
Pixton’s formula and Abel–Jacobi theory on the Picard stack
Bae, Y.; Holmes, D.S.T.; Pandharipande, R.; Schmitt, J.; Schwarz, R.M.

Citation
Bae, Y., Holmes, D. S. T., Pandharipande, R., Schmitt, J., & Schwarz, R. M. (2023). Pixton’s
formula and Abel–Jacobi theory on the Picard stack. Acta Mathematica, 230(2), 205-319.
doi:10.4310/ACTA.2023.v230.n2.a1
 
Version: Publisher's Version
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/3714186
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/3714186


Acta Math., 230 (2023), 205–319

DOI: 10.4310/ACTA.2023.v230.n2.a1

© 2023 by Institut Mittag-Leffler. All rights reserved

Pixton’s formula and Abel–Jacobi theory
on the Picard stack

by

Younghan Bae

ETH Zürich
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0. Introduction

0.1. Double ramification cycles

Let A=(a1, ..., an) be a vector of n integers satisfying

n∑
i=1

ai=0.

In the moduli space Mg,n of non-singular curves of genus g with n marked points,

consider the substack defined by the following classical condition:{
(C, p1, ..., pn)∈Mg,n :OC

( n∑
i=1

aipi

)
≃OC

}
. (0.1)

From the point of view of relative Gromov–Witten theory, the most natural compacti-

fication of the substack (0.1) is the space �M∼
g,A of stable maps to rubber : stable maps

to CP1 relative to zero and ∞ modulo the C∗-action on CP1. The rubber moduli space

carries a natural virtual fundamental class [�M∼
g,A]

vir of (complex) dimension 2g−3+n.

The pushforward via the canonical morphism

ε: �M∼
g,A−! �Mg,n

is the double ramification cycle

ε∗[�M∼
g,A]

vir =DRg,A ∈CH2g−3+n(�Mg,n).

Double ramification cycles have been studied intensively for the past two decades.

Examples of early results can be found in [17], [18], [21], [25], [33], [35], [57]. A complete

formula was conjectured by Pixton in 2014 and proven in [42]. For subsequent study and

applications, see [4], [16], [20], [26], [28], [37]–[39], [59], [62], [66], [72], [75]. Essential for

our work is the formula for double ramification cycles for target varieties in [43].

We refer the reader to [42, §0] and [64, §5] for introductions to the subject. For a

classical perspective from the point of view of Abel–Jacobi theory, see [37].

0.2. Twisted double ramification cycles

We develop here a theory which extends the study of double ramification cycles from

the moduli space of stable curves �Mg,n to the Picard stack of curves with line bundles

Picg,n. An object of Picg,n over S is a flat family

π: C −!S
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of prestable(1) n-pointed genus-g curves together with a line bundle

L−! C.

The Picard stack Picg,n is an algebraic (Artin) stack which is locally of finite type; see

§2.1 for a treatment of foundational issues.

Since the degree of a line bundle is constant in flat families, there is a disjoint union

Picg,n=
⋃
d∈Z

Picg,n,d,

where Picg,n,d is the Picard stack of curves with degree-d line bundles. Let

A=(a1, ..., an),

n∑
i=1

ai= d,

be a vector of integers. The first result of the paper is the construction of a universal

twisted double ramification cycle in the operational Chow theory(2) of Picg,n,d,

DRop
g,A ∈CHgop(Picg,n,d).

The geometric intuition behind the construction is simple. Let

π: C −!S, p1, ..., pn:S −! C, L−! C

be an object of Picg,n,d. The class DRop
g,A should operate as the locus in the base S

heuristically determined by the condition

OC

( n∑
i=1

aipi

)
≃L|C .

To make the above idea precise, we do not use the virtual class of the moduli

space of stable maps in Gromov–Witten theory, but rather an alternative approach by

partially resolving the classical Abel–Jacobi map. The method follows the path of [37],

[39] and may be viewed as a universal Abel–Jacobi construction over the Picard stack.

Log geometry based on the stack of tropical divisors constructed in [56] plays a crucial

role. Our construction is presented in §3.8.
The basic compatibility of our new operational class

DRop
g,A ∈CHgop(Picg,n,d)

(1) A prestable n-pointed curve is a connected nodal curve with markings at distinct non-singular

points. For the entire paper, we avoid the (g, n)=(1, 0) case because of non-affine stabilizers.
(2) All Chow theories in the paper will be taken with Q-coefficients.
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with the standard double ramification cycle is as follows. Let

A=(a1, ..., an),

n∑
i=1

ai=0,

be given. The universal data

π: Cg,n−! �Mg,n, O−! Cg,n (0.2)

determine a map φO: �Mg,n!Picg,n,0. The action of DRop
g,A on the fundamental class

of �Mg,n corresponding to the family (0.2) then equals the previously defined double

ramification cycle

DRop
g,A(φO)([�Mg,n]) =DRg,A ∈CH2g−3+n(�Mg,n).

More generally, for a vector A=(a1, ..., an) of integers satisfying

n∑
i=1

ai= k(2g−2),

canonically twisted double ramification cycles,

DRg,A,ωk ∈CH2g−3+n(�Mg,n),

related to the classical loci{
(C, p1, ..., pn)∈Mg,n :OC

( n∑
i=1

aipi

)
≃ωkC

}
,

have been constructed in [34] for k=1 and in [37], [38], [56] for all k⩾1. The universal

data

π: Cg,n−! �Mg,n, ωkπ −! Cg,n (0.3)

determine a map φωk
π
: �Mg,n!Picg,n,k(2g−2). Here, ωπ is the relative dualizing sheaf of

the morphism π.

The action of DRop
g,A on the fundamental class of �Mg,n corresponding to the family

(0.3) is compatible with the constructions of [34], [37], [38], [56],

DRop
g,A(φωk

π
)([�Mg,n]) =DRg,A,ωk ∈CH2g−3+n(�Mg,n)

for all k⩾1.

The above compatibilities of DRop
g,A with the standard and canonically twisted double

ramification cycles are proven in §3.7.
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Theorem 0.1. Let g⩾0 and d∈Z. Let A=(a1, ..., an) be a vector of integers satis-

fying
n∑
i=1

ai= d.

Logarithmic compactification of the Abel–Jacobi map yields a universal twisted double

ramification cycle

DRop
g,A ∈CHgop(Picg,n,d)

which is compatible with the standard double ramification cycle

DRg,A,ωk ∈CH2g−3+n(�Mg,n)

in case d=k(2g−2) for k⩾0.

0.3. Pixton’s formula

0.3.1. Prestable graphs

We define the set Gg,n of prestable graphs as follows. A prestable graph Γ∈Gg,n consists

of the data

Γ= (V,H,L, g:V!Z⩾0, v: H!V, ι: H!H)

satisfying the following properties:

(i) V is a vertex set with a genus function g:V!Z⩾0;

(ii) H is a half-edge set equipped with a vertex assignment v: H!V and an involu-

tion ι;

(iii) E, the edge set, is defined by the 2-cycles of ι in H (self-edges at vertices are

permitted);

(iv) L, the set of legs, is defined by the fixed points of ι and is placed in bijective

correspondence with a set of n markings;

(v) the pair (V,E) defines a connected graph satisfying the genus condition∑
v∈V

g(v)+h1(Γ)= g.

To emphasize Γ, the notation V(Γ), H(Γ), L(Γ), and E(Γ) will also be used for the

vertex, half-edges, legs, and edges of Γ, respectively.

An isomorphism between Γ,Γ′∈Gg,n consists of bijections V!V′ and H!H′ re-

specting the structures L, g, v, and ι. Let Aut(Γ) denote the automorphism group of Γ.
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While the set of isomorphism classes of prestable graphs is infinite, the set of iso-

morphism classes of prestable graphs with prescribed bounds on the number of edges is

finite.

Let Mg,n be the algebraic (Artin) stack of prestable curves of genus g with n marked

points. A prestable graph Γ determines an algebraic stack MΓ of curves with degenera-

tions forced by the graph,

MΓ =
∏
v∈V

Mg(v),n(v),

together with a canonical(3) map

jΓ:MΓ −!Mg,n.

Since Mg,n is smooth and the morphism jΓ is proper, representable, and lci, we obtain

an operational Chow class on the algebraic stack of curves,

jΓ∗[MΓ]∈CH|E(Γ)|
op (Mg,n).

Via the morphism of algebraic stacks,

ε:Picg,n,d−!Mg,n,

jΓ∗[MΓ] also defines an operational Chow class on the Picard stack,

ε∗jΓ∗[MΓ]∈CH|E(Γ)|
op (Picg,n,d).

0.3.2. Prestable graphs with degrees

We will require a refinement of the prestable graphs of §0.3.1 which includes degrees of

line bundles.

We define the set Gg,n,d of prestable graphs of degree d as follows:

Γδ =(Γ, δ)∈Gg,n,d

consists of the data

• a prestable graph Γ∈Gg,n;
• a function δ: V!Z satisfying the degree condition∑

v∈V
δ(v)= d.

(3) To define the map, we choose an ordering on the half-edges at each vertex.
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The function δ is often called the multidegree.

An automorphism of Γδ∈Gg,n,d consists of an automorphism of Γ leaving δ invariant.

Let Aut(Γδ) denote the automorphism group of Γδ.

For Γδ∈Gg,n,k, let MΓ be the algebraic stack of curves defined in §0.3.1 with respect

to the underlying prestable graph Γ. Let PicΓδ
be the Picard stack,

ε:PicΓδ
−!MΓ,

parameterizing curves with degenerations forced by Γ and with line bundles which have

degree δ(v) restriction to the components corresponding to the vertex v∈V. We have a

canonical map

jΓδ
:PicΓδ

−!Picg,n,d.

Since Picg,n,d is smooth and the morphism jΓδ
is proper, representable, and lci, we obtain

an operational Chow class,

jΓδ∗[PicΓδ
]∈CH|E(Γ)|

op (Picg,n,d).

As operational Chow classes, the following formula holds:

ε∗jΓ∗[MΓ] =
∑
δ

jΓδ∗[PicΓδ
]∈CH|E(Γ)|

op (Picg,n,d), (0.4)

where the sum(4) is over all functions δ :V!Z satisfying the degree condition. Equiva-

lently, we may write (0.4) as

1

|Aut(Γ)|
ε∗jΓ∗[MΓ] =

∑
Γδ∈Gg,n,d

1

|Aut(Γδ)|
jΓδ∗[PicΓδ

]∈CH|E(Γ)|
op (Picg,n,d),

where the sum on the right-hand side is now over all isomorphism classes of prestable

graphs of degree d with underlying prestable graph Γ.

0.3.3. Tautological ψ, ξ, and η classes

The universal curve

π:Cg,n−!Picg,n

carries two natural line bundles: the relative dualizing sheaf ωπ and the universal line

bundle

L−!Cg,n.

(4) The sum is infinite, but only finitely many terms are non-zero in any operation.
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Let pi be the ith section of the universal curve, let

Si⊂Cg,n

be the corresponding divisor, and let

ωlog =ωπ

( n∑
i=1

Si

)
be the relative log-canonical line bundle with first Chern class c1(ωlog). Let

ξ= c1(L)

be the first Chern class of L.

Definition 0.2. The following operational classes on Picg,n are obtained from the

following universal structures:

• ψi=c1(p
∗
iωπ)∈CH

1
op(Picg,n) ;

• ξi=c1(p
∗
iL)∈CH

1
op(Picg,n) ;

• ηa,b=π∗(c1(ωlog)
aξb)∈CHa+b−1

op (Picg,n).

For simplicity in the formulas, we will use the notation

η= η0,2 =π∗(ξ
2).

The standard κ classes are defined by the π pushforwards of powers of c1(ωlog),

ηa,0 =κa−1.

Definition 0.3. A decorated prestable graph [Γδ, γ] of degree d is a prestable graph

Γδ∈Gg,n,d of degree d together with the following decoration data γ:

• each leg i∈L is decorated with a monomial ψai ξ
b
i ;

• each half-edge h∈H\L is decorated with a monomial ψah;

• each edge e∈E is decorated with a monomial ξae ;

• each vertex in V is decorated with a monomial in the variables {ηa,b}a+b⩾2.

In all four cases, the monomial may be be trivial.

Let DGg,n,d be the set of decorated prestable graphs of degree d. To each decorated

graph of degree d,

[Γδ, γ]∈DGg,n,d,

we assign the operational class

jΓδ∗[γ]∈CH∗
op(Picg,n,d)
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obtained via the proper representable morphism

jΓδ
:PicΓδ

−!Picg,n,d

and the action of the decorations.

The action of decorations is described as follows. Given Γδ∈Gg,n,k, the stack PicΓδ

admits a morphism(5)

PicΓδ
−!

∏
v∈V(Γδ)

Picg(v),n(v),δ(v)

which sends a line bundle L on a prestable curve C to its restrictions on the various

components,

L|Cv
, v ∈V(Γδ).

For v∈V(Γδ), we define the operational class η(v) on PicΓδ
as the pullback of the op-

erational class η on the factor Picg(v),n(v),δ(v) above. The operational classes ψ at the

markings and ξ at the half-edges are defined similarly.

Definition 0.4. The tautological classes in CH∗
op(Picg,n,d) consist of the Q-linear span

of the operational classes associated with all [Γδ, γ]∈DGg,n,d.

By standard analysis [30], the tautological classes have a natural ring structure. Our

formula for DRop
g,A will be a sum of operational classes determined by decorated prestable

graphs of degree d=
∑n
i=1 ai (and hence will be tautological).

0.3.4. Weightings mod r

Let Γδ∈Gg,n,d be a prestable graph of degree d, and let r be a positive integer.

Definition 0.5. A weighting mod r of Γδ is a function on the set of half-edges,

w: H(Γδ)−! {0, 1, ..., r−1},

which satisfies the following three properties:

(i) for all i∈L(Γδ), corresponding to the marking i∈{1, ..., n},

w(i)= ai mod r;

(ii) for all e∈E(Γδ), corresponding to two half-edges h, h′∈H(Γδ),

w(h)+w(h′)= 0 mod r;

(5) The fibers of the map are torsors under the group Gh1(Γ)
m .
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(iii) for all v∈V(Γδ), ∑
v(h)=v

w(h)= δ(v) mod r,

where the sum is taken over all n(v) half-edges incident to v.

We denote by WΓδ,r the finite set of all possible weightings mod r of Γδ. The set

WΓδ,r has cardinality rh
1(Γδ). We view r as a regularization parameter.

0.3.5. Calculation of the twisted double ramification cycle

We denote by Pc,rg,A,d∈CH
c
op(Picg,n,d) the codimension-c(6) component of the tautological

operational class

∑
Γδ∈Gg,n,d

w∈WΓδ,r

r−h
1(Γδ)

|Aut(Γδ)|
jΓδ∗

[ n∏
i=1

exp

(
1

2
a2iψi+aiξi

) ∏
v∈V(Γδ)

exp

(
−1

2
η(v)

)

×
∏

e=(h,h′)∈E(Γδ)

1

ψh+ψh′

(
1−exp

(
−w(h)w(h

′)

2
(ψh+ψh′)

))]
.

Several remarks about the formula are required.

(i) The sum is over all isomorphism classes of prestable graphs of degree d in the set

Gg,n,d. Only finitely many underlying prestable graphs Γ∈Gg,n can contribute in fixed

codimension c. However, for each such prestable graph, the above formula has infinitely

many summands corresponding to the infinitely many functions

δ: V−!Z

which satisfy the degree condition. The operational Chow class Pc,rg,A,d is nevertheless

well defined, since only finitely many summands have non-vanishing operation on any

given family of curves carrying a degree-d line bundle over a base S of finite type.

(ii) Once the prestable graph Γδ is chosen, we sum over all rh
1(Γδ) different weight-

ings w∈WΓδ,r.

(iii) Inside the pushforward in the above formula, the first product

n∏
i=1

exp

(
1

2
a2iψhi

+aiξhi

)

is over h∈L(Γ) via the correspondence of legs and markings.

(6) Codimension here is usually called degree. But since we already have line bundle degrees, we
use the term codimension for clarity.
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(iv) The class η(v) is the η0,2 class of Definition 0.2 associated with the vertex.

(v) The third product is over all e∈E(Γδ). The factor

1

ψh+ψh′

(
1−exp

(
−w(h)w(h

′)

2
(ψh+ψh′)

))
is well defined, since

• the denominator formally divides the numerator,

• the factor is symmetric in h and h′.

No edge orientation is necessary.

The following fundamental polynomiality property of Pc,rg,A,d is parallel to Pixton’s

polynomiality in [42, Appendix] and is a consequence of [42, Proposition 3′′].

Proposition 0.6. For fixed g, A, d, and c and a decorated graph [Γδ, γ] of degree d,

the coefficient of jΓδ∗[γ] in the tautological class

Pc,rg,A,d ∈CHcop(Picg,n,d)

is polynomial in r (for all sufficiently large r).

We denote by Pcg,A,d the value at r=0 of the polynomial associated with Pc,rg,A,d by

Proposition 0.6. In other words, Pcg,A,d is the constant term of the associated polynomial

in r.

The main result of the paper is a formula for the universal twisted double ramification

cycle in operational Chow.(7)

Theorem 0.7. Let g⩾0 and d∈Z. Let A=(a1, ..., an) be a vector of integers with

n∑
i=1

ai= d.

The universal twisted double ramification cycle is calculated by Pixton’s formula:

DRop
g,A=Pgg,A,d ∈CHgop(Picg,n,d).

Theorem 0.7 is the most fundamental formulation of the relationship between Abel–

Jacobi theory and Pixton’s formula that we know. Certainly, Theorem 0.7 implies the

double ramification cycle and X-valued double ramification cycle results of [42], [43].

But since we will use [43] in the proof of Theorem 0.7, we provide no new approach to

these older results. However, the additional depth of Theorem 0.7 immediately allows

new applications.

(7) Our handling of the prefactor 2−g in [42, Theorem 1] differs here. The factors of 2 are now
placed in the definition of Pc,r

g,A,d as in [43].
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0.4. Vanishing

From his original double ramification cycle formula, Pixton conjectured an associated

vanishing property in the tautological ring of the moduli space of curves which was

proven by Clader and Janda [21]. The parallel vanishing statement in the tautological

ring of the moduli space of stable maps to X was proven in [4]. The most general

vanishing statement is the following result.

Theorem 0.8. Let g⩾0 and d∈Z. Let A=(a1, ..., an) be a vector of integers with

n∑
i=1

ai= d.

Pixton’s vanishing holds in operational Chow :

Pcg,A,d=0∈CHcop(Picg,n,d) for all c> g.

Theorem 0.8 may be viewed as providing relations among tautological classes in the

operational Chow ring of the Picard stack—a new direction of study with many open

questions.(8) While Theorem 0.8 implies the vanishings of [4], [21], we will use these

results in our proof.

0.5. Twisted holomorphic and meromorphic differentials

0.5.1. Fundamental classes

Let A=(a1, ..., an) be a vector of zero and pole multiplicities satisfying

n∑
i=1

ai=2g−2.

Let Hg(A)⊂Mg,n be the quasi-projective locus of pointed curves (C, p1, ..., pn) satisfying

the condition

OC

( n∑
i=1

aipi

)
≃ωC .

In other words, Hg(A) is the locus of meromorphic differentials(9) with zero and pole

multiplicities prescribed by A. In [28], a compact moduli space of twisted canonical

divisors

H̃g(A)⊂ �Mg,n

(8) See [67], [77] for tautological relations on the Picard variety over the moduli space of smooth

curves.
(9) If all the parts of A are non-negative, then Hg(A) is the locus of holomorphic differentials.



218 y. bae, d. holmes, r. pandharipande, j. schmitt and r. schwarz

is constructed which contains Hg(A) as an open set.

In the strictly meromorphic case, where A contains at least one strictly negative part,

H̃g(A) is of pure codimension g in �Mg,n by [28, Theorem 3]. A weighted fundamental

cycle of H̃g(A),

Hg,A ∈CH2g−3+n(�Mg,n), (0.5)

is constructed in [28, Appendix A] with explicit non-trivial weights on the irreducible

components. In the strictly meromorphic case, Hg(A)⊂�Mg,n is also of pure codimen-

sion g. The closure

Hg(A)⊂ �Mg,n

contributes to the fundamental class Hg,A with multiplicity 1, but there are additional

boundary contributions, see [28, Appendix A].

The universal family over the moduli space of stable curves together with the relative

dualizing sheaf,

π: Cg,n−! �Mg,n, ωπ −! Cg,n, (0.6)

determine an object of Picg,n,2g−2. By [40] and the compatibility of Theorem 0.1, the

action of DRop
g,A on the fundamental class of �Mg,n equals the weighted fundamental class

of H̃g(A):

DRop
g,A(φω)([

�Mg,n]) =Hg,A ∈CH2g−3+n(�Mg,n).

We can now apply Theorem 0.7 to prove the following result.

Theorem 0.9. In the strictly meromorphic case,

Hg,A=Pgg,A,2g−2[
�Mg,n]

for the universal family

π: Cg,n−! �Mg,n, ωπ −! Cg,n.

Theorem 0.9 is exactly equivalent to Conjecture A in [28, Appendix A]. Since both

the moduli space H̃g(A) and the weighted fundamental cycle Hg,A have explicit geometric

definitions, the result provides a geometric representative of Pixton’s cycle class in terms

of twisted differentials. Theorem 0.9 is proven in §8.1, where the parallel conjectures [72]
for higher differentials are also proven (by parallel arguments).

0.5.2. Closures

Let A=(a1, ..., an) be a vector of integers satisfying

n∑
i=1

ai=2g−2.
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A careful investigation of the closure

Hg(A)⊂ 
Hg(A)⊂ �Mg,n

is carried out in [8] in both the holomorphic and meromorphic cases. By a simple

procedure presented in [28, Appendix], Theorem 0.9 determines the cycle classes of the

closures

[
Hg(A)]∈CH∗(�Mg,n).

for A in both the holomorphic and meromorphic cases.

A similar procedure determines the corresponding classes for k-differentials, see [72,

§3.4] for an explanation. In particular, our results imply that the cycle classes of the

closures are tautological(10) for all k (as was previously known only for k=1, due to

[70]).

In the case of holomorphic differentials, another approach to the class of the closure


Hg(A)⊂ �Mg,n

is provided by Conjecture A.1 in [65, Appendix] via a limit of Witten’s r-spin class. A

significant first step in the proof of [65, Conjecture A.1] by Chen, Janda, Ruan, and

Sauvaget can be found in [19]. Further progress requires a virtual localization analysis

for moduli spaces of stable log maps. An approach to Theorem 0.9 using log stable maps,

virtual localization in the log context, and the strategy of [42] also appears possible (once

the required moduli spaces and localization formulas are established).

0.6. Invariance properties

The universal twisted double ramification cycle has several basic invariance properties

which play an important role in our study.

Recall that an object of Picg,n,d over S is a flat family of prestable n-pointed genus-g

curves together with a line bundle of relative degree d,

π: C −!S, p1, ..., pn:S −! C, L−! C. (0.7)

Let DRop
g,A,L∈CH

g
op(S) be the twisted double ramification cycle associated with the above

family (0.7) and the vector

A=(a1, ..., an), d=

n∑
i=1

ai.

(10) The precise statement is given in Corollary 8.2 of §8.2.
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Invariance I. (Dualizing)

A new object of Picg,n,−d over S is obtained from (0.7) by dualizing L:

π: C!S, p1, ..., pn :S! C, L∗! C. (0.8)

Let DRop
g,−A,L∗∈CHgop(S) be the twisted double ramification cycle associated with the

new family (0.8) and the vector −A=(−a1, ...,−an). We have the invariance

DRop
g,−A,L∗ = ε∗DRop

g,A,L,

where ε:Picg,n,−d!Picg,n,d is the natural map obtained via dualizing the line bundle.

Invariance II. (Unweighted markings)

Assume that we have an additional section pn+1:S!C of π which yields an object

of Picg,n+1,d:

π: C!S, p1, ..., pn, pn+1:S! C, L! C. (0.9)

Let A0∈Zn+1 be the vector obtained by appending zero (as the last coefficient) to A.

Let DRop
g,A0,L∈CH

g
op(S) be the twisted double ramification cycle associated with the new

family (0.9) and the vector A0. We have the invariance

DRop
g,A0,L =F ∗DRop

g,A,L,

where F :Picg,n+1,d!Picg,n,d is the map forgetting the last marking.

Invariance III. (Weight translation)

Let B=(b1, ..., bn)∈Zn satisfy
n∑
i=1

bi= e.

Then, the family

π: C −!S, p1, ..., pn:S −! C, L
( n∑
i=1

bipi

)
−! C. (0.10)

defines an object of Picg,n,d+e. Let DRop
g,A+B,L(

∑
i bipi)

∈CHgop(S) be the twisted double

ramification cycle associated with the new family (0.10) and the vector A+B. We have

the invariance

DRop
g,A+B,L(

∑
i bipi)

=DRop
g,A,L.
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Invariance IV. (Twisting by pullback)

Let B!S be any line bundle on the base. By tensoring (0.7) with π∗B, we obtain

a new object of Picg,n,d over S:

π: C −!S, p1, ..., pn:S −! C, L⊗π∗B−! C. (0.11)

Let DRop
g,A,L⊗π∗B∈CH

g
op(S) be the twisted double ramification cycle associated with the

new family (0.11) and the vector A. We have the invariance

DRop
g,A,L⊗π∗B =DRop

g,A,L.

