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Chapter 3

Stateless Neural Meta-Learning using
Second-Order Gradients

Chapter overview

Meta-learning can be used to learn a good prior that facilitates quick learning; two popular
approaches are MAML and the meta-learner LSTM. These two methods represent important and
different approaches in meta-learning. In this work1, we study the two and formally show that
the meta-learner LSTM subsumes MAML, although MAML, which is in this sense less general,
outperforms the other. We suggest the reason for this surprising performance gap is related to
second-order gradients. We construct a new algorithm (named TURTLE) to gain more insight
into the importance of second-order gradients. TURTLE is simpler than the meta-learner LSTM
yet more expressive than MAML and outperforms both techniques at few-shot sine wave regression
and 50% of the tested image classification settings (without any additional hyperparameter
tuning) and is competitive otherwise, at a computational cost that is comparable to second-order
MAML. We find that second-order gradients also significantly increase the accuracy of the
meta-learner LSTM. When MAML was introduced, one of its remarkable features was the use of
second-order gradients. Subsequent work focused on cheaper first-order approximations. On the
basis of our findings, we argue for more attention for second-order gradients.

3.1 Introduction
In this chapter, we study the relationship between two popular deep meta-learning methods: MAML
(Finn et al., 2017) and the meta-learner LSTM (Ravi and Larochelle, 2017). Recall that MAML
aims to learn a good weight initialization from which it can learn new tasks quickly using regular
gradient descent. In addition to learning a good weight initialization, the meta-learner LSTM (Ravi
and Larochelle, 2017) attempts to learn the optimization procedure in the form of a separate LSTM
network. The meta-learner LSTM is more general than MAML in the sense that the LSTM can learn
to perform gradient descent (see Section 3.4) or something better.

1This chapter is based on the following published research article: Huisman, M., Plaat, A., & van Rijn, J. N.
(2022). Stateless neural meta-learning using second-order gradients. Machine Learning, 111(9), 3227-3244. Springer.
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72 3. STATELESS NEURAL META-LEARNING USING SECOND-ORDER GRADIENTS

This suggests that the performance of MAML can be mimicked by the meta-learner LSTM on
few-shot image classification. However, our experimental results and those by Finn et al. (2017)
show that this is not necessarily the case. The meta-learner LSTM fails to find a solution in the
meta-landscape that learns as well as gradient descent.

In this chapter, we aim to investigate the performance gap between MAML and the meta-learner
LSTM. We hypothesize that the underperformance of the meta-learner LSTM could be caused by
(i) the lack of second-order gradients, or (ii) the fact that an LSTM is used as an optimizer. To
investigate these hypotheses, we introduce TURTLE, which is similar to the meta-learner LSTM but
uses a fully-connected feed-forward network as an optimizer instead of an LSTM and, in addition, uses
second-order gradients. Although both MAML and the meta-learner LSTM are by now surpassed by
other state-of-the-art techniques, such as LEO (Rusu et al., 2019) and MetaOptNet (Lee et al., 2019)
(see Section 3.2), they are still relevant and widely used. The aim of this chapter is to gain insight
into the performance gap between the meta-learner LSTM and MAML, leading to the following
contributions:

• We formally show that the meta-learner LSTM subsumes MAML.

• We formulate a new meta-learning algorithm called TURTLE to overcome two potential
shortcomings of the meta-learner LSTM. We demonstrate that TURTLE successfully closes
the performance gap to MAML as it outperforms MAML (and the meta-learner LSTM) on
sine wave regression, and various settings involving miniImageNet and CUB by at least 1%
accuracy without any additional hyperparameter tuning. TURTLE requires roughly the same
amount of computation time as second-order MAML.

• Based on the results of TURTLE, we enhance the meta-learner LSTM by using raw gradients as
meta-learner input and second-order information and show these changes result in a performance
boost of 1-6% accuracy, indicating the importance of second-order gradients.

3.2 Related work
The success of deep learning techniques has been largely limited to domains where abundant data
and large compute resources are available (LeCun et al., 2015). The reason for this is that learning a
new task requires large amounts of resources. Meta-learning is an approach that holds the promise of
relaxing these requirements by learning to learn. The field has attracted much attention in recent
years, resulting in many new techniques, which can be divided into metric-based, model-based, and
optimization-based approaches (see Chapter 2). In our work, we focus on an optimization-based
approach, which includes both MAML and the meta-learner LSTM (see Figure 2.28).

