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Introduction 

Parkinson’s disease 

Parkinson’s disease (PD) is a common neurodegenerative disorder of the central nervous 

system that mainly affects the motor system, finally leading to symptoms such as 

bradykinesia, rigidity, resting tremor, and postural instability. As the disease worsens, 

patients can further develop cognitive and behavioral problems such as depression, anxiety, 

apathy, and dementia [1]. It is generally regarded as a disease of old age and affects roughly 

1% of the population over the age of 60 and up to 5% of the population over the age of 85 

[2]. However, 4% of patients present early-onset PD symptoms before the age of 50 [3]. 

The majority of these early-onset cases are linked to various forms of genetic mutations, 

such as dominantly inherited mutations including SNCA, LRRK2, recessively inherited 

mutations including Parkin, PINK1, DJ-1 and GBA [4,5]. In addition, epidemiological 

research indicates environmental factors associated with an increased risk of PD, such as 

herbicides and pesticides (e.g., paraquat, rotenone, and maneb), metals (e.g., manganese 

and lead), head trauma, and well water [6]. The etiological discoveries have prompted 

subsequent research questions about how these risk factors contribute to the loss of 

dopaminergic neurons in the mid-brain, notably targeting the substantia nigra (SN). Two 

major hypotheses have been proposed regarding the pathogenesis of the disease. One 

hypothesis claims that neuron demise can be triggered by protein misfolding and 

aggregation, whereas the other hypothesis proposes this process is provoked by 

mitochondrial dysfunction and the consequent oxidative stress [7].  

To address the underlying pathogenic mechanism, associated PD studies have been carried 

out using patient biofluids, postmortem tissue, in vitro cell models and animal models. In 

vitro patient-derived neuronal models using human induced pluripotent stem cells (iPSC) 

technology are still young, yet they offer unique advantages for studying specific neuronal 

subtypes represented by human genetics [8]. Disease modeling in either genomic or 

epigenetic base helps to reveal unique or common routes leading to the consequences of 

clinical PD symptoms. The convergence and interactions of genetic predispositions, 

advancing age, and environmental factors on the impairment of metabolism network can 

play a crucial role in progressive neurodegeneration. I believe investigating the affected 

metabolism network caused by various individual risk factors and their interactions can 

provide new insights into disease cause and hint at potential treatment strategies or possible 

early-intervention therapies (Figure 1). 
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Figure 1. A graphic overview of PD risk factors associated with genomic predispositions and 

epigenetic factors (due to e.g. environmental stress and aging) that cause unique and common clinical 

PD symptoms through various metabolism dysregulations. Studies on patient blood or patient-derived 

neuron analysis can be performed with the goal of identifying disease biomarkers or understanding 

neuron death mechanisms. Metabolic network adapted from Cao et al [9]. 

System biology 

System biology integrates experimental and computational approaches to perform a 

comprehensive and systematic analysis and evaluation of complex biological systems 

[10,11]. Constructing a hierarchical molecular network topology is a fundamental key to 

understanding cellular function in disease-specific or cell-specific conditions at the 

molecular level, which also requires knowledge of diverse biological components and 

sufficient collection of biological data [12,13]. Advanced developments in quantitative 

measurement technology covering genomics, transcriptomics, proteomics, and 

metabolomics in a high-throughput manner highly improve the quality and efficiency of 

metabolic model construction [14,15]. Recon3D is the latest updated and expanded human 

metabolic network reconstruction, accounting for 3,288 open reading frames, 13,543 

metabolic reactions involving 4,140 unique metabolites, and 12,890 protein structures [16].  

With multi-layers of biological data integration into a generic human metabolic model, 

context-specific models at the genome scale can be generated and characterized for a certain 

cell or tissue type. Applications have been shown for hepatocytes [17], liver cancer stem 

cells [18], fibroblasts [19], and peripheral blood mononuclear cells [20,21]. This 

comprehensive modeling approach can also be utilized to help in PD research, thereby, our 

group generated a comprehensive, high-quality, thermodynamically constrained model 

named iDopaNeuro, representing the normal metabolism in iPSC-derived human 

dopaminergic neurons [22]. The iDopaNeuro model can simulate changes in metabolic 

phenotypes brought on by any neurotoxin or drug intervention, providing directions for new 

