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Chapter 1

General introduction






Food security is defined as a “situation that exists when all people, at all times,
have physical, social, and economic access to sufficient, safe, and nutritious food
that meets their dietary needs and food preferences for an active and healthy life”
by the Food and Agriculture Organization (FAO 2002). Food security is highly
related to economic growth, human rights, poverty, society security and stability,
and human health. As such, to ensure a secure and sustainable future for everyone,
the United Nations (UN) has formulated sustainable development goals (SDGs) for
2030 highlighting sustainable agriculture and food security (in SDG 2) to be crucial
pillars (UN 2015). However, in 2021, according to the FAO, 11.7% of the world's
population experienced extreme food insecurity, and around 2.3 billion people were
either moderately or severely food insecure (FAO 2022b; UN 2022). Despite the
progress made from multiple perspectives towards SDG 2 (to ‘End hunger’), food
insecurity, hunger, and malnutrition are still increasing in the world at the current
state (FAO 2022b).

To feed 9.1 billion people in 2050, global food production needs to increase by 70% by
2050, and specifically that of developing counties to increase with 100% (FAO
2009; Tilman et al. 2011). Meanwhile, 670 million people are projected to face
hunger in 2030 (FAO 2022b). The overall food demand is projected to rise by 35%
to 56% by 2050 compared to the 2010 base year while simultaneously climate
change is estimated to increase the challenges for food production even further
(van Dijk et al. 2021). We therefore need to increase the productivity (in particular
those of small-scale food producers, SDG 2.2), while ensuring “Sustainable food
production and resilient agricultural practices (SDG 2.4), by “implementing
resilient agricultural practices that increase productivity and production, that help
maintain ecosystems, that strengthen capacity for adaptation to pending disasters
(e.g., climate change, drought, flooding, and others), and that progressively
improve land and soil quality”.

1.1 Threats to food production

Agricultural crops are frequently subjected to a variety of environmental stresses,
which limit agricultural productivity and decrease food production. These stresses
fall into two categories, namely biotic stress (i.e. disease pathogens infection,
herbivores attacks, etc.) and abiotic stress (i.e., water scarcity, metal toxicities,
extreme temperature, etc.) (Oshunsanya et al. 2019; Summy et al. 2020). Abiotic
stress such as drought, frost, heat waves, and salinity negatively impact crop
growth, crop development as well as crop quality (Audil et al. 2019). Abiotic stress
was observed to be the dominant factor impacting crop productivity worldwide and
is estimated to cause annually 51% - 82% of crop yield loss worldwide (Arun-
Chinnappa et al. 2017; Mantri et al. 2012). Furthermore, climate change is
expected to result in higher temperatures, altered rainfall patterns, and frequent
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extreme weather (Wheeler and von Braun 2013). These patterns were projected to
increase the risk of abiotic stress (including but not limited to flood, drought, heat,
etc.) regionally and globally, thus posing major constraints on food availability,
access, utilization as well as stability (Lorenz and Kunstmann 2012; Rosenzweig et
al. 2014; Wheeler and von Braun 2013). Therefore, it is crucial to recognize and
estimate the impact of abiotic stress on food production to ensure food security.

As one of the major abiotic stresses, drought inhibits crop yield and distribution,
causing substantial reductions in food production at a global scale (Eckardt et al.
2022; Madadgar et al. 2017). Over 40% of the global land area is affected by
drought (Dunn et al. 2020) and it was estimated to cause $124 billion economic
loss annually worldwide (Tsegai et al. 2022). More than 2.3 billion people have
experienced water stress in 2022, and approximately 160 million children have
encountered severe and protracted droughts (Tsegai et al. 2022). Drought impacts
three components of food security, namely availability (e.g. crop production),
access (e.g. food price), and stability (sufficient access to food) both in direct and
indirect ways (He et al. 2019). Over the previous four decades, droughts led to a
loss in cereals production (i.e. maize, rice, and wheat) of 1820 million Mg globally
(Lesk et al. 2016). Climate change is predicted to exacerbate drought frequency
and severity, particularly in semi-arid regions already under severe water stress
(Dai 2011, 2013). Meanwhile, there will be 700 million people in danger of being
displaced by drought by 2030 (Tsegai et al. 2022). Thus, food security will be
further threatened by frequent droughts in the future. Given this, there is a need to
understand and evaluate drought effects on crops aiming to maintain food
production.

Aside from drought, soil salinity is another major stress that negatively impacts
agricultural production, particularly in the dry and semi-arid regions (EIl hasini et al.
2019). There are 954 million hectares (Mha) of salt-affected soil in 120 countries
worldwide, leading to approximately 7% - 8% agriculture productivity loss (Meena
et al. 2019; Yadav 2003). Soil salinity affects approximately 20% of the total
cultivated land and 33% of the irrigated agricultural areas globally (Jamil et al.
2011; Metternicht and Zinck 2003) while the salt-affected area is predicted to
expand at a rate of 1.0 - 2.0 Mha per year (ITPS and FAO 2015). With climate
change in terms of changing rainfall patterns and increased temperature, water
scarcity is expected to accelerate soil salinity in the near future (Eswar et al. 2021).
Meanwhile, soil and groundwater salinity in arid regions and coastal regions can be
exacerbated due to seawater intrusion caused by mean sea-level rise and excessive
groundwater extraction (Dasgupta et al. 2015; Mukhopadhyay et al. 2021).
Therefore, soil salinity urgently needs to be tackled to enable food security and a
sustainable agriculture system to balance soil degradation and population
expansion.



Although the impacts of drought and salinity stress on food production have been
evaluated individually for a variety of crops, under natural conditions, crops
normally face a combination of abiotic stresses in natural and agricultural
ecosystems, such as drought and salinity, which result in greater yield loss than
either stress alone (Mittler 2006). Drought and salinity interact to produce a
combined effect when soil water evaporates and salt concentrations increase in the
soil solution (Munns 2002). Salinity has been observed to considerably rise in
rivers during hydrological droughts because of reduced river levels (Jones and van
Vliet 2018; Mosley 2015). Moreover, salinity stress is expected to frequently
accompany drought on cultivated land, especially in coastal, arid, and semi-arid
regions (Angon et al. 2022; Corwin 2020). Thus, more frequent and severe
droughts will therefore intensify the accumulation of salinization, a combination
that leads to adverse impacts on food production and sustainable agricultural
development.

1.2 Impact pathways of drought and salinity

Drought-induced water stress decreases crop yield by delaying crop maturation and
slowing root growth, which results in less available food, especially in areas (like
sub-Saharan Africa) that are heavily reliant on rain-fed agriculture (He et al. 2019).
Moreover, drought directly impacts plant transpiration processes, leading to the
short to long-term closure of the stomata, hampering photosynthesis and thus crop
productivity (Farooq et al. 2009). In response to drought stress, plants are observed
to reduce leaf area and leaf chlorophyll content, increase leaf thickness, and
decrease the activities of photosynthetic enzymes (Yang et al. 2021). Due to altered
plant-water interactions, CO; assimilation, cell membrane damage, oxidative stress,
and enzyme inhibition, drought stress decreases plant growth and productivity
(Kousik et al. 2022).

Salinity-induced stress negatively affects crop growth in two growth responses,
namely osmotic stress and ion toxicity (Munns and Tester 2008; Shrivastava and
Kumar 2015). The presence of high salt concentration in the soil solution can
adversely impact the water acquisition capacity of crops. Moreover, salinity stress
inhibits plant growth due to specific-ion toxicities (in particular induced by high
concentrations of Na*) and the subsequent nutritional imbalances of other cations
(such as K" and Ca?"). The co-occurrence of reduced water uptake, ion toxicity, and
nutrient imbalances results in a reduction in crop yields (Shrivastava and Kumar
2015).

The combination of salinity and drought exerts an even more detrimental effect on
plant growth, photosynthesis, oxidative balance, and ionic balance compared to the
individual stresses alone (Angon et al. 2022). Both drought and salinity impacts on
crops are highly dependent on e.g. growth stage and cultivar (Hopmans et al. 2021;
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Xu et al. 2019). Indeed, numerous studies indicate the detrimental effects of
combined drought and salt stress on crops (Hussain et al. 2020; Ors and Suarez
2017). However, these studies are limited to a few crop varieties and large regional
uncertainties and do not consider real-life agriculture settings. Consequently, there
is still a major gap in our knowledge regarding the comprehensive evaluation of the
individual and collective impacts of co-occurring stresses (e.g., salinity and
drought) on divergent crop varieties in real-life scenarios, especially on a large-
scale.

1.3 Large-scale monitoring of food production

To improve food security, agricultural productivity around the world (and in
particular of small-scale food producers) needs to double (SDG 2.3). In order to
track progress along this target, it requires detailed estimations of crop yield and
production. Traditionally, crop yield and production are estimated on the basis of
in-season variables from field surveys in combination with crop simulation models,
statistical regression models, and historical data (Basso and Liu 2019; Calvao and
Pessoa 2015). However, considering their time-consuming and substantial running
cost, these methods are inefficient for large-scale applications (Calvao and Pessoa
2015). Moreover, field estimates of soil salinity impacts on crops are limited by the
small-scale nature of many experiments (Corwin and Scudiero 2019; Eswar et al.
2021).

There is a wide range of crop simulation models available, including DSSAT
(Jones et al. 2003), EPIC (Williams et al. 1989), and WOFOST (Diepen et al. 1989).
These models couple descriptions of eco-physiological processes (such as nutrient
uptake, water uptake, and photosynthesis) to large-scale climate variables and
management variables to estimate crop growth and crop yields. Most of these
models include the impacts of water shortage on crop growth as one of their key
elements. However, they are mostly unable to deliver accurate projections of the
impacts of local climate variables as well as of extreme events (e.g. drought and
storms) (Rauff and Bello 2015). Moreover, there exist only a few attempts to
evaluate crop yield under salinity stress based on modified crop simulation models,
such as CROPGRO, ORYZA v3, and APSIM-Oryza (Radanielson et al. 2018;
Webber et al. 2010). Consequently, crop simulation models so far have been
constrained by the simplification of the scenarios and uncertainties/availability of
input parameters (Wang et al. 2013a). Finally, statistical regression models are
likely unable to capture the interaction of the climate-soil-plant-management
continuum in light of the increased number of extreme events with climate change,
leading to inaccurate yield outcomes (Basso and Liu 2019). Hence, for large-scale
applications, alternative methods are essential. Remote sensing poses a promising
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tool to aid in the global food security, by providing reliable information on both the
extent of arable land as well as the food production on those lands.

1.3.1 Remote sensing estimation of arable land area extent

Remote sensing already is used extensively to characterize the extent and reduction
of agricultural areas under productive and sustainable agriculture, using land cover
maps, such as Global Land Cover (GLC) 2000, CORINE Land Cover, GlobCover
2009, GlobeLand30, etc (Radwan et al. 2021). Likewise, several more agricultural-
dedicated products have been produced, including the Global irrigated area map
(GIAM) at 1km resolution (Thenkabail et al. 2009), Global Rain-fed, Irrigated, and
Paddy Croplands (GRIPC) map at 500m resolution in 2005 (Salmon et al. 2015),
and the European Space Agency’s Climate Change Initiative-Land Cover (ESA-
CCI) at 300 m resolution in 2000, 2005, and 2011 (Bontemps et al. 2013), to map
irrigated area and non-irrigated area at global scale (Karthikeyan et al. 2020). In
addition, remote sensing can not only be used to detect agricultural areas but it can
also be applied to identify different crop types. The Cropland Data Layer
(CDL) products covering the Continental United States were developed each year
from 2008 to 2022 at 30m resolution by integrating multiple satellite imageries
including Landsat 8, Landsat 9 OLI/TIRS, the ISRO ResourceSat-2 LISS-3, and
Sentinel-2 during crop growing season (Boryan et al. 2011). While such remote
sensing land cover maps provide an ideal manner to monitor the extent and change
of suitable arable land, they do not provide information regarding the suitability of
the land for agricultural production.

In response, remote sensing has also been extensively used to estimate soil
properties that affect crop growth and food production. Specifically remote soil
properties, including soil minerals (e.g. clay minerals, carbonate minerals, silicate
minerals), soil organic matter, soil surface roughness, and soil moisture, have been
retrieved from different satellite platforms (e.g. ASTER (Nawar et al. 2015)) with
high confidence (Wang et al. 2023a). This has allowed the production of various
datasets (e.g. FAO soils portal, Global Soil Information System (GloSIS), Global
Earth Observation System of Systems (GEOSS) portal) that provide maps of
various soil properties at the regional scale to global scale (ISRIC 2023). In
addition to monitoring the previous and current state of soil properties, remote
sensing shows a high potential to predict soil property changes in future scenarios.
Hassani et al. (2021) predicted soil salinity (ECe) under four different future
scenarios in the 2050s and 2100s based on remote sensing data using Machine
Learning (ML) algorithms. Hence, remote sensing does not only contribute to
evaluating current food production at a large scale but also remote sensing can also
be used to project future food production.
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1.3.2 Remote sensing estimation of crop growth

Remote sensing also poses a promising way to monitor agricultural production on
arable lands with timely, synoptic, and reliable information covering multiple
spatial and temporal scales (Calvao and Pessoa 2015; Karthikeyan et al. 2020). By
characterizing crop growth on these lands, satellite remote sensing (e.g. Landsat,
MODIS, SPOT-Vegetation, etc.) has been used to monitor crop productivity at
medium- to high- resolutions (Basso and Liu 2019). Meanwhile, with the
development of cloud-computing platforms (e.g., Amazon, Microsoft Al, and
Google Earth Engine (GEE)), the capabilities of crop monitoring frameworks to
access and process such satellite data have also been improved (Wu et al. 2023).
Crop monitoring primarily focuses on providing qualitative information on crop
conditions at the desired temporal-spatial scale, which is essential for policy-
making and supporting early warning systems for food security (Lopez-Lozano and
Baruth 2019). Crop biophysical characteristics are viewed as proxies for crop
conditions. To monitor the growth status of crops, multispectral vegetation indices
(VIs) have been established, which provide a simplified view on the morphological,
physiological, and biophysical traits of crops (Wu et al. 2023).

Normalized Difference Vegetation Index (NDVI) (Tucker 1979) is the most
popular VI for assessing the dynamics and health of vegetation. NDVI has been
used for evaluating crop growing conditions and predicting crop yield and can be
retrieved from different satellites (Basso and Liu 2019). In addition to NDVI, other
VIs such as Enhanced Vegetation Index (EVI) (Liu and Huete 1995),
the Perpendicular Vegetation Index (PVI) (Rondeaux et al. 1996), the Soil Adjusted
Vegetation Index (SAVI) (Huete 1988), and the Green-Red Vegetation Index
(GRVI) (Motohka et al. 2010), are proposed to monitor crop growth and production.
However, these VIs are usually affected by uncertainties due to differences in
background (e.g. soil color), crop type, crop phenology, and crop rotation. For
instance, NDVI is often affected by inherent nonlinear interactions with
biophysical parameters and the background’s optical properties and saturates when
it comes to high biomass levels (Calvao and Pessoa 2015; Lopez-Lozano and
Baruth 2019; Wu et al. 2023).

In addition, drought (impact) indicators have been developed, e.g. the Vegetation
Health Index (VHI) (Kogan 1997), the Vegetation Condition Index (VCI) (Kogan
1995b), and the Normalized Difference Water Index (NDWI) anomalies (Gao
1996). However, these drought indicators have their own distinct drawbacks that
restrict their utility as drought early warning signals (Liu et al. 2016). Typically,
there is a lag time between the onset of a drought and the subsequent response in
vegetation. This lag time poses a challenge in accurately assessing the impact of
drought on vegetation (Ji and Peters 2003; Zhang et al. 2016). Likewise, vegetation
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indices, that are employed for monitoring crop salinity stress, are also subject to
limitations in relation to background noise, the presence of halophytes, and spatial
resolution (Allbed and Kumar 2013; Metternicht and Zinck 2003). As a
consequence, the results obtained from different indices vary, and most
applications utilizing these indicators focus on local scales and specific crop types.
Thus, a method that can directly evaluate crop condition and health based on
directly measured crop parameters under stress conditions is required to effectively
monitor crop growth under stressed conditions using remote sensing.

1.4 Remote sensing monitoring food security under stress based on plant traits

Plant functional traits are identified as physiological, structural, biochemical, or
phenological characteristics that impact plant species fitness by indirectly affecting
growth, reproduction, resource use, survival, etc. (Cornelissen et al. 2003; Violle et
al. 2007). Plant functional traits have been used to quantify species-specific
responses and stress strategies to environmental stress (Kramp et al. 2022; Lavorel
and Garnier 2002). Plant functional traits have been proposed to address plant
responses to drought and salinity stress for a variety of plants. In particular, leaf
water and economic traits are considered to demonstrate coordination in drought
and saline environments (Anderegg et al. 2019; Kramp et al. 2022). However, most
studies concentrated on the individual roles of a given trait functioning on a
specific stress (Caruso et al. 2019). Given stress is frequently coupled and plant
functional traits can express the tolerance of plants to various stresses (Sack and
Buckley 2020), an approach that can simultaneously analyze multiple traits and
multiple vegetation or crop types is required to evaluate the responses of plants to
combined stresses at a large scale.

Plant traits can be estimated qualitatively or quantitatively from remote sensing
data. Qualitative methods involve the utilization of classification techniques that
employ a predefined set of decision rules to assign image pixels with comparable
spectral properties to distinct thematic vegetation classes. Qualitative approaches
employed for the interpretation of optical remote sensing data can be classified into
two groups: empirical methods (e.g. VI) and physical methods (e.g. radiative
transfer models (RTMs)), or a combination of both (Homolova et al. 2013). In
particular, hyperspectral data has been demonstrated to have a significant ability to
identify biophysical and biochemical characteristics (Serbin et al. 2015; Serbin et al.
2016). Plant traits such as leaf chlorophyll content (Cab), leaf water content (Cw),
leaf area index (LAI), the fraction of absorbed photosynthetically active radiation
(FAPAR), and the fraction of vegetation cover (FVC) have been assessed with high
accuracy and fidelity from remote sensing (Colombo et al. 2008; Myneni et al.
2002; Zarco-Tejada et al. 2004). Hence, remote sensing traits associated with



different functioning aspects provides a foundation for a comprehensive
understanding of crop conditions at a large scale.

Plant traits that can be assessed by remote sensing also show a tremendous
potential for characterizing vegetative stress in different species (Gerhards et al.
2019; Vereecken et al. 2012). Berger et al. (2022) reviewed the response of plants
to drought stress with optimal sensing domains for different traits. The study
indicated that the responses of crops to stress with different durations can be
detected by remote sensing. LAI, Cab, Cw, FVC, and FAPAR retrieved from
multiply satellites (e.g., MODIS, Sentinel-2, SPOT-VGT1/2, and PROBA-V) are
identified as key variables in drought or salinity impact monitoring due to their
sensitivity of vegetation stress (Berger et al. 2022; Jiao et al. 2021; Richter et al.
2008; Zhang et al. 2015). Moreover, FAPAR anomalies serve as a crucial
component in calculating comprehensive drought indicators: the Combined
Drought Indicator (CDI) in the European Drought Observatory and the Risk of
Drought Impact for Agriculture (RDrl-Agri) indicator in the Global Drought
Observatory (Cammalleri et al. 2019). Although there are several studies evaluating
crop response to drought and salinity stress based on remote sensing traits, these
studies are limited to specific traits, crop types, and singular stress. Thus, there is
still a challenge to simultaneously assess the co-occurrence stress impact on
divergent crops based on traits assessed by remote sensing at a large scale.

1.5 Research aims and questions

This research aims to evaluate the impact of drought and salinity stress on
agriculture and sustainable development goals using remote sensing technology. In
this Ph.D. thesis, the following research questions have been addressed:

e Which remote sensing features are available to monitor crops under
drought and salinity stress and what are the shortcomings of the various
features? (Chapter 2)

e How can the impacts of drought and salinity stress on crop traits be
evaluated simultaneously using remote sensing observations (Sentinel-2) in
a quantitative way? (Chapter 3 & Chapter 4)

e How to evaluate the tolerance of diverse crops to drought and salinity
stress in real-life agriculture settings by remote sensing (Sentinel-2)?
(Chapter 4)

e How to utilize the salt-affected area by cultivating salt-tolerant potato to
enhance global food production and secure SDG 2.4? (Chapter 5)
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1.6 Thesis outline

First, | illustrated an overview of food security and its associated threats,
emphasizing the potential of remotely sensed plant functional traits to monitor crop
responses under drought and salinity stress at large scale (Chapter 1). A systematic
review was conducted to evaluate the current capacity of remote sensing to detect
the impact of drought and salinity stress on crops based on vegetation indices (VIs)
and plant traits (Chapter 2). Based on multiple plant traits retrieved from remote
sensing observations, I developed a novel approach to estimate the impacts of
drought, salinity, and their combination on crop growth in the Netherlands (Chapter
3). Next, [ upscaled this approach to assess the tolerance of eight crops to drought,
salinity, and their combination based on five functional traits across the entire U.S.
continent throughout the crop growing season from remote sensing (Chapter 4).
Then, I quantified the viability and potential of enhancing food production and
achieving SDG 2 by planting salt-tolerant potato in salt-affected areas in present
and future scenarios (Chapter 5). Finally, the challenges and implications of remote
sensing in agricultural applications for a sustainable future were discussed based on
the principal findings of this thesis (Chapter 6). Figure 1.1 shows the conceptual
scheme of this thesis.

I Review
N~ . .
_O_ Chapter 2: A review of remote sensing
7/ | \ challenges for food security with respect to

salinity and drought threats

Workflow

Chapter 3: Monitoring the combined effects of
drought and salinity stress on crops using

remote sensing in the Netherlands
/— Precipitation € ] ‘

Drought Application

\ Chapter 4: Evaluating the response of multiple

crops to drought and salinity stress across the

contiguous USA from remote sensing

Societal Impact

Chapter 5: Prospects of salt-tolerant potato to
increase food productivity towards a zero
Soil salinity hunger world

Figure 1.1 Conceptual scheme of the topics of Chapters 2, 3, 4, and 5.

Chapter 1: General introduction

This chapter provides a general introduction on food security and threats
(particularly due to abiotic stress) for food security. Then, the chapter illustrates the
high potential of remote sensing technologies in monitoring food production at a

11



large scale by their capacity to map land cover, detect soil properties, and monitor
vegetation properties both in the present and the future. In addition, this chapter
highlights the significance of remotely sensed plant functional traits to monitor
crop responses under drought and salinity stress in real-life scenarios for large-
scale applications. The research aims, questions, and individual chapters of this
thesis are outlined.

Chapter 2: A review of remote sensing challenges for food security with
respect to salinity and drought threats

This chapter presents a systematic review on the current ability of remote sensing
to identify and assess the impacts of drought and salinity stress on agricultural
crops through vegetation indices and plant traits. We found that there are still
several challenges remaining for using remote sensing to monitor drought and
salinity stress impacts on crop growth. VIs do not provide consistently accurate
estimation of these impacts while plant traits are promising to directly link to the
biochemical/biophysical pathway of crop growth, thereby reflecting the stress
response mechanisms.

Chapter 3: Monitoring the combined effects of drought and salinity stress on
crops using remote sensing in the Netherlands

In this chapter, a novel approach is presented to evaluate the impacts of drought,
salinity, and their combination on five crop traits, including leaf area index (LAI),
leaf chlorophyll content (Cab), leaf water content (Cw), the fraction of absorbed
photosynthetically active radiation (FAPAR) and the fraction of vegetation cover
(FVC) using remote sensing in the Netherlands. The separate and combined effects
of drought and salinity stress on five traits were quantitatively assessed. The results
indicate that the exacerbating effects of co-occurring drought and salinity stress
highly depended on the moment in the growing season. Moreover, LAI, FAPAR,
and FVC impact most under severe drought conditions for maize and potato while
Cab and Cw are generally more inhibited by combined drought and salinity stress.
As a result, the proposed approach provides a way to simultaneously assess the
impact of drought and salinity stress on crops from remote sensing with possible
large-scale applications.

Chapter 4: Evaluating crop-specific responses to drought and salinity stress
from remote sensing

Food security is facing a significant challenge by co-occurring stresses (e.g.,
salinity and drought) under global climate change. Extreme weather events are
projected to become more frequent, impacting crop performance and reducing crop
yields under these adverse conditions. Complementary to existing field trials of
controlled small-scale experiments, this chapter assesses the responses of various
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crops to the occurrence of drought and salinity stress, alone and collectively across
the entire U.S. continent in real-life agricultural conditions, using five traits
representative of different plant functions by remote sensing. The results show the
differential responses of crops to these stresses. Stress impacts were highly time-
dependent, and crops were more susceptible to combined drought and salinity than
to individual stresses, although stress impacts varied significantly between species
and over time. Prior to decreasing their water or chlorophyll levels, most crops
initially decreased primary production capability by decreasing LAI. This chapter
creates a quantitative foundation to inform sustainable food production, aiding in
monitoring food security upon global climate change.

Chapter 5: Prospects of salt-tolerant potato to increase food productivity
towards a zero hunger world

Food security and sustainable agriculture are crucial elements of achieving the
SDGs, but global climate change is threatening them increasingly. This chapter
estimates the local suitability and the regional suitability areas for salt-tolerant
potato cultivation in salt-affected soils to allow for achieving SDGs in current and
future scenarios. The results reveal that Oceania (particularly Australia) has the
greatest potential for enhancing food production through salt-tolerant potato
cultivation in salt-affected soils. In addition, Kazakhstan, the Russian Federation,
and Australia can address food shortage challenges and achieve sustainable
development goals in the current state as well as in future scenarios. In this chapter,
salt-tolerant potatoes are evaluated as a proxy for saline farming, allowing for
increased food production in salt-affected areas and laying the groundwork for
promoting saline farming practices to enhance agricultural resilience and ensure
food security.

Chapter 6: General discussion

This chapter synthesizes the principal findings with a discussion on the limitations
and prospects of this thesis. It emphasizes the potential and feasibility of
monitoring food security by trait-based evaluation although there are still a few
challenges remaining in agricultural applications from remote sensing. In addition,
this chapter elaborates on the implications of remote sensing for securing
sustainable goals at a global scale, both in the current state as well as in the future.
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Abstract

Drought and salinity stress are considered to be the two main factors limiting crop
productivity. With climate change, these stresses are projected to increase, further
exacerbating the risks to global food security. Consequently, to tackle this problem,
better agricultural management is required on the basis of improved drought and
salinity stress monitoring capabilities. Remote sensing makes it possible to monitor
crop health at various spatiotemporal scales and extents. However, remote sensing
has not yet been used to monitor both drought and salinity stresses simultaneously.
The aim of this paper is to review the current ability of remote sensing to detect the
impact of these stresses on vegetation indices (VIs) and crop trait responses. We
found that VIs are insufficiently accurate (0.02 < R? < 0.80) to characterize crop
health under drought and salinity stress. In contrast, we found that plant functional
traits have a high potential to monitor the impacts of such stresses on crop health,
as they are more in line with the vegetation processes. However, we also found that
further investigations are needed to achieve this potential. Specifically, we found
that the spectral signals concerning drought and salinity stress were inconsistent for
the various crop traits. This inconsistency was present (a) between studies utilizing
similar crops and (b) between investigations studying different crops. Moreover,
the response signals for joint drought and salinity stress overlapped spectrally,
thereby significantly limiting the application of remote sensing to monitor these
separately. Therefore, to consistently monitor crop responses to drought and
salinity, we need to resolve the current indeterminacy of the relationships between
crop traits and spectrum and evaluate multiple traits simultaneously. Using
radiative transfer models (RTMs) and multi-sensor frameworks allows monitoring
multiple crop traits and may constitute a way forward toward evaluating drought
and salinity impacts.
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2.1 Introduction

Food security is a serious problem around the world with a significantly large
number of food production systems currently at risk (FAO 2011). It is predicted
that by 2030, the population suffering from food insecurity will rise to more than
840 million. Meanwhile, it is projected that the ongoing COVID-19 could further
worsen the number of undernourished people around the world (FAO 2020).
Further exacerbating this food security problem, crop productivity itself also
suffers great threats from stresses, such as drought stress, nutrient stress, and
salinity stress, which reduce the yield at various locations by more than 50%
(Anami et al. 2020). Moreover, crops frequently suffer from a combination of
stress (Dresselhaus and Hiickelhoven 2018), which further causes challenges for
food production. In order to allow for sustainable agricultural production and
mitigate the threat of global food shortages, the impact of these stressors needs to
be monitored and alleviated.

