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4
FINE STRUCTURE IN FABRY-PEROT

MICROCAVITY SPECTRA

Optical cavities can support many transverse and longitudinal modes. A paraxial scalar
theory predicts that the resonance frequencies of these modes cluster in different orders. A
nonparaxial vector theory predicts that the frequency degeneracy within these clusters is
lifted, such that each order acquires a spectral fine structure, comparable to the fine struc-
ture observed in atomic spectra. In this chapter, we calculate this fine structure for microcav-
ities and show how it originates from various nonparaxial effects and is co-determined by
mirror aberrations. The presented theory, which applies perturbation theory to Maxwell’s
equations with boundary conditions, proves to be very powerful. It generalizes the effec-
tive 1-dimensional description of Fabry-Perot cavities to a 3-dimensional multi-transverse-
mode description. It thereby provides new physical insights into several mode-shaping ef-
fects and a detailed prediction of the fine structure in Fabry-Perot spectra.

M. P. van Exter, M. Wubs, E. Hissink, and C. Koks, Phys. Rev. A 106, 013501 (2022)

4.1. INTRODUCTION
Tunable Fabry-Perot (FP) cavities are popular tools in optics, where they are used as spec-
trum analyzer [33] and as a means to resonantly trap light between two high-reflecting
mirrors [23]. An optical microcavity is a miniature version of a FP cavity, where the two
mirrors are now positioned at only a few wavelengths λ from each other and at least one
of the mirrors has a radius of curvature Rm ≪ 100λ (the precise numerical factor is a mat-
ter of taste; the quote number combines the criterion Fλ/Rm > 10 for the observation of
fine structure with a typical finesse F = 1000). Microcavities can strongly confine the opti-
cal field, boost the light-matter interaction of intra-cavity emitters [27–29, 50, 76, 77], and
increase the collection efficiency and emitted fraction into the zero-phonon line [78].

Microcavities support compact optical modes with large opening angles. This can
push their operation beyond the paraxial regime and can require a nonparaxial descrip-
tion of the optical propagation and a more thorough description of the mirror reflections.
Elements of the resulting spectral fine structure have been reported [30, 49, 68, 79, 80], but
a complete description was missing.

Nonparaxial corrections to the optical propagation were already analyzed in the sev-
enties and eighties. Lax [81] described a general framework that treats these corrections as
different terms in a Taylor expansion. Erickson [69, 82] calculated the scalar nonparaxial
correction to the cavity resonances. Cullen [83] and Davis [84] added a vector-correction
to this description. Yu and Luk [73, 85] and Luk [60] were the first to combine these cor-
rections in a complete analysis of the optical resonances in cavities with spherical mirrors.
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More recently, Zeppenfeld and Pinkse [86] performed an alternative complete analysis of
rotational symmetric cavities, using spheroidal wave functions.

Additional corrections occur when the mirrors are not spherical, but have astigmatic
or more general deformations, common to microcavities [31, 32, 49]. Kleckner et al. [63]
presented a general framework to describe the effect of these deformations, but their de-
scription does not yield analytic solutions.

This chapter presents a general theoretical framework for the optical resonances in
tunable FP microcavities. The description is semi-analytic and exact in the limit of small
perturbations. It uses a roundtrip operator that acts on field profiles and uses perturbation
theory to calculate the effects of several deviations from the standard paraxial theory with
spherical mirrors, including nonparaxial effects and deviations from the spherical mirror
shape. It thereby extends the standard 1-dimensional description of the Fabry-Perot inter-
ferometer to a 3-dimensional multi-transverse-mode description. The presented mathe-
matical and physical tools can be applied to a wide range of optical systems.

The chapter then applies this theory to calculate the fine structure in Fabry-Perot spec-
tra. The paraxial scalar theory predicts that modes with the same longitudinal mode num-
ber q and transverse order N should be frequency degenerate. A more complete theory
shows that each (q, N )-group exhibits a spectral fine structure, where modes with different
radial mode number p, orbital angular momentum (OAM) mode number ℓ, and polariza-
tion v have slightly different resonance frequencies, even when they belong to the same
(q, N ) order. The chapter analyses and classifies the different effects that contribute to
this optical fine structure and identifies which ones are relevant under which conditions.
It thus aims to present a complete description of this intriguing phenomenon.

The fine structure in FP spectra is analogous to the fine structure observed in atomic
spectra. For atomic spectra, the simple Bohr model of hydrogenic atoms predicts that
their energy levels should only depend on the principal quantum number n. But a more
complete description, that among others includes relativistic corrections and spin-orbit
coupling [87], shows that levels with the same n are frequency split in the so-called fine
structure with additional quantum numbers, ℓ for the orbital angular momentum and s
for the spin.

The presented theory is inspired by our own experimental observations of intriguing
fine structures in transmission spectra of FP microcavities [88] and the lack of an adequate
theory. Similar structures must have been observed by other groups, but hardly anything
has been published. For microwave cavities, Erickson [69] measured the nonparaxial fre-
quency splittings between radial modes and Yu and Luk [73] measured it between OAM
modes. In the optical domain, Dufferwiel et al. [89] reported a fine structure in the N = 1
group of an optical cavity filled with semiconductor quantum wells, but this TE-TM split-
ting was mainly due to polariton effects. Zeppenfeld et al. reported an observation of a
spectral fine structure at the CLEO 2010 conference [90]. Raman spectra of Riedel et al. [79]
showed an astigmatic splitting, but did not show an additional fine structure, presumably
because their cavities had a modest finesse F ; observable nonparaxial fine structures re-
quire Fλ/Rm ≳ 10, for plano-concave cavities with mirror radius Rm and wavelength λ.
When more detailed experimental spectra become available, the most challenging aspect
of their analysis will be the separation of the, more fundamental, nonparaxial effects from
the, more practical, mirror-shape effects. This chapter describes how this can be done.
The presented theory was already used to analyze the experiments presented in a recent
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publication entitled ’observation of microcavity fine structure’ [88].
This chapter consists of three parts: Part I, in Secs. 4.2 and 4.3, contains the descrip-

tion of the general framework, and ends with a preview of the key results in a table and a
figure; Part II, in Secs. 4.4 and 4.5, presents the derivations of the fine structure for cavi-
ties with spherical mirrors. This part ends with a key equation that combines all relevant
effects for plano-concave cavities, plus a comparison to the literature; Part III, in Secs. 4.6
and 4.7, contains the analysis of several new effects for more general cavities. These new
effects are additional scalar and vector corrections, including two astigmatic corrections.
Section 4.8 discusses the obtained results and addresses the potential role of residual cor-
rections. Section 4.9 presents a summary and outlook. There are four Appendices.

4.2. PARAXIAL SCALAR MODES
We consider the propagation and reflection of light in a plano-concave Fabry-Perot (FP)
cavity. Both mirrors are highly reflective and large enough to avoid clipping losses, such
that all relevant modes are virtually lossless and spectrally well resolved. This cavity ex-
hibits sharp resonances, visible as peaks in the optical transmission and dips in the optical
reflection, at particular combinations of cavity length L and optical wavelength λ, where
light is resonantly trapped in the cavity. We want to derive the exact resonance condi-
tions and spatial profiles of the associated eigenmodes. This problem sounds simple but
is surprisingly difficult; there are no exact solutions for the general nonparaxial case.

The propagation of light in the paraxial limit is standard material in many textbooks on
optics [33]. We consider a plano-concave cavity with perfect rotation symmetry, use cylin-
drical coordinates defined by the symmetry z-axis, and denote position by (r,θ, z). This
cavity supports a set of matched Laguerre-Gaussian modes, with flat wavefronts at the flat
mirror (z = 0) and matched curved wavefronts at the concave spherical mirror (z = L, ra-
dius of curvature Rm). The Rayleigh range z0 = 1

2 kw 2
0 =p

L(Rm −L) determines the beam
waist w0 at the planar mirror, where E00(r,θ) ∝ exp

(−r 2/w2
0

)
, the variation of the beam

size upon propagation, via w2
z = w2

0 (1+ z2/z2
0) = w2

0 /cos2χ, the radius curvature of the
wavefront R(z) = Rz = z + z2

0/z = 2z0/sin
(
2χ

)
, and the phase lag χ(z) = arctan(z/z0) of the

fundamental mode with respect to a plane wave. We split the intra-cavity standing wave
in forward- and backward-propagating fields and write the slowly-varying component of
the forward-propagating complex field of the Laguerre-Gaussian modes of this cavity as
Ep,ℓ =ψ+

p,ℓ exp{i (kz −ωt )} with

ψ+
p,ℓ(r,θ, z) = 1

γz
Ψp,ℓ(ρ,θ,χ)exp

[
i k

r 2

2Rz

]
. (4.1)

The radial quantum number p and OAM quantum number ℓ combine to the transverse
order N = 2p +|ℓ|. The slowly-varying backward-propagating field,

ψ−
p,ℓ(r,θ, z) =−(1/γz )Ψp,ℓ(ρ,θ,−χ)exp

[−i kr 2/(2Rz )
]
, (4.2)

is a mirror image of the forward-propagating field and hence will not be considered ex-
plicitly. In Eq. (4.1), the normalized mode functions

Ψp,ℓ(ρ,θ,χ) = fp,ℓ(ρ)e iℓθ exp
[−i (N +1)χ

]
(4.3)
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are the eigenmodes of the two-dimensional harmonic oscillator in quantum mechan-
ics (QM), in terms of the normalized transverse position ρ = r /γz , with γz = wz /

p
2 =

γ0/cosχ. The amplitude functions

fp,ℓ(ρ) = (−1)p

√
p !

π(p +|ℓ|)!
ρ|ℓ|L|ℓ|

p
(
ρ2)exp

[−ρ2/2
]

, (4.4)

contain the generalized Laguerre polynomials L|ℓ|
p and a sign factor (−1)p to make them

equal to the transverse modes generated by harmonic oscillator ladder operators (see Ap-
pendix 4.C). All modes are normalized via

〈ψ+
p,ℓ|ψ+

p,ℓ〉 ≡
∫ ∞

0
r dr

∫ 2π

0
dθ |ψ+

p,ℓ(r,θ, z)|2 = 1, (4.5a)

〈Ψp,ℓ|Ψp,ℓ〉 ≡
∫ ∞

0
ρdρ

∫ 2π

0
dθ |Ψp,ℓ(ρ,θ,χ)|2 = 1, (4.5b)

where |ψ+〉 = |ψ+(z)〉 is the ket notation for the modeψ+(r,θ, z) = 〈r,θ|ψ+(z)〉. These inte-
grals do not depend on z or χ; the modes remain orthonormal because optical propaga-
tion is a unitary operation.

The resonance condition in a cavity is determined by the requirement that the mode
reproduces itself after a roundtrip. This requirement is satisfied when R(L) = Rm, which
fixes w0, and when the roundtrip phase ϕround is a multiple of 2π, such that

ϕround =ϕ−ϕpar −ϕnon = 2πq , (4.6)

whereϕ= 2kL is the plane-wave roundtrip phase and q is the longitudinal quantum num-
ber. The paraxial roundtrip phase lag is given by ϕpar = 2(N +1)χ0. The additional, typi-
cally small, roundtrip phase lag ϕnon combines all nonparaxial and mirror-shape effects.
Eq. (4.6) corresponds to resonant cavity lengths

L j = λ

2

[
q + (N +1)

χ0

π
+∆ν̃ j

]
−2Lϕ , (4.7)

where ∆ν̃ j = ϕnon/(2π) and Lϕ is the phase penetration depth into the (Bragg) mirrors
(Lϕ = 0 in the center of the stopband, Lϕ > 0 at positive detuning) [53]. Throughout this
chapter, we will quantify the magnitude of each nonparaxial and mirror-shape effect by
its contribution to the dimensionless detuning∆ν̃ j of mode j . The mode label j = {p,ℓ, v}
combines the two transverse quantum numbers p and ℓ with a third vector/polarization
quantum number v (not a frequency); see Sec. 4.5.

4.3. ROUNDTRIP OPERATOR AND PERTURBATION THEORY

4.3.1. THE ROUNDTRIP OPERATOR M
The evolution of the optical field in a cavity can be described by the roundtrip operator M ,
which transforms the forward-propagating field |ψ+〉 into M |ψ+〉 after a roundtrip [63].
If we expand the field |ψ+〉 = ∑

j c j |ψ+
j 〉 into a set of orthogonal basis states |ψ+

j 〉, then

we can write |ψ+〉 as a vector and M as a matrix. Finding the resonance conditions and
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eigenmodes of the cavity now boils down to finding the eigenvalues and eigenvectors of
the roundtrip matrix.

