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Abstract

Objectives: We present an illustrative application of methods that account for covariates in receiver operating characteristic (ROC)
curve analysis, using individual patient data on D-dimer testing for excluding pulmonary embolism.

Study Design and Setting: Bayesian nonparametric covariate-specific ROC curves were constructed to examine the performance/pos-
itivity thresholds in covariate subgroups. Standard ROC curves were constructed. Three scenarios were outlined based on comparison be-
tween subgroups and standard ROC curve conclusion: (1) identical distribution/identical performance, (2) different distribution/identical
performance, and (3) different distribution/different performance. Scenarios were illustrated using clinical covariates. Covariate-adjusted
ROC curves were also constructed.

Results: Age groups had prominent differences in D-dimer concentration, paired with differences in performance (Scenario 3).
Different positivity thresholds were required to achieve the same level of sensitivity. D-dimer had identical performance, but different dis-
tributions for YEARS algorithm items (Scenario 2), and similar distributions for sex (Scenario 1). For the later covariates, comparable pos-
itivity thresholds achieved the same sensitivity. All covariate-adjusted models had AUCs comparable to the standard approach.

Conclusion: Subgroup differences in performance and distribution of results can indicate that the conventional ROC curve is not a fair
representation of test performance. Estimating conditional ROC curves can improve the ability to select thresholds with greater applica-
bility. © 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:/
creativecommons.org/licenses/by/4.0/).

Keywords: Diagnostic accuracy study; ROC curve; Covariate-adjustment; Subgroup analysis; D-dimer; Pulmonary embolism

1. Introduction

Biomarkers are regularly investigated for their ability to
classify subjects as diseased or nondiseased. Receiver oper-
ating characteristic (ROC) curves are, unarguably, the most
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widely used tool for evaluating the discriminatory capacity,
initially popular with the evaluation of imaging modalities.
Their use has now spread to all tests that deliver results on
an ordinal, interval or ratio scale [1]. The overall diagnostic
accuracy of a medical test is then expressed as the corre-
sponding area under the ROC curve (AUC). The shape of
a ROC curve illustrates the trade-off between the sensitivity
and specificity of a test at various positivity thresholds,
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What is new?

Key findings

e Receiver operating characteristics (ROC) curves
can fluctuate between covariate subgroups and in
some cases result in differences in the overall per-
formance, expressed as the area under the ROC
curve (AUC).

e Prominent subgroup differences in the distribution
of index test results and performance may indicate
that different positivity thresholds are required to
achieve the same level of sensitivity or specificity.

What this adds to what was known?

e Differences in test performance and distribution of
index test results between covariate subgroups can
indicate that the standard ROC curve is not a fair
representation of test performance.

e It is possible that covariate-specific ROC curves
are completely identical between subgroups, when
paired with identical distribution of index test re-
sults, we can assume the standard AUC expresses
performance well.

What is the implication and what should change

now?

e Several methods for conditional ROC curve anal-
ysis have been proposed to accommodate covariate
information when evaluating test accuracy,
including covariate-adjusted and covariate-specific
performance estimates.

e Diagnostic accuracy studies should account for
important interactions between test performance
and covariates.

which converts a continuous classifier into a dichotomous
one. Oftentimes, a desired level of classification is speci-
fied, to maximize the true positive or true negative results,
and identify the corresponding threshold [2].

The result of a test can be associated with other factors than
the presence or absence of the target condition. For instance,
older patients tend to have higher D-dimer values than
younger ones, while males have higher hemoglobin levels
than females. In the presence of such associations, there
may also be covariate-specific (such as age or sex) differences
in test performance. Moreover, selecting thresholds from a
standard ROC curve can be misleading, as compared to sub-
group specific ROC curves, when strong associations be-
tween the marker and covariate are present, and result in
differences in sensitivity and specificity between covariate
subgroups. Thus, when covariate information is available, it

should be considered, as neglecting such information may
inflate our estimates of the relative proportion of false nega-
tive or false positive test results for certain subgroups [3].