MAML (Finn et al., 2017) aims to find a good weight initialization from which new tasks can
be learned quickly within several gradient update steps. As shown in Figure 2.28, many works
build upon the key idea of MAML, for example, to decrease the computational costs (Nichol et al.,
2018; Rajeswaran et al., 2019), increase the applicability to online and active learning settings
(Grant et al., 2018; Finn et al., 2018), or increase the expressivity of the algorithm (Li et al., 2017;
Park and Oliva, 2019a; Lee and Choi, 2018). Despite its popularity, MAML does no longer yield
state-of-the-art performance on few-shot learning benchmarks (Lu et al., 2020), as it is surpassed
by, for example, latent embedding optimization (LEO) (Rusu et al., 2019) which optimizes the
initial weights in a lower-dimensional latent space, and MetaOptNet (Lee et al., 2019), which stacks
a convex model on top of the meta-learned initialization of a high-dimensional feature extractor.
Although these approaches achieve state-of-the-art techniques on few-shot benchmarks, MAML is
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elegant and generally applicable as it can also be used in reinforcement learning settings (Finn et al.,
2017).

While the meta-learner LSTM (Ravi and Larochelle, 2017) learns both an initialization and an
optimization procedure, it is generally hard to properly train the optimizer (Metz et al., 2019; Simons,
2022). As a result, techniques that use hand-crafted learning rules instead of trainable optimizers may
yield better performance. It is perhaps for this reason that most meta-learning algorithms use simple,
hand-crafted optimization procedures to learn new tasks, such as regular gradient descent (Bottou,
2004), Adam (Kingma and Ba, 2015), or RMSprop (Tieleman and Hinton, 2017). Andrychowicz et al.
(2016), show that learned optimizers may learn faster and yield better performance than gradient
descent.

The goal of our work is to investigate why MAML often outperforms the meta-learner LSTM, while
the latter is at least as expressive as the former (see Section 3.4.1).2 Finn and Levine (2018) have
shown that the reverse also holds: MAML can approximate any learning algorithm. However, this
theoretical result only holds for sufficiently deep base-learner networks. Thus, for a given network
depth, it does not say that MAML subsumes the meta-learner LSTM. In contrast, our result that
the meta-learner LSTM subsumes MAML holds for any base-learner network and depth.

In order to investigate the performance gap between the meta-learner LSTM and MAML, we propose
TURTLE which replaces the LSTM module from the meta-learner LSTM with a feed-forward neural
network. Note that Metz et al. (2019) also used a regular feed-forward network as an optimizer.
However, they were mainly concerned with understanding and correcting the difficulties that arise
from training an optimizer and do not learn a weight initialization for the base-learner network as we
do. Baik et al. (2020) also use a feed-forward network on top of MAML but its goal is to generate
a per-step learning rate and weight decay coefficients. The feed-forward network in TURTLE, in
contrast, generates direct weight updates.

3.3 Preliminaries

In this section, we explain the notation and the concepts of the two methods that we investigate
(MAML and the meta-learner LSTM). Whilst these methods are also described in Chapter 2, here we
present the methods in a way that is helpful for this chapter, emphasizing certain properties using
slightly different notation.

3.3.1 MAML

As mentioned before, MAML (Finn et al., 2017) attempts to learn a set of initial neural network
parameters θ from which we can quickly learn new tasks within T steps of gradient descent, for a
small value of T . Thus, given a task Tj = (Dtr

Tj
, Dte

Tj
), MAML will produce a sequence of weights

(θ
(0)
j ,θ

(1)
j ,θ

(2)
j , ...,θ

(T )
j ), where

θ
(t+1)
j = θ

(t)
j − α∇

θ
(t)
j
LDtr

Tj
(θ

(t)
j ). (3.1)

Here, α is the inner learning rate and LD(φ) the loss of the network with weights φ on dataset D.
Note that the first set of weights in the sequence is equal to the initialization, i.e., θ(0)j = θ.

2Link to our code: https://github.com/mikehuisman/revisiting-learned-optimizers

https://github.com/mikehuisman/revisiting-learned-optimizers
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Figure 3.1: The workflow of the meta-learner LSTM (Ravi and Larochelle, 2017). The base-learner
parameters are updated by an LSTM meta-learner network. The base-learner is denoted as M .
(Xt, Yt) are support sets, whereas (X,Y ) is the query set. Note that the figure uses subscripts to
indicate time steps and not tasks, i.e., θT are the parameters at step T and not the initial parameters
for task T .