The roundtrip operator in any two-mirror cavity can be written as M = P+AP−B , where
A and B represent the reflections from the left and right mirrors and P+ and P− represent
the propagation from A to B and back (see Fig. 4.1). In a plano-concave cavity with a large
smooth planar mirror, A is equal to unity and M = PB , where P = P+P− describes the
roundtrip propagation and B describes the reflection from the concave mirror.

Figure 4.1: Geometry of a plano-concave cavity. Starting from the right, the optical roundtrip M = P+AP−B
includes reflection from the concave mirror B , propagation P− to the left, reflection from mirror A, and propa-
gation P+ to the right. The shape of the concave mirror is specified by its distance zm (x, y) > 0 from the plane
z = L. The wavefront of the intracavity mode j is flat at mirror A and almost spherical, and described by z j (x, y),
at mirror B .

In a typical experiment, we illuminate the optical cavity with an input field |ψ+
in〉 through

mirror A and we observe the output field |ψ+
out〉 through mirror B , as a function of the

cavity length or the optical frequency. The forward-propagating intra-cavity field |ψ+
cav〉 at

mirror B can be calculated by summation over an infinite series of reflections and repeated
operations of the roundtrip operator

|ψ+
cav〉 = (1+M +M 2 + ...)t1P+|ψ+

in〉 =
t1P+

1−M
|ψ+

in〉 , (4.8)

where t1 and t2 are the amplitude transmissions of mirrors A and B. Eq. (4.8) extends the
single-mode treatment as found in many textbooks to a multi-transverse-mode treatment
of the Fabry-Perot cavity, by treating P± and M as operators instead of scalars, and |ψ+〉 as
a field profile instead of a field amplitude. The output field is derived from the cavity field
as |ψ+

out〉 = t2|ψ+
cav〉.

The roundtrip operator M determines the full dynamics of the intracavity field, as it
contains the eigenfrequencies and damping rates of all cavity modes. To highlight this
link, we write

M = exp
(
iϕ− iH −A

)
, (4.9)
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with Hermitian operators H and A . For the single-mode case, the scalar H = ϕ j de-
scribes the roundtrip phase lag of mode j with respect to the plane-wave roundtrip phase
ϕ= 2kL. The other scalar A = γ j describes its roundtrip modal loss, where γ j = γr +∆γ j

combines the reflection loss γr ≈ 1− r1r2 (for amplitude reflectivities r1,2 close to unity)
with the potential extra loss ∆γ j , like the clipping loss from the finite-size mirrors. For
the multi-mode case, the dimensionless operator H describes the conservative dynam-
ics, while the operator A describes the dissipative dynamics of all modes [74, 91].

The dynamics of the intra-cavity field is typically dominated by the modes that are
close to resonance, i.e. modes for which ||(1 − M)|ψ+

j 〉|| ≈ 0. We highlight this by ex-

panding (1−M) ≈ i (H −ϕ)mod(2π)+A , where the first term is taken modulo 2π to re-
move exp

{
i 2πq

} = 1. In the eigenbasis of the dynamics operator, defined by M |ψ+
j 〉 =

exp
(
iϕ− iϕ j −γ j

)|ψ+
j 〉, the output field of the multi-mode Fabry-Perot cavity can be writ-

ten as

|ψ+
out〉 =

∑
j

t1t2

γ j − i (ϕ−ϕ j )
P+ |ψ+

j 〉〈ψ+
j |ψ+

in〉 , (4.10)

where (ϕ−ϕ j ) is again taken modulo 2π. Only modes close to resonance, with (ϕ−ϕ j ) ≈
0mod(2π), contribute significantly to the transmission.

The transmission spectrum described by Eq. (4.10) is the counterpart of the dynamic
equation

Tround
d

d t
|ψ+〉X = |ψ+〉X+1 −|ψ+〉X (4.11)

≈ (M −1) |ψ+〉X + t1P+|ψ+
in〉X ,

which describes the evolution of the intra-cavity field |ψ+〉 from roundtrip X to roundtrip
X + 1, in the roundtrip time Tround. This equation again shows that resonances in opti-
cal cavities behave like coupled harmonic oscillators, whose (complex) eigenvalues and
eigenstates are determined by the resonance condition (H − iA )|ψ j 〉 = (ϕ j − iγ j )|ψ j 〉.

This equivalence was discussed earlier by Haus [51] and later extended by Fan et al. [92].
Suh, Wang and Fan [91] expressed the dynamics of the field in any multi-mode cavity in
its most general form as

d

d t
a⃗ =−(iΩ+Γ)a⃗ +κT |s+〉 , (4.12)

where the vector a⃗ combines the (complex) amplitudes of all relevant cavity modes,Ω and
Γ are dynamic matrices, and the matrix κT couples the (multi-channel) input field |s+〉 to
the cavity modes. Our Eq. (4.11) resembles Eq. (4.12), but also differs in three ways: First,
Eq. (4.11) expresses the intra-cavity field |ψ+〉 and input field |ψ+

in〉 as two 2D field profiles,
whereas a⃗ in Eq. (4.12) is a 3D intra-cavity field while |s+〉 is a 2D field profile; the lat-
ter difference introduces a square root of time in the dimension of κT . Second, Eq. (4.11)
describes the evolution of the slowly-varying field ψ+(t ) whereas Eq. (4.12) describes the
slowly-varying evolution of the (positive-frequency part of the) full field E(t ); this differ-
ence results in a factor exp

(
iϕ

)
in M . Finally, and most importantly, our Eq. (4.11) links

the dynamics of the intra-cavity field to the roundtrip operator M ; it can thus be used to
analyze this dynamics and calculate the intra-cavity modes and their properties.
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4.3.2. PERTURBATION THEORY APPLIED TO H

From now on, we will neglect losses, assuming A ≈ 0. We will remove the + subscript and
interpret |ψ〉 as the forward-propagating field at the curved mirror, i.e. |ψ〉 = |ψ+(z = L)〉.
This is allowed when resonances are sharp and when we are not interested in their spectral
width. We split the dynamic operator as H = Hpar +Hfine and associate the resonance
with a hard zero in the resonance condition

(M −1)|ψ〉 = (exp
{
i (ϕ−H )

}−1)|ψ〉
≈ i (ϕ−q2π−Hpar −Hfine)|ψ〉 = 0, (4.13)

where q is the longitudinal mode number. The operator Hpar describes the paraxial evolu-
tion in a cavity with a spherical concave mirror. The operator Hfine describes the typically
small modifications due to nonparaxial propagation and reflection from a non-spherical
mirror.

The dynamic matrix Hpar is diagonal in the basis of the paraxial eigenmodes presented
in Sec. 4.2. The on-diagonal elements are equal to the roundtrip phase lagϕ j = 2(N +1)χ0

and are thus identical for modes with the same transverse order N . Each N -group contains
2(N + 1) modes, divided over (N + 1) spatial profiles, labeled by (p,ℓ) for the scalar LG-
modes, times two polarizations.

The fine structure operator Hfine can lift the frequency degeneracy within each N -
group and reshape the eigenmodes. We calculate these effects by applying perturbation
theory to Eq. (4.13). In principle, this perturbing operator can couple and mix all paraxial
modes. In practice, it mainly mixes modes of the same order N . The fine structure within
each N -group is thus described by first-order frequency-degenerate perturbation theory
and by the transverse-mode matrix

ϕfine, j ′ j = 2π∆ν̃ j ′ j = 〈ψ j ′ |Hfine|ψ j 〉≪ 1. (4.14)

The eigenvalues of the matrix∆ν̃ yield the spectral shifts, i.e. the fine structure. The eigen-
vectors of ∆ν̃ yield the new eigenmodes of the cavity.

The coupling between modes from different transverse orders is far less effective and
described by second-order frequency non-degenerate perturbation theory [93]. This yields
coupling rates of the form ∆ν̃N ̸=N ′ ≈ π(∆ν̃ j ′, j )2/[(N − N ′)χ0], where (N − N ′)χ0/π is the
frequency difference between the paraxial modes in the N and N ′ groups. From a math-
ematical perspective, non-resonant coupling is strongly suppressed by the denominator
(N −N ′)χ0 ≫π∆ν̃ j ′, j and can typically be neglected. From a physical perspective, the ex-
tra field −iHfine|ψ〉 in Eq. (4.13) only remains trapped when it fits resonantly in the cavity
and light scattered to other modes does not build up resonantly, is quickly lost, and can
thus be neglected. The only exception to this rule is the situation where modes of different
orders are accidentally almost frequency degenerate [94]; we will not consider this case
any further.
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Category Contribution H Form Preferred basis Magnitudeϕ j = 2π∆ν̃ j Discussed in Sec.

Paraxial Paraxial par r 2 and k2
⊥ no preference 2(N +1)arcsin

p
L/Rm 4.2

nonparaxial scalar

(known) - Propagation/Helmholtz prop k4
⊥ scalar LG magnitude prop+wave: 4.4.1

non- - Wavefront/Spherical wave r 4 scalar LG [g (p,ℓ)+4]/(4kRm) 4.4.2

paraxial Mirror aspheric asphere r 4 scalar LG −p̃ f (p,ℓ)L/[4kRm(Rm −L)] 4.4.3

nonparaxial vector vec r⃗ ⊗ k⃗⊥ vector LG [−1−ℓ · s]/(kRm) 4.5.2
= spin-orbit coupling

(new) Mirror Bragg correction bragg k⃗⊥⊗ k⃗⊥ vector LG ±C0(N +1)/(kz0) 4.6
vector hyperfine for 1A± modes

k2
⊥ (⃗k⊥⊗ k⃗⊥) ∝C2 (not analyzed in detail)

(new) Mirror astigmatism astigm x2 − y2 scalar HG ηastigm
p

L/(Rm −L) 4.7.1

scalar (off diagonal,∆ℓ=±2)

(new) Mirror astigmatic vector v+a x- and y-pol. ±ηastigm/(kRm) 4.7.2

vector = anisotropic spin-orbit hyperfine for ℓ= 0 modes

Table 4.1: Overview of various contributions to the transverse mode spectrum, with their abbreviated name, op-
erator form, preferred basis, relative strength (= nonparaxial phase lag) ϕ j , and associated section. The paraxial
contribution has no preferred basis; the rotation-symmetric corrections prefer the LG-basis; mirror astigmatism
prefers the HG-basis.

4.3.3. SYMMETRY ASPECTS & SCALAR VERSUS VECTOR MODES

The eigenmodes of the fine structure operator Hfine can often already be determined from
the symmetry of the system. For cavities with rotation symmetry, each scalar eigenmode
has a fixed OAM, with quantum number ℓ, and each vector mode has a circular polariza-
tion σ±, with spin quantum number s =±1. For cavities with additional mirror symmetry,
as is common, the ℓ and −ℓ eigenmodes should be frequency degenerate. From now on,
we will use this argument repeatedly and take ℓ≥ 0 throughout the main text. Hence, the
ℓ ̸= 0 modes are expected to form frequency-degenerate groups of four polarized modes,
while the ℓ = 0 modes are expected to form polarization pairs. Below, we will show that
spin-orbit coupling breaks each ℓ ̸= 0 group of four modes into two pairs of vector modes.
We will also show that the final pairwise degeneracy is more difficult to break. In analogy
with the atomic fine structure, we propose to call the final pairwise break-up the hyper-
fine component of the fine structure. But first, we will discuss general symmetry aspects of
Hfine, based on the distinction between scalar versus vector effects and between rotation-
symmetric versus astigmatic cavities.

The calculation of most scalar corrections is based on the idea that the extra field
−iHfine|ψ〉 results from the mismatch between the shape of the concave mirror and the
wavefront of the mode. The reflected field is multiplied by a factor exp(2i k∆z) ≈ 1+2i k∆z
and Hfine = −2k∆z, or actually Hfine = +2k∆z with our sign definition, where ∆z(x, y) =
zmirror − zwave and positive zmirror and zwave point towards the plane mirror (see Fig. 4.1).
Substitution of Hfine = 2k∆z into Eq. (4.14) results in a dynamics matrix of the form

∆ν̃ j ′ j = 2

λ
〈ψ j ′ |∆z|ψ j 〉 (4.15)

= 2

λ

Ï
dxdy∆z(x, y)ψ∗

j ′ (x, y)ψ j (x, y) ,

where∆z = zmirror−(z j ′+z j )/2. The complex conjugation removes the curvature and Gouy
phase from ψ(x, y).

