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3
OBSERVATION OF MODE-MIXING IN THE

SPATIAL EIGENMODES OF AN OPTICAL

MICROCAVITY

We present a method to determine the complex coupling parameter of a two-coupled-modes
system by directly measuring the coupled eigenmodes rather than their eigenvalues. This
method is useful because mode-mixing can be observed even if frequency shifts can not be
measured. It also allows to determine the complex coupling parameter, from which we con-
clude that the observed coupling is mainly conservative. We observe mode-mixing in an
optical microcavity, where the modes couple primarily at the mirror surface, as confirmed
by AFM measurements. The presented method is general and can be applied to other systems
to measure mode coupling more accurately and to determine the nature of the coupling.

C. Koks and M. P. van Exter, Opt. Express 30, 700-706 (2022)

3.1. INTRODUCTION
Coupled harmonic oscillators occur in all fields of physics, including optics. The coupling
between harmonic oscillators or optical modes modifies the eigenmodes and shifts their
eigenvalues. We propose and demonstrate a method to directly observe the eigenmodes
in an optical microcavity. This is a sensitive method because it depends on the coupling
amplitude instead of the coupling power; it thus allows one to also measure mode-mixing
when it can not be measured in frequency shifts, for instance because the second coupled
mode is too weak. The complex amplitude also contains a phase, which reveals the nature
of the coupling.

Optical microcavities are versatile and flexible tools to enhance the interaction be-
tween light and matter [23, 64]. This enhancement, which is proportional to the cavity
finesse divided by the mode area, can be controlled in an open microcavity [34, 48, 59,
65, 66]. An open microcavity consists of two Distributed Bragg Reflectors (DBRs) with a
tunable cavity length. The radius of curvature of the DBR and the cavity length determine
the mode size, and thereby the light-matter interaction. Open microcavities can achieve
similar Purcell factors as monolithic cavities [27, 29].

Optical cavities support fundamental and higher-order transverse modes. At certain
cavity lengths, some modes become frequency degenerate and hence couple [31, 32, 49,
67, 68]. The coupling of optical modes is analogous to two pendulums connected by a
spring as depicted in Fig. 3.1. The modes of the pendulums hybridize and their eigenfre-
quencies shift. Instead of measuring this frequency shift, we directly look at the motion of
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the pendulums and determine the mode-mixing amplitude from their positions. The de-
tection of the optical eigenmodes is more subtle because we measure intensities instead
of electric fields.

In this chapter, we report the direct observation of mode-mixing in far-field mode pro-
files and from this determine the complex coupling parameter. This mode coupling is
measured in a close-to-ideal system with an (almost) rotational-symmetric cavity. The
coupling is generated by a mismatch between the mode profile and mirror shape [63] and
by nonparaxial effects [60, 69]. The two modes that couple are identified and described by
a generic model of two coupled harmonic oscillators. We find the nature of the coupling
to be conservative.

3.2. RESULTS
Figure 3.1 shows a preview of our results in the form of power-normalized CCD images
of two modes, close to frequency degeneracy. These images show the center intensity
is increased/decreased for positive/negative coupling. A positive coupling reduces the
effective mode area, theoretically up to a factor 2. Mode coupling has been proposed as a
means to increase the Purcell factor [70].

Figure 3.1: Transmission spectrum around coupling of the fundamental and 8th transverse mode. The insets
show CCD images of the reshaped fundamental mode together with an averaged cross-section through the cen-
ter. The fundamental mode is coupled to the N=8 mode (insets only show central part), which can be in phase
(right) or anti-phase (left). The N = 8 mode that couples has angular momentum l = 0 and radial mode number
p = 4 (see below).

The planar and concave mirrors of the microcavity are provided by Oxford HighQ and
have a transmittance of 3.4(2)×10−5 and 1.1(1)×10−4 at the wavelength λ= 633 nm, close
to the central wavelength of the DBR. The concave structures were fabricated with a fo-
cused ion beam [59] to produce craters with a radius R ≈ 24 µm and an indentation depth
D ≈ 0.6 µm.
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The mirrors are aligned to be parallel and almost in contact with each other. The mirror
distance is scanned over a total range of 15 µm using slip-stick motors and piezo stacks.
A HeNe laser (λ = 633 nm) is focused into the cavity with an f = 8 mm lens. The light
transmitted through the cavity is collected with another f = 8 mm lens to measure the
transmission spectrum and angular mode profiles.

Figure 3.1 shows the transmission spectrum with sharp high-finesse peaks at particular
cavity lengths. These lengths are determined by the resonance condition, given below. The
fundamental modes, indicated by N = 0 in Fig. 3.1, are also measured with a CCD camera.
We use the angular mode profiles of the fundamental modes to demonstrate the mode
coupling.

The paraxial eigenmodes in a rotational-symmetric cavity are Laguerre-Gaussian modes
ψpl , labeled by their radial mode number p and azimuthal mode number l [71]. The trans-
verse mode number N = 2p+|l | and longitudinal mode number q determine the resonant
cavity lengths L via the resonance condition kL = qπ+(N+1)χ, with wavevector k = 2π/λ.
The Gouy phase χ= sin−1(

p
(L+2LD )/R), with modal penetration depth LD [53], quanti-

fies the phase lag of the modes with respect to a plane wave. The theoretically predicted
opening angle of the fundamental mode is θ0 =λ/(πw0), with mode waist w0 and Rayleigh
range z0 = w2

0 k/2 = R sin
(
2χ

)
/2.

