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Abstract 
Tumor-related epilepsy (TRE) is a frequent and major consequence of brain tumors. Management of TRE is re-
quired throughout the course of disease and a deep understanding of diagnosis and treatment is key to improving 
quality of life. Gross total resection is favored from both an oncologic and epilepsy perspective. Shared mechan-
isms of tumor growth and epilepsy exist, and emerging data will provide better targeted therapy options. Initial 
treatment with antiseizure medications (ASM) in conjunction with surgery and/or chemoradiotherapy is typical. 
The first choice of ASM is critical to optimize seizure control and tolerability considering the effects of the tumor 
itself. These agents carry a potential for drug–drug interactions and therefore knowledge of mechanisms of ac-
tion and interactions is needed. A review of adverse effects is necessary to guide ASM adjustments and deci-
sion-making. This review highlights the essential aspects of diagnosis and treatment of TRE with ASMs, surgery, 
chemotherapy, and radiotherapy while indicating areas of uncertainty. Future studies should consider the use of 
a standardized method of seizure tracking and incorporating seizure outcomes as a primary endpoint of tumor 
treatment trials.

Key Points

• Seizures are a common manifestation of brain tumors and cause of morbidity to patients.

• Consideration of ASM profiles is necessary to balance seizure control and adverse 
effects.

• Seizure control may be affected by tumor progression and tumor-targeted treatments.

Tumor-related epilepsy (TRE) is a well-known consequence of 
primary or metastatic brain tumors. Often a seizure is the pre-
senting symptom of a brain neoplasm. Seizure control often 
aligns with tumor growth and conversely can improve with 
tumor-directed treatment (Figure 1). Antiseizure medications 
(ASMs) are first-line treatment for TRE and are often followed 
by tumor resection. Depending on tumor type and grade, pa-
tients may receive chemotherapy, radiotherapy, and more 
recently immunotherapy and targeted therapy. Nearly all pa-
tients who present with a seizure or develop seizures later in 

the course of their disease will need ASMs as part of their treat-
ment. Over the last 30 years, ASM availability has increased 
with the development of over 20 additional agents. Some of 
these agents have been studied in TRE and many have shown 
benefit in case series or systematic reviews.

Patients with brain tumors often experience cognitive dis-
turbance, fatigue, and an array of side effects from tumor-
directed treatment. The addition of ASM can often worsen 
some of these side effects or introduce new adverse effects.1 
Therefore, skillful management of ASMs in addition to other 

© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. 
For permissions, please e-mail: journals.permissions@oup.com

7Neuro-Oncology
26(1), 7–24, 2024 | https://doi.org/10.1093/neuonc/noad154 | Advance Access date 12 September 2023

Brain tumor-related epilepsy management: A Society 
for Neuro-oncology (SNO) consensus review on current 
management  

D
ow

nloaded from
 https://academ

ic.oup.com
/neuro-oncology/article/26/1/7/7271494 by Jacob H

eeren user on 24 January 2024

https://orcid.org/0000-0001-8489-2090
https://orcid.org/0000-0001-9071-8398
https://orcid.org/0000-0002-7587-5085
https://orcid.org/0000-0002-3648-9616
https://orcid.org/0000-0002-9695-3564
https://orcid.org/0000-0002-4399-0257
https://orcid.org/0000-0003-1561-9220
https://orcid.org/0000-0002-4536-3791
https://orcid.org/0000-0003-1850-8868
https://orcid.org/0000-0002-2452-0540
mailto:avilae@mskcc.org
journals.permissions@oup.com
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tumor-directed treatments is essential for the treating phy-
sician. For this review, we will use the term tumor-related 
epilepsy as the defining name for this type of epilepsy. In 
addition, we will continue the current use of antiseizure 
medication as adopted by the International League Against 
Epilepsy (ILAE).

Tumor-Related Epilepsy Epidemiology 
and Incidence

TRE incidence varies by tumor type with histologic low-
grade gliomas carrying a higher incidence than high-grade 
gliomas.2 TRE incidence viewed using WHO 2016 classifica-
tion highlights several characteristics including histology 
and molecular profile to consider:

1. Lower tumor grades carry a higher incidence of TRE.
2. Astrocytic gliomas are less epileptogenic than tumors 

with oligodendroglial components.
3. Mutant IDH astrocytic gliomas (including grade 4 tu-

mors), are more likely to induce TRE.3

The application of the WHO 2021 classification with TRE in-
cidence would likely yield similar results but would need to 
be formally studied.

Brain and spinal cord tumors are the second most 
common cancer types in children secondary to leuke-
mias.4 The overall annual incidence rate for brain tumors is 
7.08/100,000 population, and stratified by age5:

Age Annual incidence

Birth to 14 years 3.87/100,000

15–19 years 2.60/100,000

20–39 years 3.39/100,000

40–64 years 7.96/100,000

>65 years 21.26/100,000

The most recent data from The Central Brain Tumor 
Registry of the United States (CBTRUS) shows an average 
annual age-adjusted incidence rate (AAAIR) for all malig-
nant and nonmalignant tumors of 24.71/100,000 between 
2015 and 2019.6 The AAAIR for malignant tumors was 
7.02/100,000 and the AAAIR for nonmalignant tumors was 
17.69/100,000.

In patients with primary brain tumors, seizures are more 
common with low-grade tumors compared to high-grade 
tumors.7 In a series of 1028 patients with primary brain tu-
mors, epilepsy rates were reported at 85, 69, and 49% in 
patients with low-grade glioma, anaplastic glioma, and gli-
oblastoma, respectively.2 At least one seizure occurs in up 
to 80% of patients with high-grade glioma at some point 
during the course of disease.8 Glioneuronal tumors such 
as ganglioglioma and dysembryoplastic neuroepithelial 
tumors also have a high incidence of seizures, >80%.9

Seizures are the presenting manifestation in 13–24% of 
children with brain tumors.10 In one study of 367 children 
with brain tumors, seizures occurred in 57 (16%) children, 
and were the initial symptom in 48 (13%) and the only clin-
ical manifestation in 24 (7%).11 In another series, 56/184 
(30%) children had seizures, of which 50/56 (89%) were 
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Figure 1. Representative example of increasing seizure frequency aligning with tumor progression in a patient with recurrent oligodendro-
glioma despite ASM changes. CBM, cenobamate; LCM, lacosamide; LEV, levetiracetam; OXC, oxcarbazepine.
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supratentorial and 6/56 (10%) were infratentorial; 32% 
were in the temporal lobe, 21% frontal lobe, 16% parietal 
lobe, and 2% occipital lobe.12 Low-grade astrocytoma was 
the most common pathology (27%), followed by high-
grade glioma (14%) and ganglioglioma (14%).

Diagnosing Tumor-Related Epilepsy

According to the ILAE, tumor-related epilepsies are 
etiology-specific epilepsy syndromes with associated 
treatment and prognostic implications.13 TRE are focal 
epilepsies with seizure types including focal awareness 
(motor and nonmotor), focal impaired awareness, and 
focal to bilateral tonic–clonic seizures. Adults with an 
unprovoked first seizure and significant abnormality on 
neuroimaging such as a brain tumor have their greatest 
risk of recurrence over the subsequent 2 years,14 and 
meet diagnostic criteria for epilepsy.15 Early postopera-
tive acute symptomatic seizures carry a lesser risk of ep-
ilepsy.16,17 Long-term epilepsy-associated tumors (LEAT) 
present with drug-resistant epilepsy and commonly arise 
in the temporal lobe where focal neurological deficits 
are uncommon.18 Patients with TRE may develop other 
reasons for episodic or paroxysmal impaired awareness 
that can be confused with epilepsy such as increased in-
tracranial pressure,19 or rarely psychogenic nonepileptic 
seizures.

