
Knowledge extraction in the quantum random-oracle model
Don, J.W.

Citation
Don, J. W. (2024, January 23). Knowledge extraction in the quantum random-
oracle model. Retrieved from https://hdl.handle.net/1887/3714359

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3714359

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3714359

Chapter 5

Efficient NIZKs and Signatures from
Commit-and-Open Protocols

5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

Chapter contents
5.1 Introduction . 155
5.2 Preliminaries . 161

5.2.1 The Compressed Oracle — Seen as Quantum Lazy Sampling 162
5.2.2 The Quantum Transition Capacity and Its Relevance 164
5.2.3 An Improved Variant of Zhandry’s Lemma 167

5.3 Some Background on (Non-)Interactive Proofs 170
5.3.1 Non-interactive Proofs and Online Extractability 170
5.3.2 S-soundness of C&O Σ-Protocols . 171
5.3.3 The Fiat-Shamir Transformation of (C&O) Σ-Protocols . . . 173

5.4 Online Extractability of the FS-Transformation:
The Case of Ordinary C&O Protocols . 174
5.4.1 Technical Preface . 175
5.4.2 Online Extractability of the Fiat-Shamir Transformation . . 179
5.4.3 The Unruh-Transformation with a Compressing Hash

Function . 181
5.5 Online Extractability of the FS-Transformation: The Case of

Merkle-tree-based C&O Protocols . 184
5.5.1 Merkle-tree-based C&O Protocols . 185
5.5.2 Online Extractability of the Fiat-Shamir Transformation . . 187
5.5.3 Discussion: Application to Picnic, and Limiting the

Proof Size . 193
5.5.4 The Merkle-Tree-Based Unruh Transformation 195

Bibliography . 196
Samenvatting . 209
Acknowledgements . 211
Curriculum Vitae . 213

154

5.1. Introduction

Section 5.1
Introduction

Some interactive proofs come with amazing properties like zero-knowledge,
which intuitively allows a prover to convince a verifier that she knows the
witness to an NP-statement without giving away any information about this
witness. Such zero-knowledge proofs of knowledge are some of the most fascinat-
ing objects in cryptography, and possibly in all of theoretical computer science.
One might suspect that their “magic” is rooted in the fact that the prover and
verifier run an interactive protocol with each other, and that this interaction
causes the verifier to be convinced. Surprisingly, if the interactive proof is of
suitable form, e.g. a Σ-protocol (a 3-round public-coin protocol, Section 2.2.1),
the Fiat-Shamir transformation [FS87] (Section 2.2.3) provides a natural way
to remove the interaction from such protocols while preserving (most of) the
security properties, resulting in non-interactive zero-knowledge proofs (NIZKs).
The idea is to compute the challenge c as a hash c = H(a) of the first message,
rather than letting the verifier choose c. If the original Σ-protocol has additional
soundness properties, the resulting NIZK after the Fiat-Shamir transformation
is ideally suited to be turned into a digital-signature scheme, simply by hashing
the message m to be signed together with the first message a in order to ob-
tain the challenge c. The (former) candidates Picnic [CDG+17] and Dilithium
[DKL+18b] in the NIST post-quantum cryptography competition follow this
design paradigm.

This intuitive preservation of security properties under the Fiat-Shamir
transformation can be formalized in the random-oracle model (ROM), where
the hash function H is treated as a uniformly random function, and the security
reduction gets enhanced access to anybody who queries the random oracle, by
seeing which values are queried, and by possibly returning (random-looking)
outputs. While this situation is conveniently easy to handle in a non-quantum
world, complications arise in the context of post-quantum security. When study-
ing the security of these non-quantum protocols against attackers equipped with
large-enough quantum computers, it is natural to assume that such attackers
have access to the public description of the employed hash function, and can
therefore compute it in superposition on their quantum computers. Therefore,
the proper notion of post-quantum security for random oracles is the quantum-
accessible random-oracle model (QROM) as introduced in [BDF+11]. Due to
the difficulty of recording adversarial random-oracle queries in superposition

155

5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

(explained in more detail in Section 1.1.3), establishing post-quantum security
in the QROM has turned out to be quite a bit more difficult compared to the
regular ROM.

Previous results in [DFMS19] (Chapter 3) (and concurrently in [LZ19b]) es-
tablish that for any interactive Σ-protocol Π that is a proof of knowledge, the
non-interactive FS[Π] is a proof of knowledge in the QROM. [DFM20] simpli-
fied the technical proof and extended these results to multi-round interactive
proofs (Section 3.5). However, the most desirable property from such a proof of
knowledge is online extractability. Indeed, online extractability avoids rewind-
ing, which typically causes a significant loss in the security reduction (see later
for a comparison) and has other disadvantages. Thus, online extractability al-
lows for the tightest security reductions.

Chailloux was the first to aim for showing online extractability of the Fiat-
Shamir transformation in the QROM when considering the relevant class of
commit-and-open (C&O) Σ-protocols and modelling the hash function used for
the commitments (and for computing the challenge) as a random oracle. In-
deed, the Fiat-Shamir transformation of such C&O Σ-protocols are known to
be online extractable in the classical ROM (see e.g. discussion in [Fis05]). In a
first attempt [Cha19], Chailloux tried to lift the argument to the quantum set-
ting by means of Zhandry’s compressed-oracle technique [Zha19a] (Section 2.4),
which offers a powerful approach for re-establishing ROM results in the QROM,
that has been successful in many instances. Unfortunately, this first attempt
contained a subtle flaw, which turned out to be unfixable, and despite changing
the technical approach, the latest version [Cha21] of this work still contains a
gap in the proof, which is put as an assumption.1

In Chapter 4 we established online extractability of interactive C&O Σ-
protocols Π in the QROM; the result applies as soon as Π satisfies some lib-
eral notion of special soundness, which is typically satisfied. As pointed out
in Section 4.5.5, one can use previous results from [DFMS19; LZ19a; DFM20]
to reduce the extractability of the resulting non-interactive protocol FS[Π] to
1 Informally, quoting from [Cha21], the considered Assumption 2 is that the random oracle

can be replaced with a random function of a particular form “without harming too much
the studied scheme”. More formally, the security loss caused by the considered replacement
is assumed to remain bounded by a given function of the number of oracle queries. This
assumption is rather ad-hoc and non-standard in that it is very much tailored to the
scheme and its proof. Furthermore, even though Assumption 2 is an assumption that could
potentially be proven in future work, it is hard to judge whether proving the assumption
is actually any easier than proving the security of the considered scheme directly, avoiding
Assumption 2—as a matter of fact, in this work we show that the latter is feasible, while
Assumption 2 remains open.

156

5.1. Introduction

the extractability of the interactive protocol Π. However, the resulting extrac-
tion error still scales as O(ε/q2), which results in a prohibitive loss for digital-
signature schemes (see Table 1), leaving open the main question originally posed
by Chailloux:

How to establish tight security reductions of the Fiat-Shamir transfor-
mation for commit-and-open Σ-protocols in the QROM?

As the technical quantum details of Zhandry’s compressed-oracle technique are
rather complicated and only accessible for experts, a recent article by Chung,
Fehr, Huang and Liao [CFHL21] attempts to give a comprehensive exposition
of Zhandry’s technique. In addition, they establish a framework that allows re-
searchers without extensive quantum knowledge to still deploy the compressed-
oracle technique (in certain cases), basically by reasoning about classical quanti-
ties only. In short, the punchline of [CFHL21] is that, if applicable, one can prove
quantum query complexity lower bounds (think of collision finding, for instance)
by means of the following recipe, which is an abstraction of the technique devel-
oped in a line of works started by Zhandry [Zha19a; LZ19a; CGLQ20; HM21].
First, one considers the corresponding classical query complexity problem, an-
alyzing it by simulating the random oracle using lazy sampling and showing
that the database, which keeps track of the oracle queries and the responses, is
unlikely to satisfy a certain property (e.g. to contain a collision) after a bounded
number of queries. Then, one lifts the analysis to the quantum setting by plug-
ging certain key observations from the classical analysis into generic theorems
provided by the [CFHL21] framework.

Contributions. In this chapter, we extend the framework from [CFHL21],
and use it in a conceptually new way to establish strong and tight security
statements for a large, popular class of non-interactive zero-knowledge proofs
and digital signature schemes. In broad strokes, our contributions are threefold.

Online extractability for a class of NIZKs in the QROM. We prove on-
line extractability of the Fiat-Shamir transformation in the QROM for (a large
class of) C&O Σ-protocols. This solves the problem considered and attacked
by Chailloux. In more detail, we prove that if the considered C&O Σ-protocol
satisfies some very liberal notion of special soundness, then the resulting NIZK
is a proof of knowledge with online extractability in the QROM, i.e., when the
hash function used for the commitments and the Fiat-Shamir transformation
is modeled as a quantum-accessible random oracle.

157

5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

Our security reduction is tight: Whenever a prover outputs a valid proof,
the online-extractor succeeds, except with a small probability accounting for
collision and preimage attacks on the involved hash functions. For previous re-
ductions, the guaranteed extraction success probability was at least by a factor
of q2 smaller than the succes probability of the prover subjected to extraction
(see Table 1). This is our main technical contribution, see Theorem 5.17. Our
result also applies to a variant of the Fiat-Shamir transformation where a digi-
tal signature scheme (DSS) is constructed. It thereby, for the first time, enables
a multiplicatively tight security reduction for, e.g., DSS based on the MPC-in-
the-head paradigm [IKOS07a], like Picnic [CDG+17], Banquet [BSK+21] and
Rainier [DKR+21], in the QROM.

A more efficient Unruh transformation. When a Σ-protocol does not have
the mentioned C&O structure, a non-interactive proof of knowledge with online
extractability in the QROM can be obtained using the Unruh transformation
[Unr15b]. For technical reasons, the Unruh transformation requires the hash
function to be length preserving, which may result in large commitments, and
thus large NIZKs and digital signature schemes. We revisit this transformation
and show, by a rather direct application of our main result above, that the online
extractability of the Unruh transform still holds when using a compressing
hash function. The crucial observation is that the Unruh transformation can be
viewed as the composition of a pre-Unruh transformation, which makes use of
hash-based commitments and results in a C&O protocol, and the Fiat-Shamir
transformation. By applying our security reduction, we obtain the tight online
extractability without requiring the hash function to be length preserving.

More efficient NIZKs via Merkle tree based commitments. In real-
world constructions based on C&O protocols, like e.g., the Picnic digital signa-
ture scheme, commitments and their openings are responsible for a significant
fraction of the signature/proof size. For certain parameters, this cost can be
reduced by using a collective commitment mechanism based on Merkle trees.
This was observed in passing, e.g. in [Fis05], and is exploited in the most recent
versions of Picnic. We formalize Merkle-tree-based C&O protocols and extend
our main result to NIZKs constructed from them (see Theorem 5.23). Applica-
tions of this result include a security reduction of Picnic 3, the newest version
of the Picnic digital signature scheme, that is significantly tighter than existing
ones: An adversary against the Picnic 3 signature scheme in the QROM with
success probability ε can now be used to break the underlying hard problem

158

5.1. Introduction

with probability ε, up to some additive error terms, while previous reductions
yielded at most ε5/q10, where q is the number of random oracle queries. We
outline this reduction in Section 5.5.3.

We compare our reductions in detail to existing techniques in Table 1.

2-s⇒PoK PoKFS⇒NIZK-PoK,
PoKFS⇒UF-NMA DSS

2-sFS⇒NIZK-PoK,
2-sFS⇒UF-NMA DSS

Unruh rewinding [Unr12]
+ generic FS [DFMS19] O(ε3) O(ε/q2) O(ε3/q6)

Σ-protocol OE [DFMS22a]
+ generic FS [DFMS19] ε− g(q, r, n) O(ε/q2) O(ε/q2)− g(q, r, n)

this work:
NIZK OE - - ε − h(q, r, n)

Table 1. Comparison of the losses of different reductions for the construction of a NIZK
proof of knowledge (NIZK-PoK) from a special-sound (Merkle tree based) C&O protocol
with constant challenge space size C using r-fold parallel repetition and the Fiat-Shamir
transformation. “OE” stands for online extraction, 2-s for special soundness, UF-NMA for
plain unforgeability and DSS for digital signature scheme. If the content of a cell in row
“security property A ⇒ security property B” is f(ε), this means that an adversary breaking
property B with probability ε yields an adversary breaking property A with probabilty f(ε).
Grey text indicates results that do not apply to Merkle-tree-based C&O protocols like the
one used to construct the digital signature schemes Picnic 2 [CDG+20] and Picnic 3 [KZ20].
The additive error terms are g(q, r, n) = C−r + O(rq2−n/2) + O(q32−n) and h(q, r, n) =
O(q32−n) + O(q2C−r), where n is the output length of the random oracles, and q is the
number of adversarial (quantum) queries to the random oracle. Finally, we note that the
constants hidden by the big-O in h(q, r, n) are reasonable, see Theorems 5.17 and 5.23.

