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5
OBSERVATION OF MICROCAVITY FINE

STRUCTURE

We experimentally show that resonance spectra of optical microcavities have a fine structure
that resembles the one observed in atoms. We can identify the polarization-resolved modes
in the spectrum and distinguish between two intrinsic effects that cause fine structure: (i) an
optical spin-orbit coupling and (ii) nonparaxial propagation and reflection. The measured
effects are intrinsic to cavities and are therefore present in any cavity, in contrast to acciden-
tal effects like astigmatism. The analogy of fine structure with atomic physics is surprisingly
fruitful and gives accurate theoretical predictions which agree with experiments. This anal-
ogy can even predict further splittings like a hyperfine splitting, which in our microcavities
is explained by a Bragg effect.

C. Koks, F. B. Baalbergen, and M. P. van Exter, Phys. Rev. A 105, 063502 (2022)

5.1. INTRODUCTION
The fine structure in atomic spectra has revealed perturbations to the Hamiltonian which
are intrinsic for atoms [108]. The Bohr model in atomic physics predicts groups of degen-
erate orbitals, labeled by the principal quantum number n. This degeneracy is lifted by
perturbations such as spin-orbit coupling and a relativistic correction [109]. We observe
a spectral fine structure in optical microcavities which reveals similar intrinsic perturba-
tions to the paraxial wave equation. The paraxial model predicts groups of frequency-
degenerate transverse modes, labeled by the transverse order N [33]. Also their degen-
eracy is lifted by perturbations which are intrinsic to microcavities. This analogy gives
accurate predictions [110] that agree with the experiments presented in this chapter.

The microcavity fine structure becomes relevant when the radius of curvature of the
mirror R is small. More specifically, the fine structure is proportional to λ/R and typi-
cally observable when Fλ/R > 10, where F is the cavity finesse [33]. These intrinsic cor-
rections are always present in optical cavities and dominate over external, mirror-shape-
dependent effects, such as astigmatism, when λ/R is large enough.

The frequency splittings that have been reported in literature are typically for cavities
with relatively large radii of curvature, R ≫ λ, where the intrinsic effects are small and
the external effects of astigmatism [31, 32, 68, 99] and birefringence [111] dominate. In-
trinsic effects of fine structure have been reported for microwave cavities [69, 73] where
λ is large, but its eigenmodes were not observed. In the optical domain, only some as-
pects of the fine structure have been reported in a conference proceeding [90]. We are the
first to measure the complete fine structure and its eigenmodes. We use close to perfect
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rotational-symmetric microcavities with very small radii of curvature, where the intrinsic
effects are most clearly distinguishable.
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Figure 5.1: Analogy between optical microcavity and atom. (a) Optical field with spiral wavefront ei lφ and circu-
lar polarization s between a flat and curved mirror. (b) Electron wavefunction with orbital angular momentum ℓ

and electron spin s.

This chapter shows how the intrinsic effects of spin-orbit coupling and nonparaxial
propagation and reflection determine the fine structure. In the experiment, the cavity
length is scanned to obtain resonance spectra of four optical microcavities with radii of
curvature between R = 2.5(5)−17.3(2) µm. The chapter presents the full analysis for the
R = 5.8(2) µm cavity and briefly discusses the results from other cavities. The resonant
modes in the spectrum are first labeled with transverse order N , according to paraxial the-
ory. A fine structure is observed by zooming in on each N group. Every mode in the fine
structure is further identified using a polarization-resolved CCD camera. The fine struc-
ture is studied systematically and compared to theory. A third type of splitting is reported,
which we call “hyperfine splitting” and which is dominantly due to a Bragg effect [100].

Figure 5.2: Cavity transmission spectrum shows fundamental and higher-order transverse modes. (a) Transmis-
sion versus cavity length as a function of the cavity length, where q, N indicate the longitudinal and transverse
mode number. (b-e) Zoom-ins of the groups N=1 to N=4 show fine structure. The broad peaks around L = 1300
nm and L = 1600 nm are resonances of planar modes formed next to the microcavity.