Figure 3.2a shows the measured transverse mode splitting as a function of cavity length.
We plot the difference in resonant cavity length ∆L between the fundamental (N = 0) and
the N th order mode to find the Gouy phase using the relation ∆L/(λ/2) = Nχ/π. A fit
of the data from the N = 1− 5 modes yields a radius R = 23.8(2) µm and modal pene-
tration depth LD = 0.03(2) µm. The first visible longitudinal mode is q = 3 because the
smallest cavity length is at least as large as the indentation depth D = 0.64(3) µm. The
higher-order transverse modes are easier to observe in short than in long cavities, where
they suffer from clipping loss. And the modes that we do observe are typically the high
ℓ modes, which experience less clipping loss. We could not observe the more interest-
ing ℓ = 0, p = N /2 modes around the frequency degenerate points to demonstrate the
expected avoided crossings with the fundamental (N = 0) mode (see below).

Figure 3.2b shows the opening angles θ0 of the fundamental modes. Each point in
the graph corresponds to a Gaussian fit of a CCD image. The mode profile is obtained
by imaging the far-field, rather than the near-field, and is hence less sensitive to imaging
aberration.

The general trend of the Gaussian fits in figure 3.2b follows the theoretical prediction
(green curve), which is based on the parameters extracted from 3.2a and contains no fit
parameters. The measured opening angle, however, strongly deviates from theory around
three cavity lengths, indicated by black vertical lines in Figs. 3.2ab. At these cavity lengths,
the mode profile deviates from a Gaussian and exhibits features of mode-mixing. This oc-
curs when the even transverse modes N = 8,6,4 cross the line ∆L/(λ/2) = 1 (see Fig. 3.2a)
and hence become frequency degenerate with the fundamental mode. The dominant mix-
ing with even modes suggests a rotational-symmetric coupling effect. The modest devi-
ation at the point indicated by q = 25 also indicates some mixing with N = 5 modes, but
this mixing is significantly smaller. Modest deviations are also observed for points at the
beginning, where the mode waist is somewhat smaller. The effective radius of curvature
is larger for these small modes, as confirmed by atomic force microscopy (AFM) measure-
ments (see Appendix 3.D.).



3

26
3. OBSERVATION OF MODE-MIXING IN THE SPATIAL EIGENMODES OF AN OPTICAL

MICROCAVITY

Figure 3.2: (a) Transverse mode splitting versus mirror position for all visible transverse modes. (b) The Gaussian
opening angle θ0 of the fundamental mode obtained from CCD images. The green line shows the theory for the
uncoupled system. (c) Mode-mixing ratio cp0 of modes p = 4,3, and 2 into the fundamental mode. The light-
blue points show the same data points on a vertical scale that is 5× enlarged.

Figure 3.3 explains how the mode mixing in Fig. 3.2c is quantified. Two angular mode
profiles are shown, which are observed at cavity lengths corresponding to q = 18 and q =
19. These profiles show rings at larger angles, which indicates that a Gaussian fit with only
the fundamental modeψ00 no longer suffices and a two-mode fit is required to determine
the contribution of the higher-order mode [68]. The l = 0 mode dominates the mixing, due
to the rotational symmetry of the cavity, such that N = 2p for the coupled modes. For the
two-mode fit, we use the amplitude profileψ= (αψ00+(−1)pβψp0), with a complex mixing
ratio cp0 = β/α and real-valued field-profiles ψ00 and ψp0. The phase lag between the
fundamental and the higher-order mode from the near-field to the far-field is incorporated
in the factor (−1)p , such that the amplitude of the coupling constant relates directly to the
field profiles at the flat mirror. If cp0 is positive and real-valued, the central part of the
fields interfere constructively at the flat mirror and destructively at the curved mirror.
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Figure 3.3: Rotation-averaged intensity of angular mode profile for (a) q=18 and (b) q=19. The dots show the
experimental results from the 2D intensity profiles shown as insets. The orange dashed curves show the un-
coupled Gaussian shapes. The smooth green curves show the fitted two-mode shapes with fit parameters (a)
c30 =−0.72(5) and (b) c30 = 0.17(1)

.

We first fit with complex mixing ratios cp0. These fits show that the real part of cp0 can
be accurately fitted and varies a lot around the frequency degenerate points, whereas the
imaginary part is far less accurate and more or less constant at a value between 0.2 and
0.3 (see Appendix 3.C.). The latter value might seem significant, but the mode profile only
changes with the square of imaginary part, so only 5% of power is affected by this effect.
From this observation, we conclude that the mode-mixing is mainly determined by the
real part of cp0. Next, we fit the intensity profiles in Fig. 3.2c with a real-valued mixing-
ratio cp0. The fit for the points q = 18 and 19 are shown in Fig. 3.3. The two-mode fit
|ψ00 − c30ψ30|2 yields mixing ratios c30 = −0.72(5) and 0.17(1) for modes q = 18 and 19,
respectively. These values are close to the values Re(c30) = −0.58(6) and 0.19(1) that we
obtained for the full complex fits.