For a rotation-symmetric cavity, this matrix is diagonal in the eigenbasis of the scalar
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LG-modes and the fine structure is given by

∆ν̃ j = 2

λ
〈ψ j |∆z|ψ j 〉 = 2

λ

Ï
dxdy∆z(x, y) |ψ j (x, y)|2 , (4.16)

where ∆z = zmirror − z j is the mismatch between the shape of the mirror zmirror and the
wavefront z j of the paraxial LG-mode j . Equations (4.15) and (4.16) can also be derived
by applying the theory of Kleckner et al. [63] to a plano-concave cavity with ∆z ≪λ/2 (see
Appendix of Ref. [94]), but the derivation presented above is easier.

Let us consider two simple examples of Eq. (4.16). As the first example, we consider
a uniform displacement of the curved mirror towards the plane mirror over ∆z = α > 0.
Substitution in Eq. (4.16) yields ∆ν̃ j = 2α/λ for all transverse modes and substitution in
Eq. (4.13) shows that the resonant cavity length increases by ∆L j = α for all modes, as
expected. As the second example, we analyze the effect of a small increase in the mir-
ror curvature, described by ∆z = βr 2 with β > 0, making ∆Rm = −2βR2

m < 0 assuming
|∆Rm| ≪ Rm. Substitution into Eq. (4.16) now yields ∆ν̃ j = (2/λ)×β(N +1)(w2

1 /2). Sub-
stitution in Eq. (4.7) again yields the associated change in the cavity length, which now
equals ∆L j = β(N +1)(w2

1 /2) > 0. This result can be fully attributed to the change in the
Gouy phase (N +1)χ0 due to the increased Rm at fixed L. Using χ0 = arcsin

p
L/Rm with

∆χ0 = −pL/(Rm −L)∆Rm/(2Rm) and the expression for w2
1 = w2

z at z = L presented in
Sec. 4.2, we again find full agreement.

The calculation of vector corrections requires an extension from scalar modes |ψ j 〉 to
vector modes |ψ⃗ j 〉 and from scalar operators to 2×2 tensor operators. We will discuss two
different vector corrections in Secs. 4.5 and 4.6 and show that: (i) the spin-orbit coupling
is relatively strong and present for all ℓ ̸= 0 modes and (ii) the Bragg correction is typically
weak and mainly observable for some ℓ= 1 modes.

In Sec. 4.7.1, we will analyze astigmatic cavities, without rotation symmetry. We will
show how astigmatism modifies the eigenvalues and eigenmodes, by coupling modes with
different ℓ, and how it retains the two-fold degeneracy of the ℓ ̸= 0 modes while creating a
small (second-order) frequency splitting of the ℓ= 0 pair.

4.3.4. CONTRIBUTIONS TO THE FINE STRUCTURE ( TABLE 4.1)
The optical fine structure has many contributions, which are linked to different physical
processes and described by different contributions to the fine structure operator Hfine

and its transverse mode spectrum. Table 4.1 lists the most relevant contributions and
compares their properties and approximate strengths. The contributions are divided in
five categories/blocks: The first block describes the effect of the paraxial operator Hpar.
The second block describes effects that occur in cavities with rotational symmetry. These
effects are divided in two nonparaxial scalar effects Hscalar = Hprop +Hwave, an aspheri-
cal mirror effect Hasphere, and a nonparaxial vector effect Hvec. The third block describes
a vector effect HBragg that occurs in rotation-symmetric cavities with Bragg mirrors. The
fourth and fifth block describe the effects of astigmatic mirrors, divided in the dominant
effect Hastigm and a second-order effect Hv+a. The effects in the second block have been
discussed in the literature, albeit often as individual effects and in different notations; the
analysis of the effects in the third to fifth block is new. All mentioned effects are typically
small and hence simply add up, albeit as matrices if they prefer different bases.

The first three columns in Table 4.1 show the names of the various effects and their
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origin. The fourth column shows the functional form of the associated operator Hfine.
The fifth column shows the preferred eigenmodes, which are Laguerre-Gauss (LG) scalar
or vector modes for rotation-symmetric cavities and Hermite-Gauss (HG) modes for astig-
matic cavities. The sixth column quantifies the relative strengths of the expected effects.
The final column refers to the sections in which each effect is discussed. Sections 4.4
and 4.5 describe three scalar corrections and the spin-orbit vector correction for rotation-
symmetric cavities. Together, they present the “known" nonparaxial rotation-symmetric
corrections discussed in part II of this chapter. Section 4.6 describes the vector Bragg
correction for rotation-symmetric cavities with Bragg mirrors, while Sec. 4.7 analyzes two
scalar corrections in astigmatic cavities. Together, they present the “new" nonparaxial ef-
fects that form the basis of part III of this chapter.

Figure 4.2 shows a sketch of the changes expected for the different contributions. The
first two columns show how the paraxial resonances in a planar and a plano-concave cav-
ity cluster in groups with the same quantum numbers q and N . The third column shows
how nonparaxial scalar and vector corrections split these clusters into pairs of modes with
additional quantum numbers ℓ and v . The right column shows how deviations from ro-
tation symmetry, due to astigmatic mirrors, will modify both the fine structure and the
character of the eigenmodes, from LG-modes to HG-modes. The third and final column
depict the fine structure mentioned in the title. A detail that is not visible in the figure
is that each line consists of two, typically frequency-degenerate, modes that sometimes
exhibit a tiny hyper-fine splitting. Below we will show that these hyperfine splittings orig-
inate from mixing of optical polarizations and that the ℓ= 0 and ℓ= 1, A modes are most
susceptible to hyperfine splittings.

We end this section by addressing the completeness of our list of nonparaxial effects.
We first note that operators that are 3rd-order in r⃗ and k⃗⊥ are irrelevant for cavities with
inversion symmetry, as their effects average to zero. But why did we single out the listed ef-
fects as the dominant ones, and why did we choose not to include other 2nd and 4th-order
contributions to Hfine that are also allowed by symmetry? Our reasoning is as follows: A
potential contribution of the 4th-order operator r 2k2

⊥, whatever its physical mechanism,

is probably much weaker than that of the related 2nd-order operator r⃗ ⊗ k⃗⊥ and has hence
been neglected. The same argument applies to the operator x4 − y4, which describes the
nonparaxial contribution to the astigmatism. Furthermore, we find it hard to envision
a physical mechanism for the r⃗ ⊗ r⃗ operator. And scalar k2

x − k2
y and kx ky operators are

probably only relevant in birefringent cavities. Hence, we think our list is complete for
most practical purposes.

4.4. NONPARAXIAL SCALAR CORRECTIONS

4.4.1. HELMHOLTZ CORRECTION Hprop
The Helmholtz correction Hprop originates from a nonparaxial contribution to the prop-
agation. Nonparaxial propagation has been studied extensively; Ref. [95] gives a brief his-
toric overview.

We base the first part of our analysis on the work of Lax [81], who starts by noting that
the intra-cavity optical field E⃗ (⃗r ) must satisfy Maxwell’s equations, which for a monochro-
matic field reduce to the vector Helmholtz equation (∇2 +k2)E⃗ (⃗r ) = 0⃗ and the divergence
condition ∇⃗ · E⃗ (⃗r ) = 0. He then introduces the slowly-varying forward-propagating field,
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Figure 4.2: Sketch of the expected resonance frequencies of an optical cavity (vertical axis) under the influence of
various perturbations (horizontal axis). Left column: modes in a planar cavity. Second column: paraxial modes
in a plano-concave cavity. Third column: fine structure in a rotational-symmetric cavity. Right column: modified
fine structure in an astigmatic cavity.

which we write as E⃗ = (ψ⃗⊥ +ψz e⃗z )exp{i (kz −ωt )}, where ψ⃗⊥ combines the transverse
components ψx and ψy and ψz is the axial/longitudinal component. And he expresses
this field as a Taylor expansion of the paraxial field and a series of nonparaxial corrections,
with amplitudes that decay as a power series in the expansion parameter f = 1/(kw0) =
Θ0/2 ≪ 1, where w0 is the waist and Θ0 is the opening angle of the fundamental paraxial
mode. The resulting equations are(

∆⊥+2i k
d

d z

)
ψ⃗(0)

⊥ (⃗r ) = 0, (4.17)

ψ(1)
z (⃗r ) ≈ i

k

(
dψ(0)

x

d x
+ dψ(0)

y

d y

)
, (4.18)

(
∆⊥+2i k

d

d z

)
ψ⃗(2)

⊥ (⃗r ) = − d 2

d z2 ψ⃗
(0)
⊥ ≈ ∆2

⊥
4k2 ψ⃗

(0)
⊥ , (4.19)

where ∇⃗⊥ = ∂x e⃗x+∂y e⃗y is the transverse nabla operator and∆⊥ = ∇⃗2
⊥ = ∂2

x+∂2
y . These three

equations describe, respectively, the evolution of the paraxial field ψ⃗(0)
⊥ , the axial fieldψ(1)

z ,

and the extra (nonparaxial) transverse field ψ⃗(2)
⊥ .

The scaling/expansion argument of Lax [81] is as follows. For Gaussian beams with a
waist w0, the ‘transverse’ derivatives d/d x and d/d y in Eq. (4.18) will generate factors of
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the order 1/w0. Hence, the axial field ψ(1)
z is approximately a factor f = 1/(kw0) smaller

than the transverse field ψ⃗(0)
⊥ . The extra ‘axial’ derivative d/d z in Eq. (4.19) will generate

a factor of the order 1/z0. Hence, the nonparaxial Helmholtz correction to the transverse
field, ψ⃗(2)

⊥ , will be about a factor f 2/4 = 1/(2kw0)2 = 1/(8kz0) smaller than the original
paraxial transverse field. By ending the Taylor expansion after the f 2-term, we neglect an
even smaller f 3 correction on ψz and an f 4 correction on ψ⃗⊥.

To calculate the nonparaxial scalar correction, we use a procedure introduced by Er-
ickson [69]. We consider the propagation of a paraxial LG-mode j from the flat to the
concave mirror and expand the propagating field in the basis of LG-modes as [69]

|ψ(z)〉 = |ψ j 〉+
∑
j ′

c j ′ (z)|ψ j ′ (z)〉 , (4.20)

with c j ′ (0) = 0 and c j ′ (z) ≪ 1. Substitution in Eq. (4.19) and projection on |ψ j ′ (z)〉 shows
that nonparaxial propagation modifies the paraxial modes by

dc j ′ (z)

d z
= −i

8k3 〈ψ j ′ |∆2
⊥|ψ j (z)〉 . (4.21)

Erickson [69] has shown that the action of the ∆2
⊥ operator, or the related d 2

d z2 operator, on
LG-modes changes p to p ′ = p −2, p −1, p, p +1, p +2, but does not affect ℓ on account of
the rotation symmetry. But we are only interested in the p ′ = p term, as the coupling to
modes with different order N is non-resonant.

Equation (4.21) becomes intuitive when we write 〈ψ j |∆2
⊥|ψ j 〉 = 〈k4

⊥〉. We find that the
correction dc j (z)/d z to the propagation i kz originates from the third term in the Taylor

expansion kz =
√

k2 −k2
⊥ = k −k2

⊥/(2k)−k4
⊥/(8k3). As LG-modes retain their functional

form under Fourier transformation, one easily finds 〈ψp,ℓ|∆2
⊥|ψp,ℓ〉 = 〈k4

⊥〉 = 4 f (p,ℓ)/w4
0 ,

where f (p,ℓ) is defined in Eq. (4.23). This result, and many others, can also be derived
with the operator algebra described in Appendix 4.C. Substitution in Eq. (4.21) yields the
relative frequency shift of the cavity resonances ∆ν j /ν = −∆k j /k = f (p,ℓ)/(2k4w4

0 ) > 0.
Conversion to a normalized frequency ∆ν̃ j = (2L/λ)∆ν/ν, yields the Helmholtz contribu-
tion to the fine structure

∆ν̃prop, j = 1

8πk

L

z2
0

f (p,ℓ) = 1

8πkRm

w2
1

w2
0

f (p,ℓ) , (4.22)

in terms of the polynomial [85]

f (p,ℓ) = 6p2 +6pℓ+ℓ2 +6p +3ℓ+2

= 3

2
(N +1)2 − 1

2
(ℓ2 −1) , (4.23)

with ℓ≥ 0. This result is consistent with earlier results of Erickson [69, 82], Yu and Luk [73,
85], and Luk [60].