Water stress, in the form of droughts, has been identified as the most serious threat
for global agriculture, approximately affecting 40% of the world’s land area (Dunn
et al. 2020). Between 1980 and 2020, droughts have caused economic damages of
around $6 billion per year in the United States, exceeding damages from other
weather and climate disasters (Smith 2020). Likewise, in China, the average annual
economic damage due to drought was $12.8 billion during 2006-2015 (Su et al.
2018). In addition to drought, salinity has emerged as a major factor limiting the
productivity of crops. Southwest United States, southern Asia (including India and
Pakistan), eastern Asia (Western China), eastern Australia, and northwest Africa are
the most affected areas (FAO/IIASA/ISRIC/ISSCAS/JRC 2012; Ivushkin et al.
2019; Koohafkan 2012). The United Nations Food and Agriculture Organization
(FAO) has estimated that 11% of the global irrigated area (34 Mha) is currently
affected by different levels of salinity. Therein, China, the United States, Pakistan,
and India hold more than 60% of the total area (21 Mha).

While presently, drought and salinity already pose tremendous challenges for food
production, it has been forecasted that both stressors will increase both spatially
and in severity. Climate change will increase the frequency and severity of drought
events in numerous regions (Cook et al. 2015; Mosley 2015; Schwalm et al. 2017,
Trenberth et al. 2013), leading to dramatic impacts on crop growth and productivity
(Trenberth et al. 2013). Specifically, higher temperatures and lower humidity have
been shown to lead to an increasing water demand (in the form of crop
evapotranspiration) and a reduced water availability from effective precipitation,
while simultaneously, a lower and infrequent effective precipitation significantly
reduces water availability, thereby negatively affecting food production (Mimi and
Jamous 2010). Similarly, it has been suggested that salinity will impact 50% of the

18



cultivated land by 2050 (Butcher et al. 2016). Soil salinity levels have been shown
to increase in arid lands because fresh water is not available to drain accumulated
salts (Rozema and Flowers 2008), thus acting as a practically irreversible process.
Moreover, soil salinization has been shown to increase with the expansion of
agriculture to semi-arid and arid regions (Cramer et al. 2007; Oki and Kanae 2006;
Rozema and Flowers 2008). Therefore, the increase in drought frequency and soil
salinity under climate change further exacerbates the threat to crop production.

Drought and salinity cannot be seen independently of each other. As an aspect of
water quality, salinity has been proven to increase during drought periods (Hrdinka
et al. 2012; Mosley 2015; van Vliet and Zwolsman 2008). Specifically, it has been
shown that due to lower river levels, hydrological drought significantly increases
the salinity in rivers (Jones and van Vliet 2018; Mosley 2015). Consequently,
increased drought frequency and severity will exacerbate the accumulation of
salinization and adversely affect crop yield and sustainable agricultural
development (Wang et al. 2013b). As such, there are already numerous areas in the
world where both drought and salinity stress co-occur (Figure 2.1). Furthermore,
due to sea level rise in the future, cultivated land (and in particular coastal lowlands)
will have a higher probability to suffer from both drought and salinity stress
(Corwin 2020; Gopalakrishnan et al. 2019; Katschnig et al. 2013; Pankova and
Konyushkova 2014). Therefore, drought and salinity should not be viewed
independently, and the impacts of joint drought and salinity stress on agricultural
production should be investigated.

() (b}

Latitude
Latitude

B
Longitude Longoitude
High salinity Low salinity

= nodata
Less hazardous More hazardous

Figure 2.1 Global distribution of drought and salinity. In panel (a), the global map of soil salinity
change is shown [10], while in panel (b) the global map of drought hazard (Carrdo et al. 2016) is
shown. Global soil salinity map was extracted from [10] and then transformed to the plate carrée
projection by ArcGIS.

Remote sensing (RS) is a key method for monitoring crop health due to its
capability to monitor and detect effective changes of large areas at a relatively low
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cost, in comparison to traditional methods (Wu et al. 2015). For this purpose,
several vegetation indices (VIs) such as the Normalized Difference Vegetation
Index (NDVI) (Tucker 1979), the Perpendicular Vegetation Index (PVI) (Rondeaux
et al. 1996), and the Soil Adjusted Vegetation Index (SAVI) (Huete 1988) have
been developed in the past to monitor agricultural production. In addition, drought
(impact) indicators have been developed that account for seasonality effects (based
on long-term standardized observations), e.g., the Vegetation Condition Index (VCI)
(Kogan 1995b), the Vegetation Health Index (VHI) (Kogan 1997), and the
Normalized Difference Water Index (NDWI) anomalies (Gao 1996). However,
each of these drought indicators has specific limitations that limit its applicability
as early warning signals of drought (Liu et al. 2016). As a consequence, results
vary among different indices, and most applications with these indicators focus on
local scales and individual crop types. As such, no comprehensive vegetation index
has been developed that can be applied globally to investigate drought impact
consistently (Liu et al. 2016). Similar to drought monitoring, vegetation indices,
used to monitor crop salinity stress, are also affected by limitations regarding noise,
halophyte presence, and spatial resolution (Allbed and Kumar 2013; Metternicht
and Zinck 2003). In response, a more comprehensive measurement of the
reflectance spectrum representing crop traits is required to monitor crop growth
and health as affected by stress. In this regard, it has been shown that hyperspectral
data have a strong potential to detect biophysical and biochemical parameters
(Serbin et al. 2015; Serbin et al. 2016). In addition, various studies highlighted that
other (multi-spectral) RS methods (e.g., microwave, thermal infrared (TIR),
hyperspectral) show great promise in characterizing vegetation stress (Gerhards et
al. 2019; Vereecken et al. 2012). However, the number of studies focusing on this is
limited, and only part of these investigations focused on agricultural RS
applications (Homolova et al. 2013; Weiss et al. 2020), while studies on the
relationship between crop traits and spectral properties in relation to under drought
or salinity stress are even more limited. Therefore, an in-depth analysis of the
reflectance spectrum of crop traits under stress is required to better identify plant
drought and salinity stress by remote sensing.

The main objective of the study is to evaluate the current state and shortcomings in
the RS monitoring of crops under drought and/or salinity stress. Based on a
comprehensive analysis, we evaluate the potential of remote sensing to identify and
assess agricultural ecosystems under drought and salinity stress through vegetation
indices and plant traits.

2.2 Methodology

To evaluate the current state of monitoring drought and salinity stress by RS, we
applied a thorough systematic review of recent scientific publications. For this, we
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(a) collected a large representative set of scientific publications, and (b) analyzed
their results to identify the response patterns in vegetation indices and plant traits.
For the analysis of plant traits, we classified them according to underlying plant
functions (relating to primary production, hydrological processes, and osmosis).
This allows us to coherently investigate the potential of remote sensing for
monitoring the salinity/drought impact on biological pathways/processes.

2.2.1 Creating representative database through a systematic review

In order to facilitate the analysis of a representative set of recent publications, we
adopted an optimized systematic review approach (Berger et al. 2018). Specifically,
we focused on scientific peer-reviewed papers published between 2005 and 2020
through the Web of Science (WOS) and Google Scholar (GS) (Figure 2.2). This
approach first requires the definition of a representative set of keywords. For our
study, these keywords were “remote sensing”, “drought”, “salinity”, “agriculture”,
and “traits”, as well as their synonyms (such as RS, food security, etc.). Afterwards,
publications were selected from WOS and GS according to the occurrence of
combinations of these keywords in the title, abstract, author keywords, and
keywords plus, to create a first selection of publications, leading to 1184 selected
records. Then, this set of publications was screened to capture only papers that
analyzed (a) the impact of drought/salinity stress on Vls/traits of crops by remote
sensing, and (b) included information on the spectral wavelength on which the
analysis was based. This resulted in 78 unique records. Next, through snowballing
these records (to capture papers that were missed in the first step), an additional 49
publications were obtained. In total, 115 publications (Table S2-1) fitting these
criteria were identified after removing 12 duplicates. More details on each step are
provided in the supplementary information (Figure S2-1). Maps of co-authors and
co-occurrences based on the results of the systematic review were created through
VOSviewer (Figure S2-2).
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Figure 2.2 Flowchart of the systematic review.
2.2.2 Extraction of drought/salinity stress information

From the full set of publications on drought and salinity stress of agricultural crops,
we extracted the correlation strengths between vegetation indices/crop traits
responding to drought and salinity stress and spectral bands/wavelengths. Finally,
348 correlations were found, among which 102 traits were wavelength correlations,
171 were VIs-wavelength correlations, and 75 traits were VIs correlations. All 171
Vlis-wavelength correlations that we found focused on drought, and no reviewed
study provided correlations for salinity stress.

2.2.3 Classification of plant traits and vegetation indices

After the creation of our representative set of publications, we clustered the traits
into four groups to relate the impact of drought/salinity stress on biological
processes. Specifically, we classified the traits together on the basis of their
definitions and the functional processes involved (Niinemets 2015; Pérez-
Harguindeguy et al. 2013). This provided us with four clusters, namely biomass
traits, photosynthesis traits, water traits, and osmosis traits. Afterwards, each
cluster was further divided into RS (directly measurable by RS) and In-RS
(indirectly derived by RS) (Table 2.1).

Table 2.1 Classification of plant traits included in this study.

RS

Group methods Traits
. . RS LMA  LAI
Biomass traits
In-RS FS SDW BDW BFW

22



RS Chl Chla/Chlb - - - - - -

Photosynthesis
. *
traits In-RS A Pn AFFm  CRFAF - - -
/Fm
. RS LCT CWC RWC EWT CWM -

Water traits
In-RS Gs LOP Yp LwWP Ys E Tl - Tair --
RS - - - - - - - -

Osmosis traits TSS/
In-RS Na* Cl K* Ca?* K*/Na* TSS TA

TA

Notes: leaf mass per unit area (LMA), leaf Area Index (LAI), fruit size (FS), shoot dry weight
(SDW), biomass dry weight (BDW), biomass fresh weight (BFW), stomatal conductance (Gs), net
gas exchange (A), leaf total chlorophyll (Chl), the quantum yield of photosystem II efficiency
(AF/Fm), net photosynthesis rate (Pn), the difference between leaf and air temperature (T1 -Tair),
transpiration rate (E), leaf water potential (LWP), stem water potential (¥s), leaf osmotic potential
(LOP), leaf canopy temperature (LCT), canopy water content (CWC), relative water content (RWC),
leaf equivalent water thickness (EWT), pressure potential (¥p), canopy water mass (CWM), Na*
contents in leaf (Na"), CI- contents in leaf (CI"), K* contents in leaf (K*), Ca?" contents in leaf (Ca?"),
total soluble solids (TSS), tritatable acidity (TA). RS methods: directly derived by remote sensing
(RS), indirectly derived by remote sensing (In-RS).

In addition to individual plant functional traits, well-known RS vegetation indices
have been related to the responses to drought and/or salinity stress. For
consistency, we clustered the results of these studies on the basis of a functional
classification, resulting in xanthophyll indices, water content indices, carotenoid
indices and greenness indices (Table 2.2).

Table 2.2 Classification, explanation, and equations of different vegetation indices (VIs) included in
this study.

VIs Meaning Equation Reference
Xanthophyll Indices

PRI570 Photochemical reflectance index ~ (R531 - R570) / (R531 +R570) (Gamon et al. 1992)
PRI515 Photochemical reflectance index ~ (R531 - R515) / (R531 +R515) (elt{;{“;‘)‘ff)z'aememe
PRI586 Photochemical reflectance index ~ (R531 —R586) / (R531 + R586) (Panigada et al. 2014)
PRI600 Photochemical reflectance index  (R531-R602)/ (R531 + R602) g?;{“;gff)z'aememe
PRIG70 Photochemical reflectance index ~ (R531-R668) / (R531 + R668) (elt{;{“;‘)‘ff)z'aememe
Water Content Indices

WI Water index R900 / R970 (Penuelas et al. 1993)
CWSI Crop Water Stress Index CWSI= (Tleaf - Twet) / (Tdry - (Idso et al. 1981)

Twet)
Carotenoid Indices

(Zarco-Tejada et al.
2012)
(Zarco-Tejada et al.
2012)

R520/R500 Carotenoid concentration

R515/R570 Carotenoid concentration

Greenness Indices
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Optimized Soil-Adjusted

(R800 —R670) / (R800 + R670 +

OSAVI Vegetation Index 0.16) (Rondeaux et al. 1996)
TCARI =3 - [(R700 — R670) —
TCARI E‘fsg‘i?gi";“ﬁ:&?;;ﬁgﬁﬁex 0.2 - (R700 - R550) - (Haboudane et al. 2002)
P (R700/R670)]
TCARI/OSAVI=[3 - [(R700 —
R670) — 0.2 - (R700 — R550) -
TCARI/OSAVI Normalized by OSAVI to obtain ~ (R700/R670)])/ [(1 +0.16) - (Haboudane et al. 2002)
(R800 — R670) / (R800 + R670
+0.16)]
Clgreen Green chlorophyll index (R750 / R550)-1 (Gitelson et al. 2005)
Clred edge Red edge chlorophyll index (R750/ R710)-1 (Gitelson et al. 2005)
SR Simple ratio R800/R670 (Asrar et al. 1985)
Red edge ratio (Zarco-Tejada et al.
index R700/R670 2013b)
VOGI1 The chlorophyll a +b index R740/R720 (Vogelmann et al. 1993)
™M The chlorophyll a +b index R750/R710 (Zarco-Tejada et al.

2001)
Notes: R means the reflectance of the band and T means temperature. While NDVI has been used

frequently for drought monitoring at a regional scale, we did not include it in this review. The
reasoning for this is that NDVI is considered as a greenness index related to chlorophyll instead of the
water status of the vegetation. In support of this interpretation, NDVI has not been found to respond
to rainfall or major precipitation events during the crop growth period (Rahimzadeh-Bajgiran et al.
2012; Rahimzadeh Bajgiran et al. 2008). Therefore, NDVI was not included in the review.

2.2.4 Analyses of Vegetation Responses

After all functional clusters were defined, we aggregated the results from the
different papers for each functional cluster (of VIs and plant traits) and proceeded
to analyze their correlations. We first analyzed the spectral signatures of VIs under
drought and their strengths. Afterwards, the distribution of spectral signatures of
each functional traits cluster was investigated in the range of 400-2800 nm. Finally,
we analyzed the correlations of different clusters of VIs and plant traits.

2.3 Results
2.3.1 Spectral signatures of vis under drought stress

We found a wide range of correlations for the four clusters of VIs (defined within
the spectral range of 500-1050 nm) under drought stress, as highlighted in Figure
2.3. Specifically, xanthophyll indices showed their highest R? at 531 nm (R’max =
0.80) and 570-600 nm (R?’max = 0.80), while greenness indices showed their
highest R? at 550 nm (R’max = 0.70), 670 nm (R’max = 0.76), 700-750 nm
(R’max = 0.78), and 800 nm (R’max = 0.76), and water indices showed their
highest R? at 900 nm (R’max = 0.72) and 970 nm (R*max = 0.72). For carotenoid
indices, no such region could be identified due to mostly low correlations (0.20 <
R?<0.49).
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Figure 2.3 Relationships between R? and wavelength of different VIs clusters under drought stress.
The red line indicates that R? > 0.50.

While we could identify specific regions where individual VIs provided a
maximum sensitivity, we also found variation in this sensitivity. Although we
identified studies that highlighted the potential of specific VIs for drought
monitoring, we also found other studies reporting low R? (R? < 0.50) for the same
VIs and wavelengths. Thus, there are undeniable limitations to identifying
vegetation health using VIs under drought stress.

2.3.2 Spectral signatures of plant traits under drought and salinity stress

The reviewed studies focusing on plant trait signals showed that these crop
responses were not constrained to specific wavelengths. Biomass, photosynthesis,
water, and osmosis clusters of traits were identified across the full spectral range.
These clusters showed few spectral patterns, even for those trait clusters that were
supposedly directly measurable by RS (Figure 2.4). The only recognizable trends
concern the osmosis traits cluster (with a significant response to salinity stress),
with a slight tendency to occur more frequently at 550—750 nm, and the biomass
traits and water traits occurring at 1400—1850 nm. As far as the few observations
for drought do allow, those patterns did not seem to deviate much from those for
salinity (Figure 2.4).
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Figure 2.4 Drought and salinity stress responses of different trait clusters across the reflectance
spectrum based on relationships with R? > 0. Solid symbols indicate traits directly measured by RS;
empty symbols are related to traits indirectly measured by RS.

Moreover, while plant traits are more directly related to plant functioning and thus
to stress, the correlations between the plant traits and the (drought and salinity)
stress were not necessarily stronger (Figure 2.5). Biomass traits showed to have
high R? value to salinity stress at around 720 nm (R?max = 0.74), 1300-1800 nm
(R?’max = 0.88), and around 2500 nm (R?max = 0.88). Photosynthesis traits had
high R? values at 710 nm (R’max = 0.97), 800 nm (R’max = 0.89), 1200 nm, and
around 2500 nm (R?max = 0.75). Interestingly, for both biomass and
photosynthesis traits, the indirectly derived plant traits had generally higher R?
values than the directly measurable RS traits. For water traits, we found different
patterns from biomass traits and photosynthesis traits, with high R? widely
distributed between 500 and 2500 nm (R*max = 0.78). While high R? peaked in the
600-800 nm range, they were also highly variable (0.02 < R? < 0.78). In contrast,
osmosis traits (only indirectly retrievable) showed a very promising performance
(all with R? > 0.50) across the entire region of 500-2300 nm. Thus, it seemed that
osmosis traits were most directly related to salinity stress responses. For drought
stress, the number of studies that presented the wavelengths they used was too
limited to draw clear conclusions. In general though, neither the range of R? values
nor the wavelengths at which traits responded to drought stress deviated much from
those for salinity stress.
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Figure 2.5 Relationship between R? and wavelength of different trait clusters under drought/salinity
stress. RS identifies traits that can be directly measured by RS; InRS identifies traits that can be
indirectly measured by RS. The red line indicates R? > 0.50.

2.3.3 The relationship between vis and plant traits

Vegetation indices have been shown to strongly correlate with individual plant
traits (e.g., LAI and Chl), but the linkage between VIs, spectral reflectance, and
crop traits remains inadequately understood. Thus, we analyzed the relationship
between VIs and plant traits, and the results are shown in Table 2.3. For biomass
traits, LAI showed high correlations with xanthophyll indices (R’max = 0.66) and
greenness indices (R?max = 0.71) (particularly for OSAVI). Photosynthesis traits
were also highly correlated with xanthophyll indices (R?’max = 0.68) and greenness
indices (R’max = 0.70). Especially, AF/Fm was highly correlated with
TCARI/OSAVI (R’max = 0.70). Water traits showed a wide range of correlations
(0.02 < R? < 0.80) with VIs. Therein, Tl — Tair was highly correlated with PRI570
(R?=0.74), PRI600 (R? = 0.79), and TCARI/OSAVI (R? = 0.80). CWC was highly
correlated to three Vs, including WI (R? = 0.72), Clgreen (R? = 0.78), and Clred
edge (R? = 0.73). EWTcanopy was highly correlated to PRI586 (R? = 0.75) and
OSAVI (R? = 0.76). LWP was highly correlated to CWSI (R? = 0.78) and Gs was
highly correlated with CWSI (R? = 0.77). Osmosis traits were mainly highly
correlated with PRI570 (R?max = 0.50). Thus, in general, the four trait clusters
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were highly correlated with xanthophyll indices (0.50 < R’max < 0.79), while they
showed lower correlations with carotenoid indices (0.20 < R? < 0.49). Furthermore,
water traits were correlated stronger with water indices (0.42 < R? < 0.78) than
with the other three trait groups (0.19 < R? < 0.49). Greenness indices showed high
correlations with biomass traits (R?max = 0.71), photosynthesis traits (R?max =
0.70), and water traits (R*’max = 0.80) but not with osmosis traits (R?max = 0.35).
However, despite these general patterns, Table 2.3 also shows that variability in the
relationships is high.
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Table 2.3 The relationship between traits and VIs under drought stress

Biomass Traits Photosynthesis Traits Water Traits Osmosis Traits
vis LAI* FS Chl*  AF/Fm  ChIxAF/Fm TI- Tair CWC* RWC* EWT*  EWTcanopv* LWP Gs TSS TA TSS/TA
Xanthopohvll Indices
PRI570 0.66 011 - - 0.40 0.74 -- 0.51 - - 0.37 059 0.17 050 0.50
PRI515 -- - -- - -- -- -- - - - 0.38 059 - -- -
PRI586 0.64 - -- 0.51 0.34 -- -- - - 0.75 -- -- - -- -
PRI600 0.40 - -- 0.68 -- 0.79 -- 0.52 - - -- -- - -- -
PRI670 -- - -- 0.34 0.36 -- -- - - - -- -- - -- -
Carotenoid Indices
R520/R500 -- - -- - -- -- -- - - - 0.48 049 - -- -
R515/R670 -- - -- - -- -- -- - - - 0.20 023 - -- -
Water Content Indices
WI 0.49 - -- 0.48 0.19 0.69 0.72 0.42 - 0.56 -- -- - -- -
CWSI -- - -- - -- -- -- - - - 0.78 077 - -- -
Greenness Indices
OSAVI 0.71 - -- 0.48 0.32 -- -- - - 0.76 -- -- - -- -
TCARI -- - 043 - -- -- -- - - - 0.325 032 - -- -
TCARI/OSAVI 0.34 032 066 0.70 0.51 0.80 -- 0.41 0.55 - 0.28 023 024 035 028
Clgreen -- - -- - -- -- 0.78 - - - -- -- - -- -
Clred edge 0.64 - -- 0.42 -- 0.54 0.73 0.34 - - -- -- - -- -
SR -- 0.18 - - -- -- -- - - - -- -- 028 034 0.17
Red edge ratio

-- - -- - -- -- -- - - - -- 021 - -- -
index
VOG1 -- - -- - -- -- -- - - - 0.02 029 -- -- -
M -- - -- - -- -- -- - - - 0.02 026 -- -- -

Note: bold numbers indicate that R? >0.50. * means the traits could be directly measured by RS.
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2.4 Discussion

In this study, we systematically evaluated the usefulness of current monitoring
approaches (i.e., vegetation indices and plant traits) for evaluating vegetation
responses to drought and salinity stress. Vegetation indices have been developed to
monitor vegetation health conditions since the 1980s (Rahimzadeh-Bajgiran et al.
2012), and a review of drought indices can be found in (Zargar et al. 2011). In
contrast, only over the past two decades, remote sensing techniques have advanced
enough to retrieve plant traits, increasingly leading to remote sensing applications
to monitor plant traits to characterize both natural vegetation and crop functioning
(Moreno-Martinez et al. 2018). However, a systematic review on the extent to
which these metrics can pick up drought and salinity stress has so far been missing.

Our study reveals that most VIs reviewed are not accurate and consistent enough to
detect changes in crop temporal and spatial responses under stress. This finding
coincides with previous studies (Liu et al. 2016) that showed that simple VIs were
hardly able to detect the impact of drought on crops. A possible explanation for this
is that most VIs do not directly reflect the mechanism of crop responses to stress.
While many VIs are related to (normalized) features of e.g., greenness, carotenoid,
or xanthophyll concentrations, it seems that these features do not only vary because
of the actual drought and salinity stress but also under the influence of various
other local conditions. This may explain the wide range of R? values in relation to
drought or salinity stress. In order to comprehensively monitor stress, we should
therefore focus on exploring the spectral characteristics of crop tolerance and stress
response mechanisms to truly reflect the crop health condition under stress.

Plant traits might provide an approach to measure these stress mechanisms, given
that traits have proven to be indicators of plant and ecosystem functioning. While
previous studies showed that RS could potentially address plant traits, in particular
traits related to photosynthetic process, canopy structure, and leaf biochemistry
(Homolova et al. 2013; Weiss et al. 2020), there are a few plant traits studies that
focus on drought and salinity stress. More specifically, the number of drought and
salinity studies evaluating plant traits is much lower than those using VlIs.
Irrespective of this dichotomy, our systematic review shows that neither the
wavelengths at which traits are detected nor the strength of the relationship to
drought and salinity stress is consistent within or between traits of different crops.
In fact, a wide range of wavelengths used to detect plant traits was found
(Homolova et al. 2013), which suggests that most relationships to spectral
signatures are indirect at best. These indirect relationships, and thus the potential
for confounding factors, may provide a partial explanation for the large variance
we found in R? values and the generally low explained variance. One of those
confounding factors concerns that crop (biomass and water) responses to salinity
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are to some extent similar to those to drought. This confounding factor leads to
confusion in some results and has hitherto not been accounted for in previous
studies. Furthermore, the relationship between traits and stress is further
complicated by the fact the drought and salinity tolerance mechanisms of crops are
complicated and multivariate.

An exception to the low and varied R? values is the osmotic traits as detected
(indirectly) by remote sensing. In all evaluated studies, osmotic traits were strongly
related to salinity stress. This phenomenon is linked to crop response mechanisms
and is -in contrast to biomass and water responses- unique to salinity stress.
Salinity stress inflicts damage to plants due to (a) the disruption of the ionic
equilibrium, (b) an osmotic imbalance, and thereby (c) a decreased photosynthesis
due to the toxicity of Na*. Likewise, evidence shows that an increased expression
of K*, Ca*", Salt Overly Sensitive (SOS) pathways, and glycine betaine are related
to salinity stress tolerance (Mahajan and Tuteja 2005; Niu et al. 1995; Yeo 1998).
Both drought and salinity stress cause osmotic stress and decrease cytosolic as well
as vacuolar volumes. In the case of drought, this osmotic stress is the result of a
displacement of membrane proteins and disruptions in cellular metabolism
(Mahajan and Tuteja 2005). In addition, reactive oxygen species are produced,
which have adverse effects on cellular structures and metabolism (Bartels and
Sunkar 2005). Therefore, the responses of plants to drought and salinity are
identical at the early stage. Consequently, osmotic traits show a high potential as a
suitable indicator for drought and salinity stress RS monitoring. In particular,
promising results have been found for detecting ionic concentrations of sodium,
potassium, and chloride (El-Hendawy et al. 2019b; Zhang et al. 2017).
Unfortunately, though, it seems that our understanding at which wavelengths the
osmotic traits are expressed is still limited.

As highlighted in the previous paragraph, plant functioning under stress is affected
by various pathways. From that perspective, instead of focusing on individual VIs
or traits, an alternative approach to monitoring drought and salinity stress is the
consideration of multiple trait responses simultaneously. Although stresses have
been investigated using many aspects, previous studies rarely utilized multiple
variables to assess these pathways. Radiative transfer models (RTMs) may be
particularly useful to retrieve such multiple variables from remote sensing
observations. RTMs have been developed to study the relationship between
vegetation biochemical and biophysical properties, and hyperspectral reflectance
(Bayat et al. 2016; Botha et al. 2006). In the forward mode, RTMs simulate the
vegetation spectrum based on known spectral signatures of vegetation biochemical
and biophysical properties. Likewise, RTMs can retrieve vegetation properties
from reflectance data in the inverse mode (Jacquemoud 2000; Lu et al. 2020a;
Timmermans et al. 2009). Indeed, RTM inversion has been successfully applied to
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monitor the changes in plant traits and reflectance upon drought (Bayat et al. 2016).
By monitoring multiple traits simultaneously, through the inversion of RTMs, it
will become possible to evaluate how multiple traits in concert are affected by
drought and/or salinity stress. This may also provide additional insights into the
plant strategies to deal with drought and/or salinity stress. Unfortunately, though,
the ill-posedness of the inversion problem commonly puts major constraints on the
generic applicability of RTMs for crop monitoring. Another major constraint, in the
context of this review, is that osmosis traits are difficult to measure directly by
remote sensing. Dissolved salts such as Na®, CI-, K and Ca?" are not directly
tractable, although NaCl has a clearly defined spectrum in the infrared spectrum.
This strongly limits its incorporation within RTMs, which indeed only focus on a
limited number of vegetation traits such as LAI, Chl, and CWC. More research will
be needed to evaluate the prospects of physical modeling of radiative transfer under
the influence of known stress response mechanisms. Traditional multi- or high-
spectral field sensors to investigate the impacts of drought and salinity on crops in
relation to in situ observed traits related to these stresses will be the way forward
here.

A final limitation to monitoring plant traits in response to drought and salinity
stress is the spatiotemporal and spectral resolution of current satellites. Low
spatiotemporal resolution and revisit periods are two main restraints for current
satellite sensor applications in crop management (Berni et al. 2009), although this
has strongly improved with the launch of the Sentinels satellites. The spectral
resolution is currently probably more limiting. The inconsistency across multiple
sensors of different satellites does not allow combining them in one retrieval (Liu
et al. 2016). Hyperspectral missions, such as those foreseen in EnMAP, may
provide such information. This may be particularly interesting if combined with
Light Detection and Ranging (LiDAR) information (e.g., from Global Ecosystem
Dynamics Investigation (GEDI)) or high-resolution information on temperature
(e.g., the Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station
(ECOSTRESS)). However, also, for a fruitful incorporation of such information
sources, it will be essential to first characterize the spectral properties of traits
directly related to the plant responses to drought and salinity stress. This will
reduce the impacts of confounding factors that currently seem to dominate the
patterns obtained, as seems apparent from Figures 2.3-2.5.