Figure 3.2c shows the mixing ratio cp0 for all cavity lengths. To obtain these data, we
fit all CCD images with two-mode fits rather than Gaussian fits. The theoretical opening
angle θ0 from Fig. 3.2b is used to describe the uncoupled modes. Three regions in Fig.
3.2c are identified in which the fundamental mode ψ00 couples either with ψ40, ψ30 or
ψ20. Substantial mode-mixing is observed around the frequency degenerate points. The
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mode-mixing with ψ40 (N = 8) shown in Fig. 3.1 is slightly weaker than the mixing with
ψ30 shown in figure 3.3. The mixing with ψ20 (N = 4) around 11.3 µm shows signatures of
more than 2 modes mixing in the CCD images (figure not shown).

Coupled cavity modes behave like coupled harmonic oscillators (see Appendix 3.B.).
Two modes, continuously excited by an input field through a mirror with transmission t ,
reach an equilibrium described by(

i (ϕa −ϕ)+γa −Mab

−Mba i (ϕb −ϕ)+γb

)(
α

β

)
c
= t

(
α

β

)
i n

(3.1)

where the parameters in the matrix are dimensionless and describe variations per roundtrip.
The roundtrip phase of a plane wave is given by ϕ = 2kL, and the roundtrip phase of the
N th transverse eigenmode is ϕa/b = 2πq +2(N +1)χ(L). Note that each uncoupled mode
is resonant if ϕ=ϕa/b . The roundtrip losses γa/b determine the finesse of the uncoupled
modes via F =π/γ.

The two modes couple at the concave mirror, where a mismatch between the mir-
ror shape and the wavefront causes light to scatter from mode ψa into mode ψb and
vice versa. This coupling is quantified by a dimensionless coupling parameter Mab =〈
ψa

∣∣2i k∆z
∣∣ψb

〉
. The mirror-mode mismatch ∆z has two contributions. First, it contains

the deviations of the mirror from a paraboloid. Second, it contains nonparaxial effects,
which cause the wavefront to deviate from a paraboloid (see Appendix 3.D.). The first
contribution is dominant in our microcavities.

The coupled-harmonic-oscillator model is used to fit the data in Fig. 3.2c. The solution
to Eq. (3.1) predicts a mixing ratio cab = Mba

i∆ϕ+γab
for small enough coupling parameters

(see Appendix 3.B.). In our measurement, the detuning ∆ϕ = ϕb −ϕa is typically much
larger than γab = γb −γa , so that the latter can safely be neglected. A fit of the observed
mixing ratios cp0(∆ϕ) in the three regions gives M40 = 0.018(3)i , M30 = 0.031(4)i and M20 =
0.029(2)i .

The coupled-mode model also predicts a shift in resonance frequencies, so one ex-
pects to see avoided crossings around the frequency degenerate points in Fig. 3.2a. We
have not been able to quantify this effect in a reliable manner for two reasons. First and
most important, the finesse of the higher-order mode drops rapidly due to clipping losses
for larger cavity length towards and beyond the frequency degenerate point. Furthermore,
the input beam is matched better to the fundamental mode than to higher-order modes.
As a result, we could not directly observe the higher-order ℓ= 0, N = 2p modes around the
mode crossing and could only observe their mixing effect on the fundamental mode.

All three values of Mp0 are purely imaginary with a positive imaginary part. This is
experimentally evidenced by the strong interference effects in Fig. 3.3, which correspond
to real-valued mixing ratios cab . The coupling must hence be due to a wavefront mismatch
at the curved mirror, and not due to clipping losses at the edges of the mirror. The positive
sign for all three couplings suggests that the wavefront mismatch dominantly occurs at
the center of the curved mirror (see Appendix 3.D.).

To find the precise origin of the coupling, we have measured the shape of the concave
mirror with AFM imaging. We find a rotational-symmetric defect, which elevates the cen-
tral part of the concave mirror by 0.08(2) µm with respect to the ideal parabolic shape with
radius of curvature R = 23.8 µm (see Appendix 3.D.). The coupling parameters Mp0 calcu-
lated from this mirror height profile are M40 = 0.015i , M30 = 0.049i and M20 = 0.042i . The
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coupling M40 agrees reasonably well with the optical data, but the AFM-based estimations
of M30 and M20 are a factor 1.4 larger than the optical measurements. This discrepancy
can partially be assigned to a nonparaxial correction, which reduces the calculated mode
coupling for p = 2 by ∆M20 ≈ 0.004i , and to optically transparent height defects on the
micromirror which only shown up in AFM measurements.

Measurements on different cavities have shown the same mode-coupling effects (see
Appendix 3.E.). The magnitude of the coupling is similar to that of the cavity presented
here. Also the sign is similar, which suggests that the effect that causes the coupling is
similar. This shows that the effect is general and occurs in different systems.

