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For the sake of computational efficiency and for theoretical purposes, in mathematical modelling, the Dirac 
Delta distributions are often utilized as a replacement for cells or vesicles, since the size of cells or vesicles is 
much smaller than the size of the surrounding tissues. Here, we consider the scenario that the cell or the vesicle 
releases the diffusive compounds to the immediate environment, which is modelled by the diffusion equation. 
Typically, one separates the intracellular and extracellular environment and uses homogeneous Neumann 
boundary condition for the cell boundary (so-called spatial exclusion model), while the point source model 
neglects the intracellular environment. We show that extra conditions are needed such that the solutions to the 
two models are consistent. We prove a necessary and sufficient condition for the consistency. Suggested by the 
numerical results, we conclude that an initial condition in the form of Gaussian kernel in the point source model 
compensates for a time-delay discrepancy between the solutions to the two models in the numerical solutions. 
Various approaches determining optimal amplitude and variance of the Gaussian kernel have been discussed.
1. Introduction

In mathematical modelling, it is a common practice to replace a 
spatial object with a negligible size by a point-particle, which has no 
volume. In classical mechanics, objects may be replaced by point masses 
[1]. In electrostatics, point charge [2] is a theoretical concept, used e.g. 
to describe the electric field that results from a spatial distribution of 
charge. In biological modelling, for instance, chemotaxis [3,4] or in 
wound healing, when one deals with a large-scale wound that is in the 
order of millimeter or even centimeter, individual cells are regarded 
as particles and point sources that secrete signalling molecules, which 
then diffuse in the surrounding environment [5,6].

These are all idealisations that are convenient not only for the mod-

eller and theorist. For computational efficiency of model simulation it 
may be even necessary to employ point-particles. In particular when the 
objects are moving, interacting or have internal dynamics of their own, 
operating at several different scales. For example, simulation of several 
moving objects that secrete a diffusing compound in a finite element 
approach can easily become quite cumbersome [7,8]. An implementa-

tion in terms of several moving and ‘mass-emitting’ point-particles may 
then be better tractable [9], in particular when the number of objects 
becomes large – but not so large that a continuum description with den-

sities or concentrations is a proper representation.

* Corresponding author.

E-mail address: q.peng@math.leidenuniv.nl (Q. Peng).

What representation is proper, is determined by the underlying re-

search question for the modelling effort. It yields a tolerance for the 
deviation from observations, which in turn yields a tolerance for devi-

ations between solutions of different modelling approaches. Moreover, 
in view of this question and the implied tolerance it can be more or less 
relevant that a point source cannot represent the spatial heterogeneity 
in shape or in flux density of compound over the boundary of a truly 
spatial object.

Motivated by biological applications, in this paper we are concerned 
with the mathematical question of the assessment of the quality of 
approximation when a model for diffusion in the environment of a com-

pound that is secreted by several stationary spatial objects is replaced 
by that with point sources at central locations of these objects. We do so 
by numerical simulations of two-dimensional spatial configurations, in 
which the objects are equal, of circular shape, with homogeneous con-

stant flux density over their boundary (see Fig. 1.1(a) for the schematic 
set-up, for a single object). As such, it can be viewed as a follow-up 
to an analytic approach in Evers et al. [10] (for a single object) and a 
numerical approach in the setting of wound healing dynamics in Peng 
and Vermolen [11,12]. Heterogeneity in shape and flux density, and 
movement of objects will be considered in follow-up research. If mass-

emitting point sources cannot approximate circular stationary objects 
with homogeneous flux density over their boundary within tolerance, 
https://doi.org/10.1016/j.camwa.2023.10.034
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Fig. 1.1. Schematic presentation (not in scale) of the spatial set-up in the models, with circularly shaped stationary objects within a bounded domain (Panel (a)). 
When there are multiple cells in the computational domain, differences (Panel (b)) between the simulation results of the model with spatial objects (Panel (c)) and 
that with mass-emitting point sources (Panel (d)) can be observed. By proper choice of parameters and initial condition in the point-source model these can be kept 
within tolerance (see Section 3.3 for simulation details). Here, the zero homogeneous initial condition is utilized in both approaches.
then this cannot be expected either in the heterogeneous or in the non-

stationary setting.

The paper aims at exhibiting in which cases and how – practically – 
a proper representation can be made by means of mass-emitting point 
sources of the spatial object setting. We propose a quantification of de-

viations between the two approaches, find intolerable differences that 
occur and identify their sources, and we propose how these can be re-

solved, e.g. concerning the extension of initial conditions to a larger 
spatial domain (see Section 4 and see Fig. 1.1(b) - (d) for a visual com-

parison). We present a (mainly numerical) analysis of consequences of 
particular choices for doing so on the quality of approximation. We do 
not claim that the proposed choice of extension by means of a Gaussian-

shaped function is the best. It is a reasonable and intuitively motivated 
choice for which we give an approach for finding parameter settings for 
the extension that may keep the approximation within accepted toler-

ance.

1.1. Mathematical formulation of the research questions

We consider a bounded domain Ω ⊂ ℝ2 with piece-wise 𝐶1-

boundary 𝜕Ω in which there are embedded a finite number 𝑁𝑐 of non-
492
overlapping spatial objects, called cells, which are considered as disjoint 
subdomains Ω𝐶𝑖

, (𝑖 = 1, … , 𝑁𝑐), also with piece-wise 𝐶1-boundaries 
𝜕Ω𝐶𝑖

, such that these boundaries do not touch, nor touch the boundary 
𝜕Ω of the initial domain. Write Ω𝐶 ∶=

⋃𝑁𝑐

𝑖=1 Ω𝐶𝑖
for the totality of cells. 

The complement Ω ⧵ Ω𝐶 will be called the extracellular environment of 
the cells. For each cell we select a point 𝒙𝑖

𝑐
∈Ω𝐶𝑖

, which will function as 
centre for representing cell 𝐶𝑖 by a point-particle located at that point; 
see Fig. 1.1(a) for a schematic presentation of this set-up.

If 𝒗 = (𝑣1, 𝑣2) ∈ℝ2, we write |𝒗| ∶= (|𝑣1|2 + |𝑣2|2)1∕2 for its Euclidean 
norm.

1.1.1. Spatial exclusion model

The cells secrete a compound into the environment over their 
boundary with prescribed flux density 𝜙(𝒙, 𝑡) ≥ 0 at 𝒙 ∈ 𝜕Ω𝐶 and time 
𝑡 ≥ 0. This compound diffuses in this environment according to Fick-

ian diffusion with homogeneous diffusion constant 𝐷, without further 
interaction. It cannot escape the domain Ω. Initially, there is a distri-

bution 𝑢0(𝒙) of this compound in the environment. Thus, the density 
𝑢𝑆 (𝒙, 𝑡) at time 𝑡 of the compound in the environment is described by 
the initial boundary value problem
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(𝐵𝑉 𝑃𝑆 )

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝑢𝑆 (𝒙, 𝑡)
𝜕𝑡

−𝐷Δ𝑢𝑆 (𝒙, 𝑡) = 0, in Ω ⧵ Ω̄𝐶 , 𝑡 > 0,

𝐷∇𝑢𝑆 (𝒙, 𝑡) ⋅ 𝒏 = 𝜙(𝒙, 𝑡), on 𝜕Ω𝐶 , 𝑡 > 0,

𝐷∇𝑢𝑆 (𝒙, 𝑡) ⋅ 𝒏 = 0, on 𝜕Ω, 𝑡 > 0,

𝑢𝑆 (𝒙,0) = 𝑢0(𝒙), in Ω ⧵ Ω̄𝐶 ,

(1.1)

where 𝒏 is the outward pointing unit normal vector to the domain 
boundary of Ω ⧵ Ω̄𝐶 . Note that the flux density 𝜙(𝒙, 𝑡) is positive at 
𝒙 ∈ 𝜕Ω𝐶 where there is flux of compound into the environment Ω ⧵ Ω̄𝐶 , 
as it is shown in Fig. 1.1(a).

As appropriate in the setting of the Finite Element Method (FEM) (cf. 
[13]) we consider the weak solution concept for (𝐵𝑉 𝑃𝑆 ) in the spatial 
dimension, which is given by

(𝑊 𝐹𝑆 )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Find 𝑢𝑆 (𝒙, 𝑡) ∈𝐻1(Ω ⧵ Ω̄𝐶 ), such that

∫
Ω⧵Ω̄𝐶

𝜕𝑢𝑆 (𝒙, 𝑡)
𝜕𝑡

𝑣1(𝒙, 𝑡)𝑑Ω+ ∫
Ω⧵Ω̄𝐶

𝐷∇𝑢𝑆 (𝒙, 𝑡) ⋅∇𝑣1(𝒙, 𝑡)𝑑Ω

− ∫
𝜕Ω𝐶

𝜙(𝒙, 𝑡)𝑣1(𝒙, 𝑡)𝑑Γ = 0,

for any 𝑣1(𝒙, 𝑡) ∈𝐻1(Ω ⧵ Ω̄𝐶 ).

Here 𝑑Ω is the restriction of Lebesgue measure on ℝ2 to Ω and 𝑑Γ
denotes the surface measure on 𝜕Ω𝐶 , that is so normalized that the 
Divergence Theorem holds without additional constant.

1.1.2. Point source model

We want to compare the (weak) solution 𝑢𝑆 to (𝐵𝑉 𝑃𝑆 ) with the 
solution to a suitable boundary value problem with point sources at 
the locations 𝒙𝑖

𝑐
instead of spatial cells. These sources will be expressed 

using Dirac measures 𝛿𝒙𝑖
𝑐

at 𝒙𝑖
𝑐
, or – equivalently – in the form of the 

Schwartzian delta distribution 𝛿 (see e.g. [14]), which is defined in any 
dimension by

⟨𝛿, 𝑓 ⟩ = 𝑓 (𝟎), if 𝑓 ∈ 𝐶∞
𝑐
(ℝ𝑛).

Informally written, as often done, the Dirac measure at 𝒙0 can then be 
viewed as translation of the delta distribution:

∫
Ω

𝑓 (𝒙)𝑑𝛿𝒙0 (𝒙) = ∫
Ω

𝛿(𝒙− 𝒙0)𝑓 (𝒙)𝑑Ω= 𝑓 (𝒙0).

The initial-boundary value problem defined by point sources is then 
given by

(𝐵𝑉 𝑃𝑃 )

⎧⎪⎪⎨⎪⎪⎩

𝜕𝑢𝑃 (𝒙, 𝑡)
𝜕𝑡

−𝐷Δ𝑢𝑃 (𝒙, 𝑡) =
𝑁𝑐∑
𝑖=1

Φ𝑖(𝑡)𝛿(𝒙− 𝒙𝑖
𝑐
), in Ω, 𝑡 > 0,

𝐷∇𝑢𝑃 ⋅ 𝒏 = 0, on 𝜕Ω, 𝑡 > 0,

𝑢𝑃 (𝒙,0) = �̄�0(𝒙), in Ω.

(1.2)

Here, Φ𝑖(𝑡) is a function that describes the flux of mass per unit time 
from the source at 𝒙𝑖

𝑐
. We shall take

Φ𝑖(𝑡) = ∫
𝜕Ω𝐶𝑖

𝜙(𝒙, 𝑡)𝑑Γ. (1.3)

See Section 1.1.4 for further discussion of the selection of a suitable flux 
function Φ𝑖.

Again, we consider weak solutions in the setting of FEM. This 
amounts to the following weak form – formulated for a single cell for 
convenience (dropping indices 𝑖 that distinguish cells):
493
(𝑊 𝐹𝑃 )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Find 𝑢𝑃 (𝒙, 𝑡) ∈𝐻1(Ω), such that

∫
Ω⧵Ω̄𝐶

𝜕𝑢𝑃 (𝒙, 𝑡)
𝜕𝑡

𝑣2(𝒙, 𝑡)𝑑Ω+ ∫
Ω𝐶

𝜕𝑢𝑃 (𝒙, 𝑡)
𝜕𝑡

𝑣2(𝒙, 𝑡)𝑑Ω

+ ∫
Ω⧵Ω̄𝐶

𝐷∇𝑢𝑃 (𝒙, 𝑡)∇𝑣2(𝒙, 𝑡)𝑑Ω

+ ∫
Ω𝐶

𝐷∇𝑢𝑃 (𝒙, 𝑡)∇𝑣2(𝒙, 𝑡)𝑑Ω= ∫
Ω

Φ(𝑡)𝛿(𝒙− 𝒙𝑐)𝑣2(𝒙, 𝑡)𝑑Ω,

for any 𝑣2(𝒙, 𝑡) ∈𝐻1(Ω).

