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2
MICROCAVITY RESONANCE CONDITION,

QUALITY FACTOR, AND MODE VOLUME ARE

DETERMINED BY DIFFERENT PENETRATION

DEPTHS

The penetration depth in a Distributed Bragg Reflector (DBR) co-determines the resonance
condition, quality factor, and mode volume of DBR-based microcavities. Recent studies
have used an incomplete description of the penetration depth and incorrect equations. We
present a complete analysis that involves three different penetration depths. We also present
a series of experiments on microcavities to accurately determine the frequency and modal
penetration depth of our DBRs and compare these results with theoretical predictions. The
obtained results are relevant for anyone who models a DBR as an effective hard mirror if
lengths of the order of the wavelength are relevant, as is the case for microcavities.

C. Koks and M. P. van Exter, Opt. Express 29, 6879-6889 (2021)

2.1. INTRODUCTION
Small mode volume cavities have been used for numerous applications such as quantum
information processing with individual atoms [42] and lab-on-a-chip sensors [44]. These
microcavities typically consist of two highly reflective Distributed Bragg Reflectors (DBR)
which can trap light in a small mode volume and thereby increase the light-matter inter-
action. When microcavities get smaller [45] the penetration depth in the mirrors becomes
important. DBRs are also used in many other applications [46] and even exist in nature, in
the form of intricate photonic crystals [47].

DBR-based microcavities are often modeled as cavities with two hard mirrors spaced
by a cavity length that is extended by the penetration depths of the DBRs. This model is
then used to calculate the resonance condition, quality factor and mode volume. However,
the optical penetration in the DBRs is more subtle than this simple model suggests. In the
literature, the penetration depth in DBRs is ambiguously defined due to this simplified
model [30–32, 44, 48–50].

This chapter will solve these issues by introducing multiple (frequency, modal, and
phase) penetration depths and by explaining when these are relevant. The first part of
the chapter presents a theoretical description that aims to provide physical insight into
the origin of the various penetration depths. It also links them to the optical properties of
a microcavity. The second part presents measurements of the penetration depth in two
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types of microcavities. Measurements on the frequency tuning of the modes in a planar
cavity yield the frequency penetration depth. Measurements on the transverse mode split-
ting in a plano-concave cavity yield the modal penetration depth. We compare these two
results with each other and with theoretical predictions.

2.2. OPTICAL PENETRATION IN DBRS
We consider the reflection of light from a thick, lossless, planar DBR. The alternating layers
have refractive indices nL and nH for the low and high index material and layer thicknesses
dL and dH such that nLdL = nH dH = λc /4 for vacuum resonance wavelength λc . Light is
incident from a medium with index ni n (typically air with ni n = 1).

The most prominent feature of DBRs is the existence of a stopband, or bandgap, which
is a frequency range where light cannot propagate and where a thick lossless DBR reflects
all incident light. The full spectral width of the stopband is [51, 52]

∆ωg ap =ωc
4

π
arcsin(

nH −nL

nH +nL
) ≈ωc

2

π

∆n

n
(2.1)

where ωc = 2πc/λc is the resonance frequency. The approximation is valid for small to
modest index contrast, where ∆n ≡ nH −nL ≪ n with average index n = (nL +nH )/2. [52]

At resonance, in the center of the stopband, the forward-propagating field decays ex-
ponentially into the DBR, such that its amplitude decreases by a factor nL/nH per DBR
pair [51, 52]. The associated 1/e penetration depth L I of the optical intensity is

L I = 1

2
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4nL
+ λc

4nH
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/ln
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nH

nL

)
≈ λc

4∆n
. (2.2)

Note that the division symbol in the central expression in Eq. (2.2) was accidentally for-
gotten in Eq. (2) of our paper [53]. The approximation again applies to the limit of small
index contrast, ∆n ≪ n.

It seems natural to call L I “the penetration depth” of the DBR and to model the DBR as
an effective hard mirror positioned at a distance L I behind the front surface of the DBR.
But this is wrong for several reasons. First and most important, there is no single posi-
tion at which a hard mirror can mimic all reflection properties of the DBR simultaneously.
Below we will argue that one actually needs three different penetration depths to mimic
either (i) the reflection phase, or (ii) the time delay upon reflection, or (iii) the imaging of a
focused beam upon reflection. Second, these penetration depths depend on the refractive
index ni n of the incident medium. Finally, they also depend on whether the DBR starts
with a high-index layer (H-DBR) or a low-index layer (L-DBR). Only if one considers the
time delay upon reflection from a H-DBR does one obtain the easy “natural” result Lτ = L I

(see below).
Figure 2.1 shows the calculated frequency dependence of the reflectivity |r |2 and re-

flection phase ϕ at normal incidence for a typical DBR, similar to the ones used in our
experiments. This figure shows that the reflectivity is approximately constant inside the
stopband. The interesting physics is contained in the reflection phase ϕ(ω), which is de-
fined relative to the front facet and scales as ϕ∝ (ω−ωc ). The insets show the physical
origin of this phase change: the node of the standing wave, which resides at the DBR sur-
face at resonance, shifts into (ϕ > 0) or out of (ϕ < 0) the DBR at frequencies ω > ωc and
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ω<ωc , respectively. Note the deviations from this linear behavior towards the edges of the
stopband, where the maximum shift is approximately half a layer thickness for an H-BDR
(see Appendix 2.A.).
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Figure 2.1: Calculated reflectivity (blue) and reflection phase (red) of DBR versus frequency, normalized to the
center frequency. The DBR starts and ends with high-index material, comprises 31 layers with nL = 1.46 and
nH = 2.09, is deposited on a nL substrate and embedded in air (ni n = 1). The insets sketch how the nodes in the
electric field shift into/out of the DBR when the frequency is higher/lower than the center frequency.