Technical Overview. Our starting point is the fact that the compressed-
oracle technique (Section 2.4) can be appreciated as a variant of the classical
lazy-sampling technique that is applicable in the QROM. Namely, to some
extent and informally described here, the compressed-oracle technique gives
access to a database that contains the hash values that the adversary A, who has
interacted with the random oracle (RO), may know. In particular, up to a small
error, for any claimed-to-be hash value y output by A, one can find its preimage
x by inspecting the database (and one can safely conclude that A does not know
a preimage of y if there is none in the database). Recalling that a C&O Σ-
protocol Π (formally defined in Section 2.2.1) is an interactive proof where the
first message consists of hash-based commitments, and exploiting that typically
some sort of special soundness property ensures that knowing sufficiently many

159

5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

preimages of these commitments/hashes allows one to efficiently compute a
witness, constructing an online extractor for the Fiat-Shamir transformation
FS[Π] then appears straightforward: The extractor E simply runs the (possibly
dishonest) prover P ∗, answering random oracle queries using the compressed
oracle. Once P ∗ has finished and outputs a proof, E measures the compressed-
oracle database and classically reads off any preimages of the commitments
in the proof. Finally, E runs the special soundness extractor that computes
a witness from the obtained preimages. It is, however, not obvious that the
database contains the preimages of the commitments that are not opened in
the proof, or that these preimages are correctly formed. Intuitively this should
be the case: the random oracle used for the Fiat-Shamir transformation replaces
interaction in that it forces the prover to choose a full set of commitments before
knowing which ones need to be opened. The crux lies in replacing this intuition
by a rigorous proof.

The main insight leading to our proof is that the event that needs to be con-
trolled, namely that the prover succeeds yet the extractor fails, can be translated
into a property SUC (as in “adversarial SUCcess”) of the compressed-oracle
database, which needs to be satisfied for the event to hold. It is somewhat of
a peculiar property though. The database properties that have led to query
complexity lower bounds in prior work, e.g. for (multi-)collision finding [LZ19a;
HM21; CFHL21] and similar problems [Zha19a; CGLQ20; BLZ21], require the
database to contain some particular input-output pairs (e.g. pairs that collide),
while the database property SUC additionally forbids certain input-output pairs
to be contained.

Indeed, the framework from [CFHL21] is almost expressive enough to treat
our problem. So, after a mild extension, we can apply it to prove that it is
hard for any query algorithm to cause the compressed-oracle database to have
property SUC. Analyzing the relevant classical statistical properties of SUC is
somewhat tedious but can be done (see the proof of Lemma 5.22). The resulting
bound on the probability for the database to satisfy SUC then gives us a bound
on the probability of the event that the prover succeeds in producing a valid
proof while at the same time fooling the extractor.

Whenever it is advantageous for communication complexity, a Merkle tree
can be used to collectively commit to all required messages in a C&O proto-
col. This collective commitment is one of the optimizations that improve the
performance of, e.g. Picnic 2 [CDG+20] over Picnic [CDG+17]. As the above-
described argument for the extractability of C&O protocols already analyses
iterated hashing (the hash-based commitments are hashed to compute the chal-

160

5.2. Preliminaries

lenge), it generalizes to Merkle-tree-based C&O protocols without too much
effort. We present this generalization in Section 5.5, and obtain similar bounds
(see Theorem 5.23).

Additional Related Work. Besides the already mentioned work above, we
note that Chiesa, Manohar and Spooner [CMS19] consider and prove security of
various SNARG constructions, while we consider the Fiat-Shamir transforma-
tion of C&O protocols with a form of special soundness. Similar to [CFHL21],
they also provide some tools for deducing security of certain oracle games
against quantum attacks by bounding a natural classical variant of the game.

Section 5.2

Preliminaries

Our main technical proofs rely on the recently introduced framework by Chung,
Fehr, Huang, and Liao [CFHL21] for proving query complexity bounds in the
QROM. This framework exploits Zhandry’s compressed-oracle technique but
abstracts away all the quantum aspects, so that the reasoning becomes purely
classical. We give here an introduction to a simplified, and slightly adjusted
version that does not consider parallel queries. We start with recalling (a par-
ticular view on) the compressed oracle. Along the way, we also give an improved
version of Zhandry’s central lemma for the compressed oracle.

Before getting into this, we fix the following standard notation. For any
positive integer ℓ > 0, we set [ℓ] := {1, 2, . . . , ℓ}, and we let 2[ℓ] denote the
power set of [ℓ], i.e., the set of all subsets of [ℓ]. We write {0, 1}≤ℓ for the set
of bit strings of size at most ℓ, including the empty string denoted ∅; similarly
for {0, 1}<ℓ. Concatenation of two bit strings v ∈ {0, 1}m and w ∈ {0, 1}n is
denoted by v∥w ∈ {0, 1}m+n. For any finite non-empty set Z, C[Z] denotes the
Hilbert space C|Z| together with a basis {|z⟩} labeled by the elements z ∈ Z.

Finally, we consider a hash function H : X → Y , to be modeled as a random
oracle. For concreteness and simplicity, we assume that all relevant variables are
encoded as bit strings, and that we can therefore choose H : {0, 1}≤B → {0, 1}n
for sufficiently large B and n.2

2 B and n may depend on the security parameter λ ∈ N. We will then assume that B and
n can be computed from λ in polynomial time (in λ).

161

5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

5.2.1 The Compressed Oracle —Seen as Quantum Lazy Sam-
pling

The compressed oracle technique was formally introduced in Section 2.4. In the
current chapter we use slightly different notation in order to better connect
with [CFHL21], whose framework we build upon. For purposes of exposition it
will also be useful to approach the technique explicitly from the perspective of
(quantum) lazy sampling. In this section we give a self-contained introduction
of the technique in the form that we will need it later on.

With the goal to analyze oracle algorithms that interact with a random
oracle H : X → Y , consider the set D of all functions D : X → Y ∪ {⊥}, where
⊥ is a special symbol. Such a function is referred to as a database. Later, we
will fix X = {0, 1}≤B and Y = {0, 1}n. For D ∈ D, x ∈ X and y ∈ Y ∪ {⊥},
D[x 7→y] denotes the database that maps x to y and otherwise coincides with
D, i.e., D[x 7→y](x) = y and D[x 7→y](x̄) = D(x̄) for all x̄ ∈ X \ {x}.

Following the exposition of [CFHL21], the compressed-oracle technique is a
quantum analogue of the classical lazy-sampling technique, commonly used to
analyze algorithms in the classical ROM. In the classical lazy-sampling tech-
nique, the (simulated) random oracle starts off with the empty database, i.e.,
with D0 = ⊥, which maps any x ∈ X to ⊥. Then, recursively, upon a query x,
the current database Di is updated to Di+1 := Di if Di(x) ̸= ⊥, and to
Di+1 := Di[x 7→ y] for a randomly chosen y ∈ Y otherwise. This construc-
tion ensures that |{x |Di(x) ̸= ⊥}| ≤ i; after i queries thus, using standard
sparse-encoding techniques, the database Di can be efficiently represented and
updated.

In the compressed-oracle quantum analogue of this lazy-sampling technique,
the (simulated) random oracle also starts off with the empty database, but now
considered as a quantum state |⊥⟩ in the |D|-dimensional state space C[D],
and after i queries the state of the compressed oracle is then supported by
databases |Di⟩ for which |{x |Di(x)=⊥}| ≤ i.3 Here, the update is given by a
unitary operator cO acting on C[X] ⊗ C[Y] ⊗ C[D], i.e., on the query register,
the response register, and the state of the compressed oracle. With respect to
the computational basis {|x⟩} of C[X] and the Fourier basis {|ŷ⟩} of C[Y], cO
is a control unitary, i.e., of the form cO =

P
x,ŷ |x⟩⟨x| ⊗ |ŷ⟩⟨ŷ| ⊗ cOx,ŷ, where

cOx,ŷ is a unitary on C[Y ∪ {⊥}], which in the above expression is understood
to act on the register that carries the value of the database at the point x. More
3 This means that the density operator that describes the state of the compressed oracle has

its support contained in the span of these |Di⟩.

162

5.2. Preliminaries

formally, cOx,ŷ acts on register Rx when identifying C[D] with
N

x∈X C[Y∪{⊥}]
by means of the isomorphism |D⟩ 7→N

x∈X |D(x)⟩Rx . We refer to Lemma 4.3
in the full version of [CFHL21] for the full specification of cOx,ŷ; it is not really
relevant here.

The compressed oracle is tightly related to the purified oracle, which initiates
its internal state with a uniform superposition

P
h |H⟩ ∈ C[D] of all functions

H : X → Y , and then answers queries “in superposition”. Indeed, at any point
in time during the interaction with an oracle quantum algorithm A, the joint
state of A and the compressed oracle coincides with the joint state of A and
the purified oracle after “compressing” the latter.4 Formally, identifying C[D]
with

N
x∈X C[Y∪{⊥}] again, the compression of the state of the purified oracle

works by applying the unitary Comp to each register Rx, where

Comp : |y⟩ 7→ (|y⟩+ 1p
|Y|

(|⊥⟩ − |0̂⟩)

for any y ∈ Y, and Comp : |⊥⟩ 7→ |0̂⟩. Here, |0̂⟩ is the 0̂-vector from the Fourier
basis {|ŷ⟩} of C[Y].

Similarly to the classical case, by exploiting a quantum version of the sparse-
encoding technique, both the internal state of the compressed oracle and the
evolution cO can be efficiently computed. Furthermore, for any classical func-
tion f : D → T that can be efficiently computed when given the sparse rep-
resentation of D ∈ D, the corresponding quantum measurement given by the
projections Pt =

P
D:f(D)=t |D⟩⟨D| can be efficiently performed when given the

sparse representation of the internal state of the compressed oracle. In partic-
ular, in Lemma 5.1 below, the condition y = D(x) for given x and y can be
efficiently checked by a measurement. See Section 2.4 for more details on this
technique.

In the classical lazy-sampling technique, if at the end of the execution of
an oracle algorithm A, having made q queries to the (lazy-sampled) RO, the
database Dq is such that, say, Dq(x) ̸= 0 for any x ∈ X , then A’s output is
unlikely to be a 0-preimage, i.e., an x that is hashed to 0 upon one more query.
A’s best chance is to output an x that he has not queried yet, and thus Dq(x) =
⊥, and then he has a 1/|Y|-chance that Dq+1(x) := Dq[x 7→ y](x) = 0, given
that y is randomly chosen. Something similar holds in the quantum setting,
with some adjustments. The general statement is given by the following result
by Zhandry.
4 The terminology is somewhat misleading here; the actual compression takes place when

invoking the sparse encoding (see below).

163

5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

Lemma 5.1 (Lemma 5 in [Zha19a]). Let R ⊆ X ℓ × Yℓ × Z be a relation,
and let A be an oracle quantum algorithm that outputs x ∈ X ℓ, y ∈ Yℓ and
z ∈ Z. Furthermore, let

p = p(A) := Pr[y=H(x) ∧ (x,y, z)∈R]

be the considered probability when A has interacted with the standard RO, ini-
tialized with a uniformly random function H, and let

p′ = p′(A) := Pr[y=D(x) ∧ (x,y, z)∈R]

be the considered probability when A has interacted with the compressed or-
acle instead and D is obtained by measuring its internal state (in the basis
{|D⟩}D∈D). Then

√
p ≤

p
p′ +

s
ℓ

|Y| .

Remark 5.2. This bound is particular useful in case Z = ∅ (or R does not
depend on its third input z), since then p′ is bounded by Pr[∃ x̃ : (x̃, D(x̃))∈R]
and the latter is determined solely by the evolution of the compressed oracle
(when interacting with A) and does not depend on the actual output of A.

In Section 5.2.3, Corollary 5.8, we will give an alternative such relation
between the success probability of an algorithm interacting with the actual RO,
and probabilities obtained by inspecting the compressed oracle instead. Strictly
speaking, the results of Lemma 5.1 and Corollary 5.8 are incomparable, but in
typical applications the latter gives a significantly better bound.

5.2.2 The Quantum Transition Capacity and Its Relevance

The above discussion shows that, in order to bound the success probability p of
an oracle algorithm A, it is sufficient to bound the probability of the database
D, obtained by measuring the internal state of the compressed oracle after the
interaction with A, satisfying a certain property (e.g., the property of there
existing an x such that D(x) = 0).

