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6
PROBING MICROCAVITY RESONANCE

SPECTRA WITH INTRACAVITY EMITTERS

We measure the fluorescence spectrum of broadband emitters in an optical microcavity with
radius of curvature R = 17.7(3)µm and finesse F ≈ 1000. By measuring these cavity emission
spectra as a function of cavity length, we obtain a rich and complete picture of the optical
microcavity. First, we can accurately determine the penetration depths of the cavity mirrors.
Second, we measure a mode splitting within each transverse mode group, which can dom-
inantly be assigned to mirror astigmatism. Third, we observe and quantify mode coupling
between fundamental and higher-order transverse modes. The chapter thus shows how the
analysis of emission spectra as a function of cavity length can be used to fully characterize
the optical microcavity.

C. Koks and M. P. van Exter (submitted for publication)

6.1. INTRODUCTION
Optical microcavities [23] are widely used in optics, for instance, to create good single
photon sources [10, 29, 50, 77], to image surface layers with very high precision [30–32], to
simulate physical processes like Bose-Einstein condensates [113] or non-equilibrium dy-
namics [114], and to perform chemical sensing [44, 76]. All these examples require many
reflections between the mirrors of the cavity, while maintaining strong (transverse) field
confinement. In the past decade, open microcavities have been developed for this pur-
pose [65]. In open microcavities, the two mirrors can be tuned individually to vary the
cavity length and lateral mirror displacement.

Accurate measurements of the optical modes in a microcavity reveal valuable informa-
tion about mirror reflections. Especially microcavities with a small mode waist and a large
finesse F show interesting physical behavior. The resonant mode spectra are grouped in
a fundamental mode and higher-order transverse mode groups. The structure of these
mode groups reveals information about the microcavity. Even microcavities with ideal
mirrors have a mode spectrum, which is created by nonparaxial and polarization effects
[60, 88, 110]. These effects are intrinsic and occur in all cavities. The associated mode
spectrum is called a fine structure. This mode spectrum changes when imperfect mirrors
are used, for instance, cavities with astigmatic mirrors show a mode-spectrum with almost
equidistant mode spacings. Most often, a combination of the nonparaxial fine structure
and mirror-shape-induced structure is observed. A study of these modes can be used for
alignment and characterization of the microcavity [79]. Therefore, it is important to thor-
oughly understand the physical properties of the cavity modes.
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In this chapter, we study optical microcavities using broadband, intracavity emitters.
We measure spectra of the fluorescence from these emitters, while slowly tuning the cavity
length, resulting in a joined length-wavelength fluorescence spectrum P (λ,L). The key
message of this chapter is that the analysis of the joined P (λ,L) spectrum provides a wealth
of information on the cavity and its mirrors. First, we distinguish between the different
penetration depths [53] of the mirrors in the cavity. Second, we analyze the spectra of
the transverse modes and find from the mode spacings that a shape imperfection of the
mirror dominates the mode structure. Last, we zoom in on cavity lengths where the N = 0
mode is almost frequency degenerate with the N = 6 mode group. We observe an avoided
crossing around the wavelength and cavity length where these modes should overlap and
quantify it with coupled-mode theory [115, 116].

6.2. SETUP

Figure 6.1 shows a schematic of the experimental setup. The optical cavity, shown in the
center, consists of two highly reflective distributed Bragg reflectors (DBR); one flat and the
other curved. We use an asymmetric set of mirrors, where the flat mirror has a higher
transmission (T = 1.8(1)×10−3 at λ = 633 nm, central wavelength λc = 640 nm) than the
curve mirror (T = 0.3(2)×10−3 at λ= 633 nm, λc = 610 nm), such that most of the fluores-
cent light leaves the microcavity through the flat mirror. The two mirrors are coated with
alternating layers of SiO2 (n = 1.46) and Ta2O5 (n = 2.09). The curved mirror is a H-DBR,
meaning that it ends with a high reflective index layer of Ta2O5 to optimize its reflectiv-
ity for a given number of layers. The flat mirror, produced by LaserOptik, is an L-DBR
ending with a lower refractive index layer of SiO2, to create a field node close to its sur-
face. The curved mirror, produced by Oxford HighQ [59], has a small radius of curvature
R = 17.7(3) µm. We use a hexapod system to align the mirrors in parallel and tune the
cavity lengths L = 3-10 µm with piezo stacks.