To describe the reflection of a general (non-monochromatic non-planar) beam of light,
we decompose the incident light in its Fourier components. We label these components
by their frequency ω and transverse wavevector kρ = ki n sinθi n , where ki n = ni nk0 is the
wavevector in the incident medium and k0 = 2π/λ0 and λ0 are the wavevector and wave-
length in vacuum. Each monochromatic plane-wave component will reflect with its own
reflection amplitude r (ω,kρ)exp

{
[iϕ(ω,kρ)]

}
.

Inside the stopband, r (ω,kρ) is approximately constant and equal to rc ≈±1. The op-
tical field has an anti-node (rc = 1) at the front facet for a L-DBR and a node (rc =−1) for
a H-DBR. For frequencies near ωc and small incident angles, the reflection phase ϕ(ω,kρ)
can be approximated by [54–56]

ϕ(ω,kρ) = 2ki nLϕ ≈ ∂ϕ

∂ω
(ω−ωc )+ 1

2

∂2ϕ

∂k2
ρ

k2
ρ

= 2(ki n −kc )Lτ−
k2
ρ

ki n
LD .

(2.3)

The approximation is a Taylor expansion, where ∂ϕ/∂kρ = 0 due to mirror symmetry.
The final equation defines the frequency penetration depth Lτ and the modal penetra-
tion depth LD in terms of derivations of the reflection phase. We prefer to call Lτ the fre-



2

10
2. MICROCAVITY RESONANCE CONDITION, QUALITY FACTOR, AND MODE VOLUME ARE

DETERMINED BY DIFFERENT PENETRATION DEPTHS

quency penetration depth, whereas others have called it the phase penetration depth [54],
because our name links Lτ with frequency tuning (see below).

The frequency penetration depth Lτ = cτ/(2ni n) quantifies the group delay τ= ∂ϕ/∂ω
that an optical pulse experiences upon reflection from a DBR when its optical spectrum
fits well within the stopband. A hard mirror positioned at a distance Lτ in the incident
medium will produce the same group delay and will hence mimic the time/frequency
properties of the DBR.

The modal penetration depth LD quantifies the imaging properties of the DBR reflec-
tion. A hard mirror positioned at a distance LD in the incident medium will reflect light
with the same angle dependence and will hence produce the same imaging as the DBR.
Note that the reflection of the DBR depends on angle because the center of the stopband
shifts to higher frequencies at non-zero angles of incidence as ωc (kρ)−ωc (kρ = 0) ∝ k2

ρ .

This dependence results in the relation LD /Lτ =β= n2
i n(n−2

L +n−2
H )/2 ≈ (ni n/n)2 [54]. This

relation is intuitive, because Lτ is associated with a time delay, which scales with n/ni n ,
and LD is associated with an imaging shift, which scales with ni n/n (see Appendix 2.C.).
With the factor β we can rewrite the phase penetration in Eq. (2.3) depth in terms of Lτ,

Lϕ =
(

ki n −kc

ki n
− 1

2
βθ2

i n

)
Lτ. (2.4)

This equation shows that small angles θi n only have a small impact on Lϕ, because β is
typically small for ni n = 1.

The phase penetration depth Lϕ = ϕ/(2ki n) that we define in Eq. (2.3) is new in liter-
ature. We explicitly define this quantity because Lϕ determines the resonance condition
of DBR-based microcavities, rather than Lτ or LD ; see Eqs. (2.6) and (2.8) below. Lϕ also
determines the locations of the anti-nodes in the microcavities, where light-matter cou-
pling is maximal. Equation (2.4) shows that Lϕ(ω)/Lτ = (ω−ωc )/ω at normal incidence for
ni n = 1.

Babic et al. [55] have calculated the frequency penetration depth Lτ = cτ/(2ni n), using
transfer matrices. Although Babic et al. only analyzed so-called “matched DBRs”, where
all reflections interfere constructively, their results

τ=
(

ni n

nH

)(
nH

nH −nL

)(
π

ωc

)
(H-DBR) or τ=

(
nL

ni n

)(
nH

nH −nL

)(
π

ωc

)
(L-DBR) (2.5)

also apply to the general case. The delay time τ is different for high-index and low-index
DBRs due to the interference of the reflection from the first interface of the DBR with the
reflections from the bulk (see Appendix 2.B.). We have checked both equations (2.15) with
numerical calculations based on transfer matrices (see Appendix 2.A.). Brovelli et al. [57]
have performed similar calculations, using coupled-mode theory for DBRs with small in-
dex contrast. Their results agree with the ones obtained by Babic [55] in the limit of small
index contrast (see Supplement 2.B.).