TRE is a clinical diagnosis that is supported by elec-
troencephalography (EEG). While many features of rou-
tine EEG signals are nonspecific, continuous focal delta 
slowing strongly correlates with an underlying structural 
lesion involving white matter tracts.20 Spikes and sharp 
waves imply a cortical phenomenon and provide support 
for epileptogenicity associated with focal seizures ipsilat-
eral to the tumor. Subcortical or posterior fossa tumors can 
have a normal EEG. In a study of the diagnostic value of 
the preoperative EEG in 114 children with brain tumors, the 
EEG was normal in 54 (47%) and abnormal in 62 (53%).21 
The EEG was abnormal in 15 children with infratentorial le-
sions revealing limitations of preoperative EEG in pediatric 
brain tumors.

Ambulatory EEG (AEEG) is an outpatient study lasting 
1–3 days.22 In patients with TRE, AEEG with video is often 
effective for evaluating the differential diagnosis, classifi-
cation of seizure type, quantification of seizure frequency, 
and ASM decision-making. However, the gold standard 
for EEG recording is inpatient long-term video-EEG moni-
toring (LTVEM) with or without discontinuation of ASM. 
Periodic patterns such as lateralized periodic discharges 
(LPDs) or electrographic seizures (>10 s) in patients with 
brain tumors lie along an interictal-ictal EEG continuum. 
LPDs are strongly associated with seizures and status ep-
ilepticus and should prompt continuous EEG monitoring.23 
Nonconvulsive seizures and nonconvulsive status epilep-
ticus (NCSE) are common sources of morbidity in patients 
with cancer.24 Clinical signs may be subtle (ie, focal aware 
seizures manifesting with aphasia) or absent despite the 
presence of NCSE on EEG. This is especially important to 
consider when altered baseline mental status is present in 
patients with brain tumors.

Neuroimaging is critical for the identification of brain tu-
mors and defining the epileptogenic lesion. However, fre-
quent seizures can result in neuroimaging changes, such 
as cortical enhancement on brain MRI and successful treat-
ment of seizures can lead to resolution of these changes.25 
Patients with focal seizures or focal status epilepticus may 
develop reversible CT or MRI signal changes that may 
mimic tumors; these resolve on follow-up imaging after 
seizure control in adults and children.26,27

Functional neuroimaging includes positron emission 
tomography (PET), single-photon emission computed to-
mography (SPECT), and functional MRI (fMRI). FDG (18F-2-
fluoro-2-deoxy-D-glucose) PET is used to evaluate both 
neuro-oncology and epilepsy patients.28 Various tracers are 
available to evaluate both diseases, but amino acid tracers 
are most useful in identifying areas of epileptogenesis in 
patients with nontumoral epilepsies.28,29 A report of pa-
tients with grades 2–4 glioma revealed increased uptake 
on O-(2-18F-fluoroethyl)-L-tyrosine PET during periods 
of frequent seizures and status epilepticus arising from 
peritumoral cortex. Seizures and status epilepticus 
increase cerebral amino acid transport with a strict gyral 
uptake pattern on 18F-flouroethyl-L-tyrosine PET.30 A recent 
joint guideline from the Response Assessment in Neuro-
Oncology working group and the European Association 
for Neuro-Oncology and European Association of Nuclear 
Medicine provides evidence-based recommendations for 
use, utility, and limitations of amino acid PET in the diag-
nosis of glioma.29

Shared Mechanisms of Epileptogenesis 
and Tumor Growth

Mechanisms underlying TRE are known in diffuse gliomas, 
although variability in epilepsy incidence across tumor 
pathologies indicates multiple mechanisms are contrib-
uting. Electrophysiologic epileptiform or hyperexcitable 
neuronal activity is used as a biomarker of epileptogenesis, 
which is detected in discrete sites at the brain-tumor inter-
face and infiltrating margins.31

Glutamate is involved in promoting both glioma growth 
and epileptogenesis (Figure 2).32–34 Increased peritumoral 
extracellular glutamate may arise from increased gluta-
mate release from glioma cells due to overexpression of 
the cystine-glutamate transporter (xCT), a critical compo-
nent to redox homeostasis, and impaired reuptake by ex-
citatory amino acid transporters.35,36 Excessive glutamate 
facilitates glioma cellular invasion and excitotoxicity via 
NMDA receptor and Ca(2+)-permeable AMPA receptor 
activation.37,38 Pathophysiologic glutamatergic signaling 
contributes to pro-excitable states in the glioma microenvi-
ronment,39 with downregulation of KCC2 and upregulation 
of NKCC1 leading to altered chloride homeostasis, im-
paired inhibition, and paradoxical depolarizing effects of 
GABAergic signaling.40,41

Recent advances in technology with microelectrode 
recordings, in vivo optogenetic models, and tumor 
sequencing indicate a complex bidirectional relationship 
between glioma cells and hyperexcitability of adjacent 
neurons. Peritumoral neurons can form synapses directly 
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onto glioma cells, with glial cell synaptogenesis driven 
by the activity-dependent release of the neuronal protein 
neuroligin-3 (NLGN-3).42–44 The resulting neuron-glioma 
synapses are capable of neurotransmission, with excita-
tory glutamatergic signaling AMPA receptors capable of 
promoting tumor cell proliferation and invasion (Figure 
2).43,44 Electrochemical communication between neurons 
and glial cells may underlie a feed-forward mechanism 
where glutamate produced by glioma cells can lead to 
neuronal hyperexcitability and seizures, while peritumoral 
neuronal hyperexcitability may itself promote tumor 
growth and further glutamate release.43

Tumor molecular profiles may also have a signifi-
cant effect on the tumor microenvironment, neuronal 
hyperexcitability, and tumor progression. Effects are 
largely determined by glioma genetic alterations, the 
best studied of which is the isocitrate dehydrogenase 1 
(IDH1) gene mutation. IDH1 is frequently mutated in low-
grade gliomas, associated with improved tumor prog-
nosis and an independent risk factor for increased seizure 
risk.45,46 IDH1 mutations lead to conversion of isocitrate 
to D-2-hydroexyglutarate (D-2HG) rather than to alpha-
ketoglutarate. D-2HG may lead to hyperexcitability and 
seizures either by acting as a glutamate receptor agonist 
at NMDA receptors, due to its structural similarity to gluta-
mate,45 or by upregulation of the mTOR signaling pathway, 
which is implicated in tuberous sclerosis.47

Other genetic variants, many of which converge on the 
PI3K-mTOR pathway, impact the tumor microenvironment 
and promote epileptogenesis. Specific gain-of-function 
missense variants in PIK3CA, coding for the PI3K catalytic 
subunit, induce epileptogenicity through differential cell-
autonomous and cell-nonautonomous mechanisms in a 
glioblastoma model,48 and have been associated with poor 

seizure control in patients with diffuse gliomas.49 The BRAF 
V600E mutation observed in glioneuronal tumors is asso-
ciated with the development of epileptiform activity me-
diated by altered regulation of ion transport and synaptic 
activity and is predictive of postoperative seizures.50,51

There are limited data characterizing mechanisms of 
epileptogenesis in meningiomas, metastatic lesions, and 
other nonglial brain tumors. Peritumoral edema is one 
of the strongest predictors of epilepsy in patients with 
meningiomas.52 In a patient cohort of meningiomas with 
genomic sequencing, somatic NF2 mutations were asso-
ciated with preoperative seizures, mediated by increased 
edema and atypical histology.53 Local inflammatory and 
metabolic changes are often considered to mediate dis-
ruption to the excitatory-inhibitory balance in patients with 
supratentorial metastatic tumors.54,55

Anti-Seizure Medications

Few randomized clinical trials have examined the efficacy of 
ASMs in TRE. Most have evaluated ASMs as add-on therapy 
rather than monotherapy. Sample sizes are often small and 
include variable tumor pathologies. Recognizing limitations, 
a summary of the literature is provided in Table 1.

