
Making diabetes care fit: insights, strategies and support Ruissen, M.M.

Citation

Ruissen, M. M. (2024, January 25). *Making diabetes care fit: insights, strategies and support*. Retrieved from https://hdl.handle.net/1887/3715105

Version:	Publisher's Version
License:	Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from:	https://hdl.handle.net/1887/3715105

Note: To cite this publication please use the final published version (if applicable).

8

Increased stress, weight gain and less exercise in relation to glycemic control in people with type 1 and type 2 diabetes during the COVID-19 pandemic

> Merel M. Ruissen Hannah Regeer Cyril P. Landstra Mariëlle Schroijen Ingrid Jazet Michiel F. Nijhoff Hanno Pijl Bart E.P.B. Ballieux Olaf Dekkers Sasja D. Huisman Eelco J.P. de Koning

BMJ Open Diabetes Reseach & Care (2021)

ABSTRACT

Introduction

Lockdown measures have a profound effect on many aspects of daily life relevant for diabetes self-management. We assessed whether lockdown measures, in the context of the COVID-19 pandemic, differentially affect perceived stress, body weight, exercise and related this to glycemic control in people with type 1 and type 2 diabetes.

Research design and methods

We performed a short-term observational cohort study at the Leiden University Medical Center. People with type 1 and type 2 diabetes \geq 18 years were eligible to participate. Participants filled out online questionnaires, sent in blood for HbA1c analysis and shared data of their flash or continuous glucose sensors. HbA1c during the lockdown was compared to the last known HbA1c before the lockdown.

Results

In total 435 people were included (type 1 diabetes n=280, type 2 diabetes n=155). An increase in perceived stress, anxiety, weight gain and less exercise was observed in both groups. There was improvement in glycemic control in the group with the highest HbA1c tertile (type 1 diabetes:-0.39% (-4.3 mmol/mol) (p<0.0001 and type 2 diabetes: -0.62% (-6.8 mmol/mol) (p=0.0036). Perceived stress was associated to difficulty with glycemic control (p<0.0001).

Conclusions

An increase in perceived stress, weight gain and less exercise but no deterioration of glycemic control occurs in both people with relatively well controlled type 1 and type 2 diabetes during short-term lockdown measures. As perceived stress showed to be associated to glycemic control this provides opportunities for health care professionals to put more emphasis on psychological aspects during diabetes care consultations.

INTRODUCTION

The COVID-19 pandemic is not only a major health care crisis but also has a major impact on daily life worldwide. With currently no vaccine or treatment available, this viral pandemic results in a rapid increase in morbidity and mortality rates. So far over 63 million cases have been confirmed, resulting in almost 1.5 million deaths worldwide(1). Mortality rates from COVID-19 are highest in elderly people(2). Also people with diabetes mellitus have been identified to be at increased mortality risk(2). Often no distinction is made between type 1 diabetes and type 2 diabetes. But as other risk factors for adverse outcomes of COVID-19 such as elderly age, obesity, hypertension, and cardiovascular disease are very prevalent in type 2 diabetes, people with this diabetes subtype are considered to be at even higher risk(3).

In an attempt to control the outbreak many countries implemented lockdown measures(4). Lockdown strategies diverged from lockdown of cities, regions or countries to voluntary home curfews, travel restrictions and prohibition of public and social events(5). These measures resulted in major changes in daily life and social behavior. Such sudden and major disruptions in everyday life are known to influence both physical and mental health(6).

The alterations in behavioral patterns, daily life and exercise as well as increased feelings of stress and anxiety are all known to influence diabetes self-management and glycemic control(7-14). Also a change in diabetes care by health professionals further increased the importance of adequate self-management behavior of people with diabetes mellitus. Thus several factors coincided that challenged maintenance of glycemic control during the lockdown measure. It is unclear how the lockdown has a differential impact on people with type 1 and type 2 diabetes and whether the presence of additional risk factors for severe outcomes of COVID-19 in these people plays a role.

METHODS

People with type 1 and type 2 diabetes that were treated at the diabetes outpatient clinic of the Leiden University Medical Center were invited to participate. Other inclusion criteria were age \geq 18 years, sufficient comprehension of the Dutch language and ability to perform fingerpricks and complete an online questionnaire. People that were pregnant, recently (\leq 6 months) diagnosed with a malignancy,

receiving immuno- or chemotherapy, or admitted to a hospital or rehabilitation center were excluded from participation.

