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Conclusion 

The progressive loss and degeneration of dopaminergic neurons in the mid-brain region is 

a major pathological hallmark of Parkinson's disease (PD). Due to poorly understood 

disease pathogenic mechanisms, current therapy is compromised and focused more on 

treating motor symptoms than slowing down the neurodegenerative process. The onset and 

progression of PD can be triggered by multiple risk factors, for instance genetic mutation, 

environmental exposure, and aging. Each of these factors may cause common or unique 

metabolic disturbances, ultimately converging into a complex metabolic disorder reflected 

in the diversity of clinical phenotypes. Through metabolome analysis, the full picture of the 

metabolic landscape depicting a biological system can be revealed. Metabolites function as 

key elements and direct read-outs of a system’s functional status. Alterations in the 

metabolite concentrations are thus informative for inferring and understanding the 

underlying metabolic activity. Metabolites are typically characterized by significant 

physicochemical variability and wide concentration ranges. This diversity creates analytical 

challenges, and a single analytical platform rarely covers the full range of metabolites of 

interest [1]. It also makes it important to evaluate the platforms that can be utilized for 

metabolomics analysis, taking into account the sample type, sample volume, research 

questions, metabolite concentration, etc. Information derived from broad metabolic 

profiling can be very instructive in understanding biochemical changes resulting from 

perturbations. In addition, stable isotope labeling techniques coupled with metabolomics 

can bring us an extra dynamic vision of the metabolic landscape. Changes in the labeling 

patterns of metabolites help identify alterations with metabolic fluxes through pathways. 

For the analytical workflow to capture and process these alterations in metabolite labeling 

patterns, more analytical and computational developments are still required.  

The aim of this thesis was to develop a comprehensive analytical strategy for characterizing 

the metabolic activity related to PD neurodegeneration, especially focused on the 

improvement in metabolome coverage and data quality, and facilitating use of stable isotope 

labeling in in-depth metabolism investigation. In this chapter, we summarize the 

multifaceted solutions for constructing our comprehensive analytical strategy in PD 

metabolomics research. The key solutions revolved around tackling the current analytical 

challenges faced in selecting an appropriate polar stationary phase used in polar 

metabolome analysis, advancing the analytical method for tracer-based metabolome 

analysis, and developing a computational workflow for metabolic flux analysis. These 

methods were applied to investigate metabolic dysregulation of dopaminergic neurons to 

genetic and environmental factors. The value and contribution of developed methodological 
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solution in this thesis, as well as the current limitations, are reviewed. Finally, we conclude 

by proposing opportunities for future research. 

Polar metabolome analysis using LC-MS 

The ultimate aim of metabolomics is to precisely identify and quantify all metabolites 

present in a specific biological sample. High-resolution mass spectrometry with an 

increasing mass resolving power, coupled with enhanced chromatographic resolution, has 

improved the metabolomics analysis towards broadened feature detection. It has been 

widely recognized that the combination of multiple analytical platforms in metabolomics is 

an appropriate strategy to increase global metabolite coverage. Reversed-phase liquid 

chromatography (RPLC) mainly targets the non-polar and mid-polar metabolome analysis, 

and hydrophilic interaction chromatography (HILIC) targets the polar metabolome analysis. 

The chromatographic separation is highly determined by the interaction of the metabolite 

with the stationary phase, followed by fine-tunings of solvents, pH, additives, column 

dimensions, and temperature. But due to the limited understanding of HILIC retention 

mechanisms and lack of guidance on HILIC method evaluation, HILIC is less widespread 

than RPLC for global metabolomics studies. Polar metabolites account for a large 

proportion of the metabolome and play important roles in regulating energy and biomass 

production (e.g. amino acids, carbohydrates, carnitines), interconnecting metabolic 

modules as a reflection of overall metabolic state (e.g. ATP, NAD(H), S-

adenosylmethionine), and producing reporter metabolites in controlling and modulating the 

activity of signaling pathways (e.g.  glycolytic intermediates) [2]. From this, it is reasonable 

to assume that the comprehensive analysis of polar metabolites involved in major 

biochemical pathways (e.g., glycolysis, the tricarboxylic acid (TCA) cycle, the pentose 

phosphate pathway, amino acid metabolism, nucleotide metabolism, neurotransmission, 

etc.) would allow for an extensive exploration of metabolic dysregulation related to 

neurodegeneration.  