First Generation ASMs

The first-generation ASMs carbamazepine, phenytoin, 
phenobarbital, and primidone are often avoided in pa-
tients with TRE as they are potent enzyme inducers and 
have significant drug-drug interactions. In terms of ther-
apeutic efficacy, carbamazepine as monotherapy has 
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Figure 2. Schematic representation of established mechanisms underlying glioma-related epilepsy. Glutamatergic signaling is a key pathway 
affected and contributes to the development of functional neuron-glioma synapses. ASMs with selective mechanisms of action are shown. 
Created with BioRender.com.
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a reported six-month seizure-free rate of 28%,58 and 
12-month rate of 30–55%.59 Studies report the efficacy of 
phenytoin monotherapy in preventing glioma-related ep-
ilepsy with six-month seizure-free rates of 67–87% and 
12-month rates of 35–77%.59 None have evaluated the effi-
cacy of phenobarbital or primidone (which is metabolized 
to phenobarbital as an active metabolite) as monotherapy 
for patients with TRE.

Valproic acid is a potent enzyme inhibitor; it was initially 
favored due to its potential antineoplastic effect as a his-
tone deacetylase inhibitor. Survival benefits have not been 
replicated and its use has declined, although it is often 
used as a second- or third-line agent. Valproic acid has a 
6-month seizure-free rate of 65%60 and 12-month rates of 
30–62%.59

Second Generation ASMs

The most commonly used ASM for TRE is levetiracetam. 
In a systematic review of 66 studies on ASMs in glioma-
related epilepsy, 25 reported levetiracetam to be effica-
cious as monotherapy.59 In 9 studies, there was a 6-month 
seizure-free rate of 39–96% and in 4 studies, a 12-month 
seizure-free rate of 68–96%. The seizure reduction rate of 
≥50% in 2 studies was 71–100%.59 One study followed pa-
tients over 36 months, and uncontrolled seizures were a 
reason for transitioning to another agent, deemed treat-
ment failure in 18% of patients.61

Amongst the second-generation ASMs, lamotrigine is 
often used; however, the data evaluating its efficacy as 
monotherapy is limited. The advantages are that it is well-
tolerated and risk of fetal birth defects is similar to that 
of healthy women without epilepsy.62 However, due to 
prolonged titration, bridging with another ASM is often 
necessary.

Topiramate as monotherapy was reported in one study 
with promising results,63 however, at seizure prevention 
doses, cognitive slowing and weight loss were commonly 
reported. Zonisamide is not an enzyme-inducer or inhib-
itor and the majority of patients tolerate it, although weight 
loss is commonly reported and it should be avoided in pa-
tients with a history of nephrolithiasis.64

Oxcarbazepine is a derivative of carbamazepine, al-
though has fewer side effects and fewer drug interactions. 
As monotherapy in TRE with variable pathologies, 63% 
of patients were seizure-free over a mean follow-up of 16 
months.65 In an open-label study, among the intent-to-treat 
population, 40% were seizure-free at 12 months.66

Limited data exist to support gabapentin as adjunctive 
therapy in TRE.67 Pregabalin is similar to gabapentin; how-
ever, it is more potent. Again, limited data in one small, 
randomized control trial revealed a 75% seizure-free rate 
at 12 months.56

Third Generation ASMs

Lacosamide is often chosen as a first- or second-line ASM 
with good tolerability and absence of enzyme induction 
properties. Small studies report it as effective as add-on 
therapy,68 and in monotherapy associated with a seizure-
free rate of 55% at 6 months.69

Eslicarbazepine is related to carbamazepine and 
oxcarbazepine with once-daily dosing, favorable side ef-
fects, and was studied as add-on therapy in a small TRE 
series with 25% of patients being seizure-free.70

Brivaracetam is an analog of levetiracetam and an option 
for patients who are unable to tolerate levetiracetam due to 
mood effects. No studies have evaluated brivaracetam as 
monotherapy for patients with TRE, although retrospective 
studies examined add-on therapy in patients with variable 
tumor types, with 60% seizure-free after a mean follow-up 
of 10 months.71

Clobazam is well tolerated and with slow titration pa-
tients report baseline energy after 1–2 weeks. Low doses 
(ie, 10–15 mg daily) are often sufficient for seizure-free and 
may allow weaning of other ASMs. As add-on therapy, 30% 
of patients were seizure-free at 6 months.72

Perampanel has a unique mechanism as a noncompeti-
tive AMPA receptor blocker. In a systematic review, 8 small 
studies reported add-on perampanel with variable seizure-
free rates of 0–94%.57 Further studies are necessary to eval-
uate the role of perampanel in TRE.

Finally, cenobamate has shown promise in patients with 
nononcologic medically refractory epilepsy, but has not 
been explored in patients with TRE.73 It is a CYP2C19 inhib-
itor and induces both CYP3A4 and CYP2B6, an important 
consideration for concurrent tumor-directed treatment.

Comorbidities Influencing Drug Choice

When considering ASMs for TRE, it is essential to con-
sider comorbid conditions and potential side effects that 
have a profound impact on patients. Levetiracetam is often 
chosen as a first line in TRE given its minimal drug-drug 
interactions, rapid therapeutic titration, and general tolera-
bility; however, irritability and mood changes are reported 
frequently. Psychiatric side effects are more commonly 
seen in patients with frontal lobe tumors and in patients 
with histories of depression and anxiety.74 If an ASM with 
mood-stabilizing properties is being considered, valproic 
acid, lamotrigine, oxcarbazepine, eslicarbazepine, or 
clobazam may be considered.

Patients with comorbid migraine headache may benefit 
from topiramate or zonisamide,75 although the doses re-
quired for prevention of seizures are higher. Valproic acid 
can also be considered for brain tumor patients with mi-
graine; a Cochrane review found a meaningful reduction in 
headache frequency.76

Topiramate and zonisamide can result in weight loss 
but should be avoided in patients with a history of 
nephrolithiasis. Zonisamide should be avoided in patients 
with sulfa allergies due to cross-reactivity.

Pregnant patients with brain tumors can be started on 
levetiracetam immediately at a therapeutic dose. However, 
if a woman is planning pregnancy, both levetiracetam and 
lamotrigine are reasonable options due to the low risk of 
birth defects.77 All women considering pregnancy should 
be started on at least 0.4mg of folic acid daily to reduce 
fetal birth defects, autistic traits, and language delay.78 If 
on an enzyme-inducing ASM, a high-dose contraceptive 
containing at least 50 mcg of ethinyl estradiol should be 
considered as enzyme induction accelerates metabolism 
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of both estrogen and progesterone.78 Additionally, a sec-
ondary method of birth control should be considered. 
Lamotrigine has a significant interaction with estrogen-
containing oral contraceptives and higher doses may be 
required. Considering these interactions, monitoring ASM 
levels in pregnancy is recommended.