biochemical experiments and insights into a systematic understanding of PD pathogenesis. 
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The metabolic process involves thousands of metabolites that are exchanged or transformed 

through biochemical reactions in a metabolic network. It can be greatly influenced by 

genetic or environmental factors and reflects the global outcomes of gene expression, 

protein kinetics, and regulations in a biological system [23]. Tracking the changes in the 

dynamic metabolism pattern is currently of great interest [10]. Metabolomics has emerged 

as a powerful tool to target the changes in metabolism at its sources, intermediates, and 

products. Furthermore, it can offer metabolite-relevant data as constraints used for genome-

scale modeling analysis; Alternatively, it can also be utilized as a validation dataset to assist 

biological interpretation and refine the model's predictive fidelity. 

Metabolomic analysis 

Metabolomics is focused on the systematic analysis of small biochemical molecules in 

biological organisms [24]. These small molecules, also referred to as metabolites, are 

characterized by a molecular weight below 1500 Da, diverse physicochemical properties 

and a broad concentration range from millimolar to picomolar [25,26]. Based on the 

compound partition coefficient, represented by LogP, metabolites can be categorized into 

three groups: polar (LogP < 0); medium-polar (0 < LogP < 5); non-polar (LogP > 5) [27]. 

Polar metabolites generally include amino acids, nucleotides, carbohydrates, and carnitines. 

Medium-polar metabolites are represented by classes of fatty acids, steroids, benzenes, 

prenol lipids, ketones, some of the amino acids, and glycerophospholipids. Non-polar 

metabolites generally include glycerolipids, sphingolipids, steroids, some of the prenol 

lipids, and glycerophospholipids [27].  

Metabolomics measurement is generally achieved using two main analytical techniques: 

mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. MS is more 

widely used than NMR due to its superior detection sensitivity, wide dynamic range, and 

capacity for accurate metabolite identification [28]. Recent advancements of mass 

spectrometry technology in ionization versatility, detector sensitivity and resolution 

intimately promote high-throughput metabolome analysis [29,30]. MS can be coupled with 

different chromatography separations. According to the physico-chemical properties of 

metabolite targets, suitable chromatography among gas chromatography (GC), liquid 

chromatography (LC), and capillary electrophoresis (CE) can be selected for sufficient 

metabolite separations. GC is suitable for volatile and thermally stable metabolites 

(eventually after derivatization), and CE is robust for polar and charged metabolite analysis 

[31]. Compared to them, LC has the widest metabolite coverage, with a combined utilization 

of hydrophilic interaction chromatography (HILIC) and reversed-phase liquid 

chromatography (RPLC). On top of these, a recent innovative technique of coupling ion 
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mobility spectrometry to mass spectrometry allows supplementary chromatographic 

separation on the basis of compound size, shape, charge, and mass [32].  

A query performed across various human metabolome databases reported that around 3278 

metabolites have been detected via LC-MS analysis and collected with experimental spectra. 

The most frequent biological sample types used in LC-MS-based metabolomics analysis 

are blood (plasma or serum), tissue, cells, urine, and feces [27]. Blood carries diverse 

metabolites through vessels and maintains a homeostatic correspondence with tissues and 

cells in the body [33]. Typically, receiving nutrients or hormones from the blood, tissues 

and cells release metabolic waste products, organic waste, or send hormone signal 

regulation to neighboring tissues. This also describes the role of blood as a crucial hub for 

metabolite exchange throughout the body [34]. The study of paired arterial and venous 

plasma profiling shows additional benefits for revealing subtle changes related to tissue-

specific metabolism [33]. Unsurprisingly, the metabolome composition of plasma and cells 

was found with considerable overlap, except for the lipids, which are found in higher 

enrichment in cells due to the need for composing membrane structure [27]. From an 

analytical perspective, sample preparation and the LC-MS method, with minor tweaks, can 

be shared between these two sample types. From a biological perspective, global metabolic 

profiling for plasma and cell samples can offer a data-driven research approach to disease 

biomarker discovery. While targeted analysis of metabolites belonging to specific 

compound classes, metabolic pathways, or modules, especially for tissue and cell samples, 

can provide a hypothesis-driven research approach in disease mechanism study [35]. 