Given a distribution of tasks p(T ), we can formalize the objective of MAML as finding the initial
parameters

argmin
θ

ETj∽p(T )

[
LDte

Tj
(θ

(T )
j )

]
. (3.2)

Note that the loss is taken with respect to the query set, whereas θ(T )
j is computed on the support

set Dtr
TJ

.

The initialization parameters θ are updated by optimizing this objective in Equation 3.2, where
the expectation over tasks is approximated by sampling a batch of tasks. Importantly, updating
these initial parameters requires backpropagation through the optimization trajectories on the tasks
from the batch. This implies the computation of second-order derivatives, which is computationally
expensive. However, Finn et al. (2017) have shown that first-order MAML, which ignores these
higher-order derivatives and is computationally less demanding, works just as well as the complete,
second-order MAML version.

3.3.2 Meta-learner LSTM
The meta-learner LSTM by Ravi and Larochelle (2017) can be seen as an extension of MAML as it
does not only learn the initial parameters θ but also the optimization procedure which is used to learn
a given task. Note that MAML only uses a single base-learner network, while the meta-learner LSTM
uses a separate meta-network to update the base-learner parameters, as shown in Figure 3.1. Thus,
instead of computing (θ

(0)
j ,θ

(1)
j ,θ

(2)
j , ...,θ

(T )
j ) using regular gradient descent as done by MAML, the

meta-learner LSTM learns a procedure that can produce such a sequence of updates, using a separate
meta-network.

This trainable optimizer takes the form of a special LSTM module, which is applied to every weight
in the base-learner network after the gradients and loss are computed on the support set. The idea
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is to embed the base-learner weights into the cell state c of the LSTM module. Thus, for a given
task Tj , we start with cell state c(0)j = θ. After this initialization phase, the base-learner parameters
(which are now inside the cell state) are updated as

c
(t+1)
j = σ

(
W f · [∇θ(t)

j
,LDtr

Tj
,θ

(t)
j ,f

(t−1)
j ] + bf

)
︸ ︷︷ ︸

weight decay

⊙c(t)j

+ σ
(
W i · [∇θ(t)

j
,LDtr

Tj
,θ

(t)
j , i

(t−1)
j ] + bi

)
︸ ︷︷ ︸

learning rate

⊙c̄(t)j , (3.3)

where ⊙ is the element-wise product, the two sigmoid factors σ are the parameterized forget
gate f (t)

j and learning rate i(t)j vectors that steer the learning process, ∇
θ
(t)
j

= ∇
θ
(t)
j
LDtr

Tj
(θ

(t)
j ),

LDtr
Tj

= LDtr
Tj
(θ

(t)
j ), and c̄(t)j = −∇

θ
(t)
j
LDtr

Tj
(θ

(t)
j ). Both the learning rate and forget gate vectors

are parameterized by weight matrices W f ,W i and bias vectors bf and bi, respectively. These
parameters steer the inner learning on tasks and are updated using regular, hand-crafted optimizers
after every meta-training task. As noted by Ravi and Larochelle (2017), this is equivalent to gradient
descent when c(t) = θ(t)j , and the sigmoidal factors are equal to 1 and α, respectively.

In spite of the fact that the LSTM module is applied to every weight individually to produce updates,
it does maintain a separate hidden state for each of them. In a similar fashion to MAML, updating
the initialization parameters (and LSTM parameters) would require propagating backwards through
the optimization trajectory for each task. To circumvent the computational costs associated with this
expensive operation, the meta-learner LSTM assumes that input gradients and losses are independent
of the parameters in the LSTM.

3.4 Towards stateless neural meta-learning

In this section, we study the theoretical relationship between MAML and the meta-learner LSTM.
Based on the resulting insight, we formulate a new meta-learning algorithm called TURTLE (stateless
neural meta-learning) which is simpler than the meta-learner LSTM and more expressive than
MAML.