3.3. CONCLUSION

In summary, we have accurately measured the intensity profiles and opening angles of the
fundamental mode in a microcavity as a function of cavity length. The general trend is
as expected, but strong deviations were observed around three cavity lengths, where the
fundamental mode couples with different higher-order modes. The coupling is conser-
vative and is attributed to a mismatch between the mirror shape and the wavefront. The
measured mode-mixing ratios near the frequency-degenerate points are substantial. This
can potentially reduce the mode area and increase the Purcell factor, theoretically up to a
factor 2 [70].

Rather than measuring an avoided crossing in the frequency spectrum, we observe
the mode coupling directly in the far-field mode profile. This is a sensitive and powerful
method, which directly yields the complex mixing ratio cab from which the complex cou-
pling parameter Mab is derived. We have not been able to measure frequency shifts or
dips in finesse from mode coupling. But we have been able to measure mode coupling
in the far-field mode profiles, since that effect scales linearly instead of quadratically with
the coupling parameter. The amplitude and phase of the coupling parameter provide in-
formation about the nature of the coupling.

3.A. ROUNDTRIP OPERATOR M
The evolution of the optical field in a cavity can be described by the roundtrip operator
M , which transforms the forward-propagating intra-cavity field |ψ+〉 into M |ψ+〉 after a
roundtrip [63]. If we expand the field |ψ+〉 = ∑

i ci |ψ+
i 〉 in a set of orthogonal basis states

|ψ+
i 〉, we can write |ψ+〉 as a vector and M as a matrix. Finding the resonance conditions

and eigenmodes of the cavity now boils down to finding the eigenvalues and eigenvectors
of the roundtrip matrix.

We consider a plano-concave cavity with a large smooth planar mirror and a smaller
concave mirror. The reflection at the large planar mirror results in eigenmodes with a flat
wavefront at this mirror and forward and backward propagating fields |ψ+〉 and |ψ−〉 that
are mirror imaged copies of each other. This symmetry allows one to write the round-
trip operator as a product M = PB , where P describes the roundtrip propagation and B
describes the reflection from the concave mirror.

Kleckner et al. [63] present an equation for the elements Bs,t of the reflection matrix,
which couple a forward-propagating field |ψ+

t 〉 into a backward-propagating field |ψ−
s 〉.



3

30
3. OBSERVATION OF MODE-MIXING IN THE SPATIAL EIGENMODES OF AN OPTICAL

MICROCAVITY

Unfortunately, their Eq. (5) is the complex conjugate of the correct expression

Bs,t = 〈ψ−
s |B |ψ+

t 〉 =
∫ rmax

0

∫ 2π

0
r dr dθ ψ−∗

s ψ+
t e−2i kzmirror , (3.2)

where the integral, in polar coordinates r and θ, runs over the finite extent of the mirror.
This equation simply states that the reflected field is a copy of the input field with a mod-
ified phase front and size, assuming perfect mirror reflection. The function zmirror(r,θ)
describes the shape of the concave mirror, where z > 0 points towards the planar mirror
such that zmirror(r,θ) = r 2/(2R) for a paraboloidal concave mirror with radius R > 0.

It is instructive to discuss some properties of the roundtrip operator M = r1r2 exp(i 2kL)B ,
where r1 and r2 are the reflection coefficients of the mirrors. The associated roundtrip
matrix is symmetric, i.e. Mi j = M j i , even if the roundtrip phase delays of the two modes
- hidden in the phases of ψ± - differs. The roundtrip operator is unitary and the system
is lossless (energy conserving) when mirror B is large (rmax →∞) and when both mirrors
are perfect reflectors (r1 = r2 = 1). Scattering is described by the off-diagonal elements
of M , which quantify the (energy-conserving) scattering between the different modes per
roundtrip.

The matrix elements of M and B depend on the choice of basis states. For our geom-
etry, the obvious choice is the set of Laguerre-Gaussian (LG) modes with waist w0 at the
plane mirror and wavefront radius Rmode = L + z2

0/L = R at the concave mirror (Rayleigh
range z0 = 1

2 kw 2
0 ). The modes in this set are

ψ±
pℓ(r,θ) = |ψpℓ(r )| exp

[
±i (

kr 2

2R
−χpℓ)+ iℓθ

]
, (3.3)

at z = L, where p and ℓ are the radial and angular quantum numbers that together label
the modes. The Gouy phase χpℓ = (2p +|ℓ| +1)χ0, with χ0 = arcsin

p
L/R = arctan(L/z0),

is the single-pass phase lag that LG-modes acquire with respect to a plane wave. The am-
plitude function |ψpℓ(r )| = Cpℓx |ℓ|/2Lℓp (x)exp(−x/2), with x = 2r 2/w2 and normalization
constant Cpℓ, describes the usual LG-mode profiles. The angular momentum ℓ does not
change in a coordinate system with fixed orientation.
Next, we will calculate the roundtrip matrix for a rotational-symmetric cavity, where ℓ is
conserved, with r1 = r2 ≈ 1. The on-diagonal elements are

Maa = exp
(
2i kL−2iχa

)∫ rmax

0
πdr 2 |ψ+

a (r )|2 e−2i k∆z(r )