We use nanodiamonds as broadband intracavity emitters. The nanodiamonds (Adamas
Nanotechnologies FND, 40 nm, 1-4 NV− per nanodiamond) contain NV− and NV0 centers
whose combined room-temperature emission spectrum (590-700 nm) overlaps with the
stopband of our cavity (590-680 nm). The nanodiamonds are drop-casted onto the flat
mirror. Their concentration is not uniform and we scan the flat mirror to find an opti-
mum where there are enough emitters to make the signal-to-noise ratio large enough, but
not too many to introduce too much scattering loss and reduce the finesse too far below
F ≈ 1000.

In the first experiment, we inject the cavity with a HeNe laser (λ = 633 nm) to probe
the finesse and “length spectrum” of the cavity. We couple the laser light into the cavity
with a f1 = 5 mm (40X, NA=0.6) lens, and out of the cavity with a f2 = 8 mm (NA=0.5)
aspheric lens. We rapidly scan the cavity length (scan velocity ≈ 10µm/s) and record the
transmission spectrum on a solid-state photomultiplier tube (PMT). From this scan, we
determine a finesse of F ≈ 1000 for the fundamental modes. Furthermore, we use it to
compare the mode structure of a length scan with that of a spectral scan (see below).

In the second set of experiments, which form the bulk of this chapter, we measure the
fluorescence spectrum from the cavity. We use a frequency-doubled Nd:YAG-laser (λ=532
nm) to excite intracavity emitters. We measure their fluorescence spectrum with two dif-
ferent spectrometers. The first (fiber-coupled) spectrometer (Ocean Optics QE65000) can
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Figure 6.1: Schematic image of the experimental setup. The microcavity (center + zoom-in) is injected with
either a HeNe laser (λ = 633 nm) or a Nd:YAG laser (λ = 532 nm). The fluorescence spectra under green off-
resonant excitation are observed either with a fiber spectrometer (not shown) or a free space spectrometer. A 10
nm bandpass filter around 532 nm (BP532) is used to filter out fluorescence that may originate from the fiber. A
550 nm longpass filter (LP550) is used to block the green laser light transmitted through the cavity.

image the full fluorescence spectrum with a resolution of λres = 0.4 nm. The second (free-
space) spectrometer has a smaller spectral range (619-647 nm) but a better spectral resolu-
tion of λres = 0.05 nm, which is comparable to typical linewidths in the cavity fluorescence
spectrum. The photoresponse of this spectrometer is about 1 bitcounts per outcoming
cavity photon (the CCD has approx. 8 bitcounts/photon and approx. 1

8 transmission from
cavity to CCD). The cavity length is now scanned very slowly (scan velocity ≈ 0.3 nm/s)
such that the cavity resonances appear to be quasi-static. The 1 Hz acquisition rate of the
spectrometer is just fast enough to minimize the influence of drift on the measurements.

6.3. JOINED LENGTH-WAVELENGTH SCAN

Figure 6.2 shows a typical fluorescence spectrum P (λ,L) of the emitters in the cavity. This
data is measured by slowly increasing the cavity length L, while constantly recording the
emission spectrum on a spectrometer. Each vertical linecut corresponds to a single mea-
surement at fixed L. The linecut for L ≈ 3.6 µm is shown as the black curve on the right.
The righthand figure also shows a red curve which is the emission spectrum of the NV cen-
ters averaged over a large range of cavity lengths (L = 3.0−5.2 µm). This shows that the
spectrum is relatively uniform over the investigated wavelength range. The cavity length
is estimated by taking a horizontal linecut, as plotted in the top of Fig. 6.2, and fitting the
transverse mode splittings to an increasing Gouy phase (see also ref. [53]). The shortest
cavity length is L ≈ 2.9µm, indicated by the yellow line, where the substrates of the mirrors
almost touch.