4.4.2. WAVE-FRONT CORRECTION Hwave
The wave-front correction Hwave originates from the difference between the optical wave-
front and a reference surface. At first sight, one might think that the paraxial wavefront
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should be parabolic, because the optical phaseφ(r, z) = kz−(N+1)χ+kr 2/(2R) in Eq. (4.1)
increases quadratically with r in any z-plane. But wavefronts are defined by surfaces
of fixed phase, and both χ and R are functions of z. To find the true wavefronts, we
use the pragmatic approach of Yu and Luk [85] by expanding χ(z) and R(z) around the
paraboloidal reference surface z = L− r 2/(2Rm) that one would naively expect, to find

zwave(r ) = r 2

2Rm
+ 2(N +1)

k2w2
1

r 2

2Rm
− r 4

4R2
mL

(
1− 2L

Rm

)
, (4.24)

where zwave(z) > 0 for displacements from the z = L plane towards the flat mirror; see Fig.
4.1. Incidentally, an alternative Taylor expansion of χ(z) and R(z) around a spherical, in-
stead of a paraboloidal, surface would yield a similar result, as the extra terms are relatively
small for L ≪ Rm. The first term in Eq. (4.24) yields the curvature that we started from. The
second term shows that the central parts of the wavefronts are actually more curved by a
relative amount 2(N +1)/(kw1)2. The final r 4-term makes the outer regions of the paraxial
wavefronts “flatter than paraboloidal" for the typical case L < Rm/2, and even further away
from spherical.

We compare the paraxial wavefronts with the surface of a spherical mirror

zmirror(r ) = Rm −
√

R2
m − r 2 ≈ r 2

2Rm
+ r 4

8R3
m

. (4.25)

The mismatch∆z = zmirror−zwave results in a shift of the resonance by an amount∆ν̃wave =
(2/λ)〈ψ j |∆z|ψ j 〉. We substitute Eqs. (4.24) and (4.25) into Eq. (4.16), to find

∆ν̃wave, j = − (N +1)2

2πkRm
+ f (p,ℓ)

8πkRm

(
3− w2

1

w2
0

)

= 1

8πkRm

[
g (p,ℓ)+4− w2

1

w2
0

f (p,ℓ)

]
, (4.26)

with [85]

g (p,ℓ)+4 = 2p2 +2pℓ−ℓ2 +2p +ℓ+2

= 1

2
(N +1)2 − 3

2
(ℓ2 −1) . (4.27)

To obtain this result we used 〈r 2〉 = (N+1)w2
1 /2, 〈r 4〉 = f (p,ℓ)w4

1 /4, and w2
1 /w2

0 = Rm/(Rm−
L), and wrote some combinations of L and Rm in terms of the beam waists w0 and w1 at the
two mirrors. Our Eq. (4.26) is identical to Eq. (27) in Ref. [60] and consistent with Eq. (19)
in Ref. [85].

The combination of Eqs. (4.22) and (4.26) finally yields the total nonparaxial scalar
correction for a plano-concave cavity with a spherical mirror

∆ν̃scalar, j =∆ν̃prop, j +∆ν̃wave, j = 1

8πkRm

[
g (p,ℓ)+4

]
. (4.28)

That the sum of the two scalar corrections does not depend on the cavity length suggests
an underlying physical reason, but we have not found it yet.



4

54 4. FINE STRUCTURE IN FABRY-PEROT MICROCAVITY SPECTRA

4.4.3. ASPHERICAL CORRECTION Hasphere
In the previous section, we calculated the wave-front correction by comparing the shape
of the wavefront with a spherical mirror. We will now calculate the effect of a deviation
from this spherical mirror shape by an amount

zmirror(x, y)− zsphere(x, y) =−p̃
r 4

8R3
m

, (4.29)

where p̃ = 0 for a sphere (our reference) and p̃ = 1 for a paraboloid. This aspherical correc-
tion modifies the third term in the Taylor expansion zm(r ) = a+br 2+cr 4+... of a rotation-
symmetric mirror. Substitution of Eq. (4.29) in the generic Eq. (4.16) yields the aspherical
correction

∆ν̃asphere,j =− f (p,ℓ)

8πkRm
p̃

L

Rm −L
. (4.30)

This result is consistent with the result of Zeppenfeld and Pinkse [86], who chose the
paraboloidal mirror as their reference shape instead, and used a different notation; see
Appendix 4.A.

A comparison between Eq. (4.30) with Eq. (4.28) shows that the aspherical correction
contains an extra factor L/(Rm −L). The aspherical correction is thus relatively small for
short cavities (L ≪ Rm), basically because the modes in these cavities are relatively com-
pact and hence relatively insensitive to mirror deformations.

4.5. VECTOR CORRECTION & L-S COUPLING

4.5.1. VECTOR LG-MODES

The analysis presented above used the scalar LG-modes |ψp,ℓ〉 as basis set. This section
extends the analysis to vector fields, by including the optical polarization. It starts by in-
troducing the vector LG-modes |ψ⃗p,ℓ,v 〉, with their additional vector quantum number v .

In a cavity with mirror and rotation symmetry, the paraxial scalar modes ψp,ℓ and
ψp,−ℓ, with ℓ ≥ 0 are frequency degenerate. For vector fields, one also expects x- and
y-polarized vector versions of these modes, such that the ℓ = 0 mode is two-fold degen-
erate and the ℓ ̸= 0 modes are four-fold degenerate. But in reality, the four ℓ ̸= 0 modes
couple and split into two frequency-degenerate pairs which differ in the orientation of the
photon spin s, or circular polarization σ±, with respect to the orbital angular momentum
ℓ due to a form of L-S coupling (see Sec. 4.5.2).

We will use the notation of Yu and Luk [73] and label the resulting vector LG-modes
as: (i) series A modes with total angular momentum J = ℓ−1 and (ii) series B modes with
total angular momentum J = ℓ+ 1. Each A and B mode is a superposition of (ℓ, s) and
(−ℓ,−s) circularly-polarized modes, where ℓ > 0 and s = −1 for A modes and s = +1 for
B modes. To distinguish between the + and − superposition within each set, we add a
second component to the polarization label which we denote by + and −, depending on
the symmetry of the state under mirror action in the xz plane. With these polarization and
symmetry aspects in mind, we specify the vector quantum number as v = {y, x} = {+,−} for
the two p,ℓ= 0 modes and as v = {A+, A−,B+,B−} for the four p,ℓ≥ 1 modes.

As a vector generalization of the scalar paraxial modes of Eqs. (4.1)-(4.4), we write the
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transverse field of the vector LG-modes as

ψ⃗+
p,ℓ,v (r,θ, z) = 1

γz
e⃗ℓ,v (θ) fp,ℓ(ρ)exp

[
i k

r 2

2Rz
− i (N +1)χ

]
. (4.31)

For ℓ = 0 modes: e⃗0,+(θ) = e⃗x and e⃗0,−(θ) = e⃗y . For ℓ ≥ 1 modes, the vector fields are also
linearly polarized, but the orientation of this linear polarization depends on θ as [73].

l=
0

x y

l=
1

j = l 1
A+ A-
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Figure 4.3: Sketches of the polarization profiles, indicated as lines, of the vector LG-modes for ℓ = 0− 4. The
two ℓ= 0 modes are x-polarized and y-polarized. Each of the four ℓ≥ 1 modes split in two A and two B modes;
the 1A+ mode is radially polarized; the 1A- mode is azimuthally polarized; the other modes have a mixed ra-
dial/azimuthal polarization. Most modes occur in two versions, with field patterns that are rotated over half a
lobe/finger with respect to each other. The +/− labels indicate whether the vector field is symmetric (+) or anti-
symmetric (−) upon reflection in the x axis.

e⃗ℓ,v (θ) = cos(ℓθ)⃗ex + sin(ℓθ)⃗ey = cos[(ℓ−1)θ]⃗er + sin[(ℓ−1)θ]⃗eθ (for v = A+) ,
e⃗ℓ,v (θ) = −sin(ℓθ)⃗ex +cos(ℓθ)⃗ey = −sin[(ℓ−1)θ]⃗er +cos[(ℓ−1)θ]⃗eθ (for v = A−) ,
e⃗ℓ,v (θ) = cos(ℓθ)⃗ex − sin(ℓθ)⃗ey = cos[(ℓ+1)θ]⃗er − sin[(ℓ+1)θ]⃗eθ (for v = B+) ,
e⃗ℓ,v (θ) = sin(ℓθ)⃗ex +cos(ℓθ)⃗ey = sin[(ℓ+1)θ]⃗er +cos[(ℓ+1)θ]⃗eθ (for v = B−) .

Figure 4.3 shows the polarization profiles of the A and B modes for ℓ = 0− 3. Note
that all + modes have e⃗(θ = 0) = e⃗x and all − modes have e⃗(θ = 0) = e⃗y . Our short-hand
notation for these modes is |0X+〉 and |0Y −〉 for the ℓ= 0 modes and |ℓA±〉 and |ℓB±〉 for
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the ℓ≥ 1 A± and B± modes. The radial dependence fpℓ(ρ) is not included in this labeling,
but can be easily added with an extra quantum number p, or N = 2p +ℓ.

The twofold frequency degeneracy expected in a cavity with rotation and mirror sym-
metry has two consequences. First, it makes it difficult in experiments to find the true
eigenmodes of the cavity, as the output field |ψ⃗out〉 will be a superposition of the two de-
generate modes with relative amplitudes that are determined by the input field |ψ⃗in〉. Sec-
ond, in the theory it leaves room for an alternative labeling of the vector modes. Zeppen-
feld and Pinkse [86] chose the total angular moment J = ℓ+ s and the circular polarization
σ± as labels, instead of our ℓ, v labels. The vector profiles of their (J ,σ±) modes, which are
of the form e⃗ J ,σ± (θ) = e⃗± exp{±iℓθ} with e⃗± = (⃗ex ± i e⃗y ) as circular polarizations, are linear
superpositions of our A and B modes (see Appendices 4.A and 4.C).

4.5.2. NONPARAXIAL VECTOR CORRECTION Hvec
The nonparaxial vector correction Hvec originates from the vector character of the op-
tical field, and in particular from the small axial component of the optical field. At the
curved mirror, part of this axial field transforms into a reflected transverse field because
the boundary condition is not described by E⃗⊥ = 0⃗ but by the requirement that “E⃗ is di-
rected along the surface normal". Cullen [83, 96] was one of the first to mention this vector
correction. Davis [84] quantified it for a linearly-polarized fundamental Gaussian mode,
using geometric arguments. The vector correction to the reflection produces an effective
spin-orbit coupling that is similar to the one observed under strong focusing [97, 98].

Yu and Luk [85] and Luk [60] generalized the analysis to any vector LG-modes. They
derived the vector corrections of these modes with the so-called action theorem, which
is based on thermodynamic arguments and relates the relative frequency shift to the rel-
ative change in stored energy, via ∆ f / f = ∆W /W [60, 84, 85, 99]. In this subsection, we
will instead use the roundtrip-matrix formalism to generalize the calculation to the vector
coupling between any pair of modes. The roundtrip formalism is more general because it
yields a coupling matrix, whereas the action theorem only yields the on-diagonal elements
of this matrix.

We start our analysis with the earlier statement that every non-uniform transverse field
has an axial component ψz ≈ (i /k )⃗∇⊥ · ψ⃗⊥, see Eq. (4.18). For the transverse vector field
described by Eq. (4.31), the operator ∇⃗⊥ yields three contributions: The derivative of the
phase factor in Eq. (4.31) yields the in-phase field ψz = −(r /R)ψ⊥ needed to orient the
vector field of the traveling wave along the curved wavefront; this field has no further con-
sequences. By contrast, the derivatives of the two other factors in the right-hand side of
Eq. (4.31), which together form the normalized derivative ∇⃗⊥ ·Ψ⃗(ρ,θ), yield a small out-of-
phase longitudinal field that projects into an additional radially-polarized transverse field
that does modify the resonance. This projection includes a geometric factor −r⃗ /Rm and
a factor 2 to account for the standing-wave character of the field, similar to the factor 2 in
the phase lag 2k∆z that described the mirror shape. The resulting additional transverse
field is

Ψ⃗⊥,project =−i
2ρ⃗

kRm
∇⃗⊥ · Ψ⃗⊥ (⃗r ) , (4.32)

where ρ⃗ = r⃗ /γz and ∇⃗⊥ = e⃗x (∂/∂ρx )+ e⃗y (∂/∂ρy ) = (⃗er /ρ)(∂/∂ρ)ρ+ (⃗eθ/ρ)∂/∂θ is the trans-
verse derivative vector operator in normalized coordinates. By comparing Eq. (4.32) with
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the generic equations in Sec. 4.3, we find the nonparaxial vector corrections

∆ν̃vec, j ′, j =
1

πkRm
〈Ψ⃗ j ′ | ρ⃗⊗∇⃗⊥|Ψ⃗ j 〉 , (4.33)

where the tensor product symbol ⊗ indicates that ∇⃗⊥ operates on |Ψ⃗ j 〉 and ρ⃗ operates on

〈Ψ⃗ j ′ |.
The rotation symmetry of the ρ⃗⊗∇⃗⊥ operator imposes conservation of total angular

momentum J ′ = J . In Appendix 4.C we will show that vector coupling is even diagonal,
both in the basis of the vector LG-modes and in the basis of the (J ,σ±) modes of Zeppen-
feld of order N . The corresponding (normalized) frequency shifts are

∆ν̃vec, j = ±ℓ−1

2πkRm
= −1−ℓ · s

2πkRm
, (4.34)

where the + sign applies to A-modes, with total angular momentum J = ℓ−1, and the −
sign applies to B-modes, with J = ℓ+1.