The analogy of microcavity fine structure to that of atoms is surprisingly fruitful and
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gives new predictions [110] that agree with experiments. Figure 5.1 illustrates the pertur-
bations in both systems. In atoms, spin-orbit coupling couples the orbital angular mo-
mentum ℓ and the spin s of an electron through the magnetic field. In microcavities, spin-
orbit coupling couples the angular momentum ℓ and circular polarization spin s of light
[98, 112]. The optical spin-orbit coupling originates from a projection of the longitudi-
nal component of the electric field [85] into an additional small transverse component at
the mirror surface. The relativistic correction in atoms is a quartic p4 correction to the
momentum, which shifts all modes proportional to ℓ2. As a direct analogy, a nonparax-
ial momentum correction k4

⊥ is required for microcavities with large opening angles [69,
81], which also shifts all modes proportional to ℓ2. In addition, the nonparaxial theory
contains a r 4 correction from higher-order Taylor expansions of the mirror and wavefront
shape [60].

5.2. LABELING OF CAVITY EIGENMODES
Paraxial theory predicts resonant cavity lengths that only depend on the longitudinal mode
number q , transverse order N , and Gouy phase χ = arcsin

p
(L+2LD)/R, where LD is the

modal DBR penetration depth [53]. We experimentally determine the radius of curvature
from the transverse mode spacings between each N group, which are equidistant in the
paraxial theory [53]. A more complete (nonparaxial) description from [110] contains the
fine structure splittings ∆L̃,

L = λ

2

[
q + N +1

π
χ+∆L̃

]
, (5.1)

where

∆L̃ = 1

2πkR

[
−ℓ · s −

(
3

8
− p̃

L

8(R −L)

)
ℓ2 + f (N )

]
. (5.2)

This equation includes the two corrections: (i) the spin-orbit coupling, scaling with l · s,
and (ii) the quartic corrections k4

⊥ and r 4, scaling with ℓ2. The quartic corrections shift
the modes by a factor 3ℓ2/8 when using a perfectly spherical mirror. Perturbations to
this mirror shape are quantified by the aspheric correction p̃ defined as zmirror − zsphere =
−p̃ r 4

8R3 . The term f (N ) shifts all modes of transverse order N by the same amount and
goes unnoticed in the fine structure.

Our planar and curved Distributed Bragg Reflectors (DBR) are produced by Oxford
HighQ [59] and have a reflectivity of 99.9 % (finesse F ≈ 3000). The curved mirror is il-
luminated with a HeNe laser (λ= 633 nm). The cavity length is scanned with piezo-stacks
and the light is transmitted through the microcavity at resonant cavity lengths. This trans-
mitted light is detected with a photodiode and a polarization-resolving CCD camera.

Figure 5.2a shows a typical microcavity transmission spectrum, for the R = 5.8(2) µm
cavity. The peaks are located at resonant cavity lengths L. We can label them with q and
N according to paraxial theory, which predicts that each transverse group N consists of
2(N +1) orthogonal modes. Figures 5.2b-e zoom in on each N group. This shows that, in
practice, each group typically consists of N +1 modes. The dashed lines suggest that all
odd (or even) N -groups have similar mode and fine structures, albeit that larger N -groups
contain more modes. The 0-mode for the even N groups is shifted due to the shape of the
mirror (see below).
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Figure 5.3: Fine structure splittings of the (a-d) N=1 and (e-h) N=2 transverse mode groups. The dashed lines
in (a) and (e) correspond to polarization resolved CCD images (b-d) and (f-h), where the order from left to right
corresponds to a smaller to larger cavity length detuning in (a) and (e). Each ellipse shows the local direction and
circularity of the polarization.