Lockdown period and measures taken

Lockdown measures were implemented in the Netherlands on March 15, 2020 by the government. These measures included stay-at-home orders for people working in non-vital areas of society, social distancing and closures of schools, restaurants, bars and public spaces. A sudden reduction in mobility around the workplace (40%) and in the context of retail and recreation (40%) and an increase in mobility around residential grounds (20%) occurred immediately after March 15 as shown by mobility data of the Dutch population validating the effect of the lockdown measures(15). Because of the measures taken and the results of the mobility data, March 15 was considered the start of the lockdown period. Data were collected eight to eleven weeks after the start of the lockdown period. During the entire data collection period the lockdown measures were maintained.

Assessment of the impact of the lockdown period

After informed consent was provided participants received a link to the online questionnaire via e-mail. The online questionnaire consisted of multiple items to assess the impact of the lockdown on glycemic control and medication use, daily routines, physical activity and psychological stress, including the 'Perceived Stress Scale' (PSS) (**supplementary table 1**)(16).

An HbA1c fingerprick set was sent to the participant's home in order to prevent visits to the hospital. This set consists of a small tube, a lancet and return medical envelope. Via a fingerprick a small amount of capillary blood was collected in a tube by patients at home, which was then sent to the hospital laboratory by mail(17). This is a validated and well established measuring method for HbA1c analysis, providing identical results compared to HbA1c measurements in venous blood samples(18).

HbA1c 8-11 weeks (interval median (IQR) 65 (61 to 71) days) after the start of the lockdown period was compared to the last known HbA1c before March 15, 2020 (interval median (IQR) 178 (137 to 218) days before the start of the lockdown).

For people with type 1 diabetes using a continuous glucose monitor (CGM) or flash glucose monitor (FGM) data were analyzed during two weeks before the lockdown period (February 24th until March 8th) and 6 weeks after the start of the lockdown period (April 24th until May 7th). Online data sharing platforms were used to gain access to those data. If participants were on holiday during one or both of these

weeks prior to the lockdown period, they provided the data of two adjacent regular weeks prior to the lockdown period. As a recent start of FGM or CGM can improve glycemic control, people that had started CGM or FGM within two months of the start of the lockdown period were excluded from glucose sensor data and HbA1c analysis. CGM or FGM data were used to calculate time below range (% of time glucose < 4.0 mmol/L), time in range (% of time glucose 4.0-10.0 mmol/L), time above range (% of time glucose \geq 10.0 mmol/L), the coefficient of variation (% CV), the time of active use (% of time) and the average number of scans per day (n).

This study was approved by the Medical Ethics Committee of Leiden, Den-Haag, Delft under the Medical Research Involving Human Subjects Act (WMO) prior to the start of the study (NL73778.058.20).

Statistical analysis

Differences in questionnaire outcomes between people with type 1 and type 2 diabetes were analyzed using Chi-squared tests. The change in glycemic control was analyzed by paired t-tests. Differences in change in HbA1c between people with type 1 diabetes and type 2 diabetes were analyzed using unpaired t-tests. Regression analyses were used to assess associations between glycemic parameters, BMI and outcomes on lifestyle, insulin use, glucose regulation and stress. Confidence intervals of the regression coefficients are reported. People were divided into tertiles based on their HbA1c prior to the lockdown period and associations with questionnaire outcomes were analyzed using ordinal logistical regression analysis. We performed complete case analyses. STATA 14.2 was used to perform the analyses.

RESULTS

A total of 435 participants (42% female) were included (type 1 diabetes n=280, type 2 diabetes n=155) (**table 1**). A basal-bolus regimen was used by 76.8% and basal insulin only by 8.3% of people. People with type 2 diabetes were on average 12.3 years older and had a higher BMI (**table 1**). The prevalence of cardiovascular complications, elevated systolic blood pressure and use of blood pressure lowering agents was higher in people with type 2 diabetes (**table 1**).