2.5 Conclusions

Based on a systematic review, we conclude that a significant number of challenges
remain before RS can be used to monitor drought and salinity stress on crop health.
Specifically, we found that VIs are insufficiently accurate to consistently estimate
these effects. For plant traits, we found some positive correlations for individual
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cases, confirming that plant traits indeed reflect stress response mechanisms.
However, these cases were too few to accurately monitor the pathways for drought
and salinity stress. Furthermore, we found that both spectral wavelengths and the
strength of the relationship to drought and salinity stress varied strongly. Osmosis
traits appear to be the exception to this and consequently have the potential to be
used for monitoring the pathways along which drought and salinity impact crops.
However, osmosis traits cannot be directly measured by RS. In order to fully
capture the biophysical/biochemical pathways of drought/salinity stress on crop
health, future research should focus on (1) advancing our capability to
simultaneously monitor (through multi-sensor frameworks) the suite of crop traits
that are connected to the different pathways affected by drought and salinity, and (2)
expanding our characterization of the spectral properties of osmotic traits (through
optimized RTMs).
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Figure S2-1 The flowchart of the systematic review
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Figure S2-2 Maps of co-authors and co-occurrences from the results of the systematic review. A
bubble and a tag constitute an element. The size of an element depends on the number of nodes, the
strength of the line, and the number of citations. The color of an element represents the cluster to
which it belongs, and different clusters are represented by different colors. In the co-author map, it
shows the network of co-authorship links between 115 publications from the systematic review. The
“bubbles” represent authors. The size of an author bubble represents the number of publications.
Colors represent authors groups that are clustered by co-authorship links (Perianes-Rodriguez et al.

2016; Van Eck and Waltman 2011, 2014).

It was noticed that very few people are focusing on the topic of using remote
sensing to monitor crop response to drought and salt stress. Also, the connections
among most authors were rather weak. Also, there was a very limited number of
studies focusing on monitoring crop traits responses to drought and salinity using
remote sensing techniques as the co-occurrence map showed that the connection of
plant traits and spectra was rather weak. Therefore, we conclude that these topics

need further investigation.
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Table S2-1 115 publications identified from the systematic review

No. Title Reference
1 Detection of early plant stress responses in hyperspectral images gl(%)ilir)nann ctal.
) A crop-'spegiﬁc drought index for corn: 1. Model development (Meyer et al. 1993)
and validation
3 A f.'le'ld experiment on spectrometry of crop response to soil (Leone et al. 2007)
salinity
A PRI-based water stress index combining structural and .
. . (Zarco-Tejada et al.
4 chlorophyll effects: Assessment using diurnal narrow-band 2013b)
airborne imagery and the CWSI thermal index
5 Advapced phenotyping offers opportunities for improved (Walter et al. 2012)
breeding of forage and turf species
Advances in Remote Sensing of Agriculture: Context
6 Description, Existing Operational Monitoring Systems and (Atzberger 2013)
Major Information Needs
7 Aerial canopy temperature differences between fast- and slow- (Bai and Purcell
wilting soya bean genotypes 2018)
3 Agricultural drought monitoring: Progress, challenges, and (Liu et al. 2016)
prospects
Anatomy of a local-scale drought: Application of assimilated
9 remote sensing products, crop model, and statistical methods to ~ (Mishra et al. 2015)
an agricultural drought study
10 Application of vegetation index and brightness temperature for (Kogan 1995a)
drought detection
1 Application of visible and near-infrared spectrophotometry for (Mokhtari M. H. et
detecting salinity effects on wheat leaves (Triticum aestivum L.)  al. 2014)
12 A'pply'ing hyperspectral irpaging to explore natural plant (Sytar et al. 2017)
diversity towards improving salt stress tolerance
13 Assessing canopy PRI for water stress detection with diurnal (Suarez et al. 2008)
airborne imagery
14 Assess'ing canopy PRI from airborne imagery to map water (Rossini ct al. 2013)
stress in maize
Assessment of Photochemical Reflectance Index as a Tool for (Yoshizumi et al
15 Evaluation of Chlorophyll Fluorescence Parameters in Cotton 2010) '
and Peanut Cultivars Under Water Stress Condition
16 Assessment of the water status of mandarin and peach canopies  (Kriston-Vizi et al.
using visible multispectral imagery 2008)
Associated changes in physiological parameters and spectral
17 reflectance indices in olive (Olea europaea L.) leaves in (Sun et al. 2008)
response to different levels of water stress
13 Biophysical pererties 2'1I.Id biomass production of elephant (Wang et al. 2002a)
grass under saline conditions
19 Broadband Spectral Reflectance Models of Turfgrass Species (Jiang and Carrow
and Cultivars to Drought Stress 2007)
Can chlorophyll-a fluorescence parameters be used as bio-
20 indicators to distinguish between drought and salinity stress in (Kalaji et al. 2018)
Tilia cordata Mill
21 Canopy temperature as a crop water stress indicator (Jackson et al. 1981)
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Abstract

Global sustainable agricultural systems are under threat, due to increasing and co-
occurring drought and salinity stresses. Combined effects of these stresses on
agricultural crops have traditionally been evaluated in small-scale experimental
studies. Consequently, large-scale studies need to be performed to increase our
understanding and assessment of the combined impacts in agricultural practice in
real-life scenarios. This study aims to provide a new monitoring approach using
remote-sensing observations to evaluate the joint impacts of drought and salinity
on crop traits. In our tests over the Netherlands at a large spatial scale (138.74 km?),
we calculated five functional traits for both maize and potato from Sentinel-2
observations, namely leaf area index (LAI), the fraction of absorbed
photosynthetically active radiation (FAPAR), the fraction of vegetation cover
(FVC), leaf chlorophyll content (Cab), and leaf water content (Cw). Individual and
combined effects of the stresses on the seasonal dynamics in crop traits were
determined using both one-way and two-way analyses of variance (ANOVAs). We
found that both stresses (individual and co-occurring) affected the functional traits
of both crops significantly (with R? ranging from 0.326 to 0.796) though with
stronger sensitivities to drought than to salinity. While we found exacerbating
effects within co-occurrent stresses, the impact level depended strongly on the
moment in the growing season. For both crops, LAI, FAPAR, and FVC dropped the
most under severe drought stress conditions. The patterns for Cab and Cw were
more inhibited by co-occurring drought and salinity. Consequently, our study
constitutes a way towards evaluating drought and salinity impacts in agriculture,
with the possibility of potential large-scale application for sustainable food security.
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3.1 Introduction

Food production is required to increase by 70% to satisfy the growing population
demand by the year 2050 (Godfray et al. 2010). Meanwhile, food security is
becoming increasingly threatened due to the increasing abiotic stresses under the
influence of global climate change; abiotic stresses including drought, soil salinity,
nutrient stress, and heavy metals are estimated to constrain crop productivity by
50%-80% (Shinozaki et al. 2015). Of these stresses, drought and salinity stress
have been identified as the two main factors to limit crop growth, affecting
respectively 40% and 11% of the global irrigated areas (Dunn et al. 2020; FAO
2020). With drought and salinity forecasted to increase spatially and in severity
(Rozema and Flowers 2008; Schwalm et al. 2017; Trenberth et al. 2013), and with
predictions of higher co-occurrence around the world (Corwin 2020; Jones and van
Vliet 2018; Wang et al. 2013b), food production will be more deeply challenged by
both stresses.

Numerous small-scale experimental studies for a large variety of crops have shown
that the impact of co-occurring drought and salinity stress is exacerbated. Co-
occurrence of drought and salinity stress is found to decrease the yield of spinach
(Ors and Suarez 2017) and the forage grass Panicum antidotale (Hussain et al.
2020) more compared with the occurrence of one of these stresses only. Likewise,
cotton root growth tends to be more inhibited under the co-occurrence of drought
and salinity than by isolated occurrences (Zhang et al. 2013). Similarly, the
exacerbating effect of co-occurring stresses limits both maize reproductive growth
and grain formation (Liao et al. 2022). While these studies demonstrate the
exacerbating effects of co-occurring drought and salinity stress, they have
limitations in projecting the impact towards real farmers’ conditions due to their
small-scale experimental nature. Thus, there is still a significant knowledge gap
concerning the large-scale evaluation of the combined impacts of drought and
salinity.

Remote sensing (RS) provides a huge potential to close this knowledge gap due to
its capability to monitor continuous large areas at frequent intervals. For this,
remote sensing has traditionally used vegetation indices, such as the Normalized
Difference Vegetation Index (NDVI) (Tucker 1979). However, such indices
provide limited information on how the impact is achieved (e.g. in Chapter 2) and
how it can be mitigated. With the launch of better multispectral and high-resolution
satellite sensors (such as Sentinel-2), new RS methods (e.g., hyperspectral, thermal
infrared, and microwave) have been identified to detect stress in both natural
vegetation (Gerhards et al. 2019; Vereecken et al. 2012) as well as in agricultural
applications (Homolova et al. 2013; Weiss et al. 2020). Specifically, these new RS
methods allow for the retrieval of plant traits that directly link to plant processes,
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such as leaf biochemistry and photosynthetic processes, and thereby provide high
potential for agricultural applications. RS plant traits of specific interest to monitor
crop health include leaf area index (LAI) (Wengert et al. 2021), canopy chlorophyll
content (Cab*LAI) (Gitelson et al. 2005), canopy water content (Cw*LAI)
(Kriston-Vizi et al. 2008), the fraction of absorbed photosynthetically active
radiation (FAPAR) (Zhang et al. 2015), and the fraction of vegetation cover (FVC)
(Yang et al. 2018). Canopy chlorophyll content and mean leaf equivalent water
thickness (EWT) of maize differed remarkably under drought stress using
hyperspectral remote-sensing data (Zhang and Zhou 2015). Using a lookup-table
approach, LAI and chlorophyll content of wheat obtained from a radiative transfer
model showed potential to assess drought levels (Richter et al. 2008). However,
while there have been several attempts to monitor the response of crop health with
either a drought or salinity focus, not much research has taken these factors into
account simultaneously (Chapter 2).

In this study, we propose a novel approach to estimate, compare, and evaluate the
impacts of drought, salinity, and their combination on crop traits using remote
sensing. To allow for a detailed evaluation of this approach, we applied it to
analyze the impacts of the 2018 summer drought in the Netherlands on agricultural
crops. In this, a stress co-occurrence map was created by overlaying a high-
resolution drought map of 2018 with a groundwater salinity map. Then, we
characterized the response of maize and potato to different stress conditions based
on five plant traits (LAI, FAPAR, FVC, Cab, and Cw). Two-way analyses of
variance (ANOVAs) were adopted to test the main effects and the interactive effect
between stress combinations and time on crop traits. Moreover, the effect of
drought and salinity on crop traits was determined across the growing season with
one-way ANOVAs. Consequently, this approach facilitates the simultaneous
monitoring of crop health at various scales (regional, national, and continental)
across multiple stresses (drought and salinity) and multiple species.

3.2 Methodology

To achieve our aim of monitoring the impacts of (co-occurring) drought and
salinity on agricultural production, we developed a new approach to estimate crop
traits from remote-sensing observations. Specifically, we developed an approach
that integrates image-processing techniques, such as image classification, co-
registration, land surface parameter retrieval, and time-series analysis (Figure 3.1).
Using these techniques, we were able to estimate the drought, salinity, and crop
growth.

To allow for a detailed evaluation, we focused on the 2018 summer drought in the
Netherlands. This period was selected because of the extreme drought that affected
a large part of Europe (Masante et al. 2018). Within parts of the selected area,
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salinity was reported to increase during that same period (Broekhuizen 2018).
Hence this study area provides us with the opportunity to investigate the combined
impacts of these stresses on crops. In the following paragraphs, we provide more
information on the specific processing steps.
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Figure 3.1 Technical workflow of the maps and data framework.

3.2.1 Study area and data
3.2.1.1 Drought map

A drought map of the Netherlands in 2018 was created based on the standardized
precipitation evapotranspiration index (SPEI) drought index, which was calculated
from long-term precipitation data and potential evapotranspiration, from 2004 to
2018 (Chen et al. 2022). Specifically, SPEI was estimated using a 3-month sliding
time window, as this was found best to investigate the impacts on the local
ecosystems. We have extracted SPEI-3 data from 1 April to 30 October, in total of
214 days, as this coincided with the crop growth period of both maize and potato.
Then, the drought map was resampled to 250m resolution using the nearest
neighbor interpolation and reprojected to RD new projection. The RD new
projection (EPSG:28992) is a projected coordinate reference system of the
Netherlands. All maps were projected to RD new projection to create consistent
data layers. We defined -1 and -1.5 as daily thresholds for different drought
severity classes according to previous classifications (McKee et al. 1993; Tao et al.
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2014). Thus, (cumulative) SPEI for no drought should be between -214 and 0,
SPEI for moderate drought should be between -321 and -214, and for severe
drought, SPEI should be lower than -321 when calculated for the whole growing
period (Figure 3.2a).

3.2.1.2 Salinity map

A topsoil salinity map of the Netherlands was created based on a nationwide fresh-
salt groundwater dataset, which derived chloride concentrations as a salinity
indicator (https://data.nhi.nu/, last access: 8 April 2021). To obtain the salinity map
of the topsoil, 15 layers of the groundwater salinity were extracted from the 3D
groundwater salinity map. For each location, the layer closest to the location’s
corresponding elevation (according to the digital elevation model), i.e., closest to
the soil surface, was selected. The salinity map was resampled to 250m resolution
and reprojected to RD _new projection Ultimately, the salinity map was classified
into three levels namely no-salinity (0.1 g-L'to 0.8 g-L"!), moderate salinity (0.8
gL to 2.5 g'L'h), severe salinity (>= 2.5 g'L!") according to the salt-resistant
capacity of various crops cultivated in the Netherlands (Mulder 2018; Stuyt 2016)
(Figure 3.2b).

3.2.1.3 Crop map

The crop map of the Netherlands in 2018 was collected from the Key Register of
Parcels (BRP) of the Netherlands Enterprise Agency
(https://www.pdok.nl/introductie/-/article/basisregistratie-gewaspercelen-brp-). The
crop map was resampled to 250m resolution and reprojected to RD new projection
(Figure 3.2d).

3.2.1.4 Co-occurrence map of drought and salinity

The drought map and the salinity map were overlain to evaluate co-occurrences of
drought and salinity of the Netherlands in 2018 (Figure 3.2¢). By classifying the
three stress levels for the individual occurrences, we obtained nine stress classes of
co-occurring drought and salinity, namely no stress, moderate drought only (MD),
severe drought only (SD), moderate salinity only (MS), severe salinity only (SS),
moderate drought and moderate salinity (MD+MS), moderate drought and severe
salinity (MD+SS), severe drought and moderate salinity (SD+MS), and severe
drought and severe salinity (SD+SS).

3.2.1.5 Study area selection

Based on the national map of the Netherlands (Figure 3.2c¢), a single region with
similar soil type, climate, tillage systems, and irrigation methods was chosen to
minimize the interference of these factors on the observed trait expressions. The
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province of North Holland was selected because it contained the most (seven out of
nine) combinations of drought and salt stress (Figure 3.2¢), namely no stress, MD,
SD, MS, SS, MD+MS, and SD+SS. Moreover, both maize and potato were
cultivated across all stress combinations in this province. For further analysis, MS
and SS were grouped into a new class of salinity stress since the area of MS and SS
was quite limited. Therefore, six classes of stress combinations, namely no stress,
MD, SD, salinity (MS+SS), MD+MS, and MD+SS, were analyzed for the study
area.
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Figure 3.2 Map of the Netherlands overlaying a) drought and b) salinity to show c) the co-occurrence
of drought and salinity in 2018. The selected study area is indicated by black lines in panel c. d) The
associated crop map of the study area in 2018.

3.2.2 Traits retrieval

3.2.2.1 Satellite data

The Sentinel-2 mission consists of two satellites equipped with the high-resolution
Multispectral Instrument (MSI) in the same orbit. This sensor acquires 13 spectral
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bands (with varying spatial resolutions) in the visible and near-infrared spectrum at
5 days of revisit times (ESA 2015). In our study, we used both the 10 and 20m
Level 2A observations, downloaded from the Copernicus Open Access Hub
(https://scihub.copernicus.eu/, last access: 20 May 2021), to facilitate the
requirement of the Sentinel Application Platform (SNAP) toolbox for both optical
and near-infrared observations to be available for determining the functional traits.
To create consistency across the bands, those with a 20m resolution (B5, B6, B7,
B8A, B11, and B12) were resampled to the 10m resolution of B3 and B4. In total,
eight cloud-free scenes were found (21 April 2018, 6 May 2018, 26 May 2018, 30
June 2018, 15 July 2018, 13 September 2018, 13 October 2018, and 28 October
2018) to cover the crop growth cycle. Although additional cloud-free scenes were
found in August (4, 9, 14, 19, 24, and 29 August 2018), none were of high quality,
and we therefore chose to omit August from our analysis.

3.2.2.2 Trait selection

Plant traits (e.g., LAL, FAPAR, FVC, Cab, and Cw) were selected in consideration
of their corresponding impacts on crop functioning and their potential for
assessment by remote sensing. LAl is a critical vegetation structural trait related to
various plant functioning processes, such as primary productivity, photosynthesis,
and transpiration (Asner et al. 2003; Boussetta et al. 2012; Fang et al. 2019; Jarlan
et al. 2008). FAPAR depends on vegetation structure, energy exchange, and
illumination conditions, while FAPAR is also an important parameter to assess
primary productivity (Liang 2020; Weiss et al. 2016). FVC is a promising
parameter corresponding to the energy balance process such as temperature and
evapotranspiration (Weiss et al. 2016). Cab is an effective indicator of stress and is
strongly related to photosynthesis and resource strategy (Croft et al. 2017). Cw
plays an important role in transpiration, stomatal conductance, photosynthesis, and
respiration (Bowman 1989; Zhu et al. 2017), as well as in drought assessment
(Steidle Neto et al. 2017).

3.2.3 Dataset processing

The biophysical processor within the SNAP toolbox derives the five traits, namely
LAI, FAPAR, FVC, canopy chlorophyll content (CCC), and canopy water content
(CWQ), for each pixel from the Sentinel-2 top of canopy reflectance data at a 10m
resolution for each month. This processor utilizes an artificial neural network
(ANN) approach, trained using the PROSAIL simulated database (Weiss et al.
2016). This training utilized canopy traits rather than leaf traits (estimated by
multiplication with LAI) to improve their neural network performance. To obtain
their leaf counterparts (Cw and Cab), to create fully independent variables, CCC
and CWC thus need to be divided by LAI to obtain Cab (i.e., CCC/LAI) and Cw
(i.e., CWC/LAI). Pixels with quality flags were eliminated from the dataset. It was
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observed that in April no crop had yet been planted. Instead, we observed that only
along the edge of the plots, e.g., in ditches, was vegetation found. This feature was
used to generate a ditch map and mask out pixels in trait maps for the other months.
For each variable and each date, only data within the 95% confidence interval were
taken to increase data robustness.

3.2.4 Analysis

Since the pixel counts of the six classes of stress combinations, namely no stress,
MD, SD, salinity, MDCMS, and MDCSS, were (highly) different, drought and
salinity were not considered two independent factors. Instead, a two-way analysis
of variance (ANOVA) was applied to test the main effects and the interactive effect
between stress combinations (consisting of six levels) and time (5 months) on each
individual crop trait. Significant effects of the main stress condition were
investigated through post hoc tests to test whether interaction effects between
drought and salinity had occurred. Two-way ANOVAs were run separately for each
trait and each crop type (maize and potato) as we expected different patterns. In the
Netherlands, potato and maize are planted between mid-April and early May.
Crops are surfacing in May and harvested in October. Therefore, to evaluate the
response of crops to stresses across the growing season, the effect of drought and
salinity on crop traits was determined for May, June, July, and September with a
one-way ANOVA. Tukey’s honest significant difference (HSD) post hoc tests were
performed to identify the differences among the six stress combinations. All
statistical analyses were performed with SPSS 27.0 (SPSS Inc., USA).

3.3 Results
3.3.1 Stress impacts depend on the moment in the growing season

The two-way ANOVAs revealed strong effects of date and stress level on the five
traits with effect sizes of the response (R?) ranging from 0.326 to 0.796 for the five
traits, which was similar for maize and potato. For both maize and potato, R* values
were lowest for Cab and highest for LAI, FAPAR, and FVC. For maize, we found a
significant main effect of both date and stress (p < 0.05) for Cab, Cw, FAPAR, and
FVC. In contrast, LAI was not significantly different across the different stress
conditions. For potato, all main effects of date and stress were significant for all
five crop traits (Table 3.1).

For all traits and both crops, the interaction between the effects of time and stress
conditions was significant (p < 0.05) (Table 3.1), indicating that the impact of
stress depended on the moment in the growing season. Despite the significant
interaction terms, the partial Eta squared values (Table 3.1) showed that the effects
of time in the growing season were much stronger than those of stress or the
interaction of date and stress. The effects of date for maize were stronger than for
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potato. Interestingly, the effects of the interaction between date and stress were
stronger than those of the main effects of stress, suggesting strong time-specific
impacts of stress on the crop traits investigated. The interaction terms were
strongest for FVC.

Table 3.1 Two-way ANOVA for different crop traits by time series and stress interactions.

Crops Traits Factors F )4 Partial Eta Squared R?

date 21445 0.000 0.636

LAI 0.766
stress 14 0.226 0.001
date*stress 8.5 0.000 0.033
date 333.9 0.000 0.222

Cab 0.326
stress 10.7 0.000 0.008
date*stress 3.6 0.000 0.015
date 952.1 0.000 0.449

Maize Cw 0.590
stress 9.9 0.000 0.007
date*stress 4.0 0.000 0.017
date 1865.9 0.005 0.603

FAPAR 0.738
stress 33 0.000 0.002
date*stress 8.5 0.000 0.033
date 2022.5 0.000 0.622

FvC 0.761
stress 22.1 0.000 0.015
date*stress 28.7 0.000 0.105
date 752.1 0.000 0.273

LAI 0.782
stress 13.7 0.000 0.006
date*stress 8.1 0.000 0.020
date 96.4 0.000 0.050

Cab 0.329
stress 54.2 0.000 0.024
date*stress 8.7 0.000 0.023
date 347.4 0.000 0.158

Potato Cw 0.571
stress 68.1 0.000 0.030
date*stress 10.3 0.000 0.027
date 612.7 0.000 0.234

FAPAR 0.744
stress 25.8 0.000 0.011
date*stress 14.0 0.000 0.034
date 844.0 0.000 0.297

FvC 0.796
stress 18.8 0.000 0.008
date*stress 13.6 0.000 0.033

Note: F indicates the test statistic of the F-test; p indicates whether the effect is statistically significant
in comparison to the significance level (p < 0.05); Partial Eta Squared indicates the effect size of
different factors; R? indicates the percentage that the model coincides with the data.
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3.3.2 Response of LAIL, FAPAR, and FVC to drought and salinity

Given the significance of both date and stress and their interactions, subsequent
one-way ANOVAs were performed to compare the effects of drought and salinity
on LAI, FAPAR, and FVC for maize and potato in May, June, July, and September
separately (Figure 3.3). The patterns for LAI, FAPAR, and FVC were very similar,
although they differ in detail and were therefore treated together.

For maize, all of LAI, FAPAR, and FVC obtained their lowest value under MD+SS
stress conditions in May. In June, both LAI and FVC dropped the most under
salinity stress and it was significantly (p < 0.05) different from MD, MD+MS, and
MD+SS conditions, but not significantly different from no-stress conditions. In
contrast, FAPAR also reached its lowest value (under MD+MS stress conditions) in
June but had a significant difference (p < 0.05) compared with no stress conditions.
Both in July and September, LAI, FAPAR, and FVC all had the lowest value under
SD conditions, and the difference was significant compared with no-stress
conditions.

For potato, LAI, FAPAR, and FVC had the lowest (p < 0.05) value under MD+MS
and MD+SS stress conditions in May. In June, LAI, FAPAR as well as FVC
reached the lowest value under SD conditions and were significantly lower than in
most other stress conditions even though the difference was not significant from
no-stress conditions. In July, there was a tendency for LAI, FAPAR, and FVC to be
lower under stress conditions, although none of the effects were significant. In
September, however, LAI, FAPAR, and FVC significantly decreased under MD,
MD+MS, and MD+SS conditions, and the difference was significant compared
with no-stress conditions. In addition, the difference was not significant among
these three stress conditions.

Therefore, both for maize and potato, LAI, FAPAR, and FVC dropped the most
under SD stress conditions when they reached their respective maximum value,
compared with other stress conditions. At the same time, maize and potato were
more sensitive to drought than salinity since no significant change was observed
between drought conditions and conditions with a combination of drought and
salinity stress.
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3.3.3 Response of leaf chlorophyll and water content to drought and salinity

The one-way ANOVAs revealed that there were significant (p < 0.05) impacts of
the various stress conditions on Cab and Cw (Figure 3.4). For maize, Cab obtained
its lowest value under salinity stress in May and June while it was not significantly
different from no-stress conditions. However, in July, Cab reached the lowest value
under MD+MS conditions although the difference was not significant from other
stress conditions. There were no significant changes observed for Cab in September.
For potato, Cab dropped the most under salinity conditions in May although the
difference was not significant from no-stress conditions. Furthermore, Cab
significantly decreased under MD+SS conditions in June and July, compared with
other conditions. Although Cab dropped the most under salinity conditions in
September, the difference was not significantly different from other conditions. In
addition, compared with no stress, potato had the lowest Cab under MD+SS
conditions while there was no significant difference between MD+SS and salinity
conditions in most growing periods.

Cw decreased under all stress conditions in May, June, and July for both maize and
potato, except for SD conditions in May, compared with no-stress conditions. At
the same time, Cw reached its lowest value under MD+SS conditions and it was
significantly different from under no-stress conditions. Nonetheless, there were
different changes for maize and potato in September. Cw was not significantly
different among any conditions for maize while it was the lowest under salinity
conditions for potato.

Therefore, this analysis illustrates that salinity affected maize less than drought
since crop responses were more obvious to drought than salinity for Cw. In contrast,
salinity showed a more severe effect on maize and potato at the early growth stages
for Cab. Meanwhile, Cab was affected by co-occurring drought and salinity in June
and July for potato. It seems that there was a non-additive effect of drought and
salinity for Cw since the changes were not significant between MD+MS, MD+SS,
MD, and salinity conditions.

56



(@ May_26 June_30

Stress
] No stress
Maize Potato Maize Salinity
Crops Crops VD
July_15 September_13 MD+MS
MD+SS
ab a ab ab sD
60{ om0 = bC X 60
xyz a a a
y vy a a a
z
40 40
) a
3 3
o o
20 20
s 0-
Maize Potato
Crops Crops
(b) May_26 June_30
0.03 0.03
y Xyzw
a =
b bbpp w
0.02 0.02
3 3
S 6}
0.01 0.01
Stress
0.00 v 0.0 v 4 No stress
Maize Potato Maize Potato Salinity
Crops Crops MD
July_15 September_13 MD+MS
0.03 0.0: MD+SS
SD
a abc ab XX X X b
0.02 be ab o X vy 002 a 8 3 a3 aa ZxzY2
B3 B3
S S
0.01 0.01
0.00 0.00-
Maize Potato Maize Potato
Crops Crops

Figure 3.4 Expressions of Cab and Cw under various stress conditions in May, June, July, and
September 2018. Different letters in each panel indicate significant differences (p < 0.05). MD,
moderate drought only; Salinity, salinity only; MD+MS, moderate drought, and moderate salinity;
MD-+SS, moderate drought and severe salinity (MD+SS); SD, severe drought only.

57



3.4 Discussion

In this study, we quantified the large-scale impacts of co-occurring drought and
salinity on a variety of crop traits using satellite remote sensing. We observed that
-in contrast to our expectations- the impacts of salinity were not highly pronounced
at this scale, with most strong impacts originating due to drought stress during the
2018 drought. At specific moments in the growing season, salinity and/or the
combined effects of salinity and drought pronouncedly affected individual crop
traits. In this way, with increasing salinity driven by more intensive droughts, water
allocation should not only be governed by the amount of water shortage but also
the salinity of the remaining water. In this paper, we provide the first evidence that
those impacts can be monitored through remote sensing. This might provide a basis
towards a monitoring system for multiple crops with multiple stresses as well as
better governance policies to ameliorate this problem.