To accelerate the implementation of HILIC-MS analysis as a routine platform for large-

scale clinical PD metabolomics studies, the analytical requirements of resolution, 

reproducibility, robustness, efficiency and result reliability have to be strictly evaluated. In 

Chapter 2, we provided guidance for systematically evaluating hydrophilic interaction 

chromatography column performance for global plasma metabolomics studies. Plasma was 

selected as the investigated biological matrix due to its ease of collection and high 

information content. First, a scoring system was designed to evaluate the chromatographic 

performance of representative standards involving the aspects of metabolite retention, peak 

sensitivity (signal-to-noise ratio), peak sharpness (peak height), and peak symmetry (tailing 

factor). Second, a simple linear regression model could be constructed to analyze the 
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relationship between metabolite polarity at different pH conditions and elution order, 

allowing for the investigation of the column retention mechanisms. Third, assessment of 

the matrix effect and particularly the ion suppression induced by salts helped to identify the 

vulnerable metabolite classes or the elution range affected by salt ions (clusters). Fourth, a 

repeatability test monitoring the retention time and peak area of spiked standards in plasma 

was used to evaluate the column stability for intra- or inter-batch analysis. Finally, a pilot 

study using an untargeted metabolomics analysis of test plasma from different phenotypes 

could be carried out to estimate the total metabolic feature coverage and feature retention 

distribution.  

Following this systematic evaluation, we determined the ZIC-c HILIC column (zwitterionic 

stationary phase) operated at neutral pH was optimal for global polar metabolome analysis 

due to its superior performance for different classes of compounds, better isomer separation, 

good repeatability, and high metabolic coverage. We also specifically demonstrated the ion 

suppression caused by the sodium chloride in the plasma analysis. Thereby, it is 

recommended to restrict the introduction of salt ions, for instance anticoagulant counter 

cations (Na+ from citrate in Na-citrate plasma and K+ from K-EDTA in EDTA plasma), as 

reported by a previous study [3]. Additional difficulties arise because citrate and EDTA 

show some retention on the HILIC column and will induce ion suppression or enhancement 

effects on other co-eluting peaks. Considering these obstacles, heparin plasma is preferred 

for future HILIC-MS global analysis. This evaluation procedure can be selectively applied 

to any new HILIC column or new biomatrix test in the future. And as current HILIC 

columns are not yet fully robust, new HILIC columns can be expected to be developed and 

offered. The optimized HILIC-MS chromatographic method developed in Chapter 2 

served as the basis for the targeted metabolomics study in Chapter 3, and the mass 

spectrometric approach coupled with this separation method was further optimized for 

tracer-based metabolomics in Chapter 4. 

Targeted metabolomics provides distinct advantages in the quantification of known 

metabolites belonging to certain compound classes or common metabolic pathways with a 

high level of confidence in the accuracy, precision, and repeatability, despite the limited 

number. To achieve a broad and known metabolite analysis with a wide dynamic range in 

our PD pathogenesis investigation, we adopted three analytical platforms for targeted 

profiling of 106 polar metabolites, 50 acyl-carnitines, and over 200 signaling lipids. By 

utilizing human iPSC-derived midbrain neuronal models, a new way for simulating PD 

metabolic disease brought on by specific genetic/environmental factors and their interacting 

contributions was presented. The methodological advancements enabled us to capture a 

comprehensive picture of metabolomic dysregulation in an in-vitro iPSC-derived midbrain 
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neuronal model of PD represented by the PINK1 mutation, mitochondrial complex I 

inhibitor (rotenone), and joint-factor intervention in Chapter 3. This gave us a chance to 

investigate into the hypothesis that genetic deficiency involved in mitochondrial-stress 

pathways could increase the susceptibility towards neurodegeneration in response to 

environmental toxins. Through comparative metabolomics analysis, we found similar 

metabolic dysregulation caused by rotenone and the PINK1 mutation seen in energy failure 