The optical modes in Fig. 6.2 can be labeled by a longitudinal mode number q and a
transverse mode number N . The longitudinal mode number q and cavity length L are es-
timated based on the mode crossing of the fundamental N = 0 mode with the N = 6 mode,
where L+2LD = R sin(π/6)2 = R/4. The physical cavity length L is then determined by fill-
ing in the values LD and R from the fits in Fig. 6.3 below. The number of half-wavelengths
that fit in this cavity length results in a longitudinal mode number q = 2L/λ = 13.1(3) for
the fundamental mode at this crossing at λ = 637 nm. The large uncertainty in q is due
to the difficulty to determine the radius of curvature and modal penetration depth for all
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Figure 6.2: Emission spectrum P (λ,L) of NV centers in the optical cavity: (middle) false-color plot of the fluo-
rescence spectra as a function of the cavity length, (right, black curve) typical spectrum for q = 11 at L ≈ 3.6 µm,
(right, red curve) emission spectrum averaged over L = 3.0−5.2 µm, (top) horizontal linecut for λ= 646 nm.

longitudinal mode numbers simultaneously. For a combination of a H-DBR and L-DBR,
we expect q to be a half-integer [53]. However, due to the asymmetry of the mirror stop-
bands and slightly thinner final layer of the L-DBR, the reflection phase of the L-DBR is
non-zero, which results in an unconventional value of q . For labeling purposes, we round
q to integer values. The exact value of q has no influence on the measurements shown
below but will be discussed in more detail in the Appendix.

6.4. PENETRATION DEPTHS

The frequency- and angle-dependent reflection of any DBR can be described by three pen-
etration depths: Lϕ, Lτ and LD [53]. The phase penetration depth Lϕ is the shift of the
(anti-)node when the frequency ν is detuned from the DBR’s central frequency νc . The
frequency penetration depth Lτ is the extra length required to correct for the time delay
of a reflected laser pulse. The modal penetration depth LD describes the shift of the focus
of a converging beam inside the mirror. The penetration depths are different for H-DBRs
and L-DBRs [53, 54];

Lτ = 1

nH −nL

λc

4
(H-DBR) Lτ = nH nL

nH −nL

λc

4
(L-DBR) (6.1)
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where nH and nL are the high and low refractive indices of the DBR pairs. The modal
penetration is related to the frequency penetration depth [53, 55], as;

LD = Lτ
2

(
1

n2
H

+ 1

n2
L

)
. (6.2)

Both equations assume that the DBR is illuminated from air (n = 1). The phase penetra-
tion depths is frequency dependent, Lϕ = ν−νc

ν Lτ, where νc is the central frequency of the
stopband. The penetration depths of the two different mirrors used here are referred to as
Lτ,1,Lτ,2,LD,1,LD,2.

Figure 6.3: The Gouy phase of the first 4 transverse mode groups as a function of the inverse of the free spectral
range. The Gouy phase χ is determined from the transverse mode splitting. The free spectral range νfsr is deter-
mined from the distance between two subsequent fundamental modes. The right figure shows the data from the
left figure after conversion of the vertical scale from Nχ/π to sin2(χ) = (L+2LD )/R.

The frequency spacing between consecutive fundamental modes and the spacing be-
tween transverse modes depend on different penetration depths. This can be seen from
the cavity resonance condition [53],

2L

c
ν+ 2(Lτ,1 +Lτ,2)

c
(ν−νc ) = q + (N +1)

χ

π
, (6.3)

where L is the physical (on-axis) distance between the two mirrors, c is the speed of light,
and χ is the Gouy phase (see below). The frequency difference between two consecutive
fundamental modes at fixed L, the so-called free spectral range, depends only on the fre-
quency penetration depth,

νq+1,0 −νq,0 = νfsr =
c

2(L+Lτ,1 +Lτ,2)
=⇒ L+Lτ,1 +Lτ,2 = c

2(νq+1,0 −νq,0)
(6.4)

The transverse mode spacings and the associated Gouy phase χ, on the other hand, de-
pend only on the modal penetration depth [53] via

π
νq,N −νq,0

Nνfsr
=χ= arcsin

√
L+LD,1 +LD,2

R
=⇒ L+LD,1 +LD,2

R
= sin2(

π

N

νq,N −νq,0

νq+1,0 −νq,0
).