3.4.1 Drought stress is more important than salinity stress in farmers’
conditions

The exacerbating effects of co-occurrent drought and salinity (Figure 3.3 and
Figure 3.4) that we found are consistent with findings of small-scale experiments
(e.g. greenhouses). Consistent with our results, synergistic effects of co-occurring
water stress and salinity stress have been found on maize reproductive growth and
grain formation in a field study (Liao et al. 2022). Spinach (Spinaciaoleracea L., cv.
Racoon) yield decreased more under co-occurring water-salinity stress in
comparison with separate water stress and salinity (Ors and Suarez 2017). The co-
occurring drought and salinity stress was more harmful to cotton root growth
compared to their individual effects (Zhang et al. 2013). Moreover, the combined
negative effect of drought and salinity stress on Panicum antidotale was stronger
than that of single stress (Hussain et al. 2020). Our research showed that the
outcomes of these small-scale experimental studies also apply to real large-scale
environments, where different sources of variance are present. Specifically, we
show that in real farmers’ conditions, the co-occurrence of drought and salinity
indeed can constitute a severe threat due to its interactive effects on crop growth.

In addition, we evaluated whether drought or salinity stress has more impact on
crop performance. We observed that maize and potato were generally more
sensitive to drought than salinity in this study (Figure 3.3 and Figure 3.4). This is
consistent with results of previous studies that highlight that drought impacts are
generally more detrimental than salinity stress for crops, e.g. for sesame (Sesamum
indicum) (Harfi et al. 2016), Mentha pulegium L. (Azad et al. 2021), durum wheat
(Sayar et al. 2010), grass pea (Tokarz et al. 2020), and sweet sorghum (Patane et al.
2013). However, given that the threshold of salinity at which crop damage occurs
(according to the FAO guidelines (Ayers and Westcot 1985)) was surpassed in all
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situations in which salinity stress was imposed (including in our study), we initially
expected salinity to be a stronger explanatory variable than drought. As such,
salinity impacts on crop performance (by the FAO) may have been overestimated.
Indeed, in an experimental field situation in which drought stress was carefully
avoided, higher thresholds of salinity-induced damage were observed for potato
(van Straten et al. 2021).

In combination, the results from our study (supported by results from other studies)
suggest that salinity particularly induces adverse effects when co-occurring with
drought stress. The impact of water stress on photosynthesis and the biomass of
plants was extenuated by salinity since salinity enhances the synthesis of ATP and
NADPH by promoting photosynthetic pigments and photosystem II efficiency. The
impacts of combined drought and salinity stress on plant growth, chlorophyll
content, water use efficiency, and photosynthesis were less severe compared to
drought alone. This indicates compensating effects on carbon assimilation due to
osmotic adjustments induced by Na"and CI” (Hussain et al. 2020). Thus, the
detrimental effect of single drought stress on crop growth is considered to be
mitigated by salinity.

3.4.2 Drought and salinity stress differ between growth stages

The responses to drought and salinity stress were different at different growth
stages of the crops. This was expressed by the significant interactions between the
effects of time and stress conditions for all of our crop responses (Table 3.1). We
found that during the grain filling (maize) and tuber bulking phase (potato), the
sensitivities of these crops are expressed distinctly in the non-harvested
aboveground tissues (Figure 3.3 and Figure 3.4), with clear differences in the
remote sensing plant traits.

Given that we were not able to monitor the harvestable products, multiple
mechanisms may explain these patterns. The relatively high leaf coverage (as
related to LAI, FAPAR, and FVC) at salinity and severe drought conditions at the
end of the growing season may be an expression of a compensation process.
Specifically, early and prolonged drought could have led to more assimilates
allocated to non-harvestable potato parts for drought resistance since the number of
tubers reduced (Jefferies 1995; Schittenhelm et al. 2006). In that case, we should
consider their higher leaf coverage at the end of the season as a survival
mechanism, rather than true drought tolerance, leading to reduced tuber yields
(Daryanto et al. 2016b). Future studies that combine remote sensing with
harvesting data may be able to evaluate this mechanism in more detail.

In our study, different response patterns of maize and potato occurred to the
different stresses over the growing season. This is consistent with previous studies
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focusing on the impact of drought and/or salinity onsets. For potato, it has been
suggested that tuber yields particularly decreased when drought stress occurs
during the vegetative and tuber initiation stages than during the tuber bulking stage
(Wagg et al. 2021), although another study observed the reverse pattern (Daryanto
et al. 2016b). For maize, on the other hand, drought seems to have the most
detrimental impact during the maturation stage (Mi et al. 2018; Zhang et al. 2019),
and the reproductive phase (Daryanto et al. 2016a; Daryanto et al. 2017).
Considering the additional co-varying factors within our ‘real-life’ study, it is very
probable that we were able to detect similar effects. This suggests that we may use
satellite remote sensing -albeit less spatially precise than e.g. sensing through
drones- as a cost-effective early warning signal for detecting drought and salinity
stress at moments during the growing season when differences in crop performance
are still subtle.

3.4.3 Crop responses to stress can be better understood with a multi-trait
approach

In addition to facilitating the evaluation of crop performance during multiple stages
of the growing season (in contrast to most destructive methods), remote sensing
also allows a multi-trait approach to better understand the mechanisms involved in
crop responses. Each of the five traits is associated with different functions of
plants that might be individually impacted by the different stresses. Therefore,
focusing on only one individual metric (as commonly done, see Chapter 2 for a
review) limits our capacity to gain full insight into drought and salinity responses.
Hence, given that individual crop traits may respond differently to drought and
salinity reflecting its stress resistance and tolerance strategy, the evaluation of these
distinct responses may help to understand this strategy.

In this study, Cw was consistently lower in all drought and salinity treatments as
compared to no-stress conditions in May, June, and July. Indeed, this is a common
response of plants in response to drought and salinity (e.g. Chapter 2). In this
respect, it is interesting that no decrease in Cw was observed at the end of the
growing season, in September. Whether the phenomenon is related to the survival
mechanism mentioned above or to the lower transpiration demands at the end of
the season because of lower aboveground biomass, cannot be concluded from these
data. Some evidence pointing to the survival mechanism is the finding (Ghosh et al.
2001; Levy 1992) that the leaf dry matter increased for potato under
drought/salinity stress (like in our study) while the dry matter of the tubers
appeared to have a greater decline.

With respect to chlorophyll contents, we observed a decline in Cab under salinity
conditions in May and the MS+SS treatment in June and July, while no decrease
was observed in any of the treatments exposed to drought only. This indicates that
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while total leaf area was not (much) affected by salinity, the salinity did negatively
affect crop performance. It has been reported that chlorophyll content in maize was
significantly reduced upon salinity, along with other plant traits including plant
height, shoot/root biomass, and leaf numbers (Fatima et al. 2021; Mahmood et al.
2021). Likewise, similar patterns were obtained in potato plants in saline soil
(Efimova et al. 2018). Hence, this implies that soil salinity tends to negatively
affect crop growth and restrict nutrient uptake.

Cab and Cw responses to drought and salinity were distinct from responses of LAI,
FAPAR, and FVC (Figure 3.3 and Figure 3.4). LAI, FAPAR, and FVC showed
similar patterns to stress due to their highly physical correlation (Hu et al. 2020).
The different patterns of Cw and Cab point to different drought and salinity
resistance strategy components associated with these traits: LAI (and FAPAR/FVC)
reflect the decrease in biomass due to stress, partly because stress directly and
negatively impacts growth and partly because having lower biomass decreases the
evapotranspiration demands of the crop, which increases the resilience of the crop
to deal with drought. Cw represents another pathway to reduce evapotranspiration
demands, i.e. by reducing the amount of water per gram of leaves. Also, this
response may be a direct effect of the more negative pressure heads due to drought
or due to increased osmotic pressures (due to salinity). It may also be part of the
adaptive strategy of the crop to increase its resilience. Cab also responds to drought
and salinity, but in its own way, i.e. by adapting its photosynthetic capacity while
being affected by a lower stomatal conductance (due to drought and/or salinity).
See e.g. Wright et al. (2003) for a framework explaining these nitrogen-water
interactions.

In addition, our approach gives the insight to analyze the effect of stresses on yield
based on the five traits, even though yield cannot directly be derived from remote
sensing. Traits including Cab, LAI, and FAPAR, have been used (either separately
or in combination) as a proxy for final yield estimates from remote sensing in many
studies. For instance, NDVI -which is based on the combination of LAI and Cab- is
extensively used to estimate crop yield (Huang et al. 2014; Mkhabela et al. 2011;
Vannoppen et al. 2020). Also, LAI itself has been used for predicting the final yield
(Dente et al. 2008; Doraiswamy et al. 2005; Sun et al. 2017). Meanwhile, Cab and
FAPAR were also proven to be highly correlated with crop yield (Ghimire et al.
2015; Lopez-Lozano et al. 2015). Thus, while yield cannot be estimated directly
from remote sensing or ground truth data at the desired high spatial resolution, our
indicators do relate to yield and can be used in more application-based contexts to
inform on yield impacts.
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3.4.4 Implications for future research and management

The number of studies that evaluate the effects of drought and salinity stress on
crops is limited (Chapter 2). In general, studies focus on small-scale experimental
studies under strict control of all variables with only a limited number of crops
(Hussain et al. 2020; Ors and Suarez 2017). To our knowledge, this is the first
study that uses satellite remote sensing to investigate drought and salinity impacts
for a large area under real-life conditions necessary for constructing stress
management policies.

In such real-life conditions, as investigated here, irrigation of crops is commonly
applied as management practice during drought events to reduce the severity of
drought impacts (Deb et al. 2022; Lu et al. 2020b). In this study, however, we have
evidence that irrigation did not play a major role in the patterns found since all
croplands included in our research area were identified as rainfed cropland
(according to the ESA/CCI land cover  map in 2018;
https://maps.elie.ucl.ac.be/CCl/viewer/, last access: 19 April 2022). In addition,
while farmers in the area are known to irrigate their cropland, the Dutch
government announced a temporary national irrigation ban in 2018 (for various
areas including our research area) to spare water (Perry de Louw 2020). As a
consequence, we could not analyze the impacts of irrigation management on the
combined effects of drought and salinity. This might potentially be solved by
investigating other drought historic events with moderate severity in Europe, such
as the year 2003 (Ciais et al. 2005) or 2015 (Ionita et al. 2017) in Europe, when
such a ban was not executed. Unfortunately, satellite remote sensing observations
with the required 20-30m resolutions of these events are limited, as Sentinel-2 was
only launched in 2015 and the Landsat satellites provide a too coarse temporal
resolution.

Likewise, the impacts of salinity and drought are moderated by crop selection.
Traditionally, farmers do not plant highly vulnerable crops in moderate/high
salinity areas. In fact, we found crops sensitive to salinity such as apple (Ivanov
1970) and broccoli (Bernstein and Ayers 1949) to be abundant in non-saline areas
but only little in saline areas. To ensure an accurate evaluation of salinity impacts,
we only investigated those crops with a significant abundance in all available stress
conditions. More sensitive crops might even respond more strongly.

3.5 Conclusions

In this study, we present the first attempt to evaluate the real-life effects of drought,
salinity, and their combination on crop health using multiple traits from remote
sensing monitoring during 2018 over the Netherlands. Our approach gives new
insights for monitoring crop growth under co-occurring stresses at a large scale
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with high-resolution data. We found that while in general temporal patterns
-reflecting crop growth dynamics- were stronger than effects of stress conditions,
stress impacts depended on the time of the growing season. Furthermore, we also
found that the temporal dynamics in crop responses to drought and salinity were
different for maize vs. potato. In general, the five investigated traits were more
negatively affected by a combination of drought and salinity stress compared to
individual stress. Meanwhile, both maize and potato responded more prominently
to drought, thus demonstrating a stronger sensitivity, than to salinity. Specifically,
LAI, FAPAR, and FVC dropped the most under severe drought stress conditions.
Consequently, the proposed new approach poses a facilitated way for
simultaneously monitoring the effect of drought and salinity on crops in large-scale
agricultural applications.
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Abstract

Food security is projected to be threatened by increasing co-occurring stresses (e.g.,
drought and salinity) under global climate change. To mitigate major impacts on
food production, the tolerances and vulnerabilities of crops to these threats need to
be characterized. The aim of this research is to assess the tolerances of crops to the
combination of drought and salinity stress across plant functions under real-life
settings. Using five traits, we evaluated the impacts of drought and salinity
tolerance on a multitude of crops throughout the United States. We assessed the
dominant stress as well as the onset of combined and individual effects of drought
and salinity from March to October. We indeed observed that stress impacts
strongly depended on time. In addition, we observed that crops were more sensitive
to combined salinity and drought than to individual stresses, although stress
impacts significantly varied between time and species. Of the individual traits, LAI
was triggered first by stresses, followed by FVC and FAPAR, and Cw and Cab
were the last to respond to stresses. In comparison to other species, almond
demonstrated greater resilience to combined drought and salinity, whereas soybean
and maize were more drought tolerant. In combination, our study provides a way of
assessing the tolerance of various crops to co-occurrent stresses both independently
and in combination. By allowing applications to other co-occurring stresses and
vegetation types, our approach creates a quantitative foundation to inform
sustainable food production.
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4.1 Introduction

Crops are continuously exposed to a variety of abiotic stresses. Extreme
occurrences including floods, droughts, and heat waves are forecasted to increase
as a result of global climate change (Wang et al. 2022). These occurrences not only
directly lower agricultural yield but also increase the susceptibility of crop
production to future events (Zscheischler et al. 2018). Salinity and drought are two
major factors that constrain crop yield and are expected to increase in frequency.
By 2050, salinity is expected to affect half of the arable land, most of which is on
dry or semi-arid land (Angon et al. 2022). More frequent droughts will further
increase yield loss risk in the future, with rice, soybeans, wheat, and maize being
particularly vulnerable (Leng and Hall 2019). Therefore, food security is expected
to be more threatened by the co-occurrence of stress (i.e. salinity and drought)
under global climate change. Although singular stress impacts on crops have been
extensively studied, co-occurrence stress impacts are still considered challenging
due to their complexity (Mehrabi et al. 2022). Thus, to mitigate major impacts on
food production, the tolerances and vulnerabilities of crops to these threats need to
be characterized.

Traditionally, the tolerance of crops is estimated for a limited number of crop types
in highly controlled small-scale experiments. Maas and Grattan (1999) published a
list of salt tolerance of 81 crops based on the electrical conductivity of the saturated
paste (EC.) under simulated conditions. However, there is evidence showing that
the tolerance of some crops to salinity had been underestimated in such conditions
(van Straten et al. 2021). Apart from isolated drought or salinity stress, several
studies evaluated the tolerance of combined drought and salinity stress of various
crops. In contrast, in wheat, the combination of mild salinity and drought stress was
found to cause a stronger inhibition of wheat yield compared with singular stress
(Paul et al. 2019). However, in these pot experiments, there was a large difference
among various wheat cultivars concerning their tolerance to combined drought and
salinity stress (Paul et al. 2019). Suarez et al. (2019) estimated the salt tolerance of
grape rootstock in a simulated water stress environment for four years. They came
to the conclusion that it was difficult to forecast the combined impacts of salinity
and water stress based on the quantification of isolated effects of salinity or water
stress from tests. Therefore, it is important to evaluate the simultaneous response to
co-occurring stressors in real-life scenarios for a wide range of crop types.

Plant traits can serve as indicators for assessing crop health and crop responses,
given that plant traits are associated with various plant functions involving leaf
biochemistry and biophysics processes as well as photosynthetic processes. Leaf
area index (LAI), the fraction of absorbed photosynthetically active radiation
(FAPAR), and the fraction of vegetation cover (FVC) are critical traits related to
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primary productivity, vegetation structure, photosynthesis, and transpiration (Asner
et al. 2003; Fang et al. 2019; Weiss et al. 2016). Leaf chlorophyll content (Cab) is
closely related to the process of photosynthesis and resource management strategy
(Croft et al. 2017). Leaf water content (Cw) is a trait related to transpiration,
stomatal conductance, and the respiration process and has been linked to drought
impacts on crops in many studies (Bowman 1989; Zhu et al. 2017). LAI, FAPAR,
and Cab have been shown to have a strong correlation with crop yield and are thus
used to estimate final yield (Dente et al. 2008; Doraiswamy et al. 2005; Ghimire et
al. 2015; Lopez-Lozano et al. 2015). Therefore, to enhance our understanding of
actual agricultural tolerances, and associated plant functioning, it is crucial to
evaluate the performance of functional traits in real-life.

Remote sensing has a great potential for monitoring stresses on a large scale, if
current challenges are met (Jiao et al. 2021; West et al. 2019). In particular for
agricultural applications, satellites with multispectral sensors in high-resolution,
such as Sentinel-2, allow stress detection based on retrieved plant traits (Weiss et al.
2020). Two common approaches to retrieving plant traits relevant for analyzing
plant stress effects rely on statistical and physical modeling (Bayat et al. 2016).
Statistical approaches involve parametric regressions based on the relationship
between spectral bands/vegetation indices (VIs) and functional traits as linked to
vegetation stress. Moreover, physical modeling approaches, such as radiative
transfer models (RTM), show promising potential to retrieve plant traits related to
stress from remote sensing (Wocher et al. 2020). Traits including LAI, FAPAR,
FVC, Cw, and Cab retrieved from remote sensing have been applied to evaluate the
response of vegetation to either drought or salinity stress (Bayat et al. 2016; Zhang
et al. 2020). Instead of relying on individual traits to evaluate crop resistance
mechanisms, remote sensing has demonstrated a way to monitor crop responses to
stresses based on a multi-trait approach (Berger et al. 2022). Therefore, compared
to most destructive methods with restricted capacity to detect mechanisms of stress
in crops, remote sensing is a crucial tool that can simultaneously monitor plant
functional traits across a wide range of crop types. Moreover, with remote sensing,
such monitoring can be achieved over large spatial scales, at high temporal
resolution, and in real-life agricultural settings. However, despite attempts to assess
the impact of drought and salinity stress on crops using remote sensing traits, these
studies are often limited in terms of the number of traits, crop types, and individual
stress factors considered.

This study addresses the challenge of simultaneously evaluating the response of
diverse crops to the co-occurrence of drought and salinity stress in real-life settings
at a large scale. To achieve this, we generated a comprehensive co-occurrence map
of drought and salinity across the entire United States. To isolate the effects of
stress, we employed a pair-wise method to compare stressed and unstressed

69



observations while eliminating the impacts of other factors including soil, climate
zone, and region. Based on five retrieved traits including LAI, FVC, FAPAR, Cw,
and Cab using Sentinel-2 observations, we characterized the response of eight
crops to various drought and salinity stress conditions, as well as their interactions
with other impacting factors throughout the growing season. We also analyzed the
onset of stress (drought, salinity, and their combination) on five traits for each crop
individually. Ultimately, our study provides valuable guidance to local farmers and
governments by supplying timely information on crop responses to co-occurring
stresses, both individually and collectively.

4.2 Methodology

According to the U.S. Drought Monitor (USDM), drought attacked the USA on a
national scale throughout 2021 (NCEI and NOAA 2021). Around half of the
contiguous USA experienced different strengths of drought from January onwards,
and the west and middle of the USA which are typically used for farming crops
suffered more severe drought (NCEI and NOAA 2021). In this study, we integrated
multiple techniques to evaluate the response of diverse crops to salinity and
drought stress at various levels simultaneously across the contiguous USA. In a
previous paper (Chapter 3), we developed a novel approach to evaluate the
expression of five crop traits under salinity and drought stress conditions in the
Netherlands for only two crops. In this study, by adopting a pair-wise method to
assess trait expressions concerning drought, salinity, and their combined impacts
compared to non-stressed conditions, we captured stress impacts more precisely for
a much larger range of crops and spatial conditions (Figure 4.1 and Figure S4-1).
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Figure 4.1 Conceptualisation of the technical workflow.
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4.2.1 Study area and stress map
4.2.1.1 Drought map

A drought map of the contiguous USA in 2021 was generated based on the
standardized precipitation evapotranspiration index (SPEI) drought index. The
monthly SPEI with 3-month sliding time windows was collected from The West
Wide Drought Tracker (https://wrcc.dri.edu/wwdt/about.php) (Abatzoglou et al.
2017). We extracted SPEI-3month data from March to October to coincide with
various crop growth periods. Next, SPEI-3month maps for each month were
combined to create the drought map for 2021. Then, the drought map with NAD
1983 Contiguous USA Albers projection was resampled to 30m resolution by using
nearest neighbor interpolation. We define -8 and -12 as cumulative SPEI thresholds
for no drought (-8 to 0), moderate drought (-12 to -8), and severe drought (< -12) in
the whole growth season (McKee et al. 1993; Tao et al. 2014) (Figure 4.2a).

Figure 4.2 a) Drought map in the contiguous USA in 2021. b) Salinity map in the contiguous USA in
2021. ¢) co-occurrence map of drought and salinity in the contiguous USA in 2021. d) Map of stress-
no stress pairs at 1km resolution.

4.2.1.2 Salinity map

A soil salinity map of the United States was generated from Gridded National Soil
Survey Geographic Data (gNATSGO)
(https://www.nrcs.usda.gov/wps/portal/nres/detail/soils/survey/geo/?cid=nrcseprd 1

464625). We extracted the attribute Electrical Conductivity (EC) data for the
topsoil with a 30m map unit raster. Based on EC, we developed the soil salinity
map using the lookup function. Afterwards, the soil salinity map was reclassified to
three levels namely no-salinity (0 dS'm™ to 4 dS‘m™"), moderate salinity (4 dS:m™!
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to 8 dS'm™), and severe salinity (> 8 dS'm™) according to estimated salinity effects
on crop growth (Richards 1954) (Figure 4.2b).

4.2.1.3 Co-occurrence map of drought and salinity

The co-occurrence of drought and salinity map for the COUNS in 2021 was
created by overlaying the drought map and soil salinity map (Figure 4.2c). Given
separative three levels of drought (no drought, moderate drought, and severe
drought) and salinity stress (no salinity, moderate salinity, and severe salinity)
(section 4.2.1.1 and section 4.2.1.2), we obtained nine classes of stress
combinations, namely no stress, moderate salinity only (MS), severe salinity only
(SS), moderate drought only (MD), severe drought only (SD), moderate salinity
and moderate drought (MS+MD), moderate salinity and severe drought (SD+MYS),
severe salinity and moderate drought (MD+SS), and severe salinity and severe
drought (SD+SS). In some cases, there were limited salinity observations for
specific combination conditions. Therefore, these observations were merged with
the closest classification into an overall category. For instance, MS+MD and
SS+MD were reclassified to the MD+Salinity category.

4.2.2 Crop dataset
4.2.2.1 Crop map

The crop map of the contiguous USA in 2021 was collected from the Cropland Data
Layer program (CDL) in the United States Department of Agriculture (USDA)
(https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php).
The crop map is in 30m resolution with NAD 1983 Contiguous USA Albers
projection.

4.2.2.2 Crop selection

To ensure the highest availabilities of pairs subjected to multiple levels of stress
throughout the growing season, eight crops including alfalfa, almond, grape, maize,
sorghum, soybean, spring wheat, and sugar beet, were selected out of over 70 crop
types because they contained most pairs of observations with comparable stress
combinations (Table S4-1). These eight crops were classified into three categories
according to their tolerance for drought and salinity stress from the literature
(Table S4-2).

4.2.3 Remote sensing traits retrieval

In this study, we derived geospatial maps of functional traits by using remote
sensing. We used Sentinel-2 observations composited scenes in 60m resolution
(sun azimuth, sun zenith, view azimuth mean, view zenith mean, B03, B04, B05,
B06, B07, BOSA, B11, and B12) with 10-days periods (from 11% to 20™) for each
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month from The Sentinel-2 Global Mosaic 2 (S2GM-2) service
(https://s2gm.land.copernicus.eu/mosaic-hub). Then, all scenes were processed
by the biophysical processor in the Sentinel Application Platform (SNAP) toolbox
API for python to retrieve five traits namely LAI, FVC, FAPAR, canopy water
content (CWC), and canopy chlorophyll content (CCC) for each observation.
Trait tiles were purged of observations raised with quality flags. After that,
maps for the contiguous USA for each trait were accomplished by mosaicking
all trait tiles from March to October to capture the full phenology of each crop.
CCC and CWC were divided by LAI to acquire the independent leaf counterparts
Cab (=CCC / LAI) and Cw (=CWC / LAI). To eliminate outliers for Cab and Cw
created by extremely low values of LAI, observations with LAI values lower
than 0.5 were excluded from the calculation of Cw and Cab. In order to
maintain consistency for all five trait maps, LAI, FAPAR, and FVC maps were
additionally screened for observations of LAI values less than 0.5.

4.2.4 Pairwise dataset processing

We adopted a pairwise method to eliminate the impacts of potentially confounding
factors as much as possible. To ensure capturing representative crop responses on
the basis of high-resolution data (section 4.2.3), we defined our pixels at 1km
resolution. For this purpose, the crop map in 30m resolution was resampled to 1km
using majority interpolation. The drought and salinity maps were resampled to 1km
using the nearest neighbor interpolation. Subsequently, a fishnet comprising
attributes of stress conditions, soil type, climate zone, state, and crop type, was
created in 1 km resolution. Next, within a 30 km buffer, each observation in a
stressed condition at the 1km resolution fishnet was coupled with several non-
stressed observations that met the same criteria (crop type, soil taxonomy, climate
zone, and state). The threshold of the buffer was determined by a semi-variogram
based on LAI considering the spatial correlations and the presence of multiple
stress combinations. To calculate the corresponding trait value for the lkm
resolution fishnet, we extracted observations in a 30m resolution map with the
same five attributes as the fishnet using raster calculator. Then, the average trait
value at lkm resolution was determined by the mean value of the traits in 30m
resolution using the zonal statistic. Next, we quantified the difference between
stressed and non-stressed observations for the five traits based on the available
pairs in the 1km resolution fishnet (Figure 4.2d) using the field calculation. Finally,
we calculated the mean difference in trait values of each stressed observation
involved in multiple pairs with unstressed conditions according to its unique
(stressed observation) ID.
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4.2.5 Data analysis

To minimize the impact of outliers, the median value for each stress class for five
traits was calculated across the growth period. Considering the planting and harvest
time of crops differs in the southern and northern part regions of the contiguous
USA, we evaluated the response of crops to salinity and drought stress on crop
traits from March to October to capture the whole growing period for different
crops. The main effect of factors -stress condition, time, soil type, climate zone,
state, and crop types) and their two-way interaction effects on each trait were
determined by an analysis of variance (ANOVA) with SPSS 27.0. Post-hoc tests
were performed to determine the significance of individual levels within factors.
Partial Eta Square was determined to indicate the effect size of different factors.
Since the interaction effects with crop type were omnipresent and to understand
those better, we subsequently ran ANOVAs for each crop individually (Table S4-4
and Table S4-5). For eight crops, ANOVAs on stress condition, time, soil type,
climate zone, state, and their two-way interactions were conducted for each trait,
respectively. Since the interactions of other factors with stress were consistently
smaller than those with time, we focused on the two-way ANOVAs of stress and
time in the results. In addition, to evaluate which type of stress - salinity, drought,
and combined salinity and drought - has the strongest impact on crops, the
dominant stress without considering different strengths of stress was determined
based on the median value of each trait throughout the growing season. Meanwhile,
the onset of stress was determined as the first time during the growing season when
a negative impact was observed on an individual trait. The onset of drought,
salinity, and combined stress for eight crops was estimated for all five traits.

4.3 Results
4.3.1 Crop response commonalities to stress

The two-way ANOVAs of stress and time revealed a strongly time-dependent
impact of stress on the five traits, as expressed by strong interaction effects (Figure
4.3). Each trait varied significantly (p < 0.05) over time for soybean, maize,
almond, alfalfa, sugar beet, and spring wheat. However, the impact of time was
always insignificant for sorghum. Stress significantly (p < 0.05) impacted FAPAR,
FVC, and LALI for all crops. Except in Cw for sorghum, and in Cab for soybean and
spring wheat, other crops had significant (p < 0.05) differences in Cab and Cw in
all stress conditions across the growing season. In addition, for all traits and crops,
the impacts of stress varied significantly (p < 0.05) over time except in Cw and
LAI for sorghum. Among all crops, we found that both the main effect and
interaction effect were always significant (p < 0.05) in all five traits for maize,
almond, alfalfa, and sugar beet, indicating that the impacts of drought and salinity
on their performance depended on the moment in the growing season. Interestingly,
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sorghum had the highest number of insignificant effects of both the main effect of
stress and time as well as their interaction effect for the five traits. In particular, Cw
was not significant (p < 0.05) in either main effects or interaction effects,
suggesting sorghum had a stronger resilience to drought and salinity over the whole
growing season. Moreover, time and stress were similarly important (as expressed
by the partial eta square value) across five traits for soybean, maize, almond, spring
wheat, and sorghum. In general, time, stress, and time*stress explained more of the
variance in the trait values for grape, almond, alfalfa, sugar beet, and sorghum
compared to soybean, maize, and spring wheat, indicating stronger impacts on the
first group of crops. Furthermore, the interaction effect between stress and time
was more important or equally important as the separate main effects, indicating
that the impact of stress showed complicated dynamics that highly depended on the
moment of the growing season.
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Figure 4.3 Results from two-way ANOVAs for different crop traits by stress, time, and their
interactions, highlighting which effects are significant and which are not. ST+DS indicates salt-
tolerant and drought-sensitive crops; SS+DT indicates salt-sensitive and drought-tolerant crops;
ST+DT indicates salt-tolerant and drought-tolerant crops; PES indicates the partial eta square, i.e. the
strength of the relationship.