≈ exp
(
2i kL−2iχa −2i∆χa

)×(
1−

∫ rmax

0
πdr 2 2k2[∆z(r )]2 |ψ+

a (r )|2 −
∫ ∞

rmax

πdr 2 |ψ+
a (r )|2

)
, (3.4)

where∆z = zmirror−zmode. The first equation combines Eq. (3.2) with M = exp(i 2kL)B and
with the Gouy phase lag χa of the paraxial modes. The second equation is based on the
Taylor expansion exp(−2i k∆z) ≈ 1−2i k∆z −2k2[∆z]2. The imaginary-valued term in this
expansion results in a shift ∆χa of the resonance condition. The quadratic term in this
expansion quantifies the scattering loss induced by height variations. The final term in
Eq. (3.4) quantifies the clipping loss at a mirror of radius rmax . Both losses are amplitude
losses. The middle term in Eq. (3.4) thus yields the familiar expression (4πσ/λ)2 for the
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intensity loss, where σ2 = 〈∆z2〉 is the mean-square height difference between mirror and
phase front.

The coupling between modes a and b is described by the off-diagonal element

Mab = Mba =
∫ rmax

0
πdr 2 |ψ+

a (r )ψ+
b (r )|e−2i k∆z(r ) ≈

−
∫ ∞

rmax

πdr 2 |ψ+
a (r )ψ+

b (r )|−2i k
∫ rmax

0
πdr 2∆z(r ) |ψ+

a (r )ψ+
b (r )| , (3.5)

where ∆z = zmirror − (za + zb)/2 and where we again assumed k∆z ≪ 1. Modes with differ-
ent angular momentum ℓ do not couple in a rotational-symmetric cavity.

We distinguish between two forms of coupling: dissipative and conservative. Dissi-
pate coupling is associated with energy loss and, in our system, originates from clipping
at the mirror. It is described by the first term in Eq. (3.5) and produces a real-valued Mab .
Conservative coupling is energy conserving and, in our system, originates from deforma-
tions of the wavefront upon reflection. It is described by the second term in Eq. (3.5) and
produces an imaginary-valued Mab .

Equations (3.4) and (3.5) show that the coupling Mab is linear in k∆z, whereas the
scattering loss in Maa is quadratic in k∆z. The relation between these two quantities
is as follows. The relative intensity loss by scattering from mode a to mode b is |Mba |2
per roundtrip, making the scattering loss to all discrete modes equal to

∑
b |Mba |2. This

sum must be equal to the total scattering loss, 1 − M 2
aa , from mode a. This relation is

a consequence of the conservative character of the operator M in the large-mirror-limit
(rmax →∞).

For our cavity with large concave mirror, dissipative coupling is expected to be small
and Mab will thus be (mainly) imaginary-valued and described by the second term in Eq.
(3.5). To support this statement we calculate the expected clipping losses for three modes
at a typical cavity length L = L3 = 5.8 µm, where the p = 0 and p = 3 modes are frequency
degenerate. For this calculation we also need the dimensions of the concave mirror (radius
of curvature R = 23.8µm, radius rmax = 5.0µm) and the calculated size of the fundamental
mode wz = 1.65 µm, with I (r ) ∝ exp

(−2r 2/w2
z

)
, at this mirror. The calculated (amplitude)

clipping loss of the fundamental (p = ℓ= 0) mode is order 10−8 and hence negligible. The
calculated (amplitude) clipping loss of the (p = 3,ℓ = 0) mode is 6× 10−3, which limits
its modal finesse to F ≈ 250, to be compared with an observed finesse of F ≈ 5000 for the
fundamental mode. But even a loss γb = 6×10−3 is relatively small as compared to a typical
detuning ϕa −ϕb and can hence be neglected (see below).

We end this section with a disclaimer. The description presented above is incomplete
because the LG-modes are only the paraxial solutions of the full propagation. Three non-
paraxial corrections should be added to the propagator P when the opening angles are
too large, i.e. when the modes are compact (w0 ≈ λ) [60, 69, 72, 73]. These nonparaxial
corrections lead to small modifications of the resonance conditions and to an extra cou-
pling between the paraxial modes. The two scalar nonparaxial corrections, which are the
only ones we will consider, will modify the modal phase front from zmode = r 2/(2R) to
zmode ≈ (1−δ)r 2/(2R)+br 4/R3 with positive δ≪ 1. For typical cavity lengths not too close
to concentric, b < 0 and the nonparaxial phase front is “flatter" than paraboloidal. The
virtual absence of higher-order terms like r 6 and r 8 (only even orders due to rotation sym-
metry) limits the coupling range. More precisely, nonparaxial effects can only couple the
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fundamental p = 0 mode to the p = 1 and p = 2 higher-order modes. For a paraboloidal
reference mirror, the predicted nonparaxial coupling between the p = 0 and p = 2 mode is

Mba = Mab =− 3i

2kR

(
R − 4

3 L

R −L

)
. (3.6)

For a cavity with R = 23.8 µm we calculate M20 = −0.004 i for L = L2 = 11.3 µm. For
our mirrors, which are “steeper than paraboloidal", this extra nonparaxial contribution
increases the total coupling between the ℓ= 0 modes, but only slightly.