3.4.1 Theoretical relationship

There is a subsumption relationship between MAML and the LSTM meta-learner. The gradient
update rule used by MAML uses a fixed learning rate and no weight decay. The LSTM meta-learner,
on the other hand, can learn a dynamic weight decay and learning rate schedule. These observations
gives rise to the following theorem:

Theorem 1. The meta-learner LSTM subsumes MAML

Proof. We prove this theorem by showing that there is a parameterization of the LSTM meta-learner
such that it updates the base-learner weights using gradient descent with a fixed learning rate α and
without weight decay. In other words, we show that there exist W f , bf ,Wi, bi such that the update
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made by the LSTM meta-learner is equivalent to that made by MAML

c
(t+1)
j = θ

(t)
j − α∇

θ
(t)
j
LDtr

Tj
(θ

(t)
j ) (3.4)

= 1⊙ θ(t)j + α1⊙−∇
θ
(t)
j
LDtr

Tj
(θ

(t)
j ). (3.5)

The update of the meta-learner LSTM (Equation 3.3) satisfies this relationship when c(0)j = θ
(satisfied by construction), the weight decay is equal a vector of ones 1, and the learning rate to
α1. The weight decay condition condition can be met by setting Wf to a matrix of zeros and bf

to vector of sufficiently large values to push the output of the sigmoid near its saturation point (1).
Since the learning rate 0 < α < 1 falls within the codomain of the sigmoid function, the learning rate
condition can also be met by setting Wi to a matrix of zeros and bf = − ln( 1−α

α )1. Thus, we have
shown that it is possible to parameterize the LSTM meta-learner so that it mimics gradient descent
with any learning rate 0 < α ≤ 1.

3.4.2 Potential problems of the meta-learner LSTM

The theoretical insight that meta-learner LSTM subsumes MAML is not congruent with empirical
findings which show that MAML outperforms the meta-learner LSTM on the miniImageNet image
classification benchmark (Finn et al., 2017; Ravi and Larochelle, 2017), indicating that LSTM is
unable to successfully navigate the error landscape to find a solution at least as good as the one
found by MAML.

A potential cause is that the meta-learner LSTM attempts to learn a stateful optimization procedure,
allowing it to employ dynamic weight decay and learning rate schedules for learning new tasks. While
this gives the technique more flexibility in learning an optimization algorithm, it may also negatively
affect meta-optimization as it may be harder to find a good dynamic optimization algorithm than a
static one because the space of dynamic algorithms is less constrained. In addition, we conjecture
that the loss landscape for dynamic algorithms is less smooth because the weight decay and learning
rate schedules, which can have a large influence on the performance, depend on parameter trajectories
(paths from initialization to task-specific parameters). We hypothesize that removing the stateful
nature of the trainable optimizer may smoothen the meta-landscape as it constrains the space of
possible solutions and removes the dependency of the learning rate on parameter trajectories, which
can stabilize learning. For this reason, we replace the LSTM module in TURTLE with a regular
fully-connected, feed-forward network, which is stateless.

Another potential cause of the underperformance could be the first-order assumption made by the
meta-learner LSTM, which we briefly mentioned in Section 3.3.2. Effectively, this disconnects the
computational graph by stating that weight updates made at time step t by the meta-network do
not influence the inputs that this network receives at future time steps t < t′ < T . Consequently, the
algorithm ignores curvature information which can be important for stable training. While first-order
MAML achieves similar performance to MAML, we think that the loss landscape of the LSTM
meta-learner is less smooth (for reasons mentioned above), which can exacerbate the harmful effect
of the first-order assumption. To overcome this issue, we use second-order gradients by default in
TURTLE and investigate the effect of making the first-order assumption.
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3.4.3 TURTLE

In an attempt to make the meta-landscape easier to navigate, we introduce a new algorithm, TURTLE,
which trains a feed-forward meta-network to update the base-learner parameters. TURTLE is simpler
than the meta-learner LSTM as it uses a stateless feed-forward neural network as a trainable optimizer,
yet more expressive than MAML as its meta-network can learn to perform gradient descent.

The trainable optimizer in TURTLE is thus a fully-connected feed-forward neural network. We
denote the batch of inputs that this network receives at time step t in the inner loop for task Tj as
I
(t)
j ∈ Rn×d, where n and d are the number of base-learner parameters and the dimensionality of the

inputs, respectively. The exact inputs that this network receives will be determined empirically, but
two choices, inspired by the meta-learner LSTM, are: (i) the gradients with respect to all parameters
and (ii) the current loss (repeated n times for each parameter in the base-network).

Moreover, we could mitigate the absence of a state in the meta-network by including a time step
t ∈ {0, 1, ..., T − 1} and/or historical information such as a moving average of previous gradients or
updates made by the meta-network. We denote the latter by h(t)

j which is updated by

h
(t+1)
j = βh

(t)
j + (1− β)v

(t)
j , (3.6)

where 0 ≤ β ≤ 0 is a constant that determines the time span over which previous inputs affect the
new state h(t+1)

j , and v(t)j ∈ Rn is the new information (either the updates or gradients at time step
t). When using previous updates, we initialize h(0)

j by a vector of zeros.