Invariance V. (Vertical twisting)

Consider a partition of the genus, marking, and degree data:

g1+g2 = g, N1⊔N2 = {1, ..., n}, d1+d2 = d, (0.12)

which is not symmetric.(11) Such a partition defines a divisor

∆1 ∈CH1(Cg,n,d)

in the universal curve over Picg,n,d by twisting by the (g1, N1, d1)-component of a curve

with a separating node with separating data (0.12).

By tensoring (0.7) with OC(∆1), we obtain a new object of Picg,n,d over S:

π: C −!S, p1, ..., pn:S −! C, L(∆1)−! C. (0.13)

Let

DRop
g,A,L(∆1)

∈CHgop(S)

be the twisted double ramification cycle associated with the new family (0.13) and the

vector A. We have the invariance

DRop
g,A,L(∆1)

=DRop
g,A,L. (0.14)

For symmetric separating data (0.12), equality (0.14) holds with ∆1⊂Cg,n,d defined

as the full preimage of the locus ∆⊂Picg,n,d of curves with a separating node (0.12).

Then, equality (0.14) follows from Invariance IV with B=O(∆).

(11) We require (g1, N1, d1) ̸=(g2, N2, d2) so that the two sides of a separating node with separating

data (0.12) can be distinguished.
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Invariance VI. (Partial stabilization)

Consider a second family of prestable n-pointed genus-g curves over S,

π′: C′ −!S, p′1, ..., p
′
n:S −! C′,

together with a birational S-morphism

f : C′ −! C, f �p′i= pi.

A line bundle of relative degree d is defined on C′ by

f∗L−! C′.

We require the following property to hold:

If the section p′i meets the exceptional locus of f , then ai=0.

Let DRop
g,A,f∗L∈CH

g
op(S) be the twisted double ramification cycle associated with the

new family

π′: C′ −!S, p′1, ..., p
′
n:S −! C′, f∗L−! C′ (0.15)

and the vector A. We have the invariance

DRop
g,A,f∗L =DRop

g,A,L.

Theorem 0.7 provides two paths to viewing the above invariance properties. The

invariances can be seen either from formal properties of the geometric construction of

the universal twisted double ramification cycle or from formal symmetries of Pixton’s

formula. In fact, all invariances hold not only for the codimension-g part Pgg,A,d which

computes the double ramification cycle, but for the full mixed-degree class P�g,A,d.

For example, Invariance VI on the formula side says that for the maps

φL, φf∗L:S −!Picg,n,d

obtained from the families (0.7) and (0.15), we have

φ∗
f∗LP

g
g,A,d=φ∗

LP
g
g,A,d ∈CHgop(S)

for Pgg,A,d∈CH
g
op(Picg,n,d).

Proofs of all of the invariances will be presented in §7. The above invariances (to-

gether with geometric definitions when transversality to the Abel–Jacobi map holds) do

not characterize(12) DRop.

(12) Further geometric properties are required, see [41, §1.6] for a discussion.
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0.7. Universal formula in degree zero

The most efficient statement of the double ramification cycle formula on the Picard

stack of curves occurs in the degree d=0 case with no markings. In order to avoid(13)

the unpointed genus 1 case, let g ̸=1.

The specialization of Theorem 0.7 to d=0 calculates DRop
g,∅ as the value at r=0 of

the degree-g part of

exp

(
−1

2
η

) ∑
Γδ∈Gg,0,0

w∈WΓδ,r

r−h
1(Γδ)

|Aut(Γδ)|
jΓδ∗

[ ∏
e=(h,h′)∈E(Γδ)

1

ψh+ψh′

×
(
1−exp

(
−w(h)w(h

′)

2
(ψh+ψh′)

))]
as an operational Chow class on Picg=Picg,0,0. The full statement of Theorem 0.7 can

be recovered from the above d=0 specialization via pullback under the map

Picg,n,d−!Picg,

(C, p1, ..., pn,L) 7−!
(
C,L

(
−

n∑
i=1

aipi

))
.

Indeed, the above map is the composition of the morphism

τ−A:Picg,n,d−!Picg,n,0,

(C, p1, ..., pn,L) 7−!
(
C, p1, ..., pn,L

(
−

n∑
i=1

aipi

))
,

with the morphism

F :Picg,n,0 −!Picg

forgetting the markings p1, ..., pn.

• For the DRop
g,A side of Theorem 0.7, Invariance II implies

F ∗DRop
g,∅ =DRop

g,0

for the zero vector 0∈Zn. Furthermore, Invariance III implies

τ∗−ADR
op
g,0 =DRop

g,A.

• For the Pgg,A,d side of Theorem 0.7, the corresponding invariance properties of

Pixton’s formula (discussed in §7) yield the parallel transformation

τ∗−AF
∗Pgg,∅,0 =Pgg,A,d.

(13) For g=1, a parallel formula holds for n=1 and A=(0).
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Therefore, the equality in Theorem 0.7 for general A and d follows from the special-

ization to A=∅ and d=0. For certain steps in our proof of Theorem 0.7, the A=∅ and

d=0 geometry is advantageous and is used.

By restricting to suitable open subsets of Picg, we can simplify the d=0 formula

even further. Let

Picctg ⊂Picg

be the locus where the curve C is of compact type. We obtain

DRop
g,∅|Picctg

=
θg

g!
, for θ=−1

2

(
η+

∑
∆

d2∆[∆]

)
, (0.16)

where the sum is over the boundary divisors ∆⊂Picg on which generically the curve

splits into two components carrying line bundles of degrees d∆ and −d∆. The class θ

here may be viewed as a universal theta divisor on Picctg .

Formula (0.16) was first written on the moduli space of stable curves of compact

type in [33], [35]. The operational Chow class DRop
g,∅ on Picg, however, is not the power

of a divisor.
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1. Notation, conventions, and the plan

1.1. Ground field

In the introduction, the ground field was the complex numbers C. However, for the

remainder of the paper, we will work more generally over a field K of characteristic zero.

We will make essential use of the results of [43] which are stated over C, but also hold

over Q by the following standard argument:

(i) Both the DR cycle (via the b-Chow approach [37]) and Pixton’s class are defined

over Q.

(ii) Rational equivalence of cycles uses finitely many subschemes and rational func-

tions and hence descends to a finitely generated Q-subalgebra of C. A non-empty scheme

of finite type over Q has points over some finite extension, and hence the rational equiv-

alence descends to a finite extension of Q.

(iii) The rational equivalence descends (via a Galois argument) further to Q, since

we work in Chow with rational coefficients.

By similar arguments, our results are in fact true over Z[1/N ] for a positive integer

N depending on the ramification data. Understanding what happens at small primes (or

integral Chow groups) is an interesting question.

1.2. Basics

Let K be a ground field of characteristic zero. When we work in the logarithmic category,

we assume SpecK to be equipped with the trivial log structure.

We write �Mf for the stack of all stable (ordered) marked curves over K and M for

the stack of all prestable curves with ordered marked points. Both come with natural log

structures, and the universal marked curves over these spaces are naturally log curves.

For �M, the log structure is described in [46]. The same construction applies unchanged

to M, see [32, Appendix A]. The natural open immersion

�M−!M

is strict (though, in contrast to [32], [46], we order the markings of our log curves). We

use subscripts g and n to fix the genus and number of markings when necessary.

Let C be the universal prestable curve over M. For efficiency of notation, we will

also denote by C the universal curve over the various other moduli stacks of curves with

additional structure which will appear in the paper. These universal curves are always

obtained by pulling-back C over M.

For the convenience of the reader, we provide the key notation in Table 1.
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Mg,n stack of prestable marked curves of genus g with n markings

�Mg,n stack of stable marked curves of genus g with n markings

C universal prestable curve over M

A=(a1, ..., an) A∈Zn with
∑n

i=1 ai denoted by d

Picg,n Picard stack (§2.1)

Picrelg,n relative universal Picard stack (§2.1)

CHop operational Chow group (§2.2)

ξi tautological class on Picg,n (§0.3.3)

ηa,b tautological class on Picg,n (§0.3.3)

ψi tautological class on Picg,n (§0.3.3)

Pc
g,A,d Pixton’s cycle (§0.3.5)

c(φ) homomorphisms c(φ):CH∗(B)!CH∗−p(B) given by an operational

class c∈CHp
op(X) and φ:B!X with B finite-type scheme (§2.2)

DRop
g,A operational DR cycle (§3)

Table 1. Key notation.

1.3. Plan of the paper

In §2 we treat several technical issues related to operational Chow groups of the Picard

stack Pic. In fact, we develop a general theory of operational Chow groups of algebraic

stacks which are locally of finite type over K. The theory is certainly known to experts,

but for our later results, we will require the precise definitions. In particular, with a

proper representable morphism of algebraic stacks, we associate an operational class,

which will be the key to constructing the operational double ramification cycle.

The core of the paper starts in §3 where we give three equivalent definitions of the

universal double ramification cycle on Pic. Our first definition is by taking a closure in

the spirit of [38] which is simple, but rather difficult to work with. The second is via

logarithmic geometry following [56]. The third is a b-Chow definition along the path

of [39]. In §3.5, we give an explicit description of the set-theoretic image of the double

ramification cycle in Pic. We prove Theorem 0.1 in §3.7.
In §4, we discuss properties of Pixton’s cycle Pcg,A,d defined in §0.3.5. In particular,

formal properties of Pixton’s cycle parallel to the invariances of the double ramification

cycles are proven. Compatibilities with definitions in previously studied cases are also

proven.
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In §5, we prove Theorem 0.7, the main result of the paper, by an eventual reduction

to the formula of [43] in the case of target Pn for large n. A crucial step in the proof is

the matching of the double ramification cycle defined in [43] via rubber maps with our

new universal definition on Pic in a suitable sense when the target is Pn. The matching

is verified in §6, where we follow the pattern of the proof given in [56] in case the target

is a point.

In §7, we prove the invariance properties of §0.6. Theorems 0.8 and 0.9 are proven

as a consequence of Theorem 0.7 in §8. The connections between the vanishing result of

Theorem 0.8 and past (and future) work is discussed in §8.5.

2. Picard stacks and operational Chow

2.1. The Picard stack and relative Picard space

Our stacks will be with respect to the fppf topology ([63, Definition 9.1.1]). We define the

Picard stack Picg,n as the fibered category over Mg,n whose fiber over a scheme T!Mg,n

is the groupoid of line bundles on Cg,n×Mg,n
T with morphisms given by isomorphisms of

line bundles, see [51, Example 14.4.7]. We define the relative Picard space Picrelg,n/Mg,n

to be the quotient of Picg,n by its relative inertia over Mg,n. Equivalently, Picrelg,n is

the fppf-sheafification of the fibered category of isomorphism classes of line bundles on

Cg,n×Mg,nT , see [14, Chapter 8] and [27, Chapter 9].

Relative representability of Picrelg,n/Mg,n by smooth algebraic spaces can be checked

locally on Mg,n. It then follows from [3, Appendix], as the curve

Cg,n−!Mg,n

is flat, proper, relatively representable by algebraic spaces, and cohomologically flat in

dimension zero (reduced and connected geometric fibers). The Picard stack Picg,n is

a Gm-gerbe over Picrelg,n, and hence is a (smooth) algebraic stack. In particular, Picg,n
is smooth over K of pure dimension 4g−4+n, and Picrelg,n is smooth over K of pure

dimension 4g−3+n.

Remark 2.1. We will moreover assume (g, n) ̸=(1, 0). Then Mg,n, and hence Picrel,

Pic, and anything of Deligne–Mumford type over them, has affine stabilizers, and so is

therefore stratified by global quotient stacks in the sense of [49]. The latter property

will be important for some intersection-theoretic computations, in particular the proof

of Proposition 2.16.
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2.2. Operational Chow groups of algebraic stacks

Our goal here is to define the operational Chow group of Picg,n, following [29, Chap-

ter 17]. In fact, we construct an operational Chow group for any algebraic stack locally

of finite type over a field. The definition is a simple generalization of [29].

Definition 2.2. Let Y be a locally finite type algebraic stack over K. Let p be an

integer. A bivariant class c in the pth operational Chow group CHpop(Y) is a collection of

homomorphisms

c(φ)m:CHm(B)−!CHm−p(B)

for all maps φ:B!Y where B is a scheme of finite type over K, and for all integers m,

compatible with proper pushforward, flat pullback, and Gysin homomorphisms for reg-

ular embeddings (conditions (C1)–(C3) in [29, §17.1]).

For a class α∈CHm(B), we will sometimes write c(α) in place of c(φ)m(α), if the

morphism φ is clear.

Such a definition for the operational Chow group of a Deligne–Mumford stack is

given in [24]. To be able to use Chow groups on algebraic stacks as defined in [49] for

algebraic stacks of finite type over a field, we will use the following result.

Lemma 2.3. Let f :A!B be a morphism over a field K, where B is an algebraic

stack locally of finite type over K, and A is an algebraic stack of finite type over K.

Then, there exists a factorization of f via a commutative diagram

A B

B′,

f

where B′!B is an open immersion and B′ is quasi-compact (and hence of finite type).

Proof. We cover B by affine flat finite presentation morphisms {Vi!B}i∈I . Let Ui
be the image of Vi in B, for all i. The Ui are open, and the f−1(Ui) cover A. As A is

quasi-compact, there is a finite subset J⊂I such that {f−1(Ui)}i∈J covers A. Then,

B′ =
⋃
i∈J

Ui

defines the required factorization.

For representable morphisms (representable by algebraic spaces) f :X!Y, we can

also define the operational Chow group CHpop(X!Y) as a collection of morphisms

c(φ)m:CHm(B)−!CHm−p(B×YX)
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for all maps φ:B!Y, where B is a scheme of finite type over K, and for all integers m,

compatible with proper pushforward, flat pullback, and Gysin homomorphisms. We have

CHpop(X)=CHpop(id:X!X).

We have products, pullbacks, and proper representable pushforwards on these opera-

tional Chow groups of algebraic stacks as described in [29, §17.2] satisfying the properties

described there.

Remark 2.4. Even for B a scheme and π:X!Y representable, the fiber product

B×YX can be an algebraic space. Therefore, some care is needed when generalizing

classical constructions such as the product

CHaop(X)×CHbop(π:X!Y)−!CHa+bop (π:X!Y).

Indeed, for c∈CHaop(X) and d∈CH
b
op(π:X!Y), we want to define

c·d∈CHa+bop (π:X!Y).

For a map φ:B!Y with B a finite-type scheme fitting in a pullback diagram

B×YX X

B Y,

φ′

π

φ

we want to define the induced map

(c·d)(φ)m:CHm(B)−!CHm−a−b(B×YX)

as the composition

CHm(B)
d(φ)m−−−−!CHm−b(B×YX)

c(φ′)m−b

−−−−−−!CHm−a−b(B×YX).

But, a priori, the map c(φ′)m−b does not make sense, since the domain B×YX of φ′ is

an algebraic space. However, given a collection

c= c(φ′)n:CHn(B
′)−!CHn−a(B

′)

for all finite-type schemes B′ with φ′:B′!X, we can construct a collection of maps

c(φ′)n:CHn(B
′)−!CHn−a(B

′)
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for φ′:B′!X, with B′ a finite-type algebraic space via [76, §5.1]. Indeed, for each integral

closed substack Z⊂B′, [76, §5.1] defines an action of c on [Z] which is independent of

the chosen cover of the algebraic space by a scheme. This action induces a map

CHn(B
′)−!CHn−a(B

′),

which commutes with proper pushforward and flat morphisms via [76, Lemma 5.3] and

is compatible with Gysin homomorphisms. Applying this to

φ′:B′ =B×YX−!X

with n=m−b gives the desired map c(φ′)m−b.

For a proper representable morphism π:X!Y which is flat of relative dimension q,

the pushforward

CH∗
op(π:X!Y)−!CH∗

op(Y)

can be extended to a pushforward

CHpop(X)−!CHp−qop (Y)

as follows. Because π is flat, the pullback π∗ gives a natural element in

CH−q
op (π:X!Y),

and then we can compose

CHpop(X)−!CHpop(X)×CH−q
op (π:X!Y)

given by c 7!(c, π∗) with the product and the pushforward maps

CHpop(X)×CH−q
op (π:X!Y)−!CHp−qop (π:X!Y)−!CHp−qop (Y),

yielding the desired pushforward map

π∗:CH
p
op(X)−!CHp−qop (Y).

This may for example be applied to the universal curve π:Cg,n!Picg,n. A similar con-

struction also works for π proper representable and lci. This pushforward map commutes

with pullback of operational classes.
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2.3. Relationship to usual Chow groups

Let Y be a locally finite type algebraic stack over K, and (Ui)i∈N an increasing sequence

of finite-type open substacks of Y with⋃
i

Ui=Y.

In particular, for a finite-type scheme B/K, every map B!Y factors via some Ui. We

have pullback maps

CH∗
op(Y)−!CH∗

op(Ui) (2.1)

which induce a map

Φ:CH∗
op(Y)−! lim

i
CH∗

op(Ui) (2.2)

to the inverse limit of the CH∗
op(Ui), with transition maps given by pullback of operational

classes along open immersions.

Lemma 2.5. The map

Φ:CH∗
op(Y)−! lim

i
CH∗

op(Ui)

is an isomorphism of abelian groups.

Proof. We first show injectivity. Let c in CH∗
op(Y) with Φ(c)=0. For every B!Y

with B/K of finite type, we get a map

c(B/Y):CH∗(B)−!CH∗(B).

There exists i such that the map B!Y factors via Ui. Then, Φ(c)=0 implies that

c(B/Ui):CH∗(B)−!CH∗(B)

is the zero map. By definition of the pullback,

c(B/Y)= c(B/Ui).

Next, we show surjectivity. Suppose that we have a compatible collection

ci ∈CH∗
op(Ui).

We will build c∈CH∗
op(Y) as follows. Let B!Y with B/K of finite type. There exists N

such that, for all i⩾N , the map B!Y factors via Ui. Then, for all i⩾N , we have maps

c(B/Ui):CH∗(B)−!CH∗(B),

and the compatibly means ci(B/Ui)=cj(B/Ui) for all i, j⩾N . We define c=cN , which

clearly is sent by Φ to the ci.

To conclude, we must check that c satisfies the axioms of an operational class. This

follows easily from the fact that each B!Y factors via some Ui.
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Lemma 2.6. ([76, Proposition 5.6]) Let Y be a smooth finite-type Deligne–Mumford

stack over K of pure dimension d, and let ι:Y!Y be the identity. Then, for m⩾0, the

map

CHmop(Y)−!CHd−m(Y),

α 7−!α(ι)([Y]),
(2.3)

is an isomorphism.

Combining Lemmas 2.5 and 2.6, we immediately obtain the following result.

Corollary 2.7. Let Y be a smooth Deligne–Mumford stack over K of pure dimen-

sion d, and let Ui be a sequence of finite-type open substacks with
⋃
i∈I Ui=Y. Then,

the natural map

Φ:CHmop(Y)−! lim
i∈I

CHd−m(Ui) (2.4)

obtained by combining (2.2) and (2.3) is an isomorphism.

As a final remark,(14) we note that there exists a map of Chow groups in the opposite

direction of (2.3) in greater generality. Let Y be a smooth algebraic stack of finite type

over K and of pure dimension d which has a stratification(15) by quotient stacks. Then,

there exists a map

Ψ:CHd−m(Y)−!CHmop(Y)

from the Chow group CH∗(Y) constructed in [49] to the operational Chow group of Y

defined as follows. Given φ:B!Y with B a finite-type scheme, let

φB :B−!B×Y

be the diagonal morphism. Since Y is smooth, φB is representable and is a local complete

intersection of codimension d. For β∈CHd−m(Y), we define

Ψ(β)(φ):CH∗(B)−!CH∗−m(B),

α 7−!φ!
B(α×β),

where α×β∈CH∗+d−m(B×Y) is the exterior product of α and β as defined in [49, §3.2].
The collection of maps Ψ(β)(φ) defines an element

Ψ(β)∈CHmop(Y).

For Y a Deligne–Mumford stack, the map Ψ is the inverse of the map (2.3). However,

for an arbitrary smooth algebraic stack Y, we do not know whether Ψ is injective or

surjective.

(14) We thank A. Kresch for related discussion.
(15) See [49] for the precise definition. The property is always satisfied for Deligne–Mumford stacks.
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2.4. Constructing an operational Chow class

2.4.1. Overview

Given a vector A∈Zn of ramification data satisfying

n∑
i=1

ai= d,

we will construct in §3.3 a stackDivg,A together with a proper representable Abel–Jacobi

map

Divg,A−!Picg,n,d.

We wish to define the twisted universal double ramification cycle DRop
g,A as the pushfor-

ward of the fundamental class of Divg,A to Picg,n,d. However, two basic issues must be

settled to carry out the construction:

• The stack Divg,A is not Deligne–Mumford and is not quasi-compact, so the exis-

tence of a well-behaved fundamental class in the operational Chow group is not clear.

• The proper representable pushforward of [6, Appendix B] is only defined between

finite-type-stacks, and so cannot be applied directly.(16)

To solve these problems, we provide here a very general construction which associates

with a suitable proper morphism

a:X−!Y

an operational Chow class on Y which plays the role of the pushforward of the fundamen-

tal class of X. In §3.3, we will apply the result to construct the universal twisted double

ramification cycle DRop
g,A. We also verify certain basic properties such as invariance of

the class under proper birational maps which will be important in §6.

2.4.2. Construction

Let X and Y be algebraic stacks locally of finite type over a field K and suppose we have

a proper morphism

a:X−!Y

of Deligne–Mumford type. Suppose further that Y is smooth of pure dimension dimY

over the field, and X is of pure dimension dimX. Let

e=dimY−dimX.

We will construct an operational Chow class associated with X in CHeop(Y).

(16) Chow theory of non-finite-type algebraic stacks will be developed in [6, Appendix A].
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For all finite-type schemes B with a morphism φ:B!Y, and for all integers m, we

must define maps

c(φ)m:CHm(B)−!CHm−e(B),

which are compatible under proper pushforward and flat pullback and satisfy commuta-

tivity (properties (C1)–(C3) of [29, §17.1]).
Let [V ]∈CHm(B) be an irreducible cycle, and let iV :V!B be the inclusion. Let

V!B!Y be factored as in Lemma 2.3 into V!Y′!Y, where Y′ is of finite type and

Y′!Y is an open immersion.

We form the diagram

X′×Y′V X′×V

V Y′×V,

ψV a×id

φV

(2.5)

where X′ is the inverse image of Y′ under a. Each stack in this diagram is of finite type,

and therefore has a Chow group in the sense of [49]. Since Y is smooth over K, the map

φV is a regular embedding of codimension dimY. Also φV is unramified, and hence a

regular local embedding, so Kresch’s contruction yields a map

φ!
V :CHm(X′×V )−!CHm−dimY(X′×Y′V ).

In particular, [X′×V ] is a class in dimension dimX+m, so the class φ!
V ([X×V ]) lies in

CHm−e(X×YV ). The morphism ψV is proper and of Deligne–Mumford type, and so by

[6, Appendix B] we have a pushforward ψV ∗.

Definition 2.8. We define a class aop[X]∈CHop(Y) via the formula

c(φ)m:Zm(B)−!CHm−e(B),

[V ] 7−! iV ∗ψV ∗φ
!
V ([X

′×V ]).

We must verify that this construction passes to rational equivalence, is independent

of the choices made, and satisfies the properties (C1)–(C3). After verifying in Lemma 2.9

independence on the choice of factorization, we follow the logic in [29]: we verify in

Lemmas 2.11–2.13 of §2.4.3 that the properties (C1)–(C3) hold on the level of cycles,

and finally in Lemma 2.15 we use these to show that the construction passes to rational

equivalence.

Lemma 2.9. The class c(φ)m([V ]) defined above is independent of the chosen fac-

torization V!Y′!Y.
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Proof. Let V!Y′!Y and V!Y′′!Y be two such factorizations. By considering

Y′∩Y′′ inside Y, we may restrict to the case where one is contained in the other. So we

suppose there is an open immersion

ι:Y′′ −!Y′.

Let j:X′′!X′ be the induced map. Consider the diagram

X′′×Y′′V X′′×V

V Y′′×V

X′×Y′V X′×V

V Y′×V,

j×id

ψ′′
V a×id

j×id
φ′′

V

id

ψ′
V a×id

φ′
V

ι×id
(2.6)

where X′′×Y′′V!X′×Y′V is an isomorphism. We must show that

ψ′
V ∗(φ

′
V )

!([X′×V ]) =ψ′′
V ∗(φ

′′
V )

!([X′′×V ]).

Because φ′′
V and φ′

V are both regular embeddings of the same codimension and the

front square commutes, by the same proof as for [29, Theorem 6.2 (c)], we obtain

(φ′′
V )

!([X′′×V ]) = (φ′
V )

!([X′′×V ]).

