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General introduction and scope
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Introduction

Parkinson’s disease

Parkinson’s disease (PD) is a common neurodegenerative disorder of the central nervous
system that mainly affects the motor system, finally leading to symptoms such as
bradykinesia, rigidity, resting tremor, and postural instability. As the disease worsens,
patients can further develop cognitive and behavioral problems such as depression, anxiety,
apathy, and dementia [1]. It is generally regarded as a disease of old age and affects roughly
1% of the population over the age of 60 and up to 5% of the population over the age of 85
[2]. However, 4% of patients present early-onset PD symptoms before the age of 50 [3].
The majority of these early-onset cases are linked to various forms of genetic mutations,
such as dominantly inherited mutations including SNCA, LRRKZ2, recessively inherited
mutations including Parkin, PINK1, DJ-1 and GBA [4,5]. In addition, epidemiological
research indicates environmental factors associated with an increased risk of PD, such as
herbicides and pesticides (e.g., paraquat, rotenone, and maneb), metals (e.g., manganese
and lead), head trauma, and well water [6]. The etiological discoveries have prompted
subsequent research questions about how these risk factors contribute to the loss of
dopaminergic neurons in the mid-brain, notably targeting the substantia nigra (SN). Two
major hypotheses have been proposed regarding the pathogenesis of the disease. One
hypothesis claims that neuron demise can be triggered by protein misfolding and
aggregation, whereas the other hypothesis proposes this process is provoked by
mitochondrial dysfunction and the consequent oxidative stress [7].

To address the underlying pathogenic mechanism, associated PD studies have been carried
out using patient biofluids, postmortem tissue, in vitro cell models and animal models. In
vitro patient-derived neuronal models using human induced pluripotent stem cells (iPSC)
technology are still young, yet they offer unique advantages for studying specific neuronal
subtypes represented by human genetics [8]. Disease modeling in either genomic or
epigenetic base helps to reveal unique or common routes leading to the consequences of
clinical PD symptoms. The convergence and interactions of genetic predispositions,
advancing age, and environmental factors on the impairment of metabolism network can
play a crucial role in progressive neurodegeneration. | believe investigating the affected
metabolism network caused by various individual risk factors and their interactions can
provide new insights into disease cause and hint at potential treatment strategies or possible
early-intervention therapies (Figure 1).
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Figure 1. A graphic overview of PD risk factors associated with genomic predispositions and
epigenetic factors (due to e.g. environmental stress and aging) that cause unique and common clinical
PD symptoms through various metabolism dysregulations. Studies on patient blood or patient-derived

neuron analysis can be performed with the goal of identifying disease biomarkers or understanding
neuron death mechanisms. Metabolic network adapted from Cao et al [9].

System biology

System biology integrates experimental and computational approaches to perform a
comprehensive and systematic analysis and evaluation of complex biological systems
[10,11]. Constructing a hierarchical molecular network topology is a fundamental key to
understanding cellular function in disease-specific or cell-specific conditions at the
molecular level, which also requires knowledge of diverse biological components and
sufficient collection of biological data [12,13]. Advanced developments in quantitative
measurement technology covering genomics, transcriptomics, proteomics, and
metabolomics in a high-throughput manner highly improve the quality and efficiency of
metabolic model construction [14,15]. Recon3D is the latest updated and expanded human
metabolic network reconstruction, accounting for 3,288 open reading frames, 13,543
metabolic reactions involving 4,140 unique metabolites, and 12,890 protein structures [16].
With multi-layers of biological data integration into a generic human metabolic model,
context-specific models at the genome scale can be generated and characterized for a certain
cell or tissue type. Applications have been shown for hepatocytes [17], liver cancer stem
cells [18], fibroblasts [19], and peripheral blood mononuclear cells [20,21]. This
comprehensive modeling approach can also be utilized to help in PD research, thereby, our
group generated a comprehensive, high-quality, thermodynamically constrained model
named iDopaNeuro, representing the normal metabolism in iPSC-derived human
dopaminergic neurons [22]. The iDopaNeuro model can simulate changes in metabolic
phenotypes brought on by any neurotoxin or drug intervention, providing directions for new
biochemical experiments and insights into a systematic understanding of PD pathogenesis.
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The metabolic process involves thousands of metabolites that are exchanged or transformed
through biochemical reactions in a metabolic network. It can be greatly influenced by
genetic or environmental factors and reflects the global outcomes of gene expression,
protein kinetics, and regulations in a biological system [23]. Tracking the changes in the
dynamic metabolism pattern is currently of great interest [10]. Metabolomics has emerged
as a powerful tool to target the changes in metabolism at its sources, intermediates, and
products. Furthermore, it can offer metabolite-relevant data as constraints used for genome-
scale modeling analysis; Alternatively, it can also be utilized as a validation dataset to assist
biological interpretation and refine the model's predictive fidelity.