Table 1. Baseline characteristics

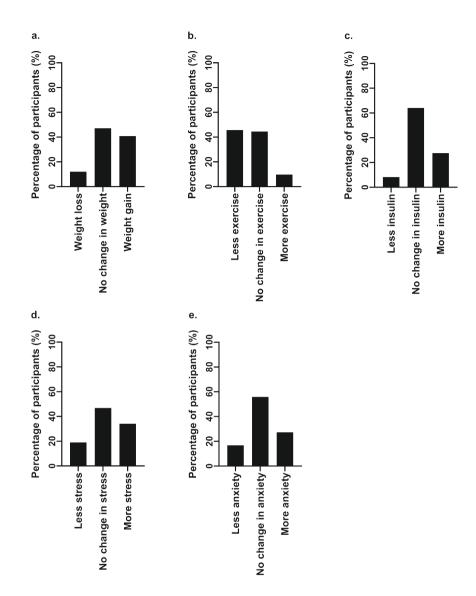
	Type 1 diabetes (n=280)	Type 2 diabetes (n=155)
Age, mean (SD), years	50.1 (±14.9)	62.5 (±11.6)
Sex, n (%), female	129 (46.1)	54 (34.8)
BMI, mean (SD), kg/m²	25.9 (±4.3)	30.2 (±6.1)
Level of education, n (%)*		
Low	9 (3.4)	4 (3.0)
Middle	98 (37.0)	73 (54.5)
High	158 (59.6)	57 (42.5)
Living situation, n (%)		
Alone	41 (15.5)	23 (17.2)
Co-habitating	242 (84.5)	111 (82.8)
Duration of diabetes, mean (SD), years	27.5 (±15.1)	15.8 (±9.3)
Glucose-lowering medication, n (%)		
None	1 (0.4)	6 (4.0)
Metformin	11 (4.0)	105 (67.7)
SGLT-2 inhibitors	0 (0.0)	15 (9.7)
Sulfonylurea derivatives	1 (0.4)	38 (24.5)
GLP-1 receptor antagonists	1 (0.4)	25 (16.1)
Basal insulin only	8 (3.0)	25 (18.9)
Basal-bolus insulin regimen	256 (96.6)	49 (37.1)
Glucose monitoring, n (%)		
None	3 (1.1)	29 (21.6)
Blood glucose monitoring only	62 (23.4)	91 (67.9)
Flash or continuous glucose monitoring	200 (75.5)	14 (10.5)
Complications, n (%)		
None	58 (20.7)	21 (13.6)
Retinopathy	189 (68.2)	86 (56.2)
Lasercoagulation	61 (22.1)	19 (12.5)
GFR ≥G2†	120 (44.4)	92 (67.7)
Albuminuria (A1-A3)	27 (12.2)	33 (30.6)
Peripheral neuropathy	69 (25.4)	62 (40.0)
Cardiovascular complications‡	66 (23.9)	77 (49.7)

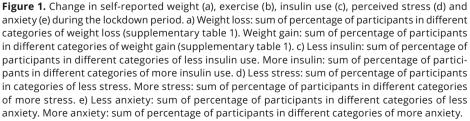
	Type 1 diabetes (n=280)	Type 2 diabetes (n=155)
Kidney transplantation, n (%)	3 (1.1)	3 (1.9)
Blood pressure, mean (SD), mmHg		
Systolic blood pressure	133 (±18)	138 (±17)
Diastolic blood pressure	78 (±8)	79 (±9)
Blood pressure lowering medication, n (%))	
None	171 (61.7)	45 (29.0)
ACE inhibitors	59 (21.3)	41 (26.5)
Angiotensin receptor blockers	25 (9.0)	43 (27.7)
Calcium antagonists	36 (13.0)	232 (20.7)
Alpha blockers	5 (1.8)	15 (9.7)
Beta blockers	30 (10.8)	50 (32.3)
Diuretics	39 (14.1)	38 (24.5)
Mineralocorticoid receptor antagonists	7 (2.5)	4 (2.6)
LDL cholesterol, mean (SD), mmol/mol	2.41 (±0.78)	2.25 (±1.01)
Lipid lowering medication, n (%)		
None	164 (59.2)	61 (39.4)
Statins	109 (39.4)	92 (59.7)
Ezetimibe	11 (4.0)	11 (7.1)
Smoking, n (%)		
No	239 (89.5)	126 (88.7)
Occasional [§]	7 (2.6)	3 (2.1)
Regular	21 (7.9)	13 (9.2)
Pulmonary comorbidities, n (%)		
Asthma, COPD or lung fibrosis	16 (5.8)	20 (12.9)
Other medication, n (%)		
Immunosuppressive agents	14 (5.1)	13 (8.4)
Antidepressive agents	17 (6.2)	12 (7.7)

Table 1. (continued)