The singular nature of the delta distribution causes functional ana-

lytic issues. Although weak solutions to (𝑊 𝐹𝑃 ) exist and are unique (see 
Evers et al. [10]), there does not exist a stationary solution in 𝐻1(Ω). 
The solution to the elliptic boundary value problem from the balance 
of momentum with delta distribution is singular in the sense that for 
spatial dimension higher than one, no formal solutions in the finite-

element space 𝐻1 exist. Dealing with this singularity caused by delta 
distributions was discussed in Peng and Vermolen [11,12].

1.1.3. Measures for quantitative comparison

Quantifying the differences between the solutions to the spatial ex-

clusion model and the point source model in a meaningful way is not 
fully straightforward. Various choices can be made. Hence, a first ques-

tion is what measure for comparison is meaningful in the context of 
applications. Here we shall motivate those that we selected for use in 
this paper and one resulting from Evers et al. [10].

First note that the two solutions ‘live’ on different spatial domains: 
𝑢𝑃 is defined on Ω, while 𝑢𝑆 is defined on the extracellular environment, 
the subset Ω ⧵ Ω̄𝐶 , only. Since there is no canonical way of extending 𝑢𝑆
to the larger set Ω, an objective comparison of the two solutions is pos-

sible only on the smaller set Ω ⧵ Ω̄𝐶 . In accordance with this reasoning, 
the part of solution 𝑢𝑃 on Ω̄𝐶 has not been shown in Fig. 1.1(d).

The following proposition substantiates the intuition that any dif-

ference in the two solutions is caused by a difference of flux over the 
boundary 𝜕Ω𝐶 of the two solutions, provided that their initial condi-

tions are the same on the environment of the cells.

Proposition 1.1. Denote by 𝑢𝑆 (𝒙, 𝑡) and 𝑢𝑃 (𝒙, 𝑡) the weak solutions to the 
spatial exclusion model (𝐵𝑉 𝑃𝑆 ) and the point source model (𝐵𝑉 𝑃𝑃 ), respec-

tively, and let 𝜕Ω𝐶 be the boundary of the cells, from which the compounds 
are released, with normal vector 𝒏 pointing into Ω𝐶 . Then

1
2

𝑑

𝑑𝑡

‖‖‖𝑢𝑆 − 𝑢𝑃
‖‖‖2𝐿2(Ω⧵Ω𝐶 )

= −𝐷 ∫
Ω⧵Ω𝐶

|||∇(𝑢𝑆 − 𝑢𝑃 )
|||2𝑑Ω (1.4)

+ ∫
𝜕Ω𝐶

(𝑢𝑠 − 𝑢𝑃 )(𝜙−𝐷∇𝑢𝑃 ⋅ 𝒏)𝑑Γ.

Assume moreover, that 𝑢𝑆 (⋅, 0) = 𝑢𝑃 (⋅, 0) a.e. on Ω ⧵ Ω𝐶 . Then, 𝑢𝑆 (𝒙, 𝑡) =
𝑢𝑃 (𝒙, 𝑡) a.e. in Ω ⧵ Ω̄𝐶 × [0, ∞) if and only if

𝜙(𝒙, 𝑡) −𝐷∇𝑢𝑃 (𝒙, 𝑡) ⋅ 𝒏 = 0, a.e. on 𝜕Ω𝐶 × [0,∞).

Proof. See Appendix A. □

Remark 1.1. The proposition can be analogously extended to any spa-

tial dimension.

Therefore, the difference in total flux over the boundary, summed 
up to time 𝑡, i.e.

𝑡

∫
0

∫
Ω

𝜙(𝒙, 𝑠) −𝐷∇𝑢𝑃 (𝒙, 𝑠) ⋅ 𝒏𝑑Γ𝑑𝑠, (1.5)
𝐶
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yields a physically interpretable quantity of the deviation between the 
two solutions. It is the exact (signed) difference in total amount of 
compound in the environment between the spatial exclusion and point 
source model, caused by the difference in flux over the cell boundary 
𝜕Ω𝐶 up to time 𝑡. Following the definition of Evers et al. [10], we take 
as a measure of comparison, the following quantity related to the abso-

lute value of Equation (1.5):

𝑐∗(𝑡) ∶=

𝑡

∫
0

‖𝜙(𝒙, 𝑠) −𝐷∇𝑢𝑃 (𝒙, 𝑠) ⋅ 𝒏‖2𝐿2(𝜕Ω𝐶 )
𝑑𝑠. (1.6)

For technical reasons, we chose to work with 𝐿2-norm rather than the 
physically readily interpretable 𝐿1-norm on 𝜕Ω𝐶 . The former is easier 
accessible through the Finite Element Method (FEM). Moreover, Evers 
et al. [10] gives various theoretical estimates for 𝑐∗(𝑡), for a single cell 
and point source. Of course, ‖𝑓‖𝐿1(𝑋,𝜇) ≤ 𝜇(𝑋)1∕2‖𝑓‖𝐿2(𝑋,𝜇).

The 𝐿1-norm difference on the environment Ω ⧵ Ω̄𝐶 compares the 
total amount of compound between the two solutions. The 𝐿1-norm 
difference of the gradients yields information on differences in local 
fluxes that occur. For both we again prefer to use the (related) 𝐿2-

norms, because of FEM that is used in the numerical analysis.

We shall be looking for extension of the initial condition in the spa-

tial exclusion model to the cells Ω𝐶 , such that one arrives at an initial 
condition on Ω for the point source model that yields a good approx-

imation of the solution of the spatial exclusion model. To assess this 
quality, it is necessary to use a relative measure of comparison. That is, 
to quantise a deviation in comparison to the total amount of compound 
in the environment of the cells. A comparison of the effect of differ-

ent initial conditions with an absolute measure cannot be easily made, 
since different conditions tend to give different amounts of compound 
in the environment.

1.1.4. Determining influx for the point source model

When replacing a cell 𝐶𝑖 with mass flux density 𝜙𝑖(𝒙, 𝑡) over its 
boundary 𝜕Ω𝐶𝑖

in the direction of the environment by a point source 
at 𝒙𝑖

𝑐
with mass flux Φ𝑖(𝑡), one has to decide how to relate the latter to 

the former. In Equation (1.3) we made the choice that the total mass 
emitted by a cell at time 𝑡 per unit time is equal to that emitted by the 
point source that replaces this cell. Thus, the total mass emitted by the 
point source up to time 𝑡 is kept equal to the total mass emitted by the 
cell into the environment. Since mass needs on average a time of the 
order diam(𝐶𝑖)2∕4𝐷 to travel from the centre 𝒙𝑖

𝑐
to the boundary 𝜕Ω𝐶𝑖

, 
there will be a time lag between the solution 𝑢𝑆 and 𝑢𝑃 on 𝜕Ω̄𝐶 .

Other choices for Φ𝑖(𝑡) could be made. However, the definition in 
Equation (1.3) seems most natural, particularly if one considers the ho-

mogeneous flux. Moreover, the time lag between the solutions 𝑢𝑆 and 
𝑢𝑃 may be partially overcome by appropriately choosing the initial con-

dition �̄�0 on Ω of solution 𝑢𝑃 in relation to the initial condition 𝑢0 on 
Ω ⧵ Ω̄𝐶 for 𝑢𝑆 . In this paper we shall focus on the latter means for min-

imizing the difference between the two solutions.

1.1.5. Extension of initial condition

The major question addressed in this research is, in what way one 
can best replace the initial condition 𝑢0 for the spatial exclusion model 
by an initial condition �̄�0, defined on the whole domain Ω, such that the 
solutions 𝑢𝑆 and 𝑢𝑃 are ‘optimally close’. Here we fix the flux relation 
as in Equation (1.3), as discussed in the previous section.

We consider �̄�0 as an extension of 𝑢0 to the larger domain. The ques-

tion is then, what function profile to take on Ω𝐶 , to make the extension 
and how smooth does 𝑢0 and this profile connects at the boundary 𝜕Ω𝐶?

In view of Proposition 1.1 and the further discussion in Section 1.1.3

it seems reasonable to require that the flux over the boundary 𝜕Ω𝐶𝑖
in 

the point source model, created by the combined effect of the selected 
initial condition profile in Ω𝐶𝑖

and the mass flux Φ𝑖(𝑡) from the point 
source at 𝒙𝑖

𝑐
are as close to 𝜙𝑖(𝒙, 𝑡) as possible over all time for which 

the solution is computed. Again, various quantifiers for this difference 
may be selected.
494
1.2. Major assumptions

In this paper we limit our attention to a specific setting of the 
questions raised above. First of all, we consider the general question 
of the quality of approximating by a point source only in two spatial 
dimensions. This is mainly to reduce computational intensity of the sim-

ulations. Moreover, the preceding theoretical work [10] also considered 
a two-dimensional spatial domain.

The spatial objects are all taken circular in shape, with equal radius 
𝑟. A point source will emit compounds in a symmetric manner into its 
environment in case of isotropic diffusion, which we consider here. One 
therefore knows a priori, that replacing a non-circular object by a point 
source will not only create error because of the reduction of the spatial 
object to a point, but also because a non-symmetric object (for rotation) 
cannot be expected to produce a symmetric emission profile, typically. 
The appropriate approximation of a generally shaped object by one that 
is circular is another question, that would be best considered separately.

The boundary 𝜕Ω𝐶𝑖
of the circular cell 𝐶𝑖 of radius 𝑟, centred at 𝒙𝑖

𝑐
is 

parameterized by the angle 𝜃 ∈ [0, 2𝜋) relative to a reference direction. 
The parameterisation 𝛾𝑖(𝜃) is such that the measure 𝑑Γ on 𝜕Ω𝐶𝑖

, which is 
– recall – normalized such that the Divergence Theorem holds without 
additional constants (see Section 1.1.1), is given by

∫
𝜕Ω𝐶𝑖

𝑓 𝑑Γ = 𝑟

2𝜋

∫
0

𝑓
(
𝛾𝑖(𝜃)

)
𝑑𝜃, for 𝑓 ∈ 𝐶(𝜕Ω𝐶𝑖

). (1.7)

The simplest case of emission is one that is constant in time and 
spatially homogeneous over the circular object. We consider that case 
here. That is,

𝜙(𝒙, 𝑡) = 𝜙0 > 0, for all 𝒙 ∈ 𝜕Ω𝐶 , 𝑡 ≥ 0. (1.8)

Spatially non-homogeneous flux over a circular boundary will allow to 
approximate flux emitting from a non-circular object. Thus, this is cer-

tainly an important aspect of the approximation question to consider. 
This setting is currently being investigated. Results on this more general 
setting will appear elsewhere.

We expect that the diffusion constant will influence the quality of 
approximation. Therefore, we shall vary 𝐷 around a central value 𝐷0
by one order of magnitude.

1.3. Structure of the paper

The manuscript is structured as follows: The preparations for nu-

merical analysis and the approach taken are presented in Section 2. 
Furthermore, the results of numerical simulations in Sections 3 and 4. 
The first considers solutions with zero initial condition on the envi-

ronment Ω ⧵ Ω𝐶 , with non-zero extension to Ω. The second considers 
non-zero – but constant – initial condition on Ω ⧵Ω𝐶 and suitable exten-

sion of this initial condition to Ω. Finally, conclusions and the outlook 
of this work are discussed in Section 6.

2. Preparation for numerical analysis

For the numerical analysis we shall use non-dimensional versions of 
the models (𝐵𝑉 𝑃𝑆 ) and (𝐵𝑉 𝑃𝑃 ), in particular, their weak formulations.

2.1. Non-dimensional models

Denote the circular cell region centred at 𝒙𝑐 and radius 𝑟 by Ω𝐶 ∶=
𝔹(𝒙𝑐 , 𝑟). The entire domain is Ω ∶= [−𝐿, 𝐿] × [−𝐿, 𝐿]. In the dimen-

sionless model and simulations thereof we scale space such that cell 
diameter becomes 1. Thus, we get spatial variables 𝜉 and computational 
domains given by

𝝃 ∶= 𝒙
, Ω̂𝐶 ∶= 𝔹

(
𝝃𝑐 ,

1 )
, Ω̂ ∶=

[
− 𝐿

,
𝐿
]
×
[
− 𝐿

,
𝐿
]
.

2𝑟 2 2𝑟 2𝑟 2𝑟 2𝑟
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Fig. 2.1. A schematic representation of the two approaches and the mesh structure. The computational domain is (−10, 10) × (−10, 10), and the cell is located at 
(−3.5, −4) with radius 1

2
. The blue circles are the predefined cell boundary.
Time is scaled by 𝜏0 such that dimensionless time and the diffusion 
constant become

𝜏 ∶= 𝑡

𝜏0
, �̂� ∶=

𝐷𝜏0

4𝑟2
.