Figure 5.3 shows the spectrum and CCD images of the polarized eigenmodes of the N =
1 and N = 2 groups. The eigenmodes of the N = 3 and N = 4 groups are shown below in
Fig. 5.5. The mode labels ℓA and ℓB (ℓ> 0) in Fig. 5.2 and 5.3 are identified from the CCD
images as follows. The angular momentum ℓ is determined by inspecting the intensity
profile and comparing it to the scalar Laguerre-Gaussian modes [33]. For instance, the
N = 2 modes in Figs. 5.3f and 5.3h have a dark center and one ring, corresponding to
ℓ = 2, whereas Fig. 5.3g has a bright center, corresponding to ℓ = 0. The A/B labels are
determined from the polarization patterns, where the pattern of the A/B modes resemble
circular/hyperbolic flow lines. The total angular momentum j = l + s (s = −1 for A and
s = 1 for B modes) is visible in the rotation symmetry of the polarization pattern, which
remains unchanged after rotation over an angle π/ j (rotational symmetric at j = 0).

Each of the N + 1 modes is typically two-fold degenerate, because of its polarization
degrees of freedom. This degeneracy can be lifted under certain conditions. Figure 5.3a
shows this so-called “hyperfine” splitting for mode 1A. The modes are labeled +/− and
have orthogonal polarization patterns. The CCD images of the modes 1A− and 1A+,
shown in Figs. 5.3c and d, show that their polarization is in the azimuthal and radial di-
rection, respectively. Figure 5.3e also shows a hyperfine splitting for the 0 and 2A modes.
Fig. 5.3g and 5.3h show the modes with the mostly radial polarization direction, which
correspond to the left peaks in the hyperfine splitting of the 0 and the 2A modes in Fig.
5.3e.

Figure 5.4 shows the measured spin-orbit splitting∆LSO between theℓA andℓB modes.
The green points correspond to the R = 5.8(2) µm cavity presented in Figs. 5.2 and 5.3,
while the other points are measured for three other cavities. All spin-orbit splittings scale
linearly with the angular momentum ℓ.
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5.3. COMPARISON WITH THEORETICAL PREDICTIONS

Figure 5.4 also shows the theoretical prediction of spin-orbit coupling ∆LSO based on the
measured radius of curvature R. The figure shows that the measured splittings follow the
theory well for all four cavities, showing that spin-orbit coupling in these cavities domi-
nates over external perturbations. It also shows the inverse proportionality with R of the
fine structure splittings.

Theory predicts that a quartic perturbation shifts both ℓA and ℓB modes by the same
amount, such that their resonant cavity lengths decrease proportional to ℓ2. The data in
figure 5.2 agrees reasonably well with this prediction. To quantify this effect, we look at the
average position of the ℓA and ℓB modes, given by ℓAB , and compare it with (ℓ+2)AB .
From equation 5.2 we find that such splittings are∆Lquartic,th/(λ/2) = 3(ℓ+1)/(4πkR). The-
ory predicts for N = ℓ+2 = 2,3,4 that ∆Lquartic,th = 1.31(5) nm, 2.62(9) nm and 3.9(1) nm.
The measured splittings are ∆Lquartic = 0.93(5) nm, 4.17(7) nm and 6.3(1) nm. The mea-
sured values have the same sign and order of magnitude as the theoretical values but differ
because of an aspheric correction p̃ L

8(R−L) = 0.11(1), −0.20(1), and −0.23(1). The decreas-
ing value for p̃ suggests that the cavity is flatter for compact (low N ) modes and steeper for
larger (high N ) modes. This agrees with the “bathtub” shape which was observed in AFM
measurements [94].

The hyperfine splitting of the 1A modes in Fig 5.3a can be explained by the Bragg effect.
It occurs because the DBRs have an angle-dependent penetration depth, which is opposite
for radial (1A+) and azimuthal (1A−) polarized light [55, 100]. The measured distance
of 0.12(2) nm between the 1A+ and 1A− modes can be explained by a small wavelength
detuning from the stopband center of the DBR. The hyperfine splitting of 0.15(2) nm of
the 0 and 2A modes in Fig. 5.3a can also be explained by the Bragg effect. The 0 and 2A
modes mix due to astigmatism, such that the mode profiles become more radially and
azimuthally polarized. The mixing ratio of the 0 and 2A modes is almost the same, which
explains why the hyperfine splitting is also almost the same (see Appendix 5.B).
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Figure 5.4: Observed mode splitting due to spin-orbit coupling for four different cavities. The lines show the
theoretically predicted value with uncertainty for each radius of curvature.
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5.4. ASTIGMATIC CORRECTION
The fine structure is modified when the mirror shape is non-ideal i.e., does not have a per-
fect spherical shape. Up to first order in the Taylor expansion, this non-ideal mirror shape
can be described with two dimensionless parameters: p̃ for the aspheric correction and X
for the astigmatic correction. In this section we investigate the influence of astigmatism
on the fine structure.

