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Abstract 

Drug-induced liver injury (DILI) remains the main reason for drug development attritions largely due to poor mechanistic 
understanding. Toxicogenomic to interrogate the mechanism of DILI has been broadly performed. Gene coregulation network-based 
transcriptome analysis is a bioinformatics approach that potentially contributes to improve mechanistic interpretation of 
toxicogenomic data. Here we performed an extensive concentration time course response-toxicogenomic study in the HepG2 cell 
line exposed to 20 DILI compounds, 7 reference compounds for stress response pathways, and 10 agonists for cytokines and growth 
factor receptors. We performed whole transcriptome targeted RNA sequencing to more than 500 conditions and applied weighted 
gene coregulated network analysis to the transcriptomics data followed by the identification of gene coregulated networks (modules) 
that were strongly modulated upon the exposure of DILI compounds. Preservation analysis on the module responses of HepG2 and 
PHH demonstrated highly preserved adaptive stress response gene coregulated networks. We correlated gene coregulated networks 
with cell death onset and causal relationships of 67 critical target genes of these modules with the onset of cell death was evaluated 
using RNA interference screening. We identified GTPBP2, HSPA1B, IRF1, SIRT1, and TSC22D3 as essential modulators of DILI 
compound-induced cell death. These genes were also induced by DILI compounds in PHH. Altogether, we demonstrate the 
application of large transcriptome datasets combined with network-based analysis and biological validation to uncover the 
candidate determinants of DILI.

Keywords: hepatotoxicity; toxicogenomics; high throughput; cytotoxicity; biomarkers; WGCNA. 

Drug-induced liver injury (DILI) remains a worldwide health 
problem, representing approximately 20% of adverse drug reac
tions (David and Hamilton, 2010). Additionally, DILI is also the 
main cause for drug attritions in both preclinical and clinical 
phases (Babai et al., 2021). Multiple studies have been conducted 
to improve the mechanistic understanding of DILI. A recent 
review reported multiple cellular responses that could contribute 
to clinical manifestation of DILI: mitochondrial impairment, 
inhibition of biliary efflux, lysosomal impairment, reactive 
metabolites, endoplasmic reticulum stress, and immune system 
activation (Weaver et al., 2020). Despite recent advances, a more 
holistic understanding of the cellular events underpinning DILI 
outcomes and their causal relationship with adverse events 
starting from cell to more complex tissue and organ responses in 
an AOP framework is yet to be established. Currently, there is a 
lack of sufficient data that underpins the causality between the 
cellular responses and cellular outcomes in DILI episodes.

Transcriptomic approaches are promising tools to achieve a 
detailed description of the biological mechanisms that contribute 

to DILI as well as the prediction of its occurrence (Kohonen et al., 
2017; Li et al., 2020). For example, an extensive in vitro study has 
been performed in HepaRG cell lines exposed to >1000 chemicals 
from the ToxCast library assessing the expression of almost 100 
different genes. Despite this small gene set, this study identified 
transcriptomics signatures related to molecular initiating events 
of these compounds (Franzosa et al., 2021). In other contexts, 
transcriptomic profiling has been reported to have higher pre
dictability toward cellular outcomes compared with a sole inter
pretation from the activation of transcription factors (Weinreb 
et al., 2020). However, interpreting transcriptomic data can be 
challenging due to high dimensionality of the data resulting to 
low signal-to-noise and overall variability (Lozoya et al., 2018). 
Enrichment approaches such as pathway enrichment analysis 
and network-based analysis enable to reduce the dimensionality 
of transcriptomic datasets (O’Brien et al., 2006). The network- 
based analysis is a promising approach to study complex biologi
cal responses and improve the understanding of disease path
ways and the identification of potential drug targets and 
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biomarkers (Barab�asi et al., 2011). Such approaches could be 
applied to DILI-related toxicogenomic data to advance the mech
anistic understanding of DILI.

Weighted gene coregulated network analysis (WGCNA) is one 
method to perform network-based analysis (Langfelder and 
Horvath, 2008). This method clusters genes based on their coex
pression into specific networks called modules (gene coregulated 
networks—referred as gene networks in this study). Each module 
is scored (eigengene [EG] scores) based on the expression values of 
the composing genes, thus indicating an overall value of the mod
ule activity (induction or repression). In order to increase the bio
logical meaning of the modules, each module can be linked to 
annotations that represent cell biological processes, signaling 
pathways and responses. To date, only few studies have applied 
WGCNA to toxicogenomic datasets. Sutherland et al. derived 
WGCNA modules from the in vivo transcriptomic data in rats 
based on the Drug Matrix dataset and demonstrated that modules 
facilitated to unravel mechanisms of DILI in rats and to define 
molecular processes that underlie preclinical outcomes, such as 
histopathology and clinical chemistry, which has recently been 
extended to identification of translational biomarkers (Callegaro 
et al., 2023; Sutherland et al., 2018). Callegaro et al. developed a 
WGCNA approach using cultured primary human hepatocytes 
(PHH) from the TG-GATEs dataset. WGCNA modules were able to 
capture the hepatocellular events related to DILI and furthermore 
identified the cellular events that were conserved across species 
(Callegaro et al., 2021). So far, an attempt to systematically define 
the causality between gene network perturbation and onset of tox
icity is lacking. Although PHH represent the gold standard for 
in vitro DILI testing, PHH have inherent limitations for genetic 
manipulation to uncover mechanisms. In contrast, the hepatocar
cinoma HepG2 cell line, which is widely used for early DILI screen
ing and showed relatively close resemblance to cytotoxicity 
responses of PHH (Sison-Young et al., 2017), allows mechanistic 
functional genomics studies. However, so far large toxicogenomic 
datasets of HepG2 that allow WGCNA application are missing. 
Moreover, the knowledge on the preserved cellular responses 
linked to progressive cellular outcomes between PHH and HepG2 
is undefined. The utilization of robust, cost effective, and fast liver 
test systems for WGCNA application will facilitate the experimen
tal validation of causal relationships between module activation 
and adverse outcomes in the context of DILI.

In this study, we established a comprehensive toxicogenomic 
dataset with the HepG2 cell line based on exposure to more than 
500 different treatment conditions. This involved established 
DILI compounds, selective compounds that activate specific 
stress response pathways, cytokines and growth factors relevant 
in liver injury and regeneration, and negative reference control 
compounds without DILI liability (Wijaya et al., 2021). Cells were 
treated with these substances with up to 6 different concentra
tions and high-throughput whole-genome TempO-Seq-targeted 
RNA sequencing was performed at 4, 8, and 24 h. We utilized the 
WGCNA approach to capture the cellular events in the context of 
DILI compound treatment and mapped the highly perturbed cel
lular responses upon exposure of the DILI compounds. We per
formed preservation analysis with PHH and defined modules 
that are associated with DILI compound-induced cell death. 
Finally, we validated the causality between the modules that 
showed a strong association with DILI drug-induced cell death. 
From the 67 highly upregulated genes inside correlated modules, 
we found GTPBP2, HSPA1B, IRF1, SIRT1, and TSC22D3 to impact on 
cell death onset (Figure 1A). Altogether, we established a novel 
quantitative network-based approach for the assessment of 

HepG2 toxicogenomic data that enables improved mechanistic 
understanding of mode-of-action of DILI compounds and novel 
drug candidates.

Materials and methods
Chemical and reagents

All chemicals were purchased from Sigma-Aldrich—The 
Netherlands; except for cisplatin (Ebewe—The Netherlands) and 
nefazodone (Sequoia Research Products—Pangbourne, United 
Kingdom). All compounds were dissolved in DMSO; except for 
mitomycin-C (DMSO-PBS) and N-acetylcysteine (PBS) and for cis
platin which was already manufactured as a solution. All com
pounds in DMSO were maintained as 500-fold stock such that the 
final exposure did not exceed 0.2% v/v DMSO. The cytokines and 
growth factors were dissolved according to the manufacture pro
tocols. TNFa was purchased from R&D System (Abingdon, United 
Kingdom), TGFb was purchased from Immunotools (Friesoythe, 
Germany), activinA, BMP4, hHGF, hFGFi, hIL-1b, and WNT3a 
were purchased from PeproTech (London, United Kingdom), 
human EGF was purchased from Sigma-Aldrich (The 
Netherlands). PowerUp SYBR green real-time PCR master mix 
was purchased from ThermoFisher.

