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1
INTRODUCTION

1.1. QUANTUM COMMUNICATION AND QUANTUM MEASUREMENTS

A quantum internet that provides fundamentally secure communications is a long-standing
promise from the field of quantum optics [1, 2]. The 2022 Nobel Prize was even awarded in
this field. In recent years, researchers have made significant steps towards larger and more
efficient networks [3, 4] and have shown how larger distances can be covered with well-
functioning quantum repeaters [5]. Furthermore, the field is moving towards the com-
mercial market, signaled by the many start-up companies that are emerging [6, 7].

The reason why there is still no widely used quantum internet is potentially because
the ideal quantum emitter is yet to be found. Many research groups have found emitters
that fulfill some of the requirements; easy (on-chip) use [8, 9], high brightness and single-
photon purity [10, 11], good initialization and manipulation techniques [12], and emission
at telecom wavelength [13]. The search for emitters with all of these criteria is still ongoing.

Quantum measurements using photonics is another promising field. Bose-Einstein
condensates have resulted in incredibly narrow-linewidth lasers and atomic clocks, which
are used to study fundamental fields on physics, like gravitational wave detection [14],
dark matter detection [15] and quantum gravity [16]. Other quantum sensors are optically
detectable spins in NV centers. These are useful tools for measuring local magnetic fields
and are used to detect spin-waves in condensed matter [17]. A promising new field is the
observation of spin-defects in van der Waals materials [18], which can probe such spin
waves in closer proximity.

1.2. QUANTUM EMITTERS IN AN OPTICAL RESONATOR

A good quantum source of photons requires (i) a reliable single-photon emitter and (ii) an
optical resonator to direct the emission and increase the light-matter interaction. By reci-
procity, an ideal quantum emitter absorbs (and re-emits) every (strongly-focused) single-
photon. For an ideal emitter, the cross-section is of the order of the wavelength λ, σideal

abs =
3λ2/(2π) [19]. In most cases however, the cross-section is much smaller than this ideal
case, for example, for NV centers,σ∼ 10−7σideal

abs [20] and for rare-earth ions,σ ∼ 10−12σideal
abs

[21]. Therefore, in free space, only a portion of the incoming light is absorbed by the emit-
ter, as is shown in figure 1.1a, and demonstrated in experiments [22].
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Figure 1.1: Schematic picture of the absorption of an emitter. (a) Most emitters absorb only a fraction of the
incoming light beam. (b) Inside the cavity, the light reflects multiple times, such that all light can in principle be
absorbed.

An optical resonator, or cavity, can enhance the absorption cross-section, as Fig. 1.1b
illustrates. There exist many types of resonators, using dielectric materials [23], (sub-
wavelength) antennas [24], or hybrid structures [25]. In this thesis, we focus on the purely
dielectric structure of a Fabry-Perot cavity, where the light is reflected many times between
the two mirrors. Typical mirror reflectivities are |r |2 > 99 % which leads to a high cavity fi-
nesse F = π|r |/(1−|r |2). The number of roundtrips inside the cavity before the photon is
lost is F /π. The finesse can also be expressed as F = ωfsr

∆ω with free spectral range ωfsr and
cavity linewidth ∆ω. A high finesse cavity strongly increases the effective cross-section to
σeff

abs = F
πσabs [19].

If a cavity is used, the incoming beam is not perfectly focused anymore but depends
on the geometry of the cavity. In the case of Fabry-Perot cavities, the mode area of the
incoming beam is A = πw2

0 = λ
p

L(R −L) with mode waist w0, cavity length L and radius
of curvature R. The enhancement of the cavity is given by the Purcell factor [26],

F max
p = σideal

abs

A

F

π
= 3λ2

2π2

F

A
= 3λ3

4π2

Q

V
(1.1)

where Q and V are the cavity’s quality factor and mode volume. The quality factor is re-
lated to the finesse through Q = 2L

λ F .
Note that the Purcell enhancement can be smaller due to a mismatch of the emitter

dipole µ⃗ and electric field orientation E⃗ . Furthermore, when the emitter is not placed in
the antinode of the cavity mode, the Purcell factor decreases [27], which can be expressed
by the factor sin2(kL), where k = 2π

λ . Last, the emitter frequency ωe and the cavity fre-
quency ωc can be detuned, which also reduces the Purcell enhancement. These effects
result in a smaller Purcell factor

Fp = F max
p

µ ·E

|µ||E | sin2(kL)
δω2

4(ωe −ωc )2 +δω2 (1.2)

The ideal emitter remains coherent for much longer times than photons stay in the
cavity. This is not always the case, and in fact, many emitters have quality factors Qemitter <
Qcavity. The Purcell factor in this case is

F eff
p = 3λ3

4π2

1

V

(
1

Qemitter
+ 1

Qcavity

)−1

. (1.3)

The equation of the Purcell enhancement shows that in some cases the cavity enhance-
ment is limited by the spectral linewidth of the emitter. In such cases, it is beneficial to
reduce the radius of curvature and cavity length as much as possible to obtain a good Pur-
cell factor, as was shown in Ref. [28].
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1.3. OPEN MICROCAVITIES
Open microcavities with small radii of curvature are interesting objects to study by them-
selves. Besides achieving very high Purcell enhancements with quantum emitters [27, 29],
empty microcavities with an XY-tuned flat mirror can be used as accurate scanning probes
[30–32]. A large part of this thesis studies optical microcavities without quantum emitters.
We, among others, observe cavity resonances and modes that cannot be explained by the
standard theory for optical cavities.