(reduced fueling by glucose, saturated fatty acids, and branched chain amino acids), 

impaired redox balance (blocked oxidation of NADH to NAD+), as well as different TCA 

cycle disturbances, all leading to impaired mitochondrial respiration. Moreover, oxidative 

damage was found in both the mutated and rotenone-exposed groups. However, the PINK1-

mutated model showed a robust anti-oxidative and anti-inflammatory response, while a 

rather severely disturbed response was seen due to rotenone exposure. Neurons with the 

inherent PINK1 mutation interacting with exogenous rotenone stress resulted in a more 

complicated neurodegenerative metabolism. This study clearly unraveled the underlying 

molecular mechanism of mitochondrial dysfunction induced by a genetic or environmental 

toxin perturbation and explained the complexity of neurodegeneration from a metabolomics 

perspective. The supplementation of NAD+ or its precursors has been reported as a 

promising therapeutic strategy for future clinical PD treatment [4,5]. Targeting the same set 

of PD neuronal models, this study additionally demonstrated the limited efficacy of NAD+ 

treatment in ameliorating rotenone-related energy defects, and had no effectiveness for the 

PINK1 mutated group. Instead, it unexpectedly introduced dysregulation of polyunsaturated 

fatty acids to the joint-factor group. Overall, our study provides valuable insights into a 

deep understanding of parkinsonism pathogenesis.  

In Chapter 3, the combination of multiple metabolomics platforms targeting specific polar 

and non-polar metabolites opened several windows that allowed us to specifically probe 

cellular metabolic activity in different metabolic pathway modules. Since just one patient 

cell line was used as the established neuronal model, a follow-up validation using more 

patient cell lines with the PINK1 mutation is still required. In the future, improved or novel 

drug treatments can be evaluated using the established neuronal models and targeted 

metabolomics platforms. Targeted metabolomics analysis can also be performed on plasma 

samples from patients in order to highlight the release of unique metabolite markers from 

neurons into the intravascular fluid. In addition, global plasma analysis will be a crucial and 

indispensable approach for identifying novel biomarkers with a strong correlation to 

neuronal alterations as well as a high level of significance, which is achievable by 

combining the established HILIC-MS method described in Chapter 2 with the 

complementary RPLC-MS methods.  
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Use of Stable isotope labeling for in-depth metabolic flux investigations 

The metabolomics study performed in Chapter 3 to determine the probable changes in the 

metabolic network in neurons was helpful in identifying relevant biochemical pathways to 

follow up using stable isotope labeling. Therefore, we focused on central carbon 

metabolism and its connection to de novo nucleotide synthesis and glutathione metabolism 

pathways in an effort to capture the reaction changes from energy failure towards oxidative 

stress related to PD neurodegeneration. Current stable isotope enrichment analysis using 

mass spectrometry primarily records the total number of labeled atoms and the mass 

isotopologue distribution (MID) of the intact metabolite structure. Labeling information at 

the intact level can be used to probe pathway activity. Labeling information at the 

metabolite substructure (moiety) level also plays an important role in discovering novel 

pathways and estimating metabolic fluxes. A dissection at the moiety level can bring 

additional insights into pathway reconstruction, reaction connections, and relevant flux 

regulation [6–8]. However, there are still technological challenges in detecting intact 

metabolites and fragmented moiety isotopologues with strong specificity while maintaining 

high sensitivity and accuracy. 

In Chapter 4, we developed a HILIC-Zeno MRMHR method for structurally-resolved mass 

isotopologue distribution analysis, allowing simultaneous acquisition at MS1 and MS2 

levels in a single analytical run. From an analytical perspective, this method successfully 

achieved accurate and reproducible MID quantification for intact metabolites as well as 

their fragmented moiety, with notably high sensitivity in the MS2 fragmentation mode using 

Zeno trap pulsing, a system of trapping fragment ions prior to the Time-of-Flight (TOF) 

injection for duty cycle improvement. Compared to the conventional SWATH method, this 

method still preserved the relationship between labeled precursor and fragment ions, which 

was beneficial in accurately identifying the same labeled isotopologue with differential 

labeling positions. We demonstrated the case by distinguishing two different isotopomers 

(1,2-13C2-glutamate and 3,4-13C2-glutamate) that belong to the same isotopologue (13C2-

glutamate) but are produced by pyruvate anaplerosis (PDH) and pyruvate carboxylase (PC) 

activity, respectively, from a given D-13C6-glucose tracer.  