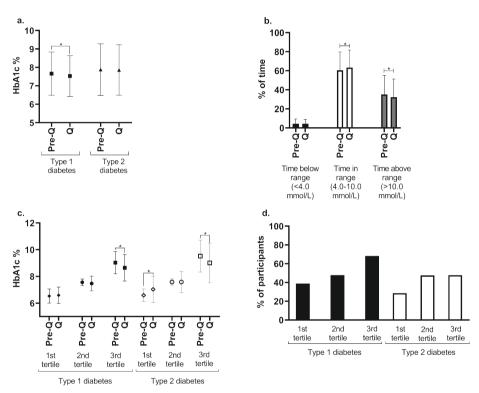
*Education: low (elementary school), intermediate (elementary school plus high school and practical education), high (college or university), †measure for chronic kidney function, GFR ≥ 2 = GFR<89 ml/ min/1.73m228, ‡Myocardial infarction/PCI/peripheral vascular disease/stroke/TIA/heart failure or amputation of toe/foot/leg, §Occasional smoking: \ge 1x/week29, ||Regular smoking: \ge 1x/day29. BMI: body mass index, COPD: chronic obstructive pulmonary disease, GFR: glomerular filtration rate, GLP-1: glucagon-like peptide-1, LDL: low-density lipoprotein, SD: standard deviation. SGLT-2: sodium-glucose co-transporter-2.

Stress, weight change and exercise


In total 399 participants completed the questionnaire on daily routines, physical activity, psychological stress and participant's glycemic control and medication use.


During self-lockdown 34.1% of all participants reported elevated stress (**figure 1**), without any difference between people with type 1 and type 2 diabetes (33.6% vs. 35.1%, Perceived Stress Score: 13.7 (\pm 6.2) vs. 12.8 (\pm 6.7) respectively). A change in perceived stress was associated with a change in HbA1c (CI:0.015;0.38, p=0.034). People who reported more difficult glycemic control experienced higher stress during the lockdown period (CI:0.41;0.83, p<0.0001) and needed more insulin than before the lockdown period (CI:1.35;2.08, p<0.0001). Furthermore, 27.3% of all participants reported elevated levels of anxiety (**figure 1**), without any difference between people with type 1 and type 2 diabetes (27.5% vs 26.9%). Anxiety for COVID-19 infection was not associated with the change in HbA1c.

Furthermore, 40.9% of the participants reported weight gain and 45.7% reported less exercise than before (**figure 1**). Only 12% of the participants reported a loss of weight and 10% of the participants reported more exercise. Less exercise was associated with weight gain during the period of self-lockdown (p<0.0001). The change in exercise or weight gain was not associated with the change in HbA1c (Cl-0.20;0.05, p=0.25 and Cl: -0.002;0.39, p=0.053, respectively).


Impact of lockdown measures on glycemic control

HbA1c was slightly lower in people with type 1 diabetes in the lockdown period (pre-lockdown 7.68%±1.2 (60.4±12.7 mmol/mol) vs. lockdown 7.52%±1.1 (58.7±12.2 mmol/mol), p<0.0001) but not in people with type 2 diabetes (**figure 2a**). Glucose monitoring data reflected this improvement in HbA1c in people with type 1 diabetes. Time in range (TIR) was higher (pre-lockdown 60.5% vs. lockdown 63.4%, p=0.0009) and time above range (TAR) was lower (pre-lockdown 34.6% vs. lockdown 32.1%, p<0.003) (**figure 2b**). Glucose variability did not change. There was more frequent active glucose monitoring with an increase in the number of FGM scans per day (pre-lockdown 9.6 (±6.5) vs. lockdown 11.8 (±8.1) scans/day, CI: -3.81;-0.58, p<0.01) in people with type 1 diabetes indicating more focus on self-management.

Both people with type 1 and type 2 diabetes that were in the highest prelockdown tertile of HbA1c (type 1 diabetes: HbA1c 8.13-12.18%, type 2 diabetes: HbA1c 8.16-12.72%) showed improvement in HbA1c (type 1 diabetes:-0.39%, CI: 0.22;0.55 %, p<0.0001, type 2 diabetes:-0.62%, CI:0.22;1.03 %, p=0.0036) (**figure 2c**). Proportionally more people with type 1 diabetes in the highest HbA1c tertile group showed improvement in HbA1c compared to people with type 2 diabetes in that tertile (**figure 2d**).