To facilitate that latter, Chung et al. [CFHL21] introduced a framework
that, in certain cases, allows to bound this alternative figure of merit by means
of purely classical reasoning. We briefly recall here some of the core elements
of this framework, which are relevant to us. Note that [CFHL21] considers the
parallel-query model, where in each of the q (sequential) interactions with the

164

5.2. Preliminaries

RO, an oracle algorithm A can make k queries simultaneously in parallel with
each interaction. Here, we consider the (more) standard model of one query per
interaction, i.e., setting k = 1. On the other hand, we state and prove a slight
generalization of Theorem 5.16 in [CFHL21] (when restricted to k = 1).

A subset P ⊆ D is called a database property. We say that D ∈ D satisfies P
if D ∈ P, and the complement of P is denoted ¬P = D \P. For such a database
property P, [CFHL21] defines

q⊥ q
=⇒ P

y
as the square-root of the maximal

probability of D satisfying P when D is obtained by measuring the internal
state of the compressed oracle after the interaction with A, maximized over all
oracle quantum algorithms A with query complexity q, i.e., in short

q⊥ q
=⇒ P

y
:= max

A

p
Pr[D ∈ P] . (43)

In the context of Lemma 5.1 for the case Z = ∅ (see Remark 5.2), we can define
the database property PR := {D∈D | ∃x∈X ℓ : (x, D(x))∈R} induced by R,
and thus bound

p′(A) ≤ Pr[(x, D(x))∈R] ≤ Pr[D ∈ PR] ≤
q⊥ q

=⇒ PR
y2 (44)

for any oracle quantum algorithm A with query complexity q.
Furthermore, Lemma 5.6 in [CFHL21] shows that for any target database

property P and for any sequence P0,P1, . . . ,Pq with ¬P0 = {⊥} and Pq = P,

q⊥ q
=⇒ P

y
≤

qX

s=1

q
¬Ps−1→ Ps

y
, (45)

where, for any database properties P and P′, the definition of the quantum
transition capacity

q
P→ P′y is recalled in Definition 5.3.

The nice aspect of the framework of [CFHL21] is that it provides means
to manipulate and bound quantum transition capacities using purely classical
reasoning, i.e., without the need to understand and work with the definition.
Indeed, for instance Theorem 5.4 below, which is a variant of Theorem 5.17
in (the full version of) [CFHL21], shows how to bound

q
P → P′y by means

of a certain classical probability; furthermore, to facilitate the application of
such theorems, [CFHL21] showed that the quantum transition capacity satisfies
several natural manipulation rules, like

q
P → P′y =

q
P′ → P

y
(i.e., it is

symmetric), and
q
P ∩ Q→ P′y ≤ min

�q
P→ P′y,

q
Q→ P′y	 and

min
�q

P→ P′y,
q
P→ Q′y	 ≤

q
P→ P′ ∪ Q′y ≤

q
P→ P′y +

q
P→ Q′y ,

(46)

165

5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

which allow to decompose complicated capacities into simpler ones. Therefore,
by means of the above series of inequalities with p from Lemma 5.1 on the left
hand side, it is possible (in certain cases) to bound the success probability of any
oracle quantum algorithm A in the QROM by means of the following recipe: (1)
Choose suitable transitions Ps−1 → Ps, (2) decompose the capacities

q
¬Ps−1→

Ps

y
into simpler ones using manipulation rules as above, and (3) bound the

simplified capacities by certain classical probabilities, exploiting results like
Theorem 5.4. We will closely follow this recipe.

In order to state and later use Theorem 5.4, we need to introduce the fol-
lowing additional concepts. As explained above, there is no need to actually
spell out the definition of the quantum transition capacity in order to use The-
orem 5.4; for completeness, and since it is needed for the proof of Theorem 5.4,
we do provide it below.

For any database D ∈ D and any x ∈ X ,

D|x := {D[x 7→y] | y ∈ Y ∪ {⊥}}

denotes the set of all databases that coincide with D outside of x. Furthermore,
for a database property P,

P|D|x := {y ∈ Y ∪ {⊥} | D[x 7→y] ∈ P} ⊆ Y ∪ {⊥}

denotes the set of values y for which D[x 7→ y] satisfies P. Following the con-
vention used in [CFHL21], we identify the subset P|D|x ⊆ Y ∪ {⊥} with the
projector P|D|x =

P
y |y⟩⟨y| acting on C[Y ∪ {⊥}], where the sum is over all

y ∈ P|D|x .

Definition 5.3 (Definition 5.5 of [CFHL21], case k = 1). Let P,P′ be
two database properties. Then, the quantum transition capacity (of order 1) is
defined as q

P→ P′y := max
x,ŷ,D

∥P′|D|x cOx,ŷ P|D|x∥

where the max is over all x ∈ X k, ŷ ∈ Ŷk, and D ∈ D.

The following is a variation of Theorem 5.17 in (the full version of) [CFHL21],
obtained by restricting k to 1. On the other hand, we exploit and include some
symmetry that is not explicit in the original statement. The proof is a small
adjustment to the original proof.

166

5.2. Preliminaries

Theorem 5.4. Let P and P′ be database properties with trivial intersection,
i.e., P ∩ P′ = ∅, and for every D ∈ D and x ∈ X let

Lx,D :=

(
P|D|x if ⊥ ∈ P′|D|x

P′|D|x if ⊥ ∈ P|D|x ,

with Lx,D being either of the two if ⊥ ̸∈ P|D|x ∪ P′|D|x .5 Then

q
P→ P′y ≤ max

x,D

q
10P

�
U ∈Lx,D

�
,

where U is uniform over Y, and the maximization can be restricted to D ∈ D
and x ∈ X for which both P|D|x and P′|D|x are non-empty.

Remark 5.5. Both, P|D|x and P′|D|x , and thus also Lx,D, do not depend on the
value of D(x), only on the values of D outside of x.

Proof. For any D ∈ D and x ∈ X , we observe that cOx,−ŷ = (cOx,ŷ)
† and hence

∥P′|D|x cOx,ŷ P|D|x∥ = ∥
�
P|D|x

�†
cOx,−ŷ

�
P′|D|x

�† ∥ = ∥P|D|x cOx,−ŷ P
′|D|x∥ ,

and so it is sufficient to argue for the case when Lx,D is set to P′|D|x . By the
disjointness requirement, as subsets of Y∪{⊥}, the complement of Lx,D = P′|D|x
is a superset of P|D|x . Thus, as projections acting on C[Y∪{⊥}], P|D|x ≤ I−Lx,D.
Therefore, the above norm is upper bounded by ∥Lx,D cOx,y (I− Lx,D)∥. Given
that ⊥ ̸∈ Lx,D, the square norm ∥Lx,D cOx,ŷ (I− Lx,D)∥2 can be upper bounded
exactly as in the proof of Theorem 5.17 in [CFHL21] by 10P

�
U ∈Lx,D

�
, giving

the claimed bound. ⊓⊔

5.2.3 An Improved Variant of Zhandry’s Lemma

We show here an alternative to Zhandry’s lemma (Lemma 5.1), which offers
a better bound in typical applications. To start with, note that Lemma 5.1
considers an algorithm A that not only outputs x = (x1, . . . , xℓ) but also y =
(y1, . . . , yℓ), where the latter is supposed to be the point-wise hash of x; indeed,
this is what is being checked in the definition of the probability p, along with
(x,y, z) ∈ R. This requirement is somewhat unnatural, in that an algorithm
A for, say, finding a collision, i.e., x1 ̸= x2 with H(x1) = H(x2), does not
5 By the disjointness requirement, ⊥ cannot be contained in both.

167

5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

necessarily output the (supposed to be equal) hashes y1 = H(x1) and y2 =
H(x2). Of course, this is no problem since one can easily transform such an
algorithm A that does not output the hashes into one that does, simply by
making a few more (classical) queries to the random oracle at the end of the
execution, and then one can apply Lemma 5.1 to this tweaked algorithm Ã.

We show below that if we anyway consider this tweaked algorithm Ã, which
is promised to query the random oracle to obtain and then output the hashes
of x = (x1, . . . , xℓ), then we can actually improve the bound and avoid the
square-roots in Lemma 5.1. On top, the proof is much simpler than Zhandry’s
proof for his lemma.

At the core is the following lemma; Corollary 5.8 below then puts it in a
form that is comparable to Lemma 5.1 and shows the improvement.

Lemma 5.6. Let A be an oracle quantum algorithm that outputs x =
(x1, ..., xℓ) ∈ X ℓ and z ∈ Z. Let Ã be the oracle quantum algorithm that runs
A, makes ℓ classical queries on the outputs xi to obtain y = H(x), and then
outputs (x,y, z). When Ã interacts with the compressed oracle instead, and at
the end D is obtained by measuring the internal state of the compressed oracle,
then, conditioned on Ã’s output (x,y, z),

Pr[y=D(x)|(x,y, z)] ≥ 1− 2ℓ

|Y| .

Proof. Consider first Ã interacting with the purified (yet uncompressed) oracle.
Conditioned on Ã’s output (x,y, z), the state of the oracle is then supported
by |H⟩ with H(xi) = yi for all i ∈ {1, . . . , ℓ}, i.e., the registers labeled by
x1, ..., xℓ are in state |y1⟩ · · · |yℓ⟩. Given that the compressed oracle is obtained
by applying Comp to all the registers, we thus have that

Pr[yi=y′i|(x,y, z)] =
��⟨yi|Comp|yi⟩

��2 =
���⟨yi|

�
|yi⟩+ 1√

|Y|
(|⊥⟩ − |0̂⟩)

����
2

=
���1− 1√

|Y|
⟨yi|0̂⟩

���
2
=

���1− 1
|Y|

���
2
≥ 1− 2

|Y| .

Applying union bound concludes the claim. ⊓⊔

The following generalization of Lemma 5.6 follows immediately by enhancing
A so that it computes and outputs all the values x that need to be queried in
order to compute FH(z), and then apply Lemma 5.6 above.

168

5.2. Preliminaries

Corollary 5.7. Let A be an oracle quantum algorithm that produces an arbi-
trary output z ∈ Z, and let F be an arbitrary classical ℓ-query oracle algorithm.
Let Ã := F ◦A be the oracle quantum algorithm that first runs A to obtain z,
then F to obtain y := FH(z), and finally outputs (y, z). When Ã interacts with
the compressed oracle instead, and at the end D is obtained by measuring the
internal state of the compressed oracle, then, conditioned on Ã’s output (y, z),

Pr[y=FD(z)|(y, z)] ≥ 1− 2ℓ

|Y| .

The following corollary of Lemma 5.6 is put in a form that can be nicely com-
pared with Lemma 5.1, understanding that typically Lemma 5.1 is applied
to Ã.

Corollary 5.8. Let R ⊆ X ℓ×Yℓ×Z be a relation. Let A be an oracle quantum
algorithm that outputs x ∈ X ℓ and z ∈ Z, and let Ã be as in Lemma 5.6. Let

p◦(A) := Pr[(x, H(x), z) ∈ R]

be the considered probability when A has interacted with the RO. Furthermore,
let p(Ã) and p′(Ã) be defined as in Lemma 5.1 (but now for Ã). Then

p◦(A) = p(Ã) ≤ p′(Ã) +
2ℓ

|Y| .

For convenience, we recall that

p′(Ã) = Pr[y=D(x) ∧ (x,y, z)∈R] ≤ Pr[(x, D(x), z)∈R] .

Proof. The equality holds by construction of Ã. For the first inequality, we
observe that

p′(Ã) = Pr[y=D(x)|(x,y, z)∈R] Pr[(x,y, z)∈R]

≥
�
1− 2ℓ

|Y|
�
Pr[(x,y, z)∈R] ≥

�
1− 2ℓ

|Y|
�
p(Ã) ≥ p(Ã)− 2ℓ

|Y| ,

where the first inequality is by Lemma 5.6. The second and last inequality in
the statement holds trivially by definition of p′. ⊓⊔

169

5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

Section 5.3

Some Background on (Non-)Interactive Proofs

Let {Iλ}λ∈N and {Wλ}λ∈N be two families of sets, with the members being
labeled by the security parameter λ ∈ N. Let Rλ ⊆ Iλ ×Wλ be a relation that
is polynomial-time computable in λ. w ∈Wλ is called a witness for inst ∈ Iλ if
Rλ(inst, w), and Lλ := {inst ∈ Iλ | ∃w ∈Wλ : Rλ(inst, w)}.

Below, we recall some concepts in the context of interactive and non-
interactive proofs for such families {Rλ}λ∈N of relations. We start by discussing
the aspired security definition for non-interactive proofs.