Metabolomic analysis

Metabolomics is focused on the systematic analysis of small biochemical molecules in
biological organisms [24]. These small molecules, also referred to as metabolites, are
characterized by a molecular weight below 1500 Da, diverse physicochemical properties
and a broad concentration range from millimolar to picomolar [25,26]. Based on the
compound partition coefficient, represented by LogP, metabolites can be categorized into
three groups: polar (LogP < 0); medium-polar (0 < LogP < 5); non-polar (LogP > 5) [27].
Polar metabolites generally include amino acids, nucleotides, carbohydrates, and carnitines.
Medium-polar metabolites are represented by classes of fatty acids, steroids, benzenes,
prenol lipids, ketones, some of the amino acids, and glycerophospholipids. Non-polar
metabolites generally include glycerolipids, sphingolipids, steroids, some of the prenol
lipids, and glycerophospholipids [27].

Metabolomics measurement is generally achieved using two main analytical techniques:
mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. MS is more
widely used than NMR due to its superior detection sensitivity, wide dynamic range, and
capacity for accurate metabolite identification [28]. Recent advancements of mass
spectrometry technology in ionization versatility, detector sensitivity and resolution
intimately promote high-throughput metabolome analysis [29,30]. MS can be coupled with
different chromatography separations. According to the physico-chemical properties of
metabolite targets, suitable chromatography among gas chromatography (GC), liquid
chromatography (LC), and capillary electrophoresis (CE) can be selected for sufficient
metabolite separations. GC is suitable for volatile and thermally stable metabolites
(eventually after derivatization), and CE is robust for polar and charged metabolite analysis
[31]. Compared to them, LC has the widest metabolite coverage, with a combined utilization
of hydrophilic interaction chromatography (HILIC) and reversed-phase liquid
chromatography (RPLC). On top of these, a recent innovative technique of coupling ion
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mobility spectrometry to mass spectrometry allows supplementary chromatographic
separation on the basis of compound size, shape, charge, and mass [32].

A query performed across various human metabolome databases reported that around 3278
metabolites have been detected via LC-MS analysis and collected with experimental spectra.
The most frequent biological sample types used in LC-MS-based metabolomics analysis
are blood (plasma or serum), tissue, cells, urine, and feces [27]. Blood carries diverse
metabolites through vessels and maintains a homeostatic correspondence with tissues and
cells in the body [33]. Typically, receiving nutrients or hormones from the blood, tissues
and cells release metabolic waste products, organic waste, or send hormone signal
regulation to neighboring tissues. This also describes the role of blood as a crucial hub for
metabolite exchange throughout the body [34]. The study of paired arterial and venous
plasma profiling shows additional benefits for revealing subtle changes related to tissue-
specific metabolism [33]. Unsurprisingly, the metabolome composition of plasma and cells
was found with considerable overlap, except for the lipids, which are found in higher
enrichment in cells due to the need for composing membrane structure [27]. From an
analytical perspective, sample preparation and the LC-MS method, with minor tweaks, can
be shared between these two sample types. From a biological perspective, global metabolic
profiling for plasma and cell samples can offer a data-driven research approach to disease
biomarker discovery. While targeted analysis of metabolites belonging to specific
compound classes, metabolic pathways, or modules, especially for tissue and cell samples,
can provide a hypothesis-driven research approach in disease mechanism study [35].
Selecting the appropriate approach and sample type depends on the biological questions
that need to be answered in any metabolomics study.