Cell culture and treatment

Human hepatoma (HepG2) cells were purchased from ATCC— 
Germany (clone HB8065) and maintained in DMEM high glucose 
(Fisher Scientific—Bleiswijk, The Netherland) supplemented with 
10% (v/v) FBS (Fisher Scientific—Bleiswijk, The Netherlands), 250 
U/ml penicillin and 25 mg/ml streptomycin (Fisher Scientific— 
Bleiswijk, The Netherlands) in humidified atmosphere at 37�C 
and 5% CO2/air mixture. The cells were used between passage 14 
and 20. The cells were seeded in Greiner black m-clear 384 well 
plates, at 8000 cells per well for the exposure experiment. Unless 
differently mentioned, we use wild-type HepG2 for the experi
ments.

The exposure to the compounds and the RNA sequencing was 
performed at different moments and referred to as batch 1 and 
batch 2. The first batch was performed for all DILI compounds 
and the second batch was performed for all cellular stress 
response reference compounds, cytokines, and growth factors; 
nitrofurantoin was included in both batches at the same concen
trations to assess interbatch variation. The DILI severity of the 
compounds was adapted from the FDA (Chen et al., 2016). At the 
day of exposure (3 days after seeding), the compounds were 
diluted in the culturing medium to meet the final concentration 
as indicated in Table 1. The plates were incubated in humidified 
atmosphere at 37�C and 5% CO2/air mixture. At the designated 
time points (4 h—first and second batch, 8 h, and 24 h—second 
batch), the cells were lysed. The exposure medium was aspirated 
and the cells were washed with PBS 1 time followed by addition 
of 25 ml 1� BNN lysis buffer (BioClavis, Glasgow, Scotland) diluted 
in PBS. The plates were incubated for 15 min at room tempera
ture to enhance the lysis processes. After 15 min incubation, the 
plates were sealed with an aluminum seal and stored at −80�C 
and shipped to BioClavis for RNA sequencing. All exposures were 
performed 3 times independently to cover biological variability. 
The RNA sequencing experiment was performed 3 times covering 
3 biological replicates.

RNA sequencing and transcriptomic data analysis

The sequencing was performed deploying the human whole tran
scriptome library. The probe alignment for whole transcriptome 
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Figure 1. Temporal TempO-Seq whole transcriptome targeted RNA sequencing of HepG2 cells. A, The experimental overview of the study showing the 
schematic timeline of the cell culture processes to the HTTr method application. The cells were seeded in 384 well plate 72 h before the exposure to the 
compounds. The cells were lysed and then the lysates were collected for HTTr processes with BioSpyder technology at 4, 8, and 24 h. The lysates were then 
subjected to the TempO-Seq high throughput RNA sequencing technology deploying the whole genome library. The log2 fold change (FC) values were used 
to generate gene networks with WGCNA approach. Correlation with the external trait-cell death were performed from the previously generated cell death 
data (Wijaya et al., 2021). The causal relation of gene memberships from the high cell death-correlated modules with the cell death occurrence were 
determined using RNAi method. B, The differential expressed gene (DEG) numbers of each tested compound in every time point. Each plot shows the 
aggregated sum values from all the concentration. The color bars on the rows show compound categories and severity class. In the bars, the blue color 
indicates the downregulated DEGs and the red color shows the upregulated DEGs. The threshold of the DEGs is set with adjusted p value < .01 and log2 FC 
> [0.1]. C, The differential expression gene numbers of the cells exposed to nitrofurantoin from the lowest dose level (1) until the highest dose level (6) in 
every time point. The red color of the plot indicates upregulated DEGs and blue color indicates downregulated DEGs. The threshold of the DEGs is set with 
adjusted p value < .01 and log2 FC > [0.1]. D, The PCA plots derived from the log2 FC values, per time point. Every dot of the plots indicates the position of 
each sample in the plot where the colors indicate the compound category and the shapes represent the dose levels.
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gene set was performed by BioClavis. Briefly, FASTQ files were 
aligned using Bowtie, allowing for up to 2 mismatching in the tar
get sequence. This pipeline applies several quality controls with 
mapped/unmapped reads, replicate clustering, and sample clus
tering (Yeakley et al., 2017). Furthermore, we performed sample 
quality control steps to exclude samples with lower quality of the 
sequencing outcome (Supplementary Figure 1). Only the cor
rectly mapped counts (raw count values) were further processed. 
We first excluded samples with library size (the sum of raw count 
values) lower than 500 000 counts. Then, the raw count values 
were normalized with the CPM method. In addition, the replicate 
correlation for each sample toward the mean of the same condi
tions was evaluated and the samples showing lower than 0.95 
Pearson correlation values were eliminated. The samples passed 
these QC steps were further used for log2 fold change (FC) calcu
lation (Love et al., 2021). For the log2 FC calculation, the normal
ized count values of each probe from the treated samples were 
compared with the values of the DMSO (except for cisplatin, N- 
acetylcysteine, cytokines, growth factors, and solvents [DMSO, 
DMSO2, PBS, and PBSh]—compared with PBS [12%], PBSh [20%], 
and DMEM, respectively) from the same time point. The log2 FC 

values were then used as input for the WGCNA. Complementary, 
we defined the numbers of the differentially expressed genes 

using the thresholds: log2 FC > j0.1j and adj-p value < .01. The 
transcriptomic data have been made available on https://www. 

ebi.ac.uk/fg/annotare/, with accession number E-MTAB-11555 for 
the first transcriptomic batch and E-MTAB-11578 for the second 

transcriptomic batch.

Gene network generation using the weighted gene 
coregulated network analysis

Prior to applying the WGCNA approach to the processed data, the 
most significant probes based on the adjusted p values were 

selected resulting in the 1 probe measurement for each gene. 
Furthermore, the goodSampleGenes (Langfelder and Horvath, 

2008) function was applied to the data matrix to eliminate the 
gene with nonmeaningful log2 FC. Finally, to identify coex

pressed genes from the PHH data, we used the WGCNA R package 
version 1.51 (Langfelder and Horvath, 2008) and applied it to a 

matrix consisting of 260 rows (experimental conditions being a 
combination of compound-time-dose) and 11 153 columns (log2 

FC values for genes). We generated unsigned gene modules 

Table 1. List of the tested compounds with the supporting information

Compound list  
(concentration unit)

Abbreviation Compound category  
(severity)

Concentration level Experiment  
batch

1 2 3 4 5 6

Amiodarone (mM) AMI DILI compound (8) 0.8 4.0 8.1 16.2 32.3 64.6 1
Diclofenac (mM) DIC DILI compound (8) 10.1 50.5 101.0 202.0 404.0 606.0 1
Ketoconazole (mM) KET DILI compound (8) 3.3 6.6 33.0 65.9 131.9 263.8 1
Nefazodone (mM) NEF DILI compound(8) 1.9 3.9 19.7 39.5 79.0 100.0 1
Nitrofurantoin (mM) NIT DILI compound (8) 6.0 30.0 59.9 119.9 239.7 359.6 1
Nitrofurantoin (mM) NIT2 DILI compound (8) 6.0 30.0 59.9 119.9 239.7 359.6 2
Phenytoin (mM) PHE DILI compound (8) 10.9 54.3 108.7 217.3 869.2 1086.5 1
Tolcapone (mM) TOL DILI compound (8) 10.9 22.0 109.9 219.9 439.7 879.4 1
Troglitazone (mM) TGL DILI compound (8) 6.4 31.8 63.6 127.1 254.2 381.3 1
Valproat (mM) VPA DILI compound (8) 121.4 606.9 1213.8 2427.5 4855.1 7282.6 1
Ciproflaxin (mM) CIP DILI compound (7) 3.3 16.5 32.9 65.8 131.6 197.4 1
Cyclosporin A (mM) CYA DILI compound (7) 0.2 1.0 4.0 8.0 12.0 16.0 1
Azathioprine (mM) AZA DILI compound (5) 0.3 1.7 3.4 6.8 20.4 27.2 1
Acetamonophen (mM) ACE DILI compound (5) 69.5 347.4 694.7 1389.5 2778.9 4168.4 1
Omeprazole(mM) OMZ DILI compound (4) 4.7 23.5 47.0 94.0 188.0 282.1 1
Cisplatin (mM) CDDP DILI compound (3) 1.0 2.5 5.0 10.0 15.0 20.0 1
Etoposide (mM) ETO DILI compound (3) 1.0 5.0 25.0 50.0 2
Famotidine (mM) FAM DILI compound (3) 0.8 4.1 8.2 16.3 32.6 48.9 1
Verapamil (mM) VPL DILI compound (3) 0.5 2.6 5.1 10.2 30.5 50.9 1
Buspirone (mM) BUS DILI compound (3) 0.0 0.1 0.2 0.3 0.7 1.0 1
Thapsigargine (mM) THAP ER stress inducer 0.1 0.5 2.5 5.0 2
Tunicamycin (mM) TUN ER stress inducer 0.2 1.0 5.0 10.0 2
CDDO (mM) CDDO Oxidative stress inducer 0.0 0.1 0.5 1.0 2
Diethyl maleate (mM) DEM Oxidative stress inducer 3.0 16.0 80.0 160.0 2
Sulforaphene (mM) SUL Oxidative stress inducer 0.6 3.0 15.0 30.0 2
Mitomycin C (mM) MIT DNA damage inducer 1.2 6.0 30.0 60.0 2
Rotenone (mM) ROT Mitochondria toxicant 0.0 0.1 0.4 2.0 2
IL-1b (ng/ml) ILb Cytokines 2.0 10.0 50.0 200.0 2
TGFb1 (ng/ml) TGFb Cytokines 0.5 2.0 10.0 40.0 2
TNFa (ng/ml) TNFa Cytokines 0.2 1.0 5.0 20.0 2
Activin A (ng/ml) ActA growth factors 0.2 1.0 5.0 20.0 2
BMP4 (ng/ml) BMP growth factors 0.2 1.0 5.0 20.0 2
EGF (ng/ml) EGF growth factors 0.2 1.0 5.0 20.0 2
FGF1 (ng/ml) FGF1 growth factors 0.5 2.5 12.5 50.0 2
HGF (ng/ml) HGF growth factors 0.5 2.0 10.0 40.0 2
Serum (FBS) starvation (%) Str growth factors 0.0 0.1 0.5 2.0 2
Wnt3a (ng/ml) Wnt growth factors 0.2 1.0 5.0 20.0 2
Melatonin (mM) MEL Negative compound 2.6 12.9 25.8 51.7 103.3 155.0 1
N-Acetylcysteine (mM) NAC Negative compound 1000.0 2000.0 4000.0 6000.0 8000.0 10000.0 1
Vancomycin (mM) VAN Negative compound 1.4 6.9 13.8 27.6 55.2 82.8 1
Vitamin C (mM) ASC Negative compound 70.0 349.8 699.5 1399.1 1