Here, 𝜏0 is chosen such that �̂� = 1 corresponds to 𝐷 = 𝐷0, the central 
value, and the relevant range for varying 𝐷 becomes �̂� ∈ [0.1, 10]. At 
last, we will consider 𝜙(𝒙, 𝑡) = 𝜙0 constant in time and space. We scale 
compound density by 𝑢∗ such that the flux density in the new coordi-

nates becomes 1. That is,
𝜙0𝜏0
2𝑟𝑢∗

= 1, 𝛾 ∶= 𝑢

𝑢∗
.

Then, (𝐵𝑉 𝑃𝑆 ) yields in a dimensionless system given by

(𝐵𝑉 𝑃 ′
𝑆
)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝛾𝑆 (𝝃, 𝜏)
𝜕𝜏

− �̂�Δ𝝃𝛾𝑆 (𝝃, 𝜏) = 0, in Ω̂ ⧵ ̄̂Ω𝐶 , 𝜏 > 0,

�̂�∇𝝃𝛾𝑆 (𝝃, 𝜏) ⋅ 𝒏𝝃 = 1, on 𝜕Ω̂𝐶 , 𝜏 > 0,

�̂�∇𝝃𝛾𝑆 (𝝃, 𝜏) ⋅ 𝒏𝝃 = 0, on 𝜕Ω̂, 𝜏 > 0,

𝛾𝑆 (𝝃,0) =
𝑢0(𝝃)
𝑢∗

, in Ω̂ ⧵ ̄̂Ω𝐶 .

A similar transformation can be done analogously in the point source 
model:

(𝐵𝑉 𝑃 ′
𝑃
)

⎧⎪⎪⎨⎪⎪⎩

𝜕𝛾𝑃 (𝝃, 𝜏)
𝜕𝜏

− �̂�Δ𝝃𝛾𝑃 (𝝃, 𝜏) = Φ̂𝛿(𝝃 − 𝝃𝑐), in Ω̂, 𝜏 > 0,

�̂�∇𝝃𝛾𝑃 ⋅ 𝒏𝝃 = 0, on 𝜕Ω̂, 𝜏 > 0,

𝛾𝑃 (𝝃,0) =
�̄�0(𝝃)
𝑢∗

, in Ω̂.

Here,

Φ̂ =
Φ𝜏0

𝑢∗ ⋅ 4𝑟2
=

2𝜋𝑟𝜙0𝜏0

𝑢∗ ⋅ 4𝑟2
= 𝜋, (2.1)

under the given scalings. The factor 4𝑟2 in the denominator of the first 
expression for Φ̂ in Equation (2.1) results from the different behaviour 
under the scaling transformation 𝑥 ↦ 𝜉 = 𝑥∕(2𝑟) of Dirac measure com-

pared to Lebesgue measure in two dimensions, which is the reference 
measure for the density functions on the left-hand side in the differen-

tial equation.

Having made explicit the non-dimensional models (𝐵𝑉 𝑃 ′
𝑆

) and 
(𝐵𝑉 𝑃 ′

𝑃
) and having observed their similarity to the dimensional mod-

els (𝐵𝑉 𝑃𝑆 ) and (𝐵𝑉 𝑃𝑃 ), we continue in our exposition with using the 
original notation of 𝑢𝑆 , 𝑢𝑃 , etc. for the dimension-free solutions and 
by omitting the ‘hats’ on parameters. Moreover, we stress that in anal-
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Table 2.1

Parameter values used in Section 3 and 4, corresponding to the dimensionless 
systems derived in Section 2.1.

Parameter Value Description

�̂� 0.1 Diffusion coefficient

𝐿∕(2𝑟) 10 Size of the computational domain

Δ𝜏 0.04 Time step

𝑇 40 Total time

ℎ 0.127 Average mesh size

ysis and simulations we use the spatially homogeneous and constant 
(rescaled) flux density, i.e. 𝜙(𝒙, 𝑡) = 1, in (𝐵𝑉 𝑃𝑆 ) and corresponding 
flux at the point source Φ(𝑡) =Φ = 𝜋, according to Equation (2.1).

2.2. Computational approach

In Evers et al. [10], the authors worked analytically on the upper 
bound of the global difference between the solutions to these two ap-

proaches. Inspired by it, a subsequent research question is ‘Under what 
circumstances and to what extent, these two approaches are consistent?’ 
Therefore, the numerical simulations are employed in this manuscript 
to quantify and visualize the difference between the two solutions. A 
schematic representation of the mesh structure of the two approaches 
is displayed in Fig. 2.1. In other words, for the spatial exclusion model, 
we exclude the cell region from the computational domain.

The parameter values that are used in this section are shown in Ta-

ble 2.1, if there is no further specification. Note that the parameters are 
dimensionless. In this manuscript, finite element methods and backward 
Euler are used for the numerical simulations, for the spatial discretisa-

tion and time integration respectively. Particularly, we use Python 3.10 
and FEniCS package [15] version 2019.2.0.dev0. We bare in mind that 
in the implementation, instead of a smooth circle, the cell region is con-

structed by a series of mesh points as a polygon. In the point source 
model, numerically, the initial condition at the mesh points on the cell 
boundary 𝜕Ω𝐶 is taken the same as in the extracellular environment 
Ω ⧵Ω𝐶 .

2.3. Preliminary results: effects of varying the diffusion constant

A diffusing particle that is released at the centre of a circular cell 
of radius 𝑅 = 1∕2 reaches the cell boundary on average on a time scale 
𝑅2∕𝐷. When the time step Δ𝜏 is larger than 𝑅2∕𝐷, the global difference 
between the norms of the solutions in both approaches is not really sig-

nificant; see Fig. 2.2(a)-(b). This is mainly due to the fact that within 
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Fig. 2.2. Several simulations were conducted with varying diffusion coefficients, namely, 𝐷 ∈ {10, 1, 0.1}. Zero initial conditions were taken in all cases. In the 
subfigures in the left column, various global norms (i.e. ‖𝑢‖𝐿2 (Ω⧵Ω𝐶 ), ‖𝑢‖𝐻1(Ω⧵Ω𝐶 ), ‖∇𝑢‖𝐿2 (Ω⧵Ω𝐶 )) are shown for both approaches. In the subfigures in the right column, 
we show the local norm differences of all the categories of aforementioned norms. The increase in 𝐿2-norm of the solution on Ω ⧵Ω𝐶 – hence also in 𝐻1-norm – 
in (a), (c) and (e) is due to the constant influx of compound in both spatial exclusion and point source model. Here, 𝐻1(Ω ⧵Ω𝐶 ) is equipped with the Hilbert space 
norm ‖𝑓‖2

𝐻1 = ‖𝑓‖2
𝐿2 + ‖ |∇𝑓 | ‖2

𝐿2 .
one time step, the compounds have already reached the boundary of 
the cell in the point source model. Subsequently, the diffusion basically 
starts from the boundary of the cell at 𝑡 = Δ𝜏 . However, when we de-

crease the diffusion coefficient significantly, longer time is needed for 
the compounds to reach the boundary of the cell in the point source 
model. In other words, the influx from the point source firstly needs to 
‘fill’ the intracellular space Ω𝐶 , before it can mimic diffusion from the 
boundary of the cell.

Notice that the local difference between the two solutions increases 
in all the norms with decreasing diffusivity 𝐷; see Fig. 2.2 (b), (d) and 
(f). This is caused by the effect that even though compounds may have 
reached the boundary of the cell in the point source model after some 
time, these can never fully ‘catch up’ with the amount of mass already 
released by this boundary from the start in the spatial exclusion model. 
Thus, one gets a systematic delay, visible in Fig. 2.2.

Furthermore, as time proceeds, all the norms of differences slowly 
decrease for 𝐷 = 1 and 𝐷 = 0.1. The 𝐿2-norm is controlled by expression 
in Equation (1.4). After a transient, the difference in flux density over 
the boundary 𝜕Ω𝐶 becomes small; see e.g. Fig. 3.1(c) that indicates 
that concentration differences are small, hence also the differences in 
flux. Thus, the boundary-integral term in Equation (1.4) converges to 
0. The first term, with the difference in gradients of solutions, will also 
converge to 0. It depends on the speed of convergence of both terms, 
whether the sign of the derivative of the 𝐿2-norm of the difference will 
be positive or negative. This phenomenon can be observed in Fig. 2.2

(b), for 𝐷 = 10, where the 𝐿2-norm of the difference is increasing to-

wards the end of the simulation time interval.
496
This phenomenon seems to persist with decreasing 𝐷 until it disap-

pears for 𝐷 between 1 and 5. To check whether this is a phenomenon in 
the numerical simulation rather than the model, we decreased the time 
step substantially. This did not affect the computed 𝐿2-norm. We con-

clude, that it is a consequence of a change in dominance between the 
two integral terms in Equation (1.4). It is not yet clear what controls 
this change precisely.

For the remainder of this paper, we shall focus on a second obser-

vation that can be made from the preliminary simulations: varying 𝐷, 
these show that for smaller diffusion constant, there is larger ‘delay’ be-

tween the solutions, see Fig. 2.2(e) and Supplementary Video S1. This 
causes a systematic deviation between the two solutions. Hence, it is 
important to see how to reduce this effect. Therefore, in all following 
numerical simulations, we select 𝐷 = 0.1, since it gives the largest devia-

tion in norms between the spatial exclusion model and the point source 
model.

3. Extending zero environmental initial value

We shall first examine the issue of systematic delay for the point 
source solution when there is a zero initial condition in the environ-

ment for the spatial exclusion model. The situation where the initial 
condition there is constant, but non-zero, turned out to require a modi-

fied approach. It is discussed in the next section.

Since the solutions in the two approaches are defined on different 
spatial domains, the initial condition for the spatial exclusion model 
cannot be simply carried over to the larger domain of the point source 
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model: choices for extension to the complement Ω̄𝐶 must be made. In 
the preliminary results of Section 2.3 we have seen that simply extend-

ing by zero leads to structural delay in the solution, especially for small 
diffusion.

3.1. A Gaussian-shaped extension

We consider now a single cell, centred at 𝒙𝑐 . According to Proposi-

tion 1.1, it is expected that the initial condition in (𝐵𝑉 𝑃𝑃 ), i.e. �̄�0(𝒙), 
cannot be simply set to zero on Ω𝐶 as extension of the zero initial value 
𝑢0(𝒙) of (𝐵𝑉 𝑃𝑆 ) on Ω ⧵Ω𝐶 . As the spatial exclusion model removes the 
cell region in the computational domain and starts diffusion from the 
cell boundary directly, while in the point source model, firstly the com-

pound needs to reach the cell boundary from the cell centre, which 
takes extra time. To compensate this time difference and inspired by 
the fact that the difference between two approaches (see Fig. 2.2(c)-(f)) 
stays more or less constant, we set �̄�0(𝒙) on Ω𝐶 in the form of the fun-

damental solution to the diffusion equation on ℝ𝑑 , which is given by 
[16]

𝑃𝐷(𝒙, 𝑡) =
⎧⎪⎨⎪⎩

1
(4𝜋𝐷𝑡)𝑑∕2

exp
{
− |𝒙|2
4𝐷𝑡

}
, 𝑡 > 0,𝒙 ∈ℝ𝑑 ,

0, 𝑡 < 0,𝒙 ∈ℝ𝑑 ,

(3.1)

where 𝑑 is the dimension. In this study, we consider 𝑑 = 2 only. If we 
imagine that diffusion inside the cell has started a time 𝑡0 > 0 before 
the start of the point source model from a unit Dirac mass at the centre 
𝒙𝑐 , then at time 𝑡 it will have reached a distribution on ℝ2 of Gaussian 
shape

𝑃𝐷
𝑡+𝑡0

(𝒙,𝒙𝑐) =
1

4𝜋𝐷(𝑡+ 𝑡0)
exp

{
−

|𝒙− 𝒙𝑐 |2
4𝐷(𝑡+ 𝑡0)

}
, 𝑡, 𝑡0 > 0, 𝒙 ∈ℝ2.

(3.2)

We can modify 𝑡0 and the intensity 𝑝0 > 0 of the initial condition to 
arrive at a proposed extension of the initial condition �̄�0(𝒙) in (𝐵𝑉 𝑃𝑃 )
as a (discontinuous) truncated and scaled fundamental solution:

�̄�0(𝒙) =

{
𝑝0𝑃

𝐷
𝑡0
(𝒙,𝒙𝑐), 𝒙 ∈ Ω̄𝐶 ,

0, 𝒙 ∈Ω ⧵ Ω̄𝐶 .
(3.3)

The idea is, to choose (𝑝0, 𝑡0) in such a way that the flux condition of 
Proposition 1.1 is met in the best possible way.