Use of stable isotopes in metabolite quantification and identification

Stable-isotopes have an unreplaceable role in targeted metabolite quantification.
Instrumental variations and complex matrix effects are inevitable issues and easily lead to
signal suppression during LC-MS analysis. To circumvent this, stable-isotope labeled
metabolites possessing with the same retention and ionization behavior can be used as
internal standards (Figure 2.a). This method is known as the stable-isotope dilution and has
already become the gold standard for accurate quantification. However, due to the high cost
of stable-isotope labeled standard, it is not practical to get an internal standard for each
individual metabolite in targeted metabolomics analysis. Many alternative strategies have
been implemented, for instance, 1) select a single or small number of internal standards per
metabolite class [36,37] (Figure 2.b). 2) generate labeled intracellular metabolome as
internal standards reference by culturing with labeled substrates, applicable for
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metabolomics study not only in cell level, but also in plant, animal and human level [38-
41] (Figure 2.b). 3) prepare internal standards by derivatizing standards with isotope
labeling reagents, only applicable for the derivatization strategy [42,43] (Figure 2.c).

One major challenge that hinders biological interpretation based on global metabolic
profiling is metabolite identification. For untargeted MS-based metabolomics analysis,
detected features generally consist of biological signals, contaminants, non-metabolite-
related noise, and background signals [44,45]. Unique biological features were reported to
account for approximately 10% of the signals in the electrospray ionization mode [46,47]
This adds difficulties to the reliable feature extraction and annotation of putative
metabolites of biological origin. To tackle this problem, stable-isotope labeling becomes a
novel approach for feature identification. The basic principle is a cultivation of an organism
group with highly isotopic labeling and a group with isotopic natural abundance. The
labeled samples are extracted and mixed into a whole labeled metabolome pool, later
divided into aliquots, and added to a non-labeled metabolome extract [48]. The analysis of
mixtures of native and labeled metabolome leads to labeling-specific isotopic distributions
of both the non-labeled and labeled metabolite ions in the mass spectra, which helps to filter
biologically derived metabolites [49-51] (Figure 2.d). Studies have reported a
comprehensive identification of true metabolite-related features in microorganisms [49,52—
54], plants [49-51] with the help of feeding fully *3C labelled nutrients. However, the same
approach is not often utilized in mammalian organisms since mammalian cells require a
complex mixture of nutrients and rarely reach full *C labeling. A proof-of-principle study
on human cancer cells managed to realize "deep labeling"” using a custom growth medium
where glucose and all amino acids were fully *C labeled, while vitamins and serum
components were *2C. Due to the fact that the isotopic distributions of metabolites can be
in a non-fully carbon-labeled state, there is difficulty in determining the carbon numbers for
unknown metabolic features. But more importantly, endogenous metabolic features from
de novo synthesis can be fully identified via *C incorporation [55].

Either through improving metabolite quantification or metabolite identification towards full
metabolome annotation in a given cell or tissue type, it can be highly beneficial in gaining
a broader and deeper picture of human metabolism. Additionally, it will also help refine a
context-specific genome-scale model to achieve more accurate metabolic prediction and
comprehension of mechanisms. More effort has to be made to reach this ultimate goal since
the analytical challenges still remain. In this thesis, we aim to make efforts focusing on the
fundamental evaluation of a robust HILIC-MS method for polar metabolome analysis with
high feature coverage and excellent separation that is applicable for global metabolite
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profiling and transferable to metabolite quantification, as demonstrated in Chapter 2 and
Chapter 3.
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Figure 2. Different strategies for using stable isotopes to assist metabolomics studies. a. 1°C, 1N, and
34S-enriched substances are not chromatographically separated from the corresponding natural
isotopologues, thus the non-labeled (blue) and the labeled isotopologues (red) elute at the same
retention time with identical peak profiles. b. Absolute compound quantification using an authentic,
labeled standard or relative quantification using a stock of globally labeled sample extract of the same
organism for inter-experiment comparison. The extracts are subsequently mixed and measured with
high resolution LC-MS (LC-MSHR). c. Derivatization using non-labeled and labeled derivatization
agents enables rapid recovery of many metabolites belonging to the same chemical groups (e.g.
alcohols, acids ...). d. For non-targeted annotation of an organism’s metabolome, the organism can
be cultivated in parallel using differently isotopologue-enriched nutrition sources (e.g., ?C and 3C
glucose as sole carbon source). The resulting data pattern helps in the extraction of true biological
signals. e. Metabolism experiment using natural and fully labeled tracer substances enables
metabolism studies and greatly helps to separate products of metabolism from other biological signals.
In contrast with metabolism studies, fluxomics (tracer-based metabolomics) experiments only spike
with the labeled tracer. Referred to Bueschl et al [56].