Therefore,

ψ′′
V ∗(φ

′′
V )

!([X′′×V ]) =ψ′′
V ∗(φ

′
V )

!([X′′×V ]) =ψ′′
V ∗(φ

′
V )

!((j×id)∗[X′×V ]), (2.7)

since j×id is an open immersion, so in particular flat, and the flat pullback of the

fundamental class is the fundamental class itself. By the compatibility of the flat pullback

and Gysin maps [49, §3.1], we obtain that (2.7) is equal to

ψ′′
V ∗(j×id)∗(φ′

V )
!([X′×V ]).

By commutativity of the left side of the cube and because of the pullback pushforward

formula, we obtain

ψ′′
V ∗(φ

′′
V )

!([X′′×V ]) =ψ′′
V ∗(j×id)∗(φ′

V )
!([X′×V ]) = (ψ′

V )∗(φ
′
V )

!([X′×V ])

as required.
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2.4.3. Compatibility

We will now check that the maps c(φ)m defined in §2.4.2 are compatible under proper

pushforward and flat pullback, and satisfy commutativity (properties (C1)–(C3) of [29,

§17.1]).
The proper pushforward along DM-type maps between finite-type algebraic stacks

over a field which are stratified by global quotient stacks is defined in [6, Appendix B].

We cannot use the results of [49] for compatibility with the proper pushforward, since

Kresch discusses only projective pushforward. Nevertheless, we now show that the proper

pushforward for DM-type maps of finite-type algebraic stacks over a field as defined in

[6, Appendix B] is compatible with the Gysin maps of [49].

Proposition 2.10. For a pullback diagram of algebraic stacks of finite type over K,

X′′ Y′′

X′ Y′

X Y,

i′′

q p

i′

g f

i

where i is a regular local embedding of codimension d, p is a proper DM-type morphism,

and Y′ is stratified by global quotient stacks, we have

i!p∗(α)= q∗(i
!α)

for all α∈CH∗(Y
′′).

Proof. A class α on Y′′ is represented by a projective map z′′:Z ′′!Y′′, a vector

bundle E′′!Z ′′ and a class [V ] in the naive Chow group of E′′ represented by V ⊂E.

We want to push α forward via the construction of [6, Appendix B]: by [6, Theo-

rem B.17], it suffices to treat the case where E′′!Z ′′!Y′′ fits in a pullback diagram of

the form

E′′ Z ′′ Y′′

E′ Z ′ Y′,

p′′

z′′

p′ p

z′

(2.8)

where z′ is projective. Then, the pushforward is defined by simply pushing forward on

the level of bundles, so

p∗(z
′′, [V ]) = (z′, p′′∗([V ])).
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If W=p′′(V ), then p′′∗([V ])=deg(V/W )[W ].

Let N be the normal bundle NXY. The Gysin maps constructed in [49, §3.1] are
described explicitly on level of representatives as follows: i!(z′, [W ]) is represented by

[CW×YXW ] as a class on the bundle

N |Z′×YX⊕E′|Z′×YX

with the projective map z̃′:Z ′×YX!X′ induced by z′. Hence,

i!p∗(z
′′, [V ]) = (z̃′,deg(V/W )[CW×YXW ]).

Next, we study q∗i
!(z′′, [V ]). To start, i!(z′′, [V ]) is represented by [CV×YXV ] as

class on the bundle

N |Z′′×YX⊕E′′|Z′′×YX

with the projective map Z ′′×YX!X′′ induced by z′′. We push i!(z′′, [V ]) forward via

the construction of [6, Appendix B]. We complete the diagram

N |Z′′×YX⊕E′′|Z′′×YX Z ′′×YX X′′

X′

z̃′′

q

to a pullback diagram so that we can pushforward on the levels of bundles:

E′′ Z ′′ Y′′

N |Z′′×YX⊕E′′|Z′′×YX Z ′′×YX X′′

E′ Z ′ Y′

N |Z′×YX⊕E′|Z′×YX Z ′×YX X′

Y.

X

p′′

z′′

p′

p
z̃′′

i′′

z′

f

p̃′

z̃′

q

g

i′

i

The map p′:Z ′′!Z ′ induces a map p̃′:Z ′′×YX!Z ′×YX, and the square with q, p̃′, z̃′,

and z̃′′ is a pullback (as the pullback of a pullback square).

There is a map

q′′:N |Z′′×YX⊕E′′|Z′′×YX −!N |Z′×YX⊕E′|Z′×YX
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induced by p′′ such that it forms a pullback square, and so the pushforward along q is

simply

q∗(i
!(z′′, [V ]))= q∗(z̃

′′, [CV×YXV ]) = (z̃′, q′′∗ ([CV×YXV ])).

The proof then reduces to comparing q′′∗ ([CV×YXV ]) and deg(V/W )([CW×YXW ]),

which follows from [76, Lemma 3.15]. The result is a completely local statement and

therefore extends from the setting of schemes to the setting of Deligne–Mumford stacks

which we need here.

Let φ:B!Y and φ′:B′!Y be morphisms from finite-type schemes, and let

h:B′ −!B

be a Y-morphism. By Definition 2.8, we have morphisms

c(φ)m:Zm(B)−!CHm−e(B) and c(φ′)m:Zm(B′)−!CHm−e(B
′).

If h is proper, we have a pushforward map(17)

h∗:Zm(B′)−!Zm(B)

which descends to Chow.

Lemma 2.11. If h is proper, then

c(φ)m�h∗ =h∗�c(φh)
m.

Proof. Let [V ′]∈Zm(B′) for an irreducible cycle V ′. Let V =h(V ′). By definition,

h∗([V
′]) =deg(V ′/V )[V ].

Let Y′ be a factorization of V ′!V!Y. We have

(id×h)∗([X′×V ′]) =deg(V ′/V )[X′×V ].

Via the commutative diagram

X′×Y′V ′ X′×V ′

V ′ Y′×V ′

B′ X′×Y′V X′×V

V Y′×V

B

Y,

id×h
ψV ′

id×h
iV ′ φV ′

h

h

ψV

iV

φV

id×h

φ

(2.9)

(17) We use the same notation for the proper pushforward on the Chow groups.
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we compute

c(φ)m(h∗(α))= c(φ)m(deg(V ′/V )[V ])

= iV ∗ψV ∗φ
!
V (deg(V

′/V )[X′×V ])

= iV ∗ψV ∗φ
!
V ((id×h)∗[X′×V ′])

=h∗iV ′∗ψV ′∗φ
!
V ′([X′×V ′])

=h∗c(φh)
m(α),

where the final line follows from compatibility of the Gysin map with proper representable

pushforward (Proposition 2.10).

If h:B′!B is flat of relative dimension n, we have a pullback map

h∗:Zm(B)−!Zm+n(B
′)

which descends to Chow.

Lemma 2.12. If h is flat of relative dimension n,

c(φh)m+n
�h∗ =h∗�c(φ)m.

Proof. Let [V ]∈Zm(B) for an irreducible cycle V . Let

V ′ =h−1(V ),

so [V ′]=h∗([V ]). Let Y′ be a factorization of V ′!V!Y. We have

(id×h)∗([X′×V ]) = [X′×V ′].

Via the commutative diagram (2.9), we compute

c(φh)m+n([V ′]) = iV ′∗ψV ′∗φ
!
V ′([X′×V ′])

= iV ′∗ψV ′∗φ
!
V ′((id×h)∗[X′×V ])

=h∗iV ∗ψV ∗φ
!
V ([X

′×V ])

=h∗c(φ)m([V ]),

where the final equality follows from the compatibility of the Gysin map with flat pull-

back for a morphism of finite-type algebraic stacks ([49, §3.1]) and the pullback and

pushforward formulas.
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Let φ:B!Y be a morphism from a finite-type scheme as above. Let

g:B−!Z

be a morphism of finite-type schemes, and let i:Z ′!Z be a regular embedding of codi-

mension f . Form the fiber square

B′ Z ′

B Z

Y.

i′ i

g

φ

Let V be an irreducible cycle in B with inverse image V ′=(i′)−1(V ). We choose a

representative i![V ]=
∑
j nj [V

′
j ] in Zm−f (V

′).

Lemma 2.13. We have

i!c(φ)m([V ]) = c(φi′)m−f
(∑

j

nj [V
′
j ]

)
.

Remark 2.14. In particular, once we have shown that the maps c(φ)m pass to ra-

tional equivalence, Lemma 2.13 will imply

i!c(φ)m(α)= c(φi′)m−f (i!α)

for α∈CHm(B).

Proof. From the equality i![V ]=
∑
nj [V

′
j ], we deduce that

i![X′×V ] =
∑

nj [X
′×V ′

j ].

Via the commutative diagram(18)

X′×Y′V ′ X′×V ′

V ′ Y′×V ′

Z ′ B′ X′×Y′V X′×V

V Y′×V

Z B

Y,

id×i′
ψV ′

id×i′

iV ′

φV ′

i′
id×i′

i i′
ψV

iV

φV

id×i′

g

φ

(2.10)

(18) We should also add another layer of the diagram for the V ′
j .
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we compute

i!c(φ)m([V ]) = i!iV ∗ψV ∗φ
!
V ([X

′×V ])

and

c(φi′)m−f
(∑

j

nj [V
′
j ]

)
=
∑

njiV ′
j ∗
ψV ′

j ∗
φ!
V ′
j
([X′×V ′

j ]) = iV ′∗ψV ′∗φ
!
V ′(i![X′×V ]).

We deduce equality of these expressions by using the compatibility of Gysin maps with

proper pushforward (Proposition 2.10) and then the commutativity of Gysin maps from

[49] to obtain φ!
V ′i!=i!φ!

V .

Lemma 2.15. The morphisms c(φ)m from Definition 2.8 pass to rational equiva-

lence,

c(φ)m:CHm(B)−!CHm−e(B).

Proof. The proof is now completely analogous to [29, Theorem 17.1].

2.4.4. Properties

The class constructed in Definition 2.8 is invariant under proper birational maps in the

following sense.

Proposition 2.16. Let f :W!X be a proper DM-type birational morphism of

locally-finite-type algebraic stacks over K of pure dimension, with X stratified by global

quotient stacks. Then,

(a�f)op[W] = aop[X]∈CHeop(Y),

where (a�f)op[W] and aop[X] are the operational classes constructed in Definition 2.8

with respect to a�f :W!Y and a:X!Y.

Proof. The proper pushforward of the fundamental class along f is the fundamental

class, as the map f is birational and hence of degree 1.

Choose a factorization V!Y′!Y. Denote by X′ the pullback of X along a and by

W′ the the pullback of X′ along f . As in (2.5), we form a pullback diagram

W′×Y′V W′×V

X′×Y′V X′×V

V Y′×V.

f̃ f×id

ψV a× id

φV

(2.11)
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Proposition 2.10 then yields

ψV ∗φ
!
V ([X

′×V ]) =ψV ∗φ
!
V ((f×id)∗[W

′×V ])

=ψV ∗f̃∗φ
!
V ([W

′×V ])

= (ψV f̃)∗φ
!
V ([W

′×V ]),

which is the required equality.

We will also require a flat pullback property. Let X, Y, and Z be pure-dimensional

algebraic stacks of locally finite type over K, with Y and Z smooth. Suppose that we

have a fiber diagram

X×YZ Z

X Y,

ã

f̃ f

a

where a:X!Y is a proper DM-type morphism, and f :Z!Y is flat and lci,(19) with Z

stratified by global quotient stacks.

Lemma 2.17. In CHop(Z), we have

ãop[X×YZ] = f∗aop[X].

Proof. Let X′, Y′, and Z′ denote appropriate finite-type factorizations as in Defini-

tion 2.8. Then, we compare the two operational classes via the following diagram:

(X′×Y′Z′)×Z′V X′×Y′Z′×V

X′×Y′V X′×V

V Z′×V Y′×V

B.

∼
f̃×id

ã×id

ψV a×id

iV

φV

(f�φ)V

f×id

By definition,

ãop[X×YZ](φ)([V ]) = iV ∗ψV ∗φ
!
V ([X

′×Y′Z′×V ])

and

f∗aop[X](φ)([V ]) = aop[X](f �φ)([V ]) = iV ∗ψV ∗(f �φ)
!
V ([X

′×V ]).

(19) A flat and lci map is called syntomic.
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Since f is lci, the above expression is equal to

iV ∗ψV ∗φ
!
V (f×id)!([X′×V ]).

Because f is also flat, we see, as in [29, Proposition 6.6 (b)] that we obtain

iV ∗ψV ∗φ
!
V (f̃×id)∗([X′×V ]) = iV ∗ψV ∗φ

!
V ([X

′×Y′Z′×V ]),

which yields the required equality.

3. The universal double ramification cycle

3.1. Overview

We fix a genus g, a number of markings n, and a vector A=(a1, ..., an)∈Zn of ramification

data satisfying
n∑
i=1

ai= d.

We define here the associated universal twisted double ramification cycle class in the

operational Chow group of the universal Picard stack Picg,n,d. The operational class is

the class associated with a certain proper representable morphism

Divg,A−!Picg,n,d,

using the theory of §2.4. Our goal here is to define the stack Divg,A over Picg,n,d.

We will present in §§3.2–3.4 three essentially equivalent definitions of the universal

twisted double ramification cycle, which yield the same operational class:

• a definition in §3.2 by closing the Abel–Jacobi section, which is simple to state

but difficult to handle;

• an intrinsic logarithmic definition in §3.3 following Marcus–Wise [56];

• a slight variation of the log definition in §3.4, which facilitates comparison to the

spaces of rubber maps.

After analyzing the set-theoretic closure of the Abel–Jacobi section in §3.5, the

equality of the three resulting classes will be shown in §3.6. In §3.8, we briefly discuss

the lift of universal twisted double ramification cycle to operational b-Chow.
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3.2. DRop
g,A by closure

We define the Abel–Jacobi section σ of Picg,n,d!Mg,n by

σ:Mg,n−!Picg,n,d,

(C, p1, ..., 7−!OC

( n∑
i=1

aipi

)
.

(3.1)

The section σ is not a closed immersion (both because of the Gm-automorphism groups

of line bundles and because the image is not closed). However, σ is quasi-compact and

relatively representable by schemes, and hence admits a well-defined schematic image (we

use that the formation of the schematic image is compatible with flat base change, see

[73, Lemma 081I]). The schematic image is the smallest closed reduced substack through

which σ factors.

Since the schematic image σ̄ is a closed substack of pure dimension,

ι: σ̄−!Picg,n,d,

we obtain an operational class ιop[σ̄] by Definition 2.8. Our first definition of the universal

twisted double ramification cycles is via the schematic image of σ:

DRop
g,A= ιop[σ̄]∈CHgop(Picg,n,d). (3.2)

Let

Pic0
� � // Pic

be the open substack consisting of line bundles having degree zero on every irreducible

component of every geometric fiber (multidegree 0), and let

Picrel0
� � // Picrel

be defined analogously. We have a commutative diagram in which all squares are pull-

backs:
(BGm)Mg,n Mg,n

σ̄0 σ̄0
rel

Picg,n,0 Picrelg,n,0

σ̄ σ̄rel

Picg,n,0 Picrelg,n,0.

e=OC

(3.3)

https://stacks.math.columbia.edu/tag/081I
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Let (C/B, p1, ..., pn) be a prestable curve over a scheme B of finite type over K. Let

L be a line bundle on C such that

L

(
−

n∑
i=1

aipi

)
is of multidegree 0 for A=(a1, ..., an)∈Zn. The data

C −!B, L

(
−

n∑
i=1

aipi

)
−!C

determine a map

φ:B−!Picg,n,0,

and we form a pullback diagram

B′ Mg,n

B Picrelg,n,0.

ψ e

φrel

(3.4)

Since Mg,n is smooth and Picrelg,n,0 is separated, the map e is a regular embedding.

Lemma 3.1. In the multidegree 0 case, we have

DRop
g,A(φ)([B]) =ψ∗e

![B]. (3.5)

Proof. We begin by expanding the diagram (3.4) to

B′ Mg,n×B Mg,n

B Picrelg,n,0×B Picrelg,n,0.

ψ

f ′

e

φ′ f

(3.6)

Since Picg,n!Picrelg,n is smooth, we deduce from Lemma 2.17 and diagram (3.3) that

DRop
g,A(φ)([B]) =ψ∗φ

′![Mg,n×B]. (3.7)

We then compute

DRop
g,A(φ)([B]) =ψ∗φ

′![Mg,n×B]

=ψ∗φ
′!f ′∗[Mg,n]

=ψ∗φ
′!f ′∗e![Picrelg,n,0]

=ψ∗φ
′!e!f∗[Picrelg,n,0]

=ψ∗φ
′!e![Picrelg,n,0×B]

=ψ∗e
!φ′![Picrelg,n,0×B]

=ψ∗e
![B].
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In particular, if the intersection of B with the unit section in Picrelg,n,0 is transversal,

then we simply take the naive intersection in Picrelg,n,0 and push it down to B.

3.3. Logarithmic definition of DRop

3.3.1. Overview of log divisors

We begin by recalling various results and definitions from log geometry. We refer the

reader to [47] for basics on log geometry and [56] for the details of what we do here. While

log geometry will not play a substantial role elsewhere in the paper, it will reappear in §6.
Given a log scheme S=(S,MS), we write

Glog
m (S)=Γ(S,M gp

S ) and Gtrop
m (S)=Γ(S,�M gp

S ),

which we call the logarithmic and tropical multiplicative groups. Both can naturally be

extended to presheaves on the category LSchS of log schemes over S, and both admit

log smooth covers by log schemes (with subdivisions P1 and [P1/Gm], respectively). A

log (tropical) line on S is a Glog
m (Gtrop

m ) torsor on S, for the strict étale topology.

Definition 3.2. (See [56, Definition 4.6]) Let C be a logarithmic curve over a log-

arithmic scheme S. A logarithmic divisor on C is a tropical line P over S and an

S -morphism C!P .

Let Divrel
g be the stack(20) in the strict étale topology on logarithmic schemes whose

S -points are triples (C,P, α), where C is a logarithmic curve of genus g over S, P is a

tropical line over S, and

α:C −!P

is an S -morphism.

If S is a geometric log point and C/S is a log curve, then the set of isomorphism

classes of Divrel
g (S) is given by π∗�M

gp
C /

�M gp
S . At the markings, an element of π∗�M

gp
C /

�M gp
S

determines an element of the groupified relative characteristic monoid Z (for those who

prefer a tropical perspective, this can be viewed as the outgoing slope at the marking).

Definition 3.3. Let Divrel
g,A be the (open and closed) substack of Divrel

g consisting

of those triples where the curve carries exactly n markings and where on each geometric

fiber the outgoing slopes at the markings correspond to A (our log curves come with an

ordering of their markings as explained in §1.2).

(20) The stack Divrel
g was denoted Divg in [56], but we wish to reserve the latter notation for a

certain Gm-gerbe over Divrel
g which will play a much more prominent role in our paper.
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Remark 3.4. It is natural to ask for a description of the functor of points of the

underlying (non-logarithmic) stack of Divrel
g,A as a fibered category over Mg,n. However,

we expect that such a description will not be simple. A closely related problem is solved

in [12], and the intricacy of the resulting definition suggests that the path will not be

easy.

3.3.2. Abel–Jacobi map

Given a log curve π:C!S of genus g, the right-derived pushforward to S of the standard

exact sequence

1−!O×
C −!M gp

C −!�M gp
C −! 1 (3.8)

yields a natural map

π∗�M
gp
C −!R1π∗O×

C ,

which factors via the quotient

π∗�M
gp
C /

�M gp
S =Divrel

g (S).

We therefore obtain a relative Abel–Jacobi map

AJ
rel:Divrel

g −!Picrelg ,

which restricts to maps

AJ
rel:Divrel

g,A−!Picrelg,n,d.

For a first example, suppose S is a geometric log point with �MS=N. The data

then determines to first order a deformation of the curve over a DVR (which we take

generically smooth), and the section of π∗�M
gp
C /

�M gp
S gives the multiplicities of components

in the special fiber and the twists by the markings.

For another example, consider what happens over the locus of (strict) smooth curves.

Writing N/Mlog
g,n for the stack of markings (finite étale), we see Divrel

g is just the cat-

egory of locally constant functions from N to Z—in other words, choices of outgoing

slope/weight on each leg. The Abel–Jacobi map yields

OC

( n∑
i=1

aipi

)
where the pi are the markings and ai are the weights. In particular, we see that

Divrel
g,A!Mlog

g,n

is birational (as we fixed an ordering of the markings) and log étale.
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Definition 3.5. Let Divg be the fiber product

Divrel
g ×Picrelg

Picg. (3.9)

More concretely, an S-point of Divg is a quadruple (C,P, α,L), where (C,P, α) is

an S-point of Divrel
g , and L is a line bundle on C satisfying(21)

[L] = AJ
rel(C,P, α)∈Picrelg (S).

We will denote by AJ the resulting Abel–Jacobi map

Divg!Picg.

Observe that Divg is a Gm-gerbe over Divrel
g , just as Picg,n,d is a Gm-gerbe over Picrelg,n,d.

Analogously, we define

Divg,A=Divrel
g,A×Picrelg,n,d

Picg,n,d and AJ:Divg,A−!Picg,n,d. (3.10)

We summarize the key properties of the Abel–Jacobi map. These are proven in [56]

for AJ
rel, and are stable under base change.

Proposition 3.6. The Abel–Jacobi map

AJ:Divg,A−!Picg,n,d

is proper, relatively representable by algebraic spaces, and is a monomorphism of log

stacks.

We obtain an operational class AJop[Divg,A] associated by Definition 2.8 with the

Abel–Jacobi map AJ. Our second definition of the universal twisted double ramification

cycles is via AJ:

DRop
g,A= AJop[Divg,A]∈CHgop(Picg,n,d). (3.11)

The equivalence of definitions (3.2) and (3.11) will be proven in §3.6.

3.3.3. Description of Divg with log line bundles

Our approach to Divg in Definition 3.5 via a fiber product is indirect. While it will not

be used in the paper, a more conceptual path is to consider the stack Div′
g whose objects

are tuples

(C/S,P, α),

(21) Here, [ · ] denotes the equivalence class under the relations of isomorphism and tensoring with
the pullback of a line bundle from the base.
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where C/S is a log curve, P is a logarithmic line on S (a Glog
m torsor), and α is a map

from C to the tropical line P on S induced from P by the exact sequence (3.8). There

is a natural map

Div′
g −!Divrel

g .

We can see α as a section of the tropicalization of the pullback of P to C. As such, by the

sequence (3.8), α induces a Gm-torsor on C, giving us an Abel–Jacobi map Div′
g!Picg.

Together these maps induce a map

Div′
g −!Divg

to the fiber product, and a local computation verifies that this is an isomorphism.

The above discussion points(22) towards a definition of the double ramification cycle

via the logarithmic Picard functor of [60], which we hope will be pursued in future.

3.4. Logarithmic rubber definition of DRop

Marcus and Wise introduce a slight variant Rubrel
g of the stack Divrel

g which parameter-

izes pairs (C,P, α), where P is a tropical line on S and α:C!P is an S-morphism such

that, on each geometric fiber over S, the values taken by α on the irreducible components

of C are totally ordered in (�M gp
S )s, with the ordering given by declaring the elements of

(�MS)s to be the non-negative elements.

The space Rubg,A, defined via pullback

Rubg,A
∼
=Divg,A×Divrel

g,A
Rubrel

g,A,

is pure dimensional and comes with a proper birational map

Rubg,A−!Divg,A. (3.12)

The stack Rubg,A will play an important role in the comparison to classes coming from

stable map spaces in §6.
We obtain an operational class AJ

rub
op [Rubg,A] associated by Definition 2.8 with

AJ
rub:Rubg,A−!Picg,n,d

(22) The unit section of Pic is given by the stack of Gm torsors on the base. Similarly, the unit

section of the logarithmic Picard stack LogPicg is given by the stack of Glog
m torsors on the base. The

natural map Picg!LogPicg is neither injective nor surjective: a logarithmic line bundle comes from a
line bundle if and only if the associated tropical line bundle is trivial, and a choice of trivialization of

that tropical line bundle then determines a lift to a line bundle. Hence, we see that Div′
g is precisely

the pullback of the unit section of LogPicg to Picg .



250 y. bae, d. holmes, r. pandharipande, j. schmitt and r. schwarz

obtained by composing (3.12) with AJ. Our third definition of the universal twisted

double ramification cycles is via AJ
rub:

DRop
g,A= AJ

rub
op [Rubg,A]∈CHgop(Picg,n,d). (3.13)

The equivalence with the first two definitions will be proven in §3.6.

3.5. The image of the Abel–Jacobi map

The set theoretic image of the Abel–Jacobi map

AJ:Divg,A−!Picg,n,d

can be characterized in terms of a condition on twisted divisors similar to the conditions

of [28] for the moduli spaces H̃g(A) twisted canonical divisors.

Given a prestable graph Γδ of degree d, a twist on Γδ is a function I:H(Γ)!Z which

satisfies the following properties:

(i) for all j∈L(Γδ), corresponding to the marking j∈{1, ..., n}, one has

I(j)= aj ;

(ii) for all e∈E(Γδ), corresponding to two half-edges h, h′∈H(Γδ), one has

I(h)+I(h′)= 0;

(iii) for all v∈V(Γδ), one has ∑
v(h)=v

I(h)= δ(v),

where the sum is taken over all n(v) half-edges incident to v;

(iv) there is no strict cycle(23) in Γ.