3.B. DYNAMIC OPERATOR K AND COUPLED MODES
Resonances in optical cavities behave like harmonic oscillators [51, 74]. They have a Lorentzian
spectrum under continuous excitation and the resonant field decays exponentially after
transient excitation. These resonances are determined by the condition that the intra-
cavity field |ψi 〉 reproduces itself after a roundtrip, such that M |ψi 〉 = exp

[
i (ϕ−ϕi )−γi

]|ψi 〉
where ϕ = 2kL and where ϕi and γi determine the resonance condition and damping of
the mode.

Below, we will demonstrate the equivalence between cavity resonances and harmonic
oscillators by treating the optical cavity as a multi-transverse-mode Fabry-Perot interfer-
ometer. But we will start from a more general perspective. The dynamics of any multi-
mode system can be described by its dynamic operator K , which is related to our roundtrip
operation via the relation M ≡ exp

[
i (ϕ−K )

]
. This rewrite is useful because the relevant

dynamics is determined by (1−M) ≈ i (K −ϕ) instead of M (see below) and because the
expansion highlights the relevant, close-to-resonance, modes. The dynamic matrix can
be written as K =Ω− iΓ, with Hermitian matricesΩ and Γ, whereΩ describes the conser-
vative dynamics while Γ describes the dissipative dynamics [74]. In the absence of losses,
the roundtrip operator M = exp(−i K ) = exp(−iΩ) is unitary (energy-conserving ) and the
dynamic matrix K is Hermitian. Just like in quantum mechanics, where the evolution op-
erator U = exp(−i H t/ħ) is unitary and the Hamiltonian H is Hermitian.

As an aside, we note that this general approach has among others been used to de-
scribe the dynamics of piano strings as a set of coupled harmonic oscillators [75]. The
description of that system also involves concepts like the dynamics matrix K and conser-
vative versus dissipative coupling, which Weinreich [75] calls reactive and resistive cou-
pling, in analogy with electronics.

Next, we treat the optical cavity as a multi-transverse-mode Fabry-Perot interferome-
ter. In a typical experiment, we illuminate the cavity with an input field |ψi n〉 and observe
the output field |ψout 〉 as a function of cavity length or optical frequency. The output field
can be calculated by repeated operation of the roundtrip operator and summation over
the infinite series of reflections to find

[1−M ] |ψout 〉 ≈ i (K −ϕ)|ψout 〉 = t1t2|ψi n〉 . (3.7)

For the single-mode case, M and K are scalars and the solution is trivial. We then write
K = ϕi − iγi , to find that the output field indeed varies as a complex Lorentzian, i.e. as
∝ 1/[γi + i (ϕi −ϕ)], where ϕi is the roundtrip phase lag of mode i and (K −ϕ) is taken
modulo 2π. The modal loss γi = γr +∆γi combines the reflection loss γr ≈ 1− r1r2 with
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potential extra loss ∆γi , The resonance will repeat itself when ϕ = 2kL changes by 2π.
The ratio between this repetition and the FWHM resonance width 2γi defines the modal
finesse Fi =π/γi .

Next, we analyze the case for two close-to-resonance modes a and b, which together
define the field |ψ〉 =α|ψa〉+β|ψb〉, and write Eq. (3.7) as(

i (ϕa −ϕ)+γa −Mab

−Mba i (ϕb −ϕ)+γb

)(
α

β

)
out

= t1t2

(
α

β

)
i n

. (3.8)

Equation (3.8) describes the physics of two coupled harmonic oscillators.
We solve Eq. (3.8) for the case of small mixing Mab and dominant excitation of the

less-lossy mode (αi n ≫ βi n with γa < γb). The off-diagonal element will then admix a
small fraction (

β

α

)
out

≈ Mba

γba + i∆ϕ
, (3.9)

of mode b into mode a, where ∆ϕ = ϕb −ϕa is the detuning between the resonances
(= twice the difference of their single-pass Gouy phases) and γba = γb −γa is the excess
roundtrip loss of mode b. The associated change ∆Λa in the eigenvalue iϕa +γa +∆Λa of
the mixed (dominantly a) mode is

∆Λa ≈ M 2
ba

γba + i∆ϕ
, (3.10)

as Mab = Mba . At large detuning, |∆ϕ| > γba , the change ∆Λa is mainly imaginary-valued.
For our case of conservative coupling, with imaginary-valued Mab = Mba , the mixing frac-
tion (β/α)out is mainly real-valued and the imaginary-valued change in ∆Λa results in a
frequency shift of the two resonance away from each other (avoided crossing). At smaller
detuning, ∆Λa also acquires a real-valued component, which corresponds to a change in
loss.

3.C. COMPLEX FITTING MODE MIXING RATIO
The mixing ratios cp0 = β/α shown in Fig. 3.2c assumed them to be real-valued. It was
argued that the imaginary parts could be set to 0, because they hardly contribute to mode
mixing. To support this claim, Fig. 3.4 shows the complex mixing ratios obtained from full
complex fits. The real part clearly shows avoided crossings, in a similar way as in figure 3.2c
in the main text. The imaginary part, however, stays more or less constant at a value of 0.2
to 0.3, corresponding to a 5% contribution in power. If the imaginary part would strongly
contribute to the mode-mixing, one would expect some divergence around the frequency
degenerate points. Since this does not occur, we conclude that imaginary-valued mixing
is virtually absent.