Stable-isotope labeling in tracing cellular metabolism activity
(Tracer-based metabolomics)
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Cellular metabolism is a self-maintenance and regulation process that provides energy,
generates building blocks, and tunes signaling pathways for cell survival and growth.
Metabolism also supports cell-to-cell communication, helping to maintain an active
microenvironment and contributing to the whole organism's survival. Due to the intrinsic
network feature of metabolic pathways complexity, redundancy and reaction reversibility,
metabolite concentrations generally exhibit strong robustness to any genetic or enzymatic
changes [57]. Many uncertainties remain for the interpretation of cell metabolism based on
the static metabolic phenotype data. Metabolic flux, also known as metabolite turnover over
time or metabolic reaction rate, starts to gain more attention because of its ability in
representing functional pathway activities. Stable or radioactive isotope labeling shows a
unique advantage in studying metabolic fluxes and elucidating the structure of metabolic
pathways and networks. A given isotopic tracer fed to living cells can be metabolized via
enzymatic reactions. In a reaction process, a number of molecular bonds broken and
reformed, the isotopic atoms are rearranged and incorporated into downstream metabolites
within the metabolic network [58]. The specific labeling pattern of intermediate metabolites
derived from stable isotopic tracer can be measured by mass spectrometry (Figure 2.e).
Mass isotopologues refers to molecules that differ only by the number of isotopic
substitutions [59]. Mass isotopologue distribution (MID) records the relative abundance for
all mass isotopologue peaks. Here, we will introduce qualitative and quantitative
applications involving metabolite isotopologue data interpretation and modeling for
exploring cellular metabolism, as well as the remaining challenges for tracer-based
metabolomics.

Probing pathway activity

With stable isotopic labeling, we can quantify the utilization of certain carbon or nitrogen
sources in the targeted downstream products. '3C-glucose, *C-glutamine and *°N,-
glutamine have been frequently used to monitor the nutrient dependence of tumor tissue.
Through infusing *Cs-glucose into human lung cancer patients, higher *3C-enrichment in
lactate, alanine, succinate, glutamate, aspartate, and citrate was observed in the tumors
compared to non-cancerous tissues, suggesting more active glycolysis and the tricarboxylic
acid cycle relying on glucose in the tumor tissues [60]. Glutamine was reported to be an
important nutrient for most cancer cells in culture [61]. However, an in-vivo lung tumor
study in mice showed low **C-glutamine utilization by both tumors and normal tissue.
Genetic deletion and pharmacological inhibition of glutaminase showed no influence on the
tumor growth [62]. 1C labeled substrates can also be used to determine their contribution
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to lipogenic acetyl-CoA production by measuring the isotopic enrichment in fatty acids
(palmitate, stearate, oleate, etc.) [63].