We model the combined effect of both the astigmatic and aspheric corrections with
a (N + 1) × (N + 1) coupling matrix. The diagonal elements of this matrix are given by
Eq. (5.2). The off-diagonal elements contain the relative astigmatism X , defined as X =
4kRηasti g tan

(
χ
)

with ηasti g = (Rmax − Rmi n)/(2R), where Rmax and Rmi n are the radii
of curvature along the long and short axes of the mirror and R = (Rmax +Rmi n)/2. This
dimensionless parameter X is unity when the astigmatic and intrinsic effects on the fine
structure are approximately equally strong. If X is small, |X | < 1, the matrix is close to
diagonal, and the eigenmodes are like l A/B modes. On the other hand, if X is large, |X |≫
1, the off-diagonal elements are large and the l A/B modes strongly couple to each other.
The newly formed eigenmodes then obtain a strong Hermite-Gaussian character, as one
would expect for a cavity with large astigmatism. More aspects of this model are described
in ref. [110] The explicit model for the N = 4 group is shown in appendix 5.A.

Figure 5.5 shows the polarization resolved CCD images of the N = 3 and N = 4 modes
for the R = 5.8(2) µm cavity. The 0 and 2A modes in Figs. 5.5k and 5.5l show a clear astig-
matic coupling. The other modes are more difficult to identify, because some modes have
an opening angle larger than the numerical aperture of the imaging lens (N A = 0.5), like
in Figs. 5.5b and 5.5h, or are mixed with planar modes causing a bright center, like in
Figs. 5.5b-d and and 5.5h-j. However, these modes seem relatively uninfluenced by the
astigmatic correction.

The observed fine structure spectrum of the N = 4 mode is used to find the parameters
p̃ and X . Figs. 5.6a and 5.6b show the calculated eigenvalues and its corresponding eigen-
modes. The horizontal dashed lines show the measured eigenvalue, to which the model
is fitted. This fit yields an aspheric correction p̃ L

8(R−L) =−0.22(2) and relative astigmatism
X = 0.7(2), which corresponds to an absolute astigmatism of ηasti g = 0.6(2) %. Note that
the fitted value of p̃ L

8(R−L) = −0.22(2), obtained from the full spectrum with astigmatism,

is in close agreement with the value p̃ L
8(R−L) = −0.23(1) found in Sec. 5.3, from only the

2A/B and 4A/B modes and only considering the aspheric correction. Also the calculated
eigenmodes in Figs. 5.6c-g correspond well to the measured eigenmodes in Figs. 5.5h-l.
From the calculated eigenmodes, we also find that the mode in 5.5k is “mostly 2A” and
the mode in 5.5l is “mostly 0”, meaning that the eigenmodes are dominated by 0 and 2A
modes (see appendix 5.B).

5.5. CONCLUSION
In conclusion, we have observed fine structures in the resonance spectra of microcavi-
ties. This fine structure is explained by two intrinsic perturbations. First, the spin-orbit
coupling causes a frequency splitting between the ℓA and ℓB modes that scales with ℓ.
Second, the quartic terms k4