In light of this, several methods that account for covari-
ates in ROC curve analysis have been proposed [4,5]. They
allow assessment of covariate-specific and covariate-
adjusted ROC curves; the former models ROC curves for
each stratum of a given covariate (e.g., men and women),
while the other models a single ROC curve that can be in-
terpreted as the weighted average of covariate-specific
curves [6]. Despite the widespread consideration of covar-
iate effects in randomized trials of interventions, it is not
yet standard practice in diagnostic accuracy studies [7,8].

Associations between covariates and the positivity
threshold are even less considered, when, in fact, it has
direct implications for how the test will be implemented
for practical use. Understanding the magnitude of potential
covariate effects and applying appropriate techniques are
therefore fundamental to produce robust and reliable results
that can be translated into clinical practice.

We here present an illustrative application of the use of
covariate-specific and covariate-adjusted ROC analyses, to
encourage a more widespread application of such methods
in evaluations of diagnostic accuracy. The following sec-
tions are structured as follows: the motivating example,
an outline of conventional ROC curve analysis and possible
scenarios when considering covariates, the application, and
concluding remarks.

2. Motivating example

Pulmonary embolism (PE) is a common venous throm-
boembolic disease that can cause significant morbidity
and mortality [9,10]. Patients with suspected venous throm-
boembolism (VTE), comprised of PE and deep vein throm-
bosis, usually undergo imaging testing, such as
compression ultrasonography or computed tomography
pulmonary angiography (CTPA), for a confirmation or
exclusion of diagnosis. However, signs and symptoms indi-
cating PE are nonspecific, and therefore PE is not
confirmed in many patients with the suspected disease.
Considering the additional risks and costs of performing
CTPA, scoring systems and tests have been proposed to
indicate those at greater risk.

Diagnostic clinical scores comprised of clinical charac-
teristics, such as the Wells score, have been developed to
classify patients with suspected PE into pretest probability,
and ultimately minimize the number of patients subjected
to CTPA testing [11,12]. More recently, the YEARS algo-
rithm was proposed, consisting of only three components,
offering a more simplified decision rule [11].

D-dimer is a sensitive plasma marker of endogenous
fibrinolysis that appears following blood clot degradation
[13]. Measuring levels of this degradation product is
commonly used as a diagnostic test in patients with signs
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Table 1. Covariate-specific performance of D-dimer and prevalence in corresponding subgroups
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Sensitivity = 0.98

Threshold® Specificity

Covariate Proportion with VTE AUC (95% CI) (95% CI) (95% Cl)
Standard 15% 0.87 (0.86, 0.88) 470 0.47
Age

<50 yr 9% 0.88 (0.87, 0.89) 114 (0, 205) 0.13 (0.03, 0.26)

>50 yr 18% 0.84 (0.84, 0.85) 401 (346, 452) 0.28 (0.23, 0.33)
Sex

Male 18% 0.86 (0.85, 0.87) 351 (286, 413) 0.35(0.27, 0.41)

Female 13% 0.87 (0.86, 0.87) 297 (235, 357) 0.29 (0.21, 0.37)
YEARS

YEARS = 0 8% 0.87 (0.86, 0.88) 311 (228, 392) 0.31 (0.18, 0.43)

YEARS > 1 21% 0.85 (0.85, 0.86) 327 (269, 38b) 0.32 (0.27, 0.36)

Venous thromboembolism (VTE), area under the receiver operating characteristic curve (AUC) and 95% confidence interval (95% CI).
YEARS algorithm components: clinical signs or symptoms of deep vein thrombosis, haemoptysis, pulmonary embolism likely diagnosis.