Weight updates are then computed as follows

θ
(t+1)
j = θ

(t)
j +α⊙ gϕ(I

(t)
j ), (3.7)

where α ∈ Rn is a vector of learning rates per parameter. Note that this weight update equation is
simpler than the one used by the meta-learner LSTM (see Equation 3.3) as our meta-network gϕ is
stateless. Therefore, we do not have parameterized forget and input gates. Moreover, the learning
rates per parameter in α are not constrained to be within the interval [0, 1] as is the case for the
meta-learner LSTM due to the use of the sigmoid function.

In Algorithm 9 we show, in different colors, the code for MAML (red), the meta-learner LSTM
(blue), and TURTLE (green). Although the code structure of the three meta-learners is similar, the
update rules are quite different. Both the base- and meta-learner parameters θ and ϕ are updated
by backpropagation through the optimization trajectories (line 11).

3.5 Experiments

In this section, we describe our experimental setup and the results that we obtained.

3.5.1 Hyperparameter analysis on sine-wave regression

Here, we investigate the effect of the order of information (first- versus second-order), the number
of updates T per task, and further increasing the number of layers of the meta-network on the
performance of TURTLE on 5-shot sine wave regression. The results are displayed in Figure 3.2.
Note that in this experiment, we fixed the learning rate vector α to be a vector of ones, which means
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Algorithm 9 MAML meta-learner LSTM TURTLE

1: Initialize parameters Θ = {θ} {θ,ϕ} {θ,ϕ}
2: Initialize gϕ as N.A. LSTM feed-forward network
3: repeat
4: Sample batch of J tasks B = {Tj ∽ p(T )}Jj=1

5: for Tj = (Dtr
Tj
, Dte

Tj
) in B do

6: θ
(0)
j = θ

7: for t = 1, ..., T do
8: Update θ(t)j using Eq. 3.1 Eq. 3.3 Eq. 3.7
9: end for

10: end for
11: Update Θ using

∑
Tj∈B LDte

Tj
(θ

(T )
j )

12: until convergence

that the updates proposed by the meta-network are directly added to the base-learner parameters
without any scaling. Moreover, the only input that the meta-network receives is the gradient of
the loss on the support set with respect to a base-learner parameter, and every hidden layer of the
meta-network consists of 20 nodes followed by ReLU nonlinearities.

As we can see, the difference between first- and second-order MAML is relatively small, which was
also found by Finn et al. (2017). In contrast, this is not the case for TURTLE, where the first-order
variant fails to achieve a similar performance as second-order TURTLE. Furthermore, we see that
the stability of TURTLE decreases as T increases as the confidence intervals become larger and the
performance with fewer hidden layers deteriorates. Lastly, we find that 5 or 6 hidden layers yield the
best performance across different values of T . For this reason, all further TURTLE experiments will
be conducted with a meta-network of 5 hidden layers.

3.5.2 Few-shot sine wave regression
First, we compare the performance of TURTLE to that of MAML and the meta-learner LSTM
on sine wave regression, which was originally proposed by Finn et al. (2017). We follow their
experimental setup and use 70K, 1K, and 2K tasks for training, validation, and testing respectively.
All experiments are performed 30 times with different random weight initializations of the base- and
meta-learner networks. We perform meta-validation every 2.5K tasks for hyperparameter tuning.
The meta-test results of this experiment are displayed in Figure 3.3. As we can see, TURTLE,
which uses second-order gradients, systematically outperforms the meta-learner LSTM, which uses
first-order gradients.

3.5.3 Few-shot image classification
Without additional hyperparameter tuning, we now investigate the performance of 5-step TURTLE
on few-shot image classification tasks, following the setup used in Chen et al. (2019). In addition, we
investigate the importance of second-order gradients in this setting. For this, we use miniImageNet
(Vinyals et al., 2016) (with the class splits proposed by Ravi and Larochelle (2017)) and CUB (Wah
et al., 2011). We use the same base-learner network used by Snell et al. (2017) and Chen et al. (2019).
Each algorithm is run with 5 different random weight initializations.
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Figure 3.2: Influence of the order, number of update steps, and number of hidden layers (horizontal
axis) on the meta-validation performance of TURTLE on 5-shot sine wave regression. We also plot
the performance of first- and second-order MAML for comparison. Note that a lower MSE loss
corresponds to better performance. The vertical bars indicate the 95% confidence intervals.