Equation (4.34) agrees with earlier results presented in Refs. [60, 85, 86]. For ℓ ≥ 1
modes, the vector correction acts as an effective L-S coupling, denoted by ℓ.s in Eq. (4.34),
which splits each set of four ℓ ≥ 1 modes into two pairs of frequency-degenerate vector
modes. For the two, x and y-polarized, ℓ = 0 modes, Eq. (4.34) yields equal shifts. These
results can be derived by the operator algebra described in Appendix 4.C or by partial inte-
gration over vector fields of the form Ψ⃗ j (ρ,θ) = e⃗ j (θ) f j (ρ). For the x-polarized ℓ= 0 mode,

|ψ⃗〉 = e⃗x |ψ〉, the result simplifies to 〈Ψ⃗|⃗r ⊗∇⃗⊥|Ψ⃗〉 = 〈Ψ|x∂x |Ψ〉 =−1/2.

4.5.3. COMBINED RESULT FOR ROTATION-SYMMETRIC CAVITIES
Let us combine the effects discussed up to now, into a single equation for the fine structure
of a plano-concave cavity with a simple spherical mirror. By combining Eqs. (4.28) and
(4.34), we find that the nonparaxial contribution to the roundtrip phase lag is

ϕnon = 2π∆ν̃= 1

kRm
[

1

8
(N 2 +2N −4)− 3

8
ℓ2 −ℓ · s] , (4.35)

This result is identical to the results of Refs. [60] and [86]. For a plano-concave cavity
with a non-spherical rotation-symmetric mirror, the factor 3/8 in Eq. (4.35) is replaced by
3/8− p̃L/[8(Rm −L)], due to spherical aberration and the polynomial in N is also slightly
modified; see Eqs. (4.30) and (4.51) and identical equation in Ref. [88].

4.6. BRAGG ( VECTOR) CORRECTION HBragg
If we replace the ideal mirror by a more realistic Bragg mirror, the optical field will pen-
etrate in the mirror and the reflection amplitude will change from a steady r = −1 to
r =−exp

[
iϕ(ω,k⊥)

]
[53–55]. The reflection phaseϕ(ω,k⊥) = 2kLϕ(ω,k⊥) will now depend

on the optical frequency ω and the angle of incidence, which we express via its transverse
momentum k⊥ to avoid confusion with the orientation angle θ. The reflection phase is
typically different for TE (s-polarized) light than for TM (p-polarized) light, because TE-
light typically reflects better and thus yields a wider spectral stopband. The resulting phase
differenceϕs−ϕp =C (k⊥/k)2 can impose an additional fine structure on the cavity modes
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and push the intra-cavity field towards radially- and azimuthally-polarized eigenmodes.
Foster et al. [100] have described this Bragg effect and compared its strength relative to the
nonparaxial vector correction. We will briefly add our thoughts to their treatment.

First of all, we note that the phase difference ϕs −ϕp =C (k⊥/k)2, effectively also con-

tains a (k⊥/k)4-term because C depends on (k⊥/k)2 as C (⃗k⊥) =C0+C2(k⊥/k)2 with C0 = 0
in the center of the stopband [53]. Keeping this in mind, we write the perturbation im-
posed by the Bragg effect in the two mirrors as

HBragg = 2C (k⊥)

k2

(⃗
k⊥⊗ k⃗⊥− 1

2
k2
⊥

)
, (4.36)

where the final k2
⊥/2 balances the effect to zero for unpolarized light. Appendix 4.B calcu-

lates C0 and C2 from the properties of the distributed Bragg reflector (DBR). The (k⊥/k)4-
term was not mentioned by Föster et al. [100], but could be relevant in experiments.

The rotation symmetry of the Bragg operator matches the rotation symmetry of the
vector LG-modes. As a result, many matrix elements 〈ψ j ′ |HBragg|ψ j 〉 are zero. The only
non-zero on-diagonal elements of the Bragg operator are J ′ = J = 0. The Bragg opera-
tor will thereby split each pair of J = 0 modes in a radially-polarized 1A+ mode and an
azimuthally-polarized 1A- mode with opposite frequency shifts equal to

∆ν̃Bragg,1A± ≈± C0

kz0
(N +1) . (4.37)

To arrive at this result, we only included the C0 term of the Bragg effect and used the mean-
square opening angle 〈k2

⊥/k2〉 = (N + 1)/kz0 (see Appendix 4.B). The relative strength of
the predicted Bragg splitting, compared to the common factor 1/(8πkRm) for nonparaxial
effects, is Y ≡ (8πkRm)∆ν̃Bragg,1A+ ≈ 16πC0

p
Rm/L for L ≪ Rm and N = 1. Bragg effects be-

come more prominent for cavities with L ≪ Rm because they scale with the mean-square
modal opening angle, which increases if L decreases. The observation of a 1A+/1A− split-
ting is a hallmark for the Bragg effect [88].

Dufferwiel et al. [89] have observed a TE-TM splitting between the 1A+ and 1A− mode
for a cavity filled with an active semiconductor. They attributed the observed effect to
TE-TM splitting of the polariton eigenstates associated with two different branches in the
semiconductor band structure. The polariton effect dominates in their experiment, but a
remnant of the Bragg effect might also have been present.

As an aside, we note that the ℓ= 1 spectra shown in Ref. [89] actually comprises three
peaks. The frequency difference between the outer 1A+ and 1A− is due to the mentioned
TE-TM splitting. But the average frequency of these peaks does not coincide with the fre-
quency of the inner peak, which must originate from the degenerate 1B+ and 1B− modes.
We think that this additional frequency difference is due to the spin-orbit coupling de-
scribed in our Sec. 4.5.2.

For J ̸= 0, the Bragg operator only has non-zero off-diagonal elements that couple
(p − 1,ℓ = J + 1, A) modes with (p,ℓ = J − 1,B) modes, both of order N = 2p + J − 1 (see
Appendices 4.C and 4.D). The effect of these off-diagonal elements on the fine structure is
limited in rotational-symmetric cavities, because the on-diagonal elements typically dif-
fer a lot and hence dominate. From a physical perspective, we expect no Bragg-related
hyperfine splitting for J ̸= 0 modes in rotational-symmetric cavities because these modes
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contain equal amounts of radial and azimuthal polarization. But even J ̸= 0-type vec-
tor modes can exhibit some Bragg-induced hyperfine splitting if the cavity is sufficiently
astigmatic to mix the LG-modes, c.q. modify the eigenmodes, to make them sensitive to
the off-diagonal matrix elements of the Bragg effect (see Appendix 4.D).

4.7. MIRROR-ASTIGMATIC CORRECTIONS

4.7.1. ASTIGMATIC CORRECTION Hastigm
In the previous sections, we analyzed the resonances in a plano-concave cavity with a rota-
tional symmetric and almost spherical mirror. In this section we will analyze mirror defor-
mations that lack rotation symmetry, which are known as astigmatic deformations. Many
concave mirrors are not rotational symmetric but have slightly different curvatures in two
transverse orthogonal directions, which we will call x and y . We describe the (paraboloidal
component of the) astigmatic mirror shape as

zmirror(x, y) = x2

2Rx
+ y2

2Ry
≈ x2 + y2

2R
+ηastigm

x2 − y2

2R
, (4.38)

where R = (Rx +Ry )/2 = Rm. The parameter ηastigm = (Ry −Rx )/(2R) ≪ 1 quantifies the
strength of the astigmatism.

Astigmatism breaks the rotation symmetry and prefers Hermite-Gaussian modes over
Laguerre-Gaussian modes. A combined treatment of astigmatism and rotational symmet-
ric perturbation thus requires a matrix description that includes all relevant modes. As
astigmatism also has mirror symmetry in the (just-defined) x axis, it only couples modes
with the same +/− mirror character. Each N group is thus expected to split in two sub-
groups, the N+ group and N− group.

If astigmatism would be the only effect, then we would simply use the HG-modes as a
basis instead of the LG-modes. Based on the factorization of the HG profiles, we would
then conclude that (i) the HG-modes are the eigenmodes of the astigmatic cavity and
(ii) the modes in each N -group split into (pairs of) vector HG-modes with an equidistant
spacing ∝ ηastigm. But this scalar analysis does not take spin-orbit coupling into account.
To include both effects, we will instead analyze astigmatism in the basis of the vector LG-
modes.

We start with the N = 1 group. This group contains four modes and splits into two
pairs: the (A+,B+) set and the (A−,B−) set. The astigmatic coupling matrix for each of
these sets is (see Appendix 4.C)

∆ν̃astigm,(N=1) =
(

0 X̃
X̃ 0

)
, (4.39)

X̃ ≡ 2

λ
〈1A+|∆z(x, y)|1B+〉= ηastigm

tanχ0

2π
. (4.40)

This result was checked via integration, using the relation 〈ψ|r 2|ψ〉 = (w2
1 /2)(N +1) with

w2
1 = (λR/π) tanχ0. The eigenvalues of this astigmatic matrix are λ± =±X̃ . The associated

eigenmodes, (A+)± (B+), have a cosθe⃗x and −sinθe⃗y angular dependence. They are the
mirror-symmetric vector HG10 and HG01 modes that one expects in the absence of spin-
orbit coupling.
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Next, we add the nonparaxial corrections as on-diagonal elements ∆ν̃ j = [g (p,ℓ) −
4ℓ · s]/(8πkRm) with g (0,1) = −2. We also introduce the relative strength of the astigma-
tism as X = (8πkRm)X̃ = 2ηastigmk2w2

1 to remove a common factor. The final result in the
(1B+,1A+) basis

(8πkRm)∆ν̃(N=1) =
(−6 X

X 2

)
(4.41)

combines astigmatism with nonparaxial corrections. The eigenvalues of this complete
matrix are λ± = −2±

p
16+X 2. The new eigenmodes are of the form [cosβψA + sinβψB ]

and [−sinβψA + cosβψB ], with mode-mixing angle β = arctan(X /4). This shows that

astigmatism increases the splitting between the nonparaxial modes by a factor
√

1+ (X /4)2,
while gradually changing the A+ and B+ eigenmodes that are visible at X = 0 into the x-
polarized HG10 and y-polarized HG01 eigenmodes for X ≫ 1.

To calculate the astigmatic matrix for any N ≥ 2 group, we need to find the associated
matrix elements. The x2 − y2 = r 2 cos2θ angular dependence of the perturbation shows
that the astigmatic coupling obeys the selection rule ∆ℓ = ±2. Furthermore, astigmatism
only couples ℓ↔ (ℓ+2) modes with the same vector label v = {A+, A−,B+,B−}. But astig-
matism can also couple 1A and 1B modes, because the ℓ= 1 modes implicitly also contain
−1 modes. Hence, the only non-zero matrix elements of the astigmatic contribution are

2

λ
〈ψp,ℓ=1,A+|∆z(x, y)|ψp,ℓ=1,B+〉 = X̃ (p +1) , (4.42)

2

λ
〈ψp+1,ℓ−2,v |∆z(x, y)|ψp,ℓ,v 〉 = X̃ h(N ,

N −ℓ
2

) , (4.43)

2

λ
〈ψp−1,ℓ+2,v |∆z(x, y)|ψp,ℓ,v 〉 = X̃ h(N ,

N +ℓ
2

) , (4.44)

were v can be any vector label. The first equation has an identical counterpart for the
− modes. The second equation assumes ℓ ≥ 2 and introduces the function h(N ,ns ) ≡p

(ns +1)(N −ns ), which obeys the symmetry h(N , N −ns ) = h(N ,ns − 1). These results
were again obtained with the operator algebra described in Appendix 4.C.