Figure 2. a) HbA1c before the lockdown period (pre-Q) and during the lockdown period (Q) in people with type 1 diabetes and type 2 diabetes. b) Ambulatory glucose profiles before and during the lockdown period in people with type 1 diabetes (n=90). c) HbA1c per tertile before (pre-Q) and after (Q) the lockdown period in people with type 1 diabetes and type 2 diabetes. 1st tertile: T1DM: HbA1c 4.92-7.22%, T2DM: 5.43-7.20%, 2nd tertile: T1DM: 7.23-8.09%, T2DM: 7.23-8.02%, 3th tertile 3: T1DM: HbA1c 8.13-12.18%, T2DM: HbA1c 8.16-12.72%. d) Percentage of people with type 1 and type 2 diabetes with improvement of HbA1c per tertile. HbA1c was available for 339 participants.

Risk factors for a more severe outcome of COVID-19

BMI, presence of cardiovascular disease, systolic blood pressure or use of blood pressure lowering agents was not associated with a change in stress or HbA1c during the lockdown period.

DISCUSSION

People with diabetes mellitus are considered a high risk population prone to a complicated course of COVID-19 and associated mortality(19). Here we show that in people with relatively well controlled type 1 and type 2 diabetes the COVID-19 pandemic and lockdown measures increased stress and resulted in weight gain and less physical exercise during this short observational period. However, despite these factors no deterioration in glycemic control was observed.

Previous research has shown a lockdown to be associated with increased levels of emotional distress and anxiety(5 6), which is in line with our findings. Distress, as well as changes in daily structures and behavior, which were inevitable due to the lockdown period, are known to influence diabetes self-management and glycemic control(7-10). Adding to this challenge of maintaining glycemic control was the increased emphasis on diabetes self-management due to a shift to COVID-19 care and social distancing rules in hospitals, which led to cancellations of face-to-face consultations, and the use of telemedicine. The small overall improvement in HbA1c in people with type 1 diabetes (-0.16%) may be statistically significant but clinically not relevant. Together with an increase in scans of glucose sensors these results indicate an increased focus on self-management. However, it should be noted that seasonal variation in glycemic control has been shown and higher temperatures are associated with lower HbA1c(20,21). Thus the small improvement in glycemic control could be due to a seasonal variation in our and other studies. Our results also indicate that the presence of more risk factors for a severe outcome of COVID-19, such as a higher BMI, cardiovascular comorbidities and hypertension, was not associated with stress, anxiety or change in HbA1c.

One of the main strengths of our study is the large study population, consisting of both people with type 1 and type 2 diabetes. We were able to assess changes in psychological stress, body weight and exercise providing important insight in participant's daily life during the lockdown period and knowledge about potential opportunities for improvement of diabetes care. The large study population allowed us to investigate these factors both in people with good and poor glycemic control, and we used both HbA1c and glucose monitoring data. For people with type 1 diabetes our findings are in line with flash glucose monitoring data in a small group of 55 people, in which a small improvement in time in range and time above range was observed(22).

A limitation of the study is the reliance on self-reported data due to restricted access to health facilities during the lockdown period. Self-reported data about weight change are often an underestimation of the actual change in weight(23). So the proportion of participants that increased in weight may be even larger. Furthermore, whilst HbA1c reflects glycemic control during the previous three months, the lockdown period had only been going on for eight to eleven weeks at the time that the HbA1c measurement was performed and may underestimate the impact of lockdown on glycemic control. It should also be noted that most of the people with diabetes that participated in the study were relatively well controlled. In addition, most participants with type 2 diabetes used insulin. Therefore, the results are not representative for all people with diabetes, especially for people with type 2 diabetes as the majority of them do not need insulin treatment and are treated in primary care.

Poor glycemic control is considered a risk factor for adverse outcomes of infections(24-26). Although no data are available, the message that poor glycemic control poses a higher risk is often conveyed to people in the context of COVID-19(27). We found a decrease of HbA1c in the group with the poorest glycemic control. People that experienced most difficulty with glycemic control also experienced more stress. Potentially people with the poorest glycemic control may have put more emphasis on glycemic control in order to cope with the increased stress levels, ultimately improving their HbA1c values during the lockdown period. However, also for this subanalysis seasonal effects in HbA1c cannot be completely excluded.

In conclusion, our short-term observational study shows that lockdown measures resulted in increased levels of perceived stress, weight gain and less exercise in both people with relatively well controlled type 1 and type 2 diabetes, however this did not negatively impact glycemic control. Additional risk factors for adverse outcomes of COVID-19, including poor glycemic control, do not appear to influence this effect. Since a third of the participants reported elevated levels of stress, associated with difficulties in glycemic control, diabetes care professionals should take these aspects into account when discussing diabetes self-management and well-being during consultations.