4.3.2 Crop structural trait differences to stress in the growing season

Given the strong interaction effects of stress and time, the effects of salinity and
drought on LAI, FVC, and FAPAR for crops from March to October were
evaluated separately (Figure 4.4 and Figure S4-2). The patterns for FVC and
FAPAR were similar to the pattern for LAI, even though the impacts of stresses
were stronger for LAI throughout the growing season compared to FAPAR and
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FVC. Therefore, they are presented in the supplementary information (Figure S4-3,
Figure S4-4, Figure S4-7, and Figure S4-8).
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Figure 4.4 The pattern of LAI, expressing the severest stress conditions in different months. ST+DS
indicates salt-tolerant and drought-sensitive crops; SS+DT indicates salt-sensitive and drought-
tolerant crops; ST+DT indicates salt-tolerant and drought-tolerant crops; in strength, low indicates a
difference between stress pixels and control pixels smaller than 0.1 m? leaf per m? surface, moderate
indicates a difference between stress pixels and control pixels between 0.1 m? leaf per m? surface and
0.5 m? leaf per m? surface, and high indicates a difference between stress pixels and control pixels
greater than 0.5 m? leaf per m? surface; positive effect and negative effect indicate the direction of the
pair-wise differences between stress pixels and control pixels.

The patterns of LAI, FVC, and FAPAR under drought and salinity stress varied
strongly between different crops and at different moments (Figure 4.4, Figure S4-2,
and Figure S4-3) as well as between different states (Figure S4-9, Figure S4-10,
and Figure S4-11). For all crops, the combination of salinity and drought stress
commonly had the biggest impact on the performance of LAI, FAPAR, and FVC
over the whole growing season, even though occasionally in parts of the growing
season positive effects on individual traits were observed. Drought stress alone had
the lowest amount of impact among the three stress factors (and particularly
affected sorghum). These results suggest that in general salinity was more
important in determining crop performance than drought. Salinity stress showed
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negative impacts on all crops for LAI in all months. However, for FAPAR and FVC,
salinity stress showed positive impacts on almond, alfalfa, and sorghum during the
growing season (Figure S4-2).

The importance of individual and combined stresses varied among the different
crops. In many crops, the combination of stresses really mattered. However, for
almond and sorghum, there were only independent drought and salinity stress
impacts on LAI, FVC, and FAPAR throughout the whole growing season. All crops
except for grape and sugar beet responded consistently negatively to stresses for
LAI from April to August. Thus, the responses of crops to drought and salinity
differed between species and over time. Importantly, none of these patterns seemed
to relate to their perceived tolerance to salinity or drought (Table S4-2).

4.3.3 Crop physiological traits difference to stress in the growing season

The patterns of Cab and Cw under salinity and drought stress varied between
different crops and at different moments (Figure 4.5, Figure 4.6, Figure S4-5, and
Figure S4-6) as well as between different states (Figure S4-12, and Figure S4-13).
For all crops, the combined drought and salinity stress had the highest impact as
the severest stress for Cab over the whole growing season. Drought stress alone
was the most important stress factor in the least number of occasions. For almond
and sorghum, only drought and salinity stress alone impacted Cab. Salinity stress
tended to show positive impacts on soybean, almond, and sugar beet for Cab at the
beginning and end of the growing season. Also, drought stress and the combination
of salinity and drought stress showed negative impacts as well as positive impacts
on crops for Cab without clear patterns in terms of the timing of the positive and
negative effects. Crops including maize, almond, and alfalfa, responded negatively
to stresses for Cab from April to August. All crops showed complex dynamic
responses to stresses for Cab from March to October.
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Figure 4.5 The pattern of Cab (Chlorophyll a/b), expressing the severest stress conditions in different
months. ST+DS indicates salt-tolerant and drought-sensitive crops; SS+DT indicates salt-sensitive
and drought-tolerant crops; ST+DT indicates salt-tolerant and drought-tolerant crops; in strength, low
indicates a difference between stress pixels and control pixels smaller than 1 ug.cm™, moderate
indicates a difference between stress pixels and control pixels between 1 ug.cm? and 5 ug.cm™, high
indicates a difference between stress pixels and control pixels greater than 5 ug.cm?; positive effect
and negative effect indicate the direction of the pair-wise differences between stress pixels and control
pixels.

Similar to Cab, Cw was mostly affected by the combination of salinity and drought
stress over the whole growing season, while drought stress alone occurred in the
least number of occasions as the most important stress factor among all crops.
Interestingly, sorghum was the only crop that was most impacted by the
independent effects of salinity and drought stress for Cw across the whole growing
season. Drought stress always caused negative impacts on Cw, except for spring
wheat and sorghum. In contrast, salinity stress and combined salinity and drought
stress showed both negative and positive impacts on crops for Cw during the
growing season, the direction of the impact as well as the most important stress
factor varied strongly over time. Crops including maize, grape, alfalfa, and spring
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wheat responded consistently negatively to stresses for Cw in the later phase of the
growing season, i.e., from July to October.
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Figure 4.6 The pattern of Cw (concentration of water in leaves), expressing the severest stress
conditions in different months. ST+DS indicates salt-tolerant and drought-sensitive crops; SS+DT
indicates salt-sensitive and drought-tolerant crops; ST+DT indicates salt-tolerant and drought-tolerant
crops; in strength, low indicates a difference between stress pixels and control pixels smaller than
0.001 g.cm?, moderate indicates a difference between stress pixels and control pixels between 0.001
g.cm?and 0.005 g.cm?, high indicates a difference between stress pixels and control pixels greater
than 0.005 g.cm??; positive effect and negative effect indicate the direction of the pair-wise differences
between stress pixels and control pixels.

4.3.4 The onset of drought and salinity impacts in the growing season

As crops responded in different ways to salinity and drought stress, the onset of
stresses was analyzed to further compare the differences among crops and traits
(Figure 4.7). We found for most crops that stress impacts were triggered in March
and April, indicating on average crops suffered from stresses throughout most of
the growing season. Although the onset of separate drought and salinity differed
among crops as well as among traits, the onset of all crops to combined drought
and salinity stress was similar to or later than drought for all traits except for Cab in
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alfalfa. Furthermore, among the five traits, LAI was the first trait to respond to
stresses for all crops, except for almond under combined salinity and drought stress
conditions. FAPAR and FVC showed similar onset timing to stress. On average,
Cw and Cab were the last to respond to stresses, compared to other traits.

Cab Cw FAPAR FVC LAI

Soybean . Group
ST+DS

SS+DT
ST+DT

e . .
Type
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Alfalfa
May
- . . . N

NA

Maize

Springwheat

Sorghum

D S D+S D S D+S D S D+S D S D+S D S D+S

Figure 4.7 The onset of crop responses to stresses in the growing season. D indicates drought stress;
S indicates salinity stress; D+S indicates combined drought and salinity stress; ST+DS indicates salt-
tolerant and drought-sensitive crops; SS+DT indicates salt-sensitive and drought-tolerant crops;
ST+DT indicates salt-tolerant and drought-tolerant crops.

4.4 Discussion

4.4.1 Crop responses to salinity and drought differ between species and growth
stages

A key finding of our research is that the combined effects of drought and salinity
stress on crop growth are more pronounced than the effects of drought or salinity
stress individually. Consistent with our previous study (Chapter 3) and various
small-scale experiments, co-occurring salinity and drought showed exacerbating
effects on crop traits in most cases (Ors and Suarez 2017; Zhang et al. 2013).

While exacerbated impacts of co-occurring stresses are commonly observed, we
additionally show how the impacts of stresses on crops vary strongly over the
growing season (Figure 4.4, Figure 4.5, and Figure 4.6), a finding that would not be
possible to obtain from small-scale experiments focusing on yield impacts only.
Moreover, even the dominant stress on crop traits varied throughout the growing
season. This indicates that the crop responses to drought and salinity are highly
dependent on the moment. Such variation is consistent with physiological
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knowledge showing that the sensitivity to specific drivers depends on the growth
stage (Saqib et al. 2013). For instance, previous studies showed that drought has a
higher impact on maize during the reproductive phase (Daryanto et al. 2017), while
the impacts of drought stress were strongest during the tuber bulking phase in
potato (Chapter 3). Such impacts of (drought and salinity) stress are not commonly
evaluated but are of crucial importance to evaluating those impacts and for taking
mitigating measures. Our study shows how we can use remote sensing as a
convenient tool to enable real-time dynamic monitoring and evaluating crop
performance to regulate crop management.

Aside from the significant impact of the moment in the growing season, drought
and salinity also affect crops differently depending on their species. A number of
controlled experiments studies have shown that a variety of crops such as barley
(Toker et al. 1999), reed (Sanchez et al. 2015), durum wheat (Houshmand et al.
2014), etc., respond differently to salinity and drought. Likewise, seven pepper
accessions showed a wide variability of responses to salinity, drought, and their
combination treatments (Lopez-Serrano et al. 2017) These different responses of
crops to drought and salinity likely link to their differences in tolerance to these
stresses, which were shown in this study through the trait expressions of the
various crops studied. For instance, almond -known to be sensitive to salinity and
tolerant to drought- showed a higher sensitivity to salinity stress for LAI, FVC,
FAPAR, and Cab during the growing season than to drought and or the
combination of drought and salinity (Figure 4.4, Figure S4-2, Figure S4-3, and
Figure 4.5), while sorghum responded more strongly to drought. Nevertheless, the
responses of individual crops to salinity and drought stress were not fully
consistent with expected tolerances based on controlled experiments. For instance,
sorghum was expected to be tolerant to both drought and salinity (but mainly
responded to drought) and almond was expected to be mainly sensitive to salinity.
Thus, given the multitude of responses for different traits and crops that might not
always be consistent with assumed tolerance to these stresses, our study shows that
a comprehensive evaluation of responses to drought and salinity in a real-life
agricultural setting across multiple crop types, growth conditions, and management
is essential. In light of the projected future increase in drought and salinity stress,
our remote sensing approach may be an appropriate tool to give timely guidance to
government and local farmers.

4.4.2 Patterns in growth stage-dependent responses to stress

Although the responses of crops to drought and salinity differed between species
and growth stages, there were commonalities among various crop types. In general,
for all eight crops, LAI was triggered first by drought and salinity stress, followed
by FVC and FAPAR, and Cw and Cab were the last to respond (Figure 4.7).
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Therefore, it indicates that -depending on the growth stage- crops employ a
different strategy to resist drought and salinity or vary in the sensitivity of traits to
these stresses. Generally, our results suggest that most crops prefer to remove some
leaves first before decreasing the vegetation cover as a whole to capture as much
sunlight as possible, maintaining energy and nutrient uptake. When they cannot
deal with water stress anymore, they reduce leaf chlorophyll content and leaf water
content at last. This general sequence in trait responses -which we describe for the
first time- with chlorophyll and leaf water responding when conditions get severe
for a longer period of time, may explain why several studies concluded that
chlorophyll content has a high correlation with drought or salinity stress
(Schlemmer et al. 2005). Our results, showing that LAI responds first, explain why
LAI -as the most well-known trait- provides a highly sensitive stress detection for
vegetation (Li et al. 2022). Given their similar responsiveness, also FAPAR and
FVC have the capability to determine and monitor stress impact on crop growth
(Cammalleri et al. 2022; Mohammed and Algarni 2020).

Given that crops employ different strategies to resist drought and salinity stress
(section 4.4.1) and given the growth-stage dependent trait responses to drought and
salinity (this section), our study shows the importance of evaluating multiple traits
simultaneously. Several studies focus on the spatiotemporal variation of individual
traits, but the responses of crops from the beginning to the end of the growing
season are rarely considered or compared. This limited coverage in time and traits
may limit their findings to the restricted range of crop varieties and growth stages.
Instead, in this study, we obtained a detailed description of crop tolerances to
drought and salinity thanks to the combination of multiple measurements during
the growing season and the assessment of multiple traits simultaneously. Such
quantification is of importance for understanding crop responses to stress in real-
life agricultural systems.

4.4.3 Local impacts on crop responses to salinity and drought stress

Despite the strong significance of all patterns described above, the effect sizes of
the crop responses to salinity and drought stress were limited. Additionally
accounting for the potential effects of differences in soil type, climate zone, and
region between our observation pairs hardly improved our explanatory power of
the effects of stress (Figure 4.3, Table S4-4, and Table S4-5), even though local
conditions affected crop responses to stress (Figure S4-9, Figure S4-10, Figure S4-
11, Figure S4-12, and Figure S4-13). The interaction effects of e.g. soil type or
climate zone with stress were however significant in many cases (Table S4-5). This
may be explained by the fact that soil moisture and soil salinity variations are
known to be controlled by various factors, including soil type, climatic conditions,
and local management policy (Ben Ahmed et al. 2012). Ben Rouina et al. (2007)
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pointed out that the response of the olive tree to drought stress varied in soil type,
due to the higher water-holding capacity in clay soils than in sandy soils. In most
crops and for the five traits investigated, the impacts of soil type on the effects of
stress were stronger than the impacts of climate zones or specific regions thereon.
Together, they provide a partial explanation for the strong variation in crop
responses to salinity and drought stress in the contiguous USA. However, even soil
type did not affect the expression of impacts of salinity or drought stress as much
as time did. This reinforces our assessment of the importance of time-dependent
impacts of drought and salinity stress (section 4.4.1) and the generic patterns in the
timing of the trait responses (section 4.4.2). In combination, our results indicate
that a high variation in responses to drought and salinity is an outcome of the
complex interaction of different crop responses and strategies over time in a broad
spectrum of environmental conditions.

4.4.4 Future implications

The remote sensing approach developed and employed in this study to evaluate
crop tolerance to combined salinity and drought stress by assessing multiple traits
linked to crop performance also provides possibilities for application to other stress
combinations (e.g., flood, heat, frost). Given the general nature of the traits used
and of its generic assessment methodology, such applications are not only feasible
for crops but for all kinds of vegetation types. Our approach is complementary to
existing small-scale and experimental approaches by focusing on large-scale
settings in local agricultural settings. Our approach shows that it is able to capture
the high variation in crop performance in the contiguous USA at relatively high
resolution. This suggests that it can be an interesting approach for local farmers or
the government to timely assess crop health. In this way, it gives farmers an open-
source tool to monitor crop growth conditions and adjust field management based
on evidence. For larger to global scale applications, our approach allows evaluating
food security and associated stress factors to may constrain food security, many of
which are likely to become more prominent in the near future.

4.5 Conclusions

In this study, we evaluated the responses of multiple crops to salinity, drought, and
their combination based on five functional traits across the entire U.S. continent
throughout crop growing season in 2021 from remote sensing. We found that stress
impacts were highly dependent on the moment in the growing season. Moreover,
different crops showed divergent responses to these stresses over time. In general,
crops were more sensitive to the combined effects of salinity and drought stress
compared to the individual effects of salinity and drought stress. Most crops first
reduced their primary production capacity through reducing LAI before reducing
water or chlorophyll contents. In combination, we established a quantitative
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foundation for simultancously assessing the responses of various crops to the
occurrence of stresses, alone and collectively at large scale and under actual
agricultural conditions. Consequently, we contribute to monitor food security and
guide food production in a timely and non-destructive way by remote sensing.
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Conceptualization, Methodology, Supervision, Writing, and Reviewing.
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4.7 Supporting information

Table S4-1. Number of observation pairs in the final selection for crops during the growing season
from March to October.

March  April May June July August  September  October Total
Soybean 405 1500 6994 13810 18402 22975 21824 12392 98302
Maize 911 2827 6227 10293 14460 16228 16341 9497 76784
Alfalfa 1678 4265 8144 8402 6932 6517 7702 5868 49508
fvrl’lre‘;‘tg 14 35 3298 11391 9093 6925 7695 5604 44055
ts)zegtar 101 140 289 755 1014 1187 1153 1036 5675
Almond 405 728 709 705 707 705 699 739 5397
Grape 340 352 391 452 466 527 587 622 3737
Sorghum 9 12 58 111 176 180 144 127 817
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Table S4-2. Crop stress-tolerance characteristics.

Crop

Drought tolerance
(Idowu et al. 2012; Wei
et al. 2018)

Salinity tolerance
(Grieve et al. 2011)

Category

Soybean
Maize
Grape

Almond
Alfalfa

Sugar beet
Spring wheat

Sorghum

drought-sensitive (DS)
drought-tolerant (DT)
drought-tolerant (DT)
drought-tolerant (DT)
drought-tolerant (DT)
drought-tolerant (DT)
drought-tolerant (DT)

drought-tolerant (DT)

salinity-tolerant (ST)
salinity-sensitive (SS)
salinity-sensitive (SS)
salinity-sensitive (SS)
salinity-sensitive (SS)
salinity-tolerant (ST)
salinity-tolerant (ST)

salinity-tolerant (ST)

ST+DS
SS+DT
SS+DT
SS+DT
SS+DT
ST+DT
ST+DT

ST+DT
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Table S4-3. Two-way ANOVA results by time series and stress interactions for different crop traits
(sig.= significance with ** p <0.01; * p <0.05; ns = not significant).

LAI FAPAR FvC Cab Cw
Crops Factors Partial Partial Partial Partial Partial
sig. Eta sig. Eta sig. Eta sig. Eta sig. Eta
Squared Squared Squared Squared Squared
time wok 0.001 wok 0.001 ** 0.001 ** 0.001 ** 0.001
Alfalfa stress *ok 0.002 *k 0.002 ** 0.002 ** 0.004 ** 0.013
time*stress ~ ** 0.012 * 0.014 ok 0.014 ok 0.014 ** 0.073
time ** 0.007 * 0.030 * 0.004 * 0.003 wok 0.010
Almond  stress * 0.014 * 0.016 *k 0.020 * 0.004 ok 0.018
time*stress ~ ** 0.037 * 0.036 ok 0.035 ok 0.030 ** 0.045
time * 0.007 ns 0.003 ns 0.003 * 0.005 ns 0.001
Grape stress * 0.010 * 0.004 * 0.005 ok 0.012 ok 0.010
time*stress ~ ** 0.048 ** 0.028 ** 0.033 ** 0.027 ** 0.028
time ** 0.000 ** 0.001 ** 0.001 Hok 0.001 Hok 0.001
Maize stress * 0.001 * 0.001 *k 0.001 ok 0.001 * 0.000
time*stress ~ ** 0.003 ** 0.002 ** 0.002 ** 0.002 ** 0.002
time ns 0.007 ns 0.014 ns 0.011 ns 0.010 ns 0.006
Sorghum  stress * 0.026 * 0.014 * 0.015 * 0.018 ns 0.001
time*stress  ns 0.020 * 0.028 * 0.026 * 0.035 ns 0.009
time *k 0.001 *k 0.000 ** 0.001 ** 0.002 ** 0.001
Soybean  stress *E 0.000 *E 0.000 *x 0.000 ns 0.000 *x 0.000
time*stress ~ ** 0.001 *k 0.001 ** 0.001 ** 0.002 ** 0.001
time *k 0.001 *k 0.001 ** 0.001 ** 0.003 ** 0.002
3%:2;5 stress * 0000 * 0000 * 0000 ns 0000 *  0.000
time*stress ~ ** 0.002 *k 0.002 ** 0.002 ** 0.002 ** 0.001
time *k 0.023 *k 0.014 ** 0.019 ** 0.006 ** 0.006
Sgegtar stress #0007 ** 0005  ** 0007  ** 0008  ** 0010
time*stress ~ ** 0.053 *k 0.028 ** 0.033 ** 0.026 ** 0.040
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Table S4-4. Multi-way ANOVA for different crop traits including only main effects of time, stress,
soil type, climate zone, and state (sig. = significance with ** p <0.01; * p < 0.05; ns = not significant).

Cab Cw FAPAR FVC LAI
Crops Factors
Partial Partial Partial Partial Partial
sig. Eta sig. Eta sig. Eta sig. Eta sig. Eta
Squared Squared Squared Squared Squared
time #0004  ** 0011  ** 0002  ** 0004  ** 0002
stress  *% 0002  ** 0011  * 0001  ** 0001  **  0.001
Alfalfa f;;l)le #0012 * 0005 ** 0010 ** 0010 **  0.005
Eglrl‘;ate #0003 0002 ** 0002 ¥ 0002  ** 0002
state #0006 % 0.009  ** 0005  ** 0005 **  0.004
time #0039 %% 0055 <% 0081  ** 0084  ** 0067
stress  **  0.005  ** 0010 * 0003 ** 0007 **  0.006
Almond f;;l)le w0078 ot 0015 ** 0050  ** 0040  ** 0040
Eglrl‘;ate #0030 % 0075 ** 0013 * 0013 ** 0020
state -- - -- -- - -- - -- - --
time #0013 ** 0016  ** 0047  ** 0051  ** 0087
stress  ** 0014  ** 0015 ** 0006 * 0004 *  0.004
Grape f;’;le w0025 k% 0023 % 0042 % 0045 0044
Zgﬁ;ﬁte #0077 % 0019 %% 0078  ** 0096  ** 0137
state ns 0000  * 0004 % 0007 ** 0010 ** 0029
time #0007  ** 0004  ** 0004  ** 0004  **  0.005
stress  *% 0002  * 0000  * 0001  ** 0001  **  0.001
Maize f;);le #0003t 0008  ** 0003  ** 0003  **  0.004
Zgﬁ;ﬁte #0001 % 0001  ** 0001 ** 000l ** 0001
state #0003 ** 0004  ** 0002  ** 0002  **  0.003
time #0037 ns 0015  ** 0053 %% 0044 < 0037
stress * 0.009 ns 0.000 ns 0.001 ns 0.001 ns 0.000
soil

Sorghum  ¢ype * 002 ns 0008 ns 0016 ns 0013  * 0020

;gﬁ;ﬁte ns 0013 ns 0008 ns 0014 ns 0012  * 0028
state * 0026 * 0019 ns 0015 ns 0014  ** 0040
time #0011 %0006  ** 0004 = 0004  ** 0007
stress  ** 0001 ns 0000  ** 0001  ** 0001 * 000l
Soybean f;;l)le #0001  ** 0001  ** 0003  ** 0004 ** 0005
Eglrl‘;ate #0000 ** 0000  ** 0000  ** 0000  *  0.000
state ® 0,002 0.001  * 0001  * 0001  ** 0001
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time #0014 ** 0002 ** 0004  ** 0003  **  0.006
stress % 0002 ns 0000  *f 0000 ** 0001  ** 0001
Spring ~ Soil #0005  ** 0003  ** 0002  ** 0003  ** 0005
Wheat t}’PC
climate o 0001 ns 0000 0002 % 0002 ** 0002
zone
state ® 0,002 * 0001 %% 0002  ** 0001  ** 0003
time #0073 ** 0029 %% 0051  ** 0066 **  0.089
stress  ns  0.001  ** 0015 * 0.002 * 0.002 * 0.003
Sugar S0l ns  0.002 * 0.004  ** 0006  ** 0006 **  0.006
beet type
climate 0002  ** 0004 ¥ 0004  ** 0004 ** 0010
zone
state #0009  ** 0005  ** 0009  ** 0008  ** 0016
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Table S4-5. Multi-way ANOVA for different crop traits including main effects of time, stress, soil
type, climate zone, and states and the interactions of stress and time with other factors (sig. =
significance, ** p <0.01; * p < 0.05; ns = not significant).