Figure 3.4 also shows that the real part of cp0 = β/α can be fitted far more accurately
than the imaginary part. This is because real-valued mixing results in interference whereas
imaginary-valued mixing results in an incoherent background. The error bars are obtained
from a χ2 optimization, where we estimate the real error to be 30 times larger than the
computer value, because the real error should be based on the mode structure whereas
the computer value is based on the number of pixels in the CCD image. This error estimate
is consistent with the shot-to-shot variations observed in multiple measurements.
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Figure 3.4: Real and imaginary parts of the fitted mode mixing ratios. The real parts show prominent mixing with
the N = 8,6,4 modes. The imaginary parts are more or less constant.

3.D. AFM DATA YIELD MIRROR PROFILE AND COUPLING PARAM-
ETER
We have measured the profile of our concave mirror with atomic force microscopy (AFM).
Figure 3.5a shows that our mirror has a diameter d ≈ 10 µm and a mirror indentation
depth D = 0.64(3) µm. It also shows that the central region r < 2.5 µm is approximately
rotationally symmetric and that deformations mainly occur for r > 2.5 µm, in particular in
the lower region of the figure. These deformations are most likely due to dust and might
not even affect the optical data much.
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Figure 3.5: (a) Height profile of our concave mirror as measured with AFM. (b) Height difference∆z = z−r 2/(2R)
of mirror relative to reference paraboloid. The red cross indicates the center of this reference.

Figure 3.5b shows the area in the white box of figure 3.5a, in an expanded view and
after subtraction of a reference paraboloid zref = r 2/(2R) with R = 23.8 µm from the height
profile. This figure shows that the central region of the mirror sticks out, which makes
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the effective radius of curvature at the center larger than the reference curvature. It also
highlights the deformations that we mentioned earlier.
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Figure 3.6: Rotation-averaged mirror height profile. The blue curve show the AFM measurements. The orange
curve shows a reference parabola z = r 2/(2R) with R = 23.8 µm. The green curve shows a spherical reference
surface with the same R.
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Figure 3.7: Height difference ∆z between the rotational-average AFM data and the (R = 23.8 µm) reference
parabola. The red, purple, and green curves show the mode profile of the fundamental modes (dashed) and
the nearly-degenerate higher-order (p = 4,3, and 2) modes around the three degenerate cavity lengths.

Figure 3.6 show the rotational-average mirror height profile of the AFM data in blue.
It also shows the height profile of a reference parabola (orange) and a reference circle
(green), with the same radius of curvature R = 23.8 µm as deduced from the average trans-
verse mode splittings in the optical transmission spectra (Fig. 3.2a in main text). The AFM
data show that the mirror is much flatter than the reference in the center and steeper than
the reference towards the edges.

Figure 3.7 compares the rotational-average height profile of the mirror with the (R =
23.8 µm) reference parabola. It shows (i) the height difference ∆z(r ) = zmirror(r )− zref(r )
in blue and (ii) the amplitude profiles ψ(r ) of the fundamental mode (dashed) and the
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nearly-degenerate p = 4,3 or 2 modes (solid) in red, purple, and green. Note how the
width wz of the fundamental mode at the concave mirror increases from p = 4 to 3 to 2
because this width wz (L) increases monotonically with cavity length L. The mode profiles
are calculated at the resonance lengths L4 = 3.3 µm, L3 = 5.8 µm, and L4 = 11.3 µm.

The data depicted in Fig. 3.7 allows one to calculate the coupling between the depicted
LG-modes, using the equation

Mp0 = (−1)× 〈
ψp0

∣∣−2i k∆z
∣∣ψ00

〉= ∫ ∞

0
d x 2i k∆z(x)Lp (x)exp(−x) , (3.11)

where x ≡ 2r 2/w2
z . The factor (−1)× accounts for the different phase delay that the modes

experience upon propagation from the flat to the curved mirror. By defining the height
difference ∆z = zmirror − zref with respect to a reference paraboloid, we implicitly assume
that the modal phase fronts have this paraboloidal shape; this assumption proves to be
pretty good. Inspection of Fig. 3.7 shows that the positive/negative mirror deformation∆z
generally overlaps with the positive/negative part of the higher-order mode. This suggests
a positive coupling parameter Mp0 since the fundamental mode is positive over the full
range of the mirror. The calculated coupling parameters are M40/i = 0.015, M30/i = 0.049,
and M20/i = 0.042.

The analysis presented above was performed for LG-modes that are defined by the
condition that their radius of curvature is R = 23.8 µm at the concave mirror. A disad-
vantage of this “fixed-radius" criterion is that the curvature of the fundamental mode is
typically not perfectly matched to the curvature of the mirror. The fundamental matrix
element M00 is therefore not as large as it can be if that radius of curvature could be freely
probed.