(6.5)
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From the difference between these quantities, we find the difference between the penetra-
tion depths of the mirror pair Lτ,1+Lτ,2−LD,1−LD,2, without having to rely on an absolute
longitudinal mode number q .

Figure 6.3 shows the measurements of the two different penetration depths. These
were measured using the fiber spectrometer with the larger spectral range. We only use
cavity modes between λ= 610−670 nm such that a non-linearity in the reflection phase of
the DBR is relatively small [61]. The data in the figure are corrected for this 3rd-order non-
linearity (corrections are ≤20%, see Appendix 6.A. The horizontal axis indicates the cavity
length, as determined by the inverse of the free spectral range. The vertical axis shows the
transverse mode splittings, normalized to the free-spectral range. The increasing spread
in points for higher N is mainly due to weaker peaks, making them more difficult to dis-
tinguish from the noise.

The difference in penetration depths Lτ−LD is visible as the crossing with the x-axis in
Fig. 6.3. This can be seen best in Fig. 6.3b. A linear fit of Fig. 6.3b gives penetration depths
for transverse modes N = 1−4 of (Lτ,1 +Lτ,2 −LD,1 −LD,2)/2 = 0.481(2), 0.410(2), 0.381(3),
0.33(1) µm. The radii of curvature are R = 18.02(1), 17.60(1), 17.45(2), 17.84(9) µm. From
theory [53] we expect that the H-DBR (curved mirror) has a penetration depth Lτ = 0.25µm,
and the L-DBR a penetration depth Lτ = 0.77 µm. This means that the theoretical differ-
ence in penetration depths (Lτ,1 +Lτ,2 −LD,1 −LD,2)/2 = 0.33 µm. The measured values of
Łτ−LD agree reasonably well with theoretical predictions. Still, the measured values are
somewhat larger than predicted. This might be due to the asymmetric mirror set with dif-
ferent central wavelengths. The data also suggests N -dependent variations in curvature
and penetration depths, possibly due to mirror shape effects [94], where each transverse
mode scans a different part of the curve mirror.

6.5. TRANSVERSE MODE GROUP STRUCTURE
Figure 6.4 shows the zoomed-in spectra of the transverse mode groups N = 1 to N = 4. The
N = 1 and N = 2 groups were measured at q = 11, where the modes are the least coupled to
any other transverse mode groups. The N = 3 and N = 4 transverse groups were measured
at q = 8 where the two mirrors almost touch, such that vibrations are smaller and the peaks
become better resolvable. Each transverse mode group N is predicted to consist of N +1
separate peaks. The observed number of peaks in the N = 3 and N = 4 spectra is N instead
of the expected N +1, presumably because one peak overlaps with the others.

Table 6.1: Mode structure, relative to the free spectral range, determined from (i) emission spectra at fixed cavity
length, (ii) length scans at fixed wavelength (λ = 633 nm), and (iii) theoretical values for a perfectly spherical
mirror. The N = 1 structure contains only two peaks, whereas the N = 2 structure contains three peaks. The two
distances for N = 2 are (a) and (b) as indicated in Fig. 6.4.