The severity of the DILI compounds are defined from a previous study (Chen et al., 2016).

4 | Network-based transcriptomic landscape of HepG2 cells  

D
ow

nloaded from
 https://academ

ic.oup.com
/toxsci/advance-article/doi/10.1093/toxsci/kfad121/7453382 by U

niversiteit Leiden / LU
M

C
 user on 22 January 2024

https://academic.oup.com/toxsci/article-lookup/doi/10.1093/toxsci/kfad121#supplementary-data
https://www.ebi.ac.uk/fg/annotare/
https://www.ebi.ac.uk/fg/annotare/


(enabling the clustering of coinduced and corepressed genes), 
and selected the optimal soft power threshold maximizing both 
the scale-free network topology using standard power-law plot
ting tool in WGCNA. We selected 9 as the optimal soft-power 
parameter (Supplementary Figure 3A). For each experiment, the 
EG score (or module score) was calculated which was derived 
from the log2 FC values of their composing genes 
(Supplementary Table 1). Briefly, this protocol consisted of per
forming PCA on the gene matrix of each module, normalizing the 
log2 FC across the entire dataset using Z-score conversion, the 
first principal component corresponds to the EGs (Sutherland 
et al., 2018). To facilitate the comparison between modules across 
treatment, the raw module score was normalized to unit var
iance (fraction between each module score and its standard devi
ation across the entire dataset). The EGs indicated the magnitude 
of activation or repression induced by a given treatment 
(Supplementary Table 2). We further refined the modules built 
by merging similar modules (those having correlation of their 
EGs� 0.8) and obtained 288 modules (Supplementary Figure 2B). 
Modules were annotated for their cellular responses based on the 
GO database by performing gene set enrichment using the 
enrichmentAnalysis function (Langfelder and Horvath, 2008) 
(Supplementary Table 3). The most significant annotation based 
on the adjusted p values was then chosen to represent the cellu
lar responses of the modules. For every gene in a module, the cor
relation was calculated between the log2 FC versus the EG score 
of its parent module across the 260 experiments (termed 
“corEG”). The gene with the highest correlation (so-called “hub 
gene”) was the most representative of the entire module matrix 
and show stronger connection to the other gene memberships 
(Supplementary Table 1). Preservation between the modules 
structure obtained with the HepG2 data set and the PHH TG- 
GATEs was performed using preservation statistics calculated 
with the WGCNA R package and thresholds for interpretation 
were adopted from the relevant literature (Langfelder et al., 
2011). Module showing Z summary>¼ 2 was considered moder
ately preserved,>¼ 10 highly preserved. A lower median rank 
indicates higher preservation.

Correlation analysis between module activation and cell 
death outcomes

The correlation analysis was applied to the module scores and 
the cell death outcomes from the previous study (Wijaya et al., 
2021). The cell death data were derived using live cell imaging 
capturing the fraction of the cell death indicated by with the pro
pidium iodide (PI) staining for necrosis and annexin V (AnV) 
staining for apoptosis. The cell death datasets at 8, 24, 48, and 
58 h were selected for the correlation analysis. The data points 
with shared exposure conditions (the same compound and con
centration) in both module scores and cell death outcome were 
selected. The correlation analysis was applied to each compound 
for every cell death type (necrosis and apoptosis) from the previ
ously generated cell death data (Wijaya et al., 2021) using Pearson 
correlation method in which the correlation value was composed 
of the outcomes from the shared concentration from both data
set. Using these shared datapoints, the correlation analysis was 
performed in every time point of cell death measurement for 
every compounds expressed as module responses (for all time 
points of transcriptomics measurement) in x-axis and cell death 
responses at a particular time point (8, 24, 48, or 58 h) in y-axis. 
The positive correlated modules were then selected with the 

thresholds of correlation adjusted p values < .1, correlation score 
> 0.5, EGs > 2 at least in 1 data point, and > 4 DILI compounds in 
which the correlation outcomes passing the thresholds. The 
genes inside the modules for further validation were selected 
based on the thresholds of adjusted p values < .1 and log2 FC > 2 
at least in 1 condition.

RNA interference screen and live cell imaging for cell 
death determination

Among the high upregulated gene memberships of the high cell 
death-correlated modules, we selected the 67 target genes based 
on the availability of the siRNAs from the drugable genome 
library. siRNAs against targeted genes were purchased from 
Dharmacon (ThermoFisher Scientific) as siGENOME SMARTpool 
reagents, as well as in the form of individual siRNAs 
(Supplementary Table 4). HepG2 cell suspensions were transi
ently transfected with the mixture of siRNAs (50 nM) and 
INTERFERin (Polyplus) in DMEM high glucose and seeded in 
Greiner black m-clear 96-well plates, at 25 000 cells per well. The 
medium was refreshed 24 h post-transfection and compound 
exposures were performed 48 h afterward. siGENOME nontarget
ing pool 1 (siNo1) and mock (INTERFERin containing medium) 
condition were used as the control. On the day of the exposure, 
the cells were incubated with medium containing 100 ng/ml live 
Hoechst for 2 h. The medium was then refreshed with the 
medium containing 0.2 mM PI and 1:2000 AnV-Alexa 633. 
Sequentially, the compounds were added to the plate to reach 
the desired concentration. For the RNAi experiment, we used 
nitrofurantoin (360–480 mM) and nefazodone (39.5–79 mM). The 
plates were imaged at 24, 48, and 72 h after exposures using a 
Nikon TiE2000 confocal laser microscope (laser: 647, 540, and 
408 nm), equipped with automated stage and perfect focus sys
tem. During the imaging, the plates were maintained in humidi
fied atmosphere at 37�C and 5% CO2/air mixture. The imaging 
was performed with 20� magnification objective. The siRNA 
experiment was performed 3 times covering 3 different biological 
replicates. To ensure the efficiency of the overall knockdown, we 
incorporated previously established HepG2-CHOP-GFP (Wink 
et al., 2017) in the RNAi experiment. We perturbed the expression 
of CHOP-GFP using siDDIT3 (and siNo1 as a control) following by 
exposing these cells to tunicamycin (60 mM). The expression of 
the CHOP-GFP was followed for 48 h using previously mentioned 
imaging procedures.