Drug–Drug interactions

Pharmacokinetic interactions between ASMs and 
antineoplastic therapies are an important consideration 
in the selection of therapy (Figure 3). A majority of drugs 
undergo hepatic metabolism through cytochrome P450 
enzymes, particularly CYP3A4; ASMs that induce these 
microsomal enzymes can markedly alter the clearance of 
cytotoxic chemotherapy, targeted agents, and corticoster-
oids. Phenytoin, phenobarbital, and carbamazepine are the 
most potent inducers. Newer agents generally have lesser 
to no enzyme-inducing activity, although oxcarbazepine, 
eslicarbazepine, and cenobamate have clinically relevant 
activity.79–81

The impact of enzyme-inducing ASMs (EIASM) on che-
motherapy exposure for drugs metabolized through 
CYP3A4 is considerable. Potent effects have been demon-
strated for taxanes, irinotecan, and cyclophosphamide. The 

effects of strong EIASMs are seen with cyclophosphamide, 
camptothecin derivatives, taxanes, and topoisomerase II 
inhibitors, showing about a 2-fold to 3-fold higher clear-
ance and a doubling of the maximum tolerated dose.84 
Temozolomide is not metabolized through hepatic micro-
somal enzymes and has no pharmacokinetic interactions 
with ASMs.

Similar results pertain to EIASMs with tyrosine kinase, 
mTOR, proteasome, and IDH1 inhibitors, with a clearance 
rate often doubled and a corresponding decrease in AUC.85 
Crizotinib, dasatinib, imatinib, lapatinib, and ivosidenib 
particularly show substantially faster metabolism with 
concurrent EIASMs. For imatinib and lapatinib, organ ex-
posure is about 4 times lower without dose adjustment.84 
Consequently, for the last 25 years neuro-oncologists and 
epileptologists have preferentially utilized nonEIASMs in 
patients with brain tumors.

EIASMs may increase the metabolism of various ster-
oids. This is best studied in phenytoin, which increases 
plasma clearance of dexamethasone threefold.86

Prior to the availability of effective ASMs not metabol-
ized through the hepatic microsomal system, early-phase 
glioma trials sometimes excluded patients on enzyme-
inducing drugs or ran separate arms analyzing pharma-
cokinetics of the novel antineoplastic agent for patients 
on enzyme inducers. At present, the use of EIASMs 
is generally an exclusion criterion in clinical trials of 
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Imatinib Vemurafenib
Irinotecan

Cenobamate
Eslicarbazepine

Thiotepa

Felbamate

Cyclosporine
Fluconazole
Valproate

Aprepitant
Cyclosporine
Imatinib

Clobazam
SSRI/SNRIs
Vemurafenib

Ciprafloxacin
Fluvoxamine
Vemurafenib

Gemfibrozil
Trimethoprim

Rifampin

Fluconazole
Fluvoxamine

Carbamazepine
Cenobamate
Lorlatinib
Phenobarbital
Phenytoin
Rifampin

Enzalutamide
Rifampin

Aprepitant
Carbamazepine
Dabrafenib
Enzalutamide
Lorlatinib
Phenobarbital

Carbamazepine
Clobazam
Cenobamate
Dabrafenib
Enzalutamide
Eslicarbazepine
GlucocorticoidsRifampin

Lorlatinib
Oxacarbazepine
Phenobarbital
Phenytoin
Primidone
Rifampin

Carbamazepine
Phenobarbital
Phenytoin
Rifampin

NSAIDs
Phenytoin
Valproate 
Warfarin

Brivaracetam
Clobazam
Diazepam
Phenytoin
PrimidoneCyclophosphamide Vincristine

Doxorubicin
Tamoxifen

Enzalutamide
PaclitaxelMelatonin

Figure 3. Summary of hepatic CYP isoform abundance and selected oncology and epilepsy-related substrates, inhibitors, and inducers.82 
Only major CYP substrates are included (Lexicomp). ASMs are shown in red. Adapted from Fink & Deo, Handbook of Brain Tumor 
Chemotherapy, Molecular Therapeutics, and Immunotherapy.83
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Table 1. Antiseizure medications formulations, mechanisms of action with additional considerations and reported TRE seizure response rates.4,55–57 
Reported response rates are for patients with tumor-related epilepsy and may include tumors other than gliomas including meningiomas and brain 
metastases. Mo, month; SE, side effect; SJS, Stevens Johnson Syndrome

Antiseizure 
medication

Formula-
tion/ap-
proved for 
children

Primary 
mechanism 
of action

Most commonly re-
ported side effects

Serious side effects Reported effi-
cacy for use as 
monotherapy 
in TRE

Additional consider-
ations

Brivaracetam Tablet, 
liquid, IV/
Yes

Binds to 
SV2A
(a synaptic 
vesicle gly-
coprotein)

Fatigue, dizziness, 
anxiety, agitation, 
depression

Hypersensitivity 
reactions

Not reported —

Carbamazepine Tablet, 
liquid/
Yes

Na+ channel 
blocking

Transaminitis, 
hyponatremia, blood 
dyscrasias, rash/SJS,
nausea, vomiting

Aplastic anemia, 
hepatotoxicity, 
hyponatremia, 
rash/ TEN/SJS, 
hypersensitivity re-
actions, decreased 
bone density 
(use > 10 years)

6 mo seizure 
freedom: 28%1

12 mo seizure 
freedom: 
30–55%1

CYP3A4, CYP2B6, 
CYP2C8, CYP2C9, 
CYP1A2, UGT1A4 
inducer
May cause bone 
marrow suppression

Cenobamate Tablet/
No

Na + channel 
blocking
Enhancing 
GABA

Fatigue, dizziness, 
hyperkalemia

QT shortening, 
drug reaction with 
eosinophilia

Not reported CYP2C19 inhibitor, 
CYP3A4/5, CYP2B6 
inducer

Clobazam Tablet, 
liquid/
Yes

GABAA-
receptor 
agonist

Fatigue, dizziness,
dry mouth, nausea

Somnolence, se-
dation

Not reported N-desmethylclobazam, 
the metabolite can be 
monitored for toxicity

Eslicarbazepine Tablet, 
liquid/
Yes

Na+ channel 
blocking

Hyponatremia, rash/
SJS,
somnolence, nausea, 
fatigue

Rash/TEN/SJS, 
hyponatremia, hep-
atotoxicity, blood 
dyscrasias,
decreased T3/T4

Not reported CYP2C9 inhibitor

Gabapentin Tablet, 
liquid/
Yes

Binding α2δ 
Ca channel 
subunit

Dizziness, fatigue, 
peripheral edema, 
weight gain, ataxia

None Not reported Substrate for a protein 
transporter likely re-
ducing brain availa-
bility2

Lacosamide Tablet, 
liquid, IV/
Yes

Na+ channel 
blocking

Dizziness, gait in-
stability, headache, 
fatigue,
prolonged PR interval

PR prolongation, 
syncope, rash/TEN/
SJS, dizziness, 
ataxia

6 mo seizure 
freedom: 55%-
67%3

Monitor for arrhyth-
mias

Lamotrigine Tablet, 
oral 
dissolving 
tablet/
Yes

Na+ channel 
blocking

Rash/SJS insomnia 
(if taken at night as 
bid dosing),
blood dyscrasias

Rash/TEN/SJS, 
blood dyscrasias, 
angioedema, bron-
chospasm

Not reported Need for slow titration
May be beneficial for 
mood
Relatively safe in preg-
nancy

Levetiracetam Tablet, 
liquid, 
IV/
Yes

Binds to 
SV2A

(a synaptic 
vesicle gly-
coprotein)

Irritability, de-
pression, anxiety, 
aggression, fatigue, 
lightheadedness

Suicidal ideation, 
depression

6 mo seizure 
freedom: 
39-96%1

6 mo seizure 
reduction≥50%: 
71–100%1

Higher risk of psychi-
atric side effects in 
frontal lobe tumors4

Relatively safe in preg-
nancy

Oxcarbazepine Tablet, 
liquid/
Yes

Na+ channel 
blocking

Hyponatremia, 
fatigue, lighthead-
edness, weight gain, 
alopecia, nausea

Hyponatremia, 
rash/TEN/SJS

12 mo seizure 
freedom: 40%
12 mo seizure 
reduction≥50%: 
88%1

CYP2C19 inhibitor 
and weakly induces 
CYP3A4

Perampanel Tablet, 
liquid/
Yes

AMPA an-
tagonism

Dizziness, vertigo, 
fatigue, aggressive-
ness, agitation, irrita-
bility, anxiety, nausea