@ D-dimer thresholds expressed in ng/mL.

and symptoms suggestive of venous thromboembolism. A
threshold of 500 ng/mL was initially proposed for D-dimer
to rule out VTE in patients with non—high pretest probabil-
ity. A more recent study factored the patient’s pretest prob-
ability and proposed an additional upper threshold of
1,000 ng/mL for those without any YEARS items to in-
crease the proportion of patients in whom imaging can be
withheld [14]. Yet the optimal approach for adjusting d-
dimer thresholds has still to be determined [15].

Other factors have shown to influence D-dimer concen-
tration. Age, for example, is associated with D-dimer pos-
itivity [16]. The D-dimer concentration naturally
increases with age, leading to many older patients without
PE presenting with D-dimer levels above the conventional
threshold of 500 ng/mL [17]. When D-dimer testing is per-
formed among elderly, the proportion of false-positive re-
sults is higher leading to unnecessary imaging [18,19].
Age-dependent threshold values for D-dimer were pro-
posed and its diagnostic performance has been compared
to the conventional threshold [20,21]. The age-adjusted
D-dimer threshold was defined as age(years)*10 ng/mL
for patients aged over 50 years, based on evaluating optimal
values for 10-year interval age groups. Studies have also
shown the influence of other factors, such as setting (inpa-
tient/outpatient) and cancer status [22,23].

2.1. Individual patient data cohort

We consider data from a large individual patient data
(IPD) meta-analysis of studies assessing the accuracy of clin-
ical decision rules and D-dimer testing for detection of VTE
among patients with suspected PE [24]. In the IPD cohort,
data from 21,621 patients, from 16 studies recruited between
1990 and 2020, were included in the analysis. In this cohort,
15% was diagnosed with PE. PE diagnosis was objectively
confirmed with either CTPA or clinical follow-up of at least
1 month in those without initial anticoagulation treatment

upon initial testing. The characteristics of the IPD cohort
are described in Supplementary Table 2.

3. Receiver operating characteristic (ROC) curve
analysis

3.1. Conventional ROC curve analysis

In a diagnostic accuracy study, ROC curves can be con-
structed where the results of one or more index tests are
compared against the results of the clinical reference stan-
dard, the best available test to evaluate the presence or
absence of the target condition [25].

3.2. Positivity threshold

If a positivity threshold is defined, the diagnostic accu-
racy of an index test can be expressed by estimates of its
sensitivity and specificity. If higher index test results make
the target condition more likely, sensitivity corresponds to
the proportion of those with a target condition whose test
result exceeds the positivity threshold. Analogously, the
specificity refers to the proportion of those without the
target condition whose test result does not exceed the pos-
itivity threshold.

If no positivity threshold can be defined, or none was
defined a priori, one can consider the full ROC curve.
The y-axis of the ROC curve displays all possible values
of the sensitivity (or true positive fraction, TPF). The x-axis
displays all possible values of the specificity, from right to
left, or of the false positive fraction (FPF, one minus spec-
ificity), from left to right.

The ROC curve links the TPF and FPF; it is based on the
survival function (one minus the cumulative distribution
function) of the test results in the subgroup with the target
condition, as indicated by the reference standard, and links
this to the survival function of the test results in the
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Sensitivity = 0.95

Sensitivity = 0.90

Threshold® Specificity Threshold Specificity
(95% CI) (95% ClI) (95% CI) (95% CI)
686 0.61 910 0.70

402 (325, 473)
655 (610, 698)

609 (555, 661)
560 (507, 610)

575 (510, 638)
582 (536, 627)

0.57 (0.47, 0.65)
0.47 (0.44, 0.50)

0.54 (0.51, 0.56)
0.55 (0.51, 0.58)

0.58 (0.54, 0.62)
0.50 (0.47, 0.53)

662 (596, 725)
893 (852, 934)

850 (799, 901)
803 (755, 850)

818 (757, 877)
825 (782, 868)

0.75(0.72, 0.78)
0.60 (0.58, 0.62)

0.65 (0.62, 0.67)
0.67 (0.65, 0.69)

0.69 (0.66, 0.72)
0.64 (0.61, 0.66)

subgroup without the target condition. The area under the
ROC curve (AUC, also known as AUROC) takes values be-
tween zero and one, where one indicates perfect perfor-
mance and 0.5 refers to performance no better than
flipping a coin.

