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Appendix A

Hyperparameter details for
TURTLE

This is the appendix for Chapter 3, where we describe additional hyperparameter details.

A.1 Used hyperparameters
For all techniques mentioned below, we performed meta-validation after every 2,500 training tasks.
The best-resulting configuration was evaluated at meta-test time.

For sine wave regression, we use the same base-learner network as Finn et al. (2017), i.e., a fully-
connected feed-forward network consisting of a single input node followed by two hidden layers with
40 ReLU nodes each and a final single-node output layer.

For few-shot image classification problems, we use the same base-learner network as used by Snell
et al. (2017) and Chen et al. (2019). This network is a stack of four identical convolutional blocks.
Each block consists of 64 convolutions of size 3× 3, batch normalization, a ReLU nonlinearity, and a
2D max-pooling layer with a kernel size of 2. The resulting embeddings of the 84 × 84 × 3 input
images are flattened and fed into a dense layer with N nodes (one for every class in a task). The
base-learner is trained to minimize the cross-entropy loss on the query set, conditioned on the support
set.

Transfer learning baselines Note that these models (TrainFromScratch, finetuning, baseline++)
pre-trained on minibatches of size 16 sampled from the joint data obtained by merging all meta-
training tasks. At test time, they were trained for 100 steps on mini-batches of size 4 sampled from
new tasks following Chen et al. (2019). Every 25 steps, we evaluated their performance on the entire
support set to select the best configuration to test on the query set.

LSTM meta-learner For selecting the hyperparameters of the LSTM meta-learner1, we followed
Ravi and Larochelle (2017). That is, we use a 2-layer architecture, and Adam as meta-optimizer with
a learning rate of 0.001. The batch size was set equal to the size of the task. Meta-gradients were

1Used code: https://github.com/markdtw/meta-learning-lstm-pytorch.
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clipped to have a norm of at most 0.25, following. The meta-network receives four inputs obtained
by preprocessing the loss and gradients using in similar fashion to Andrychowicz et al. (2016) and
Ravi and Larochelle (2017). On miniImageNet and CUB, the LSTM optimizer is set to perform 12
updates per task when the number of examples per class is k = 1 and 5 updates when k = 5.

MAML Again, we follow Finn et al. (2017) for selecting the hyperparameters, except for the
meta-batch size on sine wave regression as we found it not to help performance. This means that the
inner learning rate was set to 0.01 and the outer learning rate to 0.001, with Adam as meta-optimizer.
These settings hold for both sine wave regression and image classification. When T > 1, we use
gradient value clipping with a threshold of 10. On image classification, MAML was set to optimize
the initial parameters based on T = 5 update steps, but an additional 5 steps were made afterwards
to further increase the performance. Moreover, we used a meta-batch size of 4 and 2 for 1- and 5-shot
image classification respectively.

TURTLE We performed many experiments with the hyperparameters of TURTLE on sine wave
regression. Here, we only report the settings that were found to give the best performance, which
were also used on the image classification problems. That is, the meta-network consists of 5 hidden
layers of 20 nodes each. Every hidden node is followed by a ReLU nonlinearity. The input consists
of a raw gradient, a historical real-valued number indicating the moving average of the previous
input gradients with a (with a beta decay of 0.9), and a time step integer t ∈ {0, ..., T − 1}. The
output layer consists of a single node which corresponds to the proposed weight update. For training,
we used meta-batches of size 2. Additionally, TURTLE maintains a separate learning rate for all
weights in the base-learner network. Lastly, TURTLE uses second-order gradients and Adam as
meta-optimizer with a learning rate of 0.001.



Appendix B

Additional experimental results for
OP-LSTM

This is the appendix for Chapter 5, where we present additional experimental results.

B.1 Sine wave regression: additional results

We also performed an experiment to investigate the effect of the input representation on the
performance of the plain LSTM approach (proposed by Younger et al. (2001); Hochreiter et al.
(2001)) on the 5-shot sine wave regression performance. The experimental setting follows the setup
described in Section 5.5.1. For every input format, we performed hyperparameter tuning with the
same randomly sampled hyperparameter configurations using Table B.2. The performances of the
best validated models per input format are displayed in Table B.1. The best performance is obtained
by feeding the current input, previous target, and the previous prediction into the LSTM, although
the differences with other inputs are small.

Table B.1: The influence of different input information on the performance of the LSTM on 5-shot
sine wave regression. 95% confidnce intervals are displayed as ±x.