⊥ and r 4 shift both ℓA and ℓB by the same amount that scales
with ℓ2. A parameter p̃ was introduced to quantify the aspheric shape of the mirror. Fur-
thermore, a hyperfine splitting was observed in the 1A + /1A− mode, which could be ex-
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Figure 5.5: Fine structure splittings of the (a-f) N=3 and (g-i) N=4 transverse mode groups. The dashed lines in
(a) and (g) correspond to the polarization resolved CCD images (b-f) and (h-l), where the order from left to right
corresponds to a smaller to larger cavity length detuning in (a) and (g) and where (e) and (f) are two images of
the 1A+ and 1A− mode whose hyperfine splitting is not resolvable in the spectrum in (a). Each ellipse shows the
local direction and circularity of the polarization.
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Figure 5.6: Simulation of the combined effects of astigmatic and aspheric corrections on resonance frequencies
and mode profiles. (a-b) Frequency shifts as a function of the (a) astigmatic correction X and (b) aspheric correc-
tion p̃ around the fitted values (vertical lines) deduced from the measured frequencies (horizontal dashed lines)
of the N = 4 modes in the R = 5.8(2) µm cavity. (c-g) Mode profiles in order of frequency at the vertical lines in
(a-b); mode in (c) has lowest frequency.
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plained by the polarization dependence of the penetration depth in the DBR. Measure-
ments on other cavities with different radii of curvature showed that the fine structure
splittings scale with λ/R. We used a model to calculate the influence of aspheric and astig-
matic corrections on the fine structure and found a modest relative astigmatism X = 0.7(2)
(ηasti g = 0.6(2)%), which indicates that the intrinsic effect dominate over the external ef-
fects. The analogy with fine structure in atomic physics helps to understand the full spec-
trum and even some aspects of the hyperfine structure.

As an outlook, we note that the observation and analysis of the (micro)cavity fine struc-
ture introduces a new technique that has impact in different areas. First, it can serve as a
tool to measure the theoretical predictions for nonparaxial optical vector fields [86, 100,
110]. Second, it can be used for imaging [30], enabling the analysis of mirror shapes with
sub-nanometer precision, using shape parameters like p̃, X and higher-order terms [110].
And finally, it affects the efforts to increase light-matter interaction in optical cavities [27,
29]. The strength of light-matter interaction is given by the Purcell factor, which is usu-
ally written as the ratio of the quality factor over the mode volume Fp ∼ Qλ3/V . This
can equally be written as the ratio of the Finesse F over the mode area A, Fp ∼ Fλ2/A.

As the mode area scales like A ∼ λ
p

LR one can also write the Purcell factor as Fp ∼
Fλ/

p
RL > Fλ/R. Our earlier statement that fine structure effects are typically observ-

able when Fλ/R > 10 means that these effects are unavoidable in open cavities with a
large Purcell factor. Moreover, if λ/R is large enough, the intrinsic contributions tend to
dominate over external effects and the spin-orbit coupling, quartic term, and Bragg effect
are essential to fully describe the microcavity modes.

We would like to thank A. A. P. Trichet from Oxford HighQ for providing us with the
mirror samples. We also acknowledge Sean van der Meer and Martin Bijl for supporting
experiments, Martijn Wubs for supporting theory and Pepijn Pinkse for stimulating dis-
cussions.

5.A. COUPLING MATRIX FOR ASTIGMATIC AND ASPHERIC COR-
RECTIONS
The fine structure splitting is determined by the eigenvalues of a (N +1)× (N +1) matrix,
with a basis of the l A, l B and 0 eigenmodes. Here, we present the explicit matrix used
to calculate the eigenfrequencies and eigenmodes in section 5.4. More details and other
coupling matrices can be found in Ref. [110].

For N = 4, we choose the basis (4B ,2B ,0,2A,4A). The coupling matrix is given by

8πkR∆L̃ =
−40+ 8p̃L

R−L 2X 0 0 0

2X −14+ 2p̃L
R−L

p
6X 0 0

0
p

6X 0
p

6X 0

0 0
p

6X 2+ 2p̃L
R−L 2X

0 0 0 2X −8+ 8p̃L
R−L

 .

(5.3)

The diagonal elements contain the rotational symmetric components, being the non-
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paraxial perturbations and the aspheric correction. The off-diagonal elements contain the
relative astigmatism X . The resonant frequencies 8πkR∆L̃ are found by diagonalizing the
matrix. In the case of zero astigmatism, the matrix is already diagonal and its eigenvalues
directly follow from Eq. (5.2).