Selecting the appropriate approach and sample type depends on the biological questions 

that need to be answered in any metabolomics study. 

Use of stable isotopes in metabolite quantification and identification 

Stable-isotopes have an unreplaceable role in targeted metabolite quantification. 

Instrumental variations and complex matrix effects are inevitable issues and easily lead to 

signal suppression during LC-MS analysis. To circumvent this, stable-isotope labeled 

metabolites possessing with the same retention and ionization behavior can be used as 

internal standards (Figure 2.a). This method is known as the stable-isotope dilution and has 

already become the gold standard for accurate quantification. However, due to the high cost 

of stable-isotope labeled standard, it is not practical to get an internal standard for each 

individual metabolite in targeted metabolomics analysis. Many alternative strategies have 

been implemented, for instance, 1) select a single or small number of internal standards per 

metabolite class  [36,37] (Figure 2.b). 2) generate labeled intracellular metabolome as 

internal standards reference by culturing with labeled substrates, applicable for 
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metabolomics study not only in cell level, but also in plant, animal and human level [38–

41] (Figure 2.b). 3) prepare internal standards by derivatizing standards with isotope

labeling reagents, only applicable for the derivatization strategy [42,43] (Figure 2.c). 

One major challenge that hinders biological interpretation based on global metabolic 

profiling is metabolite identification. For untargeted MS-based metabolomics analysis, 

detected features generally consist of biological signals, contaminants, non-metabolite-

related noise, and background signals [44,45]. Unique biological features were reported to 

account for approximately 10% of the signals in the electrospray ionization mode [46,47] 

This adds difficulties to the reliable feature extraction and annotation of putative 

metabolites of biological origin. To tackle this problem, stable-isotope labeling becomes a 

novel approach for feature identification. The basic principle is a cultivation of an organism 

group with highly isotopic labeling and a group with isotopic natural abundance. The 

labeled samples are extracted and mixed into a whole labeled metabolome pool, later 

divided into aliquots, and added to a non-labeled metabolome extract [48]. The analysis of 

mixtures of native and labeled metabolome leads to labeling-specific isotopic distributions 

of both the non-labeled and labeled metabolite ions in the mass spectra, which helps to filter 

biologically derived metabolites [49–51] (Figure 2.d). Studies have reported a 

comprehensive identification of true metabolite-related features in microorganisms [49,52–

54], plants [49–51] with the help of feeding fully 13C labelled nutrients. However, the same 

approach is not often utilized in mammalian organisms since mammalian cells require a 

complex mixture of nutrients and rarely reach full 13C labeling. A proof-of-principle study 

on human cancer cells managed to realize "deep labeling" using a custom growth medium 

where glucose and all amino acids were fully 13C labeled, while vitamins and serum 

components were 12C. Due to the fact that the isotopic distributions of metabolites can be 

in a non-fully carbon-labeled state, there is difficulty in determining the carbon numbers for 

unknown metabolic features. But more importantly, endogenous metabolic features from 

de novo synthesis can be fully identified via 13C incorporation [55].  

Either through improving metabolite quantification or metabolite identification towards full 

metabolome annotation in a given cell or tissue type, it can be highly beneficial in gaining 

a broader and deeper picture of human metabolism. Additionally, it will also help refine a 

context-specific genome-scale model to achieve more accurate metabolic prediction and 

comprehension of mechanisms. More effort has to be made to reach this ultimate goal since 

the analytical challenges still remain. In this thesis, we aim to make efforts focusing on the 

fundamental evaluation of a robust HILIC-MS method for polar metabolome analysis with 

high feature coverage and excellent separation that is applicable for global metabolite 
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profiling and transferable to metabolite quantification, as demonstrated in Chapter 2 and 

Chapter 3.  