We compare the performance against three simple transfer-learning models, following Chen et al.
(2019): train from scratch, finetuning, and baseline++. Based on our hyperparameter experiments
for TURTLE, we also investigate an enhanced version of the meta-learner LSTM which uses raw
gradients as meta-learner input and second-order information. The meta-test accuracy scores on 5-way
miniImageNet and CUB classification are displayed in Table 3.1. Note that we use the best-reported
hyperparameters for MAML and the meta-learner LSTM on miniImageNet, while we use the best
hyperparameters found on sine wave regression for TURTLE. Despite this, TURTLE and second-order
meta-learner LSTM outperform MAML and other techniques in 50% of the tested scenarios while
they yield the competitive performance in the other scenarios. As we can see, the performances of all
models are better on 5-shot classification compared with 1-shot classification. Looking at the results
for miniImageNet, we see that the addition of second-order gradients increases the performance of
both the meta-learner LSTM and TURTLE. An overview of the exact hyperparameter values that

3Our enhanced version of the meta-learner LSTM, which takes raw gradients as inputs, uses second-order gradients,
and makes 8 updates per task.
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Figure 3.3: Median meta-test performance of MAML, the meta-learner LSTM, and TURTLE on
5-shot sine wave regression. Note that a lower error indicates better performance. The vertical bars
indicate the 95% confidence intervals.

were used for all techniques can be found in Appendix A.

3.5.4 Cross-domain few-shot learning
We also investigate the robustness of the meta-learning algorithms when a task distribution shift
occurs. For this, we train the techniques on miniImageNet and evaluate their performance on CUB
tasks (and vice versa), following Chen et al. (2019). This is a challenging setting that requires a more
general learning ability than for the experiments above. The results are shown in Table 3.4. Also
in these challenging scenarios, second-order gradients are important to increase the performance of
both the meta-learner LSTM and TURTLE. More specifically, the omission of second-order gradients
can lead to large performance penalties, ranging from 1% to 5% accuracy.

3.5.5 Running time comparison
Lastly, we compare the running times of MAML, the meta-learner LSTM, and TURTLE on mini-
ImageNet and CUB. A run comprises the time it costs to perform meta-training, meta-validation,
and meta-testing on miniImageNet, and evaluation on CUB. We measure the average time in full
hours across 5 runs on nodes with a Xeon Gold 6126 2.6GHz 12 core CPU and PNY GeForce RTX
2080TI GPU. The results are displayed in Figure 3.4. As we can see, the first-order algorithms are
the fastest, while the second-order algorithms are slower (so-MAML and TURTLE). However, the
performance of the first-order meta-learner LSTM and first-order TURTLE is worse than that of
the second-order variants, indicating the importance of second-order gradients. For MAML, we do
not observe such a difference between the first- and second-order variants. TURTLE is, despite
its name, not much slower than the second-order MAML (SO-MAML), indicating that the time
complexity is dominated by learning the base-learner initialization parameters. In fact, we observe
that TURTLE is slightly faster than MAML, indicating that our implementation of the latter is not
optimally efficient. In addition, we note that TURTLE is faster than the second-order (enhanced)
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Table 3.1: Median meta-test accuracy scores and 95% confidence intervals over 5 runs of 5-way image
classification on miniImageNet (left) and CUB (right). The best performance is displayed in bold
font. Note that a higher accuracy indicates better performance.

miniImageNet CUB
1-shot 5-shot 1-shot 5-shot

TrainFromScratch 0.29 ± 0.00 0.40 ± 0.00 0.30 ± 0.00 0.46 ± 0.00
Finetuning 0.38 ± 0.00 0.56 ± 0.00 0.33 ± 0.01 0.53 ± 0.01
Baseline++ 0.44 ± 0.00 0.58 ± 0.00 0.36 ± 0.01 0.53 ± 0.01

Meta-learner LSTM 0.45 ± 0.01 0.61 ± 0.00 0.50 ± 0.00 0.65 ± 0.01
Meta-learner LSTM3 0.48 ± 0.01 0.63 ± 0.01 0.53 ± 0.01 0.71 ± 0.00