Input xt Prev target yt−1 Prev pred ŷt−1 Prev error et−1 5-shot MSE

✓ ✓ 0.04 ± 0.002
✓ ✓ ✓ 0.03 ± 0.002
✓ ✓ ✓ 0.05 ± 0.004
✓ ✓ ✓ ✓ 0.06 ± 0.011
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B.2 Hyperparameter tuning

B.2.1 Permutation invariance experiments

For the permutation invariance experiments on few-shot sine wave regression, we sampled 20 random
configurations for the plain LSTM from the distributions displayed in Table B.2 and validated their
performance on 5-shot (k = 5) sine-wave regression. We selected the best configuration and evaluated
it on the meta-test tasks,

Table B.2: The used ranges and distributions for tuning the hyperparameters with random search for
sine wave regression.

Hyperparameter Range

Number of layers Uniform({1,2,3,4})
Hidden dimensions Uniform({1,3,8,20,40})
Meta-batch size Uniform({1,2,3,4})
Learning rate LogUniform(1e-5, 4e-2)
Unroll steps Uniform({1,2,. . . ,14})

For Omniglot, we performed random search with a function evaluation budget of 100, with a fixed
learning rate of 0.001. The architecture of the plain LSTM with sequential data processing was sampled
uniformly at random from {1024-512-256-128-64,2048-1024-512-128-64,2048-1024-512-256-128,1024-
600-400-200-92,1024-512-512-256-128-64,1024-512-512-256-256-128-64, 612-400-256-128-64,1024-1024-
1024-512-256-128-64,2048-1024-512-180-100,1024-580-280-160-80,256-128-64, 512-256-128-64,128-64-
64-64,256-128-64,512-256-64,256-128-100,128-64-64-64-64,64-64-64-64,50-50}, the number of passes
over the support data T was sampled uniformly at random from {1, 2, . . . , 10}, and the meta-batch
size from {1, 2, . . . , 32}. We used the best hyperparameter configuration of the sequential plain LSTM
for the plain LSTM with batching to compare the differences in performance.

B.2.2 Omniglot

For the plain LSTM approach, we used the best hyperparameter configuration found for the
permutation invariance experiments.

For OP-LSTM, we performed a grid search, varying the meta-batch size within {1,4,8,16,32}, the
architecture of the coordinate-wise LSTM within {20-1, 10-10-1, 40-5, 40-20-1, 20-20-20-5} (note
that the last element is always 1 because it operates per coordinate), and the number of passes over
the support set within {1,3,5,10}.

Detailed learning curves for the plain LSTM on Omniglot Here, we show the validation
learning curves of the sequential LSTM and the LSTM which uses batching to complement the results
displayed in Section 5.5.1. Figure B.1 displays the validation learning curves of the LSTM with batch
data ingestion (top row) and the LSTM with sequential data processing (bottom row). As we can
see, batching increases the stability of the training process and makes the LSTM less sensitive to
the random initialization, as every run succeeds to reach convergence in contrast to the sequential
LSTM.
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Figure B.1: The mean validation accuracy of the LSTM over time on Omniglot for every of the
three different runs, for different numbers of examples per class k. Top row: LSTM with batching
(mean-pooling). Bottom row: LSTM with sequential data ingestion. As we can see, batching
improves the stability of the training process.

B.2.3 miniImageNet and CUB

For plain LSTM, we used random search with a budget of 130 function evaluations, the meta-batch
size was sampled uniformly between 1 and 48, the number of layers between 1 and 4, the hidden size
log-uniformly between 32 and 3200, and the number of passes T over the support dataset uniformly
between 2 and 9.

For OP-LSTM, we performed the same grid search as for Omniglot. We use the best found
hyperparameters for both methods on miniImageNet also on CUB.

We also measured the running times of the techniques on miniImageNet and CUB, as shown in
Table B.3. We note that the running times may be affected by the server’s load and thus can only
give a rough estimation of the required amount of compute time. As we can see, the plain LSTM is
the slowest method, despite achieving random performance on miniImageNet. OP-LSTM, in contrast,
is more efficient.

B.3 Robustness to random seeds

Here, we investigate the robustness of the investigated methods to the random seed for the few-shot
image classification experiments performed in Section 5.5.3. We perform th Instead of computing
the confidence intervals over the performances of all test tasks for all seeds, we now compute the
confidence interval over the mean test performance per run. As we perform three runs per method,
we compute the confidence intervals over three observations per method. Note that the mean
performance does not change as taking the mean of the three means will be equivalent (as the means
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Table B.3: Mean running times on 5-way miniImageNet and CUB classification over 3 runs. All
methods used a Conv-4 backbone as a feature extractor. “xhymin” means x hours and y minutes.
The “-" indicates that the method did not finish within 2 days of running time.

miniImageNet CUB

Technique params 1-shot 5-shot 1-shot 5-shot

MAML 121 093 13h9min 12h1min 26h57min 17h39min
Warp-MAML 231 877 12h25min 12h30min 13h6min 12h48min
SAP 412 852 5h40min 11h14min 7h11min 11h17min
ProtoNet 121 093 4h14min 5h6min 31h18min 38h46min

LSTM 55 879 349 40h14min 46h47min - -
OP-LSTM (ours) 141 187 4h50min 5h31min 31h58min 40h8min

are based on an equal number of task performances).