Figure 2. Different strategies for using stable isotopes to assist metabolomics studies. a. 13C, 15N, and 

34S-enriched substances are not chromatographically separated from the corresponding natural 

isotopologues, thus the non-labeled (blue) and the labeled isotopologues (red) elute at the same 

retention time with identical peak profiles. b. Absolute compound quantification using an authentic, 

labeled standard or relative quantification using a stock of globally labeled sample extract of the same 

organism for inter-experiment comparison. The extracts are subsequently mixed and measured with 

high resolution LC–MS (LC-MSHR). c. Derivatization using non-labeled and labeled derivatization 

agents enables rapid recovery of many metabolites belonging to the same chemical groups (e.g. 

alcohols, acids …). d. For non-targeted annotation of an organism’s metabolome, the organism can 

be cultivated in parallel using differently isotopologue-enriched nutrition sources (e.g., 12C and 13C 

glucose as sole carbon source). The resulting data pattern helps in the extraction of true biological 

signals. e. Metabolism experiment using natural and fully labeled tracer substances enables 

metabolism studies and greatly helps to separate products of metabolism from other biological signals. 

In contrast with metabolism studies, fluxomics (tracer-based metabolomics) experiments only spike 

with the labeled tracer. Referred to Bueschl et al [56].  

Stable-isotope labeling in tracing cellular metabolism activity 

(Tracer-based metabolomics) 
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Cellular metabolism is a self-maintenance and regulation process that provides energy, 

generates building blocks, and tunes signaling pathways for cell survival and growth. 

Metabolism also supports cell-to-cell communication, helping to maintain an active 

microenvironment and contributing to the whole organism's survival. Due to the intrinsic 

network feature of metabolic pathways complexity, redundancy and reaction reversibility, 

metabolite concentrations generally exhibit strong robustness to any genetic or enzymatic 

changes [57]. Many uncertainties remain for the interpretation of cell metabolism based on 

the static metabolic phenotype data. Metabolic flux, also known as metabolite turnover over 

time or metabolic reaction rate, starts to gain more attention because of its ability in 

representing functional pathway activities. Stable or radioactive isotope labeling shows a 

unique advantage in studying metabolic fluxes and elucidating the structure of metabolic 

pathways and networks. A given isotopic tracer fed to living cells can be metabolized via 

enzymatic reactions. In a reaction process, a number of molecular bonds broken and 

reformed, the isotopic atoms are rearranged and incorporated into downstream metabolites 

within the metabolic network [58]. The specific labeling pattern of intermediate metabolites 

derived from stable isotopic tracer can be measured by mass spectrometry (Figure 2.e). 

Mass isotopologues refers to molecules that differ only by the number of isotopic 

substitutions [59]. Mass isotopologue distribution (MID) records the relative abundance for 

all mass isotopologue peaks. Here, we will introduce qualitative and quantitative 

applications involving metabolite isotopologue data interpretation and modeling for 

exploring cellular metabolism, as well as the remaining challenges for tracer-based 

metabolomics. 

Probing pathway activity 

With stable isotopic labeling, we can quantify the utilization of certain carbon or nitrogen 

sources in the targeted downstream products. 13C-glucose, 13C-glutamine and 15N2-

glutamine have been frequently used to monitor the nutrient dependence of tumor tissue. 

Through infusing 13C6-glucose into human lung cancer patients, higher 13C-enrichment in 

lactate, alanine, succinate, glutamate, aspartate, and citrate was observed in the tumors 

compared to non-cancerous tissues, suggesting more active glycolysis and the tricarboxylic 

acid cycle relying on glucose in the tumor tissues [60]. Glutamine was reported to be an 

important nutrient for most cancer cells in culture [61]. However, an in-vivo lung tumor 

study in mice showed low 13C-glutamine utilization by both tumors and normal tissue. 

Genetic deletion and pharmacological inhibition of glutaminase showed no influence on the 

tumor growth [62]. 13C labeled substrates can also be used to determine their contribution 
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to lipogenic acetyl-CoA production by measuring the isotopic enrichment in fatty acids 

(palmitate, stearate, oleate, etc.) [63]. 

Specific enzyme activation over certain pathways can be characterized through labeled 

enrichment analysis of intermediate metabolites or quantification of particular isotopologue. 