Specific enzyme activation over certain pathways can be characterized through labeled
enrichment analysis of intermediate metabolites or quantification of particular isotopologue.
Pyruvate carboxylase (PC) catalyzes an important anaplerotic reaction that creates
oxaloacetate from pyruvate. The resulting presence of *Cs-citrate, 13Cs-citrate, 3C3-malate,
and ¥Cs-aspartate from *Cg-glucose indicates high PC activity in human lung tumors
[60,64]. The last step of glycolysis, converting phosphoenolpyruvate to pyruvate, is
catalyzed by the M2 isoform of pyruvate kinase (PKM2). By quantifying the labeled
abundance of *Cg-glucose-derived metabolite isotopologues (**Cs-phosphoenolpyruvate,
13Cs-pyruvate, 3C,-citrate, *Cs-serine, 3Co-glycine, **Cs-lactate), human colon carcinoma
HCT116 cells demonstrated PKM2 silencing in response to serine deprivation, shown with
more pyruvate diverted into mitochondria and shifting more carbon flux into serine
biosynthesis [65]. Similar approaches were employed for reporting a highly activated
phosphoglycerate dehydrogenase in some cancer cells, which largely diverts glycolytic flux
carbon into serine and glycine metabolism [66].

Many enzymatic reactions are bidirectional, reaction reversibility adds more flexibility to
metabolic network regulation. By feeding cells with a designed tracer, a reversible reaction
direction can be identified when the expected labeling pattern is observed in certain reaction
products [67]. In addition, stable-isotope tracing shows its advantages in studying
compartment-specific pathways. By tracing the isotope labeled hydrogen (?H) in
compartmentalized reactions that use NADPH as a cofactor and produce 2H-labeled 2-
hydroxyglutarate by mutant isocitrate dehydrogenase enzymes, Lewis et al. successfully
differentiated pathway-specific NADPH production in the cytosol and mitochondria [68].
Delineating the metabolite labeling pattern associated with two relevant pathways can help
determine their relative pathway flux activity. One classical application is determining the
relative flux through glycolytic versus pentose phosphate pathway (PPP) catabolism using
1,2-13C,-glucose [69]. The ratio of lactate with M+1 labeling and M+2 labeling implies the
ratio of PPP overflow to glycolysis. A relative contribution of oxidative PPP to non-
oxidative PPP to ribose-5-phosphate and thus nucleotide synthesis can be quantified by a
relative comparison of M+1 and M+2 labeling [70]. A similar approach was employed for
reporting the flux contribution of glutamine to palmitate synthesis derived from two distinct
pathways, the glutaminolysis and reductive carboxylation pathways, in brown adipocyte
cells [71].

Discovering novel pathways
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Isotope tracing through known pathways or metabolome-wide analysis may facilitate the
discovery of novel metabolic flux routes [57,72]. Tracing the carbon conversion of 3Ce-
glutamine in the tricarboxylic acid (TCA) cycle resulted in the identification of a novel
pathway for tumorigenesis, which is the reductive carboxylation of transforming a-
ketoglutarate into citrate, followed by a conversion into acetyl-CoA for lipid synthesis
[73,74]. Another breakthrough discovery found in lung and pancreatic cancer studies
showed *C-lactate extensively labels TCA cycle intermediates, indicating a lactate
oxidation flux into the TCA cycle [75,76]. However, tracing targeted pathways using
specifically designed tracers is generally slow and random in discovering new pathways
that have important physiological relevance. Very few studies have performed a
metabolome-wide analysis with stable isotope labeling due to the difficulties in complex
data analysis and interpretation. Puchalska et al. combined stable isotope tracing with
untargeted metabolomics and identified a set of mitochondrial and cytoplasmic metabolic
pathways related to the utilization of ketone bodies, acetoacetate in macrophages. They
revealed an acetoacetate shuttle that connects the metabolism of hepatocytes to neighboring
macrophages and protects the liver from high-fat diet-induced fibrosis [77]. To fully exploit
their ability to discover new pathways based on broad-scope metabolomes, ongoing efforts
should be made in the areas of unknown feature identification and dedicated data analysis
pipelines for labeled data processing [78].