5.3.1 Non-interactive Proofs and Online Extractability

An non-interactive proof in the random-oracle model for a family {Rλ}λ∈N of
relations consists of a pair (P ,V) of oracle algorithms, referred to as prover and
verifier, both making queries to the random oracle H : X → Y. The prover P
takes as input λ ∈ N and an instance inst ∈ Lλ and outputs a proof π ∈ Πλ, and
V takes as input λ ∈ N and a pair (inst,π) ∈ Iλ ×Πλ and outputs a Boolean
value, 0 or 1, or accept or reject. The verifier V is required to run in time
polynomial in λ, while, per-se, P may have unbounded running time.6

By default, we require correctness and soundness, i.e., that for any λ ∈ N
and any inst ∈ Lλ

Pr
�
VH(λ, inst,π) : π ← PH(λ, inst)

�
≥ 1− εcor(λ),

while for any λ ∈ N and any oracle quantum algorithm P∗ (a dishonest prover)
with query complexity q

Pr
�
inst ̸∈ Lλ ∧ VH(λ, inst,π) : (inst,π)← P∗H(λ)

�
≤ εsnd(λ, q, n)

for certain εcor and εsnd, respectively referred to as correctness error and sound-
ness error. The fact that the instance inst, for which P∗ tries to forge a proof,
is not given as input to P∗ but is instead chosen by P∗ is referred to as P∗

being adaptive.
6 Alternatively, one may consider a witness w for inst to be given as additional input to P,

and then ask P to be polynomial-time as well.

170

5.3. Some Background on (Non-)Interactive Proofs

We now move towards defining online extractability (for adaptive P∗). For
that purpose, let P∗ be a dishonest prover as above, except that it poten-
tially outputs some additional auxiliary (possibly quantum) output Z next to
(inst,π). We then consider an interactive algorithm E , called online extractor,
which takes λ ∈ N as input and simulates the answers to the oracle queries in
the execution of VH ◦ P∗H(λ), which we define to run (inst,π, Z) ← P∗H(λ)
followed by v ← VH(λ, inst,π); furthermore, at the end, E outputs w ∈ Wλ.
We denote the execution of VH ◦ P∗H(λ) with the calls to H simulated by E ,
and considering E ’s final output w as well, as (inst,π, Z; v;w)← VE ◦ P∗E(λ).

Definition 5.9. A non-interactive proof in the (quantum-accessible) random-
oracle model (QROM) for {Rλ}λ∈N is a proof of knowledge with online extract-
ability (PoK-OE) against adaptive adversaries if there exists an online extractor
E, and functions εsim (the simulation error) and εex (the extraction error), with
the following properties. For any λ ∈ N and for any dishonest prover P∗ with
query complexity q,

δ
�
[(inst,π, Z, v)]VH◦P∗H(λ), [(inst,π, Z, v)]VE◦P∗E (λ)

�
≤ εsim(λ, q, n)

and

Pr
�
v = accept ∧ (inst, w) ̸∈ R : (inst,π, Z; v;w)← VE ◦P∗E(λ)

�
≤ εex(λ, q, n) .

Furthermore, the runtime of E is polynomial in λ + q + n, and εsim(λ, q, n)
and εex(λ, q, n) are negligible in λ whenever q and n are polynomial in λ.

Remark 5.10. In the classical definition of a proof of knowledge, the extractor
E interacts with P∗ only, and the verifier V is not explicitly involved, but
would typic´ally be run by E . Here, in the context of online extractability,
it is necessary to explicitly go through the verification procedure, which also
makes oracle queries, to determine whether a proof is valid, i.e., for the event
v = accept to be well defined.

5.3.2 S-soundness of C&O Σ-Protocols

C&O protocols are a subclass of Σ-protocols for which the first message a
consists of (hash based) commitments y1, . . . , yℓ for messages m1, . . . ,mℓ ∈M,
and possibly and additional string a◦. The challenge c is chosen uniformly at
random from a subset C ⊆ 2[ℓ] of indices, which point to the messages the
prover opens in its response z = mc = (mi)i∈c. In this chapter we consider the

171

5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

hash based version where yi = H(mi), and we model the hash function H as
a random oracle. See Section 2.2.1 for a complete formal specification of C&O
protocols.

We briefly recall the notions of S-soundness and S-soundness∗ as developed
in Section 4.5.2, which offer a convenient general notion of special soundness,
or more generally k-soundness for C&O protocols.

Here and below, given a C&O protocol Π with challenge space C ⊆ 2[ℓ],
we let S ⊆ 2C be an arbitrary non-empty, monotone increasing set of subsets
S ⊆ C, where the monotonicity means that S ∈ S ∧ S ⊆ S ′ ⇒ S′ ∈ S. We
then also set Smin := {S ∈ S | S◦ ⊊ S ⇒ S◦ ̸∈ S} to be the minimal sets in
S.

For simplicity, the reader can consider S = Tk := {S ⊆ C | |S| ≥ k} for some
threshold k, and thus Smin = {S ⊆ C | |S| = k}. This then corresponds to the
notion of k-soundness for C&O protocols, which in turn means that the witness
can be computed from valid responses to k (or more) distinct challenges for a
given first message y1, . . . , yℓ, assuming the messages m1, . . . ,mℓ to be uniquely
determined by their commitments.

Definition 5.11. A C&O protocol Π is S-sound if there exists an efficient de-
terministic algorithm ES(inst,m1, . . . ,mℓ, a◦, S) that takes as input an instance
inst ∈ I, messages m1, . . . ,mℓ ∈ M ∪ {⊥}, a string a◦, and a set S ∈ Smin,
and outputs a witness for inst if V (inst, c,mc, a◦) for all c ∈ S.7

We note the clash in terminology with Definition 4.22. However, the current
definition applies exclusively to C&O Σ-protocols in the (Q)ROM, whereas Def-
inition 4.22 applies exclusively to Σ-protocols in the standard model; so there
should be no confusion. The two definitions are of course related: a S-sound
C&O Σ-protocol becomes a S-sound plain Σ-protocol when the commitments
are instantiated with a perfectly binding commitment scheme (rather than with
a hash function).

A slightly stronger condition than S-soundness is the following variant,
which differs in that the extractor needs to work as soon as there exists a
set S as specified, without the extractor being given S as input. We refer to
Section 4.5.2 for a more detailed discussion of this aspect. As explained there,
whether S is given or not often makes no (big) difference.

For instance, when Smin consists of a polynomial number of sets S then
the extractor can do a brute-force search to find S, and so S-soundness∗ is
7 The restriction for S to be in Smin, rather than in S, is to avoid an exponentially sized

input while asking ES to be efficient.

172

5.3. Some Background on (Non-)Interactive Proofs

then implied by S-soundness. Also, the r-fold parallel repetition of a S-sound
protocol, which by default is a S∨r-sound protocol (see Section 4.5.2), is auto-
matically S∨-sound∗ if Smin is polynomial in size: the extractor can then do a
brute-force search in every repeated instance.

Definition 5.12. A C&O protocol Π is S-sound∗ if there exists an efficient
deterministic algorithm E∗

S(inst,m1, . . . ,mℓ, a◦) that takes as input an instance
inst ∈ I and strings m1, . . . ,mℓ ∈ M ∪ {⊥} and a◦, and it outputs a witness
for inst if there exists S ∈ S such that V (inst, c,mc, a◦) for all c ∈ S.

As for plain Σ-protocols, we define

pStriv :=
1

|C| max
Ŝ ̸∈S

|Ŝ| , (47)

capturing the “trivial” attack of picking a set Ŝ = {ĉ1, . . . , ĉm} ̸∈ S of chal-
lenges ĉi ∈ C and then prepare m̂ = (m̂1, . . . , m̂ℓ) and a◦ in such a way that
V (inst, c, m̂c, a◦) holds if c ∈ Ŝ. After committing to m̂1, . . . , m̂ℓ, the prover
can successfully answer to challenges c ∈ Ŝ.

5.3.3 The Fiat-Shamir Transformation of (C&O) Σ-Protocols

The Fiat-Shamir (FS) transformation [FS87] turns arbitrary Σ-protocols into
non-interactive proofs in the random oracle model by setting the challenge c ∈ C
to be the hash of the instance and the first message a. For this transformation to
work smoothly, it is typically assumed that |C| is a power of 2 and its elements
are represented as bit strings of size log |C|, so that one can indeed set c to be
(the first log |C| bits of) the hash H(inst, a). The assumption on |C| is essentially
without loss of generality (WLOG), since one can always reduce the size of |C|
to the next lower power of 2, at the cost of losing at most 1 bit of security.
However, for a C&O Σ-protocol, where a challenge space C is a (typically
strict) subset of 2[ℓ], there is not necessarily a natural way to represent c ∈ C as
a bitstring of size log |C|. Therefore, we will make it explicit that the challenge-
set c ∈ C ⊂ 2[ℓ] is computed from the “raw randomness” H(inst, y1, . . . , yℓ, a◦) in
a deterministic way as c = γ ◦H(inst, y1, . . . , yℓ, a◦) for an appropriate function
γ : Y → C, mapping a uniformly random hash in Y to a random challenge-set
in C. Obviously, for H(inst, y1, . . . , yℓ, a◦) to be defined, in addition to M ⊆ X
we also need that I × Yℓ ⊆ X , which again just means that B needs to be
large enough. We write FS[Π] for the Fiat-Shamir transformation of a (C&O)
Σ-protocol Π.

173

5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

Remark 5.13. Additionally, we need that n is sufficiently large, so that there
is a sufficient amount of randomness in the hash value H(inst, y1, . . . , yℓ) in
order to be mapped to a random c ∈ C. The canonical choice for γ is then the
function that the interactive verifier applies to his local randomness to compute
the random challenge c ∈ C. To simplify the exposition, we assume that n is
indeed sufficiently large. Otherwise, one can simply set Y := {0, 1}n′ instead,
for sufficiently large n′, and then let yi be H(mi) truncated to the original
number n of bits again. This truncation has no effect on our results.

Remark 5.14. We assume WLOG that the two kinds of inputs to H, i.e., mi

and (inst, y1, . . . , yℓ, a◦), are differently formatted, e.g., bit strings of different
respective sizes or prefixes (this is referred to as domain separation). In other
words, we assume that M and I × Yℓ are disjoint.

Remark 5.15. When considering the adaptive security of a Fiat-Shamir trans-
formation FS[Π] of a C&O protocol Π for a relation R, the additional string
a◦, which may be part of the first message a of the original protocol Π, may
WLOG be considered to be part of the instance inst instead.

Indeed, any dishonest prover P∗ against FS[Π], which (by Definition 5.9)
outputs an instance inst and a proof π = (a◦, y1, . . . yℓ), can alternatively be
parsed as a dishonest prover that outputs an instance inst′ = (inst, a◦) and a
proof π′ = (y1, . . . yℓ). Thus, P∗ can be parsed as a dishonest prover against
FS[Π ′], where the C&O protocol Π ′ works as Π, except that a◦ is considered as
part of the instance, rather than as part of the first message, and thus Π ′ is a
C&O protocol for the relation ((inst, a◦), w) ∈ R′ :⇔ (inst, w) ∈ R.8 Therefore,
security (in the sense of Definition 5.9) for FS[Π ′] implies that of FS[Π].

Section 5.4

Online Extractability of the FS-Transformation:
The Case of Ordinary C&O Protocols

We now consider the Fiat-Shamir transformation FS[Π] of an ordinary C&O
protocol Π. Our goal is to show that FS[Π] admits online extraction. We note
8 We do not specify the local computation of the honest prover P ′ in Π ′ = (P ′,V ′), i.e.,

how to act when a◦ is part of the input, and in general it might not be efficient, but this
is fine since we are interested in the security against dishonest provers.

174

5.4. Online Extractability of the FS-Transformation:
The Case of Ordinary C&O Protocols

that by exploiting Remark 5.15, we may assume WLOG that the first message
of Π consists of the commitments y1, . . . , yℓ only, and no additional string a◦.
In Section 5.5, we then consider the case of Merkle-tree-based C&O protocols.

Our analysis of the online extractability of FS[Π] uses the framework of
Chung et al. [CFHL21], discussed and outlined in Section 5.2. Thus, at the core
of our analysis is a bound on a certain quantum transition capacity. This is
treated in the upcoming subsection.

5.4.1 Technical Preface

We first introduce a couple of elementary database properties (related to CoL-
lisions and the SiZe of the database) that will be useful for us:

CL := {D | ∃x ̸=x′ : D(x)=D(x′) ̸=⊥} and SZ≤s := {D |#{z|D(z) ̸=⊥} ≤ s}.