Spectral: ∆λ/λfsr Length scan: ∆L/(λ/2) Theory: ∆ϕth/(2π)
N=1 5.35(2)×10−3 5.1(6)×10−3 1.78×10−3

N=2 (a) 5.63(5)×10−3 6.6(6)×10−3 2.78×10−3

N=2 (b) 12.05(5)×10−3 13(1)×10−3 3.56×10−3

The measured transverse group structure is quantified by determining the distance
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Figure 6.4: Mode structure for transverse mode groups N = 1−4. Each transverse mode group is fitted with 2, 3,
3 and 4 Lorentzians for the N = 1,2,3 and 4, respectively. The N = 2 plot show peak distances that correspond to
the (a) and (b) labels in Table 6.1.

between the peaks. In the case of a perfectly spherical mirror, the mode structure is deter-
mined by a fine structure, ∆λ/λfsr = (ℓ · s +3ℓ2/8)/(2πkR), where ℓ and s are the angular
momentum and spin polarization of the mode [88, 110]. For the N = 1 and N = 2 mode
groups, we observe the expected number of peaks, so we can make a comparison between
theory and measurement. Table 6.1 shows this comparison, where we also added the split-
ting from the mode structure measured with a length scan using a HeNe laser.

The advantage of a spectral measurement over a length scan is that it hardly depends
on the incoupling of light [88]. Furthermore, it is not influenced by fluctuations in the
piezo-velocity, such that the uncertainties are smaller. The mode structure is similar for
the spectral and cavity length scan. The theoretically predicted values for the nonparaxial
fine-structure, are a factor 2-3 smaller than the measured values, from which we conclude
that technical effects dominate over the intrinsic nonparaxial effects. This is most likely
due to astigmatism in the curved mirror, which shifts the fundamental fine structure to-
wards more equidistant peaks, observed as for N = 2 [88].

6.6. MODE COUPLING

Figure 6.5 shows a false color plot of P (λ,L) in the region where the (q = 13, N = 0) and
(q = 12, N = 6) modes cross. This is a zoom-in from figure 6.2 around the q = 13 longitudi-
nal mode, but the horizontal and vertical axes are interchanged and rescaled. The vertical
axis now shows the wavelength λ13,0 at which an uncoupled (q = 13, N = 0) mode would
be resonant. The increasing value ofλ13,0 corresponds to an increasing cavity length in the
measurements, which can also be described by an increasing Gouy phase, as shown on the
y-axis on the right. The horizontal axis shows the spectrum in terms of wavelength detun-
ing λ−λ13,0. Comparable figures in refs. [31, 49] present data as a function of longitudinal
mode number q , i.e. a P (q,L) map is shown instead of a P (λ,L) map. The advantage of a
P (λ,L) map is that λ is a continuous variable and not an integer like q . This is especially
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important for small cavities, where the Gouy phase χ changes rapidly with cavity length,
and the steps due to discrete changes in q are too large to accurately measure coupling in
the length spectra [94].

The accurate determination of λ13,0 required some refinements of the data. First, we
shifted all measured spectra such that the intensity-weighted wavelength around the N =
0 and N = 6 modes was set to zero. From the resulting image, a straight line could be
drawn for the N = 0 mode between the highest and lowest wavelengths where the N = 0
and N = 6 modes are not coupled (see top and bottom of Fig. 6.5). This straight line yields
the values λ13,0 in Fig. 6.5. A Gaussian filter was used to make the N = 6 modes (visible as
slanted lines) better visible. Without these corrections, the coupling is still visible but less
clean.

Figure 6.5: False color plot of the fluorescence in the N = 0 and N = 6 modes around their frequency degeneracy.
The vertical axis indicates the cavity-length-dependent wavelength λ13,0 at which the uncoupled N = 0 (q = 13)
mode is resonant. The horizontal axis indicates the spectral distance λ−λ13,0 from this uncoupled N = 0 mode.
The white curves follow a theoretical model of coupled modes (see text for details).

We can quantify this avoided crossing using a coupled-mode model with a coupling
matrix [94] (

0 −M
−M ∆ϕ

)
, (6.6)

where ∆ϕ = 6χ−π is the one-way phase difference between the N = 6 and N = 0 modes,
and M is the coupling parameter. Using a “fit-by-eye” we find M = 0.014(3). This value is
similar to the coupling parameter M = 0.016(2) found in a similar cavity [94]. This shows
the equivalence between measurements in the frequency-domain and the far-field.