Let (C, p1, ..., pn) together with a line bundle L!C of degree d be a geometric point

of Picg,n,d. Let Γδ be the prestable graph of C decorated with the degrees δ(v) of the

line bundle L restricted to the components Cv of C. Given a twist I on Γδ, let

ηI :CI −!C

(23) A strict cycle is a sequence e⃗i=(hi, h
′
i), i=1, ..., ℓ, of directed edges in Γ forming a closed path

in Γ such that I(hi)⩾0 for all i, and there exists at least one i with I(hi)>0. Condition (iv) corresponds
to the combination of the vanishing, sign, and transitivity conditions for twists in [28, §0.3].
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be the partial normalization of C at all nodes q∈C corresponding to edges e=(h, h′) of

Γ with

I(h)=−I(h′) ̸=0.

Denote by qh, qh′∈CI the preimages of q corresponding to the half-edges h and h′, re-

spectively. Denote by p̂i∈CI the unique preimage of the ith marking pi∈C.
We say the point (C, p1, ..., pn,L) of Picg,n,d satisfies the twisted divisor condition

for the integer vector A if and only if there exists a twist I on Γδ such that, on the partial

normalization CI of C, there exists an isomorphism of line bundles

η∗IL∼=OC

( n∑
i=1

aip̂i+
∑

h∈H(Γ)

I(h)qh

)
. (3.14)

For L=ωC , this exactly corresponds to the notion [28, Definition 1] of a twisted canonical

divisor.

Proposition 3.7. A geometric point (C, p1, ..., pn,L) of Picg,n,d lies in the image

of the Abel–Jacobi map AJ:Divg,A!Picg,n,d if and only if the twisted divisor condition

for the vector A is satisfied.

Proof. We may suppose that K is a separably closed field and (C/S, p1, ..., pn) is a

prestable curve over K. We must show that the twisted divisor condition is equivalent

to the existence of a log structure on C/S satisfying the following property: C/S is a

log curve with markings given by the pi which admits a global section α of �M gp
C with

outgoing slope at pi given by ai.

Suppose that such a log structure exists. From the log structure, we can determine

a twist. With each leg we associate the outgoing slope of α on the corresponding leg.

For an edge {h, h′}, we define ℓ({h, h′}) to be the element of �MS associated via the data

of the log morphism C!S with the node of C corresponding to {h, h′}. If {h, h′} is an

edge with half-edge h attached to a vertex u and the opposite half-edge h′ attached to

v, we set the integer I(h) to be the unique integer such that

α(u)+I(h)·ℓ({h, h′})=α(v)∈�M gp
S . (3.15)

That such an I(h) exists follows from the structure of �M gp
C .

Next, we verify that I is a twist. Conditions (i) and (ii) are immediate from the

construction. We deduce condition (iv) because by following a strict cycle starting at

some vertex u and applying (3.15) along each edge would yield α(u)<α(u), which is

impossible. Condition (iii) is immediate from the twisted divisor condition (3.14) and

the fact that isomorphic line bundles have the same degree, so this will be proven once

we have checked the latter condition.
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For the latter condition, we must work a little harder. To start, we claim that there

exists a morphism �MS!N which does not send the label of any edge to zero. Indeed,
�M gp
s injects into its groupification which is a finitely generated torsion-free abelian group,

and hence isomorphic to Zm. Since �MS is sharp(24) and finitely generated, the non-zero

elements of its image in Zm land in some strict half-space of Zm cut out by a linear

equation with integral coefficients. Such a half-space admits a map to N such that the

only preimage of zero is zero.

After base changing over S along such a map, we may assume that �M gp
S =N, and

that all edges have non-zero label. We obtain a first-order map passing through our given

point,

S=SpecK[[t]]−!Divg,A

for which the induced prestable curve C/S is generically smooth. On the curve C, we

define a Weil divisor D by assigning to an irreducible component v the integer α(v).

The divisor D is then Cartier by (3.15), which still applies after base change, and hence

determines a line bundle OC(−D), which is exactly the image of the Abel–Jacobi map.

In particular, the bundle L is (up to isomorphism) given by restricting OC(−D) to the

central fiber, so it suffices to verify (3.14) for the latter bundle, which is a standard local

calculation on a prestable curve over a discrete valuation ring.

Conversely, suppose the twisted divisor condition is satisfied. We must build a log

structure and a suitable section α∈�M gp
C (C). We could try equipping (C/S, p1, ..., pn)

with its minimal log structure (see §1.2), but then the section α is unlikely to exist— if

there are no separating edges then there are no non-constant sections of �M gp
C . Instead,

we will construct a log structure by deforming the curve.

First, we claim that there exists an assignment of a positive integer ℓ(e)∈Z>0 to

each edge and of an integer d(v)∈Z to each vertex such that the following condition is

satisfied:
if e= {h, h′} is an edge with h attached to u and h′ to v,

then d(u)+I(h)·ℓ(e)= d(v).
(*)

A twist I on Γ induces a binary relation ⪯ on V (Γ) by

u⪯ v ⇐⇒ there is an edge e= {h, h′} with h at u, h′ at v, and I(h)⩾ 0.

The fact that Γ contains no strict cycles is equivalent by [74] to the existence of an

extension of ⪯ to a total preorder on V (Γ) (a reflexive, total, and transitive binary

relation). Hence, there exists a level function d0: V(Γ)!Z such that

u⪯ v ⇐⇒ u and v are connected by an edge and d0(u)⩽ d0(v). (3.16)

(24) A monoid is sharp if zero is indecomposable: a+b=0 implies a=b=0.
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We define

L= lcm{I(h) :h∈H(Γ), I(h)> 0}.

Then, d(v)=Ld0(v) still has property (3.16) and, for any edge e={h, h′} with h attached

to u and h′ to v, we have two cases:

• I(h)=0, in which case all edges {h̃, h̃′} connecting u and v must satisfy I(h̃)=0

(due to the strict cycle condition), so we can set ℓ(e)=1;

• I(h) ̸=0, in which case the number

ℓ(e)=
d(v)−d(u)

I(h)

is indeed a positive integer (since d has values in L·Z).
Clearly, the functions d and ℓ thus constructed satisfy the condition above.

Such d and ℓ are far from unique, but we pick them. Consider then the space of all

smoothings C of C over K[[t]] such that the thickness(25) of C at the node corresponding

to edge e is ℓ(e). Given such a smoothing C, we construct a vertical Weil divisor D by

assigning to the irreducible component corresponding to vertex v the weight d(v). The

divisor D is then Cartier by the condition (*). Set

LC =OC(D)|C⊗OC

(∑
i

aipi

)
.

The smoothing C also induces a log structure on C by taking the divisorial log structure

of the special fiber. The twist I then determines an element α of π∗�M
gp
C /

�M gp
S . Applying

the Abel–Jacobi map to α recovers LC .

One can readily verify that LC satisfies (3.14) by a local computation, but we need

to show more: the smoothing C can be chosen so that LC is isomorphic to the line bundle

L that we started with. The space of such smoothings C naturally surjects onto⊕
e={h,h′}
I(h)̸=0

(OCI
(h)⊗OCI

(h′))⊗ℓ(e), (3.17)

where the 1-dimensional K-vector space

(OCI
(h)⊗OCI

(h′))⊗ℓ(e)

corresponds exactly to the ways to glueing the two branches of η∗IL together at the points

h and h′. In other words, by moving over the space (3.17), we can recover all ways of

glueing η∗IL to a line bundle on C. In particular, we can recover L, and hence we can

realize L as LC for some smoothing C, as required.
(25) The local equation of the node is xy=tr for some positive integer r which we call the thickness

of the node.
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3.6. Proof of the equivalence of the definitions

The equivalence of the classes coming from Divg,A and from Rubg,A is immediate by

applying Proposition 2.16. We must compare the latter two with the class defined by

(3.2) via the schematic image. We will require the following two easy results.

Lemma 3.8. Let U
� � // Divg,A denote the open locus where the log curve is classically

smooth. Then, U is schematically dense in Divg,A.

Proof. Since Divg,A!Mlog
g,n is log étale, we deduce that Divg,A is log regular. In

particular, Divg,A is reduced, and the locus where the log structure is trivial is dense.

Lemma 3.9. The Abel–Jacobi map AJ:Divg,A!Picg,n,d factors through the inclu-

sion σ̄!Picg,n,d, and the induced map

Divg,A−! σ̄

is proper and birational.

Proof. That Divg,a!Picg,n,d factors through σ̄!Pic is immediate from Lemma 3.8

and the definition of the schematic image. The induced map Divg,A!σ̄ is proper since

Divg,A is proper over Picg,n,d, and is birational since it is an isomorphism over the locus

of smooth curves.

By another application of Proposition 2.16, the definitions of DRop via Divg,A and

the schematic image are equivalent.

3.7. Proof of Theorem 0.1

Let k⩾0, and let A=(a1, ..., an) be a vector of integers satisfying

n∑
i=1

ai= k(2g−2).

There are three definitions in the literature for the classical twisted double ramification

cycle

DRg,A,ωk ∈CH2g−3+n(�Mg,n)

on the moduli space of stable curves:

• via birational modifications of �Mg,n [37];

• via the closure of the image of the Abel–Jacobi section [38];

• via logarithmic geometry and the stack Divrel
g [56].
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All three are shown to be equivalent in [37], [38]. For the proof of Theorem 0.1, we

choose the definition of [56], as this will give the shortest path.

For d=k(2g−2), let φ:�Mg,n!Picg,n,d be the morphism associated with the data

π: Cg,n−! �Mg,n, ωkπ −! Cg,n. (3.18)

To prove Theorem 0.1, we must show that

DRop
g,A(φ)([

�Mg,n]) =DRg,A,ωk ,

where [�Mg,n] is the fundamental class.

We form the pullback diagram

Divg,A×Picg,n,d
�Mg,n Divg,A×�Mg,n

�Mg,n Picg,n,d×�Mg,n.

ψ a×id

φ′=φ×id

(3.19)

Following Definition 2.8, we have

DRop
g,A(φ)([

�Mg,n]) =ψ∗(φ
′)!([Divg,A×�Mg,n]).

The construction is equivalent to the definition of the class DRg,A,ωk in [56] after making

the standard translation between the Gysin pullback and the virtual fundamental class

as in [11, Example 7.6].

3.8. The double ramification cycle in b-Chow

The construction of the double ramification cycle in [37] naturally yielded a more refined

object: a b-cycle(26) on �Mg,n which pushes down to the usual double ramification cycle

on �Mg,n. The refined cycle was shown in [39] to have better properties with respect to

intersection products than the usual double ramification cycle. By considering rational

sections of the multidegree-zero relative Picard space over Picg,n,d, we can in an analo-

gous way define a b-cycle on Picg,n,d refining the universal twisted double ramification

cycle introduced here. In future work, we will show that this refined universal cycle

is compatible with intersection products in the sense of [39] and that the toric contact

cycles of [68] can be obtained by pulling back these products.

(26) An element of the colimit of the Chow groups of smooth blowups of �Mg,n with transition maps
given by pullback.
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4. Pixton’s formula

4.1. Reformulation

Recall the cycle Pcg,A,d∈CH
c
op(Picg,n,d) defined in §0.3.5. We write

P�g,A,d=
∞∑
c=0

Pcg,A,d ∈
∞∏
c=0

CHcop(Picg,n,d)

for the associated mixed dimensional class. We will rewrite the formula for P�g,A,d in a

more convenient form for computation.

Several factors in the formula of §0.3.5 can be pulled out of the sum over graphs and

weightings. We require the following four definitions:

• Let Gse
g,n,d be the set of graphs in Gg,n,d having exactly two vertices connected by

a single edge. Such graphs are thus described by a partition

(g1, I1, δ1 | g2, I2, δ2) (4.1)

of the genus, the marking set, and the degree of the universal line bundle.

• Given a vector A=(a1, ..., an)∈Zn satisfying

n∑
i=1

ai= d

and Γδ∈Gse
g,n,d corresponding to the partition (4.1), we define

cA(Γδ)=−
(
δ1−

∑
i∈I1

ai

)2
=−

(
δ2−

∑
i∈I2

ai

)2
.

• For Γδ∈Gse
g,n,d, we write

[Γδ] =
1

|Aut(Γδ)|
jΓδ∗[PicΓδ

]

for the class of the boundary divisor of Picg,n,d associated with Γδ.

• Let Gnse
g,n,d be the set of graphs in Gg,n,d such that every edge is non-separating.

Proposition 4.1. The class P�g,A,d is the constant term in r of

exp

(
1

2

(
−η+

n∑
i=1

2aiξi+a
2
iψi+

∑
Γδ∈Gse

g,n,d

cA(Γδ)[Γδ]

))

×
∑

Γδ∈Gnse
g,n,d

w∈WΓδ,r

r−h
1(Γδ)

|Aut(Γδ)|
jΓδ∗

[ ∏
e=(h,h′)∈E(Γδ)

1

ψh+ψh′

(
1−exp

(
−w(h)w(h

′)

2
(ψh+ψh′)

))]
,

(4.2)

for r≫0.
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In the proof of Proposition 4.1, we will use the following computation which provides

an interpretation for parts of the formula (4.2) and which will be used again in §8.

Lemma 4.2. Let A=(a1, ..., an)∈Zn with
∑n
i=1 ai=d. For the line bundle L on the

universal curve

π:Cg,n,d−!Picg,n,d,

with universal sections p1, ..., pn, we define

LA=L
(
−

n∑
i=1

ai[pi]

)
.

Then, we have

−π∗c1(LA)2 =−η+
n∑
i=1

2aiξi+a
2
iψi.

Proof. The result follows from the definitions of the classes η and ξi:

−π∗c1(LA)2 =−π∗
(
c1(L)2+

n∑
i=1

−2aic1(L)|[pi]+a
2
i [pi]

2

)
=−η+

n∑
i=1

2aiξi+a
2
iψi,

where, for the self-intersection [pi]
2, we have used that the first Chern class of the normal

bundle of pi is given by −ψi.

Proof of Proposition 4.1. We denote by

Φa(x)=
1

x

(
1−exp

(
−a
2
x

))
=

∞∑
m=0

(−1)m
(
a

2

)m+1
1

(m+1)!
xm=

a

2
− a2

8
x+...

the power series appearing in the edge-terms of Pixton’s formula.

As a first step, we show that the constant term in r of

exp

(
1

2

∑
Γδ∈Gse

g,n,d

cA(Γδ)[Γδ]

)

×
∑

Γδ∈Gnse
g,n,d

w∈WΓδ,r

r−h
1(Γδ)

|Aut(Γδ)|
jΓδ∗

∏
e=(h,h′)∈E(Γδ)

Φw(h)w(h′)(ψh+ψh′)
(4.3)

and the constant term in r of

∑
Γδ∈Gg,n,d

w∈WΓδ,r

r−h
1(Γδ)

|Aut(Γδ)|
jΓδ∗

∏
e=(h,h′)∈E(Γδ)

Φw(h)w(h′)(ψh+ψh′) (4.4)
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are equal. The formula (4.4) is a linear combination of boundary strata decorated by

edge-terms (ψh+ψh′)m(e) for non-negative integers m(e), e∈E(Γδ), that is, terms of the

form

jΓδ∗
∏

e=(h,h′)∈E(Γδ)

(ψh+ψh′)m(e). (4.5)

A first consequence of the combinatorial rules for computing intersections in the tauto-

logical ring(27) of Picg,n,d is that (4.3) is also a linear combination of such terms. The

decorations (ψh+ψh′)m(e) on separating edges e=(h, h′) appear naturally in the self-

intersection formula for the boundary divisors [Γδ] since, for Γδ∈Gse
g,n,d, the Chern class

of the normal bundle of jΓδ
is given by −(ψh+ψh′).

We show that the coefficients of the term (4.5) in (4.3) and (4.4) have the same

constant term in r. In (4.4), the coefficient is given by

∑
w∈WΓδ,r

r−h
1(Γδ)

|Aut(Γδ)|
∏

e=(h,h′)∈E(Γδ)

(−1)m(e)

(
w(h)w(h′)

2

)m(e)+1
1

(m(e)+1)!
. (4.6)

On the other hand, let e1, ..., eℓ∈E(Γδ) be the separating edges of Γδ, and let �Γδ∈Gnse
g,n,d

be the graph obtained from Γδ by contracting these separating edges. Each separating

edge ej corresponds to a unique graph (Γj)δj∈Gse
g,n,d obtained by contracting all edges

of Γδ except for ej .

In the product (4.3), the intersection rules of the tautological ring of Picg,n,d imply

that we obtain multiples of the term (4.5) by combining

• for j=1, ..., ℓ, a total of m(ej)+1 terms [(Γj)δj ] from expanding the power series

exp

(
1

2

∑
Γδ∈Gse

g,n,d

cA(Γδ)[Γδ]

)
,

• the terms associated with �Γδ∈Gnse
g,n,d in the second factor.

Let M=
∑ℓ
j=1(m(j)+1). Then, (4.5) appears in (4.3) with coefficient

1

M !

(
M

m(e1)+1, ...,m(eℓ)+1

)( ℓ∏
j=1

(
cA((Γj)δj )

2

)m(ej)+1

(−1)m(ej)

)
|Aut(�Γδ)|
|Aut(Γδ)|

×
∑

w∈W
�Γδ,r

r−h
1(�Γδ)

|Aut(�Γδ)|
∏

e=(h,h′)∈E(�Γδ)

(−1)m(e)

(
w(h)w(h′)

2

)m(e)+1
1

(m(e)+1)!
.

(4.7)

(27) See [30] for the original treatment of the tautological ring of �Mg,n. A corresponding treatment
for Mg,n will be given in [6], [7]. See also [43, §1.1 and §1.7].
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To show the equality of (4.6) and (4.7), we combine a number of observations. First, for

the multinomial coefficients, we have

1

M !

(
M

m(e1)+1, ...,m(eℓ)+1

)
=

ℓ∏
j=1

1

(m(ej)+1)!
.

Second, for the graph morphism Γδ!�Γδ contracting the separating edges, the following

statements hold.

• We have an equality of Betti numbers h1(Γδ)=h
1(�Γδ).

• For the separating edges ej=(hj , h
′
j) of Γδ, splitting the graph according to the

partition (g1, I1, δ1 | g2, I2, δ2), the value of every weighting w∈WΓδ,r is uniquely deter-

mined on hj and h
′
j , since

w(hj)= δ1−
∑
i∈I1

ai (mod r) and w(h′j)= δ2−
∑
i∈I2

ai (mod r).

Hence, the constant term in r of w(hj)w(h
′
j) is precisely given by cA((Γj)δj ).

• Concerning the non-separating edges for fixed Γδ with contraction Γδ!�Γδ, the

map WΓδ,r!W�Γδ,r given by restricting weightings w∈WΓδ,r to the remaining half-edges

H(�Γδ)⊂H(Γδ) is a bijection.

The combination of these facts proves equality of (4.6) and (4.7), and hence the

equality of (4.3) and (4.4).

To conclude the proof, we must show that the remaining part of the exponential term

of (4.2) can be drawn into the graph sum. Using the projection formula, this identity is

equivalent to showing that

(jΓδ
)∗ exp

(
1

2

(
−η+

n∑
i=1

2aiξi+a
2
iψi

))
=

∏
v∈V(Γδ)

exp

(
−1

2
η(v)

) n∏
i=1

exp

(
1

2
a2iψi+aiξi

)
,

which immediately reduces to showing

(jΓδ
)∗
(
−η+

n∑
i=1

(2aiξi+a
2
iψi)

)
=−

∑
v∈V(Γδ)

η(v)+

n∑
i=1

(2aiξi+a
2
iψi).

By Lemma 4.2,

−η+
n∑
i=1

(2aiξi+a
2
iψi)=−π∗c1(LA)2.

Now, consider the diagram of universal curves∐
v∈V(Γ)

Cg(v),n(v),δ(v) C′
Γδ

CΓδ
Cg,n,d

∏
v∈V(Γ)

Picg(v),n(v),δ(v) PicΓδ
PicΓδ

Picg,n,d.

G

π′
Γδ

JΓδ

πΓδ π

jΓδ
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where the left and right squares are cartesian, and the mapG is the gluing map identifying

sections of C′
Γδ
!PicΓδ

corresponding to pairs of half-edges forming an edge. This map G

is proper, representable, and birational.

The space C′
Γδ

is a disjoint union of universal curves

π′
Γδ,v

:C′
Γδ,v

−!PicΓδ

for v∈V(Γ), and the bundle G∗J∗
Γδ
LA restricted to the component C′

Γδ,v
is equal to the

pullback of the line bundle Lv,Av
from the factor Cg(v),n(v),δ(v) (where Av is the vector

formed by numbers ai for i a marking at v, extended by zero on the half-edges at v).

Then, using the projection formula together with Proposition 2.16, we have

(jΓδ
)∗π∗c1(LA)2 =(πΓδ

)∗J
∗
Γδ
c1(LA)2

=(G�πΓδ
)∗(G�πΓδ

)∗c1(LA)2

=
∑

v∈V(Γδ)

(π′
Γδ,v

)∗c1(Lv,Av
)2

=
∑

v∈V(Γδ)

η(v)+

n∑
i=1

a2iψi+2aiξi,

where, for the last equality, we again use Lemma 4.2.

In the case n=0 and d=0, the formula P�g,∅,0 takes a slightly simpler shape: it is

the r=0 term of the formula

exp

(
−1

2
η

)
×

∑
Γδ∈Gg,0,0

w∈WΓδ,r

r−h
1(Γδ)

|Aut(Γδ)|
jΓδ∗

[ ∏
e=(h,h′)∈E(Γδ)

1

ψh+ψh′

(
1−exp

(
−w(h)w(h

′)

2
(ψh+ψh′)

))]
.
(4.8)

As explained in §0.7, the full formula P�g,A,d can be reconstructed from P�g,∅,0.

4.2. Comparison to Pixton’s k-twisted formula

Given k⩾0 and a vector A=(a1, ..., an)∈Zn satisfying∑
i

ai= k(2g−2),

let Ã=(ã1, ..., ãn) be the vector with entries ãi=ai+k. Denote by

P c,kg (Ã)∈CHc(�Mg,n)
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Pixton’s original formula defined in [42, §1.1].
In the k=0 case, A=Ã, and 2−gP g,0g (Ã) is the class originally conjectured by Pixton

to equal the double ramification cycle associated with the vector Ã. Compatibility with

the formula for the universal twisted double ramification cycle is given by the following

result.

Proposition 4.3. Via the map φωk
π
: �Mg,n!Picg,n,k(2g−2) associated with the uni-

versal data

π: Cg,n−! �Mg,n, ωkπ −! Cg,n,

the class Pcg,A,k(2g−2) acts as

Pcg,A,k(2g−2)(φωk
π
)([�Mg,n]) = 2−cP c,kg (Ã) (4.9)

for every c⩾0.

Proof. The left-hand side of (4.9) is obtained from Pcg,A,k(2g−2) by substituting

L=ω⊗k
π (4.10)

in the formula and taking the action. A factor 2−c arises on the left-hand side, since

all terms in Pcg,A,k(2g−2) increasing the codimension of the cycle naturally come with

corresponding negative powers of 2 (which is placed as a prefactor on the right-hand side

in [42, §1.1]).
Under the substitution (4.10), the edge terms and weightings modulo r in the two

formulas naturally correspond to each other. Using Proposition 4.1 and Lemma 4.2, we

must show that

exp

(
−1

2
π∗c1

(
ω⊗k
π

(
−

n∑
i=1

ai[pi]

))2)
=exp

(
−1

2

(
k2κ1−

n∑
i=1

ã2iψi

))
,

where again [pi] denotes the class of the image of the section pi: �Mg,n!Cg,n. Defining

ωlog
π =ωπ

(∑
i

pi

)
,

we see that

c1

(
ω⊗k
π

(
−

n∑
i=1

ai[pi]

))2
=

(
kc1(ωlog)−

n∑
i=1

ãi[pi]

)2

= k2c1(ωlog)
2−2k

n∑
i=1

ãic1(ωlog)|[pi]+
n∑
i=1

ã2i [pi]
2.

After pushing forward, the first term gives k2κ1, the second vanishes (since ωlog restricts

to zero on the section pi), and the third gives −
∑
i ã

2
iψi, as desired.
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4.3. Comparison to Pixton’s formula with targets

Let X be a non-singular projective variety over K. The moduli space �Mg,n(X,β) pa-

rameterizes stable maps

f : (C, p1, ..., pn)−!X

from genus-g, n-pointed curves C to X of degree β∈H2(X,Z). The moduli space carries

a virtual fundamental class

[�Mg,n(X,β)]
vir ∈CHvdim(g,n,β)(�Mg,n(X,β)),

where

vdim(g, n, β)= (dimX−3)(1−g)+
∫
β

c1(X)+n.

See [11] for the construction of virtual fundamental classes.