3.3. ROC curve analysis incorporating covariates

In most diagnostic accuracy studies, all available index
test and reference standard results are used to construct
ROC curves. No other patient or study characteristics are
considered as covariates. By now it is well known that diag-
nostic accuracy is not a fixed property of a test and that it
can vary between population subgroups, test types, settings,
and depending on the position of the test in the clinical
pathway [26,27].

3.3.1. Covariate-specific  ROC curve scenarios and
implications

If the covariate can be indicated by one dichotomous
variable, the investigators can create two subgroups and
correspondingly create two different ROC curves. In line
with terminology in the statistical literature, we will refer
to these as covariate-specific ROC curves.

Three scenarios can be drawn based on a comparison of
these two ROC curves, as well as conclusions regarding the
standard ROC curve. We illustrate the scenarios using sex
as the covariate of interest.

3.3.1.1. Scenario 1. Identical distribution, identical perfor-
mance. It is possible that the covariate-specific ROC
curves are completely identical. That would be the case,
for example, if the underlying distributions of test results
in those with and those without the target condition are
identical in men and women. Each positivity threshold
would then yield the same sensitivity and specificity in

women as in men. The AUC would be the same in men
and in women.

3.3.1.2. Implication. If no difference exists and the
covariate-specific ROC curves are identical, the standard
AUC expresses performance well, since the covariate-
specific AUC are one and the same.

3.3.1.3. Scenario 2. Different distribution, identical perfor-
mance. In a different scenario, the distribution of test re-
sults differs between men and women. Again, as an
example, men may have higher values, on average, than
women, both in those with and in those without the target
condition. In that case, a single positivity threshold would
yield a different sensitivity in men compared to women,
and a different specificity. Sensitivity will be higher in
men but specificity lower.

It is still possible that the two covariate-specific ROC
curves are identical. For example, if the distributions of
those with and without the target condition have the same
difference in means between men and women, without
any differences in variance, then the two covariate-
specific curves will be the same, as well as the AUC. Over-
all performance, as expressed by the AUC, will be the same
in men and women, but different positivity thresholds must
be selected to yield the same sensitivity and specificity.

3.3.1.4. Implication. As demonstrated by Janes and Pepe
(2008), if a difference in distributions exists but the
covariate-specific ROC curves are identical, the standard
AUC can present a biased upward estimate of test perfor-
mance [3]. This will be the case if one subgroup, say
men, is more likely to have the target condition. The stan-
dard ROC curve will also capture that additional difference
between men and women and will lie above the covariate-
specific ROC curve. The standard AUC, though correctly
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estimated, will then also show upward bias, since it does
not only express the performance of the test but is also
based on the pre-existing difference in prevalence between
men and women.

If, in an alternative scenario, the prevalence between
men and women is the same, the standard ROC curve will
be attenuated: it will lie below the covariate-specific ROC
curves. The standard AUC will not express performance
well. The identical covariate-specific AUC, based on
thresholds that differ between men and women, will be
higher: it reflects the gain in performance that is possible
from using such stratified positivity thresholds.

3.3.1.5. Scenario 3. Different distribution, different perfor-
mance. In a third scenario, the distributions of the test re-
sults in those with and without the target condition differ
in such a way that the covariate-specific ROC curves are
no longer identical. That can happen in diverse ways. It is
possible that men without the target condition have the
same distribution as women without the target condition
but, with the target condition, men have much higher values
than women. If so, overall performance will also be
different. Depending on the distributions, a single positivity
threshold may also lead to different values for sensitivity
and specificity in the subgroups.