For small values of X , the modes are relatively uncoupled and only modes that are
close in frequency are influenced by astigmatic coupling, which is the case for the 0 and
2A modes for the N = 4 group, corresponding to the third and fourth row and column
of the matrix in Eq. (5.3). The mixed modes in Figs. 5.6f and 5.6g can approximately be
written as a superposition of the 0 and 2A modes,

∣∣ψ〉=α |2A〉+β |0〉, where |α|2+|β|2 = 1.
The calculated parameters are α = 0.84 and β = 0.54 for the mode that is “mostly 2A” in
Fig. 5.6f and α=−0.54 and β= 0.84 for the mode that is “mostly 0” in Fig. 5.6g.

In Sec. 5.3 we noted that p̃ varied with the mode number N . The parameter is p̃ L
8(R−L) =

0.11 for the N = 2 group, while p̃ L
8(R−L) = −0.22 for the N = 4 group. This change affects

the mixed character of some modes. Figure 5.6b shows an avoided crossing for the 0 and
2A modes (red and purple lines) around p̃ L

8(R−L) ≈ −0.1. In case of the N = 2 group, the

parameter p̃ L
8(R−L) is on the positive side of the avoided crossing, hence the 0 mode has

a smaller eigenfrequency than the 2A mode. In case of the N = 4 group, the parameter is
on the negative side and the 0 mode has a larger eigenfrequency than the 2A mode. This
switch of the 0 and 2A modes is also measured in the spectra of the N = 2 and N = 4 groups
in Fig. 5.2.

5.B. HYPERFINE SPLITTING
A hyperfine splitting of 0.12(2) nm was observed for the 1A modes in Fig. 5.3a and a hy-
perfine splitting of 0.15(2) nm was observed for the 0 and 2A modes in Fig. 5.3e. The 1A
hyperfine splitting was theoretically expected in a rotational symmetric system, but the 0
and 2A hyperfine splitting not. The 0 and 2A hyperfine splitting indicates that rotational
symmetric is broken. In this section, we estimate the contribution of astigmatism to this
hyperfine splitting. We consider two mechanisms by which astigmatism can cause hyper-
fine splitting: (i) the Bragg effect and (ii) shape birefringence. We find that the Bragg effect,
in combination with mode mixing, is the dominant cause of hyperfine splitting for the 0
and 2A modes.

5.B.1. BRAGG EFFECT
The Bragg effect originates from a difference between the penetration depth of radial and
azimuthal polarization. The observed hyperfine splitting of the 1A mode shows a clear
distinction between the radial polarization for the mode 1A+ and azimuthal polarization
for the mode 1A−. We observed a hyperfine splitting of 0.12(2) nm for the 1A+ and 1A−
modes, which we fully attribute to the Bragg effect.

At first sight, one would expect that other modes are not affected by the Bragg effect,
because their polarization patterns contain equal amounts of radial and azimuthal polar-
ization and rotational symmetry averages out the penetration depths. However, astigma-
tism breaks rotational symmetry, as the mixed eigenmodes for the N = 2 group in Figs.
5.3g and 5.3h show. These figures show only one of the “+” or “-” peaks in the hyperfine
splitting. Figure 5.7 shows the calculated modes profiles of all the N = 2 modes, based
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on the parameters p̃ L
8(R−L) = 0.11 and X = 0.7, with the “+” modes in the top row and the

“-” modes in the bottom row. In case of a perfect rotational symmetric cavity, the modes
in each column are frequency degenerate. However, the right two columns show differ-
ences in their polarization profiles, which causes the hyperfine splitting. Figs. 5.7b and
5.7f show modes which have most intensity in the radial polarization direction and Figs.
5.7c and 5.7e show modes which have most intensity in the azimuthal polarization direc-
tion. This modified intensity distribution causes the Bragg effect for the modes other than
1A.

We will now calculate the hyperfine splitting of these mode relative to the hyperfine
splitting of the 1A mode of the N = 1 group. The modes are written as mixed modes of the
form

∣∣ψ2A±
〉=α |2A〉±β |0〉 and

∣∣ψ0±
〉=α′ |2A〉±β′ |0〉 with |α|2 +|β|2 = 1, |α′|2 +|β′|2 = 1.