Psychiatric side 
effects, homicidal/
suicidal ideation

No studies

Phenobarbital Tablet, 
liquid, IV/
Yes

Enhancing 
GABA

Drowsiness, fatigue, 
vertigo,
habit forming, blood 
dyscrasias, cognitive 
slowing, rash/SJS

Withdrawal 
seizures, hepa-
totoxicity, CNS 
depression, rash/
TEN/SJS, blood 
dyscrasias

No studies CYP1A, CYP2A6, 
CYP2B, CYP2C, CYP3 
A, UGT inducer
Increases steroid clear-
ance2
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 14 Avila et al.: Brain tumor-related epilepsy management

chemotherapeutic agents metabolized through the hepatic 
microsomal system and should similarly be avoided in 
standard practice outside of clinical trials.

Adverse Effects of Anti-Seizure 
Medications

Optimizing the ASM regimen in TRE requires the treating 
physician to review side effects regularly. Distinguishing 
side effects from ASMs, oncologic treatments, and the un-
derlying disease, may be challenging. Familiarity with the 
most common and serious side effects (Table 1) is neces-
sary to optimize the ASM regimen.

Fatigue is common with ASMs, particularly during the 
first 2 weeks, and may improve gradually. However, if per-
sistent, changing to an extended-release formulation or 
less sedating ASM should be considered.

Many side effects of ASMs are seen immediately after 
initiating the medication and checking serum levels ap-
proximately 2–4 weeks after reaching the target dose is 
recommended. Surveillance of hematologic, renal, and 
hepatic function tests is recommended. EIASMs carry the 
highest risk of blood dyscrasias (eg, aplastic anemia). In 
gliomas, hematotoxicity is more common with concurrent 
temozolomide or PCV chemotherapy.87 Hyponatremia is a 
common side effect of oxcarbazepine, carbamazepine, and 
eslicarbazepine, with an increased risk in older patients.88 
Hepatotoxicity is common with carbamazepine, phenytoin, 

Antiseizure 
medication

Formula-
tion/ap-
proved for 
children

Primary 
mechanism 
of action

Most commonly re-
ported side effects

Serious side effects Reported effi-
cacy for use as 
monotherapy 
in TRE

Additional consider-
ations

Phenytoin Tablet, 
liquid, IV/
Yes

Na+ channel 
blocking

Transaminitis, rash/
SJS ataxia, dysar-
thria

Rash/TEN/SJS, 
hepatotoxicity, 
blood dyscra-
sias, gingival 
hyperplasia, 
lymphadenopathy, 
arrhythmias

12 mo seizure 
freedom: 
49–64%1

Enzyme-inducing 
agent
Increases steroid clear-
ance2

Risk of birth defects

Pregabalin Tablet, 
liquid/
Yes

Binding α2δ 
Ca channel 
subunit

Drowsiness, seda-
tion,
weight gain, blood 
dyscrasias

Peripheral edema, 
angioedema, 
hypersensitivity 
reactions

12 mo seizure 
freedom: 75%1

–

Primidone Tablet/
Yes

Enhancing 
GABA

N/A Hypersensitivity 
reaction, thrombo-
cytopenia, megalo-
blastic anemia

N/A Not recommended due 
to similar SEs as phe-
nobarbital and more 
difficult to monitor

Tiagabine Tablet/
Yes, >12 
years old

Enhancing 
GABA

Lightheadedness, 
fatigue, anxiety, 
tremor, diarrhea, de-
pression

CNS depression, 
rash

No studies Side effects are com-
monly reported

Topiramate Tablet, 
sprinkles/

Yes

Na+ channel 
blocking, 
enhancing 
GABA, 
AMPA an-
tagonism

Weight loss, word-
finding difficulty, psy-
chomotor slowing, 
metabolic acidosis, 
parasthesias, glau-
coma

Acute angle clo-
sure glaucoma, 
nephrolithiasis, 
rash/TEN/SJS, 
oligohydrosis with 
heat stroke

6 mo seizure 
freedom: 59%

12 mo seizure 
freedom: 
57–71%1

CYP3A4 inducer

Valproic acid Tablet, 
liquid, IV/
Yes > 10 
years old

Na+ channel 
blocking, 
enhancing 
GABA, 
blocking 
T-type Ca 
channels

Weight gain, hair 
loss, fatigue, 
hyperammonemia, 
transaminitis, tremor, 
thrombocytopenia, 
rash/SJS

Hyperammonemia, 
hepatotoxicity, 
rash/TEN/SJS 
thrombocytopenia

6 mo seizure 
freedom: 65%
6 mo seizure 
reduction≥50%: 
77%
12 mo seizure 
freedom: 
30–57%
12 mo sei-
zure reduc-
tion ≥ 50%: 
75–86%1

CYP2C9, UGT1A4 
inhibitor (and weak in-
hibitor of CYP2C19 and 
CYP3A4)
Significant risk of birth 
defects

Zonisamide Tablet/
Yes > 16 
years old

Na+ channel 
blocking,
blocking 
T-type Ca 
channels

Somnolence, weight 
loss, lightheaded-
ness, word-finding 
difficulty, renal cal-
culi, oligohydrosis, 
rash

Rash/TEN/
SJS, glaucoma, 
nephrolithiasis

No studies Avoid in patients 
with history of 
nephrolithiasis
Avoid in patients with 
sulfa allergies

Table 1. Continued
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and valproic acid. The combination of topiramate and val-
proic acid increases the risk of hyperammonemia.

Stevens Johnson Syndrome (SJS), a major complica-
tion of certain aromatic ASMs, can occur with lamotrigine, 
phenytoin, carbamazepine, oxcarbazepine, and phenobar-
bital. If SJS occurs, avoidance of other aromatic ASMs is 
recommended. All ASMs portend a risk of cutaneous ad-
verse drug reactions; for patients with sulfa allergies, 
zonisamide should be avoided due to cross-reactivity.

Cardiac side effects of ASMs are rare, although can 
be a potential side effect of all sodium channel blockers. 
Typically, an EKG is recommended prior to initiating 
lacosamide and repeated 1–2 weeks after the goal dose is 
reached to monitor for PR prolongation. Caution and po-
tential avoidance of sodium channel blockers in patients 
with a known underlying arrhythmia is recommended.

Patients with epilepsy frequently have mood disorders 
and some ASMs may affect the risk of depression and su-
icidal ideation. In patients with TRE, mood inventories 
should be assessed regularly, and transition to mood-
stabilizing or mood-neutral ASMs considered as needed.

