
Understanding deep meta-learning
Huisman, M.

Citation
Huisman, M. (2024, January 17). Understanding deep meta-learning. SIKS Dissertation
Series. Retrieved from https://hdl.handle.net/1887/3704815
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3704815
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3704815


Chapter 6

Subspace Adaptation Prior for
Few-Shot Learning

Chapter overview

Gradient-based meta-learning techniques aim to distill useful prior knowledge from a set
of training tasks such that new tasks can be learned more efficiently with gradient descent.
While these methods have achieved successes in various scenarios, they commonly adapt all
parameters of trainable layers when learning new tasks. This neglects potentially more efficient
learning strategies for a given task distribution and may be susceptible to overfitting, especially
in few-shot learning where tasks must be learned from a limited number of examples. To
address these issues, we propose Subspace Adaptation Prior (SAP)1, a novel gradient-based
meta-learning algorithm that jointly learns good initialization parameters (prior knowledge) and
layer-wise parameter subspaces in the form of operation subsets that should be adaptable. In
this way, SAP can learn which operation subsets to adjust with gradient descent based on the
underlying task distribution, simultaneously decreasing the risk of overfitting when learning
new tasks. We demonstrate that this ability is helpful as SAP yields superior or competitive
performance in few-shot image classification settings (gains between 0.1% and 3.9% in accuracy).
Analysis of the learned subspaces demonstrates that low-dimensional operations often yield high
activation strengths, indicating that they may be important for achieving good few-shot learning
performance. For reproducibility purposes, we publish all our research code publicly.

6.1 Introduction

In this chapter, we revisit the popular deep meta-learning technique model-agnostic meta-learning
(MAML) (Finn et al., 2017) that learns a prior in the form of the initialization parameters of the
neural network. Learning a new task is then done by performing gradient descent starting from this
meta-learned initialization. This approach, which is also widely used by techniques that are based
on MAML (Lee and Choi, 2018; Flennerhag et al., 2020; Park and Oliva, 2019b; Yoon et al., 2018;

1This chapter is based on the following research article: Huisman, M., Plaat, A., & van Rijn, J. N. (2023).
Subspace Adaptation Prior for Few-Shot Learning. Machine Learning. Springer.

127



128 6. SUBSPACE ADAPTATION PRIOR FOR FEW-SHOT LEARNING

Nichol et al., 2018), updates all of the parameters of every trainable layer with gradient descent
when learning new tasks, which may be suboptimal for a given task distribution and may lead to
overfitting since there are more degrees of freedom to fit the noise in the data. Especially in few-shot
learning, where tasks are noisy due to the fact that only limited examples are available, these issues
could hinder performance.

To address these issues and investigate the research question of whether the few-shot learning
performance of deep neural networks can be improved by meta-learning which subsets of parameters
to adjust, we propose a new gradient-based meta-learning technique called Subspace Adaptation Prior
(SAP) that jointly learns good initialization parameters as well as layer-wise subspaces in which
to perform gradient descent when learning new tasks. More specifically, SAP is given access to a
candidate pool of operations for every layer that transforms the hidden representations, and it learns
which of these subsets to adjust in order to learn new tasks quickly, similar to DARTS (Liu et al.,
2019). Here, every operation corresponds to a parameter subspace. Note that this method serves as
a form of regularization and allows SAP to find more efficient adaptation strategies than adjusting
all parameters of trainable layers. In addition, it utilizes implicit gradient modulation to warp (Lee
and Choi, 2018; Flennerhag et al., 2020) these subspaces per layer such that gradient descent can
quickly adapt to new tasks, if they share a common structure.

We empirically demonstrate that SAP is able to find efficient parameter subspaces, or operation
subsets, that match the underlying task structure in simple synthetic settings and yield good few-shot
learning. Moreover, SAP outperforms gradient-based meta-learning techniques—that do not have
the ability to learn in which structured subspaces to perform gradient descent—on few-shot sine
wave regression and performs on-par or favorably in various few-shot image classification settings. In
short, the contributions of this chapter are the following:

• We propose SAP, a new meta-learning algorithm for few-shot learning that jointly learns good
initialization parameters and parameter subspaces in the form of operation subsets in which to
perform gradient descent.

• We demonstrate the advantage of learning parameter subspaces as SAP outperforms existing
methods by at least 18% on few-shot sine wave regression and yields competitive or superior
performance on popular few-shot image classification benchmarks (improvements in classification
accuracy scores range from 0.1% to 3.9%).

• We investigate the learned layer-wise parameter subspaces on synthetic few-shot sine wave
regression and image classification problems and find that small subsets of adjustable parameters
(simple parameter subspaces), including feature transformations such as element-wise scaling
and shifting are assigned large weights, suggesting that they play an important role in achieving
good performance with SAP.

• For reproducibility and verifyability purposes, we make all our research code publicly available.2

6.2 Related work

We review related work on optimization-based meta-learning, neural architecture search and gradient
modulation.

2See: https://github.com/mikehuisman/subspace-adaptation-prior

https://github.com/mikehuisman/subspace-adaptation-prior


6.2. RELATED WORK 129

Optimization-based meta-learning Our proposed technique belongs to the category of optimization-
based meta-learning (Vinyals, 2017) (also see Chapter 2), which employs optimization methods to
learn new tasks (Yoon et al., 2018; Bertinetto et al., 2019; Lee et al., 2019). These methods aim to
meta-learn good settings for various hyperparameters, such as the initialization parameters, such
that new tasks can be learned quickly using optimization methods. These methods vary from regular
stochastic gradient descent, as used in MAML (Finn et al., 2017) and Reptile (Nichol et al., 2018), to
meta-learned procedures where a network updates the weights of a base-learner (Ravi and Larochelle,
2017; Andrychowicz et al., 2016; Li et al., 2017; Rusu et al., 2019; Li and Malik, 2018) (also see
Chapter 3). SAP aims to learn good initialization parameters such that new tasks can be learned
quickly with regular gradient descent, similar to MAML.

This is a form of transfer learning (Taylor and Stone, 2009; Pan and Yang, 2009) where we transfer
knowledge—in this case the initialization parameters—obtained on a set of source tasks to a new
target task that we are confronted with. The idea is also related to the idea of domain adaptation
(DA) (Daumé III, 2009; Farahani et al., 2021), although in DA it is often assumed that we have a
single task but two different data distributions (a source distribution and a target distribution). Note
that in deep meta-learning (Hospedales et al., 2021) (also see Chapter 2), we have set of various
different training tasks and aim to transfer knowledge to a new target task, different from the ones
seen at training time.

Neural architecture search (NAS) for meta-learning The techniques mentioned above assume
a pre-specified network architecture. Recently, there has been some work on combining meta-learning
with neural architecture search, where the architecture can also be learned. Kim et al. (2018)
performs meta-learning as a subroutine to NAS, meaning that meta-training is performed for every
candidate architecture, which can be computationally expensive. This problem can be overcome by
combining gradient-based meta-learning with gradient-based neural architecture search such that the
architecture and initialization parameters can be optimized jointly instead of separately. A popular
gradient-based meta-learning algorithm is DARTS (Liu et al., 2019) which starts with a candidate
pool of operations (as in SAP) and learns which of them to use, thereby learning an appropriate
architecture. Learning which subspaces or subsets of operations to use per layer, as done in SAP, can
be seen as applying DARTS over the candidate operation sets. A difference between DARTS and
SAP is that we fix the base-learner parameters when adapting to new tasks, which can then serve to
warp, or transform, the gradients such that gradient descent can quickly move to a good solution for
new tasks (see below). Moreover, SAP updates the initialization parameters of all meta-trainable
parameters with a MAML-like update (to maximize post-adaptation performance), while DARTS
uses a Reptile-like update (to maximize multi-step performance). We describe DARTS in full detail
in Section 6.3.