The ± correspond to the top and bottom row in Fig. 5.7. We then calculate the pertur-
bation of the Bragg effect HBragg [110] of the 0 and 2A modes, relative to the 1A modes:
〈0|HBragg |2A〉 = p

2〈1A|HBragg |1A〉 and 〈0|HBragg |0〉 = 〈2A|HBragg |2A〉 = 0. Thus, the hy-
perfine splitting of the “mostly 2A” and “mostly 0” modes can be expressed as ∆ν̃theory =
2
p

2αβ∆ν̃1A .
The calculated values of α and β, based on the astigmatism of ηastig = 0.6(2)% and the

measured aspheric correction of p̃ L
8(R−L) = 0.11(1) for the N = 2 group, are α = 0.97(2)

and β = 0.24(6) for the mode which is “mostly 2A” and α = 0.24(6) and β = 0.97(2) for
the mode which is “mostly 0”. The calculated hyperfine splitting for both the “mostly 2A”
and “mostly 0” mode relative to the 1A mode is thus ∆ν̃theory/∆ν̃1A = 0.6(2). Using the
measured hyperfine splitting of 0.12 nm for the 1A+/−, we thus expect that the hyperfine
splitting of the 0 and 2A modes is ∆Ltheory = 0.07(3) nm. The measured value of the hy-
perfine splitting is ∆Lmeasured = 0.15(2) nm. The Bragg effect can thus partially explain the
hyperfine splitting.

Figure 5.7: Calculated modes of the N=2 group: (a-c) modes of the “+” group, (d-f) modes of the “-” group. From
left to right the 2B, 0 and 2A modes in order of increasing resonance frequencies. The red lines indicate the
polarization profile.

5.B.2. SHAPE BIREFRINGENCE
The ellipsoidal mirror shape can also cause birefringence between modes polarized along
the long and short axes. This effect is a perturbation on the spin-orbit coupling, where
the transverse field components in the cavity are projected on the curved mirror, but by
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a different amount for the two axes of the ellipsoid [110]. This shape birefringence was
observed before in the hyperfine splitting of the fundamental mode (N = 0) [30, 99]. The
effect on modes with ℓ ̸= 0 is more subtle, and the proper perturbation that contributes to
this effect is see also [110]

HSB = ηasti g

πkR
(x̂x − ŷ y)(∂x x̂ +∂y ŷ). (5.4)

Calculating the coupling between the + and − modes gives

∆νSB = 2αβ〈0±| HSB

2π
|2A±〉=∓2αβ

ηasti g

4πkR
. (5.5)

For ηasti g = 0.6(2)% and p̃ L
8(R−L) = 0.11(1), the calculated hyperfine splitting is 0.0012(6)

nm and therefore we can safely neglect it. Hence, we conclude that the hyperfine splitting
for the R = 5.8(2) µm cavity is caused by the combined action of astigmatism and a Bragg
effect and that shape birefringence plays a negligible role.
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Figure 5.8: Measured 2B modes for the N=2 group in a R = 17.1 µm cavity: (a) 2B+ mode, (b) 2B- mode. Each
ellipse shows the local direction and circularity of the polarization.

5.B.3. LARGE ASTIGMATISM
The effect of shape birefringence can become more important in case of large astigma-
tism. Fig. 5.8 shows the 2B modes for a different R = 17.1(2) µm cavity with a large relative
astigmatism X ≈ 14, which corresponds to ηasti g ≈ 5 %. For this cavity, we observed a hy-
perfine splitting of 0.22(3) nm between the 2B+ and 2B− modes. The polarization profiles
of the eigenmodes show that most intensity is in the horizontal polarization direction for
the mode 2B+ in Fig. 5.8a and in the vertical polarization direction for the mode 2B− in
Fig. 5.8b. The Bragg effect should average out, since the modes contain equal amounts of
radial as azimuthal polarization. The shape birefringence is a more plausible cause for the
observed splitting since this acts on the horizontal or vertical polarization.