REFERENCES

- World Health Organisation. Coronavirus disease (COVID-19) pandemic 2020 [30-11-2020]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019?gclid=EAIaIQobChMIk7GEjp-L6gIVFomyCh3PAQznEAAYASAAEgKdrPD_BwE accessed 30-11-2020.
- Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. *Int J Infect Dis* 2020;94:91-95. doi: 10.1016/j. ijid.2020.03.017 [published Online First: 2020/03/12]
- 3. Gerich JE. Type 2 diabetes mellitus is associated with multiple cardiometabolic risk factors. *Clinical Cornerstone* 2007;8(3):53-68. doi: https://doi.org/10.1016/S1098-3597(07)80028-7
- 4. Nussbaumer-Streit B, Mayr V, Dobrescu A, et al. Quarantine alone or in combination with other public health measures to control COVID-19: a rapid review. *Cochrane Database of Systematic Reviews* 2020(4) doi: 10.1002/14651858.CD013574
- Hossain MM, Sultana A, Purohit N. Mental health outcomes of quarantine and isolation for infection prevention: A systematic umbrella review of the global evidence. *Epidemiol Health* 2020;0(0):e2020038-0. doi: 10.4178/epih.e2020038
- Brooks SK, Webster RK, Smith LE, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. *Lancet (London, England)* 2020;395(10227):912-20. doi: 10.1016/s0140-6736(20)30460-8 [published Online First: 2020/03/01]
- Peyrot M, Rubin RR, Lauritzen T, et al. Psychosocial problems and barriers to improved diabetes management: results of the Cross-National Diabetes Attitudes, Wishes and Needs (DAWN) Study. *Diabetic medicine : a journal of the British Diabetic Association* 2005;22(10):1379-85. doi: 10.1111/j.1464-5491.2005.01644.x [published Online First: 2005/09/24]
- Gonder-Frederick LA, Carter WR, Cox DJ, et al. Environmental stress and blood glucose change in insulin-dependent diabetes mellitus. *Health psychology : official journal of the Division of Health Psychology, American Psychological Association* 1990;9(5):503-15. doi: doi: 10.1037//0278-6133.9.5.503 [published Online First: 1990/01/01]
- Faulenbach M, Uthoff H, Schwegler K, et al. Effect of psychological stress on glucose control in patients with Type 2 diabetes. *Diabetic medicine : a journal of the British Diabetic Association* 2012;29(1):128-31. doi: 10.1111/j.1464-5491.2011.03431.x [published Online First: 2011/09/03]
- Halford WK, Cuddihy S, Mortimer RH. Psychological stress and blood glucose regulation in type I diabetic patients. *Health psychology : official journal of the Division of Health Psychology, American Psychological Association* 1990;9(5):516-28. doi: doi: 10.1037//0278-6133.9.5.516 [published Online First: 1990/01/01]
- Sardinha LB, Magalhaes JP, Santos DA, et al. Sedentary Patterns, Physical Activity, and Cardiorespiratory Fitness in Association to Glycemic Control in Type 2 Diabetes Patients. *Front Physiol* 2017;8:262. doi: 10.3389/fphys.2017.00262 [published Online First: 2017/05/16]
- Nansel TR, Lipsky LM, Liu A. Greater diet quality is associated with more optimal glycemic control in a longitudinal study of youth with type 1 diabetes. *The American journal of clinical nutrition* 2016;104(1):81-7. doi: 10.3945/ajcn.115.126136 [published Online First: 2016/05/20]
- Woo MH, Park S, Woo JT, et al. A comparative study of diet in good and poor glycemic control groups in elderly patients with type 2 diabetes mellitus. *Korean Diabetes J* 2010;34(5):303-11. doi: 10.4093/ kdj.2010.34.5.303 [published Online First: 2010/11/16]
- 14. Russell LB, Suh DC, Safford MA. Time requirements for diabetes self-management: too much for many? *J Fam Pract* 2005;54(1):52-6. [published Online First: 2004/12/30]
- 15. Google. Google COVID-19 Community Mobility Report 2020 [updated 28-03-2020. Available from: https://www.gstatic.com/covid19/mobility/2020-03-29_NL_Mobility_Report_en.pdf.
- Cohen S, Kamarck T, Mermelstein R. A Global Measure of Perceived Stress. Journal of Health and Social Behavior 1983;24(4):385-96. doi: 10.2307/2136404
- 17. Little RR, Rohlfing CL, Tennill AL, et al. Effects of sample storage conditions on glycated hemoglobin measurement: evaluation of five different high performance liquid chromatography methods. *Diabetes Technology Ther* 2007;9(1):36-42. doi: 10.1089/dia.2006.0055 [published Online First: 2007/02/24]
- Weykamp C. HbA1c: a review of analytical and clinical aspects. Ann Lab Med 2013;33(6):393-400. doi: 10.3343/alm.2013.33.6.393 [published Online First: 2013/11/10]