Lian et al. (2019) were the first to combine DARTS (Liu et al., 2019) with gradient-based meta-
learning in order to learn a base-learner architecture that can be quickly adapted to new tasks. They
perform hard-pruning, which requires re-running the meta-training phase for every new task, which is
computationally expensive. In parallel to this work, Elsken et al. (2020) proposed a similar approach
(MetaNAS) that does not perform hard-pruning and thus side-steps these expensive re-running
procedures. In contrast to these works, which learn and adapt the base-learner network architecture
as well as all of the parameters to every new task, SAP assumes a fixed base-learner architecture as
a starting point and aims to learn a set of operations that are inserted per layer (see Section 6.4)
that are responsible for quickly adapting to new tasks. In SAP, the architecture of the network is
frozen at test time, in contrast to, for example, the architecture of the networks learned by MetaNAS
(Elsken et al., 2020).



130 6. SUBSPACE ADAPTATION PRIOR FOR FEW-SHOT LEARNING

Gradient modulation in gradient-based meta-learning Recent works that build upon MAML
have shown that gradient modulation can improve the generalization of optimization-based techniques
(Sun et al., 2019). Explicit gradient modulation techniques directly transform the gradient updates
when learning new tasks (Simon et al., 2020) through, for example, diagonal matrix multiplication (Li
et al., 2017), or block-diagonal preconditioning (Park and Oliva, 2019b). Implicit gradient modulation
techniques do not directly operate on the gradients but rely on indirect transformations. CAVIA
(Zintgraf et al., 2019) separates shared parameters from context parameters. The latter serve as
additional inputs to one or more layers of the neural network and are adjusted when learning a new
task, whilst the shared parameters are kept fixed. Other examples of implicit gradient modulation
methods are T-Net (Lee and Choi, 2018) and Warp-MAML (Flennerhag et al., 2020). SAP also
performs implicit gradient modulation in a similar fashion to these two techniques.

T-Net inserts linear projection transformations directly after every matrix multiplication in the
base-learner. The weights of these transformations are frozen when learning new tasks, and only the
base-learner weights are adjusted. The goal is to meta-learn good initialization parameters of the
base-learner weights as well as the transformation weights, such that new tasks can be learned more
quickly. These transformation layers serve to implicitly modulate the gradients of the base-learner
parameters so that gradient descent can quickly move to good solutions for new tasks. MT-Net
is an extension to T-Net, which also learns to mask certain features, preventing them from being
adapted when learning new tasks. We also investigated whether feature masking was useful for
SAP, but found that it decreased performance. Warp-MAML is a generalization of T-Net as it does
not require that the inserted transformation layers are linear, that is, the theoretical framework
allows these transformation layers to be non-linear and consist of multiple layers (arbitrary neural
networks).

Both T-Net and Warp-MAML adjust all parameters of trainable layers, as is common in gradient-
based meta-learning. However, this may be suboptimal for a given task distribution and lead to
overfitting due to the large degree of freedom to fit the noise in the data. MT-Net, on the other hand,
freezes certain features, which, in turn, also requires certain weights to be frozen but this is rather
inflexible as that does not allow us to perform simple operations such as element-wise scaling of all
features, which may be helpful for a given task distribution. To overcome these issues, we propose
SAP, which learns per trainable layer which operations from a pre-defined candidate pool to use and
adapt when learning new tasks, instead of resorting to regular matrix multiplications in which all
weights are adjusted when learning new tasks (as done by other methods). While the expressivity of
SAP is equivalent to T-Net and Warp-MAML (when using linear warp layers), the candidate pool
of operations allows SAP to learn which operations are important for the given task distribution,
thereby structuring the weight updates.

SAP is similar to T-Net and Warp-MAML in the sense that the linear base layers Wℓ (see Section 6.4)
of the network in SAP can be seen as the warp layers or transformation layers that are used in T-Net
and Warp-MAML, which act as implicit preconditioning layers that warp the loss surface to aid
gradient descent in finding a good solution. Due to the similarities between T-Net, Warp-MAML,
and SAP, they serve as excellent baselines to investigate whether the ability of SAP to learn which
operation subsets to adapt when learning new tasks is helpful for few-shot learning. Concurrently to
our work, Jiang et al. (2022) have proposed a subspace meta-learning algorithm. Whilst the title is
similar, they explicitly meta-learn the bases for K subspaces. Then, when learning a new task, they
aim to find linear combinations of the basis vectors of each of the subspaces that give rise to the
best parameters for the given task in the subspaces. The subset containing the parameters with the
lowest training loss is then used to obtain predictions for the query/test set. Note that their work is



6.3. BACKGROUND ON DARTS 131

different in that we do not learn basis vectors for different subspaces, but instead insert candidate
operations that act to transform intermediate representations in the base-learner network to allow
for faster learning and modulating the gradients.

6.3 Background on DARTS

In this section, we briefly describe DARTS (Liu et al., 2019), which is a gradient-based neural
architecture search method that we build upon in this chapter. The goal of DARTS is to find a
suitable neural architecture for a given problem. To do this, DARTS assumes a set of candidate
operations that can be used to transform an input into an output. These candidate operations
form a weighted graph as shown in Figure 6.1. In the figure, every node oi(x) corresponds to a
candidate operation and the weights of the edges correspond to the activation strengths of the
different operations. These weights are initially unknown and DARTS aims to learn them jointly
with the initial parameters of every operation. The output of the layer in the figure is given by

O(x) =
n∑

i=1

wioi(x), (6.1)

where wi is the weight of operation i and
∑n

i=1 wi = 1 (e.g., by using a softmax). For our purposes,
we only consider DARTS for searching over operations for a single layer, but it can be used for
multi-layer architectures as well.

In addition to learning the weights wi, DARTS simultaneously learns good parameters for every
operation oi. We denote the group of all activation weights as λ = {w1, w2, . . . , wn} and all operation
parameters as θ. DARTS adopts a method similar to MAML for learning λ and θ. That is, given a
training task Tj = (Dtr

Tj
, Dte

Tj
), DARTS performs a gradient update step on the operation weights θ

as follows

θ′j = θ − α∇θ,λLDtr
Tj
(θ, λ). (6.2)

Note that this is similar to Equation 2.20 in Chapter 2 with the exception that we now have activation
strength parameters λ, which are kept constant during this inner-loop adaptation step. After updating
the operation parameters θ, DARTS computes the loss of the new model on the query set, i.e.,
LDte

Tj
(θ′j , λ) and updates the activation strengths using gradient descent on this loss

λ = λ− β∇λLDte
Tj
(θ′j , λ). (6.3)

Similarly to MAML (see Chapter 2 and Chapter 3), this update also contains second-order gradients,
but first-order approximations can be made. In DARTS, the weights of the operations θ are simply
updated to their new values, that is, θ = θ′j , i.e., after every task in the meta-train set, we update
the initialization parameters θ to the parameters that were obtained after training on task Tj .