We like to finish this section by noting that the theory described above is based on
several assumptions. First of all, the truncated Taylor expansion in Eq. (2.3) is valid only
for small frequency detunings and small angles. Second, we have neglected polarization
effects. These will play a role at larger angles where the Fresnel reflection coefficients de-
pend on polarization. As a result, the spectral width of the stopband will increase for s-
polarized light and decrease for p-polarized light. Finally, we have neglected dispersion
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effects. For our DBRs and wavelength, the ratio between the group and phase refractive
index is ≈ 1.013 for the SiO2 layers and ≈ 1.058 for the Ta2O5 layers [58]. The combined ef-
fect of dispersion, as a weighted average of these values, results in a modest 3 % reduction
of the spectral width of the stopband and an associated 3 % increase of the penetration
depth. We have neglected this effect in most of our analysis.

CONSEQUENCES FOR CAVITY RESONANCES
The resonances of any optical cavity are determined by the condition that the round-trip
phase delay is a multiple of 2π. For a cavity with two planar DBRs illuminated at normal
incidence this results in

2ki nLcav +ϕ1 +ϕ2 = ni nk0(2Lcav +2Lϕ1 +2Lϕ2) = q 2π (2.6)

where Lcav is the distance between the front facets of the two DBRs and ϕ1 and ϕ2 are the
reflection phases of the two DBRs (note that ϕ= 2ki nLϕ). The longitudinal mode number
q counts the number of half wavelengths in the standing wave pattern between the mir-
rors. This number q is integer when both mirrors are either H-DBR or L-DBR and hence
both have an anti-node or node close to their front facet. For cavities with one H-DBR and
one L-DBR we need to replace q by q + 1

2 to keep q integer and still account for the sign
difference in the reflection rc =±1 of the two mirrors.

Now suppose we change the cavity length and measure the resulting change in reso-
nance frequency/wavelength at fixed q . We calculate this change by substituting Lcav (k0)
in Eq. (2.6) and taking the derivative of this equation with respect to k0 to arrive at equa-
tion (2.7). In the process we use dϕ/dk0 = 2Lτ/ni n in the left equation (2.6) or Lϕ(ω)/Lτ ≈
(ω−ωc )/ω in the middle equation (2.6). When we rewrite the end result in terms of λ we
find a normalized slope

λdLcav (λ)/dλ= Lcav +Lτ1 +Lτ2 , (2.7)

This equation shows that the relevant penetration depth for a frequency scan is Lτ and not
Lϕ. The combination Lcav +Lτ1 +Lτ2 also determines the quality factor Q of the optical
resonances and the associated cavity loss rate ω0/Q.

The resonance condition of plano-concave cavities differs from that of planar cavities
by the so-called Gouy phase. For planar-concave cavities with hard mirrors, the resonant
modes are Hermite-Gaussian TEMn,m modes with flat wavefronts at the planar mirror and
matched curved wavefronts at the concave mirror. Upon propagation, these modes expe-
rience a phase lag relative to a plane wave. This phase lag is proportional to (n+m+1) and
to the Gouy phase χGouy = arcsin

(p
L/R

)
of the fundamental TEM00 mode, where L and R

are the cavity length and mirror radius.
The resonant optical modes of a planar-concave cavity with DBR mirrors are also TEMn,m

modes. Their (round-trip) resonance condition

ni nk0(Lcav +Lϕ1 +Lϕ2)− (n +m +1)χGouy = qπ , (2.8)

again includes the phase penetration depth Lϕ of both mirrors. It also includes a Gouy
phase that is now given by χGouy = arcsin

(p
(Lcav +2LD )/R

)
. Note that the relevant pen-

etration depth in this equation is LD , because the Gouy phase is associated with phase
fronts and thereby linked to imaging properties. We assume that the value of LD for the
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curved mirror and the flat mirror are the same, and therefore use 2LD . The radius of curva-
ture R is an effective radius, which includes all small variations of the mirror curvature in
the fabrication process [59]. The Gouy phase co-determines the Rayleigh range and waist
of the cavity modes and hence also the optical mode volume and attainable atom-field
interaction.

COMPARISON WITH LITERATURE

A comparison of our results with literature shows that the subtleties of multiple penetra-
tion depths are often overlooked. We will give a few examples of how equations would
have been different if our theory would have been used.

First, our Eqs. (2.6) and (2.8) show that the resonance condition depends on the phase
penetration depth Lϕ, which is typically small and zero at resonance. But Eqs. (2) and (3)
in ref. [44] state that the resonance condition contains a single wavelength independent
penetration depth. The authors later use the same quantity to describe the frequency tun-
ing of the resonances, whereas our Eq. (2.7) shows that frequency tuning depends on the
frequency penetration depth Lτ.