Pyruvate carboxylase (PC) catalyzes an important anaplerotic reaction that creates 

oxaloacetate from pyruvate. The resulting presence of 13C3-citrate, 13C5-citrate, 13C3-malate, 

and 13C3-aspartate from 13C6-glucose indicates high PC activity in human lung tumors 

[60,64]. The last step of glycolysis, converting phosphoenolpyruvate to pyruvate, is 

catalyzed by the M2 isoform of pyruvate kinase (PKM2). By quantifying the labeled 

abundance of 13C6-glucose-derived metabolite isotopologues (13C3-phosphoenolpyruvate, 

13C3-pyruvate, 13C2-citrate, 13C3-serine, 13C2-glycine, 13C3-lactate), human colon carcinoma 

HCT116 cells demonstrated PKM2 silencing in response to serine deprivation, shown with 

more pyruvate diverted into mitochondria and shifting more carbon flux into serine 

biosynthesis [65]. Similar approaches were employed for reporting a highly activated 

phosphoglycerate dehydrogenase in some cancer cells, which largely diverts glycolytic flux 

carbon into serine and glycine metabolism [66].  

Many enzymatic reactions are bidirectional, reaction reversibility adds more flexibility to 

metabolic network regulation. By feeding cells with a designed tracer, a reversible reaction 

direction can be identified when the expected labeling pattern is observed in certain reaction 

products [67]. In addition, stable-isotope tracing shows its advantages in studying 

compartment-specific pathways. By tracing the isotope labeled hydrogen (2H) in 

compartmentalized reactions that use NADPH as a cofactor and produce 2H-labeled 2-

hydroxyglutarate by mutant isocitrate dehydrogenase enzymes, Lewis et al. successfully 

differentiated pathway-specific NADPH production in the cytosol and mitochondria [68].  

Delineating the metabolite labeling pattern associated with two relevant pathways can help 

determine their relative pathway flux activity. One classical application is determining the 

relative flux through glycolytic versus pentose phosphate pathway (PPP) catabolism using 

1,2-13C2-glucose [69]. The ratio of lactate with M+1 labeling and M+2 labeling implies the 

ratio of PPP overflow to glycolysis. A relative contribution of oxidative PPP to non-

oxidative PPP to ribose-5-phosphate and thus nucleotide synthesis can be quantified by a 

relative comparison of M+1 and M+2 labeling [70]. A similar approach was employed for 

reporting the flux contribution of glutamine to palmitate synthesis derived from two distinct 

pathways, the glutaminolysis and reductive carboxylation pathways, in brown adipocyte 

cells [71]. 

Discovering novel pathways 
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Isotope tracing through known pathways or metabolome-wide analysis may facilitate the 

discovery of novel metabolic flux routes [57,72]. Tracing the carbon conversion of 13C6-

glutamine in the tricarboxylic acid (TCA) cycle resulted in the identification of a novel 

pathway for tumorigenesis, which is the reductive carboxylation of transforming α-

ketoglutarate into citrate, followed by a conversion into acetyl-CoA for lipid synthesis 

[73,74]. Another breakthrough discovery found in lung and pancreatic cancer studies 

showed 13C-lactate extensively labels TCA cycle intermediates, indicating a lactate 

oxidation flux into the TCA cycle [75,76]. However, tracing targeted pathways using 

specifically designed tracers is generally slow and random in discovering new pathways 

that have important physiological relevance. Very few studies have performed a 

metabolome-wide analysis with stable isotope labeling due to the difficulties in complex 

data analysis and interpretation. Puchalska et al. combined stable isotope tracing with 

untargeted metabolomics and identified a set of mitochondrial and cytoplasmic metabolic 

pathways related to the utilization of ketone bodies, acetoacetate in macrophages. They 

revealed an acetoacetate shuttle that connects the metabolism of hepatocytes to neighboring 

macrophages and protects the liver from high-fat diet-induced fibrosis [77]. To fully exploit 

their ability to discover new pathways based on broad-scope metabolomes, ongoing efforts 

should be made in the areas of unknown feature identification and dedicated data analysis 

pipelines for labeled data processing [78].  