6.4 Subspace Adaptation Prior

In this section, we motivate and present our proposed technique called Subspace Adaptation Prior
(SAP).



132 6. SUBSPACE ADAPTATION PRIOR FOR FEW-SHOT LEARNING

...

?
? ?

Figure 6.1: Intuitive visualization of DARTS. It is given a set of candidate operations O and aims
to learn the weights of the edges (indicated as ?), corresponding to the strengths of the different
operations oi(x). The output of the weighted graph is a convex combination of the different operations
O(x) =∑n

i=1 wioi(x).

6.4.1 Intuition and operations

Our method (SAP) builds on MAML as we also aim to learn good initialization parameters such
that good performance can be achieved after a small number of gradient updates. However, MAML
adapts all of its network parameters when presented with a new task, which may be suboptimal for
the given task distribution and lead to overfitting. Our method, SAP, is given a pool of candidate
operations per layer (described below) and it learns per layer which subset of operations should be
adjusted to adapt to a new task. Since all of the operations that SAP can choose from per layer are
subsumed in terms of expressivity by a full-rank matrix multiplication (or convolution in the case of
image data), this can be understood as learning in which parameter subspaces to perform gradient
descent so that new tasks can be learned more efficiently.

This is a form of regularization and can help the network to exploit structures in problems. For
example, take the distribution of tasks Tj corresponding to different sine waves gj(x) = Aj ·sin(x−pj),
where Aj is the amplitude and pj the phase. There exists a common structure amongst these tasks:
a given sine wave can be transformed into any other sine wave by simply shifting the input and
scaling the output. This has been visualized in Figure 6.2. Techniques that adapt all parameters may
overwrite the sine function and overfit to the noise, whereas theoretically, SAP could learn to keep
these parameters fixed and that shifting the input and scaling the output are the most important
operations and consequently, that gradient descent should be performed in the parameter subspaces
corresponding to these operations. Sine waves form a simplistic example to demonstrate the idea
of SAP, however, we note that also for image classification tasks, simple operations such as scaling
and shifting feature maps can be useful too (Sun et al., 2019; Perez et al., 2018; Requeima et al.,
2019). SAP can discover such underlying structures and use them to enhance its few-shot learning
abilities.



6.4. SUBSPACE ADAPTATION PRIOR 133

x

y

(a) Sine wave tasks

sin
Shift

Scale

Shift

Scale

(b) Learned subspaces

Figure 6.2: SAP can learn the activation strengths of candidate operations Oℓ (corresponding to
parameter subspaces) that match the problem structure. Suppose we are given a sine wave task
distribution, where every task Tj is a sine wave gj(x) = Aj · sin(x− pj), where pj is the phase and
Aj the amplitude. Instead of adapting all parameters of the network on a new task, SAP can learn
to keep the sine network parameters (sin) frozen and that the input shift (shift in O1) and output
scale (scale in OL+1) are the most important operations to adjust (bold and dark-colored arrows),
matching the role of the phase and amplitude, respectively.

Candidate operations The candidate operations that SAP uses are specified by hand before meta-
training. In order to preserve the original expressivity of the base-learner network, the operations are
elementary linear algebra operations that are subsumed by full-rank matrix multiplication.

Table 6.1 displays all the operations that we use for both fully-connected and convolutional layers.
The MTL scale operation was proposed by Sun et al. (2019). By construction, we require that
the output of an operation set must have the same dimensionality as the input. Recall that in
the case of fully-connected layers, all candidate operations can be expressed by a single matrix
multiplication where only a subset of the entries is used. For example, an element-wise scale can be
performed by multiplying the input with a diagonal matrix where the diagonal entries correspond
to the element-wise scalars, and the non-diagonal entries are zero. In this way, every candidate
operation occupies a part of the full operation set matrix. This also holds for convolutions, which
can be seen as a stack of matrices.

We also include singular value (SVD) decomposition operations, where three v-rank matrices A =
UΣV T are multiplied to obtain a transformation matrix A ∈ ⋗×⋉ with the same dimensionality
as a full-rank transform T ∈ Rm×n (although with a lower rank). Here, U ∈ Rm×v, Σ ∈ Rv×v, and
V T ∈ Rv×n. The obtained transformation A is then applied to the input.

Below, we describe how these operations are interleaved with the base-learner network and how SAP
learns which subsets to adjust.

6.4.2 The algorithm

Architecture Let fθ be a neural network with parameters θ, where the output, or prediction, is
given by

fθ(x) = WLσ(. . . σ(W2σ(W1x))). (6.4)



134 6. SUBSPACE ADAPTATION PRIOR FOR FEW-SHOT LEARNING

Fully-connected Convolutional
Operation Dimensionality Operation Dimensionality

Identity N.A. Identity N.A.
Matrix multiplication d× d Convolution C × C × k × k
SVD-matrix multiplication d× v SVD convolution C × C × k × v
Element-wise scale d 1x1 convolution C × C
Scalar scale 1 MTL scale C × C
Vector shift d Channel-wise scale C
Scalar shift 1 Channel-wise shift C

Scalar shift 1

Table 6.1: The candidate operations for fully-connected and convolutional network layers and the
corresponding dimensionality of the subspace in which gradient will be performed. Here, d is the
dimensionality of the input in the case of a fully-connected layer and C is the number of input and
output dimensions of candidate operations in the case of convolutional layers. k is the kernel size of
convolutions and v < k is a variable dimension for SVD matrices.

Here, L is the number of layers of the network, σ is a non-linear activation function, and Wℓ is the
weight matrix for layer ℓ ∈ {1, 2, . . . , L} (which can also include the bias by concatenating a 1 at
the top of the input vector). Note that θ = {W1,W2, . . . ,WL} is the set of all base-learner weight
matrix parameters. In SAP, we insert sets of candidate operations Oℓ = {oℓ1, . . . , oℓnℓ

} before the
application of weight matrices Wℓ and after computing the final output, as shown in Figure 6.3.
Here, nℓ is the number of operations in the candidate set Oℓ in layer ℓ. Each of these operations
oℓi ∈ Oℓ act on the input, giving rise to partial outputs oℓi(z

ℓ) of the same dimensionality of the
inputs, where zℓ is the input to the ℓ-th operation layer. The final output of applying the candidate
operations is a convex combination of the partial outputs, that is,

Oℓzℓ =

nℓ∑
i=1

wℓ
io

ℓ
i(z

ℓ), (6.5)

Figure 6.3: A diagram of a feed-forward pass in SAP. Sets of operations Oℓ are interleaved with
base-learner weights Wℓ. The operation sets perform a convex combination of a number of operations
{oℓ1, . . . , oℓnℓ

}. SAP learns the strengths of each of the candidate operations and thereby learns in
which parameter subspaces gradient descent can effectively adapt the network to learn new tasks.
The operation strengths and the weight matrices Wℓ are frozen when adapting to new tasks. Only
the operation parameters are adjusted at test time.