Given the data of a line bundle L on X and a vector A=(a1, ..., an)∈Zn satisfying∫
β

c1(L)=
n∑
i=1

ai,

a double ramification cycle

DRg,A(X,L)∈CHvdim(g,n,β)−g(�Mg,n(X,β))

virtually compactifying the locus of maps f : (C, p1, ..., pn)!X with

f∗L∼=OC

( n∑
i=1

aipi

)
is defined in [43]. Furthermore, the authors define the notion of tautological classes inside

the operational Chow ring CH∗
op(�Mg,n(X,β)) of �Mg,n(X,β). The main result of [43] is

a Pixton formula for a codimension-g tautological class whose action on [�Mg,n(X,β)]
vir

yields DRg,A(X,L).
We define a morphism

φL: �Mg,n,β(X)−!Picg,A,d,

f 7−! (C, p1, ..., pn, f
∗L).

The compatibility result here is

DRg,A(X,L)=φ∗
LP

g
g,A,d([

�Mg,n(X,β)]
vir). (4.11)

The equality follows by an exact matching of the definition of Pgg,A,d in §0.3.5 (after

pullback by φ∗
L) with the Pixton formula in the main result of [43].

In fact, the compatibility (4.11) represented the starting point for our investigation

of the universal twisted double ramification cycle here.
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5. Proof of Theorem 0.7

5.1. Overview

We prove here the main result of the paper: for A=(a1, ..., an)∈Zn satisfying

n∑
i=1

ai= d,

the universal twisted double ramification cycle is calculated by Pixton’s formula

DRop
g,A=Pgg,A,d ∈CHgop(Picg,n,d).

The result is an equality in the operational Chow group, and therefore an equality

on every finite-type family of prestable curves. Given a prestable curve C!B and a line

bundle L on C of relative degree d, we obtain a map

φL:B−!Picg,n,d.

We must prove that

DRop
g,A(φL)=Pgg,A,d(φL):CH∗(B)−!CH∗−g(B). (5.1)

As explained in §0.7, the result for general A∈Zn can be reduced to the case n=0,

d=0, though the case of arbitrary A will be important in the proof, as we proceed through

a sequence of special cases. We recall that this reduction used the invariances II and III

for the double ramification cycle and Pixton’s formula. Note that these will be proved

separately and independent of Theorem 0.7 in §7, so no circular reasoning occurs.

5.2. On an open subset of �Mg,n(Pl, β)

As before, let A=(a1, ..., an)∈Zn with

n∑
i=1

ai= d.

We consider here the target X=Pl. Let β be the class of d times a line in Pl. Let

C −! �Mg,n(Pl, β)

be the universal curve over the moduli of stable maps to Pl, let

f : C −!Pl
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be the universal map, and let L=f∗OX(1).

We have a tautological map

φL: �Mg,n(Pl, β)−!Picg,n,d. (5.2)

We would like to prove an equality of operational classes

φ∗
LDR

op
g,A=φ∗

LP
g
g,A,d ∈CHgop(�Mg,n(Pl, β)).

We will apply the main result of [43] which relates the double ramification cycle there to

Pixton’s formula. However, only the action of φ∗
LP

g
g,A,d on the virtual fundamental class

[�Mg,n(Pl, β)]vir is computed in [43]. Since we are interested here in the full operational

class φ∗
LP

g
g,A,d, our first idea is to restrict to the open locus

�Mg,n(Pl, β)′ �
�
// �Mg,n(Pl, β)

where (on each geometric fiber) we have H1(C,L)=0.

Lemma 5.1. On the smooth Deligne–Mumford stack �Mg,n(Pl, β)′, the fundamental

and virtual fundamental classes coincide.

Proof. It suffices to show that H1(C, f∗TPl)=0 on �Mg,n(Pl, β)′. Pulling back the

Euler exact sequence on Pl via f yields

0−!OC −!
l+1⊕
1

f∗OPl(1)−! f∗TPl −! 0. (5.3)

Taking cohomology yields the exact sequence

l+1⊕
1

H1(C, f∗OPl(1))−!H1(C, f∗TPl)−!H2(C,OC). (5.4)

But H1(C, f∗OPl(1))=0 by assumption, and H2(C,OC)=0 for dimension reasons.

The next lemma depends on a careful comparison of the logarithmic and rubber

approaches to double ramification cycles, which will be postponed to §6.

Lemma 5.2. Let φ′
L be the restriction of φL to �Mg,n(Pl, β)′. We have an equality

of operational classes

φ′∗
LDR

op
g,A=φ′∗

LP
g
g,A,d ∈CHgop(�Mg,n(Pl, β)′). (5.5)
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Proof. By Lemma 2.6, the two sides of (5.5) are equal if and only if their actions

on the fundamental class [�Mg,n(Pl, β)′] are equal in CH∗(�Mg,n(Pl, β)′). By (4.11), the

action of the right-hand side of (5.5) on

[�Mg,n(Pl, β)′] = [�Mg,n(Pl, β)′]vir

equals the restriction of DRg,A(Pl,L) to �Mg,n(Pl, β)′.
The cycle DRg,A(Pl,L) is defined in [43] as the pushforward of the virtual funda-

mental class of the space of rubber maps.(28) By Proposition 6.12 of §6.5, the restriction
of DRg,A(X,L) to �Mg,n(Pl, β)′ is equal to φ′∗

LDR
op
g,A([

�Mg,n(Pl, β)′]).

5.3. For sufficiently positive line bundles

Let π:C!B be an n-pointed prestable curve over a scheme of finite type over K. Let L
on C be a line bundle of relative degree d. Let

A=(a1, ..., an)∈Zn

with
∑n
i=1 ai=d. The line bundle L induces a map

φL:B−!Picg,n,d.

We say that L is relatively sufficiently positive if L is relatively base-point free and

satisfies R1π∗L=0.

Lemma 5.3. Let L be a line bundle which is relatively sufficiently positive. Then,

we have an equality

DRop
g,A(φL)=Pgg,A,d(φL):CH∗(B)−!CH∗−g(B). (5.6)

Proof. For any finite-type scheme B, the union of irreducible components of B maps

properly and surjectively to B. Thus, the pushforward from the Chow groups of the

irreducible components to that of B is surjective, and hence it suffices to show the

equality (5.6) of maps of Chow groups for B irreducible.

By relative sufficient positivity,

Rπ∗L=π∗L

(28) Rubber maps will be discussed in §6.3.
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is a vector bundle on B of rank N . For a positive integer l, we define

El=

l+1⊕
1

Rπ∗L, (5.7)

a vector bundle on B of rank r=N(l+1). Let Ul⊆El denote the open locus of linear

systems which are base-point free. Via pullback along ψ:Ul!B, we obtain a map

ψ∗:CH∗(B)−!CH∗+r(Ul).

We claim that, for l>dimB, the pullback (5.7) is injective. To prove the injectivity,

we show that the boundary El\Ul has codimension in El greater than dimB. Since

El!B is flat with irreducible target, it suffices to bound the codimension on each geo-

metric fiber over B: for a prestable curve C/K and a sufficiently positive line bundle L
on C, we must show that the locus in

⊕l+1
1 H0(C,L) consisting of base-point-free linear

systems has a complement of codimension greater than dimB.

Since L is base-point free on C, the dimension of the locus in
⊕l+1

1 H0(C,L), where
the linear system has a base point at some given p∈C is (N−1)(l+1). Hence, as p

varies, the complement of the base-point-free locus in
⊕l+1

1 H0(C,L) has dimension at

most 1+(N−1)(l+1). So the codimension is at least

N(l+1)−1−(N−1)(l+1)= l.

We have a canonical map g:C×BUl!Pl with g∗OPl(1)=L, which induces a map

Ul−! �Mg,n(Pl, β),

which factors via the locus

�Mg,n(Pl, β)′ ⊂ �Mg,n(Pl, d),

where H1(C, f∗OPl(1))=0. By construction, the composition

Ul
ψ−−−!B

φL−−−!Picg,n,d

then factors through the map

�Mg,n(Pl, β)′ −!Picg,n,d

induced by the line bundle f∗OPl(1) as before. In other words, we have a commutative

diagram

Ul �Mg,n(Pl, β)′

B Picg,n,d.

ψ φf∗OPl (1)

φL



pixton’s formula and abel–jacobi theory on the picard stack 267

Lemma 5.2 then implies that

(DRop
g,A−Pgg,A,d)(φL�ψ):CH∗(Ul)−!CH∗−g(Ul) (5.8)

is the zero map, and we conclude the proof of the lemma from the commutative diagram

CH∗+r(U)
(DRop

g,A−Pg
g,A,d)(φL�ψ)

// CH∗+r−g(U)

CH∗(B)
(DRop

g,A−Pg
g,A,d)(φL)

//
?�

ψ∗

OO

CH∗−g(B).
?�

ψ∗

OO

5.4. With sufficiently many sections

Let π:C!B be an n-pointed prestable curve with markings p1, ..., pn over a scheme of

finite type over K. Let L on C be a line bundle of relative degree d. Let

A=(a1, ..., an)∈Zn

with
∑n
i=1 ai=d. The line bundle L induces a map

φL:B−!Picg,n,d.

Lemma 5.4. For every geometric fiber of C/B, suppose that the complement of the

union of irreducible components which carry markings is a disjoint union of trees of

non-singular rational curves on which L is trivial. Then, we have an equality

DRop
g,A(φL)=Pgg,A,d(φL):CH∗(B)−!CH∗−g(B). (5.9)

Proof. We can choose A′=(a′1, ..., a
′
n) with entries

a′i≫ 0,

n∑
i=1

a′i= d′,

large enough so that

L′ =L
( n∑
i=1

a′ipi

)
is relatively sufficiently positive (by Riemann–Roch for singular curves).
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We obtain an associated map

φL′ :B−!Picg,n,d+d′ .

By §5.3,
DRop

g,A+A′(φL′)=Pgg,A+A′,d+d′(φL′):CH∗(B)−!CH∗−g(B). (5.10)

Invariance III of §0.6 (proven in §7) implies that

DRop
g,A+A′(φL′)=DRop

g,A(φL),

Pgg,A+A′,d+d′(φL′)=Pgg,A,d(φL),

which together with (5.10) finishes the proof.

5.5. Proof in the general case

To conclude the proof of Theorem 0.7, will use the invariances of §0.6 (proven in §7). As
discussed in §5.1, we can reduce to showing the result in the case n=0, d=0.(29)

Let B be an irreducible scheme of finite type over K. Let π:C!B a prestable curve,

and let L on C be a line bundle of relative degree zero. The line bundle L induces a map

φL:B−!Picg,0,0.

Lemma 5.5. There exist an alteration(30) B′!B and a destabilization

C ′ −!C×BB′ (5.11)

such that C ′ admits sections p1, ..., pm and satisfies the following property :

(C ′/B′, p1, ..., pm)

is a family of m-pointed prestable curves and, for every geometric fiber of C ′/B′, the

complement of the union of irreducible components which carry markings is a disjoint

union of trees of non-singular rational curves which are contracted by the morphism

(5.11).

(29) In genus g=1, we follow a slightly modified strategy, since there we must avoid the case n=0
for technical reasons (see Remark 2.1). Instead, we can use the invariances to reduce to the case g=1,
n=1, and A=(0). All the proofs below generalize in a straightforward way, since the vector A=(0) does

not affect the line bundles involved.
(30) An alteration here is a proper, surjective, generically finite morphism between irreducible

schemes.
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Proof. We first claim, after an alteration B̂!B, there exists a multisection(31)

Z ⊂CB̂ =C×B B̂−! B̂

satisfying the following two conditions:

(i) Over the generic point of B̂, Z is contained in the smooth locus of CB̂!B̂.

(ii) Every component of every geometric fiber of CB̂!B̂ carries at least two distinct

étale multisection points in the smooth locus. In other words, the étale locus of Z!B̂

meets the smooth locus of every component of every geometric fiber of CB̂!B̂ in at least

two points.

To prove the above claim, we observe that, for every geometric point b of B, there

exists an étale map Up!B and a factorization Up!C whose image meets the smooth

locus of every irreducible component of every geometric fiber in some Zariski neighbour-

hood Vb⊆B of b at least twice. Choose a finite set of b such that the Vb cover B, define

U to be the union of the Ub, and define Z ′ to be the closure of the image of U in C.

Then Z ′!B is proper and generically finite. Let

B̂−!B

be a modification which flattens Z ′ (see [69]), and let Z be the strict transform of Z ′

over B̂. Then

Z −! B̂

is proper, flat, and generically finite, and hence finite— so condition (i) is satisfied.

Moreover, U already satisfies condition (ii), and the strict transform of a flat map is just

the fiber product, and hence Z also satisfies condition (ii).

Let B̃!B̂ be an alteration such that over B̃ the multisection Z becomes a disjoint

union of sections. In other words, the pullback

CB̃ =C×B B̃−! B̃

has sections p̃1, ..., p̃m such that, as a set, the preimage of Z is given by the union of the

images of sections p̃1, ..., p̃m. Such a B̃ exists(32) by [44, Lemma 5.6]. We may assume

that the sections p̃i are pairwise disjoint over the generic point of B̃.

By assumption (i) above, the family CB̃!B̃ with sections p̃1, ..., p̃m is generically

a stable m-pointed curve (since every component has at least two of the sections). We

therefore obtain a rational map

B̃ �Mg,m.

(31) By a multisection of C
B̂
!B̂, we mean a closed substack Z⊂C

B̂
such that Z!B̂ is finite and

flat.

(32) The base B̂ is excellent, since it is of finite type over a field.
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Let B′!B̃ be a blow-up resolving the indeterminacy of this map(33)

B′ �Mg,m

B̃

(5.12)

and let C ′!B′ with sections p1, ..., pm:B′!C ′ be the pullback of the universal curve

over �Mg,n to B′. Let

CB′ =C×BB′

be the pullback of C/B under

B′ −! B̃−! B̂−!B.

Then, we have a map f :C ′!CB′ fitting in a commutative diagram

C ′ CB′

B′

f

pi p̃i

(5.13)

such that f is a partial destabilization. On geometric fibers of C ′!B′, f collapses trees

of rational curves to either nodes or coincident sections p̃i on the geometric fibers of CB′ .

To conclude, we must show that, for every geometric point b∈B′ and every irre-

ducible component D⊂C ′
b which is not contracted by f , we can find a marking

pi(b)∈D.

The image of D under f is a component of (CB′)b. By condition (ii) above, f(D) has at

least one p̃i(b) in the smooth locus of f(D) pairwise distinct from all other p̃j(b). Since

there are no components of C ′
b which collapse to p̃i(b), we must have pi(b)∈D.

Lemma 5.6. We have

DRop
g,∅(φL)=Pgg,∅,0(φL):CH∗(B)−!CH∗−g(B).

Proof. We apply Lemma 5.5 to the family C/B to obtain

h:B′ −!B, C ′ −!CB′ .

(33) As usual, this blowup is constructed by taking the closure of the graph and flattening. Then
we check that this ensures the existence of the map to CB′ as written below.
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Let L′ be the pullback of L to C ′. After applying Lemma 5.4 with A=0∈Zm, we obtain

DRop
g,0(φL′)=Pgg,0,d(φL′):CH∗(B

′)−!CH∗−g(B
′). (5.14)

Since h is proper and surjective, for any α∈CH∗(B) there exists α′∈CH∗(B
′) satis-

fying h∗α
′=α. If any operational class maps α′ to zero, then it maps α to zero because

the operation commutes with h∗.

It therefore suffices to prove that

(DRop
g,∅−Pgg,∅,0)(φL)�h∗ (5.15)

is the zero map on CH∗(B
′). By the compatibilities of operational classes, we have

(DRop
g,∅−Pgg,∅,0)(φL)�h∗ =h∗(DR

op
g,∅−Pgg,∅,0)(φL�h),

and the proof below will in fact show that

(DRop
g,∅−Pgg,∅,0)(φL�h)= 0.

By (5.14), we need only show

DRop
g,∅(φL�h)=DRop

g,0(φL′):CH∗(B
′)−!CH∗−g(B

′), (5.16)

Pgg,∅,0(φL�h)=Pgg,0,0(φL′):CH∗(B
′)−!CH∗−g(B

′). (5.17)

For the map F :Picg,n,0!Picg,0,0 forgetting the markings, Invariance II from §0.6 for the

double ramification cycle and the Pixton formula shows that we have

DRop
g,0(φL′)=DRop

g,∅(F �φL′) and Pgg,0,0(φL′)=Pgg,∅,0(F �φL′).

So, we are reduced to showing that

DRop
g,∅(φL�h)=DRop

g,∅(F �φL′) and Pgg,∅,0(φL�h)=Pgg,∅,0(F �φL′). (5.18)

The claims (5.18) follow from Invariance VI of §0.6. As before, let CB′ be the

pullback of C under h, and let LB′ be the pullback of L to CB′ . The map

φL�h:B
′ −!Picg,0,0

is induced by the data

CB′ −!B′, LB′ −!CB′ ,

whereas F �φL′ :B′!Picg,0,0 is induced by

C ′ −!B′, L′ −!C ′.

By construction, we have a partial destabilization C ′!CB′ over B′, and the line bundle

L′ is the pullback of LB′ under this map. Hence, the equalities (5.18) follow from

Invariance VI of §0.6.
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6. Comparing rubber and log spaces

6.1. Overview

Our goal here is to compare the stack of stable rubber maps associated with a line bundle

L on a target X (introduced by Li [54] and studied by Graber–Vakil [31]) to the stack

Rubg,A of Marcus–Wise (see §3.3) and our operational class DRop
g,A. Rubber maps are

reviewed in §6.3 and connected to the logarithmic space in §6.4. The relationship between

the construction of Marcus–Wise and DRop
g,A is Lemma 6.11 of §6.5.2. The comparison

to the class of Graber–Vakil is carried out in [56], in the case where the target X is a

point. We require the case where

X =Pl and L=O(1),

but only over the unobstructed locus

�Mg,n(Pl, d)′ ⊂ �Mg,n(Pl, d),

see §5.2. We will treat the case of a general non-singular projective target X, since

restricting to Pl provides no simplification (though the unobstructed locus may be rather

small for general X). The final comparison result is Proposition 6.12 in §6.5.3.

6.2. Refined definition of the logarithmic rubber space

As described in §3.4, Marcus and Wise define Rubrel
g to be the moduli space of pairs

(C,P, α), where P is a tropical line on S and

α:C −!P

is an S -morphism such that on each geometric fiber over S the values taken by α on

the irreducible components of C are totally ordered in (�M gp
S )s. However, with the above

definition, certain key results of their paper (in particular concerning the comparison to

spaces of rubber maps) are not correct as stated.

To explain the problem, we restrict to the case where the base C is a geometric

log point. Subdividing P at the images of the vertices of C under the map α yields a

divided tropical line Q (in the language of [56]). It is asserted in the discussion above

[56, Proposition 5.5.2] that the fiber product C×PQ is again a log curve over S, which,

in general, is not true. For example, take �MS to be the sub-monoid of Z2 generated

by (1, 1), (1, 0), and (1,−1), and C and α to be as illustrated in Figure 1. In the fiber

product, the edge with length (1, 0) must be subdivided into two shorter edges, but (1, 0)

is an irreducible element of �MS . In fact, failure of divisibility is the only thing that can

go wrong.
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Lemma 6.1. Let (C,P, α) be a point of Rubrel
g over a geometric log point B, and let

Q be obtained from P by subdividing at the image of α. Then, the following conditions

are equivalent :

(i) The fiber product C×PQ is a log curve over B.

(ii) Let e be an edge of ΓC between vertices u and v (satisfying α(v)⩾α(u)) with

length ℓe∈�MS and slope

κe=
α(v)−α(u)

ℓe
.

Then, for every y∈Image(α) with α(u)<y<α(v), the monoid �MB contains the element

y−α(u)
κe

.

Proof. The characteristic monoid at a singular point with length ℓe is given by the

monoid

{(a, b)∈�M2
b : ℓe | a−b}. (6.1)

Taking the fiber product over P with Q subdivides the characteristic monoid at the

element
y−α(u)
κe

∈�M gp
B ⊗ZQ.

If (y−α(u))/κe lies in �MB , then the fiber product is easily seen to be a log curve. If not,

then the subdivision is not even reduced.

Definition 6.2. We define R̃ub
rel

to be the full subcategory of Rubrel consisting of

objects (C,P, α) which, on each geometric fiber over B, satisfy the equivalent conditions

of Lemma 6.1. We define R̃ub to be the fiber product of R̃ub
rel

over Picrel with Pic.

Remark 6.3. The double ramification cycle DRop can be defined as the operational

class induced by the map Rub!Pic following Definition 2.8. Applying the same defi-

nition to the composite map R̃ub!Pic yields the same operational class, by Proposi-

tion 2.16.

6.3. The stack of prestable rubber maps

Let M(X) be the stack of maps from marked prestable curves to X. An S-point of M(X)

is a pair

(C/S, f :C!X),

where C/S is prestable with markings. To simplify notation, we will often suppress the

markings.
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(0, 0)

(1, 1)

(2, 0)

(1, 0)

(1,−1)

(1, 1)

α

Figure 1. A point of Rub.

The space of rubber maps associated with a line bundle L on X is summarized in

[43]: a map to rubber with target X is a map to a rubber chain of CP1-bundles P(OX⊕L)
over X attached along their zero and ∞ divisors.

To facilitate our comparison, we begin by writing the definition explicitly. Let P

denote the projective bundle P(OX⊕L). The map collapsing the fibers,

ρ:P−!X (6.2)

admits two sections r0, r∞:X!P corresponding to OX and L, respectively.

Definition 6.4. An (X,L)-rubber target (R/S, ρ, r0, r∞) is flat, proper, and finitely

presented

R−!S

and a collapsing map ρ:R!XS with two sections

r0, r∞ :XS!R

satisfying the following properties:

(i) Every geometric fiber Rs is isomorphic over Xs to a finite chain

P∪P∪...∪P (6.3)

with the components attached successively along the respective zero and ∞ divisors. The

collapsing maps (6.2) on the components together define

ρs:Rs−!Xs.

The zero and ∞ sections of ρs are determined, respectively, by the zero section of first

component and the ∞ section of last components of the chain (6.3).

(ii) Étale locally near every point s∈S, the data of (R/S, ρ, r0, r∞) is pulled back

from a versal deformation space described by Li [53] with one dimension for every com-

ponent of the singular locus of (6.3).
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Definition 6.5. The stack Rubpre(X,L) of prestable rubber maps to L is a fibered

category over M(X) whose fiber over a map S!M(X) consists of three pieces of data:

(i) a prestable curve C̃/S and a partial stabilization(34) map τ : C̃!CS which is

allowed to contract genus-zero components with two special points;

(ii) an (X,L)-rubber target (R/S, ρ, r0, r∞);

(iii) a map f̃ : C̃!R for which the following diagram commutes:

C̃ R

CS XS .

f̃

τ ρ

f

(6.4)

The map f̃ in (iii) is finite over the singularities of R/XS and predeformable.(35)

Moreover, over each geometric point s∈S, the image f̃(C̃s) meets every component of Rs.

An isomorphism between two objects

(C̃!CS , R, r0, r∞, C̃!R) and (C̃ ′!CS , R
′, r′0, r

′
∞, C̃

′!R′)

over S!M(X) is given by the data of isomorphisms

C̃ ′ ∼−−! C̃

over CS and

R′ ∼−−!R

over XS , compatible with the markings and such that the diagram

C̃ ′ C̃

R′ R

∼

∼

commutes. We leave the definition of the cartesian morphisms to the careful reader.

Suppose now that we fix a genus g and a vector of integers A of length n. We define

the stack Rubpre
g,A(X,L) with objects being tuples

(τ : (C̃, p1, ..., pn)!CS , R/XS , f̃ : C̃!R), (6.5)

where (C̃, p1, ..., pn) is a prestable curve of genus g with n markings. The data (6.5) are

as for Rubpre(X,L). Moreover, the following statements hold:

• if ai>0, pi∈C̃ is mapped to the zero-divisor with ramification degree ai;

• if ai<0, pi∈C̃ is mapped to the ∞-divisor with ramification degree −ai;
• if ai=0, pi∈C̃ is mapped to the smooth locus of R away from the zero-divisor and

from the ∞-divisor.

(34) CS is not necessarily a stable curve.
(35) See [53].
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6.4. Comparison to the logarithmic space

The pullback of L from X to the universal curve over M(X) induces a map M(X)!Pic.

The key comparison result is the following.

Proposition 6.6. The stack Rubpre
g,A(X,L) is naturally isomorphic to the fiber

product of R̃ubg,A over Pic with M(X) along the map induced by L:

Rubpre
g,A(X,L)

∼
= R̃ubg,A×PicM(X).

Proof. The right-hand side comes with a built-in log structure, but the left-hand

side does not. Our isomorphism will be between the underlying stacks. Our proof is

based on the discussion above [56, Proposition 5.5.2], and we will use the language of

divided tropical lines of [56].

We begin by building a map from the right to the left. We are given a log curve

C/S, a tropical line P on S, a map α:C!P whose image is totally ordered, and a map

f :C!X, such that f∗L lies in the isomorphism class OC(α).

sThe Gtrop
m -torsor P is rigidified by the least element among the images of the irre-

ducible components of C (here we use the total ordering condition), and hence comes

with a canonical Gm-torsor P!P (if we use the rigidification to identify P=Gtrop
m , then

P=Glog
m ). The pullback α∗P gives a canonical Gm-torsor on C, which is isomorphic to

f∗L∗ up to pullback from S. In other words, the bundle α∗P⊗f∗L∨ descends to a line

bundle on S which we denote M.