Denoting 𝑟 = |𝒙 − 𝒙𝑐 |, the distance to the singular point, the flux 
density at 𝒙 in the direction pointing away from 𝒙𝑐 that originates from 
the initial condition only is given by

𝜙1(𝑟, 𝑡) = −𝐷∇(𝑝0𝑃𝐷
𝑡+𝑡0

(𝑟)) ⋅ 𝒏 = −𝐷𝑝0

𝜕𝑃𝐷
𝑡+𝑡0

(𝑟)

𝜕𝑟
=

𝑝0𝑟

2(𝑡+ 𝑡0)
𝑃𝐷
𝑡+𝑡0

(𝑟).

Hence, the flux density over 𝜕Ω𝐶 from the initial condition in Equa-

tion (3.3) reads as

𝜙1(𝑅, 𝑡) =
𝑝0𝑅

2(𝑡+ 𝑡0)
𝑃𝐷
𝑡+𝑡0

(𝑅) =
𝑝0𝑅

8𝜋𝐷(𝑡+ 𝑡0)2
exp

{
− 𝑅2

4𝐷(𝑡+ 𝑡0)

}
. (3.4)

With the production of compounds at the centre of the cell 𝒙𝑐 and pro-

duction rate Φ(𝒙𝑐 ), the fundamental solution of (𝐵𝑉 𝑃𝑃 ) is given by

𝑢𝑃 (𝒙, 𝑡) =

𝑡

∫
0

∫
ℝ2

𝑃𝐷
𝑡−𝑠

(𝒙,𝒚)𝛿(𝒚 − 𝒙𝑐)Φ(𝒙𝑐)𝑑𝒚𝑑𝑠

=

𝑡

∫
0

Φ(𝒙𝑐)𝑃𝐷
𝑡−𝑠

(𝒙,𝒙𝑐)𝑑𝑠 =

𝑡

∫
0

Φ(𝒙𝑐)𝑃𝐷
𝑡−𝑠

(𝑟)𝑑𝑠.

Subsequently, the flux density caused by the point source at 𝒙𝑐 only is 
computed as

𝜙2(𝑟, 𝑡) = −𝐷∇𝑢(𝑟, 𝑡) ⋅ 𝒏 = −𝐷
𝜕𝑢(𝑟, 𝑡)
𝜕𝑟
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=𝐷
𝜕

𝜕𝑟

𝑡

∫
0

Φ(𝒙𝑐)𝑃𝐷
𝑡−𝑠

(𝑟)𝑑𝑠 =
Φ(𝒙𝑐)
2𝜋𝑟

exp
{
− 𝑟2

4𝐷𝑡

}
.

Then, we obtain the flux over 𝜕Ω𝐶 as

𝜙2(𝑅, 𝑡) =
Φ(𝒙𝑐)
2𝜋𝑅

exp
{
− 𝑅2

4𝐷𝑡

}
. (3.5)

According to Proposition 1.1, and given −𝐷∇𝑢𝑃 ⋅ 𝒏 = 𝜙1(𝑅, 𝑡) + 𝜙2(𝑅, 𝑡)
over 𝜕Ω𝐶 , the relation between the scale 𝑝0 and prediffused time 𝑡0 can 
be determined from the approximate equation

𝜙(𝒙, 𝑡) = −𝐷∇𝑢𝑃 ⋅ 𝒏 ≈ 𝜙𝑠𝑢𝑚 ∶= 𝜙1(𝑅, 𝑡) +𝜙2(𝑅, 𝑡)

=
𝑝0𝑅

8𝜋𝐷(𝑡+ 𝑡0)2
exp

{
− 𝑅2

4𝐷(𝑡+ 𝑡0)

}
+

Φ(𝒙𝑐)
2𝜋𝑅

exp
{
− 𝑅2

4𝐷𝑡

}
.

(3.6)

Let 𝑡 = 0, then

𝑝0(𝑡0) ≈
2𝑡0𝜙(𝒙, 𝑡)
𝑅𝑃𝐷

𝑡0
(𝑅)

. (3.7)

3.2. A comparison: Gaussian-shaped initial value inside the cell

We set 𝐷 = 0.1, such that the time delay between the solutions in the 
two approaches is the largest in the range of 𝐷 that we consider, see 
Section 2.3. We take as initial condition �̄�0 on Ω for the point source 
model the function defined in Equation (3.3). Strictly speaking, this 
function is not in 𝐻1(Ω). However, numerically the function value of �̄�0
at the mesh points in the interior of the cell, i.e. in Ω𝐶 (and 0 for those 
on the boundary 𝜕Ω𝐶 , see Section 2.2) are used to obtain a numerical 
approximation for �̄�0 through FEM that is in 𝐻1. This is the extension �̄�0
that is actually considered, but which is difficult to prescribe explicitly.

Thus, one has two degrees of freedom in selecting the Gaussian-

shaped initial condition. The question is, how to choose the value of 
(𝑝0, 𝑡0). As first option we considered determining (𝑝0, 𝑡0) by minimiz-

ing the total deviation between 𝜙𝑠𝑢𝑚(𝑅, 𝑡) and 𝜙(𝒙, 𝑡) = 1 over the time 
interval [0, 𝑇 ] in 𝐿1-sense. That is, (𝑝0, 𝑡0) is taken as

(�̂�0, 𝑡0) ∈ arg min
(𝑝0 ,𝑡0)

𝑇

∫
0

| Φ𝑠𝑢𝑚(𝑡) − 𝜙(𝒙, 𝑡)|𝑑𝑡. (3.8)

This choice is referred to as ‘Option 1’.

Fig. 3.1 shows the global norms of the solutions and norms of dif-

ferences between the spatial exclusion model and the point source 
model with two types of initial condition: zero initial condition com-

pared to a Gaussian-shaped initial condition on the cell’s interior. The 
shape parameter (𝑝0, 𝑡0) has been determined according to Option 1, i.e. 
Equation (3.8). In Fig. 3.1(a) one sees that the norms of the individ-

ual solutions of spatial exclusion and point source model will converge 
to each other after a transient, when the Gaussian-shaped extension 
of the initial condition is used. It indicates that the use of Gaussian-

shaped initial condition does compensate the time delay, compared to 
the use of zero initial condition. The norms of the difference of the 
two solutions (with Gaussian-shaped extension) converge quickly to a 
steady – though non-zero – level. So, error is controlled well after an 
initial transient. Moreover, the error is less than that in the case of the 
zero-extension, as can be seen in Fig. 3.1(b). Thus, the Gaussian-shaped 
extended initial condition yields an improvement of the approximation 
over the homogeneously-zero extended initial condition.

When the Gaussian-shaped initial condition is used, due to the dis-

continuity of �̄�0(𝒙) given by Equation (3.3) in the point source model, 
the 𝐻1-approximation of �̄�0(𝒙) that is taken as initial condition in the 
numerical analysis has a large gradient locally in a small region of the 
boundary of the cell. This produces a spike of ‖𝑢𝑆 − 𝑢𝑃 ‖𝐻1(Ω⧵Ω𝐶 ) and ‖∇𝑢𝑆 − ∇𝑢𝑃 ‖𝐿2(Ω⧵Ω𝐶 ) that appear in the beginning of the simulation. 
However, the differences quickly dropped to a lower level, compared 
to when the homogeneously-zero initial condition is used. We attached 
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Fig. 3.1. For 𝐷 = 0.1, computed (a) global norms for solutions and (b) local norm differences (namely, the 𝐿2− and 𝐻1-norm of the solution 𝑢, and the 𝐿2-norm 
of the gradient of the solution 𝑢) between the two approaches, as well as (c) the quantity 𝑐∗(𝑡). Here, the amplitude and the variance of the Gaussian-shaped initial 
condition are determined by minimizing the total flux deviation on 𝜕Ω𝐶 over [0, 𝑇 ], i.e. (𝑝0, 𝑡0) have been taken as in Option 1 in Table 3.1. Black curves represent 
results from the spatial exclusion model, and blue and red curves represent the zero and Gaussian-shaped initial conditions, respectively. Solid, dashed and dotted 
lines represent ‖𝑢𝑆 − 𝑢𝑃 ‖𝐿2 (Ω⧵Ω𝐶 ), ‖𝑢𝑆 − 𝑢𝑃 ‖𝐻1(Ω⧵Ω𝐶 ) and ‖∇𝑢𝑆 −∇𝑢𝑃 ‖𝐿2(Ω⧵Ω𝐶 ), respectively. Note that the introduction of the Gaussian-shaped initial condition in the 
point source model removed the time delay, essentially.
Supplementary Video S1 which shows the concentration of compounds 
changing over time.

Fig. 3.1(c) shows the time-integrated deviation between the pre-

scribed flux 𝜙(𝒙, 𝑡) = 1 in (𝐵𝑉 𝑃𝑆 ) and the flux generated from (𝐵𝑉 𝑃𝑃 )
on the cell boundary 𝜕Ω𝐶 (i.e. Equation (1.6)). Due to the discontinuity 
in the initial condition for (𝐵𝑉 𝑃𝑃 ), the gradient of the flux in (𝐵𝑉 𝑃𝑃 )
over 𝜕Ω𝐶 is large, hence, the 𝑐∗(𝑡) is larger when the Gaussian-shaped 
initial condition is used than for the zero initial condition. As shown in 
Fig. 3.1(c), this measure of quality reaches a rather small steady rate 
of increase quicker for the Gaussian-shaped condition. However, upon 
quick inspection, 3.1(c) seems to indicate that the zero initial condition 
performs better than the Gaussian-shaped extension, which is not the 
case in view of the norms of local differences presented in Fig. 3.1(b).

We conclude that the Gaussian-shaped extension of the initial 
condition improves the quality of approximation compared to the 
homogeneously-zero initial condition. However, the graph of 𝑐∗(𝑡) turns 
out to be difficult to interpret towards drawing conclusions on the quality of 
approximation in terms of 𝐿2- and 𝐻1-norms.

3.3. Multiple cells in the computational domain

The chief benefits of the point source model over the spatial exclu-

sion model lie in analytical tractability and computational efficiency 
when there are many cells, in particular when these are also moving. 
Therefore, we shall now examine effects that may occur due to the pres-

ence of multiple cells. That there will be some effect of multiple cells 
can be anticipated. Intuitively speaking, part of the flux of mass released 
by one cell in the point source model will at some point in time freely 
transverse the part of the domain that is the interior of another cell in 
the spatial exclusion model. In the latter, diffusing particles would have 
reflected on the boundary of this cell. So, different trajectories of the 
diffusion process are expected, which may result in differences in the 
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solutions. The impact of this phenomenon will depend on the distance 
between the cells, their size and the diffusivity.

In this study, we shall only exhibit the impact of this phenomenon. 
Investigation of the question how to compensate this impact is deferred 
to another study. For simplicity, we consider two and ten cells respec-

tively with different locations. All the cells are assumed to be identical 
in shape, size and (constant) flux density over the boundary. The loca-

tions of the cells over the domain are shown in Fig. C.1 in Appendix C. 
Similarly to the previous section, we plot against time various norm 
differences of the solutions, and 𝑐∗(𝑡) of the same single cell, i.e. the 
cell that is present at the same location in all configurations. In every 
subfigure in Fig. 3.2, the left panel shows the result when the homoge-

neous initial condition is applied, i.e. 𝑢0(𝒙, 0) = 0 for the computational 
domain, and the right panel is when the Gaussian-shaped extension is 
used as the initial condition inside the cell Ω𝐶 .

Generally speaking, we observe the existence of the impact from 
other cells, since for every error quantifier, the more cells in the com-

putational domain, the larger the quantity. Furthermore, the distance 
between the cells plays a significant role in this impact: for the two-

cell case, when the cells are closer to each other, the influence appears 
sooner, and 𝑐∗(𝑡) is increasing continuously and seems to not be able 
to reach a steady state, which is opposite to the two-cell case with a 
larger distance. As the number of cells increases, the quantities are in-

creasing as well except for the 𝑐∗(𝑡), which results from the minimal 
distance between the cells being smaller than the two-cell case with a 
smaller distance. In other words, it verifies the assumption that the dis-

tance between cells is a significant factor to study the consistency of 
the solutions to the two approaches when there are multiple cells in 
the computational domain. Also in this setting, a Gaussian-shaped ex-

tension of the initial conditions yields a better approximation, although 
the difference tends to become smaller when the number of cells in-

creases.
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Fig. 3.2. Numerical results of multiple cells in the computational domain. Cells are identical (𝜙𝑖 = 1, 𝑅𝑖 =
1
2
), 𝐷 = 0.1. Results have been plotted for homogeneously-

zero initial condition (solid curve in the left) and Gaussian-shaped initial condition (dashed curve in the left) in every subfigure. Different colours of curves represent 
different number of cells, as indicated. The used cell configurations for the computations are shown in Fig. C.1.