Anti-Tumor Effects of Anti-Seizure 
Medications

In addition to their effects on controlling seizures, there 
has been longstanding interest in the potential antitumor 
effects of ASM.89 Initial focus centered on the potential 
antitumor effects of valproic acid (VPA). In a retrospec-
tive posthoc analysis of the European Organization for 
Research and Treatment of Cancer (EORTC) 26981–22981/
National Cancer Institute of Canada (NCIC) trial that demon-
strated the benefit of temozolomide in patients with newly 
diagnosed glioblastomas,90 patients who received VPA 
appeared to have increased survival from temozolomide 
and radiotherapy than patients receiving an EIAED only or 
patients not receiving any ASM.87 The mechanism was un-
clear but potentially related to the inhibitory effects of VPA 
on histone deacetylation or an effect of VPA in increasing 
temozolomide levels. This led to the suggestion that VPA 
may be preferred over an EIAED in patients with glioblas-
toma who require an ASM during temozolomide-based 
chemoradiotherapy. Another small retrospective study,91 
and a single-arm phase II trial with high dose VPA,92 also 
suggested a possible survival benefit of VPA in patients 
with glioblastomas. However, a subsequent pooled anal-
ysis of 1869 patients from four randomized clinical trials in 
newly diagnosed glioblastoma found that VPA use at the 
start of chemoradiotherapy was not associated with im-
proved progression-free survival (PFS) or overall survival 
(OS) compared with all other patients.93 Other studies also 
could not confirm a survival benefit with VPA.94

Levetiracetam is the most commonly used ASM for 
glioma patients. A number of retrospective and observa-
tional studies suggested that patients on levetiracetam 
may have improved outcomes compared to historic con-
trols.95–97 In addition, a recent single-arm prospective study 
of 73 patients treated with levetiracetam reported improved 
survival compared to external controls.98 However, a meta-
analysis of 5804 glioblastoma patients of which 1923 (33%) 

were treated with levetiracetam,99 including the study by 
Happold et al.93 failed to confirm that the drug increased 
survival. In the absence of definitive trials, it remains un-
clear whether levetiracetam has any antitumor effects. 
Levetiracetam does have antiemetic properties which may 
be a benefit to patients receiving temozolomide.100

Preclinical studies suggest that ASMs such as 
perampanel, which act via inhibition of AMPA receptors, 
may decrease glioma growth and have therapeutic poten-
tial.43,101 In a small study in which perampanel was used to 
control seizures in 12 glioma patients, there appeared to 
be a reduction in FLAIR signal in the majority of patients.102 
Another AMPA receptor inhibitor, talampanel failed to 
show a therapeutic benefit in both newly diagnosed103 
and recurrent glioblastoma patients.104 More definitive 
studies will be needed to evaluate the antitumor effect of 
perampanel in glioma patients.

There is currently insufficient data supporting the poten-
tial antitumor effects of any specific ASM. Further studies 
are warranted, especially related to ASMs that target 
neuronal-glioma interactions. Prospective studies dedi-
cated to dose finding and estimating risk-benefit ratios are 
required because all ASMs come with relevant adverse 
effects when approaching the upper dosing ranges, and 
long-term exposure is probably required.

ASM Prophylaxis

In the absence of seizures, there is insufficient high-quality 
evidence to support treatment with ASM.105 Nonetheless, 
about 70% of tumor neurosurgeons routinely provide 
a short course of ASMs after craniotomy for the primary 
prevention of postoperative seizures.106,107 The lack of clin-
ical equipoise in this context stems from the few under-
powered randomized controlled trials in seizure-naïve 
patients with brain tumors comparing post operative 
phenytoin or phenobarbital to placebo with variable study 
designs.105,108 While none of these trials individually dem-
onstrated a reduction in seizures with the use of ASM, in 
pooled meta-analysis, ASM treatment was associated 
with a decreased relative risk (RR 0.35, 95% CI 0.13–0.95) 
of early postoperative seizures, but not late seizures.108 
The use of newer ASMs perceived to have fewer adverse 
effects has also contributed to this practice. Currently, the 
most common protocol is to treat with levetiracetam for 7 
days after craniotomy and supratentorial tumor resection.

ASM Suggested Choices

Due to the high risk of seizure recurrence, it is recom-
mended to initiate ASM treatment as soon as possible 
in patients with a brain tumor who experience a first 
seizure. Monotherapy is preferred to reduce long-term 
adverse effects and achieve drug adherence. Among ex-
perts in the field of neuro-oncology, levetiracetam is usu-
ally a first choice as monotherapy.109 Lacosamide and 
brivaracetam can be considered equivalent first choices, 
although there is still limited evidence to support the 
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use of these third-generation ASMs as monotherapy in 
TRE. Lamotrigine could be an effective alternative option 
when slow titration is allowed, such as in patients with 
nondisabling focal seizures only or when there are no 
signs of tumor growth.

In patients with ongoing seizures, gradual dose escala-
tion to the maximum tolerated dose should be pursued. 
Persistent seizures despite optimizing monotherapy 
should prompt the addition of a second ASM. To ensure 
maximum effectiveness of dual therapy, it is recommended 
to combine ASMs with different mechanisms of action, 
such as levetiracetam together with either valproic acid, 
lacosamide, lamotrigine, or perampanel. Levetiracetam 
combined with valproic acid has shown a better efficacy 
compared to other duotherapy combinations with either 
levetiracetam or valproic acid.110 As add-on, lacosamide 
and lamotrigine showed comparable efficacy and tol-
erability in patients with glioma.111,112 Similar results 
were found in smaller studies regarding effectiveness 
of brivaracetam and perampanel as add-on therapy.71,113 
Other second-line drugs that can be considered as add-on 
treatment are topiramate, oxcarbazepine, and zonisamide.

Drug-resistant epilepsy is defined as “the failure of ad-
equate trials of two tolerated, appropriately chosen and 
used antiepileptic drug schedules (whether as mono-
therapies or in combination) to achieve sustained seizure 
freedom.”114 It is observed in approximately 40% of pa-
tients with low-grade glioma, compared to 10–15% of pa-
tients with glioblastoma.115 In patients with drug-resistant 

epilepsy, a critical review of ASM adherence is necessary. 
If other causes of treatment failure have been excluded, re-
placement of one ASM or ASM triple therapy are options 
depending on the level of seizure control and drug-related 
adverse effects. For example, the addition of a benzodiaze-
pine such as clobazam as a third ASM could be considered 
(Figure 4).116

Dexamethasone is frequently prescribed in brain tumor 
patients to reduce symptom burden, preferably at the 
lowest effective dose to avoid long-term adverse effects. 
Although corticosteroids may facilitate seizure control, 
it is not recommended as the primary treatment for TRE. 
Caution is advised when tapering dexamethasone, as it 
may induce seizure relapse, requiring an increase in ASM 
dose.117 Initiation of bevacizumab in recurrent glioblas-
toma for radiation necrosis may prevent a dose increase 
or addition of ASM in patients with recurrent seizures.118 
Systemic tumor-targeted treatment with temozolomide or 
bevacizumab in patients with stable disease should only 
be considered in carefully selected cases of drug-resistant 
epilepsy where different ASM polytherapy combinations 
have failed and surgery or local irradiation are not viable 
options.119

Due to a lack of high-quality evidence, there are no 
specific recommendations to guide ASM selection in 
subgroups of TRE such as patients with brain metas-
tases or meningioma. Similar to patients with a glioma, 
nonEIASMs are generally recommended.105 In the end-of-
life phase, when symptom burden increases, somnolence 

Glioma

Seizure

Recurrent event/Need
for rapid titration

• Levetiracetam (LEV)
• Lacoamide (LCM)
• Brivaracetam (BRV)

Single event only

• Lamotrigine (LTG)
• Oxcarbazepine (OXC)
• Levetiracetam (LEV)

Refractory: Dual Therapy

• LEV + Valproic Acid (VPA)
• Alternatives: LCM,  LTG,
BRV, Perampanel (PER)

Add-on

• Topiramate (TPM),
Zonisamide (ZNS),
Oxcarbazepine (OXC),
Cenobamate (CBM)

Adjunct

• Clobazam (CLB)
• Clonazepam (CLN)

Adjunct
• Clobazam (CLB)
• Clonazepam (CLN)

Figure 4. Proposed algorithm for ASM selection in glioma-related epilepsy. In polytherapy, ASMs with different mechanisms of action should be 
chosen to minimize adverse effects.