Next, for an instance inst ∈ I, we want to specify the database property that
captures a cheating prover that succeeds in producing an accepting proof while
fooling the extractor. For the purpose of specifying this database property,
we introduce the following notation. For a given database D ∈ D and for a
commitment y ∈ Y, we define D−1(y) to be the smallest x ∈ X with D(x) =
y, with the convention that D−1(y) := ⊥ if there is no such x, as well as
D−1(⊥) := ⊥. We note that by removing collisions, we ensure that there is at
most one such x; thus, taking the smallest one in case of multiple choices is not
important but only for well-definedness.

The database property of interest can now be defined as

SUC :=

�
D

����
∃y ∈ Yℓ and inst ∈ I so that m := D−1(y) satisfies

V (inst, c,mc) for c := γ ◦D(inst,y) and
�
inst, E∗(inst,m)

�
̸∈ R

�
.

(48)
Informally, assuming no collisions (i.e., restricting to D ̸∈ CL), the database

property SUC captures whether a database D admits a valid proof π = (y,mc)
for an instance inst for which the (canonical) extractor, which first computes
m by inverting D and then runs E∗, fails to produce a witness.

Our (first) goal is to show that
q
⊥ q

=⇒ SUC ∪ CL
y

is small, capturing that
it is unlikely that after q queries the compressed database contains collisions
or admits a valid proof upon which the extractor fails. Indeed, we show the
following, where pStriv is the trivial cheating probability of Π as defined in (47).

Lemma 5.16.
q
⊥ q

=⇒ SUC∪ CL
y
≤ 2eq3/22−n/2 + q

q
10max

�
qℓ · 2−n, pStriv

�
.

175

5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

The formal proof is given below; we first give some informal outline here. In
a first step, by using (45) and union-bound-like properties of the transition
capacity, and additionally exploiting a bound from [CFHL21] to control the
transition capacity of CL, we reduce the problem to bounding the quantum
transition capacity

q
SZ≤s\SUC→ SUC

y
for s < q. Informally, this capacity is

a measure of the “likelihood” — but then in a quantum-sense — that a database
D ∈ D that is bounded in size and not in SUC turns into a database D′ that is
in SUC, when D is updated to D′ = D[x 7→U] with U uniformly random in Y.

We emphasize that in the considered quantum setting, the state of the com-
pressed oracle at any point is a superposition of databases, and a query is made
up of a superposition of inputs; nevertheless, due to Theorem 5.4, the above
classical intuition is actually very close to what needs to be shown to rigorously
bound the considered quantum transition capacity. Formally, as will become
clear in the proof below, we need to show that for any database D ∈ SZ≤s\SUC
and for any x ∈ X with D(x) = ⊥, the probability that D[x 7→ U] ∈ SUC is
small. Below, this probability is bounded in the Case 2 and Case 3 parts of the
proof, where the two cases distinguish between x being a “commit query” or a
“challenge query”.

Informally, for D with D(x) = ⊥, if x is a “commit query” then assigning a
value to D(x) can only make a difference, i.e., turn D ̸∈ SUC into D[x 7→u] ∈
SUC, if u is a coordinate of some y ∈ Yℓ for which D(inst,y) ̸= ⊥ for some inst.
Indeed, otherwise, D[x 7→u] does not contribute to a valid proof π that did not
exist before. Thus, given the bound s < q on the size of D, this happens with
probability at most qℓ/2n for a random u. Similarly, if x is a “challenge query”,
i.e. of the form x = (inst,y), then assigning a value u to D(x) can only make
a difference if V (inst, c,mc) is satisfied for c = γ(u) and m = D−1(y), while
E∗(inst,m) is not a witness for inst. However, for a random u, this is bounded
by pStriv.

But then, on top of the above, due to the quantum nature of the quantum
transition capacity,9 Theorem 5.4 requires to also show the “reverse”, i.e., that
for any D ∈ SUC and for any x ∈ X with D(x) ̸= ⊥, the probability that
D[x 7→U] ∈ SZ≤s\SUC is small; this is analyzed in Case 1 below.

Thus, by exploiting the framework of [CFHL21], the core of the reasoning
is purely classical, very closely mimicking how one would have to reason the
classical setting with a classical RO. Due to the rather complex definition of
SUC, the formal argument in each case is still somewhat cumbersome.
9 At the core, this is related to the reversibility of quantum computing and the resulting

ability to “uncompute” a query.

176

5.4. Online Extractability of the FS-Transformation:
The Case of Ordinary C&O Protocols

Proof. We first observe that, by (45) (which is Lemma 5.6 in [CFHL21]) and
basic properties of the quantum transition capacity as in (46),

q
⊥ q

=⇒ SUC ∪ CL
y
≤

q−1X

s=0

q
SZ≤s\SUC\CL→ SUC ∪ CL ∪ ¬SZ≤s+1

y

≤
q−1X

s=0

�q
SZ≤s\SUC\CL→ ¬SZ≤s+1

y
+

q
SZ≤s\SUC\CL→ CL

y

+
q
SZ≤s\SUC\CL→ SUC

y�

≤
q−1X

s=0

�q
SZ≤s→ ¬SZ≤s+1

y
+

q
SZ≤s\CL→ CL

y
+

q
SZ≤s\SUC→ SUC

y�
.

(49)

The first term,
q
SZ≤s→ ¬SZ≤s+1

y
, vanishes, while the second term was shown

to be bounded as
q
SZ≤s\CL→ CL

y
≤ 2e

p
(s+ 1)/|Y| ≤ 2e

p
q/2n (50)

in Example 5.28 in [CFHL21]. Thus, it remains to control the third term, which
we will do by means of Theorem 5.4 with P := SZ≤s \ SUC and P′ := SUC.

To this end, we consider arbitrary but fixed D ∈ D and input x ∈ X . By
Remark 5.5, we may assume that D(x) = ⊥. Furthermore, for P|D|x to be non-
empty, it must be that D ∈ SZ≤s, i.e., D is bounded in size. We now distinguish
between the following cases for the considered D and x.

Case 1: D ∈ SUC. In particular, ⊥ ∈ SUC|D|x = P′
D|x . So, Theorem 5.4

instructs us to set := PD|x , where we leave the dependency of on D and x
implicit to simplify notation. Given that D ∈ SUC, we can consider inst and y
as promised by the definition of SUC in (48), i.e., such that V (inst, c,mc) and�
inst, E∗(inst,m)

�
̸∈ R for

c := γ ◦D(inst,y) and mi := D−1(yi) ,

where it is understood that m = (m1, . . . ,mℓ). Recall that D(x) = ⊥; thus,
by definition of the mi’s, it must be that x ̸= mi for all i, and the fact that
V (inst, c,mc) is satisfied for c as defined implies that x ̸= (inst,y). Furthermore,

u ∈ L ⇐⇒ D[x 7→u] ∈ P =⇒ D[x 7→u] ̸∈ SUC =⇒ u ∈ {y1, . . . , yℓ} ,

where the last implication is easiest seen by contraposition: Assume that u ̸∈
{y1, . . . , yℓ}. Then, also recalling that x ̸= mi, we have that mi = D−1(yi) =

177

5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

D[x 7→ u]−1(yi). But also c = γ ◦ D(inst,y) = γ ◦ D[x 7→ u](inst,y). Together,
this implies that the defining property of SUC is also satisfied for D[x 7→u], i.e.,
D[x 7→u] ∈ SUC, as was to be shown. Thus, we can bound

P [U ∈] ≤ P [U ∈{y1, . . . , yℓ}] ≤
ℓ

|Y| . (51)

Case 2: D ̸∈ SUC, and x is a “commit query”, i.e., x = m ∈M. In particular,
⊥ ̸∈ P′|D|x (by the assumption that D(x) = ⊥) and so in light of Theorem 5.4
we may choose L := P′|D|x . We then have

u ∈ L ⇐⇒ D[x 7→u] ∈ P′ = SUC =⇒ ∃ inst,y, i : D(inst,y) ̸= ⊥ ∧ u = yi .
(52)

This final implication can be seen as follows. By definition of SUC, the assump-
tion D[x 7→ u] ∈ SUC implies the existence of inst and y = (y1, . . . , yℓ) with
V (inst, c,mc) and

�
inst, E∗(inst,m)

�
̸∈ R for

c := γ ◦D[x 7→u](inst,y) = γ ◦D(inst,y) and mi := D[x 7→u]−1(yi) ,

where the equality in the definition of c exploits that x is not a “challenge”
query. With the goal to reach a contradiction, assume that u ̸= yi for all i.
This assumption implies that D[x 7→u](x) = u ̸= yi. But also D(x) = ⊥ ̸= yi,
and hence for all ξ ∈ X and i ∈ {1, . . . , ℓ}: D(ξ) = yi ⇔ D[x 7→ u](ξ) = yi.
Therefore, mi = D[x 7→ u]−1(yi) = D−1(yi) for all i, and the above then
implies that D ∈ SUC, a contradiction. Thus, there exists i for which u = yi;
furthermore, D(inst,y) ̸= ⊥ given that V (inst, u,mc) is satisfied for c = γ ◦
D(inst,y). This shows the claimed implication.

Thus, we can bound

P [U ∈] ≤ P [∃ inst,y, i : D(inst,y) ̸= ⊥ ∧ u = yi] ≤
sℓ

|Y| ≤
qℓ

|Y| . (53)

Case 3: D ̸∈ SUC, and x is a “challenge query”, i.e., x = (inst,y) ∈ I ×Y ℓ. Set
m = (m1, . . . ,mℓ) for mi := D−1(yi). Again, we have that⊥ ̸∈ SUC|D|x = P′

D|x ,
and so by Theorem 5.4 we may set := P′

D|x . Here, we can argue that

u ∈ L ⇐⇒D[x 7→u] ∈ P′ = SUC

=⇒ V (inst, u,mγ(u)) and
�
inst, E∗(inst,m)

�
̸∈ R ,

where the final implication can be seen as follows. By definition of SUC, the
assumption D[x 7→u] ∈ SUC implies the existence of inst′ and y′ = (y′1, . . . , y

′
ℓ)

178

5.4. Online Extractability of the FS-Transformation:
The Case of Ordinary C&O Protocols

with V (inst′, u,m′
c) and E∗(inst′,m′) ̸= w for

c := γ ◦D[x 7→u](inst′,y′) and m′
i := D[x 7→u]−1(y′i) = D−1(y′i) ,

where the very last equality exploits that x is not a “commit” query. With
the goal to come to a contradiction, assume that (inst′,y′) ̸= (inst,y) = x.
Then, c = γ ◦D[x 7→u](inst′,y′) = γ ◦D(inst′,y′), and the above then implies
that D ∈ SUC, a contradiction. Thus, (inst′,y′) = (inst,y) = x. In particular,
m′ = m and c = γ ◦D[x 7→u](inst′,y′) = γ ◦D[x 7→u](x) = γ(u). Hence, the
claimed implication holds.

Thus, we can bound

P [U ∈] ≤ P [V (inst, γ(U),mγ(U)) ∧ E∗(inst,m) ̸= w]

≤ P [V (inst, γ(U),mγ(U)) ∧ S := {c |V (inst, c,mc)} ̸∈ S]

≤ P [γ(U) ∈ S := {c |V (inst, c,mc)} ̸∈ S]

≤ max
S ̸∈S

P [γ(U) ∈ S]

≤ pStriv . (54)

By Theorem 5.4, we now get

q
SZ≤s\SUC\CL→ SUC

y
≤ max

x,D

q
10P

�
U ∈Lx,D

�

≤
√
10

s
max

�
ℓ

|Y| ,
qℓ

|Y| , p
S
triv

�

≤
√
10
q

max
�
qℓ · 2−n, pStriv

�
,

where we have used Equations (51), (53) and (54) in the second inequality.
Combining with Equations (50) and (49) yields the desired bound. ⊓⊔

5.4.2 Online Extractability of the Fiat-Shamir Transformation

We are now ready to state and proof the claimed online-extractability result
for the Fiat-Shamir transformation of (ordinary) C&O protocols.

Theorem 5.17. Let Π be a S-sound∗ ordinary C&O protocol with challenge
space Cλ and ℓ = ℓ(λ) commitments, and set κ = κ(λ) := maxc∈Cλ |c|. Then,

179

5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

FS[Π] is a proof of knowledge with online extractability in the QROM (as in
Definition 5.9), with εsim(λ, q, n) = 0 and

εex(λ, q, n) ≤ 2(κ+ 1) · 2−n +

�
2eq3/22−n/2 + q

q
10max

�
qℓ · 2−n, pStriv

��2

≤ (22ℓ+ 60)q32−n + 20q2pStriv .