Second, our Eqs. (2.6) and (2.7) show that the frequency spacing between consecu-
tive longitudinal modes depends on the frequency penetration depth Lτ. But the authors
in [48] determine the longitudinal mode value by taking q = 2 ∂Lcav

∂λ and hence forget the
contribution of Lτ.

Third, our Eq. (2.8) shows that the frequency spacing between the transverse modes
depends on the modal penetration depth LD . Equation (3) in ref. [44] uses the expression
χGouy = arccos

p
1−Lcav /R for the Gouy phase and hence does not take any penetration

into account. Reference [48] makes the same mistake in their Eq. (1). Reference [32] uses
the frequency penetration depth in their Eq. (2) for the Gouy phase. But the correct equa-
tion should have been χGouy = arccos

√
1− (qλ/2+2LD )/R at Lϕ = 0.

Finally, incorrect use of the penetration depths also affects the Purcell effect. Our anal-
ysis shows that the Purcell factor FP depends primarily on the modal penetration depth
LD , as the increase in mode volume due to the field penetration into the DBRs is com-
pensated by a similar increase of the quality factor. The effect of LD on the Purcell factor is
typically small but can still be relevant when the cavity length is order λ. The consequence
of using Lτ instead of LD is a small underestimation of the Purcell enhancement [50].

2.3. METHODS
Our planar and patterned mirrors were produced by Oxford High-Q. The patterned sub-
strate is fabricated with a focused-ion-beam-etching technique that creates a series of
high-quality concave structures with typical radii of curvature of 2-20 µm [44, 49, 59]. The
SiO2 substrates were coated with 31 and 35 alternating layers of SiO2 and Ta2O5, to pro-
duce two DBRs that both end with high-index material and hence have virtually identical
reflection properties. These DBRs have a stopband with a width ∆λ ≈ 150 nm centered
around λc = 640 nm, as expected for a DBR with nL ≈ 1.46 and nH ≈ 2.09. The transmis-
sion of the patterned mirror is (3.4± 0.2)× 10−5 and the transmission of the flat mirror
is (1.1± 0.1)× 10−4 at the centre of the stopband. The transmission through the plano-
concave cavity is only ≈ 1%, due to scattering losses on the mirrors. These losses are not
relevant for the analysis presented in this chapter.
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Planar Cavity Plano-concave Cavity

Feature depth

Figure 2.2: Illustration of the planar and plano-concave cavity modes. The blue and red areas correspond to
the high and low index materials of the DBR, with a flat mirror at the bottom and a patterned mirror at the top.
The green areas indicate standing waves in the cavity. To excite the planar or plano-concave cavity we focus
light either on the flat or on the curved part of the patterned mirror. The indentation at the patterned mirror is
referred to as "feature depth".

One of the mirrors is fixed while the other mirror can be moved with 6 degrees of free-
dom on a hexapod system. We align the mirrors to the point where they are parallel and
touch each other. This point is referred to as ’touch down’. We scan the mirror position
from touch down to over >2 µm distance with sub-nm precision.

The non-linearity of the piezo scan and the point of touch down are determined by
measuring the microcavity transmission outside the stopband with a green laser (λ= 520
nm). A CCD image of the microcavity confirms the parallelism when no fringes are visible.
The point of touch down is determined from the part in the scan where the transmitted
intensity is constant.

In the next section, we will present accurate measurements of penetration depths on
a planar and a plano-concave microcavity, as indicated in the section titles. Figure 2.2
shows that we use the same mirrors in both experiment, but we focus light on different
parts. The planar microcavity transmission spectra presented in Fig. 2.3 are obtained
with a spatially-filtered Xenon lamp and a fiber-coupled spectrometer. The experimental
results on the transverse mode splitting of the plano-concave microcavity, presented in
Figs. 2.4 and 2.5, are obtained by measuring the microcavity transmission of a HeNe laser
(λ = 633 nm) with a photo-multiplier tube. The light was coupled in with an f = 7.5 mm
lens and coupled out with an f = 8 mm lens.

2.4. RESULTS

2.4.1. FREQUENCY PENETRATION DEPTH Lτ (PLANAR CAVITY )
In the first experiment, we measure the transmission spectrum P (λ;L) of the planar cavity.
For each wavelengthλ, the transmitted power varies between Pmi n(λ) and Pmax (λ) with L.
We use these extrema to normalize the transmission spectrum between 0 and 1 and show
the results as false-color plot in Fig. 2.3. Due to this normalization, this figure does not
show the 4 orders of magnitude difference between the very low transmission (10−4) for
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wavelengths inside the stopband and the order unity transmission outside the stopband.
The cavity length is varied from just below touch down (red dashed line indicated by

LT D ) to a mirror position ≈ 3.6 µm. Below the point of touch down, the cavity length
is constant and close to zero. This part is only included to show the derived quantities
Lcav = 0 and Lb (see below).

The slanted lines in the central region of the spectrum show the planar-cavity modes
in the stopband. These lines become non-linear towards the edges of the stopband, where
the reflection phaseϕmakes a phase jump, in agreement with the theoretical Fig. 2.1. The
planar-cavity modes are labeled by their longitudinal mode number q .