The images of the irreducible components of C yield a subdivision Q of P, and we

define a destabilization C̃=C×PQ of C, which is a log curve over S, by Lemma 6.1.

This Q comes with a canonical Gm-torsor Q by pulling back P from P; this Q is then

a 2-marked semistable genus-zero curve by [56, Proposition 5.2.4]. We define an (X,L)-
rubber target R over S by the formula

R=Hom((L⊗M)∗, Q).

Here, we pull back and take Gm-equivariant homomorphisms over XS .

Write f̃ : C̃!X. We need a predeformable map C̃!R, equivalently an equivariant

logarithmic map f̃∗L∗!Q over XS . It is enough to give a map f∗L!P (since then we

can tensor over P with Q), which reduces to writing down an element of

HomC(f
∗(L⊗M), α∗P )=HomC(f

∗L⊗f∗L∨⊗α∗P, α∗P )

=HomC(α
∗P, α∗P ),

(6.6)

which contains the identity. The scheme-theoretic map is predeformable as it comes from

a logarithmic map, see [48].
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Finally we check that no component of C̃ is mapped to a non-smooth point of R and

that every component is hit. The target R is constructed by subdividing f∗L at images

of components of C, and then C̃ is constructed by subdividing C at points lying over

these divisions, so both assertions are clear.

Now, we construct a map from left to right. Given a prestable rubber map to L over

a base S, we first need to equip S with a suitable log structure.

The curve R/XS is a map XS!Mss
0,2, giving a (minimal) log structure on XS by

pullback. Lemma 6.7 below shows that this log structure descends to S. The curve R/XS

now carries the structure of a log curve, and similarly the quotient [R/Gm] descends to

S (again by the Lemma 6.7), determining our tropical line P—which evidently satisfies

the divisibility condition in Lemma 6.1.

It remains to verify that the map C̃!R descends to a map C!P, and that the

total ordering condition is satisfied. Write

τ : C̃ −!C.

By the proof of [56, Proposition 5.5.2], we see that R!τ∗τ
∗R is an isomorphism, and

hence the map descends as required. The condition that no components are mapped

to the nodes implies that the values of α on the irreducible of C are a subset of the

irreducible components of R, in particular are totally ordered.

Lemma 6.7. Let (R/S, ρ, r0, r∞) be an (X,L)-rubber target. Then, there exists a

(minimal) log structure on S such that R/XS can be equipped with the structure of a log

curve making XS strict over S. The quotient log stack [R/Gm] descends to a divided

tropical line on S.

Proof. The curve R/XS with markings ri is prestable, and hence admits a minimal

log structure. We must verify that the resulting log structure on XS descends to S. After

a finite extension of K, we may assume that X has a K point, so that

π:XS −!S

admits a section x:S!XS , and we can equip S with the pullback log structure. It

remains to construct an isomorphism π∗x∗MXS
!MXS

. We start by building a map

from left to right.

We first build a map on the level of characteristic monoids. The characteristic

monoid at a geometric point t∈XS is given by Nℓ, where ℓ is the length of the chain

of projective lines of R over t. Crucially, the irreducible elements of Nℓ come with

a total order, given by proximity of the corresponding singularity to the r0 marking.
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This rigidifies the characteristic monoid, so as we move along the fiber over π(t) the

characteristic monoids are canonically identified. We obtain canonical identifications

(x∗MXS
)π(t)

∼−−! (�MXS
)t,

which give an isomorphism

π∗x∗�MXS

∼−−!�MXS
.

To construct an isomorphism of log structures, we will use the perspective of [13,

§3.1] that a log structure is a monoidal functor from the groupified characteristic monoid

to the stack of line bundles. The rubber target is by definition pulled back from Li’s

versal deformation spaces, so it suffices to construct our map in that setting. We may

therefore assume that S is regular and the locus of non-smooth curves is a reduced divisor

in XS . Since our map will be canonical, we may further shrink S to be atomic.(36) Then,
�MX/S is generated by its global sections, and there is a natural isomorphism of sheaves

on XS :

φ:Nℓ ∼−−!�MX/S ,

where ℓ is the number of singular points in the fiber of C over any point of XS lying over

the closed stratum of S. Given 1⩽i⩽ℓ, write Di for the Cartier divisor in XS , where the

singularity at distance i from the first marking persists. Then φ sends the ith generator

of Nℓ to the section corresponding to the line bundle OXS
(Di). To build the required

map of log structures

π∗x∗MXS

∼−−!MXS
,

we must construct an isomorphism

π∗x∗OXS
(Di)

∼−−!OXS
(Di).

Condition (i) of Definition 6.4 implies that the underlying point set of Di is a union of

fibers of XS/S. Since S is regular and XS is smooth over S, it follows that

Di=π∗x∗Di

giving the required isomorphism.

The quotient log stack

[R/Gm]

is a divided tropical line on XS with divisions coming from the divisors Di. We may

identify the underlying tropical line with Gtrop
m by specifying that the smallest element

in the sequence of divisions is mapped to zero. We have already established that these

divisions Di descend to S, and hence so does the divided tropical line.

(36) [2, Definition 2.2.4].
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After restriction to the locus where the infinitesimal automorphisms are trivial, we

obtain a stable version of Lemma 6.6. Let �Mg,n(X,β) denote the stack of stable maps

from n-pointed curves to X representing the class β. The line bundle L determines a

map
�Mg,n(X,β)−!Pic,

and we can pullback R̃ubg,A as before. Let

Rubg,A(X,L)⊂Rubpre
g,A(X,L)

be the locus where the infinitesimal automorphisms are trivial.

Lemma 6.8. The stack Rubg,A(X,L) is the fiber product of R̃ubg,A over Pic with
�Mg,n(X,β) along the map given by L:

Rubg,A(X,L)
∼
= R̃ubg,A×Pic

�Mg,n(X,β).

Next, we will compare the virtual fundamental classes on these spaces. We will carry

out the comparison on a smaller open locus.

(i) We let �Mg,n(X,β)
′ be the open locus of maps (C, f :C!X) in �Mg,n(X,β) where

H1(C, f∗L)= 0.

(ii) We define

Rubg,A(X,L)′ =Rubg,A(X,L)×�Mg,n(X,β)
�Mg,n(X,β)

′.

In §5.2, we considered the case X=Pl and showed that this unobstructed locus is

large enough to control the cycles relevant to Theorem 0.7. For general X, the unob-

structed locus might be very small (and possibly empty).

6.5. Comparing the virtual classes

6.5.1. Overview

We begin by briefly discussing of several spaces which will be relevant in setting up the

obstruction theories. Let

Mss
g,n⊂Mg,n

be the semistable locus (where every rational curve has at least two distinguished points).

We write T for the algebraic stack with log structure which parameterizes tropical lines

with at least one division. There are natural maps

Mss
0,2 −!T and Mss

0,2 −!BGm,
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the former defined by dividing Gtrop
m at 1 and at the smoothing parameters of the nodes,

and the latter defined by the normal bundle at the first marking. The induced map

Mss
0,2 −!T ×BGm (6.7)

is an isomorphism by [1, Proposition 3.3.3].

As Rubrel is the moduli stack of tuples (C,α:C!P), where P is a tropical line and

the images of the irreducible components of C are totally ordered, there is a natural map

Rubrel −!T (6.8)

sending (C,α:C!P) to the tropical line P with the division given by the images of the

irreducible components of C.

We will construct a map

Rubg,A(X,L)′ −!Mss
0,2 (6.9)

lifting the morphism (6.8) by the following argument. A point of Rubg,A(X,L)′ is a

tuple

(C,α:C!P, f :C!X),

where f∗L lies in the class(37) [OC(α)]. However, as P is divided, there is a unique

isomorphism P ∼−!Gtrop
m , where the smallest division maps to zero. The universal Gm

torsor Glog
m !Gtrop

m pulls back to a well-defined Gm-torsor O∗
C(α) on C, and the difference

f∗L∗⊗O∗
C
O∗
C(−α) descends to a Gm-torsor on S by the construction of Rubg,A(X,L)′ as

a fiber product. The Gm-torsor on S induces a map Rubg,A(X,L)′!BGm. Combined

with the map Rubg,A(X,L)′!T via (6.8), we obtain the map (6.9).

The space Rubg,A(X,L)′ carries three virtual fundamental classes by the following

three constructions:

(i) The class DRop
g,A(φL)([�Mg,n(X,β)

′]) obtained by applying DRop
g,A to the (virtual)

fundamental class of �Mg,n(X,β)
′ via the map φL.

(ii) The class obtained from a 2-step obstruction theory described by Marcus and

Wise [56] for the map Rubg,A(X,L)′!Mg,n×T .

(iii) A class coming from a 2-step obstruction theory studied by Graber and Vakil

[31] for the map

Rubg,A(X,L)′! �Mg,n(X,β)
′×Mss

0,2.

We will prove that (i)–(iii) are all equal.

(37) Here, [OC(α)] is an equivalence class under isomorphisms and tensoring with pullbacks from S.
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6.5.2. DRop and the obstruction theory of Marcus–Wise

The obstruction theory of Marcus–Wise is a 2-step obstruction theory, a notion which we

now recall. Unless otherwise stated, by perfect obstruction theory we mean an obstruction

theory which is perfect in amplitude [−1, 0].

Definition 6.9. A 2-step obstruction theory for a map f :X!S consists of a factor-

ization

X −!Y −!S

together with perfect relative obstruction theories for X/Y and for Y/S.

A 2-step obstruction theory induces a virtual pullback by composition.(38) If S has

a fundamental class [S], the virtual pullback of [S] is the virtual fundamental class of X

associated with the 2-step obstruction theory.

We first recall the 2-step obstruction theory of [56] in the case when X is a point.

We have a diagram

Rubg,A(pt,O)′ R̃ubg,A

Mg,n×T .

(6.10)

A perfect relative obstruction theory for the horizontal map is given in [56, §5.6.3], and
for the vertical map in [56, Proposition 5.6.5.3]; while the reader might expect that

these arguments apply to Rubg,A, rather than the root stack R̃ubg,A, Marcus and

Wise in fact assume in both constructions the divisibility conditions of Lemma 6.1, and

hence their constructions in fact apply to R̃ubg,A (and not to Rubg,A). This 2-step

obstruction theory coincides with the rubber theory of Graber–Vakil, as shown in [56,

§5.6.6]. Moreover, the virtual fundamental class obtained equals the operational class of

Divg,A, see [56, Theorem 5.6.1]; again, these results all assume the divisibility condition

of Lemma 6.1, and hence apply to R̃ubg,A in place of Rubg,A.

Returning to the case of arbitrary (X,L), we can construct a similar commutative

diagram

Rubg,A(X,L)′ R̃ubg,A

Mg,n×T .

(6.11)

(38) A 2-step obstruction theory also induces a perfect obstruction theory for X/S in amplitude
[−2, 0], but we will not use the latter construction.
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The vertical map is unchanged, and so again has a perfect relative obstruction theory by

[56, Proposition 5.6.5.3]; in fact the morphism is a local complete intersection, and the

obstruction theory of [56, Proposition 5.6.5.3] is just the relative tangent complex.

We need to supply a perfect obstruction theory for the horizontal map

R̃ubg,A(X,L)′ −!Rubg,A,

which we can factor as

Rubg,A(X,L)′ −! �Mg,n(X,β)
′×Mg,n

R̃ubg,A−! R̃ubg,A. (6.12)

The second map is a base change of the unobstructed map �Mg,n(X,β)
′!Mg,n, and

hence is unobstructed. For the first map, consider the pullback square

Rubg,A(X,L)′ �Mg,n(X,β)
′

�Mg,n(X,β)
′×Mg,n R̃ubg,A �Mg,n(X,β)

′×Mg,nPicg,n.

(6.13)

The right vertical arrow is a section of a base change of the smooth morphism

Picg,n−!Mg,n,

and as such is lci and has a perfect relative obstruction theory given by the relative

tangent complex R1π∗OC . Pullback yields a corresponding perfect obstruction theory

for the left vertical arrow. This gives a 2-step obstruction theory for the composite map

Rubg,A(X,L)′ −! R̃ubg,A,

from which we obtain a virtual fundamental class following [55].

The discussion here is a very slight generalization of the obstruction theory con-

structed in [56, Proposition 5.6.3.1].

Definition 6.10. The 2-step obstruction theory for the diagonal map of (6.11),

Rubg,A(X,L)′ −!Mg,n×T

is the Marcus–Wise obstruction theory.
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Lemma 6.11. The pushforward along

ψ:Rubg,A(X,L)′ −! �Mg,n(X,β)
′

of the virtual fundamental class of the Marcus–Wise theory on Rubg,A(X,L)′ equals the
class DRop

g,A(φL)([�Mg,n(X,β)
′]) obtained via the map

φL: �Mg,n(X,β)
′ −!Picg,n.

Proof. From φL, we obtain maps

φ′
L: �Mg,n(X,β)

′ −! �Mg,n(X,β)
′×Mg,n

Picg,n,

φ′′
L: �Mg,n(X,β)

′ −! �Mg,n(X,β)
′×Picg,n.

Both are lci morphisms because Picg,n/Mg,n is smooth. By Definition 2.8 and §3.6, we
have

DRop
g,A(φL)([�Mg,n(X,β)

′]) =ψ∗(φ
′′
L)

![�Mg,n(X,β)
′×R̃ubg,A]

=ψ∗(φ
′
L)

![�Mg,n(X,β)
′×Mg,n

R̃ubg,A].

The virtual fundamental class of the Marcus–Wise theory is the virtual pullback of the

fundamental class of Mg,n×T along the composition

Rubg,A(X,L)′
(1)−−−! �Mg,n(X,β)

′×Mg,n
R̃ubg,A

(2)−−−! R̃ubg,A
(3)−−−!Mg,n×T . (6.14)

The map (3) is lci and the obstruction theory is the relative tangent complex, so the

pullback of the fundamental class is the fundamental class of R̃ubg,A. The map (2) is

unobstructed, so the (virtual) pullback of the fundamental class is again the fundamental

class. The obstruction theory of the map (1) is defined by pulling back the relative tangent

complex of the lci morphism

�Mg,n(X,β)
′ −! �Mg,n(X,β)

′×Mg,nPicg,n

via the pullback square

Rubg,A(X,L)′ �Mg,n(X,β)
′×Mg,n

R̃ubg,A

�Mg,n(X,β)
′ �Mg,n(X,β)

′×Mg,nPicg,n,
φ′

L

(6.15)

so the virtual pullback of the fundamental class of �Mg,n(X,β)
′×Mg,n

R̃ubg,A is equal to

the Gysin pullback

(φ′
L)

![�Mg,n(X,β)
′×Mg,n

R̃ubg,A].
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6.5.3. Marcus–Wise and Graber–Vakil

As recalled above, Marcus–Wise define a 2-step obstruction theory for the map

Rubg,A(X,L)′ −!Mg,n×T .

Graber and Vakil consider an obstruction theory for the map

Rubg,A(X,L)′ −! �Mg,n(X,β)
′×Mss

0,2. (6.16)

We wish to show an equality of the corresponding virtual fundamental classes on

Rubg,A(X,L)′. Since
Mss

0,2 =T ×BGm,

and that the maps �Mg,n(X,β)
′!Mg,n and BGm!SpecK are unobstructed, we have

an unobstructed map

�Mg,n(X,β)
′×Mss

0,2 −!Mg,n×Mss
0,2 −!Mg,n×T .

Our final step is therefore to compare the obstruction theories (and thereby the cor-

responding virtual pullbacks) between Marcus–Wise and Graber–Vakil [31], [54]. We

will match the obstruction spaces when the base S is a point. The full matching of

deformation theories is similar and will be treated in [36]. The claims are also required

for [56].

Suppose we are given the data of a point in Rubg,A(X,L)′(S):

(τ : C̃!CS , R/XS , φ: C̃!R, f :CS!XS , p1, ..., pn, f
∗L ∼−−!OC(α)). (6.17)

Proposition 6.12. The restriction to �Mg,n(X,β)
′ of the class DRg,A(X,L) of

[43] is equal to the class obtained by letting DRop
g,A act on the fundamental class of

�Mg,n(X,β)
′ via the map induced by L.

Proof. The primary obstruction of Graber–Vakil lies in

H0(C̃, φ−1 Ext1(ΩR/XS
(logD),OR)). (6.18)

Here, D is the divisor on R given by the sum of the two markings r0 and r∞, and

ΩR/XS
(logD) is the sheaf of relative 1-forms on R/XS allowed logarithmic poles along

D (a coherent sheaf on R). The obstruction space (6.18) is isomorphic to the product

of the deformation spaces of the nodes of R and coincides with the obstruction space for

the map

R̃ubg,A−!Mg,n×T
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(the vertical arrow in (6.11)), coming from [56, Proposition 5.6.5.3] (where they assume

the and divisibility conditions of Lemma 6.1, hence the results apply to R̃ubg,A and not

to Rubg,A).

Suppose that the primary obstruction vanishes. Denote by

TR/XS
=HomOR

(ΩR/XS
,OR)

the relative tangent sheaf. There is a secondary obstruction in

H1(C̃, φ†(TR/XS
)), (6.19)

where the φ† is the torsion-free part of φ∗, see [31] and [56]. The obstruction space (6.19)

is the image of the obstruction space

H1(CS , f
∗TR)=H1(CS ,OCS

)

for the map

Rubg,A(X,L)′ −! R̃ubg,A

(the horizontal arrow in (6.11)), coming from [56, Proposition 5.6.3.1].

When both of these obstructions vanish, the deformations are a torsor under

H0(C̃, φ†TR/XS
),

an extension of the first term of the obstruction complex in [56, Proposition 5.6.5.3] by

the first term of the obstruction complex of [56, Proposition 5.6.4.1]. The comparison of

the obstruction theories is complete.

7. Invariance properties

7.1. Overview

We prove here the invariance properties of the universal twisted double ramification cycle

as presented in §0.6.
We start with an object of φL:S!Picg,n,d given by a flat family of prestable n-

pointed genus-g curves together with a line bundle of relative degree d,

π: C −!S, p1, ..., pn:S −! C, L−! C. (7.1)

Let DRop
g,A,L=φ

∗
LDR

op
g,A∈CH

g
op(S) be the twisted double ramification cycle associated with

the above family (7.1) and the vector

A=(a1, ..., an), d=

n∑
i=1

ai.
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Theorem 0.7 asserts that DRop
g,A is equal to the tautological class

Pgg,A,d ∈CHgop(Picg,n,d).

If we assume Theorem 0.7, we have a choice of proving the invariance properties either for

DRop
g,A or for the formula in tautological classes. In fact, since both sides of Invariances II,

III, and VI are used in the proof of Theorem 0.7, we will have to prove these two sides

separately in each of these cases. In fact, we will do this for all the invariances, as each

side yields interesting perspectives. Also, we will show the invariances of Pixton’s formula

hold not just for the codimension-g part Pgg,A,d, but for the full mixed degree class

P�g,A,d ∈
∞∏
c=0

CHcop(Picg,n,d).

7.2. Proof of Invariance I (Dualizing)

We want to show the invariance

DRop
g,−A,L∗ = ε∗DRop

g,A,L,

where ε:Picg,n,−d!Picg,n,d is the natural map obtained via dualizing the line bundle.

It is enough to show the invariance

DRop
g,−A= ε∗DRop

g,A (7.2)

of the universal twisted double ramification cycles. The invariance (7.2) can be deduced

by applying Lemma 2.17 to the following commutative diagram of morphisms, where

the horizontal morphisms are the corresponding Abel–Jacobi maps and the vertical mor-

phisms are isomorphisms:
Divg,A Picg,n,d

Divg,−A Picg,n,−d.

ε̂ ε

Here, in the language of §3.3, the morphism ε̂ is induced by the natural map

π∗�M
gp
C /

�M gp
S −!π∗�M

gp
C /

�M gp
S

given by inversion in �M gp
C .

We now prove the invariance

P�g,−A,−d= ε∗P�g,A,d (7.3)
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using the formulas for these cycles from Proposition 4.1. The equality is then implied by

the following observations:

• We write

LA=L
(
−

n∑
i=1

aipi

)
for the twisted universal line bundle on the universal curve π:C!Picg,n,d, and we use

Lemma 4.2 to obtain

ε∗
(
−η+

n∑
i=1

2aiξi+a
2
iψi

)
=−ε∗π∗c1(LA)2 =−π∗c1((LA)∗)2

=−π∗(−c1(LA))2 =−π∗c1(LA)2

=−η+
n∑
i=1

2aiξi+a
2
iψi.

• Given a prestable graph Γδ describing a stratum in Picg,n,−d, the map ε sends this

stratum isomorphically to the stratum of Γ−δ (with an associated commutative diagram

of gluing morphisms over Mg,n). Combined with the equality cA(Γδ)=c−A(Γ−δ) for

Γδ∈Gse
g,n,d , we see that the first line of formula (4.2) for P�g,A,d has the desired invariance.

• For the sum over graphs and weightings, we clearly have h1(Γδ)=h
1(Γ−δ) and

Aut(Γδ)=Aut(Γ−δ). Moreover, we have a natural bijection of the admissible weightings

modulo r,

WΓδ,r −!WΓ−δ,r,

w 7−! (h 7! r−w(h) mod r).

The map of weightings leaves the edge terms of the formula (4.2) invariant since they

only depend on products w(h)w(h′) for and edge (h, h′)—which are of the form a(r−a)
and thus sent to (r−a)a.

Therefore, the formula of Proposition 4.1 applied to the two sides of (7.3) yields the

same result.

7.3. Proof of Invariance II (Unweighted markings)

Assume we have an additional section pn+1:S!C of π which yields an object ofPicg,n+1,d,

π: C −!S, p1, ..., pn, pn+1:S −! C, L−! C. (7.4)

Then, for the vector A0∈Zn+1 obtained by appending zero (as the last coefficient) to A,

we want to show the invariance

DRop
g,A0,L =DRop

g,A,L. (7.5)
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For the map Mg,n+1!Mg,n induced by forgetting the last marking, we have a

diagram of cartesian squares

Divg,A0
Divg,A

Picg,n+1,d Picg,n,d

Mg,n+1 Mg,n,

F (7.6)

where the morphism F is syntomic. In particular, for 0∈Zn the zero vector, the stack

Divg,0 can be obtained by pulling back Divg,∅ from Picg,0,0. Then, as a consequence of

the above cartesian square and the definition of the double ramification cycle, Lemma 2.17

yields

F ∗DRop
g,A=DRop

g,A0
. (7.7)

Since the morphisms

S −!Picg,n,d and S −!Picg,n+1,d

used to define DRop
g,A,L and DRop

g,A0,L fit in a diagram

S

Picg,n+1,d Picg,n,d,
F

the equation (7.7) immediately proves the invariance (7.5).

We now prove the corresponding invariance

F ∗P�g,A,d=P�g,A0,d (7.8)

of Pixton’s formula. First, since the map F does not change the curve or the line bundle,

we have a cartesian diagram

Cg,n+1,d Cg,n,d

Picg,n+1,d Picg,n,d.

F̂

π′ π

F



pixton’s formula and abel–jacobi theory on the picard stack 289

The universal line bundles Lg,n,d and Lg,n+1,d on Cg,n,d and Cg,n+1,d satisfy

F̂ ∗Lg,n,d=Lg,n+1,d.

Similarly, for the canonical line bundles of π and π′ we have F̂ ∗ωπ=ωπ′ . Combining

these facts, we see that F pulls back the operational classes η, ξi, and ψi on Picg,n,d to

the corresponding classes on Picg,n+1,d.

Next, given a graph Γδ∈Gg,n,d, we have a fiber diagram∐
v∈V(Γ)

PicΓv,δ
Picg,n+1,d

PicΓδ
Picg,n,d,

∐
v jΓv,δ

π

jΓδ

(7.9)

where, for v∈V(Γ), we denote by Γv,δ∈Gg,n+1,d the graph obtained from Γδ by adding

marking n+1 at v and leaving the remaining data fixed.

Using the expression (4.2) given in Proposition 4.1, we conclude the proof of (7.8)

by the following observations:

• The invariance of η, ξi, and ψi under F implies that

F ∗
(
−η+

n∑
i=1

2aiξi+a
2
iψi

)
=−η+

n+1∑
i=1

2aiξi+a
2
iψi,

where we use an+1=0.

• From the fiber diagram (7.9) and the equality cA(Γδ)=cA0(Γv,δ) for Γδ∈Gse
g,n,d

and any v∈V(Γ), the sum over the terms cA(Γδ)[Γδ] pulls back correctly.

• For all Γδ∈Gg,n,d and v∈V(Γ), we have h1(Γδ)=h
1(Γv,δ) since the Betti number is

independent of the position of the markings. Moreover, the automorphism group Aut(Γδ)

acts on V(Γδ) and, by the orbit-stabilizer formula, the size of the orbit Aut(Γδ)·v of v

and the size of its stabilizer Aut(Γδ)v satisfy

|Aut(Γδ)·v|=
|Aut(Γδ)|
|Aut(Γδ)v|

. (7.10)

The stabilizer Aut(Γδ)v is exactly equal to the automorphism group Aut(Γv,δ) of the

graph Γv,δ, since the marking n+1 at v forces this vertex to be fixed.