D
ow

nloaded from
 https://academ

ic.oup.com
/neuro-oncology/article/26/1/7/7271494 by Jacob H

eeren user on 24 January 2024



N
eu

ro-
O
n
colog

y
17Avila et al.: Brain tumor-related epilepsy management

or dysphagia may hamper adequate ASM intake. ASMs 
such as intranasal midazolam, buccal clonazepam, and 
oral concentrated lorazepam can be easily administered 
by the patient’s caregiver. Subcutaneous midazolam or 
levetiracetam are other suitable alternatives to oral ASM 
treatment in an out-of-hospital setting. The administration 
route of choice in the end-of-life phase will eventually de-
pend on the local availability of ASMs, the physician’s ex-
perience, and the place of care.120,121

There is limited evidence for the use of ASM in children 
with brain tumors and the management is generally sim-
ilar to other children with epilepsy. Many reports in this 
population do not specify the ASMs used. A recent on-
line survey revealed that only 18% of respondents would 
start an ASM after one seizure, whereas 94% would start 
an ASM after a second seizure; 84% chose levetiracetam 
as the first choice.10 We do not recommend waiting for a 
second seizure in children with brain tumors.

ASM Withdrawal

In patients who meet the ILAE criteria for epilepsy,15 pro-
longed treatment with ASM is indicated. This is particularly 
true for late postoperative seizures (>1 week after surgery) 
or recurrent seizures after completion of tumor therapy, for 
whom indefinite treatment is typically recommended.

A role for ASM tapering and withdrawal may be con-
sidered in select cases. Achieving at least 1–2 years of 
seizure freedom, similar to patients without TRE,122 is an ap-
propriate criterion, although no evidence exists for optimal 
seizure-free periods in this population. Common reasons 
to consider ASM withdrawal include patient preference, 
fatigue, cognitive side effects, and polypharmacy. Several 
postsurgical studies support this approach in patients with 
preoperative TRE. Positive indicators for postoperative sei-
zure freedom include a gross total resection, a short history 
of preoperative epilepsy, and completion of tumor-directed 
treatment with stable brain imaging.123,124 A meta-analysis 
involving 773 patients with low-grade gliomas and preop-
erative epilepsy with at least 6-month follow-up revealed 
an overall rate of postoperative seizure freedom in 71% of 
patients.123 Similarly, the 2-year postoperative seizure-free 
rate for patients with epilepsy-associated neuroepithelial 
tumors (n = 1325) in the European Epilepsy Brain Bank 
consortium was 77.5%, with 47% of those with long-term 
follow-up data having discontinued ASM at 5 years.125

If considered, ASM withdrawal requires shared deci-
sion-making between the patient and physician. If avail-
able, consultation from an epileptologist may be beneficial. 
Discussions should consider tumor pathology, prognosis, 
treatment, prior duration and associated disability of the 
patient’s epilepsy, current functional status, adverse effects 
of ASM, and driving restrictions. In the US, EEG is often 
used to guide ASM withdrawal. A meta-analysis across 
a range of epilepsy syndromes found that epileptiform 
EEG abnormalities during ASM withdrawal were associ-
ated with increased risk of seizure recurrence,126 however 
more data is needed for all epilepsy types, including TRE, 
regarding the timing and duration of EEG to guide ASM 
withdrawal.

In a prospective study of 71 patients with WHO grades 
2–3 gliomas who were seizure-free for at least 1 year on 
ASMs, a shared decision-making process led to withdrawal 
of ASM in 65%, of whom 26% had seizure recurrence 
during follow-up compared to 8% who were continued on 
ASM.127 About half of patients with seizure recurrence had 
tumor progression. In a retrospective analysis of 169 pa-
tients with surgically treated meningiomas or low-grade 
gliomas, ASMs were withdrawn or never started in 66%, of 
whom 9.9% had seizure recurrence.128 The strongest inde-
pendent predictor of seizure recurrence was the decision 
to continue ASM in the meningioma subset, indicating 
the importance of clinical judgment and consideration of 
patient-specific risk factors.

For other scenarios in TRE, there is minimal evidence to 
guide ASM withdrawal, including the prognostic indica-
tors or optimal duration of ASM treatment. These scenarios 
include seizures in the early postoperative period (within 
1 week after surgery) and patients with noninfiltrating or 
extra-axial tumors who have a single preoperative seizure 
and undergo gross total resection. In these cases, the au-
thors’ practice is to extrapolate from data in acute symp-
tomatic seizures of other etiologies that support a shorter 
course of ASM,129 with ranges up to 1 year determined by 
the treating physician’s clinical judgment and shared deci-
sion-making to review the risks, benefits, and rationale for 
a trial of ASM withdrawal.

Together, these data indicate that in appropriately chosen 
patients who are felt to be at low risk for seizure recurrence 
and who elect to trial withdrawal of ASM, the majority will 
remain seizure-free. However, in patients with residual or 
progressive disease and/or seizures after tumor-targeted 
treatment, ASM should be continued indefinitely.

Neurostimulation

Neuromodulation therapies are used for the adjunc-
tive treatment of drug-resistant epilepsy and involve 
the chronic implantation of a neurostimulator device.130 
Currently approved modalities include vagus nerve stim-
ulation (VNS), open-loop deep brain stimulation (DBS), 
and on-demand/closed-loop responsive neurostimulation 
(RNS). While many patients experience a reduction in sei-
zure frequency with these approaches, it typically requires 
multiple years to achieve maximal efficacy, and complete 
seizure control is uncommon. Registry and prospective 
long-term follow-up data suggest improved outcomes the 
longer VNS, RNS, and DBS are in place.131–133 The latest 
models have MRI compatibility up to 3T for VNS/DBS and 
1.5T for RNS, however require specialized programming at 
the time of each scan, and in the case of RNS and DBS, the 
device limits imaging interpretation adjacent to the battery 
and strip or depth electrodes. For these reasons, RNS is 
generally not considered a treatment option for adults with 
WHO grade 2, 3, or 4 infiltrating tumors. Given the intracra-
nial targeting for RNS and DBS, there is also a hypothetical 
risk of tumor cell seeding along the electrode tracts.134

Accordingly, little data exists in the brain tumor popula-
tion, and neuromodulation is generally not appropriate for 
patients who require ongoing surveillance imaging or in 
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whom future tumor surgery may be indicated. Data derived 
from the VNS Therapy Patient Outcome Registry showed 
improved seizure control in patients with brain tumors at 
3 months, with further improvement at 24 months, compa-
rable to those without brain tumors.135 Other reports indi-
cate a better response to VNS in patients with stable tumors 
compared to those with tumor progression.136 Evidence 
supporting RNS and DBS specifically in the brain tumor 
population is lacking, although in a small case series with 
tuberous sclerosis complex RNS was safe and effective 
with a 58% median reduction of disabling seizures at 12 
months and 88% at the last follow-up.137 At this time, we 
reserve consideration for neuromodulation to patients with 
remote tumors who achieved gross total resection and are 
no longer undergoing regular tumor surveillance, or have 
demonstrated prolonged tumor stability, yet who have fre-
quent disabling seizures despite multiple trials of ASMs.