3.3.1.6. Implication. If the covariate-specific ROC curves
and AUC differ, the standard AUC is not a fair representa-
tion of performance, as it ignores the potentially meaning-
ful differences between the subgroups. Presenting the
significantly different covariate-specific ROC curves and
the corresponding AUC may be more informative for clin-
ical decision-making.

3.4. Bayesian nonparametric model

All of the performed analyses were based on the
Bayesian nonparametric approach proposed by In acio de
Carvalho et al. [28]. This approach incorporates covariate
information by using a single-weights dependent Dirichlet
process mixture of normal distributions. Specifically, the
model includes a mixture of normal distributions with
means that follow a regression model, which may be linear
or nonlinear, dependent on the covariate(s) [29]. This al-
lows for the construction of covariate-specific ROC curves,
specified for the conditional CDF which changes as a func-
tion of the covariate, as opposed to just considering the
mean or variance of the distribution, as in other semipara-
metric approaches [30].

3.5. Statistical analysis

Cumulative distribution function (CDF) plots and histo-
grams were created for covariate subgroups to explore the
distribution and density of index test results among the
diseased and nondiseased.

The standard empirical ROC curve was constructed
without incorporating covariate information [7]. We uti-
lized the Bayesian nonparametric approach to construct
covariate-specific ROC curves [28], including ordinal and
continuous covariates which were dichotomized, where
necessary, into clinically relevant categories. For each
Bayesian nonparametric model, we estimated the densities
and distribution by disease status. In addition, we also con-
structed covariate-adjusted ROC curves, initially developed
by Janes and Pepe [31], but adapted to the Bayesian
nonparametric approach. Here we included covariates
without categorization. Diagnostic accuracy was expressed
as the AUC with its 95% confidence interval (95% CI). For
each individual ROC curve, positivity thresholds corre-
sponding to a sensitivity of 0.98, 0.95, 0.90 were identified.

All statistical analyses were performed using R software
version 4.0.3, using the ROCnReg package [32]. For
detailed introduction and illustration of various frameworks
for covariate consideration in ROC curve analysis, we refer
to the ROCnReg guidance document [32].

4. Application
4.1. Subgroup differences

We conducted a series of exploratory analyses to land-
scape the distribution of index test values across covariate
subgroups and in the diseased and nondiseased subgroups.
There were differences in D-dimer concentration between
age groups, more prominent in the nondiseased group, with
much wider dispersion among the diseased. Differences
were less pronounced for other covariates (Supplementary
Fig. 1).

Overall, there was unanimous right-skewed distribution
of test results. We further visually confirmed largely over-
lapping distributions of test results between sex subgroups,
with differences in frequency of lower test results among
the nondiseased for some covariates (Supplementary
Fig. 1). The PE prevalence varied between some of the co-
variate subgroups, for example those based on age and on
the presence of YEARS items (Table 1).

4.2. Performance estimates with conventional ROC
approach

We first constructed the standard ROC curve to evaluate
performance without incorporating any covariate informa-
tion. Using an empirical estimator, we found D-dimer had
an AUC of 0.87 (95% CI: 0.86, 0.88) in detecting VTE.
This was considered as the benchmark performance
indicator.
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Fig. 1. Cumulative distribution function (CDF) plots by covariate [(A). Age, (B). Sex, and (C). YEARS algorithm] and venous thromboembolism (VTE)
status. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article).

4.3. Performance estimates with covariate-specific ROC
curve analysis

When constructing covariate-specific ROC curves, our
interest was in evaluating whether the discriminatory ca-
pacity of the index test varies between covariate subgroups.
In our case, we were interested in the possible effect of age,
sex, and pretest probability by use of the YEARS algorithm
on the performance of the index test, D-dimer.

Performance of the index test varied significantly be-
tween age groups (Table 1). In older patients the AUC
was lower (0.84 [0.84, 0.85]) than in the younger group
(AUC of 0.88 [0.87, 0.89]). We saw a noticeable gap in

the CDF between the age groups (Fig. 1). Younger patients
tend to have lower index test results (Supplementary
Fig. 1). There are also differences in the proportion with
and without VTE in the two subgroups. This is an example
of Scenario 3 (different distribution, different perfor-
mance). Providing only the standard ROC curve analysis
is not a fair representation of performance, as it ignores
meaningful differences between age subgroups, in this case
compromised performance in older patients.