Cab Cw FAPAR FVC LAI
Crops Factors Partial Partial Partial Partial Partial
sig Eta sig Eta sig Eta sig Eta sig Eta
Square . Square . Square . Square . Square
d d d d d
time ns 0.000 * 0.000 * 0.000 * 0.000 * 0.000
stress ns 0.000 ns 0.000 ns 0.000 ns 0.000 ns 0.000
soil type ** 0.000 ** 0.002 Hk 0.003 Hk 0.003 ** 0.002
climate zone * 0.002 ** 0.001 ns 0.000 ns 0.000 * 0.000
state ** 0.001 ** 0.002 *k 0.002 *k 0.002 ** 0.002
time*stress *x 0.006 *x 0.026 wE 0.009 *E 0.004 *x 0.006
Alfalfa time*soil type ~ ** 0.013 *x 0.026 *E 0.018 *E 0.022 *x 0.018
time*state *x 0.014 *x 0.027 *E 0.019 wE 0.020 *x 0.022
time*climate
zone ** 0.007 ** 0.013 Hk 0.007 Hk 0.008 ** 0.008
stress*soil
type *x 0.008 *x 0.002 *E 0.006 *E 0.007 *x 0.006
stress*climate
zone * 0.001 *x 0.001 * 0.001 ns 0.001 ns 0.001
stress*state ** 0.006 ** 0.003 Hk 0.005 Hk 0.006 ** 0.005
time ** 0.012 ** 0.008 Hk 0.005 Hk 0.007 ** 0.019
stress ** 0.008 ** 0.011 Hk 0.007 Hk 0.013 ** 0.013
soil type *x 0.017 *x 0.025 wE 0.017 *E 0.016 *x 0.017
climate zone *x 0.022 *x 0.013 HE 0.019 *E 0.025 *x 0.035
state -- - -- -- - - - - -- --
time*stress *x 0.020 *x 0.027 *E 0.018 wE 0.018 *x 0.022
Almond tim‘e*soil type  ** 0.060 ** 0.094 Hk 0.061 *k 0.056 ** 0.043
time*state - -- - - -- -- -- -- - -
time*climate
zone *x 0.055 *x 0.064 wE 0.046 *E 0.047 *x 0.066
stress*soil
type * 0.005 *x 0.006 *E 0.008 wE 0.009 *x 0.010
stress*climate
zone ** 0.008 ** 0.006 * 0.004 Hk 0.009 ** 0.010
stress*state -- -- -- -- -- -- -- -- -- --
time * 0.000 *x 0.000 ns 0.000 ns 0.000 * 0.000
stress * 0.000 * 0.000 ns 0.000 ns 0.000 * 0.000
soil type *x 0.001 *x 0.003 wE 0.001 *E 0.002 *x 0.002
climate zone * 0.000 ns 0.000 ns 0.000 ns 0.000 * 0.000
state ** 0.001 ** 0.002 Hk 0.001 Hk 0.001 ** 0.001
time*stress ** 0.002 ** 0.001 Hk 0.001 Hk 0.001 ** 0.001
Maize time*soil type ~ ** 0.032 ** 0.018 Hk 0.021 Hk 0.021 ** 0.033
time*state *x 0.015 *x 0.016 wE 0.011 *E 0.011 *x 0.018
time*climate
zone *x 0.005 *x 0.003 wE 0.004 *E 0.004 *x 0.005
stress*soil
type ** 0.001 ns 0.000 Hk 0.001 Hk 0.001 ** 0.002
stress*climate
zone ns 0.000 *x 0.001 * 0.000 * 0.001 *x 0.001
stress*state *x 0.001 * 0.001 Hk 0.001 HE 0.001 *x 0.002
time *x 0.010 * 0.005 HE 0.011 *E 0.010 * 0.007
stress * 0.004 ns 0.002 ns 0.002 * 0.003 *x 0.007
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soil type *x 0.038 *x 0.018 HE 0.042 wE 0.045 *x 0.061
climate zone *x 0.041 *x 0.010 *E 0.029 wE 0.026 *x 0.030
state ns 0.000 * 0.003 * 0.002 * 0.003 *x 0.010
time*stress *x 0.013 * 0.011 * 0.011 wE 0.013 *x 0.018
time*soil type ~ ** 0.102 ** 0.043 *k 0.054 *k 0.054 ** 0.061
Grape time*state * 0.005 * 0.004 Hk 0.006 Hk 0.007 * 0.004
time*climate
zone *x 0.065 *x 0.034 *E 0.072 *E 0.082 *x 0.142
stress*soil
type ns 0.001 * 0.001 ns 0.000 ns 0.000 ns 0.000
stress*climate
zone ** 0.009 ** 0.008 ns 0.001 ns 0.001 ns 0.001
stress*state ns 0.000 ns 0.000 ns 0.000 ns 0.000 ns 0.000
time * 0.021 ns 0.014 * 0.025 * 0.024 * 0.024
stress ns 0.007 ns 0.001 ns 0.003 ns 0.006 ns 0.002
soil type * 0.022 ns 0.006 * 0.020 * 0.019 *x 0.035
climate zone ns 0.003 ns 0.004 ns 0.003 ns 0.005 ns 0.003
state * 0.015 ns 0.007 ns 0.010 ns 0.013 ns 0.008
time*stress ** 0.049 ns 0.012 * 0.036 * 0.035 * 0.033
Sorghum time*soil type  ns 0.032 ns 0.029 * 0.059 ns 0.056 ns 0.034
time*state ns 0.016 ns 0.011 ns 0.016 ns 0.022 ns 0.033
time*climate
zone ns 0.021 ns 0.008 ns 0.038 ns 0.035 ns 0.031
stress*soil
type * 0.021 ns 0.010 ns 0.010 * 0.016 * 0.018
stress*climate
zone ns 0.002 ns 0.001 ns 0.001 ns 0.000 ns 0.000
stress*state ns 0.001 ns 0.001 ns 0.001 ns 0.002 ns 0.006
time * 0.000 * 0.000 * 0.000 * 0.000 *x 0.000
stress ns 0.000 ns 0.000 ns 0.000 ns 0.000 ns 0.000
soil type * 0.000 ** 0.001 ns 0.000 * 0.000 ns 0.000
climate zone ns 0.000 ** 0.000 ns 0.000 ns 0.000 ns 0.000
state ** 0.000 * 0.000 * 0.000 * 0.000 * 0.000
time*stress *x 0.001 *x 0.001 * 0.001 *E 0.001 *x 0.001
Soybean time*soil type =~ ** 0.013 *x 0.011 *E 0.009 wE 0.009 *x 0.010
time*state *x 0.007 *x 0.005 *E 0.005 wE 0.005 *x 0.006
time*climate
zone ** 0.002 ** 0.001 Hk 0.002 Hk 0.002 ** 0.002
stress*soil
type ns 0.000 ns 0.000 ns 0.000 ns 0.000 * 0.000
stress*climate
zone * 0.000 * 0.000 * 0.000 *E 0.000 * 0.000
stress*state * 0.000 * 0.000 * 0.000 * 0.000 ** 0.000
time ** 0.001 ** 0.002 Hk 0.001 Hk 0.001 ** 0.003
stress ns 0.000 * 0.000 ns 0.000 ns 0.000 * 0.000
soil type ** 0.001 ** 0.003 ns 0.000 * 0.001 ** 0.001
climate zone *x 0.001 ns 0.000 ns 0.000 ns 0.000 * 0.000
state * 0.000 * 0.000 * 0.000 * 0.000 * 0.001
time*stress *x 0.003 *x 0.001 * 0.001 * 0.001 * 0.001
Spring time*soil type =~ ** 0.011 *x 0.010 *E 0.008 wE 0.007 *x 0.011
wheat time*state ** 0.007 ** 0.003 wk 0.007 Hk 0.007 ** 0.011
time*climate
zone ** 0.005 ** 0.002 Hk 0.004 Hk 0.004 ** 0.005
stress*soil
type * 0.001 * 0.001 ns 0.000 ns 0.000 ns 0.001
stress*climate
zone ns 0.000 ns 0.000 ns 0.000 ns 0.000 ns 0.000
stress*state ** 0.001 ns 0.000 * 0.001 * 0.001 ** 0.001
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Figure S4-2. Expressions of LAI under various stress conditions for eight crops from March to
October in 2021. MS, moderate salinity only; SS, severe salinity only; MD, moderate drought only;
SD, severe drought only; MD+MS, moderate drought and moderate salinity; SD+MS, severe drought
and moderate salinity; MD+SS, moderate drought and severe salinity; SD+SS, severe drought and
severe salinity; MD+Salinity, moderate drought and salinity; SD+Salinity, severe drought and salinity;
NA, the stress condition is not applicable to that month.
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Figure S4-3. Expressions of FAPAR under various stress conditions for eight crops from March to
October in 2021. MS, moderate salinity only; SS, severe salinity only; MD, moderate drought only;
SD, severe drought only; MD+MS, moderate drought and moderate salinity; SD+MS, severe drought
and moderate salinity; MD+SS, moderate drought and severe salinity; SD+SS, severe drought and
severe salinity; MD+Salinity, moderate drought and salinity; SD+Salinity, severe drought and salinity;
NA, the stress condition is not applicable to that month.
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Figure S4-4. Expressions of FVC under various stress conditions for eight crops from March to
October in 2021. MS, moderate salinity only; SS, severe salinity only; MD, moderate drought only;
SD, severe drought only; MD+MS, moderate drought and moderate salinity; SD+MS, severe drought
and moderate salinity; MD+SS, moderate drought and severe salinity; SD+SS, severe drought and
severe salinity; MD+Salinity, moderate drought and salinity; SD+Salinity, severe drought and salinity;
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NA, the stress condition is not applicable to that month.
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Figure S4-5. Expressions of Cab under various stress conditions for eight crops from March to
October in 2021. MS, moderate salinity only; SS, severe salinity only; MD, moderate drought only;
SD, severe drought only; MD+MS, moderate drought and moderate salinity; SD+MS, severe drought
and moderate salinity; MD+SS, moderate drought and severe salinity; SD+SS, severe drought and
severe salinity; MD+Salinity, moderate drought and salinity; SD+Salinity, severe drought and salinity;
NA, the stress condition is not applicable to that month.
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Figure S4-6. Expressions of Cw under various stress conditions for eight crops from March to
October in 2021. MS, moderate salinity only; SS, severe salinity only; MD, moderate drought only;
SD, severe drought only; MD+MS, moderate drought and moderate salinity; SD+MS, severe drought
and moderate salinity; MD+SS, moderate drought and severe salinity; SD+SS, severe drought and
severe salinity; MD+Salinity, moderate drought and salinity; SD+Salinity, severe drought and salinity;
NA, the stress condition is not applicable to that month.

99



March April August  September  October

June

Soybean
Maize

v

R

Grape

Alfalfa

Sugar

beet
Spring

\
N\

\
\
\
S
\
)"
)"

SN\ /S

wheat

\
\
\
\

) N

\
Y4
mn /
/
)Y
\

NN\ NS S

N\ \Ne¢ /s

\
)"
N\

Sorghum
Group Stress Strength
ST+DS ‘ Drought Low Positive effect
$S+DT I satinity Moderate
. Negative effect
ST+DT . Drought + Salinity High

Figure S4-7. The pattern of FAPAR, expressing the severest stress conditions in different months.
ST+DS indicates salt-tolerant and drought-sensitive crop; SS+DT indicates salt-sensitive and drought-
tolerant crop; ST+DT indicates salt-tolerant and drought-tolerant crop; in strength, low indicates a
difference between stress pixels and control pixels smaller than 0.05 (unitless), moderate indicates a
difference between stress pixels and control pixels between 0.05 and 0.1, high indicates a difference
between stress pixels and control pixels greater than 0.1; positive effect and negative effect indicate
the direction of the pair-wise differences between stress pixels and control pixels.
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Figure S4-8. The pattern of FVC, expressing the severest stress conditions in different months.
ST+DS indicates salt-tolerant and drought-sensitive crop; SS+DT indicates salt-sensitive and drought-
tolerant crop; ST+DT indicates salt-tolerant and drought-tolerant crop; in strength, low indicates a
difference between stress pixels and control pixels smaller than 0.05 (unitless), moderate indicates a
difference between stress pixels and control pixels between 0.05 and 0.1, high indicates a difference
between stress pixels and control pixels greater than 0.1; positive effect and negative effect indicate
the direction of the pair-wise differences between stress pixels and control pixels.
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Figure S4-9. The spatial variation of LAI by states for eight crops.
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Figure S4-10. The spatial variation of FAPAR by states for eight crops.
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Figure S4-11. The spatial variation of FVC by states for eight crops.

104



(a) Soybean (b) Maize

[E prought
I salinity
[ Drought+Salinity

[ prought
I salinity
[ Drought+Salinity

(c) Grape (d) Almond

(e) Alfalfa N (f) Sugar beet

(g) Spring wheat N (h) Sorghum

Figure S4-12. The spatial variation of Cab by states for eight crops.
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Figure S4-13. The spatial variation of Cw by states for eight crops.
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Abstract

Sustainable agriculture and food security are critical aspects of the sustainable
development goals (SDGs), but they are increasingly vulnerable to the impacts of
global climate change. While salt-induced stress on crop growth and food
production has been extensively studied, the quantification of the contribution of
the utilization of saline soil to agricultural production (i.e., saline farming) on a
global scale is still highly uncertain. This study aims to address this gap by
evaluating the local and regional suitability areas for salt-tolerant potato cultivation
in affected soils, thereby assessing the contribution of salt-tolerant potatoes to the
current and future SDGs. We found that Oceania, out of all other continents,
currently exhibits the greatest potential for enhancing food production through salt-
tolerant potato cultivation in salt-affected soils. In particular, Australia emerges as
the country with the most substantial increase in the local suitability and regional
suitability area. Meanwhile, Kazakhstan, the Russian Federation, Iraq, and Lesotho
also possess the capacity to address food shortage challenges and work towards
achieving SDG targets by utilizing salt-tolerant potato cultivation. Furthermore,
under various future scenarios, the extent of local suitability area for salt-tolerant
potato will consistently expand despite the increasing severity of soil salinity.
Hence, also under future climatic and salinity conditions, salt-tolerant crops may
help to enhance food production and to successfully achieve SDG targets (with a
100% increase for countries like Kazakhstan and the Russian Federation) across
various future scenarios. In combination, our study provides a way of evaluating
salt-tolerant potato as a proxy of saline farming, enabling enhanced food
production in salt-affected soils, thereby establishing the backbone for promoting
saline farming practices, with the ultimate goal of ensuring food security and
enhancing agricultural resilience.
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5.1 Introduction

To ensure a safe and sustainable future for all, the United Nations (UN) has
established the sustainable development goals (SDGs) for 2030, with sustainable
agriculture and food security being essential components. Within this framework,
SDG-2 specifies aims to improve agriculture system resilience to e.g. climate
change, drought, and soil quality, to ensure sustainable food production by 2030
(UN 2015). To attain SDG-2 requires significant improvements to agricultural
production both in terms of size and efficiency. However, SDG-2 is also
persistently challenged by frequently occurring extreme events, sluggish
economics, conflicts, inequality, and poverty. Hence, despite considerable progress,
the world remains off track in achieving the zero hunger world goal under global
climate change and there are still 1/10 people suffering from hunger in 2021 (UN
2022). Therefore, there is a pressing need for improved agricultural practices and
optimal utilization of the available land area to ensure food security.

Salt affects approximately 11% of the world's irrigated area while soil salinity is
projected to increase to 50% of the arable land by 2050 (Butcher et al. 2016; FAO
2011). Most of these increases are on arid or semi-arid lands where increasingly
frequent extreme events (e.g., drought) are projected to increase soil salinity
impacts (Chapter 2). Meanwhile, the availability of water suitable for irrigation is
projected to be exacerbated in the coastal area due to sea-level rise and seawater
intrusion in the near future (Chen and Mueller 2018). Salinity is a major pressure
limiting crop growth and yield, resulting in an annual economic loss of 27.3 billion
US dollars globally (Qadir et al. 2014). Thus, improving the utilization of salt-
affected soils can be a critical step to contribute to a sustainable agricultural system.
Although various attempts have been made to assess salt-affected soil areas at a
regional scale or global scale (Corwin and Scudiero 2019; Hassani et al. 2021),
there is not any regional or global analysis to couple soil salinity with food
productivity in a quantitative way.

To address this challenge, salt farming has emerged as a new practice to promote
crop utilization and contribute to food security in the present and foreseeable future.
Salt-affected soils have been reclaimed through applications of various
amendments, halophytes, and microorganisms, and optimizations in land use as
well as irrigation and drainage strategies (Mukhopadhyay et al. 2021). Next to
reclaiming salt-affected soils, cultivating salt-tolerant crops is a promising solution
to tackle this problem (Rozema and Flowers 2008). Crops such as rice, wheat,
maize, etc., have been screened for salt-tolerant genotypes with stable
productivities (Farooq et al. 2015; Genc et al. 2019; Reddy et al. 2017). However,
most of these salt-tolerant cereal cultivars have been primarily tested in local
experimental settings, indicating a limited understanding of salt-tolerant crops’
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application on a large scale. Compared to these cereals, potato delivers higher
calories per unit of water (Renault and Wallender 2000). Salt-tolerant potato, in
particular, has a high value due to its high productivity and water-use efficiency
allowing it to better utilize salt-affected soils (van Straten et al. 2020;2022).

Currently, several studies indicated that the cropland suitability for saline farming
on the global and regional scale. A study using Global Agro-Ecological Zones
(GAEZ) was conducted to evaluate potato suitability at a global scale based on the
crop suitability index (FAO and IIASA 2012). However, neither the land suitability
for salt-tolerant crops in moderate saline areas nor the potential impacts of such
cultivation on global food productivity have been estimated over the world.
Therefore, the estimation of suitable areas for salt-tolerant crops (e.g. potatoes)
provides a critical foundation for the utilization of salt-affected soils for saline
farming.

In response, we aim to evaluate the suitable area for salt-tolerant potato in salt-
affected soils and assess the potential of cultivating salt-tolerant potato in these
areas with respect to the UN sustainable development goals for the present and the
near future in this study. For this, we generated a global suitability map for salt-
tolerant potato taking multiple constraining factors including land cover, soil
quality, and essential potato growing conditions into account. Then, the
contribution of salt-tolerant potato was estimated at the continent level and country
level to highlight the areas that benefit most towards achieving their SDGs.
Moreover, in order to evaluate the future contribution of salt-tolerant potato, the
changes in potentially suitable areas of salt-tolerant potato cultivation between the
current state and different future scenarios were further analyzed. Consequently,
our study provides insights into a better utilization of salt-affected soils by
cultivating salt-tolerant potato to improve food security and agriculture resilience.

5.2 Methodology
5.2.1 Data collection
5.2.1.1 Land cover map

A global land cover map was obtained from the GlobCover Portal
(http://due.esrin.esa.int/page globcover.php). The land cover map was generated
by observations from the MERIS sensor in 300m resolution with the ENVISAT
satellite mission. The land cover map included 22 classes which we reclassified as
suitable or not suitable for crop cultivation based on the possibilities for agriculture
practices (Table S5-1). Four classes were defined as suitable land types for potato
cultivation, and given new code=1, water bodies were designated to code = 2, and
the rest classes were designated to code = 0 (not suitable) (Table S5-3). The land
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cover map was resampled to 0.83 degrees with WGS84 projection using
interpolation based on the majority method.

5.2.1.2 Potato distribution map

A potato harvest map in 2010 was created from the MapSPAM data center
(https://mapspam.info/index.php/data/). The potato harvest dataset was reclassified
to code 1(= distributed area, harvest area > 0 ha) and code 0 (= non-distributed area,
harvest area > 0 ha). Afterward, based on the reclassified soil salinity map, we
identified the area within 30 km surrounding current potato production lands as the
buffer area (code = 2) (Table S5-3). Due to data limitations, this study did not take
farmers’ willingness for potato cultivation into account. Instead, it is assumed that
in areas close to current potato production lands, the likelihood of potato adoption
is high as it is presumably part of the local tradition.

5.2.1.3 World map

The world country map was obtained from ArcGIS HUB, named “World Countries
(Generalized)” provided by ESRI (https://services.arcgis.com/P3ePLMYs2RVChkJ
x/arcgis/rest/services/World Countries _(Generalized)/FeatureServer) for the world
shapefile in 2022.

5.2.1.4 Soil quality map

Based on the soil parameters published by the Harmonized World Soil Database
(HWSD), six soil attributes for crop cultivation, including nutrient availability
(SQ1), nutrient retention capacity (SQ2), rooting conditions (SQ3), oxygen
availability to roots (SQ4), toxicities (SQ6), and workability (SQ7) were extracted
(https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-
world-soil-database-v12/en/). Each of the six soil qualities was distributed into
seven quantitative classes, including no or slight limitations=code 1, moderate
limitations = code 2, sever limitations = code 3, very severe limitations = code 4,
mainly non-soil = code 5, permafrost area = code 6, water bodies = code 7 (Fischer
et al. 2008). All six soil quality maps were reclassified to two new classes, namely
suitable (code = 1, no or slight limitations) or not suitable area (code = 0, all other
classifications) (Table S5-2). The six soil quality maps were resampled to 0.83
degree with WGS84 projection using the interpolation of the nearest method.

5.2.1.5 Soil salinity map

A soil salinity map was created based on excess salts (SQ5) in HWSD
(https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-
world-soil-database-v12/en/). Soil salinity is measured by Electric Conductivity
(EC, dS/m) or saturation of the exchange complex with sodium ions (Fischer et al.
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2008). Future soil salinity maps were created based on four scenarios at a 0.5°
resolution, including Representative Concentration Pathways (RCP) 4.5, RCP 8.5,
Shared Socio-economic Pathways 2 (SSP2)-4.5, and SSP5-8.5 for two periods (the
2050s and 2100s) (Hassani et al. 2021). The RCP 4.5 and RCP 8.5 scenarios
represent radiative forcing of 4.5 and 8.5 W m—2 in the year 2100 compared to pre-
industrial conditions in the ensemble of CMIP5 (Coupled Model Inter-comparison
Project Phase 5) data project with eight Global Circulation Models (GCMs) outputs.
The SSP 2-4.5 and SSP 5-8.5 scenarios represent the projections forced by RCP 4.5
and RCP 8.5 global forcing pathways for SSP2 and SSP5 to the ensemble of
CMIP6 (CMIP Phase 6) with eight Global Circulation Models (GCMs) outputs.
Soil salinity maps of the current state and future scenarios were resampled to 0.83
degree with WGS84 projection using the interpolation of the nearest method.

5.2.1.6 Salt-tolerant potato suitability for salinity

Although the salt tolerance of potato is defined as 1.7 dS/m according to FAO
investigation, some potato varieties are more tolerant of salinity than expected.
Based on several years of field experiments, potato variety ‘927’ showed no yield
reduction up to 5.9 dS/m salinity level (de Vos et al. 2016; Oosterbaan 2019; van
Straten et al. 2021). Considering that crops would probably already be grown when
soil salinity varies between 0 dS/m to 2 dS/m, there is no added value for salt-
tolerant potato to be cultivated there. So, the salt-tolerant potato's profitable salinity
range was defined between 2.0 dS/m and 6.0 dS/m. Moreover, considering there is
no distinction within “severe limitations - 4 dS/m to 8 dS/m-" of soil salinity (SQ5)
from FAO, the soil salinity maps were reclassified to three classes, namely code0 =
not suitable (< 2 dS/m or > 8 dS/m), codel = high-suitable salinity (2 dS/m to 4
dS/m), and code2 = moderate-suitable salinity (4 dS/m to 8 dS/m) (Table S3).

5.2.2 The algorithm of soil suitability for salt-tolerant potato

The suitable map was generated based raster calculator in ArcGIS Pro using the
following equation:

Suitability index = LSALx LLC x LPDx LNAXLNRC x LRC x LOAR x LTOX x
LWOR (D

LSAL = layer of soil salinity, LLC = layer of landcover, LPD = layer of potato
distribution, LNA= layer of nutrient availability, LNRC = layer of nutrient
retention capacity, LRC = layer of rooting conditions, LOAR = layer of oxygen
availability to roots, LTOX = layer of toxicities, LWOR = layer of workability.

Thus, the local suitability area was determined on the occasions of LSALH =1
(high-suitable salinity, 2 dS/m to 4 dS/m) or LSALM = 2 (moderate-suitable
salinity, 4 dS/m to 8 dS/m) with other layers’ codes equalling 1. Though LPD =1
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suggests the presence of potato cultivation in the pixel, it should be noted that there
are also salt-affected parts within the pixel. Meanwhile, the regional suitability area
was determined when occurring in the buffer area close to current potato fields
(LPD = 2) while LSALH =1(high-suitable salinity, 2 dS/m to 4 dS/m) or LSALM =
2 (moderate-suitable salinity, 4 dS/m to 8 dS/m), and other layers’ codes equalling
1. According to different constraints, the suitability map was grouped into 12
categories (Table S5-4). Finally, the local suitability area and the regional
suitability area were calculated at the continent level and country level based on
zonal statistics in ArcGIS Pro (Figure 5.1).
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Figure 5.1 Technical workflow of the maps and data framework.
5.2.3 Data analysis

To investigate the contribution of salt-tolerant potato to salt-affected soils at the
current state and in future scenarios at the global scale, the availability was
calculated based on the following equation:

Area;

PCTi = X 100% )

Areap+ Area;

Where PCTi is the percentage, Areap is the current potato harvest area
(https://mapspam.info/index.php/data/), and Areai is the local /regional suitability
area of the salt-tolerant potato.
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According to the latest sustainable development goals report in 2022 by the United
Nations (UN 2022), it is evident that approximately 1 in 10 people globally are
currently experiencing hunger, while almost 1 in 3 people lack consistent access to
sufficient food. In response, international frameworks, such as the "Kunming-
Montreal Global Biodiversity Framework" (GBF), aim to enhance the resilience of
agricultural systems and improve food security (CBD 2022) for the year 2030.
Specifically, Target 10 of the GBF, emphasizes that 30% of the world's land
requires restoration to ensure sustainable management of the agriculture system.
Thus, given the current gap in food production in terms of SDG 2 and GBF, we
define 10% and 30% increasement as two thresholds to analyze the contribution of
salt-tolerant potato cultivating in salt-affected areas. By focusing on the 10% and
30% increasement in food production, we aim to assess the viability and potential
of this salt-tolerant crop in achieving the objectives of both SDG 2 and GBF. To
investigate the critical countries where salt-tolerant potato helps to achieve the
SDGs and GBF in the near future, the contribution was calculated based on the
following equation:

Area;

PCTt=

Areaotal x 100% (3)
Where PCTt is the percentage, Areai is the local/regional suitability area of the salt-
tolerant potato, and Areatotal is the total harvest area of all crops in 2021
(https://www.fao.org/faostat/en/#data/QCL).

The relative change between the local/regional suitability area under future
scenarios and the current state was calculated based on the following equation:

Arear

PCTr = X 100% (4)

Where PCTr is the relative change, Areaf is the future local/regional suitability area
of the salt-tolerant potato, and Areai is the current local/regional suitability area of
the salt-tolerant potato. In order to be consistent with the future soil salinity map’
resolution, we compare the relative change at 0.5° ( ~ 55km) resolution. Given the
coarse pixel size of the scenarios, both local and regional suitability were
aggregated for future scenarios.

5.3 Results
5.3.1 Global suitability of salt-tolerant potato for salt-affected area

A global suitability map of salt-tolerant potato in salt-affected areas was created, as
shown in Figure 5.2a. The highest suitability areas were concentrated around
Kazakhstan, the Russian Federation, and northern India while some pieces were
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distributed in the western part of Australia. Thus, compared to other continents,
Asia showed a larger extent of local suitability area for salt-tolerant cultivation.

In order to compare the contributions of salt-tolerant potato to salt-affected areas
among different continents and countries, the availability of productive land for
saline potato farming was further analyzed (Figure 5.2b and Figure 5.2¢). Here,
Oceania showed the highest availability of local and regional suitability areas,
allowing to increase potato production by 99.24% and 98.28% in the local
suitability area of highly (dS/m 2-4) and moderately (dS/m 4-8) saline conditions,
and by 97.50% and 94.35% in regional suitability area of highly (dS/m 2-4), and
moderately (dS/m 4-8) saline conditions, respectively. In contrast, Europe has the
lowest availability in both locally and regionally suitable areas, with 44.08% more
local land available that is highly suitable (dS/m 2-4), and 2.51% that is moderately
suitable (dS/m 4-8), and 17.09% more regional land available that is highly suitable
(dS/m 2-4), and 0.85% that is moderately suitable (dS/m 4-8).

At the country level, we found the top 15 countries (i.e., Australia, Mozambique,
Pakistan, Argentina, Iran, Kazakhstan, India, Russian Federation, Canada, Senegal,
United States, Zimbabwe, Chad, Spain, and Syria) that benefit greatly from
cultivating salt-tolerant potatoes. Among these countries, Australia has the highest
potential, with land area increases of 99.43% in the local suitability area (dS/m 2-4),
98.11% in the local suitability area (dS/m 4-8), 98.67% in the regional suitability
area (dS/m 2-4), and 95.69% in the regional suitability area (dS/m 4-8),
respectively. Interestingly, Senegal does not have any local suitability area for salt-
tolerant potato while Senegal showed notable regional suitability areas at the
current state. In addition, Chad had only local suitability areas at two salinity levels
without any regional suitability areas.

Overall, Oceania had the highest possibility to improve food production while
Europe had the least capacity for increasing production by salt-tolerant potato
cultivation in salt-affected soils.
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Figure 5.2 a) Global suitability map for the salt-tolerant potato. b) The availability of local and
regional suitability areas for salt-tolerant potato at the continent level. ¢) The availability of local and
regional suitability areas for salt-tolerant potato at the country-level.

5.3.2 Contribution of salt-tolerant potato to SDGs

As there were various countries showing promising potential to increase food
production by better utilizing salt-affected soils, the contribution of local suitability
and regional suitability areas for achieving SDGs was analyzed (Figure 5.3a and
Figure 5.3b). When making use of the local suitability area for saline potato
farming, Kazakhstan, the Russian Federation, Australia, Iraq, and Lesotho could
already achieve their SDG2 targets (of a 10% increase to deal with current food
shortages).

In particular, Kazakhstan showed the highest possibility for achieving the SDG2
target as well as the GBF target thanks to its availability of 41.88% local suitability
area compared to the current crop harvested area. Based on the sum of the local
suitability and regional suitability area, additional countries including New Zealand,
Mozambique, and Pakistan can succeed in achieving the SDG2 target while
Kazakhstan was still the only country that can accomplish the GBF target.

117



a) 0% 5% 10% 15% 20% 25% 30% 35% 40%  45% b) 0% 5% 10% 15% 20% 25% 30% 35% 40%  45%

Kazakhstan
Australia
Russian Federation

Kazakhstan
Russian Federation
Australia

Irag

Lesotho

Armenia
Mozambique
Romania

Pakistan

Jordan

a
New an[anﬂ

Iran

Tunisia

India
Ukraine
Syria

South Africa
Afghanistan
Bolivia
Uzbekistan
Hungary Serbia
Argentina China
Serbia Moldova
Moldova Myanmar

Uzbekistan

Figure 5.3 The critical countries with a high contribution of salt-tolerant potato in terms of a) the
local suitability area, b) local suitability area + regional suitability area. The red line (10%) indicates
the SDG2 target in the 2030 agenda. The Blue line (30%) indicates the GBF target for 2030.

5.3.3 Global suitability of salt-tolerant potato in the future

Given that soil salinity was projected to increase with global climate change, the
relative change in the local suitability areas for salt-tolerant potato cultivation
under future scenarios was evaluated for two different future periods, namely 2050
and 2100 (Figure 5.4). The relative change patterns of the four scenarios were
similar, even though they differed in detail. Thus, the relative change under RCP85
was chosen to represent the local suitability area changes in the future while other
results are presented in the supplementary information (Figure S5-1). In both
periods, more salt-affected soil was detected under different future scenarios (i.e.
the area with dS/m 2-4 and dS/m 4-8 will increase more than the area with dS/m>8)
and therefore resulted in consistently increased the local suitability area for salt-
tolerant potato in comparison to the present. Although the local suitability area in
Asia was the largest under the four scenarios, North America was projected to have
the average highest increase compared with the current local suitability area.
Meanwhile, South America showed overall the lowest increase in the local
suitability area in future scenarios both for 2050 and 2100. Moreover, there was a
higher increase in the local suitability area in dS/m 2-4 in Asia and Europe while
other continents including South America, Oceania, Africa, and North America
showed a higher incense in the local suitability area in dS/m 4-8 in 2050 as well as
2100.
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Figure 5.4 (a) Relative change in suitability for saline farming under the RCP85 scenario in the 2050s.
(b) The increase in the local suitability area for salt-tolerant potato in the 2050s under different
scenarios at the continent level. (c) Relative change in suitability in the 2100s under the RCP85
scenario. (d) The increase in the local suitability area for salt-tolerant potato in 2100s under different
scenarios at the continent level.