Table 3.1

Considered options to compute (𝑝0, 𝑡0) as minimisation of the indicated different objective functions and 
constraint on the (𝑝0, 𝑡0)-value pair. Initial condition is 𝑢0 = 0 in Ω ⧵Ω𝐶 . The optimization was performed by 
the function optimize.minimize of Scipy package (version 1.8.0) in Python.

Options Objective function Constraints Value of 𝑝0 Value of 𝑡0

Option 1 ∫ 𝑇

0 |𝜙𝑠𝑢𝑚(𝑡) −𝜙|𝑑𝑡 - 55.379 3.660

Option 2 𝑝0(𝑡0) =
2𝑡0𝜙

𝑅𝑃𝐷
𝑡0
(𝑅)

37.114 2.383

Option 3 |max0⩽𝑡⩽𝑇 (𝜙𝑠𝑢𝑚(𝑡) −𝜙)| - 27.946 1.905

Option 4 +|min0⩽𝑡⩽𝑇 (𝜙𝑠𝑢𝑚(𝑡) −𝜙)| 𝑝0(𝑡0) =
2𝑡0𝜙

𝑅𝑃𝐷
𝑡0
(𝑅)

21.737 1.737

Option 5 ∫ 𝑇

0 |𝜙𝑠𝑢𝑚(𝑡) −𝜙|𝑑𝑡+ |max0⩽𝑡⩽𝑇 (𝜙𝑠𝑢𝑚(𝑡) −𝜙| - 31.451 2.086

Option 6 +|min0⩽𝑡⩽𝑇 (𝜙𝑠𝑢𝑚(𝑡) −𝜙)| 𝑝0(𝑡0) =
2𝑡0𝜙

𝑅𝑃𝐷
𝑡0
(𝑅)

34.439 2.283
3.4. Optimal selection of (𝑝0, 𝑡0) in the Gaussian-shaped initial condition

So far, we compute the amplitude 𝑝0 and variance parameter 𝑡0 by 
minimizing Equation (3.8). However, there are other options to select 
(𝑝0, 𝑡0) by minimizing different objective functions. Key objective is to 
minimize the deviation between 𝜙(𝒙, 𝑡) and 𝜙𝑠𝑢𝑚(𝑡) as expressed in Equa-

tion (3.6). The 𝐿1-norm deviation over time, as in Equation (3.8) may 
be replaced by e.g. supremum norm. In Lemma B.1 we summarized 
characteristic properties of 𝜙𝑠𝑢𝑚(𝑡). It may have at most two extreme 
values, one above the (constant) level 𝜙, one below. In order to make 
both extreme deviations from the target value 𝜙 as small as possible, 
one can take as objective to minimize|||max
0⩽𝑡⩽𝑇

(𝜙𝑠𝑢𝑚(𝑡) −𝜙)||| + ||| min
0⩽𝑡⩽𝑇

(𝜙𝑠𝑢𝑚(𝑡) − 𝜙)|||, (3.9)

over (𝑝0, 𝑡0). One may think too of starting the approximation 𝜙𝑠𝑢𝑚 at 
level 𝜙 at 𝑡 = 0. This yields Equation (3.7) as constraint on the (𝑝0, 𝑡0)
value pairs. There is no a priori guarantee however, that this yields the 
best result for the corresponding unconstrained minimisation problem 
with the same objective function. A combination of objective functions 
defined in Equations (3.8) and (3.9) has also been considered.

Table 3.1 gives an overview of the objective functions that have been 
examined, each with and without the value-pair constraint (Equation 
(3.7)). The (𝑝0, 𝑡0)-values thus obtained for each option, by applying 
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the optimize.minimize function of Python package Scipy (version 
1.8.0) are shown in the last two columns.

Fig. 3.3 shows the plot of the important quantifiers of the consis-

tency between the approaches. As a reference, we add the curve which 
is obtained by defining zero initial conditions over Ω in (𝐵𝑉 𝑃𝑃 ). Ex-

tending the initial condition on Ω𝐶 with the Gaussian kernel provides 
sufficient flux to reduce the local difference between the solutions in 
these two approaches, which can be seen in Fig. 3.3(a). Nevertheless, 
due to discontinuity of the initial condition on 𝜕Ω𝐶 as defined in Equa-

tion (3.3), similarly to Fig. 3.1(a), using the inhomogeneous initial 
condition causes that the 𝐻1-norm (see Fig. 3.3(d)) and the 𝐿2-norm 
of the gradient of the solution (see Fig. 3.3(c)) difference are signifi-

cantly larger than using the homogeneous initial condition in the first 
few time steps. However, when these have stabilized after this transient 
time period, the deviations for the all Gaussian-shaped extensions of the 
initial condition are almost one order of magnitude lower than those for 
the homogeneously-zero initial condition.

Again, the quantifier 𝑐∗(𝑡), defined in Equation (1.6), does not allow 
for a conclusion as clear as that provided by the 𝐿2 and 𝐻1-norm dif-

ferences. It also contains the gradient of 𝑢𝑃 . Hence, most graphs of 𝑐∗(𝑡)
in Fig. 3.3(d) are above the graph for the homogeneously-zero initial 
condition (dashed curve), except for Option 3 and Option 4. There, the 
maximal and minimal difference between the presumed flux density in 
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Fig. 3.3. Measures of quality of approximation between solutions as a function of time. The Gaussian-shape parameters (𝑝0 , 𝑡0) have been computed according to the 
options listed in Table 3.1 and the resulting values for (𝑝0, 𝑡0) have been used in the simulation (𝐷 = 0.1, 𝜙 = 1, 𝑅 = 1

2
). Blue dashed line represents the (𝐵𝑉 𝑃𝑃 ) when 

𝑢𝑃 (𝒙, 0) = 0 for Ω, and other coloured solid lines represent the (𝐵𝑉 𝑃𝑃 ) when the initial condition is given by Equation (3.3). The curve for Option 1 overlaps visually 
with that of Option 2 in Panel (a), (b) and (c).
(𝐵𝑉 𝑃𝑆 ) and the analytical flux 𝐷∇𝑢𝑃 ⋅ 𝒏 from (𝐵𝑉 𝑃𝑃 ) are minimized. 
In other words, Option 3 and 4 select (𝑝0, 𝑡0) such that mostly 𝐷∇𝑢𝑃 ⋅ 𝒏
is close to 𝜙(𝒙, 𝑡). In particular, Option 4 appears to be the best option, 
since 𝑐∗(𝑡) reaches the steady state fastest and with the smallest value. In 
the latter option one enforces that 𝜙(𝒙, 0) = 𝜙𝑠𝑢𝑚(0). However, Fig. 3.3(a) 
indicates that Option 4 is the worst choice among the Gaussian-shaped 
extensions, from the point of view of the 𝐿2-norm distance. There is 
no clear distinction among the options from the point of view of the 
𝐻1-norm.

In view of Proposition 1.1, Equation (1.4), the behaviour of the 
𝐿2-norm is a delicate interplay between the flux difference over the 
boundary (measured by 𝑐∗(𝑡) and the difference of the gradient of the 
solutions. These two quantities are not independent. More analytic in-

sight – if obtainable – is required to understand properly the apparent 
discrepancy between the 𝑐∗ measure and 𝐿2-norm of difference of solu-

tions.

In general, the smaller the quantifier is, the better the option. How-

ever, again there seems to be no “best” option for all quantifiers con-

sidered. Again, it turns out that 𝑐∗(𝑡) has to be interpreted with greatest 
care.

4. Extending nonzero environmental initial value

As observed in the previous results, discontinuity over 𝜕Ω𝐶 caused 
by the Gaussian-shaped initial condition in the interior of the cell and 
the zero homogeneous initial condition in the rest of the computational 
domain, results in a significant difference between the two approaches 
in the quantifiers that involve the gradient of 𝑢𝑃 (𝒙, 𝑡). This suggests to 
introduce an additional condition of continuity on the cell boundary. 
For zero initial condition this can never be achieved by the strictly pos-

itive Gaussian kernel. Therefore, we propose to alter the zero initial 
condition to be a positive constant, denoted by 𝐶 and to investigate the 
selection of (𝑝0, 𝑡0) further for such non-zero initial conditions.

In this section, we only consider the 𝐿1-objective function from 
Option 1 and 2 given by Equation (3.8). We take the continuity con-

straint for the Gaussian-shaped extension on the boundary 𝜕Ω𝐶 , which 
amounts to taking
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Table 4.1

Computed (𝑝0, 𝑡0) from the optimization problem with indicated objective func-

tion and value-pair constraint. Initial condition is 𝑢0 = 𝐶 in Ω ⧵ Ω𝐶 , with 𝐶 ∈
{0.1, 10, 100}. Optimization was performed by the function optimize.mini-

mize of Scipy package (version 1.8.0) in Python.

C Objective function Constraints Value of 
𝑝0

Value of 
𝑡0

0.1
∫ 𝑇

0 |𝜙𝑠𝑢𝑚(𝑡) −𝜙|𝑑𝑡 0.1 =
𝑝0

4𝜋𝐷𝑡0
exp

{
− 𝑅2

4𝐷𝑡0

}
4.688 0.107

10 10 =
𝑝0

4𝜋𝐷𝑡0
exp

{
− 𝑅2

4𝐷𝑡0

}
53.422 3.568

100 100 =
𝑝0

4𝜋𝐷𝑡0
exp

{
− 𝑅2

4𝐷𝑡0

}
9.194 × 105 7.310 × 102

𝑝0
4𝜋𝐷𝑡0

exp
{
− 𝑅2

4𝐷𝑡0

}
= 𝐶 (4.1)

as the new constraint for (𝑝0, 𝑡0) instead of Equation (3.7). By doing this, 
we ensure that there exists no jump at the boundary of the cell, i.e. 𝜕Ω𝐶 . 
Of course, there may be a jump in flux. Note that for the options listed 
in Table 3.1 that do not include constraint, the value of (𝑝0, 𝑡0) does not 
change. In Table 4.1, we present the value of (𝑝0, 𝑡0), for Option 2 with 
the new constraint (4.1) with 𝐶 = 0.1, 10, 100, respectively.

Fig. 4.1 shows the results when 𝐶 = 10 is chosen, that is, the initial 
condition is 10 over the domain of the spatial exclusion model. Com-

pared with the results in Fig. 3.3 when the initial condition is zero, the 
𝐻1-norm and the 𝐿2-norm of the gradient of the difference between the 
solutions to the two approaches have reduced. The same holds for the 
quantity 𝑐∗(𝑡). All the subplots indicate that using of Gaussian distribu-

tion inside the cell as initial condition reduces the difference between 
the solutions to the two approaches. On the other hand, we note that 
Option 1 (red curve in Fig. 4.1) performs slightly better than Option 2 
with the previous constraint (black curve). This can be attributed to the 
fact that the pair of (𝑝0, 𝑡0) computed without constraint in Option 1 re-

sults in the value 10.150 approximately over the boundary of the cell. 
Hence, the constraint in Equation (4.1) is almost satisfied (see the value 
computed in Table 4.1), while the flux difference on the cell bound-
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Fig. 4.1. Various norms of differences between the two approaches and 𝑐∗(𝑡) are shown. Here, we consider non-zero initial condition 𝑢0 = 𝐶 with 𝐶 = 10. Shown are 
the error quantifiers for homogeneously extended initial condition �̄�0 = 𝐶 (blue) and the Gaussian-shaped extension of the initial condition with (𝑝0, 𝑡0) computed 
from Option 1 (red) without value-pair constraint, Option 2 (green) with constraint (Equation (3.7)) in Table 3.1 and Option 2 with the new continuity constraint 
(Equation (4.1)) in Table 4.1.