6.7. CONCLUSIONS
We have demonstrated the use of broadband intracavity emitters for the characterization
of microcavities. The broadband spectra P (λ,L) enable accurate determination of the dif-
ference between the two penetration depths Lτ −LD without relying on the exact cavity
length L or longitudinal mode number q . Furthermore, mode-coupling can be measured
without having to switch between discrete values of q . This is crucial in very small cav-
ities, where the Gouy phase changes rapidly with cavity length. The advantage of using
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these broadband emitters over a frequency-tunable laser is that they emit directly inside
the cavity, which removes potential problems of frequency-dependent incoupling.

The description of mode formation in a microcavity becomes intriguing when micro-
cavities become smaller. For small radii of curvature, the mode spectra require nonparax-
ial corrections and mode-coupling can be strong for small mirror shape imperfections.
Furthermore, the penetration depth can become significant, especially when L-DBRs are
used. This is most prominently visible in the difference between two penetration depths
Lτ−LD . When this aspect is overlooked, it can easily result in a wrong estimation of the
longitudinal mode number q . The effects of the DBR penetration on the Gouy phase χ are
generally smaller, since LD ≪ Lτ, but are still required for a complete description. The full
P (λ,L) map of the microcavity reveals all these aspects in a single picture.

6.8. ACKNOWLEDGMENTS
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6.A. THIRD-ORDER FREQUENCY DISPERSION OF DBRS
This Appendix describes the influence of the third-order frequency dispersion of DBRs on
the measurements. For most cases, the reflection phase of the DBR is linearly approxi-
mated, ϕ= 2Lτ

c (ν−νc ), with the central frequency νc and frequency penetration depth Lτ.
If the frequency is near the edge of the DBR stopband, this relation becomes non-linear
[61, 62]. This has consequences for the accurate determination of the penetration depths.

The complex reflection amplitude of a DBR can be derived from coupled mode theory
[51, 52]. Its frequency dependence can be derived from an expansion of the phase in the
reflection amplitude Γ0 = |Γ0|e iϕ [53], where |Γ0| = 1. The result

ϕ= arcsin[τ0(ω−ωc )] ≈ τ0(ω−ωc )+ τ3
0(ω−ωc )3

6
+ ... , (6.7)

with τ0ωc = πnH /(nH −nL), is only valid when the material outside of the DBR has re-
fractive index ni n = nH or ni n = nL . For the general case, we need to consider one more
reflection from its first layer, such that the new reflection amplitude is

Γ=− r ∓Γ0e i 2(ω−ωc )∆τ

1± rΓ0e i 2(ω−ωc )∆τ
. (6.8)

where the +(−)-sign is used for an initial layer with low(high) refractive index and ∆τ =
π/(2ωc ) is the transit time through the first layer. The reflection from the first interface is
r = ni n−nL/H

ni n+nL/H
. The approximate reflection phase of the mirror including this top layer is

Γ= |Γ|e i (τL/H (ω−ωc )+µL/H (ω−ωc )3/ω3
c ), (6.9)

where τL/H and µL/H are constants which are determined from the refractive indices of
the DBR. The frequency penetration depth is related through LL/H = τL/H

2ni n
c. If we assume

that |Γ0| = |Γ| = 1 and compare the first and third derivatives of equations (6.8) and (6.9) as
was done in [54] we find for the H-DBR,

ωcτH =πni n

nH

nH

nH −nL
µH =π ni n

6nH

(
nH

nH −nL

)3

(6.10)
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and for the L-DBR

ωcτL =π nL

ni n

nH

nH −nL
µL =π nL

6ni n

(
nH

nH −nL

)3

. (6.11)

For our mirrors, with nL = 1.46 and nH = 2.09, we expect µH = 9.1 and µL = 27.9.
The resonance condition of the cavity, including the third-order non-linearity of the