From an application perspective, the HILIC-Zeno MRMHR method successfully identified 

flux regulations of glutathione metabolism in relation to rotenone-induced 

neurodegeneration. By interpreting the intact metabolite and moiety MID data, we first 

validated the pathway reconstruction of de novo glutathione synthesis in mid-brain neurons 

from isotopically labeled nutrient sources, separately using D-13C6-glucose and L-15N2-

glutamine. Increased oxidation from basal and de novo synthesized glutathione pools under 

neuronal oxidative stress both contributed to the severely impaired anti-oxidative capability 
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caused by rotenone exposure. Furthermore, we demonstrated the decreased de novo 

glutathione synthesis was associated with altered activities of several key enzymes found 

in the glucose-derived glutamate supply and GSH synthetic reaction. The application of our 

approach was not limited to elucidating glutathione metabolism but also included studying 

de novo nucleotide metabolism connected with central carbon metabolism in response to 

rotenone perturbation. By considering the hypothesis of potentially changed enzyme 

activity along relevant pathways, the method allows for flexibility in selecting target 

metabolites for fragmentation. Identification of the key metabolic flux regulations within 

these metabolic pathways can further augment our understanding of disease mechanisms. 

Metabolite labeling patterns in conjunction with targeted metabolomics data are strongly 

effective in elucidating the cellular flux control of a specific metabolic pathway or reaction 

under selectively perturbed conditions [9]. This approach works well for hypothesis 

verification via revealing localized regulation [9,10]. To achieve comprehensive flux 

phenotyping for studied cell models on a network-wide scale, a quantitative approach to 

metabolic flux inference has been gradually developed, named fluxomics. This global 

monitoring approach shows promise for quickly identifying primary flux re-routing for 

accommodating diseased condition based on the changes of absolute fluxes over multiple 

metabolic pathways and contributes to new hypothesis generation. However, there is still a 

long way to go before it finally reaches its true potential for accurately characterizing 

mammalian cell metabolism at the broader scale. This heavily relies on the constant 

development and improvement of both analytical and computational methodologies 

covering reliable reconstruction of a cell type-specific metabolic model, accurate atom 

mapping in metabolic reactions, measurement of isotopmers encompassing labeled 

positional information, the development of standardized and high-throughput data 

processing and analysis pipelines, etc [11,12]. 

Chapter 5 presented our efforts in constructing a semi-automated pipeline in MATLAB, 

for computing flux with Tracer-metabolomics in Atom-resolved Modelling (fluxTrAM). 

The first part of the fluxTrAM pipeline could process tracer-based LC-MS raw data and 

convert them into a standardized MID dataset. This involved multiple steps, including raw 

MS data format conversion, metabolite peak detection and integration, isotopologue peak 

correction with naturally occurring isotopic abundance, and basic summarization of 

metabolite MID results. The peak integration performance of both manual and automated 

software packages was rigorously assessed using the HILIC-MS method to measure 

multiple metabolite classes. The optimal package, mzMatch-ISO, was embedded into the 

pipeline and guaranteed accurate targeted isotopologue integration. Additionally, 

automated connections between various packages reduced the amount of data format 
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manipulation and enabled a sequential data processing workflow. The second part of the 

fluxTrAM pipeline focused on atomically resolving any given genome-scale metabolic 

model, where the results included a chemoinformatic database of standardized and context-

specific metabolite structures and atom mapped reactions. In the final part of the fluxTrAM 

pipeline, experimental MID data could be exported into external 13C flux analysis programs 

for flux estimation on a small network scale. Meanwhile, it could also be integrated into the 

atomically resolved genome-scale model for flux analysis at the genome-scale. The feasible 

flux distribution obtained from the small and generic central carbon metabolism model 

served as a good reference solution for determining the flux feasibility obtained from the 

neuron-specific genome scale model. On the other hand, the genome-flux solution revealed 

extensive metabolism regulation in the studied cell model that extended far beyond central 

carbon metabolism. Our work presented the first genome-scale flux solution of human 

dopaminergic neuronal metabolism based on experimental tracer-based metabolomics data. 