The slanted dashed lines in Fig. 2.3 result from a simultaneous constrained linear fit
of the q = 1−7 longitudinal cavity modes in the linear part of the stopband (600-680 nm).
This fit is heavily constrained and contains only one fit parameter, Lb , because all fit lines
are λ/2 apart and hence cross at the same point Lb for λ= 0. Small deviations from the fit
lines observable for q = 2−5 originate from an imperfect correction of the non-linearity
of the piezo scan. These fits also allow us to extrapolate to the virtual q = 0 mode. At the
center wavelength, where ϕ= 0, the q = 0 line coincides with the point Lcav = 0, indicated
by the middle red dashed line.

The key result in Fig. 2.3 is the observation that the q = 0 mode is also slanted or,
equivalently, that the point Lb does not correspond to Lcav = 0. The distance between
these points, indicated by the arrow in Fig. 2.3, yields the frequency penetration depth
Lτ = 0.28±0.02µm; see Eqs. (2.6) and (2.7) for theory. The uncertainty estimate is based on
a comparison between results from different measurement series and different methods
of analysis, both manually and by computer. Note that the analysis presented above was
based on the reasonable assumption that the first mode after touch down is the q = 1
mode. This assumption yields a distance 0.14± 0.02 µm between touch down and zero
cavity length. If the first mode would have been q = 2, this would have led to a much
larger distance of 0.46±0.02 µm and an unrealistically low value of Lτ = 0.12±0.02 µm (see
discussion below).

2.4.2. MODAL PENETRATION DEPTH LD (PLANO-CONCAVE CAVITY )
In the second experiment, we measure the transmission of a HeNe laser through a plano-
convave cavity while scanning the cavity length. Each group of transmission peaks con-
tains the fundamental TEM00 mode and multiple high-order TEMnm modes. The wave-
length of the HeNe (λ = 633 nm) is close enough to the center wavelength (λc = 640 nm)
to neglect the phase penetration depth (theory predicts 2Lϕ ≈−0.01 µm).

Figure 2.4 shows the measured splitting∆L between each transverse higher-order mode
(indicated by n +m > 0) and the associated fundamental mode (n +m = 0) as a function
of mirror position. We measured these splittings for 7 groups of modes, of which the first
three (q = 3,4,5) are indicated by dashed black lines. Below, we will explain why we start
counting from q = 3.

The solid curves are based on a simultaneous fit of all measurements using two fit
parameters: the mirror radius R and the position La of full degeneracy of the transverse
modes. Our fit yields R = 10.7±0.1 µm and La = 0.26±0.03 µm (indicated by the left red
dashed line). Figure 2.4 shows that these estimates require a serious extrapolation of the
data. The computer-generated error bars in Fig. 2.5 are based on statistical errors only and
might thus be optimistic (0.03 µm statistical error in La) as they do not take systematic
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Figure 2.3: False-color plot of the normalized transmission spectrum for a planar cavity. We scan the mirror
position from 1.0 to >3.6 µm, which includes the point of ’touch down’ (vertical line labeled LT D ) and repeat
the spectra below 1.0 µm for aesthetic reasons. The slanted lines in the central region of the spectrum show
the planar cavity modes in the stopband. These modes are labeled by their mode number q and are fitted with
straight (dashed orange) lines. We add the calculated q = 0 mode, which per definition intersects the vertical
Lcav = 0 at the central wavelength λc . All fits are constrained to cross λ= 0 at the same mirror position Lb (see
text).

errors into account. A possible systematic error could be a deviation of the transverse
mode splitting, and the associated Gouy phase, from the simple paraxial theory [60]. In
the absence of an alternative theory, we cannot estimate the size of these systematic errors.
From an experimental point of view, we can only determine statistical errors to find that
errors of multiple measurements on multiple cavities agree with each other (see below).

In Fig. 2.4, we have added an extra (black dotted) curve for the virtual n +m = −1
modes. A comparison of Eqs. (2.6) and (2.8) shows that these virtual modes should have
the same resonances as the planar cavity modes. By extrapolation of these virtual planar
modes to q = 0 we find the point Lcav = 0, indicated as the middle dashed line.

The key result in Fig. 2.4 is the modal penetration depth. Equation (2.8) shows how this
value can be obtained from the distance 2LD between the leftmost vertical lines, assuming
identical penetration depth in the flat and curved mirror. From the analysis of Fig. 2.4 we
thus obtain a measured modal penetration depth LD = 0.053±0.015 µm.