6.4. SUBSPACE ADAPTATION PRIOR 135

where z1 = x and wℓ
i is the activation strength of operation oℓi . We require that

∑nℓ

i=1 w
ℓ
i = 1 and

0 ≤ wi ≤ 1. Learning these activation strengths can be seen as neural architecture search. Thus, the
output of the neural network in SAP is given by

fΘ(x) = OL+1WLOLσ(. . . σ(W2O2σ(W1O1x))), (6.6)

where Θ = {θ, ϕ, λ} is the set of the initial hyperparameter values for the base-learner weights (θ),
the operation weights (ϕ), and the activation weights (λ). Note that ϕ = {O1,O2, . . . ,OL+1} are
the parameters corresponding to the operations in all layers (see Section 6.4.1), and λ is the set
containing all wℓ

i for all layers ℓ ∈ {1, 2, . . . , L+ 1}.

Importantly, each of these candidate operations oℓi are subsumed or equivalent in terms of expressivity
with full-rank matrix multiplication. For example, candidate operations can include element-wise
shifting or multiplication of the input by a fixed scalar or by a vector, which can also be done by
weight matrix multiplication. Since the application of a set of operations Oℓ of such expressivity can
be seen as a single matrix multiplication (hence the suggestive notation), the expressivity of an SAP
network is equivalent to that of the original network. To see this, note that the application of two
weight matrices to an input can be written as the application of a single weight matrix to the input
x, that is, W(Ox) = (WO)x = W′x, where W and O are weight matrices, and W′ = WO. For the
sake of another example, suppose that we have a set of two operations in O: scalar multiplication
s · z and matrix multiplication Mz (preserving the dimensionality of z). Furthermore, suppose
that the two operations are applied with activation strengths w1 and w2, granting us the output
z′ = w1s · z+ w2Mz. We can rewrite this as z′ = w1sIz+ w2Mz = (w1sI + w2M)z = Oz, where
O = (w1sI + w2M) and I is the identity matrix. For a more intuitive example, suppose that a
base-layer is a fully-connected layer, and we add a fully-connected operation to alter the resulting
representation, maintaining the original dimensionality. The composition of the two fully-connected
layers is effectively linear and equally expressive as a single fully-connected layer. Thus, introducing
the operations used by SAP does not alter the expressivity of the original base-learner
network.

Crucially, this insight that we can write the weighted combination of different operations as a single
weight matrix multiplication Ox, where O is a weighted combination of different structured matrices,
reveals that SAP effectively learns what subset of parameters of this weight matrix O and thus of
WO to adjust by learning the activation strengths λ. In this work, we use the expressions “learning
which subsets of parameters to adjust” and “learning in what subspaces to perform gradient descent”
synonymously.

Meta-learning The activation strengths wℓ
i are meta-learned by SAP in addition to the ini-

tialization parameters of the operations Oℓ and the base-learner weights Wℓ. Note that learning
the wℓ

i corresponds to learning in which parameter subspaces gradient descent is performed when
learning new tasks, which can be done through the layer-wise application of the gradient-based neural
architecture search technique DARTS (Liu et al., 2019). Let θ denote the initial parameters of the
weight matrices Wℓ, ϕ the parameters of all candidate operations Oℓ, and λ the activation strengths
wℓ

i of all individual candidate operation. Recall that Θ = {θ, ϕ, λ}.

When presented with a new task Tj , the candidate operation activation strengths λ and the base-
learner parameters θ are frozen, and only the candidate operation parameters ϕ are updated using



136 6. SUBSPACE ADAPTATION PRIOR FOR FEW-SHOT LEARNING

gradient descent for T steps

ϕ
(t+1)
j ← ϕ(t) − α∇ϕ(t)LTj (θ, ϕ

(t), λ), (6.7)

where ϕ(0) is initialized with ϕ. At the meta-level, the goal is to find good initial parameter settings
for all involved parameters such that the task-specific performance is maximized. Thus, we wish to
find

argmin
Θ={θ,ϕ,λ}

E
Tj∽p(T )

LTj (θ, ϕ
(T )
j , λ), (6.8)

where ϕ
(T )
j denotes the task-specific parameters obtained through one or more gradient update steps

on task Tj . In other words, we wish to find good initial values for the parameters θ, ϕ, and λ such
that new tasks can be learned quickly by updating the operation parameters ϕ. This meta-objective
can also be optimized through gradient descent by updating

Θ← Θ− β∇Θ

∑
Tj∈B

LTj (θ, ϕ
(T )
j , λ). (6.9)

The full algorithm for application to few-shot learning is shown in Algorithm 12. At the start (line
1), we initialize the parameters of the base-learner θ randomly. The candidate operation parameters
ϕ are initialized to leave the input unaffected (for example, scalars are initialized to 1 and biases to
0). The layer-wise activation strengths wℓ

i of the candidate operations are initialized to the uniform
distribution. After this initialization, we repeat the following steps until a stopping criterion is met,
such as having sampled a certain number of task batches, or observing decreasing performance on
held-out validation tasks. We randomly sample batches of tasks (line 3), initialize the task-specific
parameters ϕ(0) = ϕ, and make T gradient update steps on the support set of every task (lines 6–8),
and perform meta-updates to the initialization parameters Θ (line 11) using the query sets of the
tasks. Note that the meta-update requires the computation of second-order gradients as we have to
compute the gradient of the inner-level gradients. The complexity of this is quadratic in the number
of parameters, but can be avoided by using the first-order assumption ∇ϕϕ

(T )
j = I.

Algorithm 12 Subspace Adaptation Prior (SAP)

Require: p(T )
Require: α, β
1: initialize θ, ϕ, λ
2: while not converged do
3: sample batch of tasks B = {Tj = (Dtr

Tj
, Dte

Tj
) ∽ p(T )}Mj=1

4: for task Tj = (Dtr
Tj
, Dte

Tj
) ∈ B do

5: initialize task-specific parameters ϕ
(0)
j = ϕ

6: for t = 0, . . . , T − 1 do
7: compute gradient update ϕ

(t+1)
j using Equation 6.7 on Dtr

Tj

8: end for
9: end for

10: update initial parameters Θ = {θ, ϕ, λ} using Equation 6.9
11: end while



6.4. SUBSPACE ADAPTATION PRIOR 137

Pruning The scores wℓ
i represent the activation strengths of the different candidate operations/subspaces,

and can also be used for pruning the operations, for example, in a layer-wise or regular top-K fashion.
By default, we do not hard-prune operations and maintain a convex combination of different candidate
operations unless explicitly mentioned otherwise. Note that we cannot simply drop low activation
strength operations from the network as that changes the composite features and layerwise activa-
tion statistics. Hard-pruning requires re-training the network with only the selected (non-pruned)
subspaces/operations.

6.4.3 Analysis

One may wonder what the role is of inserting operation sets Oℓ in the base-learner network since
they have the same expressivity as weight matrices. In other words, why do we have two consecutive
matrix multiplications WℓOℓx if that is equivalent to having one matrix multiplication Ux, where
U = WℓOℓ. There are two reasons for maintaining two separate matrices, which we describe
below.

Regularization First, having a set of operations Oℓ allows SAP to learn which sets, corresponding
to weight subspaces of a full-rank matrix, are relevant for a given task distribution. Choosing
lower-dimensional subspaces is a form of regularization, as fewer parameters can be adjusted to fit
the noise in the data.

Gradient modulation Second, when computing gradient updates for the operation parameters
ϕℓ of a given layer ℓ, the frozen base-layers Wℓ implicitly modulate the gradients since the error
signal traverses backward through Wℓ to Oℓ. This method of gradient modulation was proposed
by Lee and Choi (2018). Below, we borrow the analysis performed in that paper to illustrate the
modulation.