Quantitative metabolic flux analysis 

For a metabolic network, metabolite concentrations and metabolic fluxes are regarded as 

the integrated functional response to the intertwined regulations at the genetic, protein 

modification, allosteric, and kinetic levels [79]. Quantifying network-flux distributions 

gives a complementary characterization of metabolic phenotypes in cells under particular 

conditions. The intracellular reaction rates are not measurable directly but can be inferred 

computationally using stable-isotopically labeled isotopologue distribution data. 13C-based 

tracers are most commonly used for experimental flux quantification, known as 13C 

metabolic flux analysis. The network model scope is basically determined based on specific 

research hypotheses. Most studies so far have focused on the central carbon metabolism and 

the related amino acid and fatty acid metabolism. A curated network model including 

metabolic reactions of interest and the respective carbon atom transitions is needed to be 

built as a prerequisite. Following an isotope labeling experiment, the isotope labeling 

distribution of intermediate metabolites, and external rates of substrate uptake and product 

secretion are measured and used as model constraint inputs. The model flux simulation 

generally starts with a set of free fluxes with random initial values. The simulated labeling 
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distribution is then compared with the experimental labeling distribution. This 

computational fitting step restarts continuously until it reaches the minimized differences 

between simulated and experimental measurements, thereby, the final simulated flux 

distribution is approaching the in vivo fluxes [80].  

Simulation of the 13C metabolic flux is typically based on several assumptions [81]. For 

example, cultured cells are maintained under a metabolic steady state with constant 

metabolic fluxes and metabolite pools during the labeling experiment. It is also assumed 

that enzyme activity displays no kinetic differences between natural substrate and 

isotopically labeled substrate. When isotopic steady state is reached, the labeling 

distribution data can be used for stationary metabolic flux analysis. While in many cases, it 

takes rather long time to reach constant labeling distribution for some metabolites. 

Isotopically non-stationary metabolic flux analysis can be performed with additional inputs 

of intracellular metabolite pool size together with dynamic labeling distribution at multiple 

sampling time points [82,83]. The precision and accuracy of metabolic flux estimation are 

statistically evaluated by verifying the goodness of fit and determining confidence intervals 

for the fluxes, also called sensitivity analysis.  

Quantitative metabolic flux analysis has helped in characterizing metabolic rewiring and 

understanding disease phenotypes [84,85]. During the process of detachment from 

monolayer culture and growth as anchorage-independent tumor spheroids, Jiang et al 

quantified the reduction in glycolysis, pyruvate dehydrogenase flux, and glucose/glutamine 

oxidation but enhancement in reductive isocitrate dehydrogenase flux in spheroids [85]. 

Metabolic flux quantitative analysis also helped guide cell bioengineering to produce 

valuable products from renewable resources [79]. For instance, 13C flux analysis was 

performed in Chinese hamster ovary cells to evaluate the effectiveness of a newly designed 

medium variant in reducing ammonia production. The metabolic effect showed an effective 

reduction of toxic product (ammonia) production and no significant alteration in the 

bioenergetic fluxes [86].  

Challenges in tracer-based metabolomics 

A well-established metabolic pathway for a particular cell type is crucial for compelling 

interpretation of either metabolite concentrations or MID data toward pathway activity. For 

a well-studied metabolic pathway, for instance, metabolite connection and transformation 

in the classical central carbon metabolism are usually taken for granted. New reactions or 

unknown reaction reversibility can be confirmed using a designed tracer. In other words, 

this also means the labeling information can help support and validate the metabolic 

pathway reconstruction. Technically, time-of-flight (TOF) or Orbitrap mass spectrometry 
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analysis at high mass resolution could obtain the labeling information, including the labeled 

atom number and total isotopic enrichment, based on the intact structure level. However, 

the positional labeling information embedded in the metabolite substructure or moiety can 

be missed. Although a tandem quadrupole-based mass spectrometry analysis using multiple 

reaction monitoring (MRM) can offer partial substructure information, it has the significant 

drawback of losing detection sensitivity with increased metabolite targets and paired ion 

transitions [87–90]. Tandem MS-based approaches via parallel reaction monitoring 

(PRM/MRMHR) [91], SWATH [92], and all-ion fragmentation techniques (MSAll) [93] in 

high resolution have shown their advantages in terms of recording the entire fragmentation 

spectrum and increasing sensitivity by reducing the detection cycle time. Application based 

on ultrahigh-resolution MSAll on an Orbitrap Fusion Tribrid MS has been shown to confirm 

the reconstruction of purine and pyrimidine metabolism using not only the MID of an intact 

metabolite but also the MID of its moiety [93]. Changes in intact and moiety MIDs could 

also be collectively used to infer specific enzyme activity [94]. A labeled metabolite 

containing the same number of isotopes but with different labeling positions can indicate 

distinct enzyme regulations. This method, however, lost the specific link between fragments 

and their given precursor isotopologue, making it impossible to distinguish different 

labeling positions for the same precursor isotopologue. Thereby, further method 

development is required to improve the part of LC-MS measurement (step 1 in Figure 3) 

in order to fully capture labeled metabolite information at the intact molecule and moiety 

level with good sensitivity in a single analytical run. 