Alternatively, we can choose the radius of curvature of the fundamental mode based
on the criterion that it should provide the best match over the modal region. This “best-
match" criterion translates in a two-parameter fit for the best paraboloid zref(x) = a +bx
in the new coordinate x ≡ 2r 2/w2

z . This fit minimizes the rms height difference σ defined
by

σ2 = 〈
ψ00

∣∣∆z2∣∣ψ00
〉= ∫ ∞

0
d x [∆z(x)]2 exp(−x) . (3.12)

using linear regression. The fit parameter b yields the effective radius Reff of the “best-
match" fundamental mode. The calculated effective radii at the three degenerate points
are Reff = 27.0 µm for p = 4, Reff = 24.8 µm for p = 3 and Reff = 22.7 µm for p = 2. This is
consistent with the earlier observation that the mirror height profile is “flatter at the center
and steeper towards the edges". It is also consistent with the value R = 23.8 µm deduced
from fits of the optical transmission spectra.

The “best-match" criterion yields a new beam size wz and a new set of LG-modes.
For this new set of LG modes, we again use Eq. (4.9) to calculate the coupling to find:
M40/i = 0.015, M30/i = 0.052 and M20/i = 0.053. These values are different from the ones
presented earlier, but not dramatically different. The rms fluctuations in the height pro-
file are σ ≈ 4 nm, which is significantly more than the value σ ≈ 2 nm expected from the
measured Finesse around 2000. A possible explanation is that the cavity reshapes the fun-
damental mode in a more optimal way than we expect from the current theory.
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3.E. REPEATED MEASUREMENTS ON OTHER MICROCAVITIES
We have repeated the measurements of mode coupling with other microcavities. We present
the full analysis of one, to show that the behavior is general for the cavities with this fab-
rication method and radius of curvature. This mirror is from a different batch than the
mirror presented in the main text.

The radius of curvature, R, and penetration depth, LD , of the mirror are again deter-
mined from the transverse-mode spectrum. The distance between the fundamental and
higher-order transverse mode is plotted in Fig. 3.8, which resembles Fig. 3.2a in the main
text. The fit yields R = 17.4(1) µm and LD = 0.04(3) µm.

The AFM measurement of this mirror (not shown) indicates that its indentation depth
D ≈ 0.9 µm is larger than the value D ≈ 0.6 µm reported for the mirror in the main text.
The AFM data also shows that this second mirror is not as clean and has several defects as
high as 0.5 µm next to the mirror. In practice, this means that the smallest cavity length
we can reach has a longitudinal mode number q = 5 instead of q = 3 in the main text. The
measured finesse of this microcavity is also lower and the mirror coatings have a higher
transmission.

Figure 3.9 shows the measured angular width of the fundamental mode, deduced from
single-Gaussian fits. The green line shows the theoretical behavior of the uncoupled fun-
damental modes; the fitted values are increased by 6%, to correct an error in the mag-
nification. The data follows the theoretical curve throughout the full cavity length, but
strongly deviates at the three points of frequency degeneracy. These deviations have the
same form as the ones presented in the main text. This means that the coupling has the
same nature, and that the effect occurs for different micromirrors.

Next, we use a two-mode fit for the CCD images to find the mode mixing cp0, shown
in figure 3.10. The complex coupling constant is fitted, which yield M30/i = 0.021(2) and
M20/i = 0.028(1). These values are of the same order as those in the main text, where we
found M30/i = 0.031(4) and M20/i = 0.029(2) for a different cavity.

Finally we have measured the finesse of the fundamental modes. Figure 3.11 shows
that the finesse decreases gradually with cavity length and shows prominent features around
the degenerate points labeled N = 4 and N = 3. The arrow in Fig. 3.11 points at a signif-
icant drop in finesse around the coupling with the N = 4 (p = 2) transverse modes. The
observed asymmetry of this drop is consistent with the positive sign of coupling deduced
from Fig. 3.10; at positive detuning, the size of the mode decreases at the flat mirror and
increases at the curved mirror, which results in more clipping losses and a reduced finesse.
The finesses around the N = 6 and N = 8 degenerate points show no clear drop, indicating
that mirror boundaries play no role here. The asymmetry that we observed around the
N = 3 degenerate point is outside the scope of this chapter.
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Figure 3.8: Transverse mode splitting versus mirror position for all transverse modes we observed.
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Figure 3.9: The Gaussian opening angle θ0 of the fundamental mode obtained from CCD images. The green line
shows the theory for the uncoupled system with a radius of curvature R = 17.4 µm. All data points are shifted up
by 6%, to correct for a misalignment error in the imaging setup.
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Figure 3.10: Mode mixing cp0 = β/α of modes p = 4,3, and 2 into the fundamental mode. The p = 3 (green) and
p = 2 (red) mixing are fitted to find their complex coupling parameters Mp0. The p = 4 mixing, around L = 2.4µm
is not prominent enough to allow such fitting.
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Figure 3.11: Finesse as a function of cavity length. The vertical lines indicate the points of frequency degeneracy,
with the even modes in orange (from left to right N=8, 6, 4) and odd modes in green (N=7, 5, 3).