5.3.4 Contributions of salt-tolerant potato to SDGs in the future

As all continents showed an increase in the local suitability area for salt-tolerant
potato, the contribution of these increases for the sustainability targets was
analyzed (Figure 5.5). The contributions varied slightly for the different future
scenarios. In general, the contributions were higher for most countries under the
SSP245 and SSP585 scenarios, compared to the RCP45 and RCP85 scenarios.
There were 20 countries with an average increase of over 10% (i.e. achieving
SDG-2) under different scenarios in the 2050s and 2100s around the world.
Kazakhstan, Russian Federation, Ukraine, Hungry, and Romania were projected to
be the top 5 countries with an average high increase of more than 30% both in the
2050s and 2100s. These increases indicate that these countries achieve their GBF
target as well. There was even an increase of over 100% for Kazakhstan and the
Russian Federation under all scenarios in the 2050s and 2100s. Therefore,
Kazakhstan, the Russian Federation, Ukraine, Hungry, and Romania were critical
countries to improve food production and achieve sustainable agriculture system by
cultivating salt-tolerant potato in salt-affected soil in the future. Moreover,
Kazakhstan and the Russian Federation even showed significant potential to secure
sustainable food production with over 100% increasement by extending salt-
tolerant potato cultivation in the salt-affected area across all four scenarios.
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Figure 5.5 The critical countries with high contributions of salt-tolerant potato in a) 2050s, b) 2100s.
The blue line (30%) indicates the GBF target for 2030. The green line (100%) indicates doubling the
current harvested area. * indicates absent scenarios for that country.

5.4 Discussion
5.4.1 Hotspot areas for salt-tolerant potato cultivation

Among the six continents, Oceania had the highest relative amounts of the local
suitability area for saline farming while Asia had the largest (absolute) area for
growing salt-tolerant potato on salt-affected soil (Figure 5.2). Salt-affected area has
been mapped regionally and globally using various technologies. Asia is commonly
identified as the continent with the highest risks of saline soils in the current state
and the near future (e.g. Ivushkin et al. 2019; Hassani et al. 2020). Nevertheless,
considering the current potato cultivated area, Oceania showed higher potential
than Asia, for promoting salt-tolerant potato on salt-affected soil given its
suitability. This might be due to the current relatively low potato cultivation in
Oceania with only 0.5% market share in global potato production (Bartosz
Mickiewicz et al. 2022).

At the country level, Australia, Mozambique, Pakistan, Argentina, Iran, Kazakhstan,
India, Russian Federation, Canada, Senegal, United States, Zimbabwe, Chad, Spain,
and Syria were critical countries with high capacity for enhancing food production
by promoting salt-tolerant potato cultivation in salt-affected soil (Figure 5.2). This
is in line with various studies indicating that these countries have a significant salt-
induced soil degradation problem (e.g. Hassani et al. 2020) and major economic
costs due to salt-induced soil degradation (Qadir et al. 2014; Rengasamy, 2002;
Rengasamy, 2006). Moreover, consistent with our results, Russia, Argentina, China,
the United States, and Kazakhstan were identified as the most promising countries
to develop saline agriculture (ECe > 4 dS/m) based on an analysis taking suitable
conditions for agriculture into account (Negacz et al. 2022). Therefore, these
hotspot areas with a high potential to better utilize salt-affected soil by cultivating
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salt-tolerant potato match with the high-risk areas in terms of soil salinity while
their potential strength might differ due to their current potato cultivation status.

Our assessment of the regional suitability contribution of salt-tolerant potato for
global food production in salt-affected areas is based on limitations due to salt
tolerance only. However, over 70% of the global salt-affected soil area is
distributed in arid and semi-arid regions, including but not limited to Pakistan,
India, Australia, Egypt, and Central Asia (Li et al. 2016). Thus, most regions that
suffer from soil salinity stress are expected to experience the frequently
compounded impact of both drought and salinity (Chapter 2 & Chapter 3). In this
study, the threshold of salt-tolerant potato was determined under strict conditions
without drought. Given that the side effect of drought is excluded in our current
analysis, the local suitability area might be overestimated for arid and semi-arid
regions unless irrigation water is available. Another critical assumption is that
farmers close to or in buffer areas of 30km around current potato production
regions are willing to adopt (salt-tolerant) potato cultivation. This assumption may
be most likely for developing nations that struggle with food security. In contrast,
developed countries may prefer high-value halophytes with high-end markets such
as Salicornia, which fetches up to 12 GBP/kg in the United Kingdom (Negacz et al.
2021). Despite these assumptions, we believe that the results of our study are
generally robust.

5.4.2 The role of salt-tolerant potato towards SDGs

Cultivating salt-tolerant potato is a promising way to close the current food
production gap to achieve SDG-2 targets for various countries. Negacz et al. (2021)
conclude that saline agriculture can foster achieving SDGs, especially for SDG2
and SDGS in saline soils for those regions with high salt-induced problems and that
struggle with food security and water scarcity. These countries were estimated to
have to increase over 10% of the current food production to satisfy their food
requirements with an increasing population. Countries like Kazakhstan (and others)
show that they may easily comply with such requirements when embracing salt-
tolerant potato (Figure 5.3). According to FAO (2017), the salt-affected irrigation
area in Kazakhstan is about 19.6% of the total irrigated area and has grown by
almost 44% in 20 years (1997-2017). Although innovative technologies e.g.,
drainage, allowed to reclaim soil salinity and maintain crop production (FAO
2022a; Tanirbergenov et al. 2020), the cost and efficiency need to be further
evaluated. This study suggests and provides an alternative solution for improving
sustainable food supply through cultivating salt-tolerant potato in salt-affected soils.

Cultivating salt-tolerant potato does not only benefit food production within the
SDG-2 target but also contributes to achieving the GBF target. Salinity has shown
negative impacts on plant species variety and below-ground biodiversity, including
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the quantity and activity of soil microbes (IPCC 2019; Rahman et al. 2011). In
order to control soil salinity and reduce its adverse effects on biodiversity, the
replacement by salinity-tolerant species and revegetation where necessary have
been adopted as main measures in forest systems (IPCC 2019; Rahman 2020).
Likewise, we found that salt-tolerant crop cultivation may be profitable for
achieving the GBF target (e.g. target 10) by preventing soil degradation, especially
for the regions that suffered from salt-induced stress. In addition to increasing the
revenue through greater yields than with conventional crops, the management of
saline soils can mitigate economic and climate migration (SDG 8) (Negacz et al.
2021). Moreover, managing soil salinization is essential to accomplishing SDG15
"Life on Land", with particular emphasis on target 15.3 -combat desertification,
and restore degraded land and soil- (Singh 2021). Meanwhile, saline farming may
reduce the demand for high-quality irrigation water, which facilitates having
enough drinking water (SDG6) (Keesstra et al. 2018) for other agricultural
applications. Therefore, considering SDGs in close connection to each other shows
that salt-tolerant potato is not only a proxy for success in food production (SDG2),
but can also make a crucial contribution to other SDGs.

5.4.3 Salt farming contributes to a sustainable future world

In addition, our study also shows how salt-tolerant potato growth may have a
notable contribution to sustainable food production with future climate change. It is
expected that salt-affected soils are growing at a rate of 1-2 Mhectares per year
(Abbas et al. 2013) and the rate was predicted to speed up shortly as a result of
climate change (Hassani et al. 2021). Interestingly, despite the increase in salinity,
there will be more suitable areas for salt-tolerant potato (Figure 5.4 and Figure S5-
1), suggesting that the increase in moderate saline areas is larger than the increase
in severely affected areas. This provides additional opportunities for saline farming.
The changes observed in the local suitability area, while transitioning from the
current state to different future scenarios, exhibited a degree of resemblance.
However, a stronger increase in the local suitability area was evident under CMIP6
models (SSP245 and SSP585) compared to CMIP5 models (RCP4.5 and RCP8.5).
This difference can be driven by different predictors and GCMs involved in CMIP5
and CMIP6 models (Eyring et al. 2016; Hassani et al. 2021).

Saline farming, which salt-tolerant potato is a part of, contributes to creating a
more sustainable world. In this study, salt-tolerant potato showed to be a promising
crop to improve food production in salt-affected areas both in the current state and
future scenarios and therefore achieving various sustainability targets in different
ways (Figure 5.4 and Figure 5.5). Salicornia, as a typical halophyte, was identified
as one the most important genera that have high adaptability to saline environments
and therefore applied could be in food, pharmacy, bioenergy, and ecology field as a
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sustainable crop (Cardenas-Pérez et al. 2021). However, saline farming is more
than growing Salicornia but also has a potential contribution to food security as a
whole (e.g. salt-tolerant potato). There have been several studies conducted to test
the opportunity of producing food through saline farming based on several salt-
tolerant crops including rice, barley, quinoa, beetroot, etc. (de Vos et al. 2021;
ICBA 2015; Wang et al. 2013b). Although these studies demonstrated the potential
application of divergent salt-tolerant crops for saline farming, they were currently
fragmented in space, only covering a limited area. Given the impact of climate
change, saline farming would be a promising global solution for salt-affected
regions. Thus, our study provides a backbone to get more insight into how saline
farming contributes to sustainable development with future climate change threats
on a global scale.

5.5 Conclusions

In this study, we assessed the viability and potential of cultivating salt-tolerant
potatoes in salt-affected soils, aiming to explore the role of salt-tolerant potato
varieties in achieving sustainable development goals in the present and future
climate. We found that Oceania showed the greatest potential for enhancing food
production through salt-tolerant potato cultivation in salt-affected soils, while
Europe demonstrated the lowest capacity for increasing production in this regard
under the current state. Under different future scenarios, all continents show an
expansion in the areas suitable for salt-tolerant potato cultivation. Moreover, we
identified a number of countries that could crucially benefit through the promotion
of salt-tolerant potato cultivation in salt-affected soils for enhancing food
production. Specifically, Kazakhstan, the Russian Federation, Australia, Iraq, and
Lesotho possess the capability to address their food shortage challenges and
achieve sustainable development goals by cultivating salt-tolerant potatoes under
the current state. Meanwhile, Kazakhstan, the Russian Federation, Ukraine,
Hungary, and Romania were crucial countries by growing salt-tolerant potatoes in
salt-affected soil for enhancing food production and achieving a sustainable
agriculture system in the future. Consequently, our study proposed valuable
insights into growing salt-tolerant potato to optimize the utilization of salt-affected
soils, and therefore built the foundation for saline farming globally to secure food
security and strengthen agricultural resilience.
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5.7 Supporting information

Table S5-1. Reclassification of land cover classes

Value Label Reclassification
11 Post-flooding or irrigated croplands (or aquatic) Suitable
14 Rainfed croplands Suitable
Mosaic cropland (50-70%) / vegetation .
20 (grassland/shrubland/forest) (20-50%) Suitable
Mosaic vegetation (grassland/shrubland/forest) (50-70%) / .
30 cropland (20-50%) Suitable
0 1-
40 Clqsed to open (>15%) broadleaved evergreen or semi Not suitable
deciduous forest (>5m)
50 Closed (>40%) broadleaved deciduous forest (>5m) Not suitable
60 Open (15-40%) broadleaved deciduous forest/woodland (>5m)  Not suitable
70 Closed (>40%) needleleaved evergreen forest (>5m) Not suitable
-40° 1
90 g?mn)(lS 40%) needleleaved deciduous or evergreen forest Not suitable
o .
100 Closed to open (>15%) mixed broadleaved and needleleaved Not suitable
forest (>5m)
110 Mosaic forest or shrubland (50-70%) / grassland (20-50%) Not suitable
120 Mosaic grassland (50-70%) / forest or shrubland (20-50%) Not suitable
Closed to open (>15%) (broadleaved or needleleaved, .
130 evergreen or deciduous) shrubland (<5m) Not suitable
o .
140 Closed to open (>15%) herbaceous vegetation (grassland, Not suitable
savannas or lichens/mosses)
150 Sparse (<15%) vegetation Not suitable
o,
160 Close;d to open (>15%) broadlegved forest regularly flooded Not suitable
(semi-permanently or temporarily) - Fresh or brackish water
Closed (>40%) broadleaved forest or shrubland permanently .
170 flooded - Saline or brackish water Not suitable
Closed to open (>15%) grassland or woody vegetation on
180 regularly flooded or waterlogged soil - Fresh, brackish or saline  Not suitable
water
190 Artificial surfaces and associated areas (Urban areas >50%) Not suitable
200 Bare areas Not suitable
210 Water bodies Not suitable
220 Permanent snow and ice Not suitable
230 No data (burnt areas, clouds) Not suitable
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Table S5-2. Classification of soil qualities. Only classes 1 to class 4 correspond to an evaluation of
soil constraints for plant growth.

. Cation

Qualitative Salinity Groth Organic Impermeable exchange Obstacle Toxicities CaCO;
classes (dS/m) potgntlal caf)bon layer capacity to roots (pH) cor(}tcnt

(%) (%) (cm) (cmol/kg) (cm) (%)
1. No or
slight <2 80-100 >2.0 0-150 >40 60-80 5.5-7.2 <2
limitations
2. Moderate 24 60-80 1220 80-150 20-40 4060 7285 25
limitations
3. Sever 48 4060 0.6-1.2 40-80 10-20 20-40 45-55 525
limitations
4. Very
severe 8-16 <40 0.2-0.6 <40 4-10 0-80 >8.5 25-40
limitations
5. Malply ~16 0 <02 0 <4 0-20 <45 > 40
non-soil

6. Permafrost
area

7. Water
bodies
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Table S5-3. Reclassification of constraint variables.

Data Layer Raw value Suitable y(1)/n(0)
40-230

Land cover 11, 14, 20, 30
210

Potato distribution

Excess salt (SQ5)

Nutrient availability
(8Q1)

Nutrient retention
capacity (SQ2)
Rooting conditions
(5Q3)

Oxygen availability to
roots (SQ4)

Toxicities (SQ6)

Workability (SQ7)

Buffer 30km
1

0

1,4-7

2 (2-4 dS/m)
3 (4-8 dS/m)
2-7

1

2-7

1

2-7

1

2-7

1

2-7

1

2-7

_— O P O = O = O = O = O N~ O O = NN —= O
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Table S5-4. Labels of suitability index based on reclassifications of constraints.

Label Necessary conditions
No data La=0

Not suitable L,=0

Land cover constraints Lic=0

Water bodies Lic=2

Potato distribution constraints

dS/m<2or>8

dS/m 2-4 (soil quality
restrictions)

Local area with high suitability
(dS/m 2-4)

Regional area with high
suitability (dS/m 2-4)

dS/m 4-8 (soil quality
restrictions)

LLC: 1 and LpD =0
Lic=1,Lpp=1, and Lsa. =0

Lic=1,Lep=1,Lsau=1,and L, =0

Lic=1,Lep =1, Lsatn = I, Lna= 1, Lare = 1, Lre =1, Loar =1, Lrox =1,

Lwor=1

Lic=1, Lep =2, Lsan = 1, Lna= 1, Lare = 1, Lre =1, Loar =1, Lrox =1,

Lwor=1

Lic=1,Lepp=1,Lsarm=2,and Ly =0

Local area with moderate Lic=1,Lpp=1, Lsarm =2, Lna= 1, Larc = 1, Lrc =1, Loar =1, Ltox=1,

suitability (dS/m 4-8) Lwor=1
Regional area with moderate Lic=1, Lep =2, Lsarm = 2, Lna= 1, Lnre =1, Lre=1, Loar =1, Lrox =1,
suitability (dS/m 4-8) Lwor=1

LsaL= layer of soil salinity, LLc = layer of landcover, Lpp = layer of potato distribution, Lna= layer of
nutrient availability, Lnrc = layer of nutrient retention capacity, Lrc = layer of rooting conditions,
Loar = layer of oxygen availability to roots, Ltox = layer of toxicities, Lwor = layer of workability, Lx
= any layers, Lan = all layers
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Chapter 6

General discussion
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Food security is projected to be challenged by the increasing co-occurrence of
stresses with global climate change. Of these stresses drought and salinity are
considered to be the main constraints for food production by their impacts on crop
growth. Large-scale monitoring and quantification of the individual and combined
impacts of drought and salinity stress on crop growth give rise to significant
challenges related to spatial-temporal variability, data integration, crop variability,
etc. Remote sensing offers potential solutions through detailed and timely detection
of crop health. In this thesis, I evaluated the impact of drought and salinity stress
on agriculture and sustainable development goals using remote sensing technology.
Specifically, I assessed (i) which remote sensing features are available to monitor
crops under drought and salinity stress, (ii) how drought and salinity stress on crop
traits can be evaluated using remote sensing observations, (iii) what the tolerance
of diverse crops in respect to drought and salinity stress was in real-life agriculture
settings, and (iv) where cultivating salt-tolerant potato could be introduced to
enhance global food production and secure. This chapter aims to synthesize the
main findings of these research questions and provide a comprehensive discussion
on the limitations and prospects for future studies, and implications to achieve
sustainable development goals. Our insights can be used to enhance crop
management and hence food security.

To answer the research question, I first reviewed the current capacity of remote
sensing to detect the impacts of drought and salinity stress on crops based on the
use of vegetation indices (VIs) and plant traits (Chapter 2). Next, a novel approach
that utilized multiple plant traits derived from remote sensing data was used to
estimate the effects of drought, salinity, and their combination on crop growth in
the Netherlands (Chapter 3). Based on the approach developed in Chapter 3, the
tolerance of eight different crops to drought, salinity, and their combined stress was
assessed across the entire U.S. continent throughout the crop growing season from
sentinel-2 observations (Chapter 4). Finally, to answer where the biggest
opportunity exists (with respect to achieving Sustainable Development Goal 2), 1
quantified the potential of enhancing food production by cultivating salt-tolerant
potato species in salt-affected areas under present and future scenarios (Chapter 5).

The findings of this thesis highlight the potential of remote sensing-derived traits
for evaluating crop growth under stress conditions (explored in more detail in
section 6.1). Through a systematic review, positive correlations were identified
between specific plant traits and stress response mechanisms, indicating the
potential of plant traits as indicators (Chapter 2). However, the spectral signals
related to drought and salinity stress exhibited inconsistencies across various crop
traits due to variations in growth stage, soil properties, stress severity and duration,
and environmental conditions. In response, a novel workflow that integrates
multiple traits derived from remote sensing was developed to evaluate the real-life
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impacts of drought, salinity, and their combined influence on crop growth in the
Netherlands (Chapter 3). By employing a pair-wise method within this workflow, 1
quantified the stress impacts over a select range of crops and growth conditions.
Afterwards, I upscaled this workflow to cover a wider range of crops and spatial
conditions and applied it across the entire U.S. continent throughout the crop
growing season in 2021 (Chapter 4). In this analysis, I found stress impacts to be
significantly dependent on the specific moment in the growing season, with crops
are generally more sensitive to the combined effects of salinity and drought stress
compared to the singular stress (Chapter 3 & Chapter 4). Nevertheless, the
observed stress impacts showed significant variations over time and among
different crop species. Notably, most crops experienced an initial reduction in
primary production capacity through a decrease in Leaf Area Index (LAI) before
experiencing reductions in water or chlorophyll contents (Chapter 4). Finally, we
assessed how the above-mentioned information could be used in combating food
insecurity by identifying areas where salt-tolerant crops (i.e., potato) could be
cultivated. Out of six continents, Oceania was found to exhibit the greatest
potential for enhancing food production through better utilization of the salt-
affected area (Chapter 5). In addition, Kazakhstan, the Russian Federation,
Australia, Iraq, and Lesotho also show a potential to address their food shortage
challenges and achieve sustainable development goals by cultivating salt-tolerant
potatoes. Furthermore, under various future scenarios, the local suitability area for
salt-tolerant potato consistently expanded, with Kazakhstan, the Russian Federation,
Ukraine, Hungary, and Romania emerging as crucial countries to enhance food
production and accomplish SDG targets. In combination, the thesis shows from
review to application how remote sensing techniques may be applied to detect
stress responses and mitigate the impacts of those stresses on global crop
production.

Despite proving the potential to detect stress responses of crops with functional
traits by remote sensing, I found that the effectiveness of such monitoring varied
across different plant species and growth stages (Chapter 2, Chapter 3, and Chapter
4). Consequently, there are several challenges left open that need to be addressed in
future studies. One such challenge is the need for a better understanding of
representative traits that can accurately reflect specific stress conditions at specific
moments during the growing season (Chapter 2, Chapter 3, and Chapter 4). This
challenge will be explained in more detail in section 6.1. Moreover, current remote
sensing for agricultural applications still faces challenges regarding spatial-
temporal resolutions and integration of multi-platform data. These limitations and
the prospects to deal with them will be treated in section 6.2. Remote sensing is
promising to effectively monitor the achievement of SDGs and ensure food
security on a global scale, involving different stakeholders and policymakers
(Chapter 5). My suggestion to implement these societal implications is treated in
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section 6.3. Overall, this comprehensive investigation explored various aspects of
remote sensing-based monitoring of crop responses to stress, offering valuable
insights into the viability of using remote sensing for improving food security and
addressing sustainable development goals.

6.1 Open challenges regarding the Trait-based evaluation method

Plant functional traits are associated with various adaptation pathways to the
environment, as they indicate a set of plant features that represent strategies for a
variety of stress conditions (Andrew et al. 2022). Thus, plant functional traits allow
us to quantify the extent of the adaptation to various environmental pressures (i.e.,
drought and salinity stress). Connecting vegetation function (including primary
production) with environmental stress by trait-based evaluation methods has shown
to provide significant promises (Zakharova et al. 2019). Functional traits are
intimately linked to stress tolerance, carbon storage, water regulation, and climate
regulation (Lavorel and Grigulis 2012). Thus, functional trait-based research plays
a pivotal role in comprehending the structure and function of agroecosystems
including crop productivity, agroecosystem dynamics, non-crop biodiversity, other
biogeochemical cycles, and crop vulnerability to climate change (Martin et al.
2015). However, large-scale research on functional traits across a wide variety of
crops remains quite limited. For instance, leaf economics trait information is
unavailable for over 70% of the important agricultural species in the TRY database
(Martin et al. 2015).

Even though trait-based methods show promising potential to evaluate stress
impacts on plants, it remains challenging to identify a proper selection of
appropriate traits that detect specific signals for different stresses (Griffin-Nolan et
al. 2018). Specifically, diverse stresses may manifest similar symptoms in plants
(He et al. 2020), while different plant strategies (to resist these stresses) might lead
to different expressions of functional traits (even for the same stress). According to
Chaves et al. (2009), most plant species tend to lower transpiration and avoid more
severe stress by decreasing their leaf area both for drought and salinity stress.
Functional traits such as specific leaf area (SLA), leaf dry matter content (LDMC),
leaf area (LA), turgor loss point (TLP), relative water content (RWC), leaf
chlorophyll content (Cab) are essential for plant drought tolerance (Kramp et al.
2022; Mwamahonje et al. 2021). Meanwhile, most of these traits are used to
evaluate salinity stress impacts as well (Zhou et al. 2021). In addition, it was
reported that any abiotic stress decreases leaf size (EI-Moneim et al. 2020).
Likewise, there is no significant difference in the expression of traits for drought vs.
salinity in our study (Chapter 2, Chapter 3, and Chapter 4).

Salinity (in the first growing phase) affects plants in a comparable way as droughts,
namely through water stress/osmotic stress. Therefore, additional traits are required
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to make these distinctions. For example, salinity also has clear impacts with regard
to toxic stress/ion stress (Munns 2002). Thus, the traits related to toxic stress
tolerance may provide a breakthrough to distinguish salinity stress from drought
stress. In melon plants, the levels of phenylalanine, histidine, proline, and the
Na'/K' ratio emerge as key distinguishing traits for salinity tolerance (Chevilly et
al. 2021). Moreover, the Na'/K" ratio is one of the most important traits in
controlling salinity tolerance in rice (Kanawapee et al. 2012) while Na*/K* was not
significantly affected in wheat (Garcia et al. 1997; Pires et al. 2015). In addition,
physiological traits related to chlorophyll fluorescence might be another option to
distinguish drought and salinity stress impacts, as these stresses are found to have
varying effects on photosynthetic performance (Lazarevic et al. 2021). Meanwhile,
Lazarevic et al. (2021) pointed out that the plant growth stage during which the
stress impacts the plant is another factor that needs to be taken into account when
choosing a set of traits to differentiate plant tolerance mechanisms between drought
and salinity stress. Likewise, the impact of drought and salinity on crop traits is
found to be highly dependent on the moment in the growing season (Chapter 3 &
Chapter 4). Moreover, although LAI, FAPAR, and FVC exhibit comparable
patterns in response to drought and salinity stress, Cab and Cw appear to have
distinct patterns from other traits (Chapter 3 & Chapter 4). Thus, distinct traits
representing different stress strategies are varied in species, between stress
strengths as well as between growth stages.

Given trait multifunctionality, traits may not line up with environmental gradients
as expected when only taking the tolerance of individual stress into account (Sack
and Buckley 2020). Indeed, plant stresses frequently occur in combination, and
thus a functional trait confers tolerances to multiple stresses simultaneously. In
general, co-occurrence stresses (e.g. salinity and drought stress) exert a more
pronounced negative impact on plant growth (Chapter 3 & Chapter 4),
photosynthesis, ionic balance, and oxidative balance, compared to the effects of
either stress alone (Angon et al. 2022). However, it is important to note that in
certain cases, salinity may have a more pronounced negative effect than drought
stress, while in other instances, drought stress may outweigh the impact of salinity
(Angon et al. 2022; Ibrahim et al. 2019; Zhou et al. 2021). In addition, Sack and
Buckley (2020) indicated that the relative importance of multifunctional traits is
highly contingent on the environmental context such as stress levels and their
interactions under the co-occurrence stress environment. LAI, FAPAR, and FVC
exhibited the most significant reductions under severe drought stress conditions for
both maize and potato crops, underscoring their heightened sensitivity to drought
compared to salinity (Chapter 3). Moreover, the interaction effects of stress (e.g.,
drought and salinity) and environmental factors (e.g., soil type and climate zone)
were significant in many cases (Chapter 4), indicating that the severity of stress and
its impact on crops were affected by diverse environmental conditions. Therefore,
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when assessing plant tolerance to co-occurrence stress using a traits-based
approach, it is important to consider a number of variables, including the plant
species, the severity and duration of each stress, and the specific physiological
responses of the plant to the combined stress conditions.

Network theory presents an effective approach toward resolving the relationships
among multiple plant traits and their significance (He et al. 2020). The concept of
plant traits networks (PTNs) provides a multidimensional framework for
comprehensively evaluating the responses of plants across diverse lineages, life
forms, ontogenetic stages, and environmental conditions (He et al. 2020). In plant
trait networks, certain economic traits were found more important than other traits.
Particularly in dryland ecosystems, where nutrients and water are scarce, plants
prioritize those links between their economic traits that increase the effectiveness
of storing carbon and nitrogen and thus enhance their resilience against shortages
and their competitiveness (Wang et al. 2023b; Wilcox et al. 2021). However, this is
not valid for all conditions. For example, herbaceous plants emphasize the
connections between structural traits to increase leaf structural resilience and to
lessen physical damage from drought, whereas woody plants favor connections
between economic traits to resist drought stress (Wang et al. 2023b). Although
various studies have analyzed the key traits for plant functioning based on PTNs,
the application to agriculture systems is still unclear and there is no comprehensive
framework established to quantify the relative significance of each trait function
under co-occurrence stress environmental circumstances. Even so, our results on
multiple crops suggest that these herbaceous crops exhibit a prioritization of
reducing their structural traits including LAI, FAPAR, and FVC, before undergoing
reductions in water or chlorophyll contents (Chapter 4). This demonstrates leaf
water content and leaf chlorophyll content are considered to be key traits for
agricultural crops to maintain crop health and resilience to drought and salinity
stress at an early stage.

Overall, the trait-based method has proven to be a promising way to evaluate plant
tolerances to diverse stresses. Hence there is a great opportunity for creating a
system that can monitor crops in real-time across a wide variety of crops at various
scales (local, regional, national, and global). This system requires however a spatial
and temporal resolution that is presently not offered by traditional monitoring
platforms. To address this need, the integration of remote sensing technologies,
such as satellites, offers a compelling solution to extend the implementation of
trait-based methods in agriculture. By leveraging remote sensing capabilities,
timely and comprehensive monitoring of agricultural systems can be achieved,
enabling a more effective and efficient evaluation of crop responses to stresses on a
broader spatial and temporal scale.
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6.2 Prospects of remote sensing for agricultural applications

Remote sensing has become increasingly relevant in the field of sustainable
agriculture and emerged to improve food security in developing countries with its
global coverage characteristics (Berger et al. 2022). With enhanced spatial,
temporal, and spectral capacities based on various launched platforms and sensors,
remote sensing studies, focused on agricultural applications, have increased
significantly (Weiss et al. 2020). Although remote sensing technologies show
significant advantages compared to traditional methods, there are constraints that
remain to limit their application in agriculture.