• As Γδ runs through Gnse
g,n,d, the graphs Γv,δ run through Gnse

g,n+1,d. The equality

(7.10) precisely implies that the corresponding graph sums (weighted by the inverse size

of automorphism groups) correspond to each other under pullback by F .

• Finally, the weightings WΓδ,r and WΓv,δ,r are naturally bijective.

Combining the above observations, we see that also the second line of (4.2) trans-

forms under pullback of F as expected.



290 y. bae, d. holmes, r. pandharipande, j. schmitt and r. schwarz

7.4. Proof of Invariance III (Weight translation)

Let B=(b1, ..., bn)∈Zn satisfy
∑n
i=1 bi=e. Then, for the family

π: C −!S, p1, ..., pn:S −! C, L
( n∑
i=1

bipi

)
−! C, (7.11)

defining an object of Picg,n,d+e, we want to show the invariance

DRop
g,A+B,L(

∑
i bipi)

=DRop
g,A,L. (7.12)

To show this, consider the smooth map

τB :Picg,n,d−!Picg,n,d+e,

L 7−!L
( n∑
i=1

bipi

)
.

over Mg,n. We have a natural cartesian diagram

Divg,A Divg,A+B

Picg,n,d Picg,n,d+e.
τB

(7.13)

In particular, for any ramification data A, we can obtain Divg,A from Divg,0 by such

translations. The diagram above together with Lemma 2.17 implies

τ∗BDR
op
g,A+B =DRop

g,A. (7.14)

Since the morphisms

S −!Picg,n,d and S −!Picg,n,d+e

used to define DRop
g,A,L and DRop

g,A+B,L(
∑

i bipi)
fit in a diagram

S

Picg,n,d Picg,n,d+e,
τB

the equation (7.14) immediately proves the invariance (7.12).
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Now, we prove the invariance

τ∗BP
�

g,A+B,d+e=P�g,A,d (7.15)

for Pixton’s formula. Recall the notation

LA=L
(
−
∑
i

ai[pi]

)

for the twisted universal line bundles from Lemma 4.2, observe that in the cartesian

diagram

Cg,n,d Cg,n,d+e

Picg,n,d Picg,n,d+e

τ̂B

π′ π

τB

we have

τ̂∗BLA+B =LA.

By Lemma 4.2, we have

τ∗B

(
−η+

n∑
i=1

2(ai+bi)ξi+(ai+bi)
2ψi

)
=−τ∗Bπ∗c1(LA+B)

2

=−π′
∗c1(LA)2 =−η+

n∑
i=1

2aiξi+a
2
iψi,

which shows the compatibility of the first part of formula (4.2) for P�g,A+B,d+e.

For the second part, we can combine the exponential of the graph sum over Gse
g,n,d+e

with the graph sum over Gnse
g,n,d+e in (4.2) to recover the sum

∑
Γδ∈Gg,n,d+e

w∈WΓδ,r

r−h
1(Γδ)

|Aut(Γδ)|
jΓδ∗

[ ∏
e=(h,h′)∈E(Γδ)

1

ψh+ψh′

(
1−exp

(
−w(h)w(h

′)

2
(ψh+ψh′)

))]

(7.16)

over all graphs in Gg,n,d+e, as in the proof of Proposition 4.1. It will be more convenient

to simply show the compatibility of the full graph sum (7.16) under pullback by τB .

Given a graph Γδ∈Gg,n,d+e, denote by δB : V(Γ)!Z the map defined by

δB(v)= δ(v)−
∑

i marking
at v

bi.
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We have a fiber diagram

PicΓδB
Picg,n,d

PicΓδ
Picg,n,d+e.

jΓ
δB

τB

jΓδ

(7.17)

The proof that (7.16) pulls back under τB as desired follows from the following observa-

tions:

• As Γδ runs through Gg,n,d+e, the graphs ΓδB run through Gg,n,d. From the defi-

nitions, we verify that the conditions defining admissible weightings w mod r for Γδ and

ΓδB are identical (the shift from δ to δB cancels the shift from A+B to A).

• Since the underlying graphs of Γδ and ΓδB agree, we have h1(Γδ)=h
1(ΓδB ). Con-

cerning the automorphisms, they appear to take into account the degree functions δ and

δB on the graphs. But any vertex v such that δ(v) ̸=δB(v) must carry a marking and

thus must anyway be fixed under an automorphism. Hence, Aut(Γδ)=Aut(ΓδB ).

• To conclude using the diagram (7.17), we observe that the map

PicΓδB
−!PicΓδ

appearing there is a map over MΓ (since only the line bundle is changed). Hence, the

classes ψh and ψh′ appearing in the edge terms of (7.16) are invariant.

7.5. Proof of Invariance IV (Twisting by pullback)

Let B!S be a line bundle on the base. We obtain a new object of Picg,n,d over S by

tensoring (7.1) with π∗B:

π: C −!S, p1, ..., pn:S −! C, L⊗π∗B−! C. (7.18)

We want to show the invariance

DRop
g,A,L⊗π∗B =DRop

g,A,L.

The universal twisted double ramification cycle DRop
g,A is the class associated with

the Abel–Jacobi map

AJ:Divg,A−!Picg,n,

and the latter is constructed (Definition 3.5) by pulling back the morphism

AJ
rel:Divrel

g,A−!Picrelg,n.
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Thus, by Lemma 2.17, the corresponding cycle DRop
g,A is a pullback of AJ

rel
op[Divrel

g,A] from

Picrelg,n,d. But twisting the family (7.1) by a line bundle pulled back from the base does

not change the map to Picrelg,n,d, and so does not change the resulting operational class,

proving the invariance.

We now prove the invariance

φ∗
L⊗π∗BP

�

g,A,d=φ∗
LP

�

g,A,d.

Using that P�g,A,d is a pullback of P�g,∅,0 as described in §0.7, it suffices to show that the

cycle P�g on Picg,0,0 pulls back to the same expression under the two maps

φLA
, φLA⊗π∗B:S −!Picg,0,0

induced by

LA=L
(
−

n∑
i=1

aipi

)
and LA⊗π∗B,

respectively. We will use formula (4.8) for P�g and show that both parts of the formula

are invariant separately.

• For the term exp
(
− 1

2η
)
, we use Lemma 4.2 to obtain

φ∗
LA⊗π∗Bη=π∗c1(LA⊗π∗B)2

=π∗(c1(LA)2+2c1(LA)π∗c1(B)+π∗c1(B)2)

=π∗(c1(LA)2)+2c1(B)π∗c1(LA)︸ ︷︷ ︸
=0

+c1(B)2 π∗1︸︷︷︸
=0

=φ∗
LA
η,

where π∗c1(LA) vanishes since LA has degree zero, and π∗1 vanishes for dimension rea-

sons. The vertex term is therefore invariant under twisting by π∗B.
• For the graph sum

∑
Γδ∈Gg,0,0

w∈WΓδ,r

r−h
1(Γδ)

|Aut(Γδ)|
jΓδ∗

[ ∏
e=(h,h′)∈E(Γδ)

1

ψh+ψh′

(
1−exp

(
−w(h)w(h

′)

2
(ψh+ψh′)

))]

(7.19)

in (4.8), we show that it is a pullback under the morphism

Picg,0,0 −!Picrelg,0,0, (7.20)
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which finishes the proof since the compositions of φLA
and φLA⊗π∗B with the morphism

(7.20) agree. For a prestable graph Γ, we have cartesian diagrams∐
δ

PicΓδ
Picg,0,0

∐
δ

PicrelΓδ
Picrelg,0,0

MΓ Mg.

∐
δ jΓδ

∐
δ j

rel
Γδ

jΓ

(7.21)

In formula (7.19), the edge terms use only the classes ψh and ψh′ , which are pullbacks

from MΓ. Therefore, (7.19) is the pullback under (7.20) of the identical formula with jΓδ

replaced with jrelΓδ
.

7.6. Proof of Invariance V (Vertical twisting)

Consider the boundary divisor ∆ of Picg,n,d given by the partition

g1+g2 = g, N1⊔N2 = {1, ..., n}, d1+d2 = d,

which is not symmetric. In

Cg,n,d−!Picg,n,d,

let ∆1 and ∆2 be, respectively, the (g1, N1, d1) and (g2, N2, d2) components of the uni-

versal curve over ∆. Then, we have a morphism

Φ∆1 :Picg,n,d−!Picg,n,d

associated with the twisted line bundle L(∆1) on the universal curve

Cg,n,d−!Picg,n,d.

Remark 7.1. The map Φ∆1 is not an isomorphism. Indeed, the map is equal to the

identity away from ∆⊂Picg,n,d, but it sends the generic point of ∆ to the generic point

of the boundary divisor

∆̃=∆(g1, N1, d1−1|g2, N2, d2+1),

which itself is fixed under Φ∆1
. Hence, Φ∆1

is not injective, though it is easily seen to

be étale.
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We want to show the invariance

Φ∗
∆1

DRop
g,A=DRop

g,A. (7.22)

Using the data

g1+g2 = g, N1⊔N2 = {1, ..., n}, d1+d2 = d,

we will define a map

Φ′:Divg,A−!Divg,A.

In fact, we will define a map Divrel
g,A!Divrel

g,A, and then lift it to Divg,A by fiber product

with Pic. The invariance (7.22) will be deduced from Φ′.

Suppose we are given a map S!Divrel
g,A compatible with C/S defined by a �M gp

S

torsor P on S and a map α:C!P. The divisor ∆ determines an element of the charac-

teristic sheaf of the log structure on Picg,n,d, which pulls back under the composition

S−!Divrel
g,A

AJ−−−!Picg,n,d

to an element δ∈�MS(S). All lifts of δ to MS(S) generate the same ideal sheaf on S,

whose closed subscheme is exactly the pullback ∆S of ∆. We write

∆′
1,∆

′
2 ⊂C

for the two components of the universal curve over ∆S⊂S.
We define a new map (P ′, α′):S!Divrel

g,A as follows. We take the same torsor P ′=P.

On the locus C1
� � // C which is the complement of ∆′

1, we define α′=α. On the locus

C2
� � // C which is the complement of ∆′

2, we define α′=α−δ. Since δ vanishes on the

overlap C1∩C2, we just have to check that the defined section extends from C1∪C2 to

the whole of C (across the separating node ∆′
1∩∆′

2). The extension can be checked étale

locally, and then the claim follows from the local description of the log structure.

We have defined a map Φ′:Divg,A!Divg,A, and we verify easily that the diagram

Divg,A Picg,n,d

Divg,A Picg,n,d

AJ

Φ′ Φ∆1

AJ

(7.23)

commutes. We will prove (7.23) is a pullback square which by Lemma 2.17 yields the

invariance (7.22).
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To prove that (7.23) is a pullback square, since the horizontal arrows are monomor-

phisms, we need to show the following: given (P, α)∈Divrel
g,A(S), a line bundle L on C

and an isomorphism AJ(P, α) ∼−−!Φ∆1
(L), there exists (P0, α0)∈Divrel

g,A(S) such that

AJ(P0, α0)∼=L.

If the element (P, α) has only one preimage under Φ′, we are done by commutativity.

If there are two preimages (the only other case), the Abel–Jacobi images differ by a

twist by ∆′
1, and the bundle L will determine which one we choose. More formally, by

uniqueness, we may assume S to be strictly henselian local, then Φ′ has exactly one

preimage whenever ∆(g1, N1, d1−1 | g2, N2, d2+1) does not meet S, and the result is

clear as the diagram commutes. If, on the other hand, ∆(g1, N1, d1−1 | g2, N2, d2+1)

does meet S, then the two preimages under Φ′ will have multidegrees

(d1, d2) and (d1−1, d2+1),

and only one of these can be sent by the Abel–Jacobi map to L.
We now prove the invariance

Φ∗
∆1

P�g,A,d=P�g,A,d.

We will use Proposition 4.1 and prove that the two lines of formula (4.2) are separately

invariant.

• For the exponential term, we must show that the divisor

−η+
n∑
i=1

(2aiξi+a
2
iψi)+

∑
Γδ∈Gse

g,n,d

cA(Γδ)[Γδ]

is invariant. By Lemma 4.2, we see

−π∗c1(LA)2 =−η+
n∑
i=1

(2aiξi+a
2
iψi).

After pulling back via Φ∆1
, we obtain

−π∗c1(LA(∆1))
2 =−π∗(c1(LA)2+2c1(LA)∆1+∆2

1)

=−π∗(c1(LA)2)−2deg(LA|∆1
)π∗∆1−π∗(∆1 ·(π∗∆−∆2))

=−π∗(c1(LA)2)−2

(
d1−

∑
i∈N1

ai

)
∆+∆.
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We have used

π∗∆=∆1+∆2

and the fact that the intersection of ∆1 and ∆2 has degree 1 over ∆.

For the pullback of the linear combination∑
Γδ∈Gse

g,n,d

cA(Γδ)[Γδ]

of boundary divisors, recall the divisor ∆̃=∆(g1, N1, d1−1 | g2, N2, d2+1), which satisfies

∆̃=ΦΓ1(∆̃)=ΦΓ1(∆).

We see Φ∗
∆1

[Γδ]=[Γδ] for all boundary divisors [Γδ] different from [∆] and [∆̃]. Moreover,

Φ∗
∆1

[∆̃] = [∆̃]+[∆] and Φ∗
∆1

[∆]= 0.

Writing Γ∆ and Γ∆̃ for the graphs associated with ∆ and ∆̃, respectively, we see that

Φ∗
∆1

∑
Γδ∈Gse

g,n,d

cA(Γδ)[Γδ] =
∑

Γδ∈Gse
g,n,d

cA(Γδ)[Γδ]+(cA(Γ∆̃)−cA(Γ∆))[∆].

After expanding the last term further, we obtain the coefficient

cA(Γ∆̃)−cA(Γ∆)=−
(
d1−1−

∑
i∈I1

ai

)2
+

(
d1−

∑
i∈I1

ai

)2
=2

(
d1−

∑
i∈I1

ai

)
−1,

which exactly balances out the error term we obtained in the pullback of

−π∗c1(LA(∆1))
2.

We have finished the proof of the invariance of the exponential term in (4.8).

• For the invariance of the sum over Γδ∈Gnse
g,n,d, we claim that given any graph Γδ,

we have the diagram ∐
∑

v δ(v)=d

PicΓδ
Picg,n,d

∐
∑

v δ(v)=d

PicΓδ
Picg,n,d

MΓ Mg,n.

∐
δ jΓδ

Φ∆1,Γ
Φ∆1

∐
δ jΓδ

jΓ

(7.24)
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The lower and outer diagrams are cartesian as we have seen in §0.3.2, thus the upper

diagram is also cartesian. While for a general graph Γδ the map Φ∆1,Γ induces a non-

trivial map on the set of components of∐
δ

PicΓδ
,

for Γ having only non-separating edges, we obtain

Φ∆1,Γ:PicΓδ
−!PicΓδ

overMΓ. The classes ψh (for h∈H(Γ)) are pullbacks fromMΓ, in particular Φ∗
∆1,Γ

ψh=ψh

for all such h. As a result, each term

jΓδ∗

[ ∏
e=(h,h′)∈E(Γδ)

1

ψh+ψh′

(
1−exp

(
−w(h)w(h

′)

2
(ψh+ψh′)

))]

in the sum over Γδ∈Gnse
g,n,d and w∈WΓδ,r in formula (4.2) is indeed invariant.

7.7. Proof of Invariance VI (Partial stabilization)

7.7.1. The stack N

We begin by introducing a stack N that allows us to reformulate Invariance VI as an

equality of operational classes on N. The stack N parameterizes data

f :C ′ −!C, L/C,

where f is a map of prestable genus-g curves which is a partial stabilization (a surjection

which contracts some unstable rational components of C ′) and L is a line bundle on C

of degree zero. By a small extension of the arguments of [50], N is an algebraic stack

and comes with two maps to Picg,0,0 given by

ℓ:N−!Picg,0,0,

(f :C ′!C,L) 7−! (C,L),

and

ℓ′:N−!Picg,0,0,

(f :C ′!C,L) 7−! (C ′, f∗L).
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Lemma 7.2. We have

ℓ∗DRop
g,0 =(ℓ′)∗DRop

g,0, ℓ∗P�g =(ℓ′)∗P�g. (7.25)

This lemma will be proven in the next subsection, but first we show that Invari-

ance VI is implied by the lemma.

For Invariance VI, we are given the data

C ′ f−−!C −!S, L−!C, p1, ..., pn:S −!C, p′1, ..., p
′
n:S −!C ′,

with f a partial stabilization satisfying f �p′i=pi and a vector A∈Zn satisfying ai=0 if

p′i meets the exceptional locus of f . Invariance VI then says that for the maps

φL, φf∗L:S −!Picg,n,d

induced by

C −!S, p1, ..., pn:S −!C, L−!C,

and

C ′ −!S, p′1, ..., p
′
n:S −!C ′, f∗L−!C,

respectively, we have

φ∗
LDR

op
g,A=φ∗

f∗LDR
op
g,A and φ∗

LP
�

g,A,d=φ∗
f∗LP

�

g,A,d.

The condition ai=0 if p′i meets the exceptional locus of f implies the equality

f∗
(
L
(
−

n∑
i=1

aipi

))
=(f∗L)

(
−

n∑
i=1

aip
′
i

)
of line bundles on C ′. Denote by f :S!N the map associated with the data

C ′ f−−!C −!S, L
(
−

n∑
i=1

aipi

)
−!C.

Writing

LA=L
(
−

n∑
i=1

aipi

)
and f∗LA=(f∗L)

(
−

n∑
i=1

aip
′
i

)
,

we obtain a commutative diagram

S

N

Picg,0,0 Picg,0,0.

g

φLA
φf∗LA

ℓ ℓ′

(7.26)
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From the arguments presented in §0.7, it follows that

φ∗
LDR

op
g,A=φ∗

LA
DRop

g,∅ and φ∗
f∗LDR

op
g,A=φ∗

f∗LA
DRop

g,∅,

with parallel equations for P�g,A,d and P�g,∅,0. Assuming (7.25), we have

φ∗
LDR

op
g,A=φ∗

LA
DRop

g,∅ = g∗ℓ∗DRop
g,∅ = g∗ℓ′∗DRop

g,∅ =φ∗
f∗LA

DRop
g,∅ =φ∗

f∗LDR
op
g,A,

and similarly for P�g,A,d. Thus (7.25) implies Invariance VI.

7.7.2. Invariance for N

Here we prove Lemma 7.2; it follows immediately from (7.25) in Lemmas 7.4 and 7.6

below. We start with a preliminary result.

Lemma 7.3. The map

ℓ:N−!Picg,0,0,

(f :C ′!C,L) 7−! (C,L),

is syntomic,(39) and the map

ℓ′:N−!Picg,0,0,

(f :C ′!C,L) 7−! (C ′, f∗L).

is smooth.

Proof. The stack of partial stabilizations (f :C ′!C) has smooth charts given by
�Mg,n+m, where (C, p1, ..., pn, q1, ..., qm) maps to the contraction map from C to the

stabilization of (C, p1, ..., pn) by forgetting the q markings. Charts for N are then given

by
�Mg,n+m×�Mg,n

Pic�Mg,n+1/�Mg,n

G−−−!N.

Charts for the map ℓ are given by the composition of the top horizontal arrows in

the commutative diagram

□ Pic�Mg,n+1/�Mg,n
Picg

�Mg,n+m
�Mg,n Mg.

ℓ

(7.27)

(39) Flat and lci.
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Both squares here are pullbacks, the bottom right horizontal map is smooth, and the

bottom left horizontal map is syntomic. Hence ℓ is syntomic, using that syntomicity is a

flat-local property on the target.

Charts for the map ℓ′ are given by commutative diagrams

�Mg,n+m×�Mg,n
Pic�Mg,n+1/�Mg,n

Pic�Mg,n+m+1/�Mg,n+m

N Picg.

G

F

ℓ′

(7.28)

The right vertical arrow is a base change of the smooth map �Mg,n+m!Mg, so once

we have shown F to be smooth, we can conclude using that smoothness is a flat-local

property on the target.

In fact, F is an open immersion: F is isomorphic to the inclusion of the locus

U �
�
// Pic�Mg,n+m+1/�Mg,n+m

of line bundles which are trivial on the contracted rational components. We must verify

the induced map

F ′: �Mg,n+m×�Mg,n
Pic�Mg,n+1/�Mg,n

−!U

is an isomorphism. The source and target are smooth over �Mg,n+m. On each geometric

fiber over �Mg,n+m, the map F ′ is an isomorphism via the explicit description of the

Jacobian of a prestable curve. But then F ′ is flat (by the fiberwise criterion), is unramified

(by a pointwise check), and is universally injective (again by a pointwise check), and hence

is an isomorphism.

Lemma 7.4. We have

ℓ∗DRop
g,0 =(ℓ′)∗DRop

g,0 ∈CHgop(N).

Proof. The maps ℓ and ℓ′ are syntomic by Lemma 7.3. It therefore suffices by

Lemma 2.17 to construct an isomorphism

φ: ℓ∗Divg,0
∼−−! (ℓ′)∗Divg,0

of stacks over N and even to construct the isomorphism on the level of Divrel.

An object of ℓ∗Divrel
g,0 consists of a stabilization map f :C ′!C, a line bundle L

on C, a Gtrop
m torsor P on S, and a map α:C!P such that O(α) and L are isomorphic
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up to pullback from the base. An object of (ℓ′)∗Divrel
g,0 consists of almost the same data,

but α is replaced by any α′:C ′!P, with O(α′) and f∗L isomorphic up to pullback. We

then define the map φ simply by composing, setting α′=f �α.

We must show that φ is an isomorphism. Suppose we are given the data f :C ′!C,

L on C, P, α′:C ′!P, with O(α′)∼=f∗L up to pullback. Since the degree of f∗L vanishes

on components contracted by f , we see that the same is true of the degree of O(α′)— the

slopes of the restriction of α′ to the contracted graph of the curve are linear on edges.

In other words, the restriction is still piecewise linear with integer slopes, hence we can

set α to be the restriction.

More work will be required to prove the second equality

ℓ∗P�g =(ℓ′)∗P�g.

We start by considering the morphism ℓ. For a prestable graph Γδ of degree zero, consider

the diagram ∏
v∈V(Γ)

Ng(v),n(v),δ(v) N′
Γδ

NΓδ
N

∏
v∈V(Γ)

Picg(v),n(v),δ(v) PicΓδ
PicΓδ

Picg,0,0,

∏
v ℓv

G JΓδ

ℓΓδ
ℓ

jΓδ

(7.29)

where the left and the right squares are pullbacks and the middle square is commutative.

• The stacks Ng(v),n(v),δ(v) are the natural generalizations of N to the case of marked

curves and line bundles of arbitrary total degrees.

• The stack NΓδ
parameterizes data

(Cv)v∈V(Γ), L/C, f :C ′ −!C,

where f is a partial stabilization and L is a multidegree δ line bundle on

C =
⊔

v∈V(Γ)

Cv.

• The stack N′
Γδ

parameterizes data

(Cv)v∈V(Γ), L/C, (fv:C
′
v!Cv)v∈V(Γ).

• The gluing map G:N′
Γδ
!NΓδ

sending (fv :C
′
v!Cv)v∈V(Γ) to

f :
⊔
v

C ′
v =C ′ −!C =

⊔
v

Cv

is proper, representable and birational.
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Properness of G can be checked using the valuative criterion. The difference between

NΓδ
and N′

Γδ
is that, in the first space, we have sections of the non-smooth locus of C

for each half-edge (telling us where to cut apart the curve), whereas, for the second, the

sections go to the non-smooth locus of C′. Fibres of G correspond to choices of lifts of

these sections along

f :C′ −!C.

Existence and uniqueness of such lifts follows from properness of f and of the inclusion of

the non-smooth locus. Representability of G is a short argument showing G is injective

on stabilizer groups. Birationality follows since G is an isomorphism over the dense open

locus where f is an isomorphism. Let

ĴΓδ
:N′

Γδ
−!N

be the composition of G and JΓδ
.

In the following lemma, we compare pullback formulas under ℓ and ℓ′ for the stacks

Ng,n,d above. Denote by ψi=ℓ
∗ψi and ψ′

i=(ℓ′)∗ψi∈CH1
op(Ng,n,d) the pullbacks of ψ-

classes under ℓ and ℓ′, respectively.

Lemma 7.5. (i) ℓ∗η=(ℓ′)∗η.

(ii) ψi=ψ
′
i−Di, where Di is the class in CH1

op(Ng,n,d) associated with the boundary

divisor of Ng,n,d generically parameterizing a partial stabilization

(0,0) (g,d)

i
... −!

(g,d)

i
... .

Proof. (i) There are two pairs of universal curves with line bundle (C,L) and (C′,L′)

over the stack Ng,n,d:

C′ C

Ng,n,d,

π′

f

π

with sections

σi:Ng,n,d−!C and σ′
i:Ng,n,d!C′.

Because f∗[C
′]=[C], we have

ℓ∗η=π∗(c1(L)
2)=π∗(c1(L)

2f∗[C
′]) =π′

∗(c1(f
∗L)2)= (ℓ′)∗η.