Using the results presented above, we can now calculate the coupling matrix for any
nonparaxial astigmatic cavity. We will show the result only for the N = 2 and N = 3 groups
and leave the general analysis to the reader. The N = 2 group contains 2(N +1) = 6 mem-
bers, 3 with a + mirror symmetry and 3 with a − mirror symmetry. The three LG-vector
modes with a + character are the (0+,2A+,2B+). The on-diagonal elements of the spec-
tral matrix are determined by the nonparaxial correction

[
g (p,ℓ)±4ℓ

]= 2 for the 0-mode,
4 for the 2A-mode and −12 for the 2B-mode. The off-diagonal elements are determined
by the astigmatism, which couples the ℓ= 0 mode with the two ℓ= 2 modes with an equal
normalized coupling

p
2X . This makes the combined spectral matrix in the (2B+,0+,2A+)

basis equal to

(8πkRm)∆ν̃(N=2) =
−12

p
2X 0p

2X 2
p

2X
0

p
2X 4

 . (4.45)

The three−modes are coupled by an identical matrix that now operates in the (2B−,0−,2A−)
basis.
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Figure 4.4: Sketches of the polarisation profile for the "+" modes of the N = 2 group, as a function of the normal-
ized astigmatism X . The eigenmodes on the right correspond (column-wise) to X = 0,2,4,10.

A similar exercise can be done for the N = 3 group, where the set of + modes are
(3B+,1B+,1A+,3A+), yields

(8πkRm)∆ν̃(N=3) =


−20

p
3X 0 0p

3X 0 2X 0
0 2X 8

p
3X

0 0
p

3X 4

 . (4.46)

Figure 4.4 shows the fine structure in the N = 2 group as a function of the normalized
astigmatism X and the associated eigenmodes. In the absence of astigmatism, at X = 0,
the vector-LG 2A+ and 2B+ modes have eigenfrequencies (8πkRm)ν̃= 4 and −12, respec-
tively, while the 0A+ mode has eigenfrequency 2. At non-zero astigmatism, these three
modes mix and gradually transform from LG- to HG-modes, while their eigenfrequen-
cies also change. At X = 10, where astigmatism dominates over nonparaxial effects, the
eigenmodes strongly resemble the HG-modes and the distance between the eigenvalues
becomes approximately equal. The three asymptotes show the eigenfrequencies −4 and
−1± 2X that are reached at X ≫ 1. The depicted transition from dominant nonparaxial
effects to dominant astigmatic effects in an optical microcavity resembles the transition
from dominant spin-orbit coupling to a dominant Zeeman effect in atomic physics.

4.7.2. SHAPE BIREFRINGENCE
In the previous section, we stated that the coupling matrices of the + and − modes are
identical. We will now show that these matrices can be slightly different on account of
a second-order effect that combines astigmatism with the nonparaxial vector correction.
The associated anisotropic spin-orbit coupling results in shape birefringence, i.e. it in-
duces a frequency difference between x- and y-polarized light, just as birefringence would,
but only because of the x/y difference in the shape of a mirror. The story is as follows.

The vector correction in Eq. (4.32) uses the transverse derivative ∇⃗⊥.Ψ⃗⊥ (⃗r ) to calculate
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a small additional field, which is projected onto a radial transverse field via multiplication
with ρ⃗/Rm. But in a cavity with an astigmatic mirror, the projection should instead be on

ρ⃗x

Rx
+ ρ⃗y

Ry
= ρ

R
e⃗r +ηastigm

ρ

R
(cosθe⃗x − sinθe⃗y ) . (4.47)

The first term in this equation describes the vector correction discussed in Sec. 4.5. The
second term described the astigmatic component of this vector correction.

The anisotropic vector correction can again be calculated via integration or operator
algebra. For ℓ= 0 modes, the resulting on-diagonal matrix elements yield

∆ν̃v+a =∓ηastigm

2πkR
, (4.48)

where the− sign applies to the+mode and vice versa and where Eq. (4.48) applies to allℓ=
0 modes, irrespective of the radial quantum number p. The same result can be obtained
by interpreting the vector correction of Eq. (4.34) as ∆ν̃=−1/(2πkRx ) for the x-polarized
mode with Rx = R(1+ηastigm). For ℓ ≥ 1 modes, the anisotropic spin-orbit coupling only
has non-zero off-diagonal elements (see Appendices 4.C and 4.D). As a result, these modes
typically experience hardly any shape birefringence and retain their +/− degeneracy in
cavities with small astigmatism. Some hyperfine splitting might, however, still be present
in cavities where the astigmatism is strong enough to mix the vector LG-modes.

4.8. DISCUSSION & RESIDUAL Hrest
The analysis presented above describes the most common perturbations in optical cav-
ities, but is unavoidably incomplete. We included the quartic scalar corrections k4

⊥ and
r 4, the spin-orbit and Bragg vector correction, and astigmatic deformations of the form
(x2 − y2), but the concave mirror might also be deformed in different ways. We will com-
bine all residual mirror deformations in the scalar operator Hrest = 2k∆zrest ≪ 1.

The residual operator Hrest will scatter light and couple modes, just like the other
operators do. And this coupling will again mainly be effective between modes with the
same transverse order N if the cavity is operated far from frequency-degenerate points.
The effect of Hrest on the spectral fine structure and the associated eigenmodes is then
completely described by the residual spectral matrix ∆ν̃ j ′, j = 〈ψ j ′ |Hrest|ψ j 〉. In principle,
knowledge of the spectrum and eigenmodes of a specific order N allows one to recon-
struct the full coupling matrix Hfine of that order and disentangle its contributions. The
accuracy of such an analysis is only limited by the cavity finesse, which makes it an ex-
tremely sensitive probe of the actual mirror shape. Benedikter et al. [32] have previously
used the resonances around frequency-degenerate points as a similar sensitive probe for
the topography of their planar mirror.

The eigenmodes of the spectral matrix will provide a better match with the deformed
mirror than the original LG-modes, but the match is typically not perfect. The resulting
modal loss per roundtrip can be calculated from the next term in the Taylor expansion of
exp(−2i k∆z) ≈ 1− i 2k∆z −2k2∆z2. The calculated amplitude loss

γextra ≈ 2k2
Ï

dxdy [∆z(x, y)]2 |ψ(x, y)|2 , (4.49)
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with ∆z = zmirror − zmode, yields the famous expression (4πσ/λ)2 with σ2 = 〈∆z2〉 for the
intensity loss [101]. A finite mirror radius rmax will add clipping amplitude loss

γclipping ≈
∫ ∞

rmax

πdr 2 |ψ(r )|2 , (4.50)

where |ψ(r )|2 is the rotational-averaged intensity profile.
At first sight, it might be surprising that height variations introduce modal loss in a

system that was assumed to be lossless. But any submatrix H of the system is bound to
be non-Hermitian even when the full dynamic matrix is Hermitian. The residual loss orig-
inates from coupling between modes with different order N , which will increase the mode
size beyond reasonable bounds and thereby result in clipping loss. Even when the cou-
pling between individual modes is inefficient, the multitude of available coupling chan-
nels creates the residual loss described by Eq. (4.49).

4.9. SUMMARY & OUTLOOK
This chapter calculates the resonance frequencies and eigenmodes of a planar-concave
cavity beyond the common paraxial limit and beyond the spherical mirror shape. It does
so by describing the roundtrip dynamics of the intra-cavity field in a 3-dimensional Fabry-
Perot (FP) cavity in a general operator formalism, which reduces to a modest-size matrix
description after the application of perturbation theory. It then shows that the 2(N + 1)
modes with the same longitudinal order q and transverse order N are not frequency de-
generate, as predicted by a paraxial theory, but split. The associated optical fine structure
has many contributions, which are listed in Table 4.1 and calculated in parts II and III of
the chapter.

The chapter presents a complete theoretical framework for the expected optical fine
structure, by systematically analyzing all contributions that can realistically be expected.
For cavities with rotation and mirror symmetry we basically recover the results of Refs. [60]
and [86], albeit often in easier forms. This analysis, which is presented in part II Secs.
4.4 and 4.5, includes contributions from non-paraxial propagation, two aspherical correc-
tions, and spin-orbit coupling. In part III, we analyze the fine structure of more general
cavities. This results in four additional contributions: (i) a Bragg correction to quantify
the role of the Bragg mirror, (ii) an astigmatic correction to quantify the effect or an astig-
matic mirror, (iii) an anisotropic spin-orbit coupling in astigmatic cavities, and (iv) a resid-
ual correction, which was only discussed in general terms. In experiments, the astigmatic
correction is expected to be an important technical complication that can easily dominate
over the more fundamental nonparaxial corrections. The chapter introduces a dimension-
less parameter X to compare these effects and predicts how the fundamental effects are
more likely to dominate in short cavities with mirrors with small radii of curvature. A sec-
ond dimensionless parameter Y compares the strength of the Bragg effect relative to the
more fundamental nonparaxial corrections. Most of the predicted effects have been ob-
served in recent experiments on the fine structure of microcavity spectra [88].

The optical fine structure in FP spectra resembles the fine structure in atomic spectra.
The energy levels in atomic physics depend primarily on the principal quantum num-
ber n, but exhibit a fine structure that is an order α2 smaller, where α ≈ 1/137 is the fine
structure constant [87]. In comparison, the optical resonances in FP spectra are primar-
ily determined by the two principal quantum numbers (q, N ). The relative strength of the
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optical fine structure ∆ν̃ is of the order 1/(8πkRm) ∝λ/Rm, where Rm is the radius of cur-
vature of the curved mirror.

The results presented in Table 4.1 describe the nonparaxial effects in a plano-concave
cavity with mirror spacing L and mirror radius Rm. These results can easily be generalized
to an arbitrary cavity with two mirrors with radii R1 and R2 using the following procedure:
(i) use paraxial optics to find the waist and the distances L1 and L2 from the mirrors to this
waist, (ii) use Table 4.1 to determine the various contributions toϕnon,1 for the optical path
from the waist to Mirror 1 and back, (iii) repeat this step for Mirror 2 to findϕnon,2, and (iv)
add the two results to find the nonparaxial roundtrip phase lag ϕnon =ϕnon,1 +ϕnon,2. For
a symmetric bi-concave cavity of length 2L, one thus finds that (i) ϕnon is twice as large
as in a plano-concave cavity of length L, (ii) the relative frequency shift ∆ν̃ is also twice as
large, but (iii) the absolute frequency shifts ∆ν are equal, as expected.

The analysis presented in this chapter neglects losses. This assumption is valid for
cavities with sufficiently large high-reflective mirrors, such that the cavity resonances are
clearly resolved in the optical spectrum. The influence of loss on the spectral resonances is
probably limited to detunings∆ν̃< 1/F and therefore small for finesses F ≫ 10R/λ, where
the factor 10 was added to compensate for a factor 1/(kRm) ≪ 0.1 in Eq. (4.35). A measure-
ment of the modal finesses, and the associated clipping losses at finite-size mirrors, can
however be useful to further characterize the individual modes.

Our analysis predicts that most modes appear in frequency-degenerate pairs, with po-
larization patterns of the form A± or B± for the ℓ ≥ 1 modes and x or y polarization for
the ℓ = 0 modes. It also predicts that this twofold degeneracy will be slightly broken for
some pairs by effects that one might thus call hyperfine splitting. This chapter quantifies
two effects and shows that: (i) the ℓ = 1, A pairs split in modes with radial and azimuthal
polarization in cavities with Bragg mirrors and (ii) the ℓ = 0 mode pairs exhibit a small
second-order splitting in astigmatic cavities. It also argued how the degeneracy of other
mode pairs can be slightly broken in strongly-astigmatic cavities, due to admixture of HG-
character in the vector LG-modes that are preferred by spin-orbit coupling. All these hy-
perfine splittings have been observed in recent experiments [88].

We speculate that the pairwise degeneracy can also be broken when the mirror sym-
metry is broken, for instance when one mirror has a twist [102, 103], or a higher-order
astigmatism of the form x ′4−y ′4 with an x ′y ′ orientation different from the x y-orientation
of the prime astigmatism. And mirror symmetry is obviously broken in cavities with chiral
structures, like the ones recently reported in Ref. [104].

As a further outlook, we note that the optical fine structure contains information on the
mirror shape down to sub-nm precision. It can thus in principle be used to inspect these
shapes, without the need to dismount the mirrors and inspect them by AFM or optical
interference.

In future work, the analysis could be extended by including the other, C2 or k4
⊥, Bragg

effect. This effect was neglected in most of the analysis, but the example presented in
Appendix 4.B shows that this simplification is not always correct.

The analysis could also be extended by including the coupling between modes of dif-
ferent N -groups. The latter coupling is typically small but will become important around
so-called frequency-degenerate cavity lengths, where the Gouy phase χ0 is a rational frac-
tion of π and modes with different (q, N ) numbers become frequency degenerate. The
resulting modified eigenmodes can potentially lead to a reduction in mode area and an
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increase in the light-matter interaction [94]. The analysis could also be extended to op-
tical cavities with different geometries, beyond the two-mirror plano-concave type. The
theoretical framework developed in this chapter is general enough to also analyze these
related geometries in a perturbative way.