Image analysis

The images were manually sorted to exclude images which did 
not fulfil the criteria for analysis: nonbiological background 
(unanticipated auto fluorescent particulate matter), loss of 
nuclear signal, and out-of-focus images. The quantitative image 
analysis was performed with ImageJ version 1.52p and 
CellProfiler version 2.2.0. First, the nuclei per image were seg
mented with watershed masked algorithm on ImageJ and there
after processed with an in house developed CellProfiler module 
(Wink et al., 2017; Yan and Verbeek, 2012). The results were 
stored as HDF5 files. Data analysis, quality control, and graphics 
were performed using the in-house developed R package 
h5CellProfiler. The nuclear Hoechst33342 intensity levels, 
nuclear area, PI area, and AnV area were measured at the single 
cell level. The number of PI and AnV-positive cells were deter
mined based on the count of cells with higher than 10% overlap
ping between nuclear area and PI/AnV area. For the RNAi 
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experiments, the z-score of the cell death was calculated with 
this formula: 

Z ¼
x � l

r
;

where x is the cell death value of each siRNA; l is the mean of 
the population (from the same compound, time point, and cell 
death type); r is the standard deviation of the population.

Data representation

The graphical representation of the results were generated or 
modified with Illustrator CS6 and R (ggplot2 [Wickham et al., 
2016] and pheatmap [Kolder R, 2019]). Correlation analysis was 
performed with the R function from the package Hmisc (Harrel, 
2021). The hierarchical clustering is performed with “Ward D2” 
algorithm applied to the Euclidian distance between measured 
variables. Specifically for compound clustering based on the 
module activity, the clustering was subjected to cutree() function 
at the height of 20 to define the groups.

Results
Transcriptomic perturbations in the HepG2 cell line exhibit 
different response patterns between DILI and non-DILI 
compounds
We performed an extensive toxicogenomic study in HepG2 cells 
exposed to different DILI compounds at different concentrations 
for varying time points (Table 1). We also included several cyto
kines and growth factors as well as defined reference compounds 
for toxicity relevant cellular stress response pathways to both 
broaden the diversity of xenobiotic-induced transcriptional 
responses and to provide benchmark information on important 
cellular responses to stress. Several compounds were also added 
as negative controls that showed no cellular stress response 
modulation in HepG2 cells in previous studies and have no DILI 
liability (Wijaya et al., 2021). Samples were processed for high- 
throughput transcriptomic (HTTr) based on targeted whole 
genome RNA sequencing using the TempO-Seq technology. 
TempO-Seq data showed overall sufficient library size across as 
well as replicate correlation for the different treatments 
(Supplementary Figure 1). Differential expressed genes (DEGs) for 
each condition were determined with a defined threshold: 
adjusted p values < .01 and log2 FC > j0.1j cutoff. The aggregated 
number of DEGs, based on the sum of the unique DEGs for all 
concentrations from each compound, reflected stronger tran
scriptional responses by the various DILI and reference com
pounds, but more limited responses for cytokines and growth 
factors (Figure 1B). Comparing responses between 2 separate 
experiments (batches) with nitrofurantoin (NIT and NIT2) indi
cated that the interbatch variation with respect to the number of 
DEGs and fold change was minimal (Figure 1B and 
Supplementary Figure 2A). Furthermore, most transcriptomic 
responses induced by the DILI compounds and positive reference 
compounds showed clear time dependence (Figure 1B) with 
strongest response observed at 24 h. However, the transcriptomic 
responses of the cytokines and growth factors were more promi
nent at 8 h (Supplementary Figure 2B—examples FGF1, HGF, and 
EGF). In addition, the transcriptomic perturbations exhibited a 
concentration dependence with higher numbers of DEGs at 
increasing concentration of DILI compounds (Figure 1C—exem
plified for nitrofurantoin). Additionally, the principal component 
analysis plots showed different clusters of samples based on the 

compound categories, time points, and concentration level, indi
cating different transcriptomic profiles upon the exposure of the 
different compound categories at different concentration and 
time points (Figure 1D). Consistent with the number of DEGs, 
most of the DILI compounds and positive compounds at the 
higher dose (dose level >¼ 4) exhibited clear separation from 
negative compounds (24 h PCA). The responses of the cytokines 
and growth factors clustered separately from other compounds 
at 8 h but not at 24 h, confirming the early transcriptomic pertur
bation. These findings suggest that each compound category did 
induce distinctive transcriptomic responses. Overall, the thus 
established gene-level data suggested that the compound sets 
used induced robust gene expression responses with consider
able diversity amongst treatments.

Cellular stress response-related gene networks show 
coherent modulation upon the exposure of positive control 
compounds
Previous work has shown that coexpression analysis can yield 
both expected as well as novel insights into biological responses 
to cellular stress (Callegaro et al., 2021, 2023; Sutherland et al., 
2018). In order to identify gene networks associated with cellular 
responses, we performed WGCNA on the transcriptomic data to 
identify coregulated sets of genes (modules). We obtained 288 
modules compose of 14 359 genes (Supplementary Figure 3B and 
Supplementary Table 1) which resulted in 98% reduction of the 
dimensionality of the gene expression originally derived from the 
readout of approximately 21 111 probes. Moreover, the WGCNA 
also reduced the interbatch variation as indicated by the higher 
correlation of the transcriptional changes upon nitrofurantoin 
treatment at the module level (Pearson R: 0.94) compared with 
the gene level (Pearson R: 0.74). The batch correlation at the mod
ule level was comparable with the correlation at the DEGs level 
(Pearson R: 0.96) (Supplementary Figure 2A). This indicated that 
the module network derived from WGCNA was able to reduce 
dimensionality and eliminate the noise effect due to non- 
perturbed and/or low expressed genes.

Because our goal was to identify causal links among genes, 
biological responses and liver injury using HepG2 as an in vitro 
model, we first aimed to validate the approach by determining 
whether expected stress responses for selected reference com
pounds were reflected in gene networks and their biological 
annotations. We focused on the activity of the modules that were 
annotated for biological responses know to be associated with 
DILI-related cellular stress responses (Weaver et al., 2020; Wink 
et al., 2018): Module annotations were based on the gene ontology 
enrichment results for each individual module (Supplementary 
Table 3) and supported by the presence of well-established gene 
memberships in the adaptive stress responses. Using this 
approach, we selected 4 modules for further analysis: HepG2:75- 
inflammation, HepG2:46-oxidative stress, HepG2:33-DNA dam
age, and HepG2:38-ATF4-CHOP complex (ER stress related). The 
latter module is a generalized stress response target by the EIF2- 
alpha kinases often associated via CHOP/DDIT3 as a downstream 
effector arm of ER stress (Yang et al., 2020). As expected, genes 
belonging to the same modules showed similar regulation pat
terns indicative of coregulation while responses between genes 
from different modules varied (Figure 2A). This effect was partic
ularly appreciable upon the exposure to the reference com
pound: TNFa for HepG2:75-inflammation, DEM for HepG2:46- 
oxidative stress, mitomycin C for HepG2:33-DNA damage, and 
tunicamycin for HepG2:38-ER stress (Figure 2A). Thus, individual 
HepG2 module genes did respond in a coordinated fashion to 
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Figure 2. Gene network activation of WGCNA-based modules by DILI compounds. A, A heatmap (n¼3) exhibiting the modulation of the gene 
memberships of HepG2:75, HepG2:46, HepG2:33, and HepG2:38. The highlighted parts (colored boxes) show the modulation of the gene upon the 
positive control exposure: orange—TNFa, blue—DEM, green—mitomycin, purple—tunicamycin. The heatmap contains 4 variables on the columns 
indicated by distinctive color groups: severity class of the compound, compound categories, time points, and dose level. These variables describe the 
exposure condition applied to the cells. Each row of the heatmap shows the log2 FC values of each module memberships from every sample where red 
color shows upregulation and blue color shows downregulation. The color on the row indicates the modules (orange: HepG2:75, blue: HepG2:46, green: 
WGCNA: HepG2:33, and purple: HepG2:38). The clustering of the heatmap is performed using the “Ward d2” algorithm applied to the Euclidian distance 
between aggregated variables (column clustering: mean of the log2 FC values of the dose levels and time points per compound, row clustering: mean of 
the log2 FC values of the genes per module). B, The dose response plots of stress response-related modules upon the exposure of the specific reference 
compounds: HepG2:75—inflammation (TNFa), HepG2:46—oxidative stress (DEM), HepG2:33—DNA damage (etoposide), HepG2:38—ER stress 
(tunicamycin) (i). The dose-response plots of the hub gene of each stress response related module upon the exposure of the specific reference 
compounds: HepG2:75—ICAM1, HepG2:46—GCLM, HepG2:33—TNFRS10A, HepG2:38—MTFD2. The color of the plot represent the time points, the error 
bars indicate standard error mean (SEM) values, n¼ 3. Stars indicate the significant upregulation with adjusted p value < .01 (ii). The overview of the 
gene memberships’ activities of the stress response modules upon the exposure of the positive compound at the particular time point and 
concentration. The box node indicate the hub gene (the gene with the highest correlation to the parent module). The color of the nodes represents the 
modulation and the size of the nodes represent the module correlation (iii). C, The compound clustering based on aggregated mean eigengene (EG) 
scores for every time point and dose level per compound. The hierarchical clustering is performed using “Ward D2” algorithm applied to the Euclidian 
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compounds expected to activate the biological processes derived 
empirically solely from the module enrichment annotations.