B.4 Within-domain

Here, we present additional results for the conducted within-domain image classification experi-
ments.

Omniglot The mean test performance and confidence intervals over the random seeds for Omniglot
image classification are shown in Table B.4. As we can see, the confidence intervals are higher than
in previous experiments because the intervals are computed over 3 observations instead of 1800
individual test task performances (600 per run). As we can see, the LSTM is unstable, supporting the
hypothesis that the optimization problem is difficult. OP-LSTM, on the other hand, is less sensitive
to the chosen random seed and has a stability that is comparable to that of MAML.

Table B.4: The mean test accuracy (%) on 5-way Omniglot classification across 3 different runs. The
95% confidence intervals, computed over the mean performances of the 3 different random seeds, are
displayed as ±x. The plain LSTM is outperformed by MAML. All methods (except LSTM) used a
fully-connected feed-forward classifier.

Technique parameters 1-shot 5-shot

MAML 247 621 84.1 ± 3.10 93.5 ± 0.70
ProtoNet 247 621 83.6 ± 0.52 93.4 ± 1.48

LSTM 13 530 097 72.6 ± 3.87 84.8 ± 6.12
OP-LSTM (ours) 249 167 84.3 ± 3.18 91.8 ± 0.70

MiniImageNet and CUB The mean test performance and confidence intervals over the random
seeds for miniImageNet and CUB image classification are shown in Table B.5. In contrast to what we
observed on Omniglot, the LSTM is now more stable. This is caused by the fact that it consistently
fails to learn a learning algorithm that performs better than random guessing, and thus performs
stably at chance level.
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Table B.5: Meta-test accuracy scores on 5-way miniImageNet and CUB classification over 3 runs.
The 95% confidence intervals, computed over the mean performances of the 3 different random seeds,
are displayed as ± x. All methods used a Conv-4 backbone as a feature extractor. The “-" indicates
that the method did not finish within 2 days of running time.

miniImageNet CUB

Technique params 1-shot 5-shot 1-shot 5-shot

MAML 121 093 48.6 ± 4.00 63.0 ± 0.33 57.5 ± 0.83 74.8 ± 2.10
Warp-MAML 231 877 50.4 ± 2.58 65.6 ± 0.98 59.6 ± 2.15 74.2 ± 2.51
SAP 412 852 53.0 ± 3.71 67.6 ± 0.47 63.5 ± 6.24 73.9 ± 1.57
ProtoNet 121 093 50.1 ± 4.06 65.4 ± 2.84 50.9 ± 2.35 63.7 ± 0.47

LSTM 55 879 349 20.2 ± 0.60 19.4 ± 0.47 - -
OP-LSTM (ours) 141 187 51.9 ± 2.52 67.9 ± 2.40 60.2 ± 1.58 73.1 ± 1.57

Table B.6: Average cross-domain meta-test accuracy scores over 5 runs using a Conv-4 backbone.
Techniques trained on tasks from one data set and were evaluated on tasks from another data set.
The 95% confidence intervals, computed over the mean performances of the 3 different random seeds,
are displayed as ± x. The “-" indicates that the method did not finish within 2 days of running time.

MIN → CUB CUB → MIN

1-shot 5-shot 1-shot 5-shot

MAML 37.9 ± 2.22 53.6 ± 0.67 31.1 ± 1.19 45.8 ± 2.06
Warp-MAML 42.0 ± 0.85 56.9 ± 4.16 31.1 ± 1.59 41.3 ± 1.37
SAP 41.5 ± 3.72 58.0 ± 1.79 33.3 ± 2.33 47.1 ± 1.28
ProtoNet 39.7 ± 4.11 56.0 ± 4.89 31.7 ± 0.20 45.3 ± 1.84

LSTM 20.1 ± 0.77 20.0 ± 0.40 - -
OP-LSTM (ours) 42.3 ± 1.90 58.5 ± 1.49 35.8 ± 2.98 49.0 ± 0.80

B.5 Cross-domain
Lastly, we compute the confidence intervals in cross-domain settings and display the results in
Table B.6. Again, the LSTM is a stable random guesser. The other algorithms are less stable, but
do yield a better performance. We cannot observe a general pattern of stability in the sense that one
algorithm is consistently more stable than others.