In contrast, the covariate-specific ROC curves and AUCs
were nearly identical between men and women, consistent
with the similar distribution of test results in subgroups by
sex (Supplementary Fig. 1), and nearly overlapping CDF
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(Fig. 1). We can assume that there are no meaningful differ-
ences based on sex, an example of Scenario 1 (identical dis-
tribution, identical performance). In this case, we can
conclude the standard AUC fairly expresses the
performance.

Patients with and without items of the YEARS had
similar performance (Table 1), with some differences in
the distribution of index test results (Fig. 1). However, dif-
ferences in the distribution are less noticeable in the lower
ranges of the index test values (Supplementary Fig. 1, F).
This resembles Scenario 2 (different distribution, identical
performance). The prevalence of the target condition differs
drastically between the subgroups (8% vs. 21%). The stan-
dard ROC curve analysis in this case may therefore be
biased, as it does not consider underlying differences.”

The former analyses considered the effect of a single co-
variate. It is also possible that there is an interaction be-
tween a pair of covariates, such as age and sex. By
specifying the parameters of the regression model to
include both covariates, we can model their effect on per-
formance. In Supplementary Figure 2 we can see that
discriminatory capacity of the index test is slightly lower
in younger men and younger women, with no pronounced
differences by sex. In cases where the effect is unclear,
further significance testing should be performed [33].

4.4. Selection of covariate-specific positivity thresholds

We also compared standard vs. covariate-specific
threshold values for desired performance levels (Table 1).
We found different thresholds were necessary to achieve

the same level of performance. Taking age as an example,
there is a difference of nearly 250 ng/mL in thresholds for
younger vs. older patients to achieve a sensitivity of 0.95.
Thus, higher positivity thresholds for D-dimer have to be
selected for elderly patients, visually illustrated in
Figure 2. This is consistent with the understanding that
D-dimer levels increase with age. In such settings, recall
Scenario 3, the covariate-specific ROC curves are different,
and covariate-specific positivity thresholds should, ideally,
be used.

Differences were less prominent for other covariates.
Looking at each point of the YEARS algorithm (scale of
0 to 3), the positivity thresholds are nearly identical, mean-
ing the standard threshold would achieve the same sensi-
tivity in both groups (Table 1). As mentioned previously,
this may be explained by the similarities in distribution in
the lower ranges, which corresponds to high sensitivity.
In Figure 2 we can see that the same threshold would apply
to any point on the YEARS algorithm to meet the desired
sensitivity level. As no meaningful differences are
observed, we can conclude that the ROC curves are
identical.

4.5. Performance estimates with covariate-adjusted
ROC curve analysis

In some cases, it may be informative to also present a
covariate-adjusted ROC curve, one that takes covariate in-
formation into account: a weighted average of the
covariate-specific ROC curves, with weights corresponding
to the proportion of those with the target condition in the

A Sensitivity = 0.90 Sensitivity = 0.95 Sensitivity = 0.98
1500- 1500- 1500-
1000- 1000- 1000-
9] 9] 9]
£ £ £
8 s500- 8 s00- 8 500-
0 0 0-
25 50 75 100 25 50 75 100 25 50 75 100
Age (years) Age (years) Age (years)
D Sensitivity = 0.90 E Sensitivity = 0.95 F Sensitivity = 0.98
1500- 1500- 1500-
1000- 1000- 1000-
9] @ @
£ £ £
8 500- 8 500- 8 500-
0 0 0-
0 i 2 3 0 i 2 3 0 i 2 3
YEARS score YEARS score YEARS score