Fig. 4.2. Various norms of differences between the two approaches and 𝑐∗(𝑡) are shown. Here, we consider non-zero initial condition 𝑢0 = 𝐶 with 𝐶 = 0.1. Shown are 
the error quantifiers for homogeneously extended initial condition �̄�0 = 𝐶 (blue) and the Gaussian-shaped extension of the initial condition with (𝑝0, 𝑡0) computed 
from Option 1 (red) without value-pair constraint, Option 2 (green) with constraint (Equation (3.7)) in Table 3.1 and Option 2 with the new continuity constraint 
(Equation (4.1)) in Table 4.1.
ary over time is minimized at the same time. When 𝐶 = 0.1 is chosen, 
similar patterns in Fig. 4.2 appear compared to that the zero initial con-

dition is used. However, Fig. 4.2(b)-(d) show a better performance when 
the continuity of the cell boundary is guaranteed; see the black curve in 
each subfigure. Next to it, we also conduct the simulation with 𝐶 = 100, 
hence, the values of (𝑝0, 𝑡0) computed by Option 1 and 2 will still result 
in a significant difference between the two approaches, with respect to 
all the quantities. As a consequence, we categorize the simulations into 
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two subgroups: (1) Option 1 and Option 2, and (2) homogeneous ini-

tial condition and Option 2 with the new constraint; see Fig. 4.3. In all 
the subfigures, we observe that the results in Subgroup (1) are at least 
15 times larger that the results in Subgroup (2), which supports the ne-

cessity to guarantee the continuity of the initial condition, at the cell 
boundary. Moreover, it can be concluded that with the current param-

eter values, it is not needed to use a Gaussian-shaped extension. The 
homogeneous extension of 𝑢0 = 𝐶 by the same constant value in the cel-
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Fig. 4.3. Various norms of differences between the two approaches and 𝑐∗(𝑡) are shown. Here, we consider non-zero initial condition 𝑢0 = 𝐶 with 𝐶 = 100. Shown 
are the error quantifiers for homogeneously extended initial condition �̄�0 = 𝐶 (blue) and the Gaussian-shaped extension of the initial condition with (𝑝0, 𝑡0) computed 
from Option 1 (red) without value-pair constraint, Option 2 (green) with constraint (Equation (3.7)) in Table 3.1 and Option 2 with the new continuity constraint 
(Equation (4.1)) in Table 4.1.
Fig. 4.4. The relative errors defined in Equation (4.2) are shown in the plot, 
with 𝐶 = 0.1, 10, 100, respectively. Here, we focus on Option 2 given in Table 3.1

and Option 2 with new constraint in Table 4.1.

l’s interior leads to solutions that are comparable in quality as those 
obtained from Gaussian-shaped extensions.

For different values of 𝐶 in {0.1, 10, 100} there is quite a different 
total amount of mass in the environment. A relative measure of error 
is therefore appropriate in order to compare the different cases, i.e. 
initial conditions 𝑢0 = 𝐶 vary with 𝐷 = 0.1 fixed. We propose the ratio 
of the total flux difference over the cell boundary and the total mass in 
Ω ⧵Ω𝐶 . By the Cauchy-Schwarz Inequality one can bound this relative 
quantifier by

∫ 𝑡

0 ∫𝜕Ω𝐶
|𝜙(𝒙, 𝑠) − 𝑢𝑃∇𝐷 ⋅ 𝒏|𝑑Γ𝑑𝑠‖𝑢𝑆 (𝒙, 𝑡)‖𝐿1(Ω⧵Ω𝐶 )

≤
√|𝜕Ω𝐶 | ∫ 𝑡

0 ‖𝜙(𝒙, 𝑠) −𝐷∇𝑢𝑃 ⋅ 𝒏𝑑𝑠‖𝐿2(𝜕Ω𝐶 )𝑑𝑠‖𝑢𝑆 (𝒙, 𝑡)‖𝐿1(Ω⧵Ω𝐶 )
=∶ 𝑟.𝑒(𝑡). (4.2)

The latter quantity 𝑟.𝑒(𝑡) is more convenient because of its relation to 
𝑐∗(𝑡).

Note that the denominator in Expression (4.2) can be computed an-

alytically as
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‖𝑢𝑆 (𝒙, 𝑡)‖𝐿1(Ω⧵Ω𝐶 ) =
|||Ω ⧵Ω𝐶

|||𝐶 + 2𝜋𝑅𝜙𝑡,

where |Ω ⧵Ω𝐶 | is the area of the domain in the spatial exclusion model, 
and 𝜙 is the constant flux density over the boundary. Fig. 4.4 shows the 
relative errors for various values of 𝐶 . All the relative errors are less 
than 8%.

5. Comparison of the computational efficiency

One of the motivations of this study is to have a computationally 
efficient model, while the spatial exclusion model cannot achieve this, 
which was briefly discussed in Peng and Vermolen [11] under the cir-

cumstance of solving a momentum balance equation for one single cell. 
The main issue of applying the spatial exclusion model is that setting 
up the computational domain is time-consuming. This is a disadvantage 
over the point source model, once cells will start moving through the 
domain. In the spatial exclusion model one will need to set up a new 
computational domain at each time step.

Hence, we investigated the computational efficiency from two per-

spectives for both models, namely, time cost of (1) generating the mesh 
and (2) solving the boundary value problems in each time iteration. For 
the former part, it does not only depend on the geometry of the com-

putational domain, but also the mesh size. The spatial exclusion model 
needs to mark the interior boundary of each cell besides the boundary 
of the computational domain, and a fine mesh costs longer CPU time.

Note that the CPU time we show here is the mean of several sim-

ulations, and the simulations are conducted without any postprocesses 
of the solutions, such as computing the boundary flux of the cell or 
the norms. In other words, we run the minimal codes only to solve 
(𝐵𝑉 𝑃𝑆 ) and (𝐵𝑉 𝑃𝑃 ), and therefore all the other unnecessary parts were 
removed in this section.

Table 5.1 shows the computational time cost for the spatial exclu-

sion model and the point source model with zero initial condition and 
Gaussian-shaped initial condition, with a fine (ℎ = 0.127) and coarse 
(ℎ = 0.640) mesh, respectively. In this section, we utilize Option 2 to 
compute (𝑝0, 𝑡0) in the Gaussian kernel, which is the reason why the 
point source model with Gaussian-shaped initial condition takes longer 
CPU time compared with zero initial condition. Generally speaking, 
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Table 5.1

CPU time for the spatial exclusion model and the point source model with zero initial condition, with different numbers of cells in the computational domain. The 
parameters (𝑝0, 𝑡0) are computed by Option 2 in Table 3.1. Here, the diffusion coefficient 𝐷 = 0.1, and we consider two mesh size ℎ = 0.127 and ℎ = 0.640, respectively. 
The simulations are run on the laptop of Intel (R) Core (TM) i7-6500U CPU @ 2.5 GHz with 8 GB of RAM, and we use Python 3.10 and FEniCS package [15]

version 2019.2.0.dev0.

CPU Time (s)
(Fine mesh ℎ = 0.127)

One Cell Five Cells Ten Cells

Generating 
Mesh

Solving BVP 
(per iteration)

Generating 
Mesh

Solving BVP 
(per iteration)

Generating 
Mesh

Solving BVP 
(per iteration)

Spatial Exclusion Model 1.223 0.199 4.921 0.194 12.080 0.194
Point Source Model 0.257 0.198 0.292 0.196 0.323 0.199

CPU Time (s)
(Coarse mesh ℎ = 0.640)

One Cell Five Cells Ten Cells

Generating 
Mesh

Solving BVP 
(per iteration)

Generating 
Mesh

Solving BVP 
(per iteration)

Generating 
Mesh

Solving BVP 
(per iteration)

Spatial Exclusion Model 0.0177 5.656 × 10−3 0.0502 6.764 × 10−3 0.111 7.230 × 10−3

Point Source Model 5.760 × 10−3 6.416 × 10−3 0.0109 6.387 × 10−3 0.0141 6.272 × 10−3

Computing (𝑝0 , 𝑡0) in 
Gaussian-shaped Initial 
Condition (Option 2)

0.116
with the same mesh structure, the spatial exclusion model needs more 
time to generate the mesh compared to the point source model, whereas 
both models cost more or less the same time to solve the boundary 
value problems regardless of the number of cells in the computational 
domain.

Regardless of the mesh size, as the number of cells increases, the 
time cost in generating mesh seems to increase linearly for the spa-

tial exclusion model, while there is no significant increase in the point 
source model. Furthermore, when there is only one single cell in the do-

main, the spatial exclusion model costs at least 4.5 times more CPU time 
to generate the mesh than the point source model in the fine mesh, and 
in the coarse mesh, the factor is almost 2.

If the Gaussian-shaped initial condition is used in the point source 
model, then (𝑝0, 𝑡0) needs to be computed by solving an optimization 
problem, depending on the options listed in Table 3.1. Since the ex-

plicit expressions of all the components of the optimization problem 
are available, and the expressions are not related to the mesh size or 
the number of cells, the computational cost of calculating (𝑝0, 𝑡0) is the 
same for all the cases listed in Table 5.1.

6. Conclusions and discussion

In this paper, we investigated conditions needed to replace the spa-

tial exclusion model for mass emitting objects (‘cells’) with diffusion in 
the environment by a point source model for the sake of computational 
efficiency or theoretical convenience in such a way that solutions to 
the latter still approximate well the corresponding solutions to the for-

mer in 𝐿2- and 𝐻1-norms. Such an approximation is convenient when 
many cells are considered in the computational domain and is particu-

larly interesting when these cells will be moving. Here, we considered 
the simplest case of a circular cell, fixed at its initial location, that keeps 
releasing the compounds at a constant rate. This compound is not taken 
up by the cell, nor is there a reaction in the environment. It stays in the 
environment, diffusing, forever after release. This simplified situation 
has been studied first to identify sources of error in the approximation 
that stem from the replacement of a spatial (circular) objects by a point 
source only.

We identified two main sources of error:

(1) A systematic time delay between the solution of the spatial ex-

clusion model and of the point source model, where the latter is 
lagging behind the former. It originates in inappropriateness of the 
chosen extension of the initial condition of the spatial exclusion 
model on the environment to the whole domain, on which the point 
source model is defined. This time delay occurs already for a sin-

gle cell in the domain. It decreases with increasing diffusivity. The 
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delay can be turned into a transient effect e.g. by choosing an ex-

tension by means of a Gaussian-shaped function on the part of the 
domain that corresponds to the cell’s interior.

(2) Absence of reflection in the point source model. In this model, 
diffusing compounds will move simply through the parts of the 
domain that constitute the cells’ interior in the spatial exclusion 
model. In that model, these would have reflected on the cell bound-

ary and hence stayed in the environment. On the long run, after 
many reflections, the two solutions should become different.

First, we provided an analytical condition such that the solutions to 
the two models are consistent, i.e. that they are equal on their shared 
domain of definition, the cells’ environment. Although this condition 
can never be satisfied exactly, it provides clues how to minimize the 
deviation between the two approaches: minimizing the deviation be-

tween the prescribed and generated flux density over the cell boundary. 
Hence, the choice for the quantity 𝑐∗(𝑡), introduced in Evers et al. [10]

as a measure for the quality of approximation, is motivated. It is com-

pared to the use of 𝐿2- and 𝐻1-norms over the environmental domain, 
which are more expensive to compute.

There are infinitely many ways of extending the initial condition on 
the environment to the whole domain. We chose the Gaussian-shaped 
extension, since it already ‘fits’ the diffusion process. Moreover, the pre-

liminary results showed that all norms of differences between the two 
approaches converged towards a stable value. Thus, we were inspired 
to extend by means of the fundamental solution of the diffusion equa-

tion, with a chosen amplitude and variance as parameters. Numerical 
results show the significant improvements in all the quantities, such as 
the local norm differences and 𝑐∗(𝑡) and the disappearance of the time 
delay after a transient.

This raised the question how to select the value of the two parame-

ters. We proposed and compared multiple options, which all boil down 
to solving single-objective optimization problems. There seems to be no 
“best” option. Moreover, a good choice may depend on which quantity 
is preferred for error quantification. When a non-zero initial condition 
is utilized, approximation quality improves when the extended initial 
condition has continuity of the flux over the boundary of the cells. This 
suggests to consider a multi-objective optimization problem in future 
work, where deviation from this continuity of flux in the initial condi-

tion is balanced with a measure of error of the flux over this boundary 
over time. This is a topic for future research.

The examination of the case of multiple circular cells of identical ra-

dius in the domain indicated the effects of absence of reflection on the 
quality of approximation. This effect is also present in the situation of 
a single cell, but then it is less apparent. When there are multiple cells 
in the domain and their mutual distance is small compared to their 
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radius, the solutions tend to deviate more. In this paper, we focused 
on removing the systematic time delay by proper extension of the ini-

tial condition. Further investigation is required what conditions can be 
imposed such that this source of error remains within acceptable toler-

ance, e.g. on this minimal distance between objects in comparison to 
their diameter and the diffusion constant, and the length of the simula-

tion interval.

For forthcoming work, there are various possibilities of interest. In 
addition to investigating the interactions between multiple cells and 
related conditions mentioned above, one can think of considering the 
prescription of inhomogeneous flux density over the cell boundary in 
space and possibly also over time. Moreover, cells may also take up 
compound from the environment. In the current paper, only circular 
cells have been considered, of equal radius, as an ideal study case. How-

ever, in applications, the cells will have various shapes. This can be 
resolved in a two-step approach. A spatial exclusion model with flux 
over such non-circular shaped boundary may first be approximated by 
such a model with inhomogeneous flux density over a circular-shaped 
boundary. The latter may then be approximated by a suitable point 
source model. This last type of approximation will be considered in a 
forthcoming paper. In the first type of approximation, we anticipate er-

ror caused by ‘curvature effects’. The curvature of the cell boundary 
influences the overall diffusion of the chemicals in case of reflection 
boundary conditions. In particular, sharp corners tend to confine dif-

fusing matter and therefore may need particular attention, in a sense 
similar to ‘absence of reflection’ as source of error mentioned above.