304 y. bae, d. holmes, r. pandharipande, j. schmitt and r. schwarz

(ii) Let D′
0 be the divisor

(0,0) (g,d)

#

... −!
(g,d)

i
...

in C′, and let D′
i be the divisor

(0,0) (g,d)

i
#

... −!
(g,d)

i
...

in C′. Here, the arrows pointing to the vertices with genus and degree zero indicate

which component of the universal curve over the corresponding boundary divisor in

Ng,n,d we take. The divisors D′
0, D

′
1, ..., D

′
n are precisely the divisorial loci in C′ which

are contracted by the map f :C′!C. Then,

ℓ∗ψi= c1(σ
∗
i ωπ)= (σ′

i)
∗c1(f

∗ωπ)= (σ′
i)

∗c1

(
ωπ′

(
−D′

0−
n∑
i=1

D′
i

))
=(ℓ′)∗ψi−Di,

where the sections are denoted by σi.

For the morphism ℓ′, form the fiber diagram

Pic′Γδ
N

PicΓδ
Picg,0,0.

J′
Γδ

ℓ′

jΓδ

(7.30)

By definition, the fiber product Pic′Γδ
parameterizes data

(C ′
v)v∈V(Γ), L′/C ′ =

⊔
v

C ′
v, f :C ′ −!C, L/C, f∗L ∼−−!L′,

which simplifies to

(C ′
v)v∈V(Γ), f :

⊔
v

C ′
v =C ′ −!C, L/C.

On the other hand, the stack N′
Γδ

parameterizes

(Cv)v∈V(Γ), L/C, (fv:C
′
v!Cv)v∈V(Γ).

There is a subtle difference here. For Pic′Γδ
, the map f is allowed to contract entire com-

ponents C ′
v to points, whereas in the second case the target Cv is always 1-dimensional.
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Our next step is to show that

Pic′Γδ
∼=

⊔
Γδ!Γ̃δ

NΓδ!Γ̃δ
. (7.31)

More precisely, the connected components of Pic′Γδ
are in bijective correspondence to

partial stabilizations

Γδ! Γ̃δ.

We will prove, given a vertex v∈V(Γ) which can be contracted (with g(v)=0, n(v)⩽2,

and δ(v)=0), that the locus of points in Pic′Γδ
where f :C ′!C contracts C ′

v is open and

closed.

For a vertex v with n(v)=2, the universal curve C′
v!Pic′Γδ

has two sections (corre-

sponding to the half-edges at v), and the locus where C ′
v is contracted equals the locus

where the sections coincide, which is closed since C′
v!Pic′Γδ

is separated.

To show closedness of the locus where C ′
v is not contracted, assume that we have a

family

(C ′
v,S)v∈V(Γ), f :

⊔
v

C ′
v,S =C ′

S −!CS , L/CS ,

of Pic′Γδ
over the spectrum S of a strictly henselian DVR such that the fiber C ′

v,η of C ′
v,S

over the generic point η of S is not contracted by f . We want to show that then also

the fiber C ′
v,L over the closed point L of S is not contracted. By assumption, C ′

v,η maps

to a union Cv,η of components of the fiber Cη of CS over η. Then Cv,η specializes to a

union Cv,L of components of CL. Since f is proper, f maps the closure C ′
v,S of C ′

v,η to

the closure of its image Cv,η. Since Cv,L is still positive-dimensional, the curve C ′
v,L is

indeed not contracted. For related arguments, see the proof of [50, Proposition 2.2].

For a vertex v with n(v)=1, the universal curve C′
v!Pic′Γδ

has a single section σh.

On the one hand, the locus where C ′
v is contracted is exactly the locus where f :C′!C

maps σh to the smooth locus of C!Pic′Γδ
, thus it is open. On the other hand, it is also

the preimage under σh of the exceptional locus of C′!C, and thus closed.

We have proven that the connected components of Pic′Γδ
are in bijective correspon-

dence to partial stabilizations Γδ!Γ̃δ. But a point

(C ′
v)v∈V(Γ), f :

⊔
v

C ′
v =C ′!C, L/C,

on the corresponding component is equivalent to the data of any collection of curves C ′
v

for v′∈V(Γ)\V(Γ̃), which are contracted by f , together with a point

(C ′
v)v∈V(Γ̃), f : (C ′

v!Cv), L/C =
⊔

v∈V (Γ̃)

Cv,
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of N′
Γ̃δ
. Hence, we have a isomorphism

NΓδ!Γ̃δ

∼=N′
Γ̃δ
×

∏
v∈V(Γ)\V(Γ̃)

M0,n(v),

where, in the last expression, n(v) is necessarily 1 or 2.

For each partial stabilization Γδ!Γ̃δ, we denote by

JΓδ!Γ̃δ
:NΓδ!Γ̃δ

−!N

the restriction of J ′
Γδ

to NΓδ!Γ̃δ
.

Lemma 7.6. We have

ℓ∗P�g =(ℓ′)∗P�g ∈
∞∏
c=0

CHcop(N) for all c⩾ 0.

Proof. We will use formula (4.8) for P�g. By Lemma 7.5, the terms exp
(
− 1

2η
)
have

identical pullback under ℓ and ℓ′. We can therefore focus on the sum over graphs and

weighting mod r.

We start with a few remarks about the combinatorial factors in P�g which will arise

in the proof. Let Γδ!Γ̃δ be a partial stabilization, then the Betti numbers agree:

h1(Γδ)=h1(Γ̃δ).

Given r, the mapWΓδ,r!WΓ̃δ,r
of admissible weightings mod r (induced by the inclusion

H(Γ̃)!H(Γ) of half-edge sets) is a bijection.

Moreover, if the map Γδ!Γ̃δ only contracts components with

(g(v),n(v), δ(v))= (0, 2, 0),

there is a canonical isomorphism Aut(Γδ)∼=Aut(Γ̃δ). On the other hand, in the formula

for P�g, every term such that Γδ has a vertex with

(g(v),n(v), δ(v))= (0, 1, 0)

necessarily vanishes. Indeed, the half-edge h at this vertex must have w(h)=0 such that

the corresponding edge term vanishes.

To keep the notation concise, we write Φa for the power-series

Φa(x)=
1

x

(
1−exp

(
−a
2
x

))
=

∞∑
m=0

(−1)m
(
a

2

)m+1
1

(m+1)!
xm=

a

2
− a2

8
x+...
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appearing in the edge terms of P�g. Moreover, given a graph Γ̃δ with a half-edge h incident

to a vertex v, denote by ψh and ψ′
h the classes on N′

Γ̃δ
pulled back from Ng(v),n(v),δ(v)

in the diagram (7.29). Similarly, given a partial stabilization Γδ!Γ̃δ, the space NΓδ!Γ̃δ

contains N′
Γ̃δ

as a factor, and hence the notation also makes sense on NΓδ!Γ̃δ
(provided

h is a half-edge of Γ̃δ).

Let us first compute the pullback of the graph sum in P�,rg via ℓ′:N!Picg,0,0. Using

the diagram (7.30) and the decomposition (7.31), we see that

(ℓ′)∗
∑
Γδ,w

r−h
1(Γδ)

|Aut(Γδ)|
jΓδ∗

[ ∏
e=(h,h′)∈E(Γδ)

Φw(h)w(h′)(ψh+ψh′)

]

=
∑

Γδ!Γ̃δ,w

r−h
1(Γδ)

|Aut(Γδ)|
JΓδ!Γ̃δ∗

[ ∏
e=(h,h′)∈E(Γδ)

Φw(h)w(h′)(ψ
′
h+ψ

′
h′)

]
. (7.32)

In the second line, the sum is over all partial stabilizations Γδ!Γ̃δ.

Second, we compute the pullback of the graph sum in P�,rg via ℓ:N!Picg,0,0:

ℓ∗
∑
Γ̃δ,w

r−h
1(Γ̃δ)

|Aut(Γ̃δ)|
jΓ̃δ∗

[ ∏
e=(h,h′)∈E(Γ̃δ)

Φw(h)w(h′)(ψh+ψh′)

]

=
∑
Γ̃δ,w

r−h
1(Γ̃δ)

|Aut(Γ̃δ)|
ĴΓ̃δ∗

[ ∏
e=(h,h′)∈E(Γ̃δ)

Φw(h)w(h′)(ψh+ψh′)

]
. (7.33)

We use here the right fiber diagram in (7.29) together with the fact that G is proper,

representable, and birational. So, by Proposition 2.16, the pushforward of fundamental

classes under JΓ̃δ
and ĴΓ̃δ

agree.

To compare to the formula for the pullback under ℓ′, we use

ψh+ψh′ =ψ′
h−Dh+ψ

′
h′−Dh′

on N′
Γ̃δ
, by Lemma 7.5. The next step of the proof is to use the self-intersection formula

for Dh and Dh′ (similar to the formula described in [30, Appendix A]) to expand the

edge term

Φww′(ψ′
h−Dh+ψ

′
h′−Dh′)=

∞∑
m=0

(−1)m
(
ww′

2

)m+1
1

(m+1)!
(ψ′
h−Dh+ψ

′
h′−Dh′)m.

For example, (Dh)
2 is equal to

−
(gv,δ(v)) (0,0) (gv′ ,δ(v

′))
h1 h′1 h h′

(ψh1
+ψh′

1
)

...
... + 2

(gv,δ(v)) (0,0) (0,0) (gv′ ,δ(v
′))

h h′
...

... ,
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and similarly for (Dh′)2.

The result will be a linear combination of terms

(gv,δ(v)) (0,0) (0,0) (0,0) (0,0) (gv′ ,δ(v
′))

(ψhL
+ψh′

L
)eL(ψh1+ψh′

1
)e1 ψah ψbh′

...
... , (7.34)

where the edge (h, h′) is at position ℓ in the above chain (1⩽ℓ⩽L). The total degree of

this term (before the pushforward by ĴΓ̃δ
) is

m=
∑
j ̸=ℓ

(ej+1)+a+b.

The total coefficient of this particular term in

Φww′(ψ′
h−Dh+ψ

′
h′−Dh′)

is then

(−1)m
(
ww′

2

)m+1
1

(m+1)!︸ ︷︷ ︸
coefficient in Φww′

·
(

m

e1+1, ..., a, b, ..., eL+1

)
(−1)L−1︸ ︷︷ ︸

excess intersection
of −Dh and −Dh′

,

where the multinomial coefficient comes from the expansion of

(ψ′
h−Dh+ψ

′
h′−Dh′)m.

Writing eℓ=a+b, we can simplify to obtain

1

m+1

( L∏
j=1

(−1)ej
(
ww′

2

)ej+1
1

(ej+1)!

)(
eℓ
a

)
(eℓ+1).

Summing over all choices a+b=eℓ for fixed eℓ, the coefficient of the term

(gv,δ(v)) (0,0) (0,0) (0,0) (0,0) (gv′ ,δ(v
′))

(ψhL
+ψh′

L
)eL(ψh1

+ψh′
1
)e1 (ψh+ψh′)eℓ

...
... (7.35)

is exactly equal to

eℓ+1

m+1

( L∏
j=1

(−1)ej
(
ww′

2

)ej+1
1

(ej+1)!

)
.
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Pushing forward by ĴΓ̃δ
, we forget where in the chain above the edge (h, h′) has been.

Summing over the L possible positions and using

m+1=

L∑
ℓ=1

(eℓ+1),

we obtain the coefficient

L∏
j=1

(−1)ej
(
ww′

2

)ej+1
1

(ej+1)!︸ ︷︷ ︸
coefficient of xej in Φww′ (x)

.

From the above discussion, we see that (7.33) equals

∑
Γδ!Γ̃δ,w

r−h
1(Γ̃δ)

|Aut(Γ̃δ)|
JΓδ!Γ̃δ∗

[ ∏
e=(h,h′)∈E(Γδ)

Φw(h)w′(h)(ψ
′
h+ψ

′
h′)

]
.

The sum goes over stabilizations Γδ!Γ̃δ contracting chains of curves with

(g, n, d)= (0, 2, 0).

By the previous remarks concerning the combinatorial factors, we have

h1(Γ̃δ)=h1(Γδ) and |Aut(Γ̃δ)|= |Aut(Γδ)|.

The sum does not change if we allow arbitrary stabilizations Γδ!Γ̃δ, since for Γδ having

a vertex with (g, n, d)=(0, 1, 0), the summand automatically vanishes. Thus the sum

above equals the term computed in (7.32).

8. Applications

8.1. Proofs of Theorem 0.9 and Conjecture A

We start by recalling notions presented in §0.5, but now in the more general setting of

k-differentials. Let A=(a1, ..., an) be a vector of zero and pole multiplicities satisfying

n∑
i=1

ai= k(2g−2).

Let Hk
g(A)⊂Mg,n be the closed (generally non-proper) locus of pointed curves

(C, p1, ..., pn)
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satisfying the condition

OC

( n∑
i=1

aipi

)
≃ω⊗k

C .

In other words, Hk
g(A) is the locus of (possibly) meromorphic k-differentials with zero

and pole multiplicities prescribed by A. In paper [28], a compact moduli space of twisted

k-canonical divisors

H̃k
g(A)⊂ �Mg,n

is constructed extending Hk
g(A)=H̃k

g(A)∩Mg,n to the boundary of �Mg,n.

For k⩾1 and A not of the form A=k ·A′ with a vector A′ of non-negative integers,

the locus H̃k
g(A) is of pure codimension g in �Mg,n by [28, Theorem 3] (for k=1) and [72,

Theorem 1.1] (for k>1). A weighted fundamental cycle of H̃k
g(A),

Hkg,A ∈CH2g−3+n(�Mg,n), (8.1)

is constructed in [28, Appendix A] and [72, §3.1] with explicit non-trivial weights on the

irreducible components. The closure


Hk
g,A⊂ �Mg,n

contributes to the weighted fundamental class Hkg,A with multiplicity 1, but there are

additional boundary contributions, as described in the references above.

The weighted fundamental class Hkg,A was conjectured in [28], [72] to equal the class

given by Pixton’s formula for the double ramification cycle. To state the conjecture,

consider the shifted(40) vector

Ã=(a1+k, ..., an+k).

Conjecture A. For k⩾1 and A not of the form A=k ·A′ with a vector A′ of non-

negative integers, we have an equality

Hkg,A=2−gP g,kg (Ã),

where P g,kg (Ã) is Pixton’s cycle class defined in [42, §1.1].

By combining Theorem 0.7 with previous results of [40], we can now prove the conjecture.

(40) The shift is needed since Pixton’s original formula worked with powers of the log-canonical line

bundle ωlog
C =ωC(

∑n
i=1 pi) instead of ωC .
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Theorem 8.1. Conjecture A is true.

Proof. By [40, Theorem 1.1], the weighted fundamental class Hkg,A is equal to the

double ramification cycle DRg,A,ωk constructed in [37]. By Theorem 0.1, DRg,A,ωk is in

turn given by the action of DRop
g,A on the fundamental class of �Mg,n via the morphism

φωk
π
: �Mg,n!Picg,n,k(2g−2) associated with the family

π: Cg,n−! �Mg,n, ωkπ −! Cg,n.

By Theorem 0.7, the class DRop
g,A is computed by the tautological class

Pgg,A,d ∈CHgop(Picg,n,k(2g−2)).

By Proposition 4.3, the action of Pgg,A,d on [�Mg,n] is indeed given by Pixton’s original

formula 2−gP g,kg (Ã), finishing the proof.

The steps of the proof of Theorem 8.1 are summarized as follows:

Hkg,A=DRg,A,ωk ([40, Theorem 1.1])

=DRop
g,A(φωk

π
)([�Mg,n]) (Theorem 0.1)

=Pgg,A,d(φωk
π
)([�Mg,n]) (Theorem 0.7)

= 2−gP g,kg (Ã). (Proposition 4.3).

The result provides a completely geometric representative of Pixton’s cycle in terms of

twisted k-differentials. Theorem 0.9 of §0.5 is the k=1 case of Theorem 8.1.

8.2. Closures

Let A=(a1, ..., an) be a vector of integers satisfying

n∑
i=1

ai= k(2g−2).

A careful investigation of the closure

Hk
g(A)⊂ 
Hk

g(A)⊂ �Mg,n

is carried out in [8] and [9]. By a simple method presented in [28, Appendix A] and [72,

§3.4], Theorem 8.1 easily determines the cycle classes of the closures

[
Hk
g(A)]∈CH∗(�Mg,n)

for the following two cases:

• k=1 and all ai are non-negative, when 
Hk
g(A) has pure codimension g−1;

• k⩾1 and A is not of the form A=k ·A′ with a vector A′ of non-negative integers,

when 
Hk
g(A) has pure codimension g.



312 y. bae, d. holmes, r. pandharipande, j. schmitt and r. schwarz

In particular, from the recursive formula for [
Hk
g(A)] and the fact that Pixton’s cycle

on �Mg,n is tautological, the following is immediate.

Corollary 8.2. The cycles [
Hk
g(A)] are tautological classes in CH∗(�Mg,n).

In the case k=1, Corollary 8.2 was known by work of Sauvaget [70], who gave a

different approach to [
H1
g(A)] in terms of tautological classes. The recursive formulas for

[
Hk
g(A)] from Corollary 8.2 have been implemented(41) in the software [23] for computa-

tions in the tautological ring of �Mg,n.

Another application of Conjecture A is presented in the recent paper [71] by Sauvaget.

The paper studies moduli spaces of flat surfaces of genus g with conical singularities at

marked points p1, ..., pn. The singularities have fixed cone angles 2παi, for α1, ..., αn∈R,
summing to 2g−2+n. If all αi are rational, the spaces of flat surfaces naturally contain

Hk
g(kA), for

A=(αi−1)ni=1,

as closed subsets (for k sufficiently divisibly). These subsets equidistribute (with respect

to natural measures) as k!∞. Using the equidistribution, Sauvaget is able to apply the

recursive expression for 
Hk
g(kA) from Conjecture A to derive an explicit recursion for the

volumes of the moduli spaces of flat surfaces.

8.3. k-twisted DR cycles with targets

We define here k-twisted double ramification cycles with targets via the class DRop
g,A.

Let X be a non-singular projective variety with line bundle L and an effective curve

class β∈H2(X,Z). Let

dβ =

∫
β

c1(L).

Let k∈Z and A=(a1, ..., an)∈Zn satisfy

dβ+k(2g−2+n)=

n∑
i=1

ai.

Consider the morphism

φ: �Mg,n(X,β)−!Picg,n,dβ+k(2g−2+n)

(41) In the ongoing project [22], the authors study formulas for Euler characteristics of strata of

differentials in terms of intersection numbers on the compactification of these strata constructed in [10].
The implementation of [
H1

g(A)] has played a role in corroborating their formulas.
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defined by the universal data

π: Cg,n,β −! �Mg,n(X,β), f∗L⊗ω⊗k
log −! Cg,n,β , (8.2)

where f : Cg,n,β!X is the universal map.

Definition 8.3. The k-twisted X-valued double ramification cycle is defined by

DRkg,n,β(X,L)=DRop
g,A(φ)([

�Mg,n(X,β)]
vir)∈CHvdim(g,n,β)−g(�Mg,n(X,β)).

In the notation of [43, §0.4], let Pc,k,rg,A,β(X,L) be the codimension c part of the

following expression∑
Γ∈Gg,n,β(X)

w∈WΓ,r,k(X)

r−h
1(Γ)

|Aut(Γ)|
jΓδ∗

[ n∏
i=1

exp

(
1

2
a2iψi+aiξi

)

×
∏

v∈V(Γ)

exp

(
−1

2
η(v)−kη1,1(v)−

k2

2
η0,2(v)

)

×
∏

e=(h,h′)∈E(Γ)

1

ψh+ψh′

(
1−exp

(
−w(h)w(h

′)

2
(ψh+ψh′)

))]
.

The definition of the admissible k-weightings w∈WΓ,r,k(X) is similar to that in §0.3.4,
but with the condition (iii) replaced by

k(2g(v)−2+n(v))+

∫
β(v)

c1(L)=
∑

v(h)=v

w(h) for v ∈V(Γ).

As in the case k=0 discussed in [43, Proposition 1], the class Pc,k,rg,A,β(X,L) is polynomial

in r for all sufficiently large r. Denote by Pc,kg,A,β(X,L) the value at r=0 of this polynomial.

By Theorem 0.7 and a slight generalization of the procedure for pulling back Chow

cohomology classes from Picg,n,dβ+k(2g−2+n) to �Mg,n(X,β) described in [43, §1.5], we
have

DRkg,n,β(X,L)=DRop
g,A(φ)([

�Mg,n(X,β)]
vir)

=Pgg,A,dβ+k(2g−2+n)(φ)([
�Mg,n(X,β)]

vir)

=Pg,kg,A,β(X,L).

8.4. Proof of Theorem 0.8

For all c>g, we will prove

Pcg,A,d =0∈CHcop(Picg,n,d). (8.3)
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The path is parallel to the proof of Theorem 0.7.

By definition, the claim is equivalent to showing that the map

Pcg,A,d(φ):CH∗(B)−!CH∗−c(B) (8.4)

is zero for every morphism φ:B!Picg,n,d from an (irreducible) finite-type scheme B

corresponding to the data

C −!B, L−!C.

Retracing the steps of §5 (and using the invariance Lemma 7.6 for the codimension-c part

Pcg,A,d of Pixton’s formula), we can reduce to the situation where L on C is relatively

sufficiently positive with respect to C!B. As in §5.3, we can then find

ψ:Ul−!B

such that ψ∗ is injective on Chow groups and such that the composition

Ul−!B−!Picg,n,d

factors through �Mg,n(Pl, d)′. By [4, Theorem 3.2], we have the vanishing

Pcg,A,d(Pl,O(1))= 0∈CHvdim(g,n,d)−c(�Mg,n(Pl, d)).

The same combination of Lemma 2.6 and the injectivity of ψ∗ then shows the desired

vanishing of the map (8.4).

8.5. Connections to past and future results

The relations of Theorem 0.8 generalize several previous results. For g=0 and c=1, the

vanishing (8.3) was observed in [45, Proposition 1.2]. In fact, in genus zero, there are

many connections to past equations, see [4, §4] for a full discussion with many examples

including classical equations and the relations of [52].

Randal-Williams [67] proves a vanishing result in cohomology with integral coeffi-

cients on the locus Picsmg,0,d of smooth curves for every d∈Z. We can recover a version

of Randal-William’s vanishing in operational Chow with Q-coefficients which extends to

all of Picg,0,d. By Proposition 4.1 and Lemma 4.2, Pixton formula’s on the locus Picsmg,0,0
takes the simple form

Pcg,∅,0 =
1

c!
(P1
g,∅,0)

c, P1
g,∅,0 =−1

2
π∗(c1(L)2)
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for the universal curve and the universal line bundle

π:C−!Picg,0,0, L−!C.

We claim that, up to scaling, the relation

Ωg+1 =0

of [67, Theorem A] is exactly the restriction of the pullback of the relation

(P1
g,∅,0)

g+1 =(g+1)!Pg+1
g,∅,0 =0∈CHg+1

op (Picg,0,0)

under the morphism

Picg,0,d−!Picg,0,0,

(C,L) 7−! (C,L⊗2g−2⊗ω⊗(−d)
C ).

Indeed, over the locus of smooth curves, the pullback of P1
g,∅,0 is given by

− 1
2π∗(c1(L

⊗2g−2⊗ω⊗(−d)
C )2)

=− 1
2 ((2g−2)2π∗(c1(L)2)−2d(2g−2)π∗(c1(L)c1(ωπ))+d2π∗(c1(ωπ)2)),

which matches the definition of Ω given in [67, Theorem A] up to scalars.

In Gromov–Witten theory, pulling back (8.3) under the morphisms

�Mg,n(X,β)−!Picg,n,d

described in §8.3 and capping with the virtual class [�Mg,n(X,β)]
vir simply recovers the

known vanishing

Pc,kg,A,β(X,L)= 0∈CHvdim(g,n,β)−c(�Mg,n(X,β)) (8.5)

for c>g proven in [4]. However, there are new applications for reduced Gromov–Witten

theory. Indeed, for a target X having a non-degenerate holomorphic 2-form, the virtual

class of �Mg,n(X,β) vanishes when β ̸=0. To define invariants for such targets, the reduced

class

[�Mg,n(X,β)]
red ∈CH∗(�Mg,n(X,β))

is used instead; see [15], [58]. By pulling back (8.3) and capping with [�Mg,n(X,β)]
red, we

obtain new relations among reduced Gromov–Witten invariants. An application to the

Gromov–Witten theory of K3 surfaces will appear in [5] related to conjectures of [61].
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ification of strata of Abelian differentials. Duke Math. J., 167 (2018), 2347–2416.
[9] — Strata of k-differentials. Algebr. Geom., 6 (2019), 196–233.

[10] — The moduli space of multi-scale differentials. Preprint, 2019.
arXiv:1910.13492[math.AG].

[11] Behrend, K. & Fantechi, B., The intrinsic normal cone. Invent. Math., 128 (1997),
45–88.

[12] Biesel, O. & Holmes, D., Fine Compactified Moduli of Enriched Structures on Stable
Curves. Mem. Amer. Math. Soc., 285 (2023).

[13] Borne, N. & Vistoli, A., Parabolic sheaves on logarithmic schemes. Adv. Math., 231
(2012), 1327–1363.

[14] Bosch, S., Lütkebohmert, W. & Raynaud, M., Néron Models. Ergebnisse der Mathe-
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