Suppose we are presented with a task Tj and that the output for a given layer in the network is given
v = WOx, where x is the input to the layer. Moreover, assume that the loss of the network on task
Tj is given by LTj

Then, the parameters of the operations O are updated using a gradient update
step, and we obtain the new output

vnew = W(O − α∇OLTj
)x (6.10)

= v − α(W∇OLTj
)x. (6.11)

Note that we slightly abuse notation here since the parameters of the operations are denoted as
ϕ. As we can see, the change in the layer’s output ∆(vnew ,v) is negatively proportional to the
(W∇OLTj

). Here, W warps the gradients with respect to the operation parameters. The warping of
these gradients is meta-learned across tasks such that within a few gradient updates in warped space,
a good performance can be achieved (Flennerhag et al., 2020; Lee and Choi, 2018; Park and Oliva,
2019b).

As a consequence, SAP can learn both in which parameter subspaces to perform gradient descent by
learning appropriate subsets of operations, as well as learn how to warp these subspaces so that few
gradient updates yield good performance.



138 6. SUBSPACE ADAPTATION PRIOR FOR FEW-SHOT LEARNING

6.5 Experiments

In this section, we aim to answer the following research questions:

• Does learning suitable layer-wise operations/subspaces improve meta-learning performance on
sine wave regression? (Section 6.5.1)

• Do the learned strengths of subspaces/operations match the task structure in a simple synthetic
setting? (Section 6.5.2, Section 6.5.3)

• How well does SAP perform at few-shot image classification? (Section 6.5.4)

• How well does SAP perform at cross-domain few-shot image classification? (Section 6.5.5)

• Is hard subspace pruning beneficial for the performance of SAP? (Section 6.5.6)

• What is the influence of second-order gradients on the performance of SAP? (Section 6.5.7)

• What operations are important for few-shot image classification? (Section 6.5.8)

• How does SAP compare in terms of the running time and and number of trainable parameters
compared to the baselines? (Section 6.5.9)

6.5.1 Sine wave regression

First, we study the few-shot learning performance of SAP on few-shot sine wave regression, which
is commonly used in the meta-learning community (Finn et al., 2017; Li et al., 2017; Park and
Oliva, 2019b). Here, the goal is to learn sine wave regression tasks Tj corresponding to sine curves
gj(x) = Aj · sin(x− pj) from a limited set of k examples. The amplitudes Aj and phases pj of these
sine curves are randomly sampled from the intervals [0.1, 5.0] and [0, π], respectively. While the
results on sine-wave regression are not our main contribution, the structure of these problems were a
motivation for the development of this method, and therefore this is a good test-case on which we
expect SAP to perform well. Of course, SAP can only be considered a valuable contribution when it
also works on more relevant problem types, which we explore in the following sections.

We use the same base-learner architecture, a fully-connected neural network with 2 hidden ReLU
layers of 40 nodes each, as in (Finn et al., 2017). For the SVD operations (see candidate operations
in Section 6.4.2), we use ranks 5, 10, and 15 in the candidate pools. All candidate operations
were initialized to have no effect on the network predictions at the start (transformation matrices
were initialized to identity matrices, biases to 0, and scale operations to 1). All techniques are
meta-trained on 70 000 tasks using one update step per task and a meta-batch size of 4. We perform
validation every 2 500 tasks to select the best performing model, which will be tested after 1 and 10
gradient update steps on 2 000 meta-test tasks consisting of k support examples and 50 query data
points.

As baselines, we compare against MAML, T-Net, and MT-Net (Lee and Choi, 2018) as well as
Warp-MAML (Flennerhag et al., 2020) as are highly similar to SAP, which allows us to investigate
the advantage of SAP’s ability to learn which subsets of operations to adjust. We refrain from
comparing against MetaNAS (Elsken et al., 2020), as this technique also adjusts the architecture at
meta-test time and is orthogonal to SAP and the methods we compare against. For all methods, we
use the same hyperparameters as reported in (Finn et al., 2017; Lee and Choi, 2018). In this case,
however, Warp-MAML is equivalent to T-Net as both use insert linear “transformation” or “warp”
layers in the base-learner network. The results of the experiments are displayed in Table 6.2. In this



6.5. EXPERIMENTS 139

5-shot 10-shot

params T=1 T=10 T=1 T=10

MAML 1 761 0.73 ± 0.016 0.42 ± 0.011 0.49 ± 0.011 0.15 ± 0.005
T-Net 4 962 0.53 ± 0.014 0.24 ± 0.009 0.33 ± 0.009 0.09 ± 0.004
MT-Net 5 043 0.55 ± 0.013 0.19 ± 0.005 0.34 ± 0.008 0.06 ± 0.002

SAP (ours) 10 013 0.47 ± 0.012 0.10 ± 0.003 0.28 ± 0.008 0.04 ± 0.001

Table 6.2: The mean MSE meta-test loss on 5- and 10-shot sine wave regression after T = 1 and
T = 10 update steps. The results are averaged over 5 runs with different random seeds and the
95% confidence intervals are displayed as ± x. The number of parameters is shown in the column
“params”, even though the used backbones are equally expressive.

table, we can see that SAP consistently outperforms all tested baselines, supporting the hypothesis
that it is indeed beneficial to learn in which subspaces to perform gradient descent. We have also
performed experiments with SAP and the feature masking method used in MT-Net, where some
features are frozen based on learned feature masking probabilities, but found that it decreases the
performance, which may be due to the low-dimensional operations present in the architecture, which
are more susceptible to being completely frozen as soon as a single feature is masked.

6.5.2 The learned subspaces for sine regression

Next, we investigate (in the same setting as above) the importance of the different candidate
operations for quick adaptation to new tasks to see whether the operations match the task structure.
We hypothesize that shifting the input and scaling the output are important operations as they are
inherent in the definition of a sine wave gj(x) = Aj · sin(x− pj). To investigate this, we inspect the
activation strengths wℓ

i of the operations of the best models across 5 different runs with different
random seeds. The operations that were used are were introduced in Table 6.1 (left side). The results
for SAP with T = 1 are displayed in Figure 6.4 (similar results are obtained when making T = 10
updates and therefore omitted for brevity). As we can see, the most important transformations on
the input and output are a scalar shift and multiplication, respectively. In other words, SAP has
learned that shifting the input and scaling the output are effective operations to learn new tasks.
Note that these operations match the structure of sine waves. While this confirms our hypothesis,
SAP also assigns relatively large importance to operations that are not directly observable in the
mathematical definition of sine curves such as an output shift and intermediate shifts.