Fig. 2. Threshold values for D-dimer, along age (A, B, C) and the YEARS score (D, E, F), modeling using the Bayesian nonparametric approach.
Posterior mean (solid black line) and 95% pointwise credible band for D-dimer thresholds, corresponding to sensitivity of 0.98, 0.95 and 0.90.
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Pooled vs covariate—adjusted ROC curves
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Fig. 3. Standard (pooled) vs. covariate-adjusted ROC curves. (For
interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article).

two subgroups. We constructed ROC curves that were
adjusted for age, sex, the YEARS algorithm, and the com-
bination of two covariates. The covariate-adjusted AUCs
were almost identical to each other and reflected the stan-
dard pooled AUC of 0.87 (see Fig. 3).

5. Discussion

Most diagnostic accuracy studies that present ROC
curves to summarize test performance ignore covariates.
Yet constructing covariate-specific ROC curves can be
informative for understanding the relationship between co-
variates and a test’s performance and positivity threshold.
There may be stratum-specific differences in performance
that can influence further clinical decision making or, in
the absence of any meaningful differences, we may
conclude that the standard ROC curve produces fair esti-
mates of performance.

Adjusting for covariate effects would be most necessary
when comparing the performance of different tests, to alle-
viate any bias that may arise from unfair representation of
patient characteristics where the performance may vary, as
illustrated by Pepe et al. [3]. We can also assume multi-
center studies, with intrinsically different test settings,
may benefit from adjusting for covariates. Yet comparisons
between other techniques such as multilevel analysis or
other prosed mixed methods for handling issues related to
multicenter data are less established. Importantly, this is
an area that deserves more attention, particularly in the
presence of clustered data. Covariate adjustment may be

preferred with smaller sample sizes, which may be prob-
lematic for covariate-specific analysis. Covariate-adjusted
ROC analyses can also consider continuous variables, in
addition to categorical and binary ones.

Our study presents some limitations. In our IPD cohort,
verification of the outcome was not the same for all patients
in most studies and we relied on multiple reference stan-
dards. Imaging was performed for those with high clinical
suspicion and/or high D-dimer, and clinical follow-up for
those with low D-dimer levels.

In meta-analyses of diagnostic accuracy studies, hetero-
geneity in test performance is common across the primary
studies. This may be due to patient or test characteristics
and thus present a genuine difference in performance
based on biology, but it may also be artifactual and due
to study design flaws. Such artifactual factors can be iden-
tified with the QUADAS-2 tool [34]. In the motivating
example, we selected covariates based on a biologic basis,
however, we can also utilize study design characteristics as
covariates. Various approaches for including such covari-
ates in meta-analysis of ROC curves have been proposed
[35]. Inclusion of artifactual covariates in conditional
ROC curve analysis can also be incorporated to reflect,
for example, center differences in multicenter diagnostic
accuracy studies. This application warrants further explo-
ration, as adjustment for center differences is another
element of diagnostic accuracy research that remains less
established.

We here presented results using a Bayesian nonpara-
metric approach. Other methods, such as a semiparamet-
ric approach and a nonparametric kernel-based regression
model, have been proposed [33]. The Bayesian nonpara-
metric approach is flexible to various distribution fea-
tures, as it can adapt to skewness, nonlinearities, or
data with higher variability. This makes it a practical
choice for use with many different diseases and popula-
tions. The computational demand is however greater with
this approach compared to some other models. We further
note the limitations of methods such as the kernel-based
regression models, which have long computation times
and more limitations regarding number and type of cova-
riates that can be included in the model. For an in-depth
review, including an overview of various proposed statis-
tical concepts and their application can be found in the
work by In acio and Rodriguez-Alvarez et al. and related
publications [4,5].

Incorporating covariate information into ROC curve
analysis is not yet common practice, despite methods that
have been proposed decades ago. We hope that the analysis
presented here will lead to a more widespread application
of such conditional ROC curves, which can provide more
robust information on test performance and may improve
our ability to select thresholds catered for specific
subgroups.
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