Quantitative metabolic flux analysis

For a metabolic network, metabolite concentrations and metabolic fluxes are regarded as
the integrated functional response to the intertwined regulations at the genetic, protein
modification, allosteric, and Kinetic levels [79]. Quantifying network-flux distributions
gives a complementary characterization of metabolic phenotypes in cells under particular
conditions. The intracellular reaction rates are not measurable directly but can be inferred
computationally using stable-isotopically labeled isotopologue distribution data. *3C-based
tracers are most commonly used for experimental flux quantification, known as *3C
metabolic flux analysis. The network model scope is basically determined based on specific
research hypotheses. Most studies so far have focused on the central carbon metabolism and
the related amino acid and fatty acid metabolism. A curated network model including
metabolic reactions of interest and the respective carbon atom transitions is needed to be
built as a prerequisite. Following an isotope labeling experiment, the isotope labeling
distribution of intermediate metabolites, and external rates of substrate uptake and product
secretion are measured and used as model constraint inputs. The model flux simulation
generally starts with a set of free fluxes with random initial values. The simulated labeling

10



General introduction and scope

distribution is then compared with the experimental labeling distribution. This
computational fitting step restarts continuously until it reaches the minimized differences
between simulated and experimental measurements, thereby, the final simulated flux
distribution is approaching the in vivo fluxes [80].

Simulation of the 3C metabolic flux is typically based on several assumptions [81]. For
example, cultured cells are maintained under a metabolic steady state with constant
metabolic fluxes and metabolite pools during the labeling experiment. It is also assumed
that enzyme activity displays no kinetic differences between natural substrate and
isotopically labeled substrate. When isotopic steady state is reached, the labeling
distribution data can be used for stationary metabolic flux analysis. While in many cases, it
takes rather long time to reach constant labeling distribution for some metabolites.
Isotopically non-stationary metabolic flux analysis can be performed with additional inputs
of intracellular metabolite pool size together with dynamic labeling distribution at multiple
sampling time points [82,83]. The precision and accuracy of metabolic flux estimation are
statistically evaluated by verifying the goodness of fit and determining confidence intervals
for the fluxes, also called sensitivity analysis.

Quantitative metabolic flux analysis has helped in characterizing metabolic rewiring and
understanding disease phenotypes [84,85]. During the process of detachment from
monolayer culture and growth as anchorage-independent tumor spheroids, Jiang et al
quantified the reduction in glycolysis, pyruvate dehydrogenase flux, and glucose/glutamine
oxidation but enhancement in reductive isocitrate dehydrogenase flux in spheroids [85].
Metabolic flux quantitative analysis also helped guide cell bioengineering to produce
valuable products from renewable resources [79]. For instance, 3C flux analysis was
performed in Chinese hamster ovary cells to evaluate the effectiveness of a newly designed
medium variant in reducing ammonia production. The metabolic effect showed an effective
reduction of toxic product (ammonia) production and no significant alteration in the
bioenergetic fluxes [86].

Challenges in tracer-based metabolomics

A well-established metabolic pathway for a particular cell type is crucial for compelling
interpretation of either metabolite concentrations or MID data toward pathway activity. For
a well-studied metabolic pathway, for instance, metabolite connection and transformation
in the classical central carbon metabolism are usually taken for granted. New reactions or
unknown reaction reversibility can be confirmed using a designed tracer. In other words,
this also means the labeling information can help support and validate the metabolic
pathway reconstruction. Technically, time-of-flight (TOF) or Orbitrap mass spectrometry
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analysis at high mass resolution could obtain the labeling information, including the labeled
atom number and total isotopic enrichment, based on the intact structure level. However,
the positional labeling information embedded in the metabolite substructure or moiety can
be missed. Although a tandem quadrupole-based mass spectrometry analysis using multiple
reaction monitoring (MRM) can offer partial substructure information, it has the significant
drawback of losing detection sensitivity with increased metabolite targets and paired ion
transitions [87-90]. Tandem MS-based approaches via parallel reaction monitoring
(PRM/MRM"R) [91], SWATH [92], and all-ion fragmentation techniques (MSA") [93] in
high resolution have shown their advantages in terms of recording the entire fragmentation
spectrum and increasing sensitivity by reducing the detection cycle time. Application based
on ultrahigh-resolution MSA!" on an Orbitrap Fusion Tribrid MS has been shown to confirm
the reconstruction of purine and pyrimidine metabolism using not only the MID of an intact
metabolite but also the MID of its moiety [93]. Changes in intact and moiety MIDs could
also be collectively used to infer specific enzyme activity [94]. A labeled metabolite
containing the same number of isotopes but with different labeling positions can indicate
distinct enzyme regulations. This method, however, lost the specific link between fragments
and their given precursor isotopologue, making it impossible to distinguish different
labeling positions for the same precursor isotopologue. Thereby, further method
development is required to improve the part of LC-MS measurement (step 1 in Figure 3)
in order to fully capture labeled metabolite information at the intact molecule and moiety
level with good sensitivity in a single analytical run.