Appendix C

Additional experimental results for
SAP

In this appendix for Chapter 6, we show additional experimental results on few-shot image classifica-
tion.

C.1 Validation of re-implementation

1-shot 5-shot

Reported Local Repr Reported Local repr

MAML 48.7 ± 1.8 48.0 ± 0.8 63.2 ± 0.9 64.4 ± 0.4
T-Net 50.9 ± 1.8 48.9 ± 0.8 - 65.3 ± 0.4
MT-Net 51.7 ± 1.8 48.5 ± 0.8 - 63.0 ± 0.4
Warp-MAML∗ - 49.5 ± 0.8 - 63.9 ± 0.4

SAP (ours) - 51.6 ± 0.8 - 65.9 ± 0.4

Table C.1: Mean meta-test accuracy scores on 5-way miniImageNet classification over 5 runs using a
Conv-4 backbone with 32 channels. The 95% confidence intervals are displayed as ± x. ∗ Flennerhag
et al. (2020) only reported the performance of Warp-MAML with 128 feature maps per convolutional
block instead of 32, as displayed in the table.

We re-implemented the baselines to ensure a fair comparison in the used setting, and because the code
of Warp-MAML has not been made available for other researchers. To verify our re-implementations
of the baselines (T-Net, MT-Net, and Warp-MAML), we compare the reported performances to the
ones that we obtain. The results of the image classification experiments are displayed in Table C.1. As
we can see, there are minor differences between the reported performances and our local reproduction
of their results. Also with the original code of T-Net and MT-Net, we were unable to reproduce
their results. Other people have encountered similar issues reproducing the reported numbers of
meta-learning techniques, including MAML, T-Net, and MT-Net.1

1There is an open issue on the GitHub repository of MT-Net about the inability to reproduce their reported results
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C.2 Cross-domain few-shot image classification
In Table C.2, we show the cross-domain few-shot learning classification results when using 64 channels
with the Conv-4 backbone. Also in this case, SAP outperforms other tested baselines. We also
note that the performance of SAP is improved when using 64 channels compared with 32 (see
Section 6.5.5).

MIN → CUB Tiered → CUB

1-shot 5-shot 1-shot 5-shot

MAML 37.1 ± 0.3 53.7 ± 0.3 38.8 ± 0.3 56.8 ± 0.3
T-Net 38.3 ± 0.3 OOM 39.9 ± 0.3 OOM
MT-Net 37.3 ± 0.3 OOM 39.1 ± 0.3 OOM
Warp-MAML 40.7 ± 0.3 56.2 ± 0.3 42.5 ± 0.3 58.9 ± 0.3

SAP (ours) 41.6 ± 0.3 57.8 ± 0.3 43.3 ± 0.3 64.3 ± 0.3

Table C.2: Average cross-domain meta-test accuracy scores over 5 runs using a 64-channel Conv-4
backbone. Techniques trained on tasks from one data set were evaluated on tasks from another data
set. The 95% confidence intervals are displayed as ± x.

C.3 The effect of hard pruning
Table C.3 displays the effect of hard pruning when using 64 channels instead of 32. As we can see,
hard pruning is slightly beneficial, but again, not significantly.

miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

No pruning 52.8 ± 0.8 67.4 ± 0.4 54.5 ± 0.8 71.3 ± 0.4

Top-1 52.8 ± 0.8 67.6 ± 0.4 55.1 ± 0.8 72.7 ± 0.4
Top-2 52.9 ± 0.8 67.6 ± 0.4 54.1 ± 0.8 72.7 ± 0.4
Top-3 52.6 ± 0.8 67.4 ± 0.4 55.0 ± 0.8 72.4 ± 0.4

Table C.3: Mean meta-test accuracy scores on 5-way miniImageNet and tieredImageNet classification
with 95% confidence intervals computed over 5 different runs. We used a Conv-4 backbone with 64
channels for these results.

C.4 The learned subspaces for image classification
Figure C.1 displays the learned activation strengths of SAP on 5-way 1-shot miniImageNet using
Conv-4 with 64 channels. Similar patterns are observed for the 32-channel case.

on miniImageNet. See https://github.com/yoonholee/MT-net/issues/5. Other researchers such as Antoniou et al.
(2019) have also reported issues reproducing MAML.

https://github.com/yoonholee/MT-net/issues/5
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Figure C.1: The importance of the different subspaces/operations in SAP on 5-way 1-shot miniIma-
geNet using Conv-4 with 64 channels. The results are averaged across 5 runs with different random
seeds and the standard deviations are shown as ±x. NA entries indicate that these operations were
not in the candidate pool for that layer. Simple scalar shift and vector shift operations obtain the
highest activation strengths throughout the convolutional network.