FO-MAML 0.46 ± 0.01 0.63 ± 0.00 0.52 ± 0.00 0.72 ± 0.01
MAML 0.47 ± 0.01 0.63 ± 0.00 0.52 ± 0.00 0.73 ± 0.01

First-order TURTLE 0.43 ± 0.01 0.59 ± 0.04 0.50 ± 0.00 0.64 ± 0.03
TURTLE 0.48 ± 0.01 0.62 ± 0.01 0.53 ± 0.00 0.72 ± 0.01

Table 3.2: Median meta-test accuracy scores and 95% confidence intervals over 5 runs of 5-way image
classification on miniImageNet (left) and CUB (right). The best performance is displayed in bold
font. Note that a higher accuracy indicates better performance.

miniImageNet CUB
1-shot 5-shot 1-shot 5-shot

Meta-learner LSTM 0.45 ± 0.01 0.61 ± 0.00 0.50 ± 0.00 0.65 ± 0.01
Meta-learner LSTM∗ 0.48 ± 0.01 0.63 ± 0.01 0.53 ± 0.01 0.71 ± 0.00

FO-MAML 0.46 ± 0.01 0.63 ± 0.00 0.52 ± 0.00 0.72 ± 0.01
MAML 0.47 ± 0.01 0.63 ± 0.00 0.52 ± 0.00 0.73 ± 0.01

First-order TURTLE 0.43 ± 0.01 0.59 ± 0.04 0.50 ± 0.00 0.64 ± 0.03
TURTLE 0.48 ± 0.01 0.62 ± 0.01 0.53 ± 0.00 0.72 ± 0.01

LSTM meta-learner.

3.6 Discussion and future work
In this chapter, we have formally shown that the meta-learner LSTM (Ravi and Larochelle, 2017)
subsumes MAML (Finn et al., 2017). Experiments of Finn et al. (2017) and ourselves, however, show
that MAML outperforms the meta-learner LSTM. We formulated two hypotheses for this surprising
finding and, in turn, we formulated a new meta-learning algorithm named TURTLE, which is simpler
than the meta-learner LSTM as it is stateless, yet more expressive than MAML because it can learn
the weight update rule as it features a separate meta-network.

We empirically demonstrate that TURTLE is capable of outperforming both MAML and the
(first-order) meta-learner LSTM on sine wave regression and—without additional hyperparameter
tuning—on the frequently used miniImageNet benchmark. This shows that better update rules exist
for fast adaptation than regular gradient descent, which is in line with findings by Andrychowicz
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Table 3.3: Median meta-test accuracy scores and 95% confidence intervals over 5 runs of 5-way image
classification on miniImageNet (left) and CUB (right). The best performance is displayed in bold
font. Note that a higher accuracy indicates better performance.

miniImageNet CUB
1-shot 5-shot 1-shot 5-shot

Meta-learner LSTM 0.45 ± 0.01 0.61 ± 0.00 0.50 ± 0.00 0.65 ± 0.01
MAML 0.47 ± 0.01 0.63 ± 0.00 0.52 ± 0.00 0.73 ± 0.01
TURTLE 0.48 ± 0.01 0.62 ± 0.01 0.53 ± 0.00 0.72 ± 0.01

Table 3.4: Median meta-test accuracy scores in 5-way cross-domain classification (train on tasks from
one dataset and evaluate on tasks from another dataset). The median accuracy and 95% confidence
intervals were computed over 5 runs. The meta-learner LSTM2 refers to our enhanced version of the
meta-learner LSTM, which takes raw gradients as inputs, uses second-order gradients, and makes 8
updates per task.

miniImageNet → CUB CUB → miniImageNet

1-shot 5-shot 1-shot 5-shot

TrainFromScratch 0.30 ± 0.00 0.46 ± 0.00 0.29 ± 0.00 0.40 ± 0.00
Finetuning 0.33 ± 0.00 0.52 ± 0.01 0.29 ± 0.00 0.41 ± 0.00
Baseline++ 0.35 ± 0.01 0.52 ± 0.01 0.26 ± 0.00 0.31 ± 0.01

Meta-learner LSTM 0.34 ± 0.01 0.52 ± 0.01 0.29 ± 0.01 0.37 ± 0.00
Meta-learner LSTM2 0.37 ± 0.00 0.55 ± 0.01 0.32 ± 0.01 0.43 ± 0.01