Figure 1.2 shows a plot of finesse and radius of curvature of microcavities from several
research groups. The upper-right corner, where Fλ/R > 10−100, shows the region where
a complex mode spectrum can be observed that can not be explained by standard theory
of optical cavities [33]. The number of reported cavities is far greater than shown in the
figure, but the selected papers already show a variety of fabrication methods and cavity
types. The figure shows that our microcavity is not unique. Hence, other research groups
must also have seen the results that we have reported. The fact that most of these groups
do not report the origin of these effects shows that the complexities in microcavities have
not been fully understood yet. Figure 1.2 also shows a blue-shaded area, where R ≲ 10λ.
In this region, the nonparaxial effects dominate over typical mirror-shape effects, such as
astigmatism. This means that even a microcavity with a perfectly spherical mirror shows
mode mixing and a so-called fine structure. The figure of merit Fλ/R to observe (non-
paraxial) mode spectra scales in almost the same way as the Purcell factor. Microcavities
with a better Purcell factor will also show more nonparaxial effects.

Figure 1.2: A (non-exhaustive) selection of literature reports on open microcavities in terms of their cavity finesse
F and normalized inverse mirror radius λ/R. The dashed lines indicate constant values of Fλ/R, where a mode
spectrum is generally observable if Fλ/R > 10−100. The blue shaded area, where λ/R > 0.1, shows where the
nonparaxial effects generally dominate over mirror-shape effects, i.e. where the mode structure becomes a fine
structure. Points in the figure are taken from: Flatten2018 [28], Wang2019 [27], Benedikter2019 [32], Najer2019
[29], Wachter2019 [34].

1.4. SINGLE-PHOTON EMITTERS
1. An optical cavity also requires a good single-photon emitter. Equation (1.3) shows that
the emitter should have a quality factor of the same order as the optical cavity. Next, its
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surface should be flat, such that scattering losses do not reduce the finesse too much.
Also, the possibility of room-temperature operation increases its usefulness in future ap-
plications. Last, a spin ground state with radio-frequency control, like in nitrogen-vacancy
(NV) centers, would allow easy initialization and control of the emitter.

One type of emitter that shows promising results towards all the criteria above is hexag-
onal Boron Nitride [35]. This van der Waals material, which consists of Boron and Nitride
atoms in a hexagonal lattice, forms a good insulator with a bandgap of ∼ 5 eV. The de-
fects that we have studied are generally assumed to be carbon-vacancies [35, 36]. This
is however still debated [37] and only careful experimental work can help this discus-
sion forward [38]. Other similarities of such emitters with the NV centers are their room-
temperature operation [39] and their sensitivity to optically detected magnetic resonance
(ODMR) which suggests a spin ground state [18, 40]. A 2D material like hBN is especially
suited for cavity purposes because its layers are atomically flat. Diamond requires com-
plicated etching techniques making it challenging to maintain a high cavity finesse [41,
42].

Despite all these advantages, a challenge in the use of hBN is low observed count rates.
This might be due to a relatively large non-radiative decay rate. We also find that certain
emitters show shelving in dark states. The count rates can be enhanced when the emitters
are coupled to the microcavity. However, the zero-phonon-lines that we observe at room
temperature are relatively broad, ∆λZPL ≈ 10 nm, which is much broader than the cavity
linewidth ∆λZPL < 0.1 nm. We expect this to decrease when cooled to cryogenic temper-
atures [43]. A cryogenic optical cavity brings about its own challenges with stability and
mode-matching. This is left as an outlook for future research.

1.5. OUTLINE OF THIS THESIS
Chapters 2-6 of this thesis describe the formation and characterization of optical modes
in cavities. Chapters 2-5 show measurements on an empty cavity with external lasers as
the light source, whereas Chapter 6 uses intracavity emitters as an internal light source.
Chapter 7 shows confocal microscope measurements on quantum emitters in hBN.

• Chapter 2 analyzes the reflection properties of the Distributed Bragg Reflectors (DBRs)
that are typically used in microcavities. It shows that the penetration of the opti-
cal field in these mirrors is best described by introducing three penetration depths,
where the experiments determine penetration depth should be used.

• Chapter 3 describes the coupling of the fundamental mode with transverse modes.
Far-field images show strong deviations from the theoretical description of the un-
coupled fundamental mode over a large range of cavity lengths. Additional AFM
measurements show that the mode-coupling originates from a shape deviation at
the center of the cavity. The measurement of far-field images proves to be a sensi-
tive technique for measuring mode-coupling.

• Chapter 4 gives a theoretical description of a so-called fine structure in microcav-
ities, caused by nonparaxial effects. These nonparaxial effects become important
for high-finesse (F > 1000) cavities with small radii of curvature, typically λ/R >
0.1. The theory makes predictions of the mode spectrum for ideal mirrors, but also
shows how other deformations influence the mode spectrum.
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• Chapter 5 shows the observed fine structure in close-to-perfect microcavities. The
mode-structure and (polarization-resolved) far-field images are compared to the
theoretical predictions, and show a good match.

• Chapter 6 describes measurements of all of the effects mentioned in Chapters 2-5,
but now using intracavity emitters as a probe. This brings new perspectives on the
concepts of penetration depth and mode-coupling that are important when cavity
emission spectra are probed, rather than length spectra.

• Chapter 7 shows measurements of multiple defects in hBN. Several aspects were
characterized, such as their spectrum, saturation behavior, and dipole orientation.
A Hanbury-Brown and Twiss measurement reveals interesting population dynam-
ics, for which two models with rate equations are proposed.