Next, we asked whether the module EGs score, which is a sin
gle value reflecting the behavior or all module genes, responded 
in a similar manner using these 4 reference compounds. We 
compared the EGS to the fold change for the module hub gene 
(the gene with the highest module correlation or Core EGS; 
Supplementary Table 1). The stress response module EGS 
showed time- and concentration-dependent responses; module 
activity was typically already high at 8 h, except for HepG2:33 
which showed strongest induction at 24 h. As expected, the upre
gulation of the hub genes for each of these 4 modules showed a 
similar concentration and temporal response pattern to their 
parent modules (Figure 2Bii). The modulation of the gene mem
bers for each stress response related module was illustrated in 
the arrangement of nodular networks with the square node as 
the hub gene (Figure 2Biii). Yet, DDIT3, the HepG2:38 hub gene, 
showed strong upregulation already at 4 h with a peak at 8 h. 
However, we observed that >50% of the HepG2:38 gene members 
showed stronger upregulation at 24 h, significantly contributing 
to the linear time dependency of the parent module 
(Supplementary Figure 4A). Based on these findings, we conclude 
that the modulation of the different cellular stress responses, 
based on the module enrichment, is reflected by the module EGS 
and the member genes exhibited the expected coherent activa
tion patterns after treatment.

Coexpression modules capture compound class differences 
and highlight candidate cellular mechanisms underlying 
high DILI risk compounds
We further interrogated the activity of the modules beyond the 
stress response-related modules in order to uncover mechanisms 
in HepG2 cells activated after DILI compound exposure. 
Hierarchical cluster analysis revealed that both compounds and 
modules clustered according to the EGS activity (Supplementary 
Figure 4B). There were 7 compound clusters (Figure 2C): clusters 
1–5 contained the reference compounds and DILI compounds 
with high DILI severity class, cluster 6 consisted of the cytokines 
and growth factors, clusters 7 mainly included the low severity 
class DILI compounds as well as DILI negative compounds. 
Overall, compound clusters 1–5 showed stronger (de)activation 
of the various modules compared with clusters 6–8 
(Supplementary Figure 4B). Of note, acetaminophen was grouped 
in cluster 8 and showed minor module activation, which was 
anticipated because HepG2 cells have little cytochromeP450 2E1 
(Hiemstra et al., 2019) required for the formation of the toxic 
metabolite. As an example, for the module clustering, we high
lighted 1 module cluster (see red box in Supplementary Figure 4B 
and detailed in Figure 2D). Interestingly, this cluster did consist 
of the modules annotated for the endoplasmic reticulum-related 
responses or/and stress (including HepG2:38—red, HepG2:61, 
HepG2:225, HepG2:65, HepG2:171); modules in this clusters were 
strongly activated by high severity DILI compounds (clusters 1–4) 
including nefazodone, tolcapone, and nitrofurantoin (Figure 2D). 
We also identified module clusters of DNA damage responses 

and mitochondria membrane potential to be strongly modulated 
by high severity DILI compounds.

We then identified the most activated and repressed modules 
(Table 2) across the entire compound set to investigate the stron
gest modulated cellular mechanisms upon DILI compound treat
ment. In order to select strongly perturbed modules, the median 
scores of the EGS across the conditions were calculated. We fur
ther counted the number of conditions that perturbed the mod
ules resulting in EGS > 2 for activation and EGS < −2 for 
repression. Based on these 2 criteria, the modules were sorted, 
and the top 20 activated and repressed modules were selected. 
Interestingly, all stress response-related modules were among 
the top 20 activated modules along with other ER stress related 
(HepG2:38) and inflammation related responses (HepG2:140). 
Moreover, cytoskeletal reorganization (HepG2:101, HepG2:158, 
HepG2:196) and small molecule activity (HepG2:206, HepG2:235) 
were also highly activated. On the other hand, the top 20 top 
repressed modules consisted of the modules annotated for 
organelle biogenesis (HepG2:24, HepG2:37, HepG2:71), mitochon
dria (HepG2:70, HepG2:282), metabolism activity (HepG2:58, 
HepG2:251), and cell cycle activation (HepG2:10, HepG2:252). 
Altogether, these coexpression modules provide mechanistic 
insight in the cellular processes that are involved in the hepato
cellular mechanisms of DILI.

Stress response-related modules are preserved in primary 
human hepatocytes
Having established that modules reduce the complexity of gene 
expression data to interpretable mechanistically relevant biologi
cal responses, we aimed to determine whether HepG2 modules 
were preserved in PHH, a gold standard for human liver in vitro 
test systems. We performed a preservation analysis of the HepG2 
modules using the TG-GATEs-based PHH modules as a reference 
(Callegaro et al., 2021) (Figure 3). Based on the z-summary preser
vation scores, 87 modules (approximately 30%) of the HepG2 
modules showed moderate (z-summary 2–10) to high preserva
tion (z-summary >10) in the PHH dataset (Figure 3B). The top 10 
most preserved HepG2 modules in PHH were annotated with 
multiple essential cellular processes and functions such as cell 
cycle and division (HepG2:12, HepG2:10, HepG2:8), signal trans
duction (HepG2:3), cellular biosynthesis and respiration 
(HepG2:58, HepG2:4, HepG2:17), and endoplasmic reticulum- 
related processes (HepG2:38, HepG2:65, HepG2:61). In addition to 
these modules, the modules related to cellular stress responses 
(Hiemstra et al., 2019; Wink et al., 2014, 2017) such as oxidative 
stress (HepG2:46), DNA damage (HepG2:33), inflammation 
(HepG2:75), and ATF-4-CHOP complex (HepG2:38) were also pre
served in PHH (marked in red). This suggested that the expres
sion of the genes of the aforementioned stress responses 
modules are similarly coregulated in HepG2 and PHH. The overall 
module responses of the preserved modules exhibit a similar 
concentration-response and temporal pattern of (de)activation 
between HepG2 and PHH (Supplementary Figure 5D).

To examine the similarity of the dynamics of preserved 
responses across the 2 test systems, we interrogated the 

Figure 2. Continued 
distant between aggregated values. The compounds are annotated with the severity and categories showed by the color bars. The determination of the 
clusters was set at the height 20 with the cuttree() function. D, A heatmap showing the cluster of the modules annotated as the endoplasmic reticulum 
activities and ER stress responses. The heatmap contains 4 variables indicated by distinctive color groups: severity class of the compound, compound 
categories, time points, and dose level. These variables describe the exposure condition applied to the cells. Each row of the heatmap shows the EG 
values where red color shows activated and blue color shows deactivation. The clustering of the columns is performed with the same manner as 
compound clustering (C). HepG2:38-ATF-CHOP ER stress is highlighted with red.
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Table 2. Top 20 most modulated gene networks upon the exposures of the tested compounds

Module Modulation Annotation Hub gene
Preservation  

in PHH

HepG2:1 Deactivated G-protein-coupled receptor activity, transmembrane signaling 
receptor activity, signaling receptor activity

KRTAP16-1 Nonpreserved

HepG2:4 Deactivated Polyketide metabolic process GJB1 Preserved
HepG2:10 Deactivated Cell cycle process, DNA replication, DNA metabolic process, 

mitotic cell cycle process
SAC3D1 Preserved

HepG2:24 Deactivated Nucleosome assembly, chromatin assembly HIST1H2AD Preserved
HepG2:32 Deactivated Positive regulation of glycogen biosynthetic process, leukocyte 

activation involved in inflammatory response
ZNF607 Preserved

HepG2:36 Deactivated Rough endoplasmic reticulum lumen, DNA binding ZNF594 Preserved
HepG2:37 Deactivated Positive regulation of mitochondrial membrane potential MSS51 Nonpreserved
HepG2:58 Deactivated Cholesterol biosynthetic process MVD Preserved
HepG2:69 Deactivated Thyroid-stimulating hormone FOXD4L3 Nonpreserved
HepG2:70 Deactivated Mitochondrial membrane part, integral component of organelle 

membrane
COA3 Preserved

HepG2:71 Deactivated Endoplasmic reticulum lumen, posttranslational protein modi
fication, histamine metabolic process