Quantitative metabolic flux analysis into understanding human cellular metabolism still has 

relatively few applications. One bottleneck can be the tedious work related to tracer-based 

metabolomics data processing (step 2 in Figure 3). The other bottleneck is that the model 

scope is often limited to the central carbon metabolism with established methods for 13C 

metabolic flux analysis. It is faced with highly challenging computation in order to integrate 

tracer-based MID data into a larger network model and further to a genome-scale level (step 

3 in Figure 3). A recently developed mathematical and computational method, named 

moiety fluxomics, has shown its ability to infer metabolic reaction flux at genome scale, 

given mass isotopologue distribution data [95]. This remains to be tested in the iDopaNeuro 

model for human dopaminergic neurons. Flux outputs have to be viewed with skepticism 

until the model has passed many rounds of flux estimates, flux accuracy assessment, and 

experimental study validation. This can be a lengthy cycle before finally reaching a 

compelling biological conclusion.  
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Figure 3. In a typical 13C metabolic flux analysis workflow, in-vitro labeled samples can be measured 

using LC-MS techniques (step 1), MS raw data needs to be processed metabolite by metabolite (step 

2), and the calculated MID data, together with exometabolomic constraints, are next fed into a 

constructed metabolic model for estimating the optimal flux distribution (step 3). The obtained flux 

results can guide the next tracer experiment design (step 4). Metabolic network model adapted from 

Long et al [81]. 

Scope of this thesis 

Based on the hypothesis that mitochondrial dysfunction and the resulting oxidative stress is 

one of the drivers of Parkinson's disease (PD), the basic goal of our research is to study the 

role of mitochondrial dysfunction in the onset of Parkinson's disease through monitoring 

the underlying molecular events. Both variations in metabolite pool size and metabolite 

transformation or transport (turnover) rate should be taken into account for a comprehensive 

characterization of metabolic regulation over biochemical pathways. However, as was 

discussed in the introductory section, there is currently still a lack of suitable analytical 

measurement, computational processing, and modeling techniques. The study of 

mitochondrial dysfunction requires (i) the robust measurement of polar metabolites, (ii) the 
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study of metabolic fluxes at a larger scale. For the latter, sensitive MS/MS analysis coupled 

with high-resolution MS analysis and a proper computational workflow for tracer-based 

mass spectrometry data processing and quantitative flux analysis in an atomically resolved 

genome-scale model are needed.  

Therefore, the aim of this thesis was to develop a robust LC-MS method to analyze a wide 

range of polar metabolites, a tracer-based metabolomics analytical method, and a 

computational workflow for metabolic flux analysis within a human-specific genome-scale 

metabolic model. The other aim of this thesis was to apply these methods to investigate 

metabolic dysregulation of dopaminergic neurons due to genetic and environmental factors. 

The aim in Chapter 2 was to systematically evaluate polar stationary phases for global 

polar metabolome analysis, moreover, to offer valuable guidance on determining an optimal 

chromatography column for various biological matrices. We compared the neutral phase of 

the Waters BEH-amide column with the zwitterionic phase of the Merck ZIC-cHILIC 

column for 9 classes of polar compounds using 54 authentic standards at three pH conditions. 

The ZIC-cHILIC column outperformed BEH-amide in terms of chromatographic peak 

performance and selectivity of critical isomers. Investigation into the retention mechanism 

demonstrated mixed mode interactions in neutral and zwitterionic phases, specifically with 

a strong electrostatic interaction present in ZIC-c at neutral pH condition. A matrix-related 

assessment covering matrix effect, salt effect, intra- and inter-batch repeatability was 

carried out using human plasma, which was followed by a practical metabolomics study 

using plasma samples with diverse phenotypes. ZIC-c enhanced plasma feature coverage 

and improved their retention distribution, which is highly advantageous for global profiling 

of plasma samples and assisting new biomarker discovery. In the following chapters, we 

validated, adapted, and further applied the established ZIC-c HILIC-MS method to cellular 

metabolomics analysis. 