Finally, we note that the distance between touch down and Lcav = 0 in Fig. 2.4 is 0.85±
0.03 µm. This value is larger than for the planar cavity because it contains the feature
depth of the concave mirror (see Fig. 2.2). We have measured this feature depth with an
atomic force microscope (AFM) to be 0.62-0.70µm for different mirrors, i.e. approximately
2 ×λ/2. From this we conclude that the lowest q mode of the plano-concave cavity is
q = 3, while the planar cavity has q = 1. After subtraction of the measured feature depth,
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we determine the spacing between the planar parts of the mirrors to be 0.19±0.05 µm at
touch down in this new alignment.
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Figure 2.4: Transverse mode splitting versus mirror position L in a plano-concave cavity. This mode splitting is
expressed as the displacement ∆L between the resonance of the high-order mode (n +m = 1−6) and the corre-
sponding fundamental mode (n +m = 0). The combined fit of these data, depicted as a set of black curves, yield
the radius of curvature and a fictitious mirror position La where all transverse modes are frequency degenerate.
We add the fictitious cavity mode (n +m =−1) to compare with the planar cavity and to find Lcav = 0 (see text).

We performed the analysis depicted in Fig. 2.4 on 9 data sets, obtained from 6 different
cavities on 2 different days (3 cavities were measured on both days). We only analyzed
data sets that contained at least four clearly visible transverse modes. The solid point in
Fig. 2.5 shows the fit parameters obtained from Fig. 2.4. The colors of the points indicate
measurement series on different days.

The data points in Fig. 2.5 are divided in two groups, corresponding to cavities with
R = 10− 11 µm and R = 21− 23 µm. The distribution of the data points shows that the
modal penetration depth is approximately the same for all cavities and does not depend
on mirror radius over the studied range.

The horizontal lines show the weighted average of the modal penetration depth with
its intrinsic error LD = 0.06±0.02 µm. This intrinsic error is based on the spread among
the measurements, which is slightly larger than the error bars estimated for individual
measurements. This estimate only contains statistical errors.
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Figure 2.5: Modal penetration depth and radii of curvature for nine measures on various plano-concave cavities.
The solid point results from Fig. 2.4. The red and black points are obtained in two measurement series. The
horizontal lines show the averaged modal penetration depth and the error range, corresponding to LD = 0.06±
0.02 µm.

2.5. DISCUSSION
We start the discussion by comparing experiment with theory. We have measured a fre-
quency penetration depth Lτ = 0.28±0.02 µm and modal penetration depth LD = 0.06±
0.02 µm. For our H-DBRs, with nL = 1.46 and nH = 2.09, we predict Lτ = 0.25 µm and LD =
0.09 µm. If dispersion is taken into account, we predict Lτ = 0.26 µm and LD = 0.09 µm.
Both penetration depths are in reasonable agreement with theory.

The experimental results agree with theory despite several theoretical simplifications.
The most crucial simplification seems to be the Taylor expansion of the reflection phase
in Eq. (2.3). At large angles of incidence the blue shift of the resonance frequency could
bring us into the non-linear regime of the reflection phase, where an additional cubic term
increases the effects (see refs. [61, 62]). This scenario sounds reasonable, as the opening
angle is ≈ 0.2 rad (e−2) for the fundamental mode at q = 3 and much larger for the high-
order modes. However, even angles as large as 0.6 rad will shift the resonance frequency
only ∆ωc /ωc ≈ (1/2)βθ2

i n ≈ 5 % or ≈ 30 nm, which is not enough to reach the non-linear
regime. A second simplification lies in the equal treatment of the optical penetration in the
flat and curved DBR. This approximation is valid because the penetration depth is much
smaller than the curvature of the mirror. A third simplification is the simple paraxial scalar
description of the optical field. The mode splittings predicted by an advanced nonparaxial
vector description [60] are still small enough to be neglected in our analysis. Finally, we
didn’t take potential coating inhomogeneities and thickness distortions of the mirrors into
account. Small-scale distortions are likely to average out over the mode profile. But large-
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scale distortions can deform the transverse modes away from the ideal spherical case and
hence result in an incorrect assignment of the radius R and the modal penetration depth
LD [63]. A discussion of all these complications is beyond the scope of the chapter.

In conclusion, we have presented an analysis of optical penetration in DBRs and ac-
curate measurements thereof. Our analysis shows that there are actually three penetra-
tion depths which are relevant in different experiments. We have measured the frequency
penetration depth Lτ to find that it agrees with theory. We have also measured the modal
penetration depth LD to find that it is much smaller than Lτ, again as expected. Maybe
most importantly, we have argued that the effect of optical penetration on microcavity
resonances is often misinterpreted. The absolute resonance conditions depend on the
reflection phase ϕ and hence on the phase penetration depth Lϕ. The frequency spacing
between the longitudinal modes and their quality factor depend on the frequency penetra-
tion depth Lτ. The frequency spacing between the transverse modes and their area/cross
sections depend on the modal penetration depth LD . The Purcell factor FP depends pri-
marily on the modal penetration depth, as the increase in mode volume due to the field
penetration into the DBRs is compensated by an increase of the quality factor.

2.A. COUPLED-MODE THEORY AND SHIFT OF (ANTI-)NODES
The main text states that ’the node of the standing wave, which resides at the DBR surface
at resonance, shifts into (ϕ > 0) or out of (ϕ < 0) the DBR at frequencies ω > ωc and ω <
ωc , respectively. Note the deviations from this linear behavior towards the edges of the
stopband, where the maximum shift is approximately half a layer thickness for a H-BDR
(see Appendix 2.A.).’ In this section, we will prove that statement. We will do so by using
the coupled-mode theory formulated e.g. in [51] and applied to DBRs in [51, 57].