The runtime of the extractor is dominated by running the compressed oracle,
which has complexity O(q2) · poly(n,B), and running E∗.

We note that the above bound on εex is asymptotically tight, except for the
factor ℓ. Indeed, the binding property of the hash-based commitment can be in-
validated by means of a collision finding attack, which succeeds with probability
Ω(q3/2n). Furthermore the trivial soundness attack, which potentially applies
to a S-sound∗ C&O protocol Π, can be complemented with a Grover search,
yielding an attack against FS[Π] that succeeds with probability Ω(q2pStriv). The
non-tightness by a factor of ℓ is very mild in most cases. In particular, the num-
ber of commitments ℓ is polynomial in λ and thus in n. For the most common
case of a parallel repetition of a protocol with a constant number of commit-
ments, using a hash function with output length linear in λ (e.g. n = 3λ) results
in ℓ = O(n) = O(λ).

Proof. We consider an arbitrary but fixed λ ∈ N. For simplicity, we assume that
|c| is the same for all c ∈ Cλ, and thus equal to κ = κ(λ). If it is not, we could
always make the prover output a couple of dummy outputs mi to match the
upper bound on |c|. Let P∗ be a dishonest prover that, after making q queries
to a random oracle H, outputs (inst,π) = (inst,y,m◦) plus some (possibly
quantum) auxiliary output Z. In the experiment VE ◦ P∗E(λ), our extractor
E works as follows while simulating all queries to H (by P∗ and V) with the
compressed oracle:

1. Run P∗(λ) to obtain (inst,π, Z) where π = (y,m◦) with m◦ =
(m1, . . . ,mκ).

2. Run V(λ, inst,π) to obtain v. In detail: obtain h0 := H(inst,y) and hj :=
H(mj) for j ∈ {1, . . . ,κ}, and set v := accept if and only if the pair
consisting of x =

�
(inst,y),m1, . . . ,mκ

�
and h = (h0, h1, . . . , hκ) satisfies

the relation R̃, defined to hold if and only if

(h1, . . . , hκ) = yc ∧ V (inst, c,m◦) where c := γ(h0) .

3. Measure the internal state of the compressed oracle to obtain D.

180

5.4. Online Extractability of the FS-Transformation:
The Case of Ordinary C&O Protocols

4. Run E∗(inst,m) on input inst and m := D−1(y) to obtain w.

Note that in the views of both P∗ and V , the interaction with H and the
interaction with E differ only in that their oracle queries are answered by a
compressed oracle instead of a real random-oracle in the latter case. This sim-
ulation is perfect and therefore εsim(λ, q, n) = 0.

Considering P∗ as the algorithm A in Lemma 5.6, the additional classical
oracle queries that V performs in V ◦P∗ then match up with the algorithm Ã,
with h0, . . . , hκ here playing the role of y1, . . . , yℓ in Lemma 5.6. Thus,

Pr
�
h ̸= D(x)

�
≤ 2(κ(λ) + 1) · 2−n .

Therefore, we can bound the figure of merit εex as

εex(λ, q, n) = Pr
�
v = accept ∧ (inst, w) /∈ R

�
= Pr

�
(x,h) ∈ R̃ ∧ (inst, w) /∈ R

�

≤ Pr
��
x, D(x)

�
∈ R̃ ∧ (inst, w) /∈ R

�
+ 2(κ(λ) + 1) · 2−n

≤Pr[
�
x,D(x)

�
∈R̃∧(inst,w) /∈R|D ̸∈SUC∪CL]+Pr[D∈SUC∪CL]+2(κ(λ)+1)·2−n.

Using the definition of R̃, understanding that c := γ ◦D(inst,y), we can write
the first term as

Pr
�
D(m◦) = yc ∧ V (λ, inst, c,m◦) ∧ (inst, w) /∈ R |D ̸∈ SUC ∪ CL

�

≤ Pr
�
V (λ, inst, c,mc) for m := D−1(y) ∧ (inst, w) /∈ R |D ̸∈ SUC ∪ CL

�

≤ Pr
�
D ∈ SUC |D ̸∈ SUC ∪ CL

�

= 0 ,

where the first equality exploits that D(m) = y iff m = D−1(y) for D ̸∈ CL.
We may thus conclude that

εex(λ, q, n) ≤ (2κ(λ) + 1) · 2−n + Pr
�
D ∈ SUC ∪ CL

�

≤ (2κ(λ) + 1) · 2−n +
q
⊥ q

=⇒ SUC ∪ CL
y2

,

where the last inequality is by definition (43) of
q
⊥ q

=⇒ ·
y
. The claimed bound

now follows from Lemma 5.16. ⊓⊔

5.4.3 The Unruh-Transformation with a Compressing Hash
Function

We conclude this section by showing an improvement to the Unruh transfor-
mation [Unr15b], which follows directly from our result above. At the core of

181

5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

the Unruh transformation is a generic technique to transform any Σ-protocol
into a C&O protocol. In [Unr15b], this transformation is presented in combi-
nation with parallel repetition and the Fiat-Shamir transformation as a means
to construct (online-extractable) NIZK proofs of knowledge in the QROM. The
entire transformation was later dubbed the Unruh transformation.

In fact, the Unruh transformation was the first NIZK proof of knowledge in
the QROM; the QROM security of the Fiat-Shamir transformation was only
established several years later [DFMS19; LZ19a]. Despite being significantly less
efficient than the Fiat-Shamir transformation, the Unruh transformation is still
useful in certain cases because it puts weaker requirements on the underlying
Σ-protocol.

Here, to allow for a modular analysis, we consider the first step of the Unruh
transformation, i.e., the transformation from a Σ-protocol into a C&O protocol,
as an individual transformation, which we refer to as the pre-Unruh transfor-
mation, formally defined below. We stress that we allow the random oracle H
to be compressing, i.e. |Y| < |X |, while the extraction technique of [Unr15b] re-
quired H to be a length-preserving RO. This obviously has a significant positive
impact on the efficiency of the Unruh transformation.

Let Σ = (P◦,V◦) be a Σ-protocol. We write a◦ ← P◦ to denote the first
message in Π◦ as produced by P◦ (for a given instance inst). Furthermore, we
write z(a◦, c) for P◦’s response then upon receiving challenge c ∈ C.10

Definition 5.18 (Pre-Unruh transformation). Let Σ = (P◦,V◦) be a Σ-
protocol as above. Then, the pre-Unruh-transformation pU[Σ] = (P ,V) of Π◦
is the C&O protocol with first message

a := (a◦, (yi)i∈C)

where a◦ ← P◦ and for each i ∈ C, yi := H(zi) for zi := z(a◦, i)), and with
response z := zc upon challenge c ∈ C. To verify, V runs V◦ on (a◦, c, z) and
checks if H(z) = yc; if both are true, it accepts, otherwise it rejects.

Clearly, pU[Σ] is only efficient if Σ has at most polynomially many possible
challenges (which can always be obtained by restricting the challenge space).
As mentioned, the resulting C&O protocol can then be repeated in parallel
and made non-interactive using the Fiat-Shamir transformation. We will now
provide a fairly straightforward corollary to conclude the security of the more
10 We note that z(a◦, c) may be a randomized function of a◦ and c. Furthermore, z(a◦, c) is

typically computed by P◦ by means of the randomness used to produce a◦.

182

5.4. Online Extractability of the FS-Transformation:
The Case of Ordinary C&O Protocols

efficient variant of the (full) Unruh transformation that allows for a compress-
ing RO, given by the composition of the pre-Unruh transformation introduced
above, parallel repetition and the Fiat-Shamir transformation. In the following,
denote the r-fold parallel repetition of a (C&O) Σ-protocol Π by Πr and use
the notation Unrr[Σ] := FS [pU[Σ]r] for the Unruh transformation with r-fold
parallel repetition.

Remark 5.19. A proof in Π = Unrr[Σ] can be generated in time TΠ
P = rTΣ

P +
(ℓ0r+1)TH , and verified in time TΠ

V = rTΣ
V +(1+r)TH , where TΣ

P , TΣ
V and TH

are the prover and verifier runtime of Σ, and the time required for computing
one hash, respectively.

It is straightforward to verify that the pre-Unruh transformation does not harm
most security properties of the Σ-protocol. In particular, it tightly preserves
soundness and honest-verifier zero-knowledge (in the QROM). It also preserves
S-soundness in a certain sense.

Proposition 5.20. Let Σ be an S-sound Σ-protocol with challenge space size
ℓ = ℓ(λ) with extractor runtime T . Then Π := pU[Σ] is S-sound as a C&O
protocol with extractor runtime T ′ ≤ T+O(ℓ). Furthermore, suppose that mem-
bership in S is checkable in time TS. Then Π is S-sound∗ with extractor run-
time T ′′ ≤ T ′+ℓ2TS+ℓTV , where TV is the runtime of Π’s verification predicate
V.

Proof. Let EΣ be the extractor for Σ guaranteed to exist by Definition 4.22.
Note that for Π = pU[Σ] regarded as a C&O protocol, for each challenge exactly
one of the commitments has to be opened. For such protocols, we use c and
{c} interchangeably (where c is a challenge in Π). We define an extractor EΠ
as follows. On input (inst,m1, ...,mℓ, a◦, S), run w = EΣ(inst, a◦, S, {mc}c∈S),
then output w. The only runtime overhead of EΠ results from having to parse
its input and preparing the input for EΣ .

We continue to define an S-soundness∗ extractor E∗
Π for Π as follows. On

input (inst,m1, ...,mℓ, a◦), compute bc = V(inst, a◦, c,mc) for all c ∈ C, and set
Ŝ = {c ∈ C | bc = 1}. Using at most ℓ(ℓ + 1)/2 membership tests for S, find
S ⊆ Ŝ such that S ∈ Smin. Finally, run w = EΠ(inst,m1, ...,mℓ, a◦, S) and
output w. The runtime statement is straightforward. ⊓⊔

Using Proposition 5.20 above and Lemma 5.3 from [DFMS22a] to argue
S∨r-soundness∗ of the parallel repetition of pU[Π], and using Theorem 5.17
to argue online extractability of its Fiat-Shamir transformation, we obtain the

183

5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

online-extractability of the Unruh transformation with computationally bind-
ing commitments, i.e., when using a compressing hash function for the commit-
ments.

Corollary 5.21. Let Σ be an S-sound Σ-protocol with challenge space size ℓ0.
Then Π := Unrr[Σ] = FS[pU[Σ]r] is a proof of knowledge with online extracta-
bility in the QROM (as in Definition 5.9) with εsim = 0 and

εex(λ, q, n) ≤ (22rℓ0 + 60)q32−n + 20q2
�
pStriv

�r
. (55)

The online extractor for Π runs in time TΠ
E ≤ rT

pU[Σ]
E + O(q2) · poly(n,B),

where T
pU[Σ]
E is the runtime of pU[Σ]’s S-soundness∗ extractor as given in

Proposition 5.20.

Section 5.5

Online Extractability of the FS-Transformation: The
Case of Merkle-tree-based C&O Protocols

For an ordinary C&O protocol with reasonable concrete security (e.g., 128 bits),
the number of commitments ℓ might be considerable. In this case, the commu-
nication complexity of the protocol (and thus the size of the non-interactive
proof system, or digital-signature scheme, obtained via the Fiat-Shamir trans-
formation) can be reduced by using a Merkle tree to collectively commit to
the ℓ strings mi. Such a construction is mentioned in [Fis05], and it is used in
the construction of the digital-signature schemes Picnic2 and Picnic3 [KKW18;
CDG+20; KZ20; CDG+19]. The Merkle-tree-based C&O mechanism shrinks
the commitment information from ℓ · n to n, at the expense of increasing the
cost of opening |c| values mi by an additive term of about ⪅ |c| · n · log ℓ.

The cost of opening can, in fact, be slightly reduced again, by streamlining
the opening information. When opening several leaves of a Merkle tree, the
authentication paths overlap, so opening requires a number of hash values less
than h per leaf, where h is the height of the tree. This overlap was observed and
exploited in the octopus authentication algorithm which constitutes one of the
optimizations of the stateless hash-based signature scheme gravity-SPHINCS
[AE18], as well as in Picnic2 and Picnic3 [CDG+20; KZ20]. In the following

184

5.5. Online Extractability of the FS-Transformation: The Case of
Merkle-tree-based C&O Protocols

section, we formalize tree-based collective commitment schemes with “octopus”
opening.

5.5.1 Merkle-tree-based C&O Protocols

As was noted in Section 2.2.1, we can consider C&O protocols with a different
choice of commitment scheme, compared to the default choice of committing
by element-wise hashing. Here, we discuss a particular choice of an alternative
commitment scheme, which gives rise to more efficient C&O protocols in certain
cases when ℓ is large. Informally, we consider C&O protocols where m1, . . . ,mℓ

is committed to by using a Merkle tree, and individual mi’s are opened by
announcing the corresponding authentication paths.