High-resolution maps for stresses and crops are still not fully available at a global e
xtent. While high-resolution stress maps (e.g. drought and salinity) have been gener
ated using remote sensing observations, they focus mostly on regional or continent
al extents. For example, Aadhar and Mishra (2017) created a drought map for Sout
h Asia based on the Standardized precipitation index (SPI) and Standardized Precip
itation Evapotranspiration Index (SPEI). AghaKouchak et al. (2015) reviewed the p
rogress of monitoring drought using satellite remote sensing observations, highlight
ing the limitations including data continuity, unquantified uncertainty, sensor chang
es, community acceptability, and data maintenance in drought monitoring by curren
t satellite missions for the application at different regions. And while specific count
ries have developed their local-scale programs to track crop systems, such as the N
etherlands (Key Register of Parcels (BRP), https://www.pdok.nl/introductie/-/article/
basisregistratie-gewaspercelen-brp-) (as used in Chapter 3) and the United States

(Cropland Data Layer program (CDL), https://www.nass.usda.gov/Research_and
Science/Cropland/Release/index.php) (as used in Chapter 4), similar maps at differ
ent locations are not widely accessible. This significantly limits the monitoring of c
rop performance under salinity and drought stress, and the quantification of food se
curity in developing countries. To address this issue, high-resolution crop maps nee
d to be created. Compared with other maps (e.g., stress map, landcover map, etc.),

crop mapping asks for higher spatial resolution (e.g., 10m ~ 30m) considering the d
iversity of crop types and fragmented cultivation plots. Although there is a program
Global Agricultural Monitoring Initiative-Best Available Crop Specific Masks (GE
OGLAM-BACS) that generates crop type map at 0.05 degree on a global scale, it o
nly contains four main crop types (wheat, maize, rice, and soybeans) and have certa
in limitations (Becker-Reshef et al. 2023). Additionally, differences in phenology, ¢
ultivation practices, cloud cover, and weather across different regions pose challeng
es to the quality and quantity of satellite images for crop mapping (Wu et al. 2023).
As new-generation satellite spectrometers (e.g. HysIRI spectrometer) characterized
by high spatial resolution (8-30 m) and spectral resolution (~10 nm) are being laun
ched, future applications in precision farming and environmental monitoring are pr
omising to be enhanced in the coming years (Lassalle 2021). With such crop maps,
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coupled with (remote sensing derived) maps of environmental stresses, approaches
such as those developed in this thesis may be further refined and globally applied.

Remote sensed traits show potential for evaluating crop responses to stress. Various
trait retrieval methods have been investigated to detect plant responses to stress by
optical remote sensing observations (Verrelst et al. 2015). Most approaches are
developed based on parametric regressions, specifically employing spectral bands,
vegetation indices (VIs), and spectral ratios to establish correlations with functional
traits associated with plant stress (Berger et al. 2022). However, the number of
traits that can be directly retrieved from remote sensing imagery is limited. For
instance, osmotic traits were found to be promising to detect drought and salinity
stress, but so far neither parametric approaches nor physically based methods (i.e.,
radiative transfer models (RTMs)) have been able to retrieve these traits with
remote sensing. Instead, in our approach we relied on traits that could be quantified
by RTMs. PROSAIL is a well-known RTM that integrates a leaf optical properties
model (PROSPECT) (Jacquemoud and Baret 1990) and a canopy bidirectional
reflectance model (SAIL) (Verhoef 1984). PROSAIL has been widely to estimate
canopy biophysical, and structural traits in agriculture at different scales
(Chaabouni et al. 2021). For future research, it would be interesting to evaluate
whether additional traits such as osmotic traits may be derived from RTMs.
Additionally, it becomes possible to retrieve biochemical traits based on a modified
RTM. For instance, Zhu et al. (2014) developed a modified PROSPECT model
integrating the specific absorption coefficient of the copper ion to retrieve copper
ion traits. Therefore, by integrating RTMs with local experimental results of
indirect traits' optical properties, it is projected to be more effective in retrieving
stress-related traits. With the launch of multi-sensor satellites (e.g. Sentinel-2) with
a short revisit period, the spatial-temporal resolution has been enhanced. This thesis
evaluates crop response to stress only based on satellite remote sensing (Chapter 3
& Chapter 4). Apart from satellite remote sensing, other remote sensing
technologies including microwave data and unmanned aerial vehicles (UAVs) play
a crucial role in providing valuable insights for agricultural applications. Active
microwave radiometers have predominantly been employed for the characterization
of various biophysical traits, water content, leaf area index (LAI), vegetation height,
aboveground biomass, crop type mapping, and monitoring crop growth (Vereecken
et al. 2012). Meanwhile, UAV-based remote sensing (UAV-RS) shows high
potential to complement and validate satellite remote sensing thanks to its high
spatial resolution and high frequency, and economical friendly (Wang et al. 2023a).
Zhou et al. (2020) quantified soybean traits under drought stress based on UAV
imagery to identify drought tolerance genotypes.

Another new development involves the integration of remote sensing data from
multiple platforms and sensors. Through this integration, a more comprehensive
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and detailed understanding of the intricate interaction of stress combinations and
affected crop traits can be obtained (Berger et al. 2022). The synergistic utilization
of optical and microwave data enables the detection of more accurate and
additional land surface properties and traits. Also, microwave observations can be
interpreted and corrected using optical data and the resulting parameters
(Vereecken et al. 2012). Numerous approaches have been proposed to integrate
remote sensing data from multiple platforms, encompassing microwave data (both
active and passive), as well as optical data spanning from visible, near-infrared, and
thermal spectra (Vereecken et al. 2012). However, there are several factors that
need to be considered for this integrated framework application. Data collected
from various sensors for the same location often exhibit redundancy. This
redundancy arises from the distinct characteristics and physical diffusion
mechanisms inherent in different sensors (Le Hegarat-Mascle et al. 2000; Li et al.
2021). As a result, multiple sensors may capture similar or overlapping information,
leading to a significant amount of time consumption to fuse remote sensing data.
This time-consuming process can potentially limit the efficiency of data analysis
and interpretation. Moreover, the integration framework involves data from various
platforms/sensors, each with distinct spatial and spectral resolutions, acquisition
frequencies, and calibration procedures. This heterogeneity necessitates meticulous
data preprocessing and calibration to ensure compatibility and consistency during
integration (Mura et al. 2015).

In addition, by combining remote sensing data with artificial intelligence
techniques like Machine Learning (ML), it is possible to identify and predict crop
trait changes with stress. Lassalle (2021) reviewed six categories of machine
learning algorithms including Partial Least Square Regression (PLSR), Random
Forest (RF), Linear or Quadratic Discriminant Analysis (LDA/QDA), Support
Vector Machines (SVM), Neural Networks (NNs), and FElastic net (ENET)
regression. These algorithms were utilized to monitor plant stress using
hyperspectral remote sensing. Ion traits including Na®, CI, K, and Ca*
concertation were determined for wheat with salinity stress by employing PLSR on
canopy reflectance data (El-Hendawy et al. 2019b). ML has demonstrated a strong
performance in detecting crop stress signals at an early stage using hyperspectral
data (Zarco-Tejada et al. 2018). These algorithms have also shown their relevance
in distinguishing between different stresses that have similar effects on plant
reflectance (Lassalle et al. 2019). Furthermore, certain machine learning algorithms
are capable of handling nonlinear relationships between stress intensity and the
spectral response of plants, thus providing new opportunities for quantitative
monitoring (Lassalle 2021). Finally, the integration of ML and RTM has shown
promise in accurately and rapidly mapping crop traits across extensively cultivated
regions (Danner et al. 2021). This way, this combination of techniques highlights
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the potential to quantity and monitor stress-related crop traits at the global scale
(Berger et al. 2022; Verrelst et al. 2019).

Finally, combining crop growth models with remote sensed traits enables timely
and accurately predict stress impact on food security in crop production. Crop
growth models simulate the relationship between crop physiological processes and
the environment, aiming to assess the potential impacts of climate change on crop
growth and yield in different regions (Kasampalis et al. 2018). Gaining early
insights into the impacts of extreme weather events on crops can assist farmers and
decision-makers in minimizing risks and enhancing food security. However,
current crop growth models have certain limitations. They lack spatial scale
information and suffer from the absence or inaccuracy of relevant data such as soil
conditions and weather parameters (Kasampalis et al. 2018; Palosuo et al. 2011;
Wallach et al. 2006). To enhance yield predictions by crop models, remote sensing
technology can provide the missing spatial information required by crop growth
models. Variables in the crop growth model can be replaced or adjusted using
remote sensing data through data assimilation (Maas 1988). A review conducted by
Jin et al. (2018) highlighted the capability of assimilating remote sensing data to
enhance the accuracy of predictions and estimations in crop growth models,
ultimately leading to improved understanding and management of agricultural
systems. Hence, more accurate predictions of crop growth and yield may in the
future be achieved by integrating remote sensing data with crop models, thereby
improving agricultural production and ensuring food security.

6.3 Implications to sustainability goals

Remote sensing can significantly contribute to achieving the Sustainable
Development Goals (SDGs) by providing data to track the progress of key
indicators and assess policy efficiency. Specifically, three major gaps in SDGs
indicators are expected to be filled by integrating remote sensing data, including
environmental indicators, multi-resolution spatial indicators, and indicators
coupling environmental and societal or economic data (Cochran et al. 2020; Griggs
et al. 2014; Scott and Rajabifard 2017). With respect to securing SDG 2 (zero
hunger), remote sensing earth observations can strengthen the monitoring of food
security by providing crop growth models with timely input variables to better
predict crop production. Already several international monitoring systems, such as
the GEOGLAM, have been developed to track crop growth and evaluate the
progress toward achieving SDG 2(Singh Parihar et al. 2012). The GEOGLAM
Crop Monitor provides monthly assessments of crop conditions for wheat, maize,
rice, and soybeans in 49 countries (Anderson et al. 2017), and thereby creates the
ability to use its products within SDG indicators (e.g. target 2.C) (Anderson et al.
2017; Whitcraft et al. 2019). In addition, the Crop Monitor for Early Warning
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(CM4EM) within GEOGLAM monitors the risk of food insecurity in over 80
countries, and serves as an early warning tool for agriculture monitoring,
enhancing resilience to climate-related extreme events (Becker-Reshef et al. 2020).
Through this, CM4EM is possible to detect crop growth in a drought-stressed
environment and provide timely updates on food production challenges (Becker-
Reshef et al. 2020). This way, CM4EM contributes towards not only SDG 2 (target
2.1), but also SDG 1(target 1.5), SDG 3 (target 3.D), and SDG 13 (target 13.3)
(Becker-Reshef et al. 2020). However, these international monitoring systems
focus solely on droughts without incorporating the effects of salinity. Co-occurring
drought and salinity give rise to a more pronounced -inhibitory- impact on crop
growth (Chapter 3 & Chapter 4) than their individual impacts. Given the increasing
possibility of co-occurring drought and salinity stress with climate change, there is
a compelling need to take these co-occurring stresses into account and enhance our
understanding of crop monitoring on a global scale. By integrating the evaluation
of salinity impact on crops with the current GEOGLAM framework, it provides
crucial open-source benefits to diverse stakeholders engaged in agricultural
research, policy, and practice. Notably, in arid and semi-arid regions where water
scarcity and soil salinization pose formidable barriers to sustainable crop
production, leveraging the GEOGLAM program with the integration of salinity
evaluation can prove instrumental in developing targeted strategies for resilient
agriculture.

As part of the SDGs, improving agricultural resilience and food production within
limited arable land under global climate change is a significant challenge to
addressing food security. In this regard, saline agriculture poses a promising future
to enhance the utilization of salt-affected areas. Specifically, saline agriculture is
considered to significantly contribute to achieving several SDGs, including food
security (SDG 2), freshwater resources utilization (SDG 6), sustainable livelihoods
(SDG 8), climate change adaption (SDG 13), and life on Land (SDG15) (Negacz et
al. 2021; Singh 2021). The most promising areas for saline agriculture are Affica,
the Middle East, Central Asia, the United States, and Australia (Negacz et al. 2022).
Additionally, Kazakhstan, the Russian Federation, Australia, Iraq, and Lesotho
exhibit significant potential to address their food shortage challenges and work
towards achieving sustainable development goals through the cultivation of salt-
tolerant potatoes (Chapter 5). Given these regions with different soil properties,
climate conditions, and water availability, salt-tolerant variates of major crops (e.g.
potato) in addition to halophytes (e.g. Salicornia europaea) are accessible options
for broader application at the global scale, particularly for developing countries
(Chapter 5). However, given the high frequency of co-occurrent stress (e.g. salinity
and drought), saline agriculture needs to further take the risk of co-occurring
impacts (e.g., with drought) into account. Therefore, this asks for understanding
and managing the combined effects of stress on crop productivity, soil health, water
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availability, and overall system resilience to ensure sustainable and effective
agricultural practices in saline environments. With the impact of climate change,
there will be an expansion of suitable areas for saline farming in response to the
increase in salinity. Salt-tolerant potato, as a part of saline farming, is proven to be
a promising crop to improve food production in salt-affected areas both in the
current state and future scenarios, and therefore achieving various sustainability
targets in different ways (Chapter 5). By quantifying the contribution of saline
farming to sustainable development in the face of impending climate change
threats on a global scale, it provides valuable insights into optimizing the
utilization of salt-affected soils. Consequently, it establishes a foundation for the
promotion and widespread implementation of saline farming practices, bolstering
food security and fortifying agricultural resilience at the global scale.

6.4 Concluding remarks

Remote sensing has shown promise in monitoring crop growth and health using
vegetation indices (VIs) and plant functional traits, although the results may vary
depending on spectral wavelengths and stress intensity. Plant functional traits
derived from remote sensing data can serve as proxies for monitoring the effects of
drought and salinity stress on crop health, as they align closely with vegetation
processes. A novel approach was developed to quantify the impact of drought,
salinity, and their combination on multiple crops at a large scale using remote
sensing traits. The impact of stress varies across species, growth stages, and stress
conditions. The interaction between drought and salinity stress is complex, and
their combined effect generally exacerbates the impact on crops compared to
individual stress. Most crops tend to reduce their primary production capacity
before experiencing reductions in water and chlorophyll content. In order to
mitigate the impact of salinity on crop productivity and improve food production,
salt-tolerant potato -as a proxy of saline agriculture-, can contribute to enhancing
the use of salt-affected areas and support the achievement of SDG2. This thesis
provides a promising perspective on the application of remote sensing in
agriculture systems to monitor food production with stress and improve agricultural
resilience.
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Summary

Food security is challenged by a growing global population and by climate change.
Already, agricultural crops encounter various environmental stresses, limiting
productivity and decreasing food production. Of these stresses, drought and soil
salinity are considered the most important ones that inhibit crop yield and
distribution. Worryingly, climate change is predicted to increase not only their
frequency and severity, but also their co-occurrence, exacerbating their impacts.
This also leads to increases in events where both stresses co-occur. This co-
occurrence results in substantially more yield losses than individual stressors.
While detrimental effects of combined drought and salinity stress on crops have
been highlighted in small-scale experiments (with only a limited number of crop
varieties), large regional uncertainties remain for real-life agricultural settings.
Assessing these large-scale impacts using traditional methods is, however, not
feasible. In contrast, satellite observations offer a promising perspective for
enhancing global food security by providing reliable information on arable land
extent and food production. Remote sensing has already been used to monitor crop
productivity at multiple spatial and temporal scales, though not for yet
characterizing crop growth under co-occurring drought and salinity stress. This
thesis aims to assess the impact of drought and salinity on agriculture and
sustainable development goals using remote sensing technology.

In Chapter 2, a systematic review was conducted to evaluate the current ability of
remote sensing to identify and assess the impacts of drought and salinity stress on
agricultural crops through vegetation indices (VIs) and plant traits. The results
indicate that challenges still persist in utilizing satellite monitoring of these stress
impacts. Specifically, traditional VIs do not consistently estimate these impacts
accurately. In addition, plant traits, although promising in linking directly to the
biochemical and biophysical pathways of crop growth, are not widely used to
reflect upon stress response mechanisms. Osmosis traits in particular have high
potential for monitoring the pathways through which drought and salinity affect
crops but cannot be directly measured by remote sensing. Other remotely sensed
plant traits are highlighted to contain significant potential -to assess the combined
impacts of drought and salinity effects on agricultural crops- but only in small-
scale experimental studies. Consequently, large-scale studies are necessary to
showcase the relevance of remote sensing for assessing combined impacts under
real-life agricultural scenarios.

In Chapter 3, a novel approach was proposed that utilized satellite remote sensing
observations to estimate the impacts of drought, salinity, and their combination on
five crop traits, including leaf area index (LAI), leaf chlorophyll content (Cab), leaf
water content (Cw), the fraction of absorbed photosynthetically active radiation
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(FAPAR) and the fraction of vegetation cover (FVC) using remote sensing. The
approach was first tested in the Netherlands, and results indicate that the
exacerbating effects of co-occurring drought and salinity stress highly depended on
the moment in the growing season. Moreover, LAI, FAPAR, and FVC were
impacted most under severe drought conditions for maize and potato while Cab and
Cw were generally more inhibited by combined drought and salinity stress. Thus,
this approach facilitates simultaneous monitoring of the effect of drought and
salinity on crops in large-scale agricultural applications.

The approach presented in Chapter 3 was adapted to suit the assessment of a larger
spatial extent and multiple crops, by applying a pair-wise method of retrieving
stressed and non-stressed crops (Chapter 4). Furthermore, multiple techniques were
integrated to assess trait expressions concerning drought, salinity, and their
combined impacts compared to control conditions, to allow evaluating stress
impacts more precisely for a much larger range of crops and spatial conditions. The
results across the United States indicate that stress impacts were highly time-
dependent and that crops were more susceptible to combined drought and salinity
than to individual stress. However, stress impacts also varied significantly between
species. Most crops initially decrease primary production capability by reducing
LAI before decreasing water or chlorophyll contents. In combination, a quantitative
foundation was established for simultaneously assessing crop responses to the
occurrence of stresses, both alone and collectively at large scale and under actual
agricultural conditions, contributing in monitoring food security upon global
climate change.

In Chapter 5, we explored how some of the findings related to large-scale salinity
tolerance could be used to aid in achieving sustainable development goals (SDGs).
Sustainable agriculture and food security are critical components of sustainable
development goals, yet they are increasingly vulnerable to global climate change
impacts. While salt-induced stress on crop growth and food production has been
extensively studied, quantifying the potential contribution of saline farming on a
global scale remains uncertain. In Chapter 5, the local and regional suitability areas
for salt-tolerant potato cultivation in salt-affected soils were evaluated, thereby
assessing the potential contribution of salt-tolerant potatoes to the current and
future SDGs. The results reveal that Oceania (particularly Australia) has the
greatest potential for enhancing food production through salt-tolerant potato
cultivation in salt-affected soils. Moreover, other countries like Kazakhstan, the
Russian Federation, and Australia can address food shortage challenges and
achieve SDGs in the current state as well as in future scenarios. Furthermore, the
suitability area for salt-tolerant potato is expected to expand even under future
climatic and salinity conditions, potentially doubling food production in
Kazakhstan and the Russian Federation. Consequently, salt-tolerant potato -as a
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proxy for saline farming- can promote increased food production in salt-affected
areas. Saline farming may thus enhance agricultural resilience and ensure food
security.

This thesis emphasizes the potential of remote sensing-derived traits for evaluating
crop growth under stress conditions. While it demonstrates the potential of remote
sensing to detect stress responses through functional traits, its effectiveness varies
across plant species and growth stages, indicating that several challenges are left
open to be addressed in future studies. In particular, the identification and selection
of representative traits need to be improved to more accurately reflect specific
stress conditions at different moments during the growing season. Moreover,
current remote sensing for agricultural applications faces challenges related to the
increased demands for high spatial-temporal resolutions. We propose multi-
platform data integration to improve the accuracy of observations and data fusion
in future studies.

In conclusion, remote sensing offers a huge promise for effectively monitoring the
attainment of SDGs and ensuring global food security, involving various
stakeholders and policymakers. This thesis demonstrates how remote sensing
techniques can be applied to detect stress responses and mitigate the impacts of
those stresses on global crop production from review to application, offering
valuable insights into the potential of remote sensing to enhance food security and
address sustainable development goals.
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Samenvatting

Onze voedselzekerheid staat onder druk door een groeiende wereldbevolking en
door klimaatverandering. Momenteel hebben landbouwgewassen te maken met
verschillende verstoringen, die de productiviteit beperken en de voedselproductie
verminderen. Van de verschillende verstoringen worden droogte en
bodemverzilting als de belangrijkste beschouwd, die de gewasopbrengst en -
verspreiding belemmeren. Zorgwekkend is dat klimaatverandering naar
verwachting beide verstoringen verder zal verergeren en de frequentie en ernst van
beiden zal verhogen. Dit leidt ook tot een toename van gebeurtenissen waarin beide
verstoringen samen voorkomen. Deze samenloop resulteert in aanzienlijk grotere
opbrengstverliezen dan individuele stressfactoren. Hoewel de schadelijke effecten
van de gecombineerde stress door droogte en verzilting op gewassen al zijn
beschreven in kleinschalige experimenten (met slechts een beperkt aantal
gewasvariéteiten), blijven er grote regionale onzekerheden bestaan voor
landbouwsituaties in de praktijk. Het beoordelen van deze grootschalige gevolgen
is echter niet haalbaar met behulp van traditionele methoden. In tegenstelling
hiermee bieden satellietwaarnemingen een veelbelovend perspectief om de
wereldwijde voedselzekerheid te verbeteren door betrouwbare informatie te
verstrekken over de omvang van landbouwgronden en voedselproductie. Remote
sensing wordt al gebruikt om de gewasproductiviteit op meerdere ruimtelijke en
temporale schalen te monitoren, maar nog niet voor het karakteriseren van
gewasgroei onder gelijktijdige droogte- en verziltingsstress. Dit proefschrift heeft
tot doel de impact van droogte en verzilting op landbouw en de Sustainable
Development Goals (SDGs) te beoordelen met behulp van remote sensing-
technologie.

In Hoofdstuk 2 werd een systematische review uitgevoerd om de huidige
mogelijkheden van remote sensing te evalueren om de impact van droogte- en
verziltingsstress op landbouwgewassen te identificeren en te beoordelen via
vegetatie-indices (VI's) en de eigenschappen van planten. De resultaten laten zien
aan dat er nog steeds uitdagingen zijn bij het nauwkeurig monitoren van de impacts
van stress met behulp van remote sensing via satellieten. De traditionele VI’s laten
niet toe deze impacts consistent en nauwkeurig te schatten. Daarentegen zijn
planteigenschappen veelbelovend omdat ze rechtstreeks verbonden zijn met de
biochemische en biologische processen van gewasgroei en
stressresponsmechanismen  weerspiegelen. Met name planteigenschappen
gerelateerd aan osmose hebben een groot potentieel voor het monitoren van de
manieren waarop droogte en verzilting gewassen beinvloeden, maar kunnen niet
rechtstreeks worden gemeten door remote sensing. Andere met remote sensing
waargenomen planteigenschappen werden aangestipt als potentieel waardevol om
de gecombineerde effecten van droogte- en verziltingseffecten op
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landbouwgewassen te beoordelen, maar zijn alleen gebruikt in kleinschalige
experimentele studies. Daarom zijn grootschalige studies noodzakelijk om de
relevantie van remote sensing voor het beoordelen van gecombineerde effecten
onder echte landbouwcondities te laten zien.

In Hoofdstuk 3 werd een nicuwe benadering voorgesteld die gebruikmaakte van
satelliet remote sensing waarnemingen om de impact van droogte, verzilting en hun
combinatie op vijf gewaseigenschappen te schatten, waaronder totale
bladoppervlakte (Leaf Area Index; LAI), bladchlorofielgehalte (Cab), het
watergehalte in bladeren (Cw), de fractie van geabsorbeerd fotosynthetisch actieve
straling (FAPAR) en de fractie van vegetatiebedekking (FVC) met behulp van
remote sensing. De benadering werd eerst getest in Nederland, en de resultaten
geven aan dat de verergerende effecten van gelijktijdige droogte- en
verziltingsstress sterk athankelijk zijn van het moment in het groeiseizoen.
Bovendien werden LAI, FAPAR en FVC het meest beinvloed onder ernstige
droogteomstandigheden voor mais en aardappelen, terwijl Cab en Cw over het
algemeen meer werden beinvloed door gecombineerde droogte- en verziltingsstress.
Deze benadering maakt dus gelijktijdige monitoring van het effect van droogte en
verzilting op gewassen mogelijk in grootschalige landbouwtoepassingen.

In Hoofdstuk 4 werd de benadering van Hoofdstuk 3 aangepast om de beoordeling
van een grotere ruimtelijke omvang en van meerdere gewassen mogelijk te maken,
door paarsgewijs gestreste en niet-gestreste gewassen te vergelijken. Bovendien
werden meerdere technieken geintegreerd om planteigenschappen in relatie tot
droogte, verzilting en hun gecombineerde effecten te vergelijken met die van
controleomstandigheden. Zo kon het effect van stress nauwkeuriger ge€valueerd
worden voor een veel groter scala aan gewassen en ruimtelijke omstandigheden.
De resultaten voor de Verenigde Staten geven aan dat het effect van stress sterk
athankelijk was van de tijd in het groeiseizoen en dat gewassen gevoeliger waren
voor de gecombineerde effecten van droogte en verzilting dan voor individuele
stress. De stressimpact varieerde echter ook aanzienlijk tussen soorten. De meeste
gewassen verminderden aanvankelijk hun primaire productiecapaciteit door de LAI
te verlagen voordat ze water- of chlorofylgehalten verminderden. Door deze
combinatie van methoden werd een kwantitatieve basis gelegd om tegelijktijdig de
reacties van gewassen op stress te beoordelen, zowel afzonderlijk als in combinatie
op grote schaal en onder werkelijke landbouwomstandigheden, zo bijdragend aan
het monitoren van de voedselzekerheid bij wereldwijde klimaatverandering.

In Hoofdstuk 5, hebben we de resultaten - omtrent het verbouwen van zout-
tolerante gewassen — gebruikt om te kijken hoe duurzame ontwikkelingsdoelen
(SDG) bereikt kunnen worden. Duurzame landbouw en voedselzekerheid zijn
cruciale componenten van de SDGs, maar ze zijn steeds kwetsbaarder voor de
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gevolgen van wereldwijde klimaatverandering. Hoewel stress veroorzaakt door
zout op gewasgroei en voedselproductie uitgebreid is bestudeerd, blijft de
kwantificering van de mogelijke bijdrage van zouttolerante landbouw op
wereldschaal onzeker. In Hoofdstuk 5 werden de lokaal en regionaal de geschikthe
gebieden voor zouttolerante aardappelteelt op zoute bodems geévalueerd, waarbij
de mogelijke bijdrage van zouttolerante aardappelen aan de huidige en toekomstige
SDGs werd beoordeeld. De resultaten tonen aan dat Oceani€ (met name Australi€)
het grootste potentieel heeft om de voedselproductie te verbeteren door
zouttolerante aardappelteelt op zoute bodems. Bovendien kunnen andere landen
zoals Kazachstan, de Russische Federatie en Australié tekorten in het
voedselaanbod aanpakken en SDGs bereiken zowel in de huidige omstandigheden
als in scenario’s van de toekomst. Bovendien wordt verwacht dat het gebied dat
geschikt is voor zouttolerante aardappel onder toekomstige klimatologische en
zoutgehalteomstandigheden zich zelfs zal uitbreiden, wat mogelijk de
voedselproductie in Kazachstan en de Russische Federatie kan verdubbelen. Zo
kan een zouttolerante aardappel - als een proxy voor zouttolerante landbouw - de
voedselproductiec in gebieden die aangetast zijn door zout bevorderen.
Zouttolerante landbouw kan dus de veerkracht van de landbouw verbeteren en de
voedselzekerheid waarborgen.

Dit proefschrift benadrukt het potenticel van met behulp van remote sensing
afgeleide planteneigenschappen om de groei van gewassen onder stressvolle
omstandigheden te evalueren. Hoewel het de mogelijkheden van remote sensing
laat zien om stressreacties te detecteren via functionele planteneigenschappen,
varieert de effectiviteit ervan tussen plantensoorten en groeistadia, wat aangeeft dat
er nog enkele uitdagingen openstaan die in toekomstige studies moeten worden
aangepakt. Met name de identificatie en selectie van eigenschappen moet worden
verbeterd om specifieke stressomstandigheden tijdens verschillende momenten in
het groeiseizoen nauwkeuriger te representeren. Bovendien heeft de huidige remote
sensing te maken met beperkingen in de ruimtelijke en temporele resolutie voor
landbouwtoepassingen. De integratie van gegevens van meerdere platforms kan
helpen om de nauwkeurigheid van waarnemingen en de integratie van gegevens te
verbeteren.

Concluderend biedt remote sensing een enorme belofte voor de effectieve
monitoring van de realisatic van SDGs en het waarborgen van wereldwijde
voedselzekerheid, voor de verschillende betrokken belanghebbenden en
beleidsmakers. Dit proefschrift laat zien hoe remote sensing-technieken kunnen
worden toegepast om stressreacties te detecteren en de impact van die stress op de
wereldwijde gewasproductie te verminderen, en biedt waardevolle inzichten in het
potentieel van remote sensing om de voedselzekerheid te verbeteren en de SDGs te
realiseren.
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