We consider the reflection of light from a thick lossless planar DBR illuminated at nor-
mal incidence. The alternating layers have refractive indices nL and nH , and layer thick-
nesses dL and dH such that nLdL = nH dH = λc /4 for vacuum resonance wavelength λc .
The average index n is defined via nΛ = nLdL + nH dH , where Λ = dL + dH is the pe-
riodicity (= thickness per pair). The DBR is embedded in a medium with index n and
∆n = (nH −nL) ≪ n (small index contrast). The DBR starts with the high-index material at
position z = 0.

We write the optical field E(z, t ) = [A(z)exp{[i (π/Λ)z]}+B(z)exp{[−i (π/Λ)z]}]exp{(−iωt )},
where A(z) and B(z) are the slowly-varying amplitudes of the forward and backward trav-
eling wave. Reflection at the periodic interfaces couples forward and backward traveling
waves with a coupling rate κ that satisfies the relation κΛ = ∆n/n [51, 57]. We define the
resonance frequency as ωc and the resonance wavevector as kc = π/Λ. We also define a
wavevector detuning δ= k −kc = n(ω−ωc )/c for light with frequency ω, where we neglect
dispersion. Upon propagation in the DBR the amplitudes of the waves evolve as [51]

d

d z

(
A(z)
B(z)

)
=

(
iδ κ

κ −iδ

)(
A(z)
B(z)

)
(2.9)

Within the stopband, where |δ| < κ, the eigenvalues of the propagation matrix are ±γ =
±
p
κ2 −δ2. When we express the detuning as δ = κsinφ, this corresponds to γ = κcosφ.

In the center of the stopband, at δ = 0, the eigenvalue ±γ = ±κ indicates that the optical
field decays at a rate κ=∆n/(nΛ) = 2∆n/λc into the DBR. Off-center, the field penetrates
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deeper as the decay rate γ decreases by a factor cosφ. The full spectral width of the stop-
band, from δ =−κ to κ, is equal to ∆ωg ap /ωc = 2κ/kc = 2∆n/(πn), as already mentioned
in the main text.

The two eigenmodes of the propagation matrix have B/A =±exp
{
(±iφ)

}
. A decompo-

sition of the incident and transmitted field in these eigenmodes shows that the reflection
amplitude of an infinitely thick DBR can be written as

Γ0 = −κ
γ− iδ

=−exp
{
iφ

}
, (2.10)

for the reflection at the low-to-high-index interface (at z = 0). The reflection at the high-
to-low-index interface only differs in sign and is Γ0 = exp

{
iφ

}
. At resonance, the reflection

amplitude is Γ0 =±1, where the plus sign applies to L-DBRs and the minus sign applies to
H-DBRs. For off-center frequencies in the stopband, the reflection phase

φ= arcsin
δ

κ
= arcsin[

2(ω−ωc )

ωg ap
] = arcsin[τ0(ω−ωc )] , (2.11)

where τ0 = 2/∆ωg ap is the group delay in the center of the stopband. At the edges of the
stopband, where δ = ±κ, the reflection phase reaches its limiting values φ = ±π/2. This
phase shift corresponds to a shift of the node in the standing wave over ± 1/8 wavelength
or half the thickness of a DBR layer.

The role of dispersion, i.e. the frequency dependence of the refractive indices, is as
follows. In the presence of dispersion, the wavevector detuning δ = dk/dω(ω−ωc ) =
ng r (ω−ωc )/c, where ng r is the weighted average of the group refractive indices of the
DBR layers. For our DBRs and wavelength, the ratio ng r /n = 1.013 for SiO2 and 1.058 for
Ta2O5 [58], which results in a most correction of order 3 %.

We finish this section with two side notes. First, we note that the arcsin-dependence
in Eq. (2.11) shows that the phase varies linear with detuning in the center of the stop-
band but changes faster towards the edges of the stopband. This is in agreement with our
observations and simulations. Second, we note that Eqs. (2.10) and (2.11) describe the
reflection of a DBR embedded in a medium with index n. The reflection phase will change
when the DBR is embedded in a medium with index ni n ̸= n (see next section).

2.B. EFFECT OF INCIDENT MEDIUM ON FREQUENCY PENETRA-
TION DEPTH Lτ
The main text states that "the reflection phase ϕ also depends on the ratio ni n/n" and
that the "time delay τ = dϕ/dω is different for high-index and low-index DBRs due to
interference of the reflection from the first interface of the DBR with the reflections form
the bulk". In this section, we will prove that statement.