To make this more formal, we introduce the following notation. For simplic-
ity, we assume that ℓ is a power of 2, and thus ℓ = 2h for h ∈ N. We then
consider the full binary tree Tree = {0, 1}≤h of depth h, where the vertices are
identified by bit strings. The root is denoted by ∅; the i-th leave is denoted by
lf(i) ∈ {0, 1}h and is given by the binary representation of i ∈ [ℓ]. The authen-
tication path for the i-th leaf is the subtree that consists of all the ancestors of
lf(i) and their siblings:

Auth(i) := Anc(lf(i)) ∪ {sib(v) | ∅ ̸= v ∈ Anc(lf(i))} ,
where Anc(v) := {u ∈ Tree | ∃w : u∥w = v} and sib(u∥b) := u∥(1 − b) for any
b ∈ {0, 1}. Finally, for any subset c ⊆ {1, . . . , ℓ}, we let Auth(c) :=

S
i∈c Auth(i)

be the union of the authentication paths of the considered leaves, and we define
the octopus Octo(c) to be the restriction of Auth(c) to its leaves, but excluding
the leaves lf(i) for i ∈ c, i.e.,

Octo(c) := leaves(Auth(c)) \ {lf(i) | i ∈ c}
where, for any subtree T of Tree, leaves(T) := {v ∈ T | (v∥0), (v∥1) ̸∈ T}.

Extending on the above notation, for a given hash function H : X → Y,
where X = {0, 1}≤B and Y = {0, 1}n for sufficiently large B, we define the
Merkle tree of m = (m1, ...,mℓ) ∈ X ℓ to be the labeled binary tree that has
its leaves lf(1), . . . , lf(ℓ) labeled by H(m1), ..., H(mℓ), respectively, and each
internal vertex is labeled by the hash of the labels of its two children. Formally,

MTreeH(m) :=
��

v, lv(m)
� �� v ∈ Tree

	

with the labeling lv(m) recursively defined as

lv(m) := H
�
lv∥0(m)∥lv∥1(m)

�
for v ∈ {0, 1}<h

185

5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

and
llf(i)(m) := H(mi) for i ∈ {1, . . . , ℓ} ,

where we leave the dependency of the labeling on H, i.e., lv = lHv , implicit. We
also write MRootH(m) then for the root label l∅(m). In the same spirit, we write
MAuthH(c,m) :=

��
v, lv(m)

� �� v ∈ Auth(c)
	

for the labeled authentication
path and MOctoH(c,m) :=

��
v, lv(m)

� �� v ∈ Octo(c)
	

for the labeled octopus,
using the same labeling function as for the Merkle tree.

y

H(m2) H(m3)H(m1) H(m4) H(m5) H(m6) H(m7) H(m8)

Fig. 5.1. The Merkle tree MTreeH(m) for m = (m1, . . . ,m8) with MRootH(m) = y. The
yellow vertices mark the octopus MOctoH({1},m), which is revealed (along with m1) when
opening the commitment y to m1.

A Merkle-tree-based C&O protocol is now defined to be a variation of a
C&O protocol, where the first message of the protocol, i.e., the commitment
of m = (m1, . . . ,mℓ), is computed as y = MRootH(m), and the response z
for challenge-set c then consists of the messages mc = (mi)i∈c together with
O = MOctoH(c,m). The verifier V then accepts if and only if mc and O “hash
down to” y and the predicate V (λ, inst, c,mc, a) is satisfied. More formally, the
former means that V computes MAuthH(c,m) from O ∪ {(lf(i), H(mi)) | i ∈ c}
in the obvious way, and then checks whether l∅(m) = y. This verification is
denoted by OctoVerifyH(c, y,mc, O), see Figure 5.2.

Looking ahead, we may also consider a variation where the verifier resamples
the challenge c if the resulting octopus is bigger than a given bound. Formally,
this means that the challenge space of the Merkle-tree-based C&O protocol is
restricted to those challenges c ∈ [ℓ] for which Octo(c) is not too large.

186

5.5. Online Extractability of the FS-Transformation: The Case of
Merkle-tree-based C&O Protocols

VP
a◦, y = MRootH(m)

c

mc, O = MOctoH(c,m)

OctoVerifyH(c, y,mc, O) ∧ V (inst, c,mc, a◦)

c ← C ⊆ 2[ℓ]

Fig. 5.2. A Merkle-tree based C&O Σ-protocol, formally introduced in Section 5.5.1.

5.5.2 Online Extractability of the Fiat-Shamir Transformation

The analysis in Section 5.4 can be generalized to the case of FS-transformed
Merkle-tree-based C&O protocols. To that end, we generalize the notation from
that section as follows. Let Π be a Merkle-tree-based C&O protocol with num-
ber of messages to be committed equal to ℓ = 2h where h is the height of the
commitment Merkle tree.11

For a given database D ∈ D, recall from Section 5.4 the definition of D−1;
applied to a tuple y = (y1, . . . , yℓ) ∈ Yℓ of commitments, D−1 attempts to
recover the corresponding committed messages m1, . . . ,mℓ. Here, in a similar
spirit but now considering the Merkle-tree commitment, MRoot−1

D attempts to
recover the committed messages from the root label of the Merkle tree.

In more detail, for a commitment y ∈ Y = {0, 1}n we reverse engineer
the Merkle tree in the obvious way (see Figure 5.3 for an example); namely,
accepting a small clash in notation with the labeling function lv(m) defined for
a tuple m ∈Mℓ, we set the root label l∅(y) := y, and recursively define

�
lv∥0(y), lv∥1(y)

�
:= split ◦D−1

�
lv(y)

�
∈ Y × Y

for ∅ ̸= v ∈ {0, 1}≤h, where split maps any 2n-bit string, parsed as y1∥y2 with
y1, y2 ∈ {0, 1}n, to the pair (y1, y2) of n-bit strings, while it maps anything else
to (⊥,⊥). Then, accepting a small clash in notation again, we set

MTreeD(y) := {lv(y) | v ∈ {0, 1}≤h} ,

and finally

MRoot−1
D (y) :=

�
D−1

�
llf(1)(y)

�
, . . . , D−1

�
llf(ℓ)(y)

��
.

11 As in the previous section we assume that ℓ is a power of 2 for ease of exposition.

187

5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

Following the strategy we used in Section 5.4, we define the database property

SUC :=

�
D

����
∃ y ∈ Y and inst ∈ I so that m := MRoot−1

D (y) satisfies
V (inst, c,mc) for c := γ ◦D(inst, y) and

�
inst, E∗(inst,m)

�
̸∈ R

�
,

and our first goal is to show that
q
⊥ q

=⇒ SUC ∪ CL
y

is small.

Lemma 5.22. Let Π be an S-sound C&O protocol with pStriv as defined in (47).
Then

q
⊥ q

=⇒ SUC ∪ CL
y
≤ 2eq3/22−n/2 + q

q
10max

�
qℓ · 2−n+1, pStriv

�
.

The proof works exactly as the proof of Lemma 5.16, accounting for some
syntactic differences due to the Merkle tree commitment. In particular, where
in Case 1 and 2 of the proof of Lemma 5.16 we have to exclude U from falling on
one of the hash values y1, . . . , yℓ in order to keep the m that was constructed
from the database intact, we now have a similar restriction for U , but with
respect to the whole tree MTreeD(y).

Proof. As in the proof of of Lemma 5.16, we can bound

q
⊥ q

=⇒ SUC ∪ CL
y
≤

q−1X

s=0

�q
SZ≤s\CL→ CL

y
+

q
SZ≤s\SUC→ SUC

y�
(56)

and use that
q
SZ≤s\CL→ CL

y
≤ 2e

p
(s+ 1)/2n ≤ 2e

p
q/2n . (57)

Thus, it remains to control the second term, which we will do again by means
of Theorem 5.4 with P := SZ≤s\ SUC and P′ := SUC.

To this end, we consider arbitrary but fixed D ∈ D and input x ∈ X . By
Remark 5.5, we may assume that D(x) = ⊥. Furthermore, for P|D|x to be non-
empty, it must be that D ∈ SZ≤s, i.e., D is bounded in size. We now distinguish
between the following cases for the considered D and x.

Case 1: D ∈ SUC. In particular, ⊥ ∈ SUC|D|x = P′
D|x . So, Theorem 5.4

instructs us to set := PD|x , where we leave the dependency of on D and x
implicit. Given that D ∈ SUC, we can consider inst and y as promised by the
definition of SUC above, i.e., such that V (inst, c,mc) and (inst, E∗(inst,m)) /∈ R
for

c := γ ◦D(inst, y) and m := MRoot−1
D (y) . (58)

188

5.5. Online Extractability of the FS-Transformation: The Case of
Merkle-tree-based C&O Protocols

Note that, since D(x) = ⊥ and V (inst, c,mc) holds, which in particular means
that c must be defined, it must be that x ̸= (inst, y). Therefore

γ ◦D(inst, y) = γ ◦D[x 7→ u](inst, y) . (59)

Our goal now is to show the final implication in

u ∈ L ⇐⇒ D[x 7→u] ∈ P =⇒ D[x 7→u] ̸∈ SUC =⇒ u ∈ MTreeD(y) .

We will do this by showing that u /∈ MTreeD(y) implies

MRoot−1
D (y) = MRoot−1

D[x7→u](y) . (60)

Indeed, the contraposition u /∈ MTreeD(y) ⇒ D[x 7→ u] ∈ SUC of the claimed
implication then follows from the fact that (59) and (60) together imply that
c and m remain unchanged when replacing D by D[x 7→ u] in (58), and so
D[x 7→u] ∈ SUC as well.

Towards showing (60), exploiting again that D(x) = ⊥, it follows by defini-
tion of the reverse engineered labeling function lv(y) that x ̸= (lv||0(y), lv||1(y))
for any v with lv||0(y) ̸= ⊥ ̸= lv||1(y), i.e., x is not equal to any pair of siblings
in MTreeD(y) with non-⊥ labeling (see Figure 5.3). Due to a similar reasoning,
x ̸= mi for any i. It now follows by definition of the reverse engineered Merkle
tree and of MRoot−1 that if u /∈ MTreeD(y) then MTreeD(y) = MTreeD[x7→u](y)

and MRoot−1
D (y) = MRoot−1

D[x7→u](y), as claimed.
Thus, we can bound

P [U ∈] ≤ P [U ∈MTreeD(y)] ≤
2 · 2h − 1

|Y| =
2ℓ− 1

|Y| . (61)

Case 2: D ̸∈ SUC, and x is a “commit query”, i.e., x = m ∈ M or x =
(lv∥0, lv∥1) for two labels lv∥0, lv∥1 ∈ Y. In particular, ⊥ ̸∈ P′|D|x (given that
D(x) = ⊥) and so in the light of Theorem 5.4 we may choose L := P′|D|x . We
then have

u ∈ L ⇐⇒ D[x 7→u] ∈ P′ = SUC =⇒ ∃ inst, y : D(inst, y) ̸= ⊥∧u ∈ MTreeD(y)

where final implication can be seen as follows. By definition of SUC, the assump-
tion D[x 7→u] ∈ SUC implies the existence of inst and y with V (inst, c,mc) and�
inst, E∗(inst,m)

�
̸∈ R for

c := γ ◦D[x 7→u](inst, y) = γ ◦D(inst, y) and m := MRoot−1
D[x7→u](y) ,

189

5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

⊥ ⊥

y

D(m5) D(m6) ⊥ ⊥

Fig. 5.3. Example of a reverse engineered Merkle tree MTreeD(y), with the ⊥-children of
the ⊥-labels omitted. Since D(x) = ⊥, x ̸= (lu(y), lw(y)) for any two siblings (u,w) in
MTreeD(y), i.e., nodes with the same color. Assuming that u ̸∈ MTreeD(y) then implies that
reprogramming D to D[x 7→ u] does not affect the reverse engineered Merkle tree.

where the equality in the definition of c exploits that x is not a “challenge”
query. The fact that V (inst, c,mc) is satisfied for this c thus implies that
D(inst, y) ̸= ⊥. Next, with the goal to reach a contradiction, assume that
u /∈ MTreeD(y). Then for all ⊥ ̸= h ∈ MTreeD(y) we have that D−1(h) =
D[x 7→u]−1(h) except if D(x) = h, but this cannot be since D(x) = ⊥. It fol-
lows that MTreeD(y) = MTreeD[x 7→u](y) and MRoot−1

D (y) = MRoot−1
D[x7→u](y).