DBR is

ν
2L

c
= q + (N +1)χ/π− 2(Lτ,1 +Lτ,2)

c
(ν−νc )−µ (ν−νc )3

ν3
c

, (6.12)

which is an extended version of Eq. (6.3) in the main text. µ = µ1 +µ2 is the combined
non-linearity constant of both mirrors. The free spectral range νfsr = νq+1,0 −νq,0 in this
case is given by;

νfsr
2(L+Lτ,1 +Lτ,2)

c
= 1−µ (νq+1,0 −νc )3 − (νq,0 −νc )3

ν3
c

≈ 1−3µ
νfsr

νc

(
ν−νc

νc

)2

, (6.13)

which is an extended version of Eq. (6.4) in the main text. We can express this in terms of
an effective cavity length Leff normalized by the averaged frequency ν= (νq+1,0 +νq,0)/2

ν

νfsr
= Leff

λ/2
≈ q + 1

2
+ 2(Lτ,1 +Lτ,2)

c
νc +3µ

(
ν−νc

νc

)2 ν

νc
, (6.14)

where q +1/2 is the average q of two subsequent fundamental modes,
2(Lτ,1+Lτ,2)

c νc origi-
nates from the linear frequency dispersion, and the final term is a third-order correction
to the frequency penetration depth.

Figure 6.6a shows the observed effective cavity lengths, expressed in units λ/2. Each
curve is one longitudinal mode number higher, as expected. Furthermore, the parabolic
trend from equation (6.14) is visible. This parabola is better visible in Fig. 6.6b, where
all curves are shifted by q + 1/2 and now lie on top of each other. A simultaneous fit of
all data with Eq. (6.14), yields a non-linearity factor µ = 48.3(6) and a central frequency
λc = 635(1) nm (νc = 472.5(8) THz). The measured value for µ agrees reasonably well
with the theoretically predicted value of µ = µH +µL = 37.0. But the central wavelength
is surprisingly close to the central wavelength of the H-DBR, λc = 640 nm (νc = 469 THz).
From theory, one would expect the central wavelength to be closer to the L-DBR, λc = 610
nm (νc = 492 THz), since its value for µL is larger than µH . This discrepancy from theory
might be due to the large spread in data points near 610 nm, where the NV centers are less
bright.

The offset of the parabola in Fig. 6.6b contains information about Lτ. The figure shows
the effective cavity length ν/νfsr, divided by λ/2 and shifted by q +1/2. In contrast to the
main text, the exact value of q is now important. The q that is subtracted is the same
integer value that is used for labeling in the main text and in Fig. 6.6, but this is not
entirely correct. For the combination of an ideal L-DBR and H-DBR, we expect q to be
half-integer [53], but for our L-DBR, with a top layer of 0.8×λc /(4nL) instead of λc /(4nL),
we expect a slightly different q . The best experimental estimate of the longitudinal mode
number is q = 13.1(3) given in the main text, which is thus 0.1(3) more than the integer
labels used to convert Fig. 6.6a to Fig. 6.6b. Therefore, if we want to interpret the ver-
tical axes of Fig. 6.6b correctly, we should subtract an additional 0.1(3), which we then



6.8. ACKNOWLEDGMENTS

6

95

use to roughly estimate the penetration depth from the offset value in Fig. 6.6b to be
2(Lτ,1+Lτ,2)

c νc ≈ 2.5(3) or Lτ,1 +Lτ,2 ≈ 0.8(1) µm. This is somewhat smaller than the theo-

retical prediction
2(Lτ,1,th+Lτ,2,th )

c νc = 3.20 or Lτ,1,th +Lτ,2,th = 1.02 µm (Lτ,1,th = 0.77 and
Lτ,2,th = 0.25). The measurements in the main text do not rely on q and are thus a more
reliable measurement of the penetration depth.

Figure 6.6: Effective cavity length, Leff, calculated from the free spectral range between the N = 0 modes with q
and q+1, where q = 10−19 are indicated with different colors. The points at a higher average frequency are more
noisy because the intracavity NV centers are less bright. (a) Original data, (b) all data shifted by q +1/2, where q
is the lowest number in the labels q = 10−11, q = 11−12 etc. in (a).