It helped in revealing many characteristic metabolic phenotypes of neuronal cells while also 

raising the necessity for studying more PINK1 patient-derived cell lines. In the future, 

follow-up verification of disease hypotheses generated from genome-flux solutions can be 

achieved using the combined targeted metabolomics (Chapter 3) and tracer-based 

metabolomics approaches (Chapter 4). In addition, new (tracer-based) metabolome data 

can be used as input for further refining the neuron-specific genome-scale model and 

predicting new flux distribution, as illustrated in the Figure 6.1 (a, b, c, e, r1 and r2).  

Figure 6.1. A schematic workflow for combining conventional metabolomics and tracer-based 

metabolomics approaches in the PD neuronal metabolism study. Tracer culture represents cells fed 
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with stable isotope-labeled substrates, while normal culture is provided with unlabeled substrates. The 

future implementations are labeled in red dotted lines and the expected results to be collected are 

labeled in red dotted boxes. a-e: cell culture, analytical experiments, and computational analysis. r1-

r4: Metabolome results, as data input for the iDopaNeuro model. 

Future perspectives 

In this thesis, we demonstrated the capacity of our developed HILIC-MS method for global 

polar metabolome analysis (Chapter 2) and its subsequent application into targeted 

metabolomics analysis for a Parkinson’s disease neuron metabolism study (Chapter 3), 

where relative quantification results were reported. Beyond this thesis with rigorous method 

validation, targeted absolute quantification so far has been achieved for 106 polar 

metabolites from nine classes, including amino acids, amines, sugars, sugar phosphates, 

nucleosides, nucleotides, acyl-carnitines, coenzyme A, and organic acids. By using the 

increasingly available reference standards and related internal standards, identification and 

characterization followed by adequate validation will allow to further expand the number 

of quantifiable targets. Two approaches can be generally followed for extending metabolite 

coverage. One is the pathway-wise inclusion strategy, which involves adding the missing 

metabolites from a pathway that is already covered or adding metabolite sets related to a 

newly given pathway. As an example, as discussed in Chapter 4, γ-glutamylcysteine should 

be added to the HILIC method because it is an important intermediate in the de novo 

synthesis of glutathione [13]. In addition, the UDP-GlcNAc synthetic pathway is an 

important pathway to investigate due to its position as a significant hub connecting glucose-

, amino acid-, fatty acid-, and nucleotide-metabolism. UDP-GlcNAc is involved in O- and 

N-linked protein glycosylation, which is important for regulating nutrient sensing and

responding to cellular stress [14,15]. The other strategy for prioritizing method extension is 

metabolite class-wise inclusion, which involves including as many metabolites as possible 

from a specific class. Growing evidence implies altered polyamine metabolism as a 

correlate of PD progression [16,17]. Our method has included some polyamine precursors 

and catabolites, such as L-ornithine and -aminobutyric acid. Many polyamines, including 

1,3-diaminopropane, putrescine, cadaverine, spermidine, spermine, agmatine, N-

acetylputrescine, N-acetylspermine, and N-acetylspermidine, remain to be tested and 

should be given priority for inclusion in an extended method.  

From a technical perspective, high resolution-based MS and MS/MS methods coupled to a 

chromatography method can be ideal tools for bridging the gap between untargeted 

metabolomics profiling and targeted metabolite quantification [18], further extending 

metabolite coverage in relative or absolute quantitative methods. In terms of large-scale 
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polar metabolomics quantification, the high-resolution TOF-MS approach can be more 

susceptible to interferences and have less selectivity than a typical multiple reaction 

monitoring (MRM) method. However, many QTOF mass spectrometers are able to perform  

data-dependent or data-independent acquisition (DDA or DIA), such as SWATH or MSAll, 

which allow for recording retention time, high-resolution m/z and MS/MS spectra within 

the same chromatographic run [19,20]. These three elements are valuable parameters and 

useful for constructing a comprehensive metabolite MS/MS library database, hence 

facilitating unknown feature identification in a new sample matrix, and comparing to 

existing (on-line) databases. Along with further enhanced dimensions in both 

chromatography and MS instrumentation, other advanced parameters including MS3 

spectra, ion mobility-derived collision cross sections [21], and retention time matching 

using an orthogonal chromatography can be also recruited for metabolite identification. 