Quantitative metabolic flux analysis into understanding human cellular metabolism still has
relatively few applications. One bottleneck can be the tedious work related to tracer-based
metabolomics data processing (step 2 in Figure 3). The other bottleneck is that the model
scope is often limited to the central carbon metabolism with established methods for *3C
metabolic flux analysis. It is faced with highly challenging computation in order to integrate
tracer-based MID data into a larger network model and further to a genome-scale level (step
3 in Figure 3). A recently developed mathematical and computational method, named
moiety fluxomics, has shown its ability to infer metabolic reaction flux at genome scale,
given mass isotopologue distribution data [95]. This remains to be tested in the iDopaNeuro
model for human dopaminergic neurons. Flux outputs have to be viewed with skepticism
until the model has passed many rounds of flux estimates, flux accuracy assessment, and
experimental study validation. This can be a lengthy cycle before finally reaching a
compelling biological conclusion.

12
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Figure 3. In a typical *3C metabolic flux analysis workflow, in-vitro labeled samples can be measured
using LC-MS techniques (step 1), MS raw data needs to be processed metabolite by metabolite (step
2), and the calculated MID data, together with exometabolomic constraints, are next fed into a
constructed metabolic model for estimating the optimal flux distribution (step 3). The obtained flux
results can guide the next tracer experiment design (step 4). Metabolic network model adapted from
Long et al [81].

Scope of this thesis

Based on the hypothesis that mitochondrial dysfunction and the resulting oxidative stress is
one of the drivers of Parkinson's disease (PD), the basic goal of our research is to study the
role of mitochondrial dysfunction in the onset of Parkinson's disease through monitoring
the underlying molecular events. Both variations in metabolite pool size and metabolite
transformation or transport (turnover) rate should be taken into account for a comprehensive
characterization of metabolic regulation over biochemical pathways. However, as was
discussed in the introductory section, there is currently still a lack of suitable analytical
measurement, computational processing, and modeling techniques. The study of
mitochondrial dysfunction requires (i) the robust measurement of polar metabolites, (ii) the

13
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study of metabolic fluxes at a larger scale. For the latter, sensitive MS/MS analysis coupled
with high-resolution MS analysis and a proper computational workflow for tracer-based
mass spectrometry data processing and quantitative flux analysis in an atomically resolved
genome-scale model are needed.

Therefore, the aim of this thesis was to develop a robust LC-MS method to analyze a wide
range of polar metabolites, a tracer-based metabolomics analytical method, and a
computational workflow for metabolic flux analysis within a human-specific genome-scale
metabolic model. The other aim of this thesis was to apply these methods to investigate
metabolic dysregulation of dopaminergic neurons due to genetic and environmental factors.
The aim in Chapter 2 was to systematically evaluate polar stationary phases for global
polar metabolome analysis, moreover, to offer valuable guidance on determining an optimal
chromatography column for various biological matrices. We compared the neutral phase of
the Waters BEH-amide column with the zwitterionic phase of the Merck ZIC-cHILIC
column for 9 classes of polar compounds using 54 authentic standards at three pH conditions.
The ZIC-cHILIC column outperformed BEH-amide in terms of chromatographic peak
performance and selectivity of critical isomers. Investigation into the retention mechanism
demonstrated mixed mode interactions in neutral and zwitterionic phases, specifically with
a strong electrostatic interaction present in ZIC-c at neutral pH condition. A matrix-related
assessment covering matrix effect, salt effect, intra- and inter-batch repeatability was
carried out using human plasma, which was followed by a practical metabolomics study
using plasma samples with diverse phenotypes. ZIC-c enhanced plasma feature coverage
and improved their retention distribution, which is highly advantageous for global profiling
of plasma samples and assisting new biomarker discovery. In the following chapters, we
validated, adapted, and further applied the established ZIC-c HILIC-MS method to cellular
metabolomics analysis.