In summary, this paper provided practical conditions to obtain an 
acceptable approximation of the solution of a spatial exclusion model 
by means of a point source model. We suggested multiple options to 
implement conditions numerically. We discussed how to select the two 
shape-parameters of a Gaussian-shaped extension of the initial condi-

tion of the spatial exclusion model in a practical setting. We provide 
insights into deviations that will be introduced by transferring a spatial 
exclusion model with diffusion to a point source model and how two 
maximize the consistency between the two solutions in their common 
spatial domain, over the time interval of simulation.

Data availability

No data was used for the research described in the article.

Appendix A. Solution consistency between two approaches

It is out of interest to compare the two approaches, regarding the 
consistency of the solutions. We recall Proposition 1.1, which shows 
the essential and necessary condition to obtain consistent solutions:

Proposition 1.1. Denote by 𝑢𝑆 (𝒙, 𝑡) and 𝑢𝑃 (𝒙, 𝑡) the weak solutions to the 
spatial exclusion model (𝐵𝑉 𝑃𝑆 ) and the point source model (𝐵𝑉 𝑃𝑃 ), respec-

tively, and let 𝜕Ω𝐶 be the boundary of the cells, from which the compounds 
are released, with normal vector 𝒏 pointing into Ω𝐶 . Then

1
2

𝑑

𝑑𝑡

‖‖‖𝑢𝑆 − 𝑢𝑃
‖‖‖2𝐿2(Ω⧵Ω𝐶 )

= −𝐷 ∫
Ω⧵Ω𝐶

|||∇(𝑢𝑆 − 𝑢𝑃 )
|||2𝑑Ω (1.4)

+ ∫
𝜕Ω𝐶

(𝑢𝑠 − 𝑢𝑃 )(𝜙−𝐷∇𝑢𝑃 ⋅ 𝒏)𝑑Γ.

Assume moreover, that 𝑢𝑆 (⋅, 0) = 𝑢𝑃 (⋅, 0) a.e. on Ω ⧵ Ω𝐶 . Then, 𝑢𝑆 (𝒙, 𝑡) =
𝑢𝑃 (𝒙, 𝑡) a.e. in Ω ⧵ Ω̄𝐶 × [0, ∞) if and only if

𝜙(𝒙, 𝑡) −𝐷∇𝑢𝑃 (𝒙, 𝑡) ⋅ 𝒏 = 0, a.e. on 𝜕Ω𝐶 × [0,∞).

Proof. Equation (1.4) is obtained as part of the proof of sufficiency of 
the condition 𝐷∇𝑢𝑃 (𝒙, 𝑡) ⋅ 𝒏 = 𝜙(𝒙, 𝑡) (a.e.). To that end, we work on the 
weak forms (see Section 2) of the two boundary value problems. Note 
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that 𝑢𝑆 (𝒙, 𝑡) and 𝑢𝑃 (𝒙, 𝑡) are defined on different spatial domains. We 
subtract the two equations in their weak forms, which yields

∫
Ω⧵Ω̄𝐶

𝜕𝑢𝑆 (𝒙, 𝑡)
𝜕𝑡

𝑣1(𝒙, 𝑡) −
𝜕𝑢𝑃 (𝒙, 𝑡)

𝜕𝑡
𝑣2(𝒙, 𝑡)𝑑Ω− ∫

Ω𝐶

𝜕𝑢𝑃 (𝒙, 𝑡)
𝜕𝑡

𝑣2(𝒙, 𝑡)𝑑Ω

+ ∫
𝜕Ω𝐶

𝜙(𝒙, 𝑡)𝑣1(𝒙, 𝑡)𝑑Γ + ∫
Ω⧵Ω̄𝐶

𝐷∇𝑢𝑆 (𝒙, 𝑡)∇𝑣1(𝒙, 𝑡)

−𝐷∇𝑢𝑃 (𝒙, 𝑡)∇𝑣2(𝒙, 𝑡)𝑑Ω− ∫
Ω𝐶

𝐷∇𝑢𝑃 (𝒙, 𝑡)∇𝑣2(𝒙, 𝑡)𝑑Ω

=−∫
Ω

Φ(𝒙, 𝑡)𝛿(𝒙− 𝒙𝑐)𝑣2(𝒙, 𝑡)𝑑Ω.

After some simplifications (applying Gaussian Theorem [16] and 
boundary conditions) and substituting 

𝜕𝑢𝑃 (𝒙, 𝑡)
𝜕𝑡

= 𝐷Δ𝑢𝑃 + Φ(𝒙, 𝑡)𝛿(𝒙 −
𝒙𝑐) in Ω𝐶 , we obtain

∫
Ω⧵Ω̄𝐶

𝜕𝑢𝑆 (𝒙, 𝑡)
𝜕𝑡

𝑣1(𝒙, 𝑡) −
𝜕𝑢𝑃 (𝒙, 𝑡)

𝜕𝑡
𝑣2(𝒙, 𝑡)𝑑Ω

+𝐷 ∫
Ω⧵Ω̄𝐶

∇𝑢𝑆 (𝒙, 𝑡)∇𝑣1(𝒙, 𝑡) − ∇𝑢𝑃 (𝒙, 𝑡)∇𝑣2(𝒙, 𝑡)𝑑Ω

= ∫
𝜕Ω𝐶

𝐷∇𝑢𝑃 (𝒙, 𝑡) ⋅ 𝒏𝑣2(𝒙, 𝑡) −𝜙(𝒙, 𝑡)𝑣1(𝒙, 𝑡)𝑑Γ.

As 𝑣1(𝒙, 𝑡) and 𝑣2(𝒙, 𝑡) are test functions in Hilbert space, we select 
𝑣1(𝒙, 𝑡) = 𝑣2(𝒙, 𝑡) =𝑤(𝒙, 𝑡) ∶= 𝑢𝑆 (𝒙, 𝑡) − 𝑢𝑃 (𝒙, 𝑡) in Ω ⧵ Ω̄𝐶 . Then the above 
equation becomes

∫
Ω⧵Ω̄𝐶

𝜕𝑤(𝒙, 𝑡)
𝜕𝑡

𝑤(𝒙, 𝑡)𝑑Ω+ ∫
Ω⧵Ω̄𝐶

𝐷‖∇𝑤(𝒙, 𝑡)‖2𝑑Ω
= ∫
𝜕Ω𝐶

(𝐷∇𝑢𝑃 (𝒙, 𝑡) ⋅ 𝒏− 𝜙(𝒙, 𝑡))𝑤(𝒙, 𝑡)𝑑Γ

⇒
𝜕

𝜕𝑡 ∫
Ω⧵Ω̄𝐶

1
2
‖𝑤(𝒙, 𝑡)‖2𝑑Ω+ ∫

Ω⧵Ω̄𝐶

𝐷‖∇𝑤(𝒙, 𝑡)‖2𝑑Ω
= ∫
𝜕Ω𝐶

(𝐷∇𝑢𝑃 (𝒙, 𝑡) ⋅ 𝒏− 𝜙(𝒙, 𝑡))𝑤(𝒙, 𝑡)𝑑Γ.

(A.1)

The latter equation is precisely the desired expression (1.4). Integrating 
both sides with respect to time 𝑡 from 𝑡 = 0 to any definite time 𝑡 = 𝑇

and using that initial conditions are equal on Ω ⧵Ω𝐶 yields

1
2
‖𝑤(𝒙, 𝑡)‖2

𝐿2(Ω⧵Ω̄𝐶 )
+𝐷

𝑇

∫
0

‖∇𝑤(𝒙, 𝑡)‖2
𝐿2(Ω⧵Ω̄𝐶 )

𝑑𝑡

=

𝑇

∫
0

∫
𝜕Ω𝐶

(𝐷∇𝑢𝑃 (𝒙, 𝑡) ⋅ 𝒏− 𝜙(𝒙, 𝑡))𝑤(𝒙, 𝑡)𝑑Γ𝑑𝑡

(A.2)

From Equation (A.2), if 𝐷∇𝑢𝑃 (𝒙, 𝑡) ⋅ 𝒏 = 𝜙(𝒙, 𝑡) over the boundary of 
the spatial exclusion 𝜕Ω𝐶 , then the right-hand side becomes zero, 
subsequently, Equation (A.2) only holds when ‖𝑤(𝒙, 𝑡)‖2

𝐿2(Ω⧵Ω̄𝐶 )
= 0 =‖∇𝑤(𝒙, 𝑡)‖2

𝐿2(Ω⧵Ω̄𝐶 )
, which implies

𝑤(𝒙, 𝑡) = 𝑢𝑆 (𝒙, 𝑡) − 𝑢𝑃 (𝒙, 𝑡) = 0,

that is, the solutions to the two approaches are consistent in Ω ⧵ Ω̄𝐶 .

For the other statement, we consider the weak form of both ap-

proaches in (𝑊 𝐹𝑆 ) and (𝑊 𝐹𝑃 ) and let us take a test function 𝑣1(𝒙, 𝑡)
on Ω ⧵Ω𝐶 ×ℝ+. It can be extended to a test function on 𝑣2 on Ω ×ℝ+, 
which we shall denote by the same symbol if no confusion can arise. 
Then we obtain
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∫
Ω⧵Ω̄𝐶

𝜕𝑢𝑆 (𝒙, 𝑡)
𝜕𝑡

𝑣(𝒙, 𝑡)𝑑Ω+ ∫
Ω⧵Ω̄𝐶

𝐷∇𝑢𝑆 (𝒙, 𝑡)∇𝑣(𝒙, 𝑡)𝑑Ω

− ∫
𝜕Ω𝐶

𝜙(𝒙, 𝑡)𝑣(𝒙, 𝑡)𝑑Γ

= ∫
Ω⧵Ω̄𝐶

𝜕𝑢𝑃 (𝒙, 𝑡)
𝜕𝑡

𝑣(𝒙, 𝑡)𝑑Ω+ ∫
Ω𝐶

𝜕𝑢𝑃 (𝒙, 𝑡)
𝜕𝑡

𝑣(𝒙, 𝑡)𝑑Ω

+ ∫
Ω⧵Ω̄𝐶

𝐷∇𝑢𝑃 (𝒙, 𝑡)∇𝑣(𝒙, 𝑡)𝑑Ω+ ∫
Ω𝐶

𝐷∇𝑢𝑃 (𝒙, 𝑡)∇𝑣(𝒙, 𝑡)𝑑Ω

− ∫
Ω

Φ(𝒙, 𝑡)𝛿(𝒙− 𝒙𝑐)𝑣(𝒙, 𝑡)𝑑Ω.

First, we start with proving that, if 𝑢𝑆 (𝒙, 𝑡) = 𝑢𝑃 (𝒙, 𝑡), then 𝜙(𝒙, 𝑡) −
𝐷∇𝑢𝑃 (𝒙, 𝑡) ⋅ 𝒏 = 0, on 𝜕Ω𝐶 , where 𝒏 is the unit norm vector pointing 
towards the centre of Ω𝐶 . Hence, given that the solutions are equal, the 
above equation can be simplified and yields

− ∫
𝜕Ω𝐶

𝜙(𝒙, 𝑡)𝑣(𝒙, 𝑡)𝑑Γ + ∫
Ω

Φ(𝒙, 𝑡)𝛿(𝒙− 𝒙𝑐)𝑣(𝒙, 𝑡)𝑑Ω

− ∫
Ω𝐶

𝜕𝑢𝑃 (𝒙, 𝑡)
𝜕𝑡

𝑣(𝒙, 𝑡)𝑑Ω− ∫
Ω𝐶

𝐷∇𝑢𝑃 (𝒙, 𝑡)∇𝑣(𝒙, 𝑡)𝑑Ω= 0

Since Ω𝐶 is strictly embedded in Ω, the partial differential equation in 
(𝐵𝑉 𝑃𝑃 ) also holds for Ω𝐶 . Furthermore, as the cell centre 𝒙𝑐 is inside 
Ω𝐶 , it can be concluded that

∫
Ω

Φ(𝒙, 𝑡)𝛿(𝒙−𝒙𝑐)𝑣(𝒙, 𝑡)𝑑Ω= ∫
Ω𝐶

Φ(𝒙, 𝑡)𝛿(𝒙−𝒙𝑐)𝑣(𝒙, 𝑡)𝑑Ω=Φ(𝒙𝑐 , 𝑡)𝑣(𝒙𝑐 , 𝑡).