Finally, it might be interesting to compare the presented analysis with the geometric
approach to cavity aberration presented in a recent publication of Jaffe et al. [105]. Or to
compare the presented analysis of mode formation in open optical cavities with the anal-
ysis of mode formation in rotational-symmetric graded-index optical waveguides/fibers
presented in Ref. [106]. We leave these topics as challenges to the reader.

4.A. COMPARISON WITH ZEPPENFELD-PINKSE
This Appendix summarizes the key results of the article entitled ’Calculating the fine struc-
ture of a Fabry-Perot resonator using spheroidal wave functions’ by Zeppenfeld and Pinkse [86],
and compares them with the associated nonparaxial effects listed in Table 4.1. We will
transform their results to our notation for the specific case of a plano-concave cavity.

Zeppenfeld and Pinkse [86] label their vector LG-modes with quantum numbers (ν, J ,σ±).
Zeppenfeld’s quantum number ν is equal to our radial quantum number p. Zeppenfeld’s
quantum number J denotes the total angular momentum. As such, it combines our radial
quantum number ℓ with a vector quantum number s =±1 for circular-polarized σ± light.
Their v = {J ,σ+} mode is a superposition of our B+ and B− modes with ℓ = J − 1. Their
v = {J ,σ−} mode is a superposition of our A+ and A− modes with ℓ= J +1.

Equation (40) of Ref. [86] states that the roundtrip phase of the (ν, J ,σ+) mode is

ϕν,J ,σ+ = 2kL−2(2ν+ J )arctanξ+− 2

kRm
ν(ν+ J )+ ξ+

kz0
(

1

4
− L

4Rm
c̃4)[6ν(ν+ J )+ J (J +1)] ,

(4.51)
To arrive at Eq. (4.51), we combined Zeppenfeld’s expansion parameter 1/c = 2/(kd),

with d = 2z0, with equations that are specific for plano-concave cavities, like ξ+ = 2L/d ,
ξ/[c(1+ξ2)] = 1/(kRm), and f4+ = (2R2

mLc̃4− 1
4 )ξ, and Rayleigh range z0 =

p
L(Rm −L). The

parameter c̃4 describes the deviation from a paraboloidal mirror shape and is related to
the parameter p̃ in the main text via c̃4 = 1− p̃.

The first term on the right-hand side of Eq. (4.51) is the plane-wave roundtrip phase.
The second term is the phase lag predicted by paraxial theory. The third and fourth terms
in Eqs. (4.51) describe the spectral fine structure in Zeppenfeld’s notation. We rewrite this
in our notation by writing J = ℓ+ s for ℓ > 0, with J = ℓ+ 1 for σ+ polarization, 2ν+ J =
N +1 with transverse order N = 2p +ℓ, and by introducing the fundamental Gouy phase
χ0 = arctanξ= arctan

p
L/(Rm −L). We recover the equivalent equation in our notation:

ϕp,ℓ,σ± = 2kL−2(N +1)χ0 −ϕnon , with

ϕnon = 1

kRm
[

1

8
(N 2 +2N −4)− 3

8
ℓ2 −ℓ · s] . (4.52)

This final result includes a rewrite of Eq. (41) of Ref. [86] and is therefore valid for modes
with both types of polarization. It only applies to a plano-concave cavity with spherical
mirrors (c̃4 = 1 in Zeppenfeld’s notation), but can be extended to aspherical mirrors by
replacing the factor 3/8, in front of the ℓ2-term, by 3/8− p̃L/[8(Rm − L)] and by slightly
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modifying the function of N . Equation (4.52) is identical to Eq. (4.35) in the main text, and
to Eq. (29) in Ref. [60].

4.B. BRAGG CORRECTION IN DETAIL
This Appendix analyzes the polarization dependence of the reflection phase of a DBR and
the resulting Bragg correction HBragg. The reflection phase of a DBR

ϕs,p (ω,φ) = 2kLϕ(ω,φ) = [ω−ωc (φ)]τs,p (φ) (4.53)

depends on the detuning [ω−ωc (φ)] between the optical frequency and the center of the
stopband and on the (polarization-dependent) phase penetration depth Ls,p (φ) = cτs,p (φ)/2
in the DBR. Both quantities depend on the angle of incidence φ≈ k⊥/k ≪ 1 as [54, 55]

ωc (φ) ≈ ω(0)(1+Bφ2) ; B = 1

4
(

1

n2
L

+ 1

n2
H

) , (4.54)

τs,p (φ) ≈ τ(0)(1± Aφ2) ; A = 1

2
(1+ 1

nH nL
) , (4.55)

where the + sign in Eq. (4.55) applies to p-polarized light, with its reduced Fresnel reflec-
tion and reduced stopband width, and the − sign applies to s-polarized light. Equation
(4.54) is the generic result of a Taylor expansion of Snell’s law. Equation (4.55) is valid only
for H-DBRs, i.e. DBRs that start with the high-index nH > nL layer on the air side (nin = 1).
By combining these expansions with the H-DBR resultωc (0)τ(0) =π/(nH −nL) [53–55], we
find

ϕp (φ)−ϕs (φ) = 2π

nH −nL
Aφ2

[
(ω−ωc (0))

ωc (0)
−Bφ2

]
. (4.56)

This polarization-dependent reflection at k⊥ ̸= 0 creates the Bragg correction intro-
duced in Eq. (4.36) in the main text, which reads

HBragg = 2C (k⊥)

k2

(⃗
k⊥⊗ k⃗⊥− 1

2
k2
⊥

)
, (4.57)

with C (⃗k⊥) =C0 +C2(k⊥/k)2 and

C0 = 2πA

nH −nL

ω−ωc (0)

ωc (0)
; C2 = −2πAB

nH −nL
. (4.58)

The factor 2 in Eq. (4.57), which indicates that there are two reflections, is only approxi-
mately 2, because the angle-dependent reflection from the curved mirror and flat mirror
are only similar in the short-cavity limit L ≪ Rm. The “quadratic Bragg effect", quantified
by C0, depends critically on the frequency detuning. The “quartic Bragg effect", quantified
by C2, does not and could thus even become dominant around the center of the stopband.
The “quadratic Bragg effect" has on-diagonal elements only for the j = j ′ = 1A± modes,
where

〈ψ j |HBragg|ψ j 〉 =± C0

kz0
(N +1) , (4.59)

and where we used 〈φ2〉 = 〈k2
⊥/k2〉 = (N +1)/kz0.
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For a typical DBR coating of SiO2 (nL ≈ 1.46) and Ta2O5 (nH ≈ 2.09), and a typical
relative detuning [ω−ωc (0)]/ωc (0) of 1%, we find C0 ≈ −0.13, while C2 ≈ 2.3 at any de-
tuning. To calculate the associated polarization shifts, these values should be multiplied
by 〈φ2〉 = 〈k2

⊥/k2〉 = (N +1)/kz0 and 〈φ4〉 = f (p,ℓ)/(kz0)2. For a typical microcavity with
L = 2 µm, R = 20 µm and λ= 0.63 µm, the rms opening angle of the fundamental mode is√
〈φ2〉 ≈p

0.016 ≈ 0.13 rad. For the 1A+ and 1A−modes, this results in frequency shifts∆ν̃
of ±C0〈φ2〉/(2π) =∓6.6×10−4 due to the 1% detuning and ±C2〈φ4〉/(2π) =±5.6×10−4 due
to the quartic correction. These numbers show that the Bragg correction is typically small
at small detuning, where the quartic effect cannot be neglected. But the Bragg correction
should be observable, in particular at larger frequency detuning.

For L-DBRs, i.e. DBRs that start with an nL layer on the air side, two parameters are
different [53–55]. The productωc (0)τ(0) = nLnHπ/(nH −nL) is larger than for H-DBRs, but
the polarization factor in Eq. (4.55) is now typically smaller and given by

AL = 1

2
(

1

n2
H

+ 1

n2
L

+ 1

nH nL
−1) . (4.60)

For L-DBRs we thus find the modified equations,

C0 = 2πÃ

nH −nL

ω−ωc (0)

ωc (0)
; C2 = −2πÃB

nH −nL
, (4.61)

with

Ã = nH nL AL = 1

2
(1+ nL

nH
+ nH

nL
−nH nL) . (4.62)

For the SiO2 / Ta2O5 example discussed above, the L-DBR is expected to show a smaller
Bragg effect as it has Ã = 0.08, while the H-DBR has A = 0.66.

4.C. OPERATOR ALGEBRA
This appendix introduces ladder operators for the scalar LG-modes and shows how they
can be used to calculate the matrix elements of the perturbing operators. It also shows
how these concepts can be applied to vector LG-modes, including the X /Y /A/B modes
introduced in the main text. We will only consider coupling between modes with the same
transverse order N , such that the wave-front curvature and Gouy phase drop out of the
problem.

In Cartesian (x, y) coordinates, with normalized coordinates (ξ,η) = (x, y)/γz , we de-
fine the creation and annihilation operators in the ξ direction as [107]

âξ(χ) = 1p
2

(ξ+∂ξ) ; â†
ξ

(χ) = 1p
2

(ξ−∂ξ) (4.63)

and likewise for the η direction. These ladder operators allow one to ladder through the
set of scalar HG-modes. As our system is approximately rotational symmetric, it is more
convenient to work with cylindrical coordinates (ρ,θ) and the circular ladder operators

â± = 1p
2

(âξ∓ i âη) ; â†
± = 1p

2
(â†
ξ
± i â†

η) . (4.64)
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These ladder operators satisfy the commutation relation [âi , â†
j ] = δi j and combine into

number operators n̂+ = â†
+â+ and n̂− = â†−â−. They allow one to ladder through the set of

scalar LG-modes, using the relations [107]√
n+!n−!|Ψ̃n+,n−〉 =

(
â†
+
)n+ (

â†
−
)n− |Ψ̃0,0〉 , (4.65)

〈ξ,η|Ψ̃n+,n−〉 = e i (n+−n−)θ fpℓ(ρ) , (4.66)

where |Ψ̃0,0〉 is the fundamental mode. The final equation provides the link to the modes
used in the main text. We have added a tilde to the notation to indicate that these LG-
modes are labeled with quantum numbers n+ and n−. The relation with the quantum
numbers used in the main text is p = min(n+,n−) and ℓ = n+−n−, where the latter can
still be positive or negative.

Next, we will express each perturbing operator as combinations of ladder operators
and calculate the matrix representation of these operators in the basis of the LG-modes
of transverse order N . Using the ladder operators introduced above, we can for instance
rewrite the paraxial form ρ2 = ξ2 +η2 and ∆⊥ = ∂2

ξ
+∂2

η as

ρ̂2 = (N̂ +1)+ â+â−+ â†
+â†

− , (4.67)

∆̂⊥ = −(N̂ +1)+ â+â−+ â†
+â†

− , (4.68)

where N̂ = n̂++ n̂−. When we sandwich the operator ρ̂2 between two LG-modes of order
N , the first term yields the familiar expression 〈Ψ̃ j ′ |ρ̂2|Ψ̃ j 〉 = (N +1)δ j ′ j , while the second
and third terms do not contribute as they only couple modes with different order.

The quartic nonparaxial operators yield expressions with more terms. When we only
keep the operator combinations that couple modes of the same order N , we find that the
quartic nonparaxial operators are diagonal in the LG-basis with

〈Ψ̃ j |ρ̂4|Ψ̃ j 〉 = (N +1)2 +N +1+2n+n− = f (p,ℓ) , (4.69)

where j = (n+,n−), and an identical result for 〈Ψ̃ j |∆̂2
⊥|Ψ̃ j 〉. The final expression shows the

link to the quadratic polynomial f (p,ℓ), used in the main text.
The astigmatic operator ξ̂2−η̂2 = â†

+â−+ â†−â+ simultaneously lowers n+ and raises n−
by one, and visa versa, and can therefore couple modes of the same order N with∆ℓ=±2.
More precisely,

(ξ̂2 − η̂2)|Ψ̃n+,n−〉 =
√

(n++1)n−|Ψ̃n++1,n−−1〉
+

√
n+(n−+1)|Ψ̃n+−1,n−+1〉 . (4.70)

When we label the scalar modes with a single quantum number ns = n+, making n− =
N −ns , the only non-zero elements of the astigmatic operator are

(ξ̂2 − η̂2)ns+1,ns = (ξ̂2 − η̂2)ns ,ns+1 = h(N ,ns ) , (4.71)

where the function h(N ,ns ) ≡p
(ns +1)(N −ns ) obeys the symmetry h(N , N−ns ) = h(N ,ns−

1).
Next, we introduce the vector modes via

|Ψ⃗〉 = e⃗+|Ψ+〉+ e⃗−|Ψ−〉 , (4.72)
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where e⃗± = (⃗ex ± i e⃗y )/
p

2 are the circular-polarized unit vectors and where |Ψ±〉 are scalar
mode profiles. We write these vector modes as vectors of two scalar modes and describe
the action of any tensor operator H by the associated 2×2 tensor that acts via(

H++ H+−
H−+ H−−

)(|Ψ+〉
|Ψ−〉

)
. (4.73)

We will consider three vector corrections: (i) the isotropic spin-orbit coupling, (ii) the
anisotropic spin-orbit coupling, and (iii) the Bragg effect.

