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Summary

Deep neural networks have demonstrated impressive performance in various domains, often achieving
human-level or super-human capabilities. However, their success heavily relies on the availability of
extensive training data, which becomes problematic in domains where data collection is challenging,
costly, or privacy-sensitive. Enhancing the data efficiency of deep neural networks and overcoming
these limitations is of utmost importance. By doing so, we can unlock the full potential of these
networks, enabling them to learn and adapt effectively even when presented with limited data.
This improvement also paves the way for their deployment in resource-constrained environments,
promoting the democratization of deep learning by making it more accessible and applicable across
various domains.

One of the potential causes of their inefficient learning ability is the fact that deep neural networks
are often trained from scratch in an end-to-end way. Deep meta-learning has emerged as a rapidly
growing field to improve the learning efficiency of deep neural networks by endowing them with
the ability to reuse prior experiences and knowledge. This dissertation focuses specifically on the
application of deep meta-learning in few-shot learning scenarios, where networks need to rapidly
adapt to new tasks with only a limited number of examples.

Despite recent progress in few-shot learning, the underlying principles that drive the success of
meta-learning algorithms are still poorly understood, impeding algorithm development and design
choices. In this dissertation, we take steps to bridge this knowledge gap by gaining a comprehensive
understanding of the fundamental principles of popular deep meta-learning algorithms, enabling more
informed algorithm development, and establishing robust theoretical foundations. Additionally, this
work explores the integration of theoretical principles into practical algorithm design to enhance the
capabilities of deep meta-learning approaches. By addressing these research gaps, this dissertation aims
to advance the field, paving the way for more effective and principled meta-learning techniques that
offer broader applicability and superior performance. Below is a brief outline of the dissertation.

Chapter 2 serves as an extensive introduction and overview, providing readers with a solid theoretical
foundation for understanding deep meta-learning algorithms. We delve into key methods and
categorize them into three main categories: i) metric-based techniques, ii) model-based techniques,
and iii) optimization-based techniques. By exploring these approaches, we aim to provide a holistic
understanding of the diverse methodologies employed in deep meta-learning. Furthermore, we
identify and discuss the primary open challenges in the field. These challenges include the need for
performance evaluations on heterogeneous benchmarks to ensure the robustness and generalizability
of meta-learning algorithms.

In Chapter 3, we investigate an empirically observed performance gap between two popular and
highly related deep meta-learning algorithms: the meta-learner LSTM and MAML. We found
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this performance gap surprising based on our work in Chapter 2 as the meta-learner LSTM is
more expressive than MAML and could, in theory, emulate the behavior of MAML. To gain a
deeper understanding of this performance gap, we introduce a novel algorithm called TURTLE.
The design and analysis of TURTLE reveal that the notable performance gap can be attributed to
the influence of second-order gradients. We find that second-order gradients can also significantly
increase the accuracy of the meta-learner LSTM with slight modifications of the inputs provided to
the LSTM.

A related method to deep meta-learning is the transfer learning method commonly known as
pre-training and fine-tuning. In Chapter 4, we investigate the observed performance differences
between finetuning, MAML, and another meta-learning technique called Reptile. We present evidence
indicating that MAML and Reptile exhibit a tendency to specialize in rapidly adapting to low-data
regimes characterized by similar data distributions as the ones used during training. Our findings
highlight the importance of both the output layer and the presence of noisy training conditions
induced by data scarcity in the few-shot learning setting. These factors contribute significantly
to enabling the specialization observed in MAML and Reptile. Additionally, we demonstrate that
the pre-trained features obtained through the finetuning baseline exhibit greater diversity and
discriminative power compared to those learned by MAML and Reptile. This lack of diversity and
distribution specialization in MAML and Reptile may hinder their ability to generalize effectively
to target tasks that differ significantly from the observed training tasks. In contrast, finetuning
can leverage the diverse set of learned features to adapt more successfully to such distant target
tasks.

In Chapter 5, we revisit a classical LSTM approach to deep meta-learning, where the idea is to feed
a training dataset into an LSTM and to condition the predictions of query inputs on the resulting
hidden state. This approach is known to be maximally expressive, that is, the LSTM could learn to
implement any learning algorithm. Despite the promising results of this approach on small problems
and on reinforcement learning problems, the approach has received little attention in the supervised
few-shot learning setting. We show that LSTM outperforms the popular meta-learning technique
MAML on a simple few-shot sine wave regression benchmark, but that LSTM, expectedly, falls
short on more complex few-shot image classification benchmarks. We identify two potential factors
contributing to the observed limitations and propose a novel method called Outer Product LSTM
(OP-LSTM) to address these issues effectively. OP-LSTM surpasses the performance of plain LSTM
and exhibits substantial performance gains. While these results alone do not set a new state-of-the-art,
the advances of OP-LSTM are orthogonal to other advances in the field of meta-learning, yielding
new insights in how LSTM works in image classification, allowing for a whole range of new research
directions.

In Chapter 6, we investigate whether the integration of the fact that more expressive models are more
likely to overfit can improve the few-shot learning performance by meta-learning which parameters
to adjust. To investigate this, we propose Subspace Adaptation Prior (SAP), a novel gradient-based
meta-learning algorithm that jointly learns good initialization parameters (prior knowledge) and
layer-wise parameter subspaces in the form of operation subsets that should be adaptable. In
this way, SAP can learn which operation subsets to adjust with gradient descent based on the
underlying task distribution, simultaneously decreasing the risk of overfitting when learning new
tasks. We demonstrate that this ability is helpful as SAP yields superior or competitive performance
in few-shot image classification settings (gains between 0.1% and 3.9% in accuracy). Analysis of the
learned subspaces demonstrates that low-dimensional operations often yield high activation strengths,
indicating that they may be important for achieving good few-shot learning performance.
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As such, in this dissertation, we have analyzed and performed empirical validation of various
meta-learning systems, including MAML, Reptile, finetuning and various LSTM-based approaches.
Additionally, we have explored the integration of theoretical principles for practical algorithm
development. In short, we have made a small step toward understanding deep meta-learning
algorithms, paving the way for more robust and principled meta-learning techniques with broader
applicability and superior performance.