Then, the equation is rephrased as

− ∫
𝜕Ω𝐶

𝜙(𝒙, 𝑡)𝑣(𝒙, 𝑡)𝑑Γ + ∫
Ω

Φ(𝒙, 𝑡)𝛿(𝒙− 𝒙𝑐)𝑣(𝒙, 𝑡)𝑑Ω

− ∫
Ω𝐶

𝐷Δ𝑢𝑃 (𝒙, 𝑡)𝑣(𝒙, 𝑡)𝑑Ω+ ∫
Ω𝐶

Φ(𝒙, 𝑡)𝛿(𝒙, 𝑡)𝑣(𝒙, 𝑡)𝑑Ω

− ∫
Ω𝐶

𝐷∇𝑢𝑃 (𝒙, 𝑡)∇𝑣(𝒙, 𝑡)𝑑Ω= 0

⇒− ∫
𝜕Ω𝐶

𝜙(𝒙, 𝑡)𝑣(𝒙, 𝑡)𝑑Γ − ∫
Ω𝐶

𝐷∇ ⋅ (∇𝑢𝑃 (𝒙, 𝑡)𝑣(𝒙, 𝑡))

−𝐷∇𝑢𝑃 (𝒙, 𝑡)∇𝑣(𝒙, 𝑡)𝑑Ω− ∫
Ω𝐶

𝐷∇𝑢𝑃 (𝒙, 𝑡)∇𝑣(𝒙, 𝑡)𝑑Ω= 0

⇒ ∫
𝜕Ω𝐶

(𝜙(𝒙, 𝑡) −𝐷∇𝑢𝑃 (𝒙, 𝑡) ⋅ 𝒏)𝑣(𝒙, 𝑡) = 0.

The last step is done by the Gaussian Theorem [16] and 𝒏 is pointing 
towards the centre of Ω𝐶 . Note that 𝑣(𝒙, 𝑡) is a test function in 𝐻1 space, 
hence, by DuBois-Raymond lemma [13], we conclude that

𝜙(𝒙, 𝑡) −𝐷∇𝑢𝑃 (𝒙, 𝑡) ⋅ 𝒏 = 0, on 𝜕Ω𝐶 .

Hence, we proved that the solutions to both approaches are consis-

tent in the domain Ω ⧵ Ω̄𝐶 if and only if the flux over the boundary of 
the hole is the same, that is,

𝐷∇𝑢𝑃 (𝒙, 𝑡) = 𝜙(𝒙, 𝑡), over 𝜕Ω𝐶 and 𝑡 ⩾ 0. □

Appendix B. Properties of 𝝓𝒔𝒖𝒎

Recall that in the setting of a single Dirac source at 𝒙𝑐 with mass 
efflux rate Φ(𝑡) in the infinitely extended space ℝ2 and with initial con-
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Fig. B.1. The graphs of 𝜙1 , 𝜙2 and their summation, 𝜙𝑠𝑢𝑚. Here, we use 𝑡0 = 4.0, 
𝜙 = 1 such that Φ = 𝜋 and 𝑝0 is computed by Equation (3.7). Hence, 𝜙𝑠𝑢𝑚(0) ≈ 𝜙.

dition equal to 𝑝0𝑃𝐷
𝑡0

, the flux density over the boundary of the hole, 
𝜕Ω𝐶 , which is a circle of radius 𝑅 around 𝒙𝑐 , is given by

𝜙𝑠𝑢𝑚(𝑡) =
𝑝0𝑅

8𝜋𝐷(𝑡+ 𝑡0)2
exp

{
− 𝑅2

4𝐷(𝑡+ 𝑡0)

}
+ Φ

2𝜋𝑅
exp

{
− 𝑅2

4𝐷𝑡

}
, (B.1)

when Φ is assumed constant in time. In this section we shall summa-

rize various properties of 𝜙𝑠𝑢𝑚(𝑡). The graphs of 𝜙𝑠𝑢𝑚(𝑅, 𝑡) and that of 
𝜙1(𝑅, 𝑡), 𝜙2(𝑅, 𝑡), i.e. the first and second term in Equation (B.1), re-

spectively, are shown in Fig. B.1 for 𝜙(𝒙, 𝑡) = 1, Φ = 𝜋, 𝑡0 = 4.0 and 𝑝0
determined by Equation (3.7). That is, 𝜙𝑠𝑢𝑚(0) = 𝜙 = 1. It is immediately 
clear that

𝜙𝑠𝑢𝑚(0) =
𝑝0𝑅

8𝜋𝐷𝑡0
, lim

𝑡→∞
𝜙𝑠𝑢𝑚(𝑡) =

Φ
2𝜋𝑅

. (B.2)

Therefore, if one wants to abstain from any systematic deviation of flux 
– hence between the solutions for spatial exclusion and point source 
model in view of Proposition 1.1 – then it is necessary to require

Φ
2𝜋𝑅

= 𝜙, (B.3)

which condition we shall assume to be satisfied from now on.

Define

𝛼 ∶= 𝑅2

4𝐷
, 𝛽 ∶=

𝑝0
𝜋𝑅𝜙

, 𝛾 ∶= 𝛽𝜙,

such that

𝜙𝑠𝑢𝑚(𝑡) =
𝑝0
2𝜋𝑅

𝛼
1

(𝑡+ 𝑡0)2
𝑒−𝛼∕(𝑡+𝑡0) + 𝜙𝑒−𝛼∕𝑡 = 1

2𝛼𝛾
1

(𝑡+ 𝑡0)2
𝑒−𝛼∕(𝑡+𝑡0)

+ 𝜙𝑒−𝛼∕𝑡.

A straightforward computation yields

𝜙′
𝑠𝑢𝑚

(𝑡) = −𝛼𝛾
𝑡+ 𝑡0 −

1
2𝛼

(𝑡+ 𝑡0)4
𝑒−𝛼∕(𝑡+𝑡0) + 𝛼𝜙

1
𝑡2

𝑒−𝛼∕𝑡. (B.4)

Define further

𝑔(𝑡) ∶= 1
𝑡2

𝑒−𝛼∕𝑡 and ℎ(𝑡) ∶=
𝑡− 1

2𝛼

𝑡4
𝑒−𝛼∕𝑡.

Then,

𝜙′
𝑠𝑢𝑚

(𝑡∗) = 0 if and only if 𝑔(𝑡∗) = 𝛽 ℎ(𝑡∗ + 𝑡0). (B.5)

One readily computes that

𝑔′(𝑡) = − 1
𝑡4

𝑒−𝛼∕𝑡(2𝑡− 𝛼) and ℎ′(𝑡) = − 3
𝑡6

𝑒−𝛼∕𝑡(𝑡2 − 𝛼𝑡+ 1
6𝛼

2).
Then, 𝑔 is a strictly positive function on (0, ∞), with 𝑔(𝑡) → 0 as 𝑡 →∞
and 𝑡 ↓ 0. 𝑔 has a maximum value at 𝑡 = 1

2𝛼 and 𝑔′(0) = 0. Similarly, 
ℎ(0) = 0 and ℎ(𝑡) → 0 as 𝑡 → ∞. Moreover, ℎ(𝑡) < 0 for 0 < 𝑡 < 1

2𝛼 and 
ℎ(𝑡) > 0 for 𝑡 > 1

𝛼. ℎ′(0) = 0 and there exists 0 < 𝑡− < 𝑡+ that solve 𝑡2 −
2
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Fig. C.1. The cell locations on the domain corresponding to Section 3.3. For every case, we always have the cell, of which the centre is (−3.5, −4) and radius 1
2
. For 

this cell the measure 𝑐∗(𝑡) is computed in the comparison in Section 3.3. To emphasize the locations, we show the schematics of the spatial exclusion model with a 
coarse mesh.
𝛼𝑡 + 1
6𝛼

2 = 0. One has 𝑡± = 𝛼( 12 ± 1
3

√
3). Clearly, ℎ′(𝑡) < 0 for 𝑡 > 𝑡+, so 

ℎ has a positive maximum value at 𝑡+ >
1
2𝛼 and a negative minimum 

value at 𝑡− <
1
2𝛼.

We obtain:

Lemma B.1. For 𝑡0 > 0, 𝜙𝑠𝑢𝑚 has either zero, one, two or three critical 
points, where – generically – 𝜙𝑠𝑢𝑚 changes sign. 𝜙𝑠𝑢𝑚(𝑡) < 𝜙 for 𝑡 sufficiently 
large. Case-by-case:

(i) If there are no critical points, then 𝜙𝑠𝑢𝑚 has a minimum at 𝑡 = 0. Nec-

essarily, 𝜙𝑠𝑢𝑚(0) < 0 and 𝜙′
𝑠𝑢𝑚

(0) > 0.

(ii) If there is one critical point, then 𝜙𝑠𝑢𝑚 has a minimum at this point 𝑡 =
𝑡∗ > 0. Necessarily, 𝜙𝑠𝑢𝑚(𝑡∗) < 𝜙 and 𝜙′

𝑠𝑢𝑚
(0) < 0. 𝜙𝑠𝑢𝑚 has a maximum 

at the boundary 𝑡 = 0.

(iii) If there are two critical points, then 𝜙𝑠𝑢𝑚 has a minimum at some 𝑡∗ > 0
with 𝜙(𝑡∗) < 𝜙 and a maximum at 0 < 𝑡∗ < 𝑡∗. Necessarily, 𝜙′

𝑠𝑢𝑚
(0) > 0

and 𝜙𝑠𝑢𝑚 has a minimum at the boundary point 𝑡 = 0.

(iv) If there are three critical points, then 𝜙𝑠𝑢𝑚 has a minimum at some 
𝑡∗,2 > 0 with 𝜙(𝑡∗,2) < 𝜙 and at 0 < 𝑡∗,1 < 𝑡∗,2. Moreover, there is a 
maximum at 𝑡∗ with 𝑡∗,1 < 𝑡∗ < 𝑡2,∗. Necessarily, 𝜙′

𝑠𝑢𝑚
(0) < 0 and 𝜙𝑠𝑢𝑚

has a maximum at the boundary point 𝑡 = 0.

Proof. The claim on the number of critical points follows from the 
qualitative properties of 𝑔(𝑡) and ℎ(𝑡) described above and the critical 
506
point characterisation in Equation (B.5). The intersection of 𝑔(𝑡) and 
𝛽ℎ(𝑡 +𝑡0) are transversal, generically. Therefore, 𝜙′

𝑠𝑢𝑚
(𝑡) will change sign. 

One has

𝜙′
𝑠𝑢𝑚

(𝑡) = −𝛼𝛾ℎ(𝑡+ 𝑡0) + 𝛼𝜙𝑔(𝑡) = 𝛼𝜙𝑔(𝑡)
[
1 − 𝛽

ℎ(𝑡+ 𝑡0)
𝑔(𝑡)

]
.

Moreover,

ℎ(𝑡+ 𝑡0)
𝑔(𝑡)

=
𝑡2(𝑡+ 𝑡0 −

1
2𝛼)

(𝑡+ 𝑡0)4
exp

{
𝛼𝑡0

𝑡(𝑡+ 𝑡0)

}
→ 0 as 𝑡→∞.

Hence, 𝜙′
𝑠𝑢𝑚

(𝑡) > 0 for 𝑡 sufficiently large. Since 𝜙𝑠𝑢𝑚(𝑡) → 𝜙 as 𝑡 → ∞, 
one must have 𝜙𝑠𝑢𝑚(𝑡) < 𝜙 for 𝑡 large. In case (i) the boundary point must 
then be a minimum with 𝜙𝑠𝑢𝑚(0) < 𝜙. In the other cases there must exist 
a minimum at a largest 𝑡-value 𝑡∗ or 𝑡∗,2 > 0 with 𝜙𝑠𝑢𝑚(𝑡∗,2) < 𝜙. □

Note that Fig. B.1 shows an example of case (iv). It can be seen by 
careful inspection of the graph that indeed, 𝜙𝑠𝑢𝑚(𝑡) < 𝜙 = 1 for 𝑡 suffi-

ciently large.

Appendix C. Locations of multiple cells in Section 3.3

In Section 3.3, the impact of the influence from other cells was dis-

cussed. Fig. C.1 show the locations of the cells corresponding to the 
cases in Fig. 3.2. Furthermore, we attach a video (Supplementary Video 
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S2) of ten cells as supplementary material, which shows the interac-

tion between cells in two approaches, respectively. In Supplementary 
Video S2, Gaussian-shaped initial condition is used for the intracellular 
environment.

Appendix D. Supplementary material

To have a better virtual representation of the two approaches, we 
attach two videos as supplementary material for this manuscript.

Supplementary material related to this article can be found online 
at https://doi .org /10 .1016 /j .camwa .2023 .10 .034.
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