Newly identified metabolites can be incorporated for later targeted quantification, as 

illustrated in the left part of Figure 6.1. For overcoming the lack of selectivity in 

quantitative analysis, a high-resolution TOF-MS approach equipped with parallel reaction 

monitoring (PRM/MRMHR) works as an ideal approach. A recent method coupling HILIC 

to the general PRM method in a positive/negative ion switching mode achieved 

simultaneous relative quantification for 237 polar metabolites [22]. Equipping the general 

PRM/MRMHR method with Zeno trap pulsing could improve MS/MS sensitivity and extend 

the linear dynamic ranges even further. In Chapter 4, we showed how we used a HILIC-

Zeno MRMHR method to quantify 180 precursor isotopologue ions from 25 polar 

metabolites. This (HILIC-Zeno MRMHR) method can also be easily modified to measure 

individual metabolites. Based on reduced elution overlap and a scheduled window design, 

it would have the advantages of providing a lower cycle time and higher method sensitivity 

for individual metabolite quantification.  

The power of stable isotope tracer-based metabolomics, via leveraging additional labeling 

information to monitor individual reactions or pathway alterations within the interconnected 

metabolic networks, has been successfully demonstrated not only in our study but in many 

others as well. However, the potential of stable isotope tracing combined with high-

resolution metabolomics technology for characterizing labeled metabolites in an untargeted 

manner has still not been fully explored. So far, most studies have focused on the targeted 

analysis of limited known metabolites from anticipated metabolic pathways. This is 

regarded as the most efficient and accurate way to answer the hypothesis-driven question, 

whereas a data-driven discovery based on isotope-enriched metabolome (isotopolome) 

analysis can be of great value to a systematic investigation of metabolism and generate new 

hypothesis. Untargeted isotopolome analysis is still quite challenging due to the complexity 
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of isotope labeled metabolomics data. The major bottleneck is the lack of an appropriate 

workflow to identify unknown labeled features and extract isotopologue information with 

good accuracy and reproducibility on a large scale.

Through the aforementioned high-resolution LC-MS/MS (DDA or DIA) analysis, 

metabolite annotation can be first carried out based on collected MS1 and MS2 data from 

unlabeled samples without tracer treatment. Following that, all present isotopologues of 

annotated metabolites present in labeled samples treated with tracer after a certain period 

can be extracted. This concept was successfully demonstrated in a recent study named 

"MetTracer". The study results showed high promise in the unbiased large-scale MID 

analysis of up to 830 13C-labeled metabolites and 1725 13C-labeled isotopologues, which 

covered 66 metabolic pathways in human embryonic kidney 293T cells [23].  Among the 

annotated 830 metabolites, each one is assigned three confidence levels. Level 1 means 

metabolites annotated through matching of retention time, high-resolution m/z and MS/MS 

spectra with the in-house metabolite database. Level 2 means metabolites annotated through 

matching high-resolution m/z and MS/MS spectra with public metabolite databases. Level 

3 means metabolites annotated based on MS1 and surrogated MS/MS match using in-house 

identification software.  It should be noted that total annotated metabolite at levels 1 and 2 

accounted for less than 50%. The use of in-house developed metabolite libraries still has its 

limits due to standards availability and cost issue. Additionally, it is prone to errors when 

using external metabolite databases, easily leading to ambiguity and low coverage of 

identification. To increase confidence in identification, labeled metabolites can provide 

valuable information on the possible numbers of certain atoms in the molecule. Besides, the 

metabolite labeling pattern may convey potential connections with other known labeled 

metabolites. A special effort has been made to analyze MID similarity for pathway 

contextualization of unidentified metabolites, which provides an alternative solution to 

further constrain database searches [24]. The proposed approach remains to be tested with 