- Roncon L, Zuin M, Rigatelli G, et al. Diabetic patients with COVID-19 infection are at higher risk of ICU admission and poor short-term outcome. *Journal of Clinical Virology* 2020;127:104354. doi: https://doi. org/10.1016/j.jcv.2020.104354
- 20. Higgins T, Saw S, Sikaris K, et al. Seasonal variation in hemoglobin A1c: is it the same in both hemispheres? *Journal of diabetes science and technology* 2009;3(4):668-71. doi: 10.1177/193229680900300408
- Sohmiya M, Kanazawa I, Kato Y. Seasonal Changes in Body Composition and Blood HbA1c Levels Without Weight Change in Male Patients With Type 2 Diabetes Treated With Insulin. *Diabetes care* 2004;27(5):1238-39. doi: 10.2337/diacare.27.5.1238
- Bonora BM, Boscari F, Avogaro A, et al. Glycaemic Control Among People with Type 1 Diabetes During Lockdown for the SARS-CoV-2 Outbreak in Italy. *Diabetes Ther* 2020;11(6):1-11. doi: 10.1007/s13300-020-00829-7 [published Online First: 2020/05/13]
- 23. Wanner M, Richard A, Martin B, et al. Associations between self-reported and objectively measured physical activity, sedentary behavior and overweight/obesity in NHANES 2003–2006. *International Journal of Obesity* 2017;41(1):186-93. doi: 10.1038/ijo.2016.168
- Critchley JA, Carey IM, Harris T, et al. Glycemic Control and Risk of Infections Among People With Type 1 or Type 2 Diabetes in a Large Primary Care Cohort Study. *Diabetes care* 2018;41(10):2127-35. doi: 10.2337/dc18-0287
- Long CA, Fang ZB, Hu FY, et al. SS07. Poor Glycemic Control Is a Strong Predictor of Postoperative Morbidity and Mortality in Patients Undergoing Vascular Surgery. *Journal of Vascular Surgery* 2016;63(6):515-525. doi: 10.1016/j.jvs.2016.03.023
- Mor A, Dekkers O, Nielsen JS, et al. Impact of Glycemic Control on Risk of Infections in Patients With Type 2 Diabetes: A Population-Based Cohort Study. *American journal of epidemiology* 2017;186 doi: 10.1093/aje/kwx049
- Bornstein SR, Rubino F, Khunti K, et al. Practical recommendations for the management of diabetes in patients with COVID-19. *The Lancet Diabetes & Endocrinology* 2020;8(6):546-50. doi: 10.1016/S2213-8587(20)30152-2
- Stevens PE, Levin A. Evaluation and Management of Chronic Kidney Disease: Synopsis of the Kidney Disease: Improving Global Outcomes 2012 Clinical Practice Guideline. *Annals of internal medicine* 2013;158(11):825-30. doi: 10.7326/0003-4819-158-11-201306040-00007
- World Health Organisation. WHO policy on non-recruitment of smokers or other tobacco users 2008 [cited 2020 30-05-2020]. Available from: https://www.who.int/employment/FAQs_smoking_English. pdf?ua=1 accessed 30-05-2020 2020.

SUPPLEMENTARY MATERIAL

Supplementary questionnaire 1. Questionnaire about the impact of the quarantine on patients' glycemic control and medication use, daily routines, physical activity and psychological stress and anxiety.

Since March 2020 the government has pronounced some rules and restrictions in order to halt the spreading of the coronavirus pandemic. From March 15th on all Dutch citizens were asked to stay at home and work from home as much as possible and perform social distancing. We are interested in which way these rules and restrictions have impacted the lives of patients with diabetes, a high risk population according to the RIVM.