The above then implies that D ∈ SUC, a contradiction.
Thus, we can bound

P [U ∈] ≤ P [∃ inst, y : D(inst, y) ̸= ⊥∧U ∈ MTreeD(y)] ≤
s(2ℓ− 1)

|Y| ≤ q(2ℓ− 1)

|Y| .

(62)

Case 3: D ̸∈ SUC, and x is a “challenge query”, i.e., x = (inst, y) ∈ I × Y.
Set m := MRoot−1

D (y). Again, we have that ⊥ ̸∈ SUC|D|x = P′
D|x , and so by

Theorem 5.4 we may set := P′
D|x . Here, we can argue that

u ∈ L ⇐⇒D[x 7→u] ∈ P′ = SUC

=⇒ V (inst, γ(u),mγ(u)) and
�
inst, E∗(inst,m)

�
̸∈ R ,

where the final implication can be seen as follows. By definition of SUC,
the assumption D[x 7→ u] ∈ SUC implies the existence of inst′ and y′ with
V (inst′, c,m′

c) and
�
inst′, E∗(inst′,m′)

�
̸∈ R for

c := γ ◦D[x 7→u](inst′, y′) and m′ := MRoot−1
D[x7→u](y

′) = MRoot−1
D (y′) ,

190

5.5. Online Extractability of the FS-Transformation: The Case of
Merkle-tree-based C&O Protocols

where the very last equality exploits that x is not a “commit” query. With
the goal to come to a contradiction, assume that (inst′, y′) ̸= (inst, y) = x.
Then, c = γ ◦D[x 7→u](inst′, y′) = γ ◦D(inst′, y′), and the above then implies
that D ∈ SUC, a contradiction. Thus, (inst′, y′) = (inst, y) = x. In particular,
m′ = m and c = γ ◦D[x 7→ u](inst′, y′) = γ ◦D[x 7→ u](x) = γ(u). Hence, the
claimed implication holds.

Thus, we can bound

P [U ∈] ≤ P [V (inst, γ(U),mγ(U)) ∧
�
inst, E∗(inst,m)

�
̸∈ R]

≤ P [V (inst, γ(U),mγ(U)) ∧ S := {c |V (inst, c,mc)} ̸∈ S]

≤ P [γ(U) ∈ S := {c |V (inst, c,mc)} ̸∈ S]

≤ max
S ̸∈S

P [γ(U) ∈ S]

≤ pStriv . (63)

By Theorem 5.4, we now get
q
SZ≤s\SUC\CL→ SUC

y
≤ max

x,D

q
10P

�
U ∈Lx,D

�

≤
√
10

s
max

�
2ℓ− 1

|Y| ,
q(2ℓ− 1)

|Y| , pStriv

�

≤
√
10
q

max
�
qℓ · 2−n+1, pStriv

�
,

where we have used Equations (61), (62) and (63) in the second inequality.
Combining with Equations (57) and (56) yields the desired bound. ⊓⊔

Similarly to Theorem 5.17, we now obtain the following.

Theorem 5.23. Let Π be an S-sound∗ Merkle-tree-based C&O protocol with
challenge space Cλ. Then FS[Π] is a proof of knowledge with online extractability
in the QROM (as in Definition 5.9), with εsim(λ, q, n) = 0 and

εex(λ, q, n) ≤ 2(κ log ℓ+ 1) · 2−n+

�
2eq3/22−n/2+ q

q
10max

�
qℓ · 2−n+1, pStriv

��2

≤ (22ℓ log ℓ+ 60) q32−n + 20q2pStriv

where κ = κ(λ) := maxc∈Cλ |c| and ℓ is the number of leaves of the Merkle-tree-
based commitment. The running time of the extractor is dominated by running
the compressed oracle, which has complexity O(q2)·poly(n,B), and by computing
MRoot−1

D (y) and running E∗.

191

5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

Here again the proof follows exactly the outline of its counterpart from Section
5.4.2, with some minor alterations to cope with the formalism of a Merkle-
tree based C&O Σ-protocol. The difference in the bound is simply due to the
difference between Lemmas 5.16 and 5.22.

Proof. We consider an arbitrary but fixed λ ∈ N. Let P∗ be a dishonest prover
that, after making q queries to a random oracle H, outputs and instance inst
and a proof π = (y,m◦, O) plus some (possibly quantum) auxiliary output Z,
where O is an authentication octopus as defined in Section 5.5.1. For simplicity,
we assume that |c| is the same for all c ∈ Cλ, and thus equal to κ. If it is not, we
could always make the prover output a couple of dummy outputs mi to match
the upper bound on |c|. In the experiment VE ◦ P∗E(λ), our extractor E works
as follows while simulating all queries to H (by P∗ and V) with the compressed
oracle:

1. Run P∗(λ) to obtain (inst,π, Z) with π = (y,m◦, O).
2. Compute v ← VH(inst,π), given by the truth value of

OctoVerifyH(c, y,m◦, O) ∧ V (inst, c,m◦) with c := γ(H(inst, y)) .

3. Measure the internal state of the compressed oracle to obtain D.
4. Run E∗ on input MRoot−1

D (y) to obtain w.

Note that in the views of both P∗ and V , the interaction with H and the
interaction with E differ only in that their oracle queries are answered by a com-
pressed oracle instead of a real random oracle in the latter case. This simulation
is perfect and therefore εsim(λ, q, n) = 0.

Considering P∗ as the algorithm A in Corollary 5.7, the composition V ◦P∗

then matches up with the algorithm Ã for F = V . Thus, noting that κ(log ℓ+1)
is an upper bound on the amount of queries that OctoVerify makes,

Pr
�
v ̸= VD(inst,π)

�
≤ 2(κ log ℓ+ 1) · 2−n .

Therefore, we can bound bound the figure of merit εex as

εex(λ, q, n) = Pr
�
v = 1 ∧ (inst, w) /∈ R

�

≤ Pr
�
VD(inst,π) ∧ (inst, w) /∈ R

�
+ 2(κ log ℓ+ 1) · 2−n

≤ Pr[VD(inst,π) ∧ (inst, w) /∈ R |D ̸∈ SUC ∪ CL]

+ Pr[D ∈ SUC ∪ CL] + 2(κ log ℓ+ 1) · 2−n .

192

5.5. Online Extractability of the FS-Transformation: The Case of
Merkle-tree-based C&O Protocols

Using the definition of VD(inst,π), understanding that c := γ ◦ D(inst, y),
we can write the first term as

Pr
�
OctoVerifyD(c, y,m◦, O) ∧ V (inst, c,m◦) ∧ (inst, w) /∈ R |D ̸∈ SUC ∪ CL

�

≤ Pr
�
V (inst, c,mc) for m := MRoot−1

D (y) ∧ (inst, w) /∈ R |D ̸∈ SUC ∪ CL
�

≤ Pr
�
D ∈ SUC |D ̸∈ SUC ∪ CL

�

= 0 ,

where the first equality exploits that D(m) = h iff m = D−1(h) for D ̸∈ CL.
We may thus conclude that

εex(λ, q, n) ≤ 2(κ log ℓ+ 1) · 2−n · 2−n + Pr
�
D ∈ SUC ∪ CL

�

≤ 2(κ log ℓ+ 1) · 2−n +
q
⊥ q

=⇒ SUC ∪ CL
y2

,

where the last inequality is by definition of
q
⊥ q

=⇒ ·
y
. The claimed bound now

follows from Lemma 5.22. ⊓⊔

5.5.3 Discussion: Application to Picnic, and Limiting the Proof
Size

Application to Picnic. A prominent use case of C&O protocols is the con-
struction of digital signature schemes via the Fiat-Shamir transformation. An
important example is Picnic [CDG+17] currently under consideration as an al-
ternate candidate in the NIST standardization process for post-quantum cryp-
tographic schemes. On a high level, the design of Picnic can be described as
follows. A C&O Σ-protocol is constructed using the MPC-in-the-head paradigm
[IKOS07a]. Then, the Fiat-Shamir transformation is applied in the usual way to
obtain a digital signature scheme. There are three evolutions of Picnic: Picnic-
FS, Picnic 2 and Picnic 3.12 Picnic-FS uses plain hash-based commitments,
while Picnic 2 and Picnic 3 use a Merkle-tree-based collective commitment.

All three evolutions enjoy provable post-quantum security when the hash
function used for the Fiat-Shamir transformation is modeled as a (quantum-
accessible) RO. The best reduction applying to all of them proceeds as follows.
First, Unruh’s rewinding lemma [Unr12] is used to construct a knowledge ex-
tractor for the underlying Σ-protocol based on an appropriate S-soundness no-
tion. Then, the generic QROM reduction for the Fiat-Shamir transformation
12 The original evolution also came with a variant using the Unruh transformation, Picnic-Ur.

We restrict our attention to the variants using the Fiat-Shamir transformation.

193

5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

from Theorem 3.7 is used to construct a knowledge extractor for the signa-
ture scheme in the QROM from the extractor for the Σ-protocol. Finally, the
technique from [GHHM21] is used for simulating the chosen-message oracle to
reduce breaking NMA (no-message attack) security to breaking CMA (chosen-
message attack) security. This final step connects to the previous one because
for the signature scheme the witness extracted from an NMA attacker is the
secret key.

The first two steps in this chain of reductions, i.e. Unruh’s rewinding and
Theorem 3.7, are, however, not tight: The former loses at least a fifth power in
the Picnic case, and the latter a factor of q2, where q is the number of random
oracle queries. This means that an NMA attacker with success probability ϵ
can be used to break the underlying hard problem with probability Ω(ϵ5/q10)
(or worse, depending on the Picnic variant).

For Picnic-FS (only), when in addition modeling the hash function used for
the commitments as a RO, Unruh’s rewinding can be replaced with the tight
online extraction technique from Chapter 4. The remaining loss due to the
Fiat-Shamir reduction is of order ϵ/q2, up to some additive terms accounting
for search and collision finding in the RO, a sizable improvement over the above
but still not tight.

By analyzing the Fiat-Shamir transformation of a C&O protocol (with or
without Merkle tree commitments) directly, our results provide a tight alter-
native to the above lossy reductions. Using Theorems 5.17 (for Picnic-FS) and
5.23 (for Picnic 2 and Picnic 3) we can avoid all multiplicative/power losses
in the reduction for NMA security. An NMA attacker with success probabil-
ity ϵ can, in other words, be used to break the underlying hard problem with
probability ϵ, up to some unavoidable additive terms accounting for search and
collision finding in the RO.

An observation about octopus opening sizes. Depending on the param-
eters of the C&O protocol, the octopus opening information, MOcto(c,m) can
be significantly smaller than the concatenation of the individual authentication
paths. On the other hand, it is also variable in size (namely dependent on the
choice of the challenge c), and the variance can be significant (see e.g. the com-
putations for gravity SPHINCS in [AE18]). In the context of a digital signature
scheme constructed via the Fiat-Shamir transformation of a Merkle-tree-based
C&O protocol, like, e.g., Picnic 2 and Picnic 3, this leads to the undesirable
property of a variable signature size, where signatures can be quite a bit larger
in the worst case than on average. This might, e.g., lead to problems when look-

194

5.5. Online Extractability of the FS-Transformation: The Case of
Merkle-tree-based C&O Protocols

ing for a drop-in replacement for quantum-broken digital signature schemes for
use in a larger protocol, where signatures need to be stored in a data field of
fixed size.

One option to mitigate this situation is to cut off the tail of the octopus size
distribution, i.e. to restrict the challenge space of the Merkle-tree-based C&O
protocol to the set of challenges whose octopus is not larger than some bound.
This can be done before applying the Fiat-Shamir transformation, e.g. using
rejection sampling. In that way, one obtains a digital signature scheme with
significantly reduced worst case signature size, at the expense of a tiny security
loss.

5.5.4 The Merkle-Tree-Based Unruh Transformation

The Merkle tree based commitment mechanism can replace plain random-oracle
based commitments in any ordinary C&O protocol, in particular in Π := pU[Σ]
for any Σ-protocol Σ. The result is a Merkle-tree-based C&O protocol and we
obtain a corollary analogous to Corollary 5.21.

Corollary 5.24. Let Σ be an S-sound Σ-protocol with challenge space size ℓ0.
Then FS[MPpUr[Σ]] is online-extractable with

εex ≤ (22rℓ0 log (rℓ0) + 60) q32−n + 20q2
�
pStriv

�r
(64)

where MPpUr[Σ] is the Merkle-tree-based, Parallel-repeated, pre-Unruh trans-
formation of Σ, i.e., the Merkle-tree-based C&O protocol obtained by replacing
the commitments of pU[Π]r with a Merkle-tree-based collective commitment.

195