The most prominent vector correction is the isotropic spin-orbit coupling described
by the operator Hvec = 2/(kRm) ρ⃗⊗ ∇⃗ρ . The 2× 2 matrix representation of the operator

ρ⃗ ⊗ ∇⃗ρ contains the combinations {ξ̂∂ξ, ξ̂∂η, η̂∂ξ, η̂∂η} in the linear-polarized (ξ,η) basis.
Expression in the circular ladder operators and the circular-polarized form defined in Eqs.
(4.72) and (4.73) yields

Hvec = −1

kRm

(
1+n+−n− 0

0 1−n++n−

)
. (4.74)

In this conversion, we removed combinations of operators that only projects to modes of
different order N , like the operators ξ̂∂ξ+1 = 1

2 [â2
ξ
− (â†

ξ
)2], âξâη, and â†

ξ
â†
η.

Application of Hvec to the righthand circular-polarized modes yields

Hvec e⃗+|Ψ̃n+,n−〉 =−1+ ℓ̃
kRm

e⃗+|Ψ̃n+,n−〉 , (4.75)

where ℓ̃= n+−n−, with associated matrix elements

(
(Hvec)++

)
ns ,ns

=−1+ ℓ̃
kRm

=−1+2ns −N

kRm
. (4.76)

The middle part of Eq. (4.76) is identical to Eq. (4.34) in the main text, where the signed
ℓ̃ = ±ℓ depends on n+ ≶ n−. The right side of Eq. (4.76) introduces ns as the circular
quantum number along the spin direction, such that ns = n+ for s = 1 and ns = n− for
s =−1. With these definitions, the only non-zero matrix elements of (Hvec)−− are

((Hvec)−−)ns ,ns
=−1− ℓ̃

kRm
=−1+2ns −N

kRm
. (4.77)

The anisotropic component of the spin-orbit coupling follows from the Taylor expan-
sion

(
xe⃗x

kRx
+ ye⃗y

kRy
)⊗∇⃗⊥ ≈ (

xe⃗x + ye⃗y

kR
)⊗∇⃗⊥ (4.78)

+ ηastigm(
xe⃗x − ye⃗y

kR
)⊗∇⃗⊥ ,

where R = (Rx+Ry )/2 = Rm, ηastigm = (Ry−Rx )/R. The first operator on the right-hand side
is Hvec/2. The second operator describes the anisotropic spin-orbit coupling Hv+a/2. The
2×2 matrix representation of this operator in (ξ,η) coordinates and polarization contains
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the combinations {ξ̂∂ξ, ξ̂∂η,−η̂∂ξ,−η̂∂η}. Conversion to the circular-polarized vector basis
yields

Hv+a =
−ηastigm

kRm

(
0 1−n++n−

1+n+−n− 0

)
. (4.79)

The off-diagonal elements show how this operator converts s = +1 ↔ s = −1 circular-
polarized light. Application of Hv+a to the righthand circularly-polarized modes yields

Hv+a e⃗+|Ψ̃n+,n−〉 =−ηastigm

kRm
(1+ ℓ̃) e⃗−|Ψ̃n+,n−〉 . (4.80)

This equation differs in two ways from Eq. (4.75). First, the extra factor ηastigm shows
that anisotropic spin-orbit coupling is linked to astigmatism. Second, the Hv+a operator
changes the handedness of the circular polarization. As a result the projected circular
quantum number changes from ns,in = n+ to ns,out = n− = N −ns . The associated matrix
in the circular-polarized basis therefore only has anti-diagonal elements(

(Hv+a)−+
)

N−ns ,ns
=−ηastigm

kRm
(1+2ns −N ) , (4.81)

where the first mode label refers to n− = N − ns and the second mode label refers to
n+ = ns . A similar analysis for the lefthand circular polarized modes yields the identical,
Hermitian-conjugated, result(

(Hv+a)+−
)

N−ns ,ns
=−ηastigm

kRm
(1+2ns −N ) . (4.82)

As final vector correction we consider the Bragg effect described by Eq. (4.36). We
will only consider the k2

⊥ contribution to the Bragg effect and neglect the k4
⊥ contribu-

tion, which is typically weaker but can still be relevant at small frequency detuning. In the
linearly-polarized basis and x, y units used in the main text, the quadratic part of the Bragg
operator has the form

HBragg = C0

k2

(
k2

x −k2
y 2kx ky

2kx ky k2
y −k2

x

)
, (4.83)

where kx = i∂x and ky = i∂y . Conversion to normalized coordinates and to the preferred
circular-polarized vector basis yields

HBragg = 2C0

kz0

(
0 â†−â+

â†
+â− 0

)
. (4.84)

The off-diagonal elements show how this operator also converts s =+1 ↔ s =−1 circular-
polarized light. It does so under conservation of total angular momentum J = ℓ+ s, such
that ∆ℓ=∆n+−∆n− =±2.

Application of HBragg to the righthand circular-polarized modes yields

HBragg e⃗+|Ψ̃n+,n−〉 =
2C0

kz0
h(N ,ns ) e⃗−|Ψ̃n++1,n−−1〉 . (4.85)

where h(N ,ns ) = p
(ns +1)(N −ns ) as before. The projected circular quantum number

now changes from ns,in = n+ to ns,out = n−−1 = N −ns −1 and the associated matrix only
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has elements one row below the anti-diagonal, with

((
HBragg

)
−+

)
N−ns−1,ns

= 2C0

kz0
h(N ,ns ) . (4.86)

A similar analysis for the lefthand circular polarized modes again yields identical matrix
elements for

(
HBragg

)
+−, due to our use of projected indices.

4.D. HYPERFINE SPLITTINGS

In the main text. we introduced a special set of vector LG-modes that we labeled by their
absolute OAM ℓ ≥ 0, their X/Y/A/B character, and their ± polarity under x-mirror reflec-
tion. The link between these vector LG-modes and the scalar LG-modes in Eq. (4.65) is

|ℓA+〉 = p
2Re[ e⃗+|Ψ̃ N−ℓ

2 , N+ℓ
2

〉 ] , (4.87)

|ℓA−〉 = p
2Im[ e⃗+|Ψ̃ N−ℓ

2 , N+ℓ
2

〉 ] , (4.88)

|ℓB+〉 = p
2Re[ e⃗+|Ψ̃ N+ℓ

2 , N−ℓ
2

〉 ] , (4.89)

|ℓB−〉 = p
2Im[ e⃗+|Ψ̃ N+ℓ

2 , N−ℓ
2

〉 ] , (4.90)

where Re and Im denote the real and imaginary part, with e⃗ ∗+ = e⃗− and |Ψ̃ N−ℓ
2 , N+ℓ

2
〉∗ =

|Ψ̃ N+ℓ
2 , N−ℓ

2
〉. Equations (4.87)-(4.90) show that A modes are like B modes with signed OAM

ℓ̃ = −ℓ instead of ℓ̃ = ℓ in the e⃗+ component of their vector field. The ℓ = 0 modes obey
the relations |0+〉 = |0A+〉 = |0B+〉 and |0−〉 = |0A−〉 = |0B−〉. We again note that our +/−
label refers to the polarity under x-mirror reflection, i.e. not to any circular polarization,
and that we only use ℓ≥ 0.

Appendix 4.C showed that two vector corrections can change the handedness of the
light, via non-zero operators H+− and H−+, and thereby couple the circular polarized
modes. The vector LG-modes are now the true eigenmodes of the perturbed cavity, as
the two vector corrections that we considered are symmetric under x-mirror reflection
and hence cannot couple + and − modes. The two vector corrections can lift the original
two-fold degeneracy of some vector LG-modes, though, and create a hyperfine splitting
between the + and − versions of some ℓA or ℓB modes.

Application of Hv+a to the vector LG-modes yields

Hv+a |ℓA±〉 = ±ηastigm

kRm
(ℓ−1) |ℓB±〉 , (4.91)

Hv+a |ℓB±〉 = ±ηastigm

kRm
(−ℓ−1) |ℓA±〉 . (4.92)

For ℓ= 0, the Hv+a operator has on-diagonal element −ηastigm/(kRm) for the |0+〉 modes
and ηastigm/(kRm) for the |0−〉 mode. This difference creates the hyperfine splitting of the
ℓ = 0 modes described in the main text. For ℓ ≥ 1, the Hv+a operator has off-diagonal
elements that couple |ℓA±〉 to |ℓB±〉 in an asymmetric way; see Eqs. (4.91) and (4.92).
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Application of HBragg to the vector LG-modes yields

HBragg|ℓB±〉 = ±2C0

kz0
h(N ,

N +ℓ
2

) |(ℓ+2)A±〉 , (4.93)

HBragg|ℓA±〉 = ±2C0

kz0
h(N ,

N −ℓ
2

) |(ℓ−2)B±〉 . (4.94)

The ℓ = 1 case of Eq. (4.94) corresponds to HBragg|ℓA±〉 = ±C0(N +1)/(kz0)|ℓA±〉, if we
interpret the mode | − 1,B ,±〉 = |1A±〉. This creates the hyperfine splitting between the
1A+ and 1A− mode described in the main text. The ℓ= 0 case of Eqs. (4.93) and (4.94) are
identical as |0±〉= |0A±〉= |0B±〉.

To visualize the obtained results, we end by deriving the full H++ and H−− matrices
in the vector LG-mode basis for the N = 1 and N = 2 subspace. We quantify the relative
strength of the astigmatism with the parameter X = (8πkRm)ηastigm tanχ0/(2π) used in
Sec. 4.7.1 and add the two polarization-changing effects mentioned above. In the normal-
ized units used below, the on-diagonal elements of the spin-orbit coupling are −4(ℓ̃+1),
with ℓ̃= ℓ for B modes and ℓ̃=−ℓ for A modes. Furthermore, the anti-diagonal elements
associated with the anisotropic spin-orbit coupling are ∓4(ℓ̃+ 1)ηastigm, see Eqs. (4.91)
and (4.92). In the same units, the matrix elements of the Bragg correction are of the form
±Y h(N ,ns ), see Eqs. (4.93) and (4.94) and below Eq. (4.37) in the main text. Combination
of these contributions for the N = 1 group changes Eq. (4.41) into

(8πkRm)∆ν̃(N=1) =
( −6 X

X ∓8ηastigm 2±Y

)
(4.95)

where the upper signs describe the spectral matrix of the (1B+,1A+) modes and the lower
signs that of the (1B−,1A−) modes. The ±Y on-diagonal element describes the hyper-
fine splitting of the 1A± modes. The off-diagonal elements X = 2ηastigmk2w2

1 describe the
coupling between the vector LG-modes due to astigmatism. The additional term ∓8ηastigm

can create hyperfine splitting in strongly astigmatic cavities, but this effect is typically very
small when ηastigm ≪ 1 and X ≪ 2− (−6) = 8.

For the N = 2 group, the hyperfine splittings change Eq. (4.45) into

(8πkRm)∆ν̃(N=2) =
 −12

p
2X ±4ηastigmp

2X 2∓4ηastigm
p

2X ±p
2Y

∓12ηastigm
p

2X ±p
2Y 4

 , (4.96)

where the upper/lower signs refer to the (2B+,0+,2A+) and (2B−,0−,2A−) basis, re-
spectively. The ∓4ηastigm on-diagonal element describes the (typically small) hyperfine
splitting between the 0+ and 0−modes due to shape birefringence. The±p2Y off-diagonal
elements describe the (typically small) Bragg effect. These off-diagonal elements will only
produce a measurable hyperfine splitting if they are strong enough or if the cavity is strongly
astigmatic, where the mode mixing induced by the off-diagonal

p
2X element creates new

eigenmodes that are more sensitive to the Bragg effect and other, astigmatic, off-diagonal
elements of the spectral matrix. The Bragg-induced hyperfine splitting is expected to be
stronger for the 0 and 2A modes than for the 2B modes.