SERPINA10 Preserved

HepG2:86 Deactivated Protein localization to plasma membrane, COPII adaptor activ
ity

TEX261 Nonpreserved

HepG2:123 Deactivated Procollagen-proline 4-dioxygenase activity, oxidoreductase 
activity

EFCAB3 Nonpreserved

HepG2:137 Deactivated Positive regulation of cellular response to hypoxia, hypoxia- 
inducible factor-1alpha signaling pathway

RNF170 Nonpreserved

HepG2:147 Deactivated Endoplasmic reticulum-Golgi intermediate compartment, 
endoplasmic reticulum membrane, MHC class I protein com
plex assembly

HINT2 Preserved

HepG2:150 Deactivated Xylulokinase activity, IkappaB kinase complex binding LARS2 Nonpreserved
HepG2:175 Deactivated RNA methyltransferase activity, cellular response to peptide, 

DNA-dependent ATPase activity
METTL3 Nonpreserved

HepG2:251 Deactivated UDP catabolic process, pyrimidine nucleoside diphosphate 
catabolic process

JRK Nonpreserved

HepG2:252 Deactivated Positive regulation of cell cycle, nuclear division, organelle 
fision, cell division

CCNF Preserved

HepG2:282 Deactivated Mitochondrial membrane fusion, desmosome assembly, posi
tive regulation of mitochondrial translation

RCC1L Nonpreserved

HepG2:3 Activated Regulation of signaling, regulation of cell communication, reg
ulation of response to stimulus, regulation of signal trans
duction

UBQLN1 Preserved

HepG2:33 Activated Signal transduction by p53 class mediator, apoptotic process, 
cellular response to UV

TNFRSF10A Preserved

HepG2:38 Activated CHOP-ATF4 activity, ER stress response, ER stress-related apop
totsis

MTHFD2 Preserved

HepG2:43 Activated Negative regulation of blood vessel remodeling PALM2 Nonpreserved
HepG2:46 Activated Oxidative stress, polyketide metabolic process, alditol: NADPþ

1-oxidoreductase activity
GCLM Preserved

HepG2:52 Activated DNA-binding transcription repressor activity, RNA polymerase 
II specific, regulation of cellular metabolic process

IBTK Preserved

HepG2:61 Activated Response to endoplasmic reticulum stress, endoplasmic reticu
lum unfolded protein response, IRE1-mediated unfolded pro
tein response

DNAJB9 Preserved

HepG2:75 Activated Response to cytokine ICAM1 Preserved
HepG2:83 Activated Synapse assembly, positive regulation of transcription, DNA 

templated
PIEZO1 Preserved

HepG2:84 Activated Tubulin-tyrosine ligase activity, C-terminal protein-tyrosinyla
tion, histidine-tRNA ligase activity

SLC25A51 Nonpreserved

HepG2:101 Activated Piccolo NuA4 histone acetyltransferase complex, nuclear part, 
prenyltransferase activity

FOXQ1 Nonpreserved

HepG2:112 Activated KDEL sequence binding, autophagosome, TGFb receptor signal
ing activity

PIP4K2C Preserved

HepG2:140 Activated Notochord cell differentiation NDE1 Nonpreserved
HepG2:158 Activated Cadherin binding, cell adhesion molecule binding SNHG8 Preserved
HepG2:196 Activated Actin cytoskeleton, homotypic cell-cell adhesion TAGLN Preserved
HepG2:206 Activated Multicellular organism aging, aspartate-glutamate transport CREBRF Preserved
HepG2:214 Activated Atg1/ULK1 complex activation, ER stress, macroautophagy SESN2 Preserved
HepG2:228 Activated Mitochondrion localization, neurotrophin production, negative 

regulation of PPAR signaling pathways
REM2 Nonpreserved

HepG2:235 Activated Adenylate-cyclase inhibiting adrenergic receptor activity, gly
cine transport

CALCOCO2 Nonpreserved

HepG2:253 Activated DODECENOYL-COA DELTA-ISOMERASE ACTIVITY ERRFI1 Preserved

The top 20 most repressed and activated upon exposure of the tested compounds. The selection was based on the calculation of the median scores of the EGS 
across all conditions and the number of conditions (count) which perturb the modules resulting in EGS > 2 for activation and EGS < −2 for repression. Based on 
these 2 criteria, the modules were sorted and top 20 activated and repressed modules were selected.
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dynamics of ER stress-related responses as an example, exempli
fied with nitrofurantoin treatment (Figure 3C). In order to calcu
late the different module EGS for PHH, we used as input the log2 
FC derived from the responses of PHH as previously reported 
(Igarashi et al., 2015). Module activation was observed for 
HepG2:38 and HepG2:64 (responses to unfolded protein and 

heat); module repression was observed for of HepG2:65 (response 
to ER stress). The temporal responses across test systems showed 
strong resemblance (Figure 3C). Yet, modules in HepG2 showed 
higher absolute EGS values compared with PHH; this was likely 
due to the higher log2 FC values in HepG2 compared with PHH in 
relation to the higher compound concentration and the broader 

Figure 3. HepG2 module preservation analysis in the primary human hepatocytes (PHH). A, The correlation plot between 2 module preservation 
parameters: z-summary scores and median rank. The red line in the y-axis intercept corresponds to z-summary score¼2 and the blue line to z- 
summary score¼10. Each dot represents each module in the plot. The color of the plots represents the module size in log scale. B, The list of the HepG2 
modules that are preserved in the PHH systems. The module written in red are the stress responses related modules. The color of the bar plots 
represents the module size in log scale. C, Response of HepG2 and PHH upon nitrofurantoin exposure based on the HepG2:38, HepG2:64, and HepG2:65. 
The colors of the plot represent time points and the shapes of the dots indicate the cell lines.
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dynamic range of RNA sequencing compared with microarray 
(Zhao et al., 2014) (Supplementary Figure 5A). Overall, for nitro
furantoin exposure, the module responses between HepG2 and 
PHH exhibited moderate similarity with 0.56 Pearson correlation 
score when the cells were exposed with comparable conditions 
(Supplementary Figure 5B). As ER stress showed strong preserva
tion, we evaluated this response based on the 3 preserved mod
ules on another ER stress inducing DILI compound, cyclosporine 
A. We observed similar direction of module activation between 
HepG2 and PHH (Supplementary Figure 5C). Interestingly, for 
cyclosporine A, we found in both cells the activation of HepG:65 
while HepG2:64 was not induced. In conclusion, we identified the 
gene networks that are preserved between HepG2 and PHH, and 
delineated the relevance of HepG2 observations for PHH.

Modules highly correlated to cell death reveal candidate 
hepatocellular responses networks
As the final step, we aimed to establish direct causal relation
ships between critical gene module responses and cell death. 
First, we identified modules that significantly correlated with cell 
death to assemble a list of candidate modules and associated 
genes. We identified modules that were linked to hepatocellular 
death by correlating the EGS of all modules with the live cell 
imaging of necrotic and apoptotic cell death readouts, propidium 
iodide, and AnnexinV-Alexa633, respectively (Wijaya et al., 2021). 
We performed the correlation analysis between modules’ EGS 
and the cell death outcomes measured at 8, 24, 48, and 58 h, 
across all the compounds tested in order to identify common 
responses activated in the HepG2 in relation to cell death. The 
correlation between early module activities and cell death at 58 h 
resulted in the highest score of significant correlating pairs 
(adjusted p values < .1; Supplementary Figure 6A). As an exam
ple, nefazodone treatment caused most extensive cell death as 
well as strong transcriptomic perturbations; we observed high 
correlation between EGS of HepG2:38 and cell death markers at 
later time points (Figure 4A).

Because cell death onset was observed at late time points, we 
further focused on the correlation analysis between the module 
activities (at 4, 8, and 24 h) and cell death measured at 58 h. We 
identified module correlation scores with cell death outcomes for 
several DILI compounds (Supplementary Table 5). Eleven mod
ules passed the criteria of correlation adjusted p values < .1, cor
relation score > 0.5, EGs > 2 at least in one data point, and >4 
DILI compounds in which the correlation outcomes passed these 
thresholds (Table 3). Ten of the high cell death modules were cor
related with apoptotic and necrotic cell death and interestingly 
only 1, HepG2:64, was significantly correlated with necrotic cell 
death. The activities of these modules showed prominent modu
lation mostly upon the exposure with severe DILI compounds 
(Figure 4Bi). We observed clear concentration response activation 
of these modules for the severe DILI compounds (see as example,  
Figure 4Bii—nefazodone and Supplementary Figure 6B—nitrofur
rantoin, troglitazone, and diclofenac). Because most modules 
associated with cell death were already activated at very early 
time points, this suggested that the activation of these modules 
may also be causally associated with later cell death onset in 
HepG2 cells. The annotation of these modules showed broader 
cellular responses, some with known involvement in liver injury: 
ER stress-related responses (HepG2:38, HepG2:64) (Liu and Green, 
2019) and cytoskeletal reorganization (HepG2:39, HepG2:158) 
(Shepard and Tuma, 2010). In addition, cellular processes related 
to adenylate-cyclase (HepG2:235) were also highly correlated 

with cell death. Altogether, we identified key modules that exhib
ited high correlation with the occurrence of cell death.