6.5.3 Matching the problem structure

To further investigate the ability of SAP to match the learned candidate operation strengths to
the structure of the problem, we investigate whether changes in the problem structure amount to
changes in the learned activation strengths by SAP for the different operations. For this, we consider
a synthetic sine wave regression problem that generalizes the settings studied by Finn et al. (2017)
and Li et al. (2017). In this setting, we create different task families (task distributions) that are
characterized by the mathematical operations inherent in the ground-truth function. All task families
share the following template for the ground-truth function g(x) = A · sin(f ·x−p)+β, where A is the
amplitude, f the frequency, p the phase, and β the output offset. What distinguishes task families is
which of these parameters they include in the functional description. For example, task family A



140 6. SUBSPACE ADAPTATION PRIOR FOR FEW-SHOT LEARNING

original

scalar m
ult

vector m
ult

matrix
 mult

SVD mult r=
5

SVD mult r=
10

SVD mult r=
15

scalar sh
ift

vector sh
ift

input

layer 1

layer 2

output

0.16
±0.01

0.20
±0.01 NA NA NA NA NA 0.64

±0.02 NA

0.03
±0.01

0.03
±0.01

0.03
±0.01

0.03
±0.00

0.03
±0.01

0.03
±0.01

0.04
±0.01

0.57
±0.04

0.20
±0.02

0.04
±0.00

0.04
±0.00

0.04
±0.00

0.08
±0.01

0.03
±0.00

0.04
±0.00

0.04
±0.00

0.31
±0.02

0.37
±0.03

0.21
±0.05

0.46
±0.05 NA NA NA NA NA 0.34

±0.03 NA

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 6.4: The importance of the different operations in SAP for 5-shot sine wave regression. The
results are averaged across 5 runs with different random seeds and the standard deviations are shown
as ±x. NA entries indicate that these operations were not in the candidate pool for that layer, and
“mul” means multiplication. The y-axis indicates the layer on which the operations act, and the x-axis
displays the different candidate operations. Simple scalar multiplication and shifting, and vector
shifts obtain high activation strengths in all layers. The input shift and output scale (inherently
present in the definition of a sine wave) obtain high activation strengths.

may fix the amplitude and vary the frequency, phase, and output offset, whereas task family A may
vary the amplitude and fix the rest. Each task family is thus defined by which of these parameters
are varied among tasks from that family and which are kept constant. If a given parameter is not
varied, we fix it to a value that leaves the function unaltered (i.e., A, f, p = 1 and β = 0). In total,
there are 24 = 16 task families that can be constructed by varying or fixing these parameters.

We perform meta-training on each of these task families separately and investigate whether SAP
discovers the operations that are inherently present in the task structure. The experimental details
follow those used in Section 6.5.1 with the exception that only operations were included that could be
present in the task families to be able to measure whether SAP correctly detects and uses them. We
use 20-shots per task and set the number of inner updates to T = 1. The results of this experiment
are displayed in Figure 6.5. As we can see, SAP assigns higher activation strengths to operations that
are inherently present in the task families in three out of four cases, i.e., input scale (frequency), input
shift (phase), and output shift. A statistical T-test shows that these differences in mean activation
strengths are statistically significant, using a threshold of 0.05. For the input scale, however, we
observe that SAP assigns similar activation strength to the input scale activation, regardless of
whether such an operation was present in the task family. This may indicate that SAP uses other
operations to compensate for this, such as vector multiplications or matrix multiplications in later
layers. Overall, these results suggest in this simple synthetic setting, SAP is capable of learning to
use operations that appear in the problem structure in 75% of the scenarios.

6.5.4 Few-shot image classification
Next, we investigate the performance of SAP in few-shot image classification settings, where the
goal is to learn new image classification tasks from a few examples. For this, we use the popular



6.5. EXPERIMENTS 141

Input scale Input shift Output scale Output shift
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ct

iv
at

io
n 

st
re

ng
th

Not present in task family
Present in task family

Figure 6.5: The mean activation strengths of the different operations corresponding to the intrinsic
parameters that were varied within task families. The vertical bars display 95% confidence intervals
over 5 runs with different random seeds. Each task family has the following template g(x) =
A · sin(f · x− p) + β and differs in which of these operations are varied among tasks. If operations
are inherently present in a task family, SAP assigns higher activation strengths to them than if they
are not present in 3 out of 4 cases, indicating that the operations often match the problem structure.

Hyperparameter Range

Inner learning rate LogUniform(1e-3, 6e-1)
Inner update steps (training) Uniform(1,10)
Inner update steps (testing) Uniform(inner steps training, 15)
Meta-batch size Uniform(1,10)
Gradient masking Uniform({False,True})

Table 6.3: The ranges and sampling types for the hyperparameters, which were tuned with random
search. The bounds are inclusive.

N -way k-shot classification setup (see Chapter 2) on miniImageNet (Vinyals et al., 2016; Ravi and
Larochelle, 2017) and tieredImageNet (Ren et al., 2018). We use the frequently used Conv-4 backbone
(Finn et al., 2017; Lee and Choi, 2018; Flennerhag et al., 2020), consisting of four blocks, where each
block contains 3× 3 convolutions, a max pooling layer, 2D BatchNorm, and a ReLU nonlinearity. In
the literature, this backbone has been used with 64 channels for every convolutional block (Snell
et al., 2017; Vinyals et al., 2016) as well as 32 channels (Finn et al., 2017; Nichol et al., 2018). For
this reason, we present the results for SAP on both variants. The final feature representations are
flattened and fed into a softmax output layer. All techniques were trained for 60 000 episodes and
were validated after every 2 500 tasks and we use the best-reported hyperparameters by the original
authors.

We tuned a subset of the hyperparameters for SAP on the meta-validation tasks using random search
with a function evaluation budget of 30 runs. Each run was restricted to finish within 7 days on a
single PNY GeForce RTX 2080TI GPU. Runs that took longer (e.g., because of a large meta-batch
size) were discarded from the hyperparameter search. The used hyperparameter ranges and sampling



142 6. SUBSPACE ADAPTATION PRIOR FOR FEW-SHOT LEARNING

types that were used for the random search are displayed in Table 6.3. Due to computational
constraints, we adopted the best reported hyperparameters of the baseline methods as reported in
their respective papers. As such, the comparison against these baselines is in this experiment only
for illustrative purposes, as the hyperparameter optimization procedure on these methods has not
been executed under the same conditions.

1-shot 5-shot

32 channels 64 channels 32 channels 64 channels

MAML 48.0 ± 0.8 46.7 ± 0.8 64.4 ± 0.4 63.6 ± 0.4
T-Net 48.9 ± 0.8 48.7 ± 0.8 65.3 ± 0.4 -
MT-Net 48.5 ± 0.8 49.3 ± 0.8 63.0 ± 0.4 -
Warp-MAML 49.5 ± 0.8 49.8 ± 0.8 63.9 ± 0.4 64.6 ± 0.4

SAP (ours) 51.6 ± 0.8 52.8 ± 0.8 65.9 ± 0.4 67.4 ± 0.4

Table 6.4: Meta-test accuracy scores on 5-way miniImageNet classification over 5 runs with two
variants of the Conv-4 backbone, that is, with 32 or 64 channels per block. The 95% confidence
intervals are displayed as ± x. “-” indicates that the experiments required more GPU VRAM than
available.

The results for the experiments on 5-way miniImageNet and tieredImageNet classification are displayed
in Table 6.4 and Table 6.5. Note that the results for 5-shot T-Net and MT-Net are missing as
they were unable to run on our GPU with 12GB of VRAM. As we can see, the performance of the
techniques improves when using 64 channels compared with 32, with the exception of MAML on
miniImageNet and T-Net in the 1-shot setting on miniImageNet. As we can see, SAP consistently
outperforms all tested baselines in all tested settings (with gains between 1.1% to 3.3% accuracy),
indicating that it is beneficial to learn subsets of operations on which gradient descent is performed
in the case of few-shot image classification.

