttolerante aardappel - als een proxy voor zouttolerante landbouw - de 
voedselproductie in gebieden die aangetast zijn door zout bevorderen. 
Zouttolerante landbouw kan dus de veerkracht van de landbouw verbeteren en de 
voedselzekerheid waarborgen. 

Dit proefschrift benadrukt het potentieel van met behulp van remote sensing 
afgeleide planteneigenschappen om de groei van gewassen onder stressvolle 
omstandigheden te evalueren. Hoewel het de mogelijkheden van remote sensing 
laat zien om stressreacties te detecteren via functionele planteneigenschappen, 
varieert de effectiviteit ervan tussen plantensoorten en groeistadia, wat aangeeft dat 
er nog enkele uitdagingen openstaan die in toekomstige studies moeten worden 
aangepakt. Met name de identificatie en selectie van eigenschappen moet worden 
verbeterd om specifieke stressomstandigheden tijdens verschillende momenten in 
het groeiseizoen nauwkeuriger te representeren. Bovendien heeft de huidige remote 
sensing te maken met beperkingen in de ruimtelijke en temporele resolutie voor 
landbouwtoepassingen. De integratie van gegevens van meerdere platforms kan 
helpen om de nauwkeurigheid van waarnemingen en de integratie van gegevens te 
verbeteren.  

Concluderend biedt remote sensing een enorme belofte voor de effectieve 
monitoring van de realisatie van SDGs en het waarborgen van wereldwijde 
voedselzekerheid, voor de verschillende betrokken belanghebbenden en 
beleidsmakers. Dit proefschrift laat zien hoe remote sensing-technieken kunnen 
worden toegepast om stressreacties te detecteren en de impact van die stress op de 
wereldwijde gewasproductie te verminderen, en biedt waardevolle inzichten in het 
potentieel van remote sensing om de voedselzekerheid te verbeteren en de SDGs te 
realiseren. 
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