A decrease in cell death is found upon the perturbation of 
the gene memberships of the high cell death-correlated 
modules
We reasoned that the module associations with cell death could 
be indicative for causal involvement. Therefore, the causality of 
the high correlated modules was further evaluated experimen
tally using RNA interference-based gene silencing of the gene 
members of the high correlated modules that showed strongest 
perturbations by DILI compounds (log2 FC > 2 at least in one con
dition and adj p < .1). From total 141 genes (Supplementary Table 
6), we selected 67 gene targets to be perturbed based on availabil
ity in a druggable siRNA library, and, hence, suspected involve
ment in cell signaling programs (Supplementary Table 7). Our 
knock-down protocols resulted in high efficiency based on the 
lower expression of CHOP-GFP upon tunicamycin exposure in 
perturbed cells (siDDIT3) compared with siNo1 (Supplementary 
Figure 7A). After siRNA knock down, HepG2 cells were exposed to 
nitrofurantoin and nefazodone, 2 DILI compounds that showed 
strongest cell death onset and transcriptomic perturbation. We 
anticipated that genes involved in protective adaptive responses 
would enhance cell death upon knock down, whereas genes that 
stimulate the onset of cell death would be protective upon knock 
down. The z-score analysis showed that knock down of some 
candidate genes reduced both apoptotic and necrotic cell death 
at 24 h after the exposure with nefazodone and nitrofurantoin, 
whereas knock down of other genes enhanced cell death 
(Supplementary Table 8). The candidate genes clustered into a 
cytotoxicity protective group after knock down, including 
GTPBP2, HSPA1B, TSC22D3, SIRT1, IRF1, and another 34 genes in 
the blue box as well as a cytotoxicity enhancing group including 
amongst others DDIT3, MARCH6, SLC6A9, SLU7, HBP1, MYCL1 in 
the red box (Figure 5B). Interestingly, we found that the knock 
down of proapoptotic protein DDIT3 increased the cell death val
ues upon the cell injury. Previous studies also reported the 
increase of the cell death upon the perturbation of DDIT3 expres
sion (Wijaya et al., 2021; Yang et al., 2020) suggesting different 
roles of this protein during cellular stress. We further focused on 
the target genes that reduced the cell death upon knock down for 
which cells persistently showed the decrease of cell death onset 
up to 72 h of compound treatment. Cytotoxicity by nitrofurantoin 
was likely protected by GTPBP2 for prolonged time period. 
Nefazodone-induced cell death was most strongly protected by 
siGFPBP2, siIRF1, and siSIRT1 up to 72 h. In conclusion, we discov
ered genes that are part of modules associated with cell death 
onset that are causally related to cell death onset or adaptive 
response, thus supporting the relevance of the statistical module 
activity associations with cytotoxic outcomes. Finally, we wanted 
to ensure that our selected genes were also modulated in PHH 
exposed to DILI compounds. We used the TG-GATEs dataset 
(Callegaro et al., 2021) and identified 37 out of the 39 genes 
(HSP90AA1 and NGFR are not included in the PHH data) whose 
perturbation reduced cell death and evaluated their expression 
in PHH after DILI compound treatment (Supplementary Figure 
7B). Five genes that showed most significant protection against 
cytotoxicity after siRNA treatment—GTPBP2-HepG2:38, HSPA1B- 
HepG2:64, IRF1-HepG2:41, SIRT1-HepG2:31, and TSC22D3- 
HepG2:235—exhibited prominent upregulation upon exposure 
with DILI compounds in PHH (Figure 5D). Moreover, modulation 
of these genes distinguished the activity between (high severity) 
DILI compounds with (low severity) non-DILI compounds 
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Figure 4. Module correlation analysis with the cell death. A, The correlation plots between EG score of HepG2:38 and percentage apoptosis (left) and 
necrosis (right) at designated cell death measurement time points (8, 24, 48, and 58 h) on the cells exposed to nefazodone. The color of the dots 
corresponds to the transcriptomic time point and the shape of the dots to the concentration. B, A heatmap showing the EG scores of high correlated 
module to the cell death upon the exposure of the compounds. The heatmap contains 4 variables indicated by distinctive color groups: severity class of 
the compound, compound categories, time points, and dose level. These variables describe the exposure condition applied to the cells. Each row of the 
heatmap shows the EG values of each module from every sample where each column of the heatmap indicates the sample bearing the identities based 
on the assigned variables. The modules are clustered using “Ward D2” algorithm. The color identity of the module indicates the correlated cell death 
type. The color of the heatmap representing the modulation of the gene networks (module) where red color shows activated and blue color shows 
deactivation (i). Dose response plots of the high cell death-correlated modules upon the exposure of nefazodone at 8 (orange) and 24 (red) hours (ii).
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suggesting the specificity of these genes towards liver injury 
(Figure 5E).

Discussion
In this current study, we applied network-based analysis on a 
large novel concentration and time response transcriptomic 
dataset of HepG2 cells exposed to more than 40 substances 
including 18 DILI compounds, 3 cytokines, 7 growth factors, 7 cel
lular stress responses pathway reference compounds, and 6 non- 
DILI compounds. Based on this transcriptomics dataset, we suc
cessfully established HepG2 cell-specific WGCNA-based gene 
networks encompassing the spectrum of cellular biological 
responses and defined the preservation of gene regulation 
between HepG2 and PHH. Key gene networks were identified that 
are associated with onset of cell death and candidate representa
tives from these networks were involved in modulation of cell 
death. These genes were also modulated by various DILI com
pounds in PHH, with most considerable changes observed for 
HSPA1B, TSC22D3, GTPBP2, and SIRT1.

We established HepG2 gene networks to facilitate the inter
pretation of toxicogenomic datasets by reducing the data dimen
sionality, the ability to assign cellular function and responses for 
each network, and to quantify the biological activation of the 
gene networks. This network-based toxicogenomic landscape 
was also able to distinguish between (high severity) DILI com
pounds and (low severity) non-DILI compounds according to the 
differences in module activity. Moreover, our module-based 
approach captured the gene networks related to various cellular 
responses linked to the mechanisms of DILI such as stress 
responses (HepG2:46, HepG2:33) (Wijaya et al., 2021; Wink et al., 
2014), ER stress (HepG2:38, HepG2:64, HepG2:65) (Liu and Green, 
2019), mitochondrial damage (HepG2:70, HepG2:282) 
(Ramachandran et al., 2018), and inflammation (HepG2:75, 
HepG2:140) (Woolbright and Jaeschke, 2018). Complementary, we 
identified the repressed cellular responses such as organelle bio
genesis (HepG2: 24, HepG2: 37), small-molecule metabolism 
activity (HepG2: 58, HepG2: 69, HepG2: 251), and cell cycle activa
tion (HepG2: 10, HepG2: 252) known to play a role in liver regener
ation (Dewhurst et al., 2020; Huang and Rudnick, 2014; Xu et al., 
2021). Importantly, preservation analysis showed that 30% of 
HepG2 modules are preserved in PHH. In particular, the ER- 
related modules and to a slightly lesser extent also modules 
related to other cellular injury response pathways, are preserved 
in PHH. This suggests that, in general, the transcriptional 

programs that are driving cellular stress response pathways are 
maintained between primary liver hepatocytes and more dedif
ferentiated models such as HepG2. Of interest, the cellular stress 
response gene networks are also well-preserved across species 
(human vs rat) (Callegaro et al., 2021). The robust intersystem 
species preservation of the adaptive stress responses could be 
exploited to improve the translatability across test systems. The 
overall moderate preservation between HepG2 and PHH likely 
relates to the fact that HepG2 cells are transformed, dedifferenti
ated, and highly proliferative, requiring different wiring of tran
scriptional programs to drive HepG2 biology. However, because 
the PHH WGCNA was based on a larger number of substances, 
we cannot exclude that further refinement of the gene network 
organization could be achieved when more substances that 
impact of the biology of HepG2 cells would have been included. 
Regardless, we were able to define the conserved mechanisms 
between HepG2 and PHH, thereby delineating the biological 
applicability domain of the HepG2 test system to be used in a low 
tier test system approach that considers the HepG2 advantages 
in terms of cost, time, availability, and robustness.