To achieve a comprehensive picture of metabolic dysregulation related to individual and
combined effects of genetic and environmental factors (PINK1 mutation and rotenone) for
PD and facilitate the pathogenesis mechanism understanding, Chapter 3 employed multiple
targeted metabolomics platforms covering polar and non-polar metabolomes covering
central carbon metabolism, acylcarnitine and polyunsaturated fatty acid metabolism. The
patient-specific and isogenic human induced pluripotent stem cell (iPSC)-derived mid-brain
neurons with and without PINK mutation were utilized as the in vitro experimental model,
which received additional treatments with rotenone exposure or NAD+ supplementation.
The study revealed overlapping and compensating metabolome disturbances induced by
individual factors and their contributions to a broad metabolic dysregulation indicative of
neurodegeneration. The supplementation of NAD+ to the dual factor-influenced neurons

14
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was evaluated with limited improvement in neuronal energy production relying on the
enhanced branched chain amino acid metabolism.

In Chapter 4, a new LC-MS method is proposed for stable-isotope labeled mass
isotopologue analysis at both MS! and MS? level. Given the fact that the detection duty
cycles for the orthogonal injection TOF-MS are typically less than 30%, this unavoidable
cause of sensitivity loss always exists for current high-resolution tandem TOF-MS methaod.
A recent revolutionary technique, Zeno-pulsing, has been reported to increase the duty cycle
up to 100%, thus achieving significant detection improvement [96]. The combination of
HILIC separation coupled to high-resolution MRM detection with Zeno trap pulsing
allowed for wide coverage of polar metabolome analysis and excellent sensitivity at the
MS? level. In comparison with the conventional SWATH and MRM"R methods, the HILIC-
Zeno MRMHR method achieved a higher sensitivity gain. Meanwhile, it maintained isotope
fidelity for precursor and fragment isotopologue distribution as well as specificity linking a
given precursor isotopologue to its generated fragments. Tracing labeled atoms at the
moiety level clearly illuminates the reaction connections through metabolite transformation.
The method was applied to a human-derived mid-brain neuronal model and revealed a new
elucidation of glutathione metabolism regulation in response to rotenone stress via
interpreting labeling pattern changes from both intact metabolites and moieties. Aside from
capturing the static metabolite level or concentration, dynamic pathway activity provides a
complementary perspective for a more complete understanding of metabolic phenotyping.
Quantitative flux inference from metabolite labeling patterns remains a big challenge,
especially at a genome-scale. Besides, there is still a lack of an automated processing
pipeline to make this procedure more efficient and turn it into a standardized workflow.
Chapter 5 aims to construct an automated data processing pipeline for quantitative flux
analysis in a genome-scale model, termed fluxTram. The pipeline is composed of two
essential modules: the processing of tracer-based mass spectrometry data into standardized
mass isotopologue distribution and the generation of metabolite structure and reaction
databases over a genome-scale model. As a demonstration of the pipeline, fluxTram
processed *C-labeled metabolomics data collected from an in vitro iPSC-derived mid-brain
neuron model, which assisted a conventional **C metabolic flux analysis within a central
carbon (core) metabolism model. In parallel, fluxTram resolved the atom mappings of a
genome-scale, dopaminergic neuronal metabolic model (iDopaNeuroC). The combination
of the fluxTram outputs allowed us to conduct a moiety fluxomics analysis in the
iDopaNeuroC model. An integrative metabolic flux analysis involving core model flux
solution, moiety flux solution, and results from two other in silico genome-scale flux
analysis methods: entropy flux solution and flux balance analysis became possible, enabling
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a comparison of neuronal metabolic function inference and prediction using competing
methods. Furthermore, atom mapping assisted in determining the labeling configuration of
a tracer used in a subsequent tracer experiment.

Finally, in Chapter 6 a general conclusion of the studies described in this thesis is provided.
Perspectives and recommendations on future improvements and applications of the
proposed LC-MS methods and data processing pipelines are also discussed.
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