1. Do you feel like your glucose regulation has changed during the period of selfquarantine?

- □ No, my glucose regulation remained the same
- Yes (chose one of the options below)
 - ☐ Keeping my glucose values stable is much easier
 - C Keeping my glucose values stable is somewhat easier
 - ☐ Keeping my glucose values stable is somewhat more difficult
 - ☐ Keeping my glucose values stable is a much more difficult

2. Did the amount of insulin you use change during the period of self-quarantine? (Only applicable for patients using insulin to regulate their diabetes)

- No, I use the same amount of insulin as before
- Yes (chose one of the options below)
 - 🗌 I use much more insulin
 - I use somewhat more insulin
 - 🗌 I use somewhat less insulin
 - 🗌 I use much less insulin
- 3. Do you feel like your weight has changed during the period of self-quarantine?
- □ No, my weight remained the same
- Yes (chose on of the options below)
 - I gained weight
 - 1-2 kilograms
 - 3-4 kilograms
 - ⊇ 5 kilograms

□ I lost weight
□ 1-2 kilograms
□ 3-4 kilograms
□ ≥ 5 kilograms

4. On a scale from 1-10, how anxious have you been to get infected with the coronavirus during the last 6 weeks? VAS-scale 1-10

5. Have you experienced a change in stress since the start of the period of selfquarantine?

No, my stress level remained the same

Yes (chose one of the options below)

□ I experienced much less stress

□ I experienced somewhat less stress

□ I experienced somewhat more stress

I experienced much more stress

6. Have you experienced a change in anxiety since the start of the self-quarantine period?

- □ No, my anxiety level remained the same
- Yes (chose one of the options below)
 - I experienced much less anxiety
 - I experienced somewhat less anxiety
 - □ I experienced somewhat more anxiety
 - I experienced much more anxiety

7. How was your living situation <u>prior</u> to the period of self-quarantine? (chose one of the options below)

□ I lived alone

□ I lived with my partner

- □ I lived with my partner and children
- □ I lived with my children
- □ I lived with my parents
- □ I lived with my roommates

8. Did anything change regarding your exercise activities?

- No, my exercise activities remained the same
- ∏Yes
 - □ I exercised less than before
 - □ I exercised more than before

Supplementary table 1. Impact of the quarantine on participant's glycemic control and insulin use, weight, exercise, and psychological stress and anxiety

	All patients (n=399)	Type 1 diabetes (n=265)	Type 2 diabetes (n=134)	P-value
Change in ability to regulate glucose (%)				0.03
Much easier	6.5	7.9	3.7	
Somewhat easier	13.3	15.1	9.7	
No change	49.1	46.8	53.7	
Somewhat more difficult	24.1	25.3	21.6	
Much more difficult	7.0	4.9	11.2	
Change in insulin use (%)				0.07
Much less insulin	0.9	0.4	2.3	
Somewhat less insulin	7.4	8.4	4.6	
No change in insulin	64.1	61.2	72.7	
Somewhat more insulin	23.9	26.6	15.9	
Much more insulin	3.7	3.4	4.6	
Change in weight (%)				0.002
Weight loss ≥ 5 kilograms	2.0	0.4	5.2	
Weight loss 3-4 kilograms	2.5	2.3	3.0	
Weight loss 1-2 kilograms	7.5	6.8	9.0	
No change in weight	47.1	50.2	41.0	
Weight gain 1-2 kilograms	29.6	32.1	24.6	
Weight gain 3-4 kilograms	8.8	6.4	13.4	
Weight gain ≥ 5 kilograms	2.5	1.9	3.7	

Supplementary table 1. (continued)

	All patients (n=399)	Type 1 diabetes (n=265)	Type 2 diabetes (n=134)	P-value
Change in exercise (%)				0.46
Less exercise than before	45.7	43.4	50.0	
No change in exercise	44.5	46.9	40.2	
More exercise than before	9.7	9.7	9.8	
Change in stress (%)				0.35
Much less stress	7.0	7.9	5.2	
Somewhat less stress	12.3	14.0	8.2	
No change in stress	46.9	44.5	51.5	
Somewhat more stress	27.8	27.2	29.1	
Much more stress	6.3	6.4	6.0	
Change in anxiety (%)				0.60
Much less anxiety	5.3	5.7	4.5	
Somewhat less anxiety	11.5	12.8	9.0	
No change in anxiety	55.9	54.0	59.7	
Somewhat more anxiety	24.6	25.3	23.1	
Much more anxiety	2.8	2.3	3.7	
PSS total score (mean, SD)ª	13.3 (±6.5)	13.7 (±6.2)	12.8 (±6.7)	0.16

^aPerceived Stress Scale: scores \geq 14 indicate moderate distress. P value for difference between T1DM and T2DM.