To achieve a comprehensive picture of metabolic dysregulation related to individual and 

combined effects of genetic and environmental factors (PINK1 mutation and rotenone) for 

PD and facilitate the pathogenesis mechanism understanding, Chapter 3 employed multiple 

targeted metabolomics platforms covering polar and non-polar metabolomes covering 

central carbon metabolism, acylcarnitine and polyunsaturated fatty acid metabolism. The 

patient-specific and isogenic human induced pluripotent stem cell (iPSC)-derived mid-brain 

neurons with and without PINK mutation were utilized as the in vitro experimental model, 

which received additional treatments with rotenone exposure or NAD+ supplementation. 

The study revealed overlapping and compensating metabolome disturbances induced by 

individual factors and their contributions to a broad metabolic dysregulation indicative of 

neurodegeneration. The supplementation of NAD+ to the dual factor-influenced neurons 
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was evaluated with limited improvement in neuronal energy production relying on the 

enhanced branched chain amino acid metabolism. 

In Chapter 4, a new LC-MS method is proposed for stable-isotope labeled mass 

isotopologue analysis at both MS1 and MS2 level. Given the fact that the detection duty 

cycles for the orthogonal injection TOF-MS are typically less than 30%, this unavoidable 

cause of sensitivity loss always exists for current high-resolution tandem TOF-MS method. 

A recent revolutionary technique, Zeno-pulsing, has been reported to increase the duty cycle 

up to 100%, thus achieving significant detection improvement [96]. The combination of 

HILIC separation coupled to high-resolution MRM detection with Zeno trap pulsing 

allowed for wide coverage of polar metabolome analysis and excellent sensitivity at the 

MS2 level. In comparison with the conventional SWATH and MRMHR methods, the HILIC-

Zeno MRMHR method achieved a higher sensitivity gain. Meanwhile, it maintained isotope 

fidelity for precursor and fragment isotopologue distribution as well as specificity linking a 

given precursor isotopologue to its generated fragments. Tracing labeled atoms at the 

moiety level clearly illuminates the reaction connections through metabolite transformation. 

The method was applied to a human-derived mid-brain neuronal model and revealed a new 

elucidation of glutathione metabolism regulation in response to rotenone stress via 

interpreting labeling pattern changes from both intact metabolites and moieties. Aside from 

capturing the static metabolite level or concentration, dynamic pathway activity provides a 

complementary perspective for a more complete understanding of metabolic phenotyping.  

Quantitative flux inference from metabolite labeling patterns remains a big challenge, 

especially at a genome-scale. Besides, there is still a lack of an automated processing 

pipeline to make this procedure more efficient and turn it into a standardized workflow. 

Chapter 5 aims to construct an automated data processing pipeline for quantitative flux 

analysis in a genome-scale model, termed fluxTram. The pipeline is composed of two 

essential modules: the processing of tracer-based mass spectrometry data into standardized 

mass isotopologue distribution and the generation of metabolite structure and reaction 

databases over a genome-scale model. As a demonstration of the pipeline, fluxTram 

processed 13C-labeled metabolomics data collected from an in vitro iPSC-derived mid-brain 

neuron model, which assisted a conventional 13C metabolic flux analysis within a central 

carbon (core) metabolism model. In parallel, fluxTram resolved the atom mappings of a 

genome-scale, dopaminergic neuronal metabolic model (iDopaNeuroC). The combination 

of the fluxTram outputs allowed us to conduct a moiety fluxomics analysis in the 

iDopaNeuroC model. An integrative metabolic flux analysis involving core model flux 

solution, moiety flux solution, and results from two other in silico genome-scale flux 

analysis methods: entropy flux solution and flux balance analysis became possible, enabling 
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a comparison of neuronal metabolic function inference and prediction using competing 

methods. Furthermore, atom mapping assisted in determining the labeling configuration of 

a tracer used in a subsequent tracer experiment.  

Finally, in Chapter 6 a general conclusion of the studies described in this thesis is provided. 

Perspectives and recommendations on future improvements and applications of the 

proposed LC-MS methods and data processing pipelines are also discussed.  
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