1-shot 5-shot

32 channels 64 channels 32 channels 64 channels

MAML 50.7 ± 0.8 51.5 ± 0.8 65.2 ± 0.4 66.6 ± 0.4
T-Net 49.4 ± 0.8 51.7 ± 0.8 64.6 ± 0.4 -
MT-Net 49.8 ± 0.9 51.5 ± 0.8 64.6 ± 0.4 -
Warp-MAML 51.8 ± 0.8 53.3 ± 0.8 66.0 ± 0.4 68.2 ± 0.4

SAP (ours) 52.9 ± 0.8 54.5 ± 0.8 69.3 ± 0.3 71.3 ± 0.4

Table 6.5: Meta-test accuracy scores on 5-way tieredImageNet classification over 5 runs with two
variants of the Conv-4 backbone, that is, with 32 or 64 channels per block. The 95% confidence
intervals are displayed as ± x. “-” indicates that the experiments required more GPU VRAM than
available.

6.5.5 Cross-domain few-shot image classification
Next, we study the performance of SAP in a more challenging cross-domain few-shot image classifi-
cation setting. In this setting, techniques are trained on tasks from dataset A and evaluated on tasks



6.5. EXPERIMENTS 143

from another dataset B, in contrast to the setting used above, where the techniques were evaluated
on unseen tasks from the same dataset used for training. We use the same setting as Chen et al.
(2019), in which we train on miniImageNet and evaluate on CUB (Wah et al., 2011). In addition, we
also train on tieredImageNet (Ren et al., 2018) and test on CUB. All other experimental details are
the same as above.

The results of this experiment are shown in Table 6.6. As we can see, SAP performs on par with
Warp-MAML in the 1-shot setting for MIN → CUB. Both outperform the other tested baselines in
that scenario. In other cases, however, SAP yields performance improvements ranging from 0.5% to
3.9% accuracy. This supports the hypothesis that it is beneficial to learn which subsets of operations
to adjust when learning new tasks.

MIN → CUB Tiered → CUB
1-shot 5-shot 1-shot 5-shot

MAML 37.3 ± 0.3 54.7 ± 0.3 38.1 ± 0.3 55.1 ± 0.3
T-Net 38.0 ± 0.3 55.6 ± 0.3 37.5 ± 0.3 54.8 ± 0.3
MT-Net 37.1 ± 0.3 53.1 ± 0.3 38.0 ± 0.3 55.5 ± 0.3
Warp-MAML 41.0 ± 0.3 55.3 ± 0.3 40.9 ± 0.3 56.8 ± 0.3

SAP (ours) 40.9 ± 0.3 55.8 ± 0.3 41.1 ± 0.3 60.7 ± 0.3

Table 6.6: Average cross-domain meta-test accuracy scores over 5 runs a 32-channel Conv-4 backbone.
Techniques trained on tasks from one data set were evaluated on tasks from another data set. The
95% confidence intervals are displayed as ± x.

6.5.6 Effect of hard pruning

Next, we investigate the effect of hard pruning the number of operations per layer, which is a common
feature of DARTS (Liu et al., 2019), and therefore also inherited by SAP. For this, we compare the
performance of SAP without hard pruning and SAP where we only retain the top-K operations as
indicated by their strength scores. The hard-pruned SAP is re-trained using only the candidate
operations which were not pruned. The results of this experiment with a 32-channel Conv-4 backbone
are displayed in Table 6.7 (for the 64-channel variant, please see Table 5.4 in the appendix). As we can
see, hard pruning can have a mild positive effect on the meta-learning performance, whilst reducing
computational costs due to the fact that fewer parameters have to be trained. This also implies
that some operations may indeed be suboptimal for a given task distribution, which soft-pruning is
not able to completely filter out, and that a model which fully excludes these, can achieve better
performance. We note, however, that the 95% confidence intervals are overlapping, suggesting that
these performance increases are not significant.

6.5.7 The effect of the gradient order

All tested techniques require the computation of second-order gradients by default. Here, we
investigate how the performance of SAP is affected by making a first-order approximation. We
compare this first-order variant with the regular second-order variant, using the same experimental
settings as used in Section 6.5.4. The results of this experiment are shown in Table 6.8. As we can
see, the first-order approximation is consistently outperformed by the regular variant, with differences
between 0.2% and 7.3 % accuracy, indicating that second-order gradients play an important role in



144 6. SUBSPACE ADAPTATION PRIOR FOR FEW-SHOT LEARNING

miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

No pruning 51.6 ± 0.8 65.9 ± 0.4 52.9 ± 0.8 69.3 ± 0.3

Top-1 51.4 ± 0.8 65.8 ± 0.4 52.8 ± 0.8 69.4 ± 0.4
Top-2 51.8 ± 0.8 66.3 ± 0.4 53.4 ± 0.8 69.4 ± 0.4
Top-3 51.8 ± 0.8 66.3 ± 0.4 53.0 ± 0.9 69.9 ± 0.4

Table 6.7: Mean meta-test accuracy scores on miniImageNet and tieredImageNet with 95% confidence
intervals over 5 different runs. We used a Conv-4 backbone with 32 channels for these results.

achieving good performance.

miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

SAP (first-order) 51.4 ± 0.8 63.7 ± 0.4 47.2 ± 0.8 62.0 ± 0.4
SAP (second-order) 51.6 ± 0.8 65.9 ± 0.4 52.9 ± 0.8 69.3 ± 0.3

Table 6.8: Meta-test accuracy scores on miniImageNet and tieredImageNet classification over 5 runs
using the Conv-4 backbone with 32 channels. The 95% confidence intervals are displayed as ± x.

6.5.8 The learned subspaces for image classification
In order to gain insight into what operations are important for achieving good few-shot learning
performance in SAP, we investigate the learned activation strengths for the different candidate
operations. The operations that were used are were introduced in Table 6.1 (right side). In Figure 6.6,
we can see these learned strengths in SAP on 1-shot 5-way miniImageNet using the Conv-4 backbone
with 32 channels (similar patterns are seen for the backbone with 64 channels as can be seen in
Figure C.1 in the appendix). As we can see, high-dimensional convolutional operations (conv1x1,
conv3x3, convSVD) obtain low activation strengths, while lower-dimensional subspaces/operations
such as shifts (scalar and vector) and MTL scale yield larger strengths. The greatest strength
is assigned to the former throughout all layers. This may indicate that the higher-dimensional
operations lead to overfitting, while the lower-dimensional operations are more suited for adapting to
tasks when only limited data is available. Consequently, this implies that it is indeed beneficial to
adapt subsets of operations when learning new tasks.