Surgery

Surgical excision of the tumor is the most effective treat-
ment strategy for managing most patients with TRE and 
is associated with improved overall survival.7 When com-
pared with subtotal resection, gross-total resection (GTR) 
is most predictive of postoperative seizure freedom across 
a range of pathologies including gliomas, metastases, and 
meningiomas.138 However, ~20% of LEAT and ~40% of low-
grade glioma patients have persistent seizures following 
maximal resection.125

Intraoperative electrocorticography (iECoG) is an 
electrophysiologic means to delineate epileptogenicity 
in patients with TRE. It is designed to aid surgical resec-
tion and improve seizure outcomes.139 Although the use 
of iECoG has conflicting results in the general surgical 
epilepsy population,140,141 iECoG significantly improves 
seizure-free rates in glioma patients.142 One meta-analysis 
of 1115 patients with drug-resistant TRE involving low-
grade neoplasms, found iECoG-guided resection led to 
greater postoperative seizure freedom compared with 
lesionectomy alone.143 iECoG recording technique, elec-
trode type, and placement varies and may impact the 
location, morphology, and distribution of epileptiform ab-
normalities.144,145 Therefore, individualizing iECoG to en-
sure adequate recording time, appropriate electrode usage, 
and biomarkers by covering both tumor and peritumoral 
tissue favor improved postoperative outcomes.141

When patients with TRE should undergo surgical implan-
tation with subdural or stereotactic depth (SEEG) electrodes 
to better determine the seizure onset zone remains unclear 
and varies considerably between centers. The increasing 
use of SEEG, which is less invasive and safer than subdural 
electrodes, is generating considerable interest in the use of 
“epilepsy surgery” to improve seizure outcomes in TRE.

Radiotherapy

The frequency of seizures in patients with gliomas may be 
reduced by both radiotherapy and chemotherapy.146,147 
Few studies have analyzed the impact of radiotherapy on 

TRE. Stereotactic interstitial irradiation was reported to 
improve seizure control in 40–100% of unresectable low-
grade gliomas,58,148 and attributed to increased benzodi-
azepine receptor density. Gamma-knife radiosurgery for 
mesiotemporal TRE, aiming to irradiate the presumed 
peritumoral epileptic foci, has been effective.149 Conformal 
external radiotherapy achieved seizure control in 75–100% 
of patients with medically intractable epilepsy and low-grade 
gliomas.147,150 Both after interstitial and conformal external 
radiotherapy of low-grade gliomas, seizure reduction may 
begin early during treatment, even with stable disease on 
MRI. For example, among patients who had a significant re-
duction in seizures after radiotherapy, 25-68% had stable dis-
ease.147,150 Thus, in addition to a reduction of tumor burden, 
the effects of ionizing radiation on seizure control suggest 
damage to epileptogenic neurons in the peritumoral tissue 
or metabolic changes in the microenvironment.150 An indi-
rect suggestion of the efficacy of conformal radiotherapy on 
seizures comes from the EORTC 22845 phase III trial, which 
compared adjuvant postoperative radiotherapy versus ob-
servation in low-grade gliomas; at 1 year, 25% of irradiated 
patients had seizures compared to 41% of those untreated.151

The impact of radiotherapy on seizure control in brain 
metastases152,153 and in meningiomas154 has not yet been 
investigated. Conversely, seizures may represent an ad-
verse event following stereotactic radiosurgery for brain 
metastases. A recent large retrospective study has re-
ported an 8–12% risk of seizures within 3 months of treat-
ment, with total irradiated volume and pretreatment 
neurological symptoms as the major risk factors.155

Chemotherapy

Chemotherapy with alkylating agents in low-grade gliomas 
has been associated with improved seizure control.146,156,157 
Seizure reduction has been reported in 13–60% of patients 
treated with PCV and 13–50% treated with temozolomide. 
The reduction of seizures may be evident early within the 
first months of treatment and is attributable to decreased 
infiltration of tumor cells at the periphery.158 Similar to 
radiotherapy, seizure reduction after chemotherapy may 
occur also in association with a stable disease on MRI. The 
rate of seizure freedom at 12 months seems higher than 
that observed after radiotherapy. Temozolomide in associ-
ation with hypofractionated radiotherapy has a modest ef-
ficacy in seizure control compared to radiotherapy alone in 
elderly patients with glioblastoma.159 Thus far, there are no 
data on the effects of chemotherapeutics on seizures from 
brain metastases.

Targeted Therapy

Common pathways of tumor growth and epileptogenesis 
exist and may be successfully targeted with specific in-
hibitors. The best example is everolimus which targets the 
hyperactive mTOR pathway in subependymal giant cells 
astrocytomas of tuberous sclerosis, leading to control of 
both tumor growth and seizures.160,161
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Another potential approach being investigated is the 
targeting of IDH1/2 mutations with specific inhibitors 
(ivosidenib, vorasidenib). Despite increasing knowledge 
of basic mechanisms underlying the relationship between 
IDH mutations and seizures, clinical data supporting the 
use of IDH inhibitors for seizure control are scarce and lim-
ited to a case report.162 The phase 3 INDIGO trial compared 
the use of an IDH1/2 inhibitor (vorasidenib) versus placebo 
in grade 2 gliomas with a residual or recurrent tumor after 
surgery. In this trial, seizure control has been included as 
a secondary endpoint, which may add new insights con-
cerning the potential impact of IDH inhibitors on seizures.

Future Directions

The incorporation of seizure outcome metrics into neuro-
oncology trials is necessary to advance management 
strategies and clinical outcomes in TRE. As biomarker, sei-
zure frequency during and after tumor therapy should be 
tracked,163 however requires accurate seizure reporting. 
The development of novel seizure detection technologies 
may aid in the identification of seizures. For example, non-
invasive wearables to detect peri-ictal physiologic param-
eters and chronically implanted EEG electrodes have 
shown promise in select epilepsy cohorts and may com-
plement patient/caregiver seizure logs.164,165

Many studies of TRE to date focus on seizures around the 
time of tumor diagnosis, and electrophysiologic data to 
complement the epilepsy phenotype are lacking in neuro-
oncology cohorts. Therefore, the definitions of tumor-
related hyperexcitability are widely variable, and it is likely 
that multiple mechanisms and risk factors contribute to 
seizures at different times over the course of treatment 
and progression. The development and standardization of 
noninvasive hyperexcitability measures will offer greater 
prognostic value, as suggested by selected reports of EEG 
and magnetoencephalographic hyperexcitability associ-
ated with survival outcomes in patients with glioma,166–168 
although further validation is warranted.169

NonEIASMs are central to the management of TRE, 
however minimal high-quality evidence exists to sup-
port the use of one drug over another. Randomized con-
trolled trials with comprehensive epilepsy phenotyping 
are needed to optimize the standard of care (NCT01432171, 
NCT03048084). Additionally, controlled trials to determine 
the optimal dosage of ASMs, approach to monotherapy vs. 
polytherapy, duration of treatment, and protocols for ASM 
withdrawal are necessary. With mechanistic and pharma-
cologic advances, targeting common pathways of tumor 
growth and epileptogenesis will hopefully improve quality 
of life and neurocognitive functions in addition to survival 
outcomes.153,170

Conclusion

Seizures occur frequently in patients with brain tumors; 
however, the underlying mechanisms remain incom-
pletely understood. Recent evidence indicates a complex 

interplay within the tumor microenvironment with con-
verging molecular and physiologic pathways for tumor 
growth and epileptogenesis. These relationships highlight 
the importance of tracking seizure outcomes concurrently 
with tumor surveillance in clinical practice and in con-
trolled trials. Seizure management relies primarily on the 
use of nonenzyme-inducing ASMs with careful considera-
tion of tumor stability and tumor-directed therapy. As such, 
a multidisciplinary team is recommended for the optimal 
management of seizures from the diagnostic approach 
to the personalization of therapeutic options. Achieving a 
balance between maximal seizure control and minimal ad-
verse effects of ASM is necessary to optimize quality of life. 
Further advances in identifying seizure-related biomarkers 
and mechanisms across tumor pathologies will facilitate 
targeted treatment strategies impacting both oncologic 
and epilepsy outcomes.
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