We consider an infinitely thick DBR and write the reflection amplitude from the bulk
as Γ0 = ±exp{[iτ0(ω−ωc )]} for frequencies in the central (linear) region of the stopband.
For the general case ni n ̸= n, we add the reflection amplitude r0 from the first interface
c.q. front facet, which is given by the well-known expression r0 = (ni n −n)/(ni n +n). The
interference between the reflection from the front facet and the bulk yields a combined
reflection amplitude [52]

r = r0 +Γ0

1+ r0Γ0
. (2.12)



2

20
2. MICROCAVITY RESONANCE CONDITION, QUALITY FACTOR, AND MODE VOLUME ARE

DETERMINED BY DIFFERENT PENETRATION DEPTHS

It is easy to show that r =±1 when Γ0 =±1 and that |r | = 1 because |Γ0| = 1. Hence, we can
write r = ±exp{[iτ(ω−ωc )]} in the central region of the stopband. We calculate the ratio
τ/τ0 by taking the frequency derivative of equation (2.12) at ω=ωc to find

τ

τ0
= 1− r 2

0

(1± r0)2 , (2.13)

For H-DBRs, where the minus sign applies as Γ0(ωc ) =−1, this results in τ/τ0 = ni n/n. For
L-DBRs, where the plus sign applies as Γ0(ωc ) = +1, this results in τ/τ0 = n/ni n . These
final expressions prove Eq. (3) in the main text, which states that

1

2
∆ωg apτ≈ ni n

n
(H-DBR) or

1

2
∆ωg apτ≈ n

ni n
(L-DBR) (2.14)

They quantify the influence of the environment on the group delay τ, and the associated
penetration depth Lτ. And they show that the penetration in H-DBRs and L-DBRs differs.

For completeness, we note that the above equations were derived from coupled-mode
theory and assumed the refractive index contrast in the DBR to be relatively small. Babic
et al. [54] have used a transfer matrix approach to analyze the general case of larger index
contrast to find

τ=
(

ni n

nH

)(
nH

nH −nL

)(
π

ωc

)
(H-DBR) or τ=

(
nL

ni n

)(
nH

nH −nL

)(
π

ωc

)
(L-DBR) (2.15)

To verify the above prediction, we have performed numerical calculations using the
transfer matrix approach. Figure 2.6 shows that τ indeed increases linearly with ni n for the
H-DBR, but inversely proportional for the L-DBR. The two lines cross at the point where
ni n ≈ n, where τωc ≈ 8.7, in agreement with the predicted value π

p
nLnH /(nH −nL)) = 8.7.
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Figure 2.6: Dependence of the group delay on the refractive index of the environment for a H-DBR and L-DBR.
The calculated DBR has 30 pairs of layers with nL = 1.46 and nH = 2.09.

2.C. RATIO Lτ AND LD
The main text stated that the relation between the modal and frequency penetration depth
is LD /Lτ =β= n2

i n(n−2
L +n−2

H )/2 ≈ (ni n/n)2 [54]. We claimed that "this relation is intuitive,
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because Lτ is associated with a time delay, which scales with n/ni n , and LD is associated
with an imaging shift, which scales with ni n/n ". In this section, we will show this analyti-
cally and graphically.

The analytic result is derived from the blueshift of the center frequency of the DBR.
The reflection r = exp

[
i 2Lτ(k −k ′

c (θi n))
]

changes with incident angle θi n (in medium ni n)
because the resonance wavevector k ′

c (θi n) changes. This resonance wavevector is de-
termined by the relation nLdL cosθL +nH dH cosθH = π/k ′

c (θ) where θL and θH are the
angles in both DBR layers. A Taylor expansion of cosθL ≈ 1− θ2

L/2 ≈ 1− θ2
i n(ni n/nL)2/2

and similar for cosθH yields a blue shift of the form k ′
c (θi n) ≈ kc (1+βθ2

i n/2), where β =
n2

i n(n−2
L +n−2

H )/2. A hard mirror positioned at a distance LD in medium ni n has an angle
dependent reflection of the form exp

{
[i 2kLDθ

2
i n/2]

}
. A comparison with the DBR shows

that this hard mirror mimics the angle dependent reflection from the DBR when LD =βLτ.
Fig. 2.7 shows the relation between Lτ and LD graphically. The green lines show the

reflection of an incident ray at some penetration depth in the DBR. This ray refracts at the
front facet on account of Snell’s law, where it bends towards the surface normal for the
considered case n > ni n . The red lines/rays show how the apparent position of the re-
flecting layer, as observed from the ni n medium, moves towards the surface normal. This
figure thus shows that the modal penetration depth LD scales with ni n/n. On the other
hand, light propagates slower through the high-index material of the DBR than through
the low-index environment. Therefore, the frequency penetration depth Lτ of the equiva-
lent hard mirror is larger than the actual penetration depth in the DBR by a factor n/ni n .
A comparison of these two prima facie results yields LD /Lτ ≈ (ni n/n)2, in agreement with
the earlier expression for β for small ∆n.

LLD

Figure 2.7: Sketch of the reflection of light (green ray) incident at an angle on a DBR for n/ni n = 1.94), which re-
flect at some penetration depth. The yellow region indicates the environment with ni n , the blue and red regions
indicate the high (nH ) and low (nL ) index region of the DBR. The red rays indicate the equivalent point of focus if
the DBR is replaced by a hard mirror in the refractive index of the environment. The point Lτ is located at LD /β.