We have correlated HepG2 module EGs scores with cell death 
outcomes (Wijaya et al., 2021) across the entire compound set, 
aiming to find common cellular responses leading to cellular 
adverse outcomes. This allowed us to identify the cellular 
responses that are activated to initiate repair and/or provide 
resilience to cell injury (adaptive mechanisms) and that are cau
sally contributing to the adverse cell biological outcomes 
(adverse mechanisms). We revealed 11 modules with high posi
tive correlation toward apoptotic and/or necrotic cell death of 
HepG2. A unique avenue in our current work has been to validate 
the association of these modules with cellular adverse outcomes 
by assessing the modulation of the cell death after nefazodone 
and nitrofurantoin treatment using RNA interference of selected 
genes. We sought a proof-of-concept and selected 67 genes that 
are contributing to cell signaling based on availability in a drug
gable siRNA genome library. We found 5 target genes that 
strongly reduced DILI compound-induced cell death upon the 
silencing GTPBP2, TSC22D3, SIRT1, IRF1, and HSPA1B. These 
results were indicative of the likely causal relationship between 
their upregulation and cell death. Of interest, these 5 genes are 
also modulated in PHH by various DILI compounds. Our RNA 
interference studies were based on individual gene depletion, 
thereby representing only a minor portion of the gene network. 
Thus, the causal contribution of the entire gene network is likely 
underestimated. One could foresee combined depletion 

Table 3. Modules with high correlation with cell death

Module Hub gene Correlated cell death type Annotation Preservation in PHH

HepG2:227 ZDHHC13 Apoptosis Exocytosis Nonpreserved
HepG2:239 C18orf21 Apoptosis DNA endonuclease, demethylation Nonpreserved
HepG2:31 YWHAB Apoptosis/necrosis Nuclear part Preserved
HepG2:235 CALCOCO2 Apoptosis/necrosis Adenylate-cyclase inhibiting adrenergic receptor activity Nonpreserved
HepG2:41 ZBED9 Apoptosis DNA-binding transcription factor activity Nonpreserved
HepG2:206 CREBRF Apoptosis Multicellular organism aging Preserved
HepG2:158 SNHG8 Apoptosis Cadherin binding, cell adhesion molecule binding Preserved
HepG2:214 SESN2 Apoptosis Atg1/ULK1 kinase complex, 

response to endoplasmic reticulum stress
Preserved

HepG2:38 DDIT3 Apoptosis/necrosis CHOP-ATF4 complex, intrinsic apoptotic signaling pathway in 
response endoplasmic reticulum stress

Preserved

HepG2 64 HSPH1 Necrosis Response to unfolded protein, response to heat Preserved
HepG2:82 MT1M Apoptosis Stress response to metal ion Preserved

These modules pass the threshold of correlation adjusted p values < .1, correlation score > 0.5, EGs > 2 at lease in 1 data point, and > 4 DILI compounds in which 
the correlation outcomes passing the thresholds. The order is based on the clustering on Figure 4Bi.
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Figure 5. RNA interference to infer causal relationship of module gene memberships with cell death. A, The dot plots showing the z-score of the cell 
death modulation in each perturbation compared upon nefazodone (top) and nitrofurantoin (bottom) exposure at 24 h (left—annexin-V-Alexa633 
readout, bottom—PI readout). The colors of the dots represent the type of the perturbation (red: control (mock [medium þ INTERFERin] and siNo1 
[medium þ INTERFERin þ scrambled siRNA]), blue: siRNA targeting genes). B, A heatmap (n¼3) showing the log2 FC cell death values compared with 
siNo1 of the HepG2 cells upon siRNA perturbation reducing the expression of the (highly upregulated) genes memberships of the high cell death- 
correlated modules. The heatmap consists of 3 legends: cell death type (red: fraction annexin-V positive cells; yellow: fraction PI positive cells), imaging 
time (green intensity: 24, 48, and 72 h), and treatment (orange: DMSO; green: nefazodone [39.5 mM]; blue: nitrofurantoin [360 mM]). The color on the row 
indicates the parent modules of the perturbed genes. The red intensity of the heatmap positively represents the cell death magnitude. The blue box 
contains the siRNAs that reduce the cell death and the red box contains the siRNA that increase the cell death. The red siRNAs highlight the highest 
cell death reduction upon the perturbation of the target genes. C, The detailed overview of the perturbation of the hit genes (in red) resulting in the 
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experiments of multiple target genes or modulate the activity of 
transcription factors that are upstream of the individual gene 
network. Alternatively, CRISPR-Cas9 pooled library screens as 
they are applied to uncover resistance mechanisms against anti
cancer drugs, may open additional opportunities to more broadly 
map the causal-related genes of critical gene networks. 
Ultimately, with higher throughput of gene perturbation 
approaches, more DILI compounds could be incorporated to stat
istically improve the selection of the genes increasing the confi
dence of the outcomes.

We further highlight the possible mechanisms of the 5 identi
fied potential transcriptional key events that modulate DILI cell 
death. GTPBP2 is a family of GTP-binding proteins that have GTP 
hydrolase activity, and play an important role in cell signal trans
mission, cytoskeletal regulation, protein synthesis, and other 
activities (Jie et al., 2021). Although the mechanisms of GTPBP2 
related to the hepatocellular injury is yet to be discovered, multi
ple studies have reported the involvement of GTPBP2 in ER stress 
and by interacting with ATF6 reducing its activity (Jaberi et al., 
2015; Kalathur et al., 2012). The involvement of GTPBP2 in the ER 
stress is reflected by its parent module (HepG2:38) for ER stress- 
related responses. TSC22D3 or glucocorticoid-induced leucine 
zipper is associated with the glucocorticoid sensitivity also 
involved in the inflammation programs (Kalathur et al., 2012). 
The upregulation of TSC22D3 was reported to be responsible for 
the cell death in cancerous cells possibly due to the activity of 
TSC22D3 to inhibit cell proliferation of the cancer cells 
(Kervo€elen et al., 2015). Thereby, the upregulation of TSC22D3 
might reduce the capacity of the cells to progress through the 
cell cycle and contribute to tissue regeneration. A previous study 
has attributed the effect of glucocorticoid on the activity of 
adenylate cyclase (Aksoy et al., 2002). Specifically, the TSC22 pro
tein family showed direct binding with this enzyme (Kamimura 
et al., 2021). Moreover, the fact that TSC22D3 is in 
WGNCAjHepG2:235 annotated for “adenylate cyclase-inhibiting 
activity” suggested the connection between activity of this 
enzyme with proliferation. SIRT1 (sirtuin1) is a member of class 
III histone deacetylase as a part of HepG2:31 annotated for 
“nuclear part.” The upregulation of SIRT1 in cells is found to be 
concurrent with NF-jB inflammation pathway-induced cell 
death (Chao et al., 2017). IRF1 (interferon regulatory factor-1), a 
member of HepG2:41 annotated for “transcription factor”; IRF1 is 
a transcription factor regulating the gene expression during 
inflammation (Eckhardt et al., 2014). IRF1 has been reported to 
mediate liver damage during ischemia-reperfusion injury by acti
vating the immune responses during the ischemic episodes (Yan 
et al., 2020). HSPA1B is a member of heat shock protein 70 family 

and might play a role in the mechanisms of cell death related to 
DILI. HSPA1B is also a gene member of WGNCAjHepG2:64 which 
is annotated for “responses to heat.” Although heat shock protein 
families are known to repair the damaged cells (Yu et al., 2021) 
(also showed by our results in Figure 5B—increase of cell death 
upon the perturbation of HSPB1 and HSPA8), the upregulation of 
HSPA1B has been previously linked to the inflammation-induced 
cell death (Calderwood et al., 2012; Daniels et al., 2004). 
Altogether, we managed to establish these novel transcriptomics 
key events. Despite these findings, further work needs to be per
formed to fully verify the detailed mechanism of these genes in 
the course of DILI.

In conclusion, we have applied WGCNA to novel TempO-Seq 
toxicogenomic dataset. We anticipate that test system-specific 
gene network-based approaches are powerful to efficiently mine 
the biology from toxicogenomic studies and contextualize the 
biology of the individual test systems through preservation sta
tistics. Similar approaches would be worthwhile for other liver 
test systems that are relevant for DILI prediction, including 
HepaRG cells, iPSC-derived hepatocyte-like cells, and liver micro
tissues. This would contribute to an improved understanding of 
the fit for purpose of individual liver test systems for 
mechanism-based safety assessment.
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