6.5.9 Number of parameters and running time
Lastly, we compare the running times and the number of parameters used by the different methods
on few-shot image classification. These statistics were measured whilst performing the experiments in
Section 6.5.4 and the results are displayed in Table 6.9. As we can see, SAP has the largest number
of parameters, even though the backbone is equally expressive as that used by others. The running
time of SAP, however, is often less than that of the baselines. This is caused by the fact that all
methods use different hyperparameter settings in order to optimize the performance, which relates
to the running time. For example, a larger meta-batch size or number of updates per task leads to
an increase in running time. SAP uses the smallest meta-batch size and number of updates and



6.6. CONCLUSIONS 145

original
conv1x1

conv3x3

convSVD

MTL scale

Simple scale

scalar sh
ift

vector sh
ift

linear tra
nsform

input

block 1

block 2

block 3

block 4

output

0.05
±0.01

0.04
±0.01

0.06
±0.01

0.06
±0.01 NA NA 0.37

±0.04
0.42

±0.02 NA

0.00
±0.00

0.00
±0.00

0.00
±0.00

0.01
±0.00

0.08
±0.01

0.02
±0.00

0.58
±0.11

0.29
±0.11 NA

0.01
±0.00

0.01
±0.00

0.00
±0.00

0.01
±0.00

0.10
±0.01

0.02
±0.01

0.29
±0.15

0.57
±0.16 NA

0.02
±0.00

0.01
±0.00

0.01
±0.00

0.01
±0.00

0.21
±0.03

0.05
±0.01

0.32
±0.04

0.37
±0.05 NA

0.01
±0.00

0.01
±0.00

0.02
±0.00

0.01
±0.00

0.10
±0.01

0.04
±0.01

0.20
±0.02

0.62
±0.04 NA

0.65
±0.01 NA NA NA NA NA NA NA 0.35

±0.01
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 6.6: The importance of the different subspaces/operations in SAP on 5-way 1-shot miniIma-
geNet using Conv-4 with 32 channels. The results are averaged across 5 runs with different random
seeds and the standard deviations are shown as ±x. NA entries indicate that these operations were
not in the candidate pool for that layer. Simple scalar shift and vector shift operations obtain the
highest activation strengths throughout the convolutional network.

hence yields the quickest running time. Note that these runtimes do not include the hyperparameter
optimization that was performed, which adds a factor to the runtimes.

miniImageNet tieredImageNet

params 1-shot 5-shot 1-shot 5-shot

MAML 32 901 11h36min ± 7min 8h20min ± 1min 11h34min ± 5min 8h25min ± 4min
T-Net 37 022 33h05min ± 19min 30h20min ± 7min 33h25min ± 23min 30h30min ± 17min
MT-Net 37 150 33h33min ± 8min 30h22min ± 14min 33h49min ± 40min 30h47min ± 18min
Warp-MAML 60 645 7h19min ± 6min 7h17min ± 8min 7h35min ± 13min 7h19min ± 5min
SAP (first-order) 106 196 1h26min ± 2min 1h4min ± 0min 1h51min ± 6min 2h12min ± 4min
SAP 106 196 3h59min ± 0min 6h09min ± 0min 1h51min ± 6min 9h24min ± 19min

Table 6.9: The number of trainable parameters (“params”) and mean running times on miniImageNet
and tieredImageNet classification over 5 runs using the Conv-4 backbone with 32 channels. The
standard deviations are displayed as ± x min. In spite of the differences in the number of parameters,
the backbones are equally expressive. SAP was found to work best with a small meta-batch size
and number of updates per task compared with the other approaches and hence yields the quickest
running time.

6.6 Conclusions

In this chapter, we introduced, Subspace Adaptation Prior (SAP), a novel meta-learning algorithm
that jointly learns a good neural network initialization and good parameter subspaces (or subsets of
operations) in which new tasks can be learned within a few gradient descent updates from a few data.
SAP overcomes the limitations of current state-of-the-art gradient-based meta-learning techniques



146 6. SUBSPACE ADAPTATION PRIOR FOR FEW-SHOT LEARNING

which perform gradient descent in full parameter space as they adjust all parameters (Finn et al.,
2017; Lee and Choi, 2018; Flennerhag et al., 2020), which may be suboptimal, and may lead to
overfitting during few-shot learning. Note, however, that our goal is not to yield state-of-the-art
performance. Instead, we investigate the question of whether the few-shot learning performance of
deep neural networks can be improved by meta-learning which subsets of parameters to adjust.

Our experiments show that SAP outperforms similar existing gradient-based meta-learners in few-
shot sine wave regression, yields better performance in single-domain few-shot image classification
settings, and yields competitive or superior performance in cross-domain few-shot image classification.
This highlights the advantage of learning suitable subspaces in which to perform gradient descent
when learning new tasks. This could be due to the regularization effect of not having to adjust all
parameters as well as due to the ability to match structures inherently present in task families. Our
experiments in Section 6.5.3 on synthetic task families demonstrate that the SAP is able to learn
operations that match the task structure in simple settings in 75% of the cases. In other cases, it may
compensate by using other operations that are not inherently present in the task structure.

Inspection of the subspace activation strengths in few-shot image classification reveals that simple and
low-dimensional operations, such as shifting features by a single scalar or element-wise by a vector,
are important. This is in line with recent work and findings (Triantafillou et al., 2021; Requeima
et al., 2019; Bateni et al., 2020) which show that adapting pre-trained embeddings by means of
such low-dimensional transformations, such as FiLM layers (Perez et al., 2018), can yield excellent
performance. Furthermore, we found that hard-pruning the subspaces in SAP, or operations, such
that only a discrete subset is used instead of a convex combination, was slightly beneficial, although
no statistically significant differences were found.

Future work One limitation of SAP is that it requires the computation of second-order gradients
by default during meta-training in order to update the initialization parameters, in a similar fashion
as other gradient-based meta-learners such as MAML (Finn et al., 2017), (M)T-Net (Lee and Choi,
2018), and Warp-MAML (Flennerhag et al., 2020). These second-order gradients require O(N2)
storage, where N is the number of total network parameters, which is prohibitive for deep networks.
This limitation can be bypassed by using a first-order approximation, which comes at the cost of a
performance penalty (between 0.2% and 7.3% accuracy in our experiments).

Gradient-based meta-learning methods struggle to scale well to deep networks as recent work suggests
that simple pre-training and fine-tuning of the output layer (Tian et al., 2020; Chen et al., 2021) (also
see Chapter 4) can yield superior performance on common few-shot image classification benchmarks.
This is also the reason, besides searching for energy-efficient few-shot learners, that in our experiments
we focus on relatively shallow backbones that adapt all layers when learning new tasks, instead of
only the output layer.

Other limitations are that SAP introduces more parameters and that the candidate pools of operations
are selected by hand, despite the fact that these operations are general. One direction for future
work could be to design a method to discover such subspaces from scratch, instead of relying on
a candidate set of operations, perhaps using an auto-encoder that generates the weights of a layer
based on latent codes as used by Rusu et al. (2019). Masking the adaptation of these latent codes
using Gumbel-softmax (Jang et al., 2017; Maddison et al., 2017) as done by MT-Net (Lee and Choi,
2018) would amount to adjusting only a subset of the parameters when performing gradient descent.
This can reduce the number of parameters and may also help to scale gradient-based meta-learners,
including SAP, to deep networks and make them competitive with approaches relying on pre-trained
features, which is an open challenge.



6.6. CONCLUSIONS 147

Finally, orthogonal work has proposed a method that can also adjust the architecture during the
meta-test phase (Elsken et al., 2020). Since this showed great potential, it would be worthwhile
to combine this with SAP. Moreover, it would be interesting to investigate the sensitivity of SAP
related methods such as MetaNAS to the chosen operations or blocks that these methods can
select to use. We leave these ideas for future work, which has the potential to further advance the
state-of-the-art.

This chapter is the final chapter that presents research results. In the next chapter, we take a step
back and return to the big picture, revisiting and answering our original research questions, and
proposing directions for future work.