LC-MS data and may provide higher metabolome coverage. Available software specializing 

in unknown labeled metabolite detection and extraction are often bespoke solutions 

developed to address specific project needs following specific analytical and culture 

workflows or data structures, for instance, having preconditions for selective ionization 

techniques, LC-MS or GC-MS, parallel labeling designs, joint analyses for native and 

highly isotope-enriched biological samples in a single run, etc [25–30]. This requires users 

to pre-evaluate suitable solutions applicable to their own scenario and tailor the tracer-based 

metabolomics workflow accordingly. In Chapter 5, we tested and incorporated mzMatch-

ISO in fluxTrAM given its excellent capacity for targeted metabolite isotopologue 

extraction and integration. Future work can add unknown metabolite identification as a pre-
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step before targeted processing, also complementing the automated demand of connecting 

Figure 6.1 d and Figure 6.1 r3. Candidate software can be tested for its performance in the 

following areas: speed of processing high-resolution LC-MS/MS (DDA or DIA) data, 

database matching accuracy, cell culturing cost, interoperability with other packages or 

manual curation, etc. This process can be time-consuming and cumbersome but will be 

long-term beneficial for future large-scale data analysis in studies involving multiple 

experimental conditions or serial time-points in dynamic monitoring.  

One aspect that still needs to be addressed regarding stable isotope tracer-based 

metabolomics is the effective utilization of metabolite moiety MID data in metabolic flux 

analysis. For a localized pathway analysis, moiety MID from a key-node metabolite can be 

investigated in conjunction with intact metabolite MID to understand the enzymatic 

regulations of a series of connected reactions [7,8], as demonstrated in Chapter 4. For a 

global network analysis, moiety MIDs act as additional valuable inputs for improving the 

precision of metabolic flux prediction [31,32]. For instance, they were applied for shrinking 

the feasible flux solutions for the model of the cyanobacterium Synechococcus sp. PCC 

7002 (59 reactions, 53 metabolites) [32]. It is highly promising that in future studies, we 

can incorporate both intact and moiety MIDs acquired by the HILIC Zeno MRMHR method 

further into the established genome-scale model, iDopaNeuro, representing human 

dopaminergic neurons [33]. The computational approaches for performing genome-scale 

flux analysis assisted with intact and moiety MIDs can highly accelerate the process of 

biological inference and hypothesis generation for a new stable isotope tracing experiment. 

Current moiety MID analysis still requires a significant level of manual integration and 

calculation, once automated software tools are developed in the future, it will be possible 

to have them evaluated and integrated into the fluxTrAM pipeline. 

Aiming at the ideal goal of fully comprehending cellular metabolism regulation in 

Parkinson’s disease, there is still a long way ahead. With the recent analytical and 

computational developments in revealing metabolite concentrations and flux alterations, it 

becomes increasingly possible to address ambitious questions. Parallel efforts have been 

made on constructing the iPSC-derived microglial cell or astrocyte model  using healthy 

and PINK1 mutant cell lines in our group. In the future, we can consider extending our 

metabolomics investigations into glial response to degenerative neurons. Activated 

microglial cells and reactive astrocytes are reported to exert both protective and detrimental 

effects in the neuronal extracellular environment [34,35]. To mimic the intercellular 

communication between glial cells and neurons and answer how these effects modulate 

neuronal degeneration, for instance, we can treat the patient-derived neurons with glial cell-

conditioned media and perform our proposed tracer-based metabolomics analysis. After 
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more work is put into developing cellular models of co-cultures in an environment 

analogous to the human substantia nigra pars compacta, together with their corresponding 

interactive cellular genome-scale models based on multi-omics data, we expect to design 

new tracer-based metabolomics experiments to help determine the distinct role of each cell 

type in the neurodegenerative process. Overall, combining metabolomics profiling based 

on patient-derived cellular models with metabolic phenotype predictions via in silico 

genome-scale model analysis would constantly generate new hypotheses and allow us to 

perform validation or possible enzymatic treatment in a loop fashion. We believe that a 

better understanding of the metabolic dysregulation leading to PD pathogenesis may bring 

novel diagnostic and therapeutic approaches into clinical trials. On the other hand, our 

proposed strategy can also be used to examine any novel medications, providing additional 

indicators for drug preclinical evaluation. Combined efforts from the analytical, biological, 

and computational fields will be extremely valuable and will eventually contribute to the 

development of personalized treatments for Parkinson's disease patients, allowing them to 

live a high-quality elder life.  
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