FO-MAML 0.34 ± 0.01 0.54 ± 0.01 0.31 ± 0.00 0.45 ± 0.01
MAML 0.35 ± 0.00 0.56 ± 0.01 0.31 ± 0.00 0.47 ± 0.00

fo-TURTLE 0.36 ± 0.00 0.54 ± 0.02 0.30 ± 0.00 0.31 ± 0.01
TURTLE 0.38 ± 0.00 0.56 ± 0.01 0.30 ± 0.00 0.44 ± 0.00

et al. (2016). Moreover, we enhanced the meta-learner LSTM by using raw gradients as meta-learner
input and second-order gradient information, as they were found to be important for TURTLE. Our
results indicate that this enhanced version of the meta-learner LSTM systematically outperforms the
original technique by 1− 6% accuracy.

In short, these results show that second-order gradients are important for improving the few-shot
image classification performance of the meta-learner LSTM and TURTLE, at the cost of additional
runtime. In contrast, first-order MAML is a good approximation to second-order MAML as it yields
similar performance (Finn et al., 2017). This finding supports our hypothesis that the loss landscape
of MAML is smoother than that of meta-learning techniques that learn both the initialization
parameters and a gradient-based optimization procedure.

Limitations and open challenges

While TURTLE and the enhanced meta-learner LSTM were shown to yield good performance, it
has to be noted that this comes at the cost of increased computational expenses compared with
first-order algorithms. That is, these second-order algorithms perform backpropagation through the
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Table 3.5: Median meta-test accuracy scores in 5-way cross-domain classification (train on tasks from
one dataset and evaluate on tasks from another dataset). The median accuracy and 95% confidence
intervals were computed over 5 runs. The meta-learner LSTM2 refers to our enhanced version of the
meta-learner LSTM, which takes raw gradients as inputs, uses second-order gradients, and makes 8
updates per task.

miniImageNet → CUB CUB → miniImageNet

1-shot 5-shot 1-shot 5-shot

Meta-learner LSTM 0.34 ± 0.01 0.52 ± 0.01 0.29 ± 0.01 0.37 ± 0.00
Meta-learner LSTM∗ 0.37 ± 0.00 0.55 ± 0.01 0.32 ± 0.01 0.43 ± 0.01

FO-MAML 0.34 ± 0.01 0.54 ± 0.01 0.31 ± 0.00 0.45 ± 0.01
MAML 0.35 ± 0.00 0.56 ± 0.01 0.31 ± 0.00 0.47 ± 0.00

fo-TURTLE 0.36 ± 0.00 0.54 ± 0.02 0.30 ± 0.00 0.31 ± 0.01
TURTLE 0.38 ± 0.00 0.56 ± 0.01 0.30 ± 0.00 0.44 ± 0.00

entire optimization trajectory which requires storing intermediate updates and the computation of
second-order gradients. While this is also the case for MAML, it has been shown that first-order
MAML achieves a similar performance whilst avoiding this expensive backpropagation process,
yielding an excellent trade-off between performance and computational costs. For TURTLE, however,
this is not the case, which means that other approaches should be investigated in order to reduce
the computational costs. Future research may draw inspiration from Rajeswaran et al. (2019) who
approximated second-order gradients in order to speed up MAML.

Our experiments also show that the training stability of TURTLE deteriorates as the number of
inner updates increases. This is a known problem of meta-learning techniques that aim to learn
the optimization algorithm. Metz et al. (2019) show that this instability is due to the fact that the
meta-loss landscape becomes increasingly pathological as the number of inner updates increases.
Future work is required to make it feasible to train such techniques for a large number of updates.
Moreover, we note that we have only investigated the performances of MAML, TURTLE, and the
LSTM meta-learner in 1- and 5-shot settings It would be interesting to investigate in future work how
well MAML, TURTLE, and the LSTM meta-learner perform when more shots and ways (classes)
are available per task. It may be possible that the performances of these techniques converge to the
same point as the amount of available data increases. The intuition behind this is that given enough
data, there is no need for a meta-learned prior to successfully learn the task.

Successfully using meta-learning algorithms in scenarios where task distribution shifts occur remains
an important open challenge in the field of meta-learning. Our cross-domain experiment demonstrates
that the learned optimization procedure by TURTLE generalizes to different tasks than the ones
seen at training time, which is in line with findings by Andrychowicz et al. (2016). For this
reason, we think that learned optimizers may be an important piece of the puzzle to broaden the
applicability of meta-learning techniques to real-world problems. Future work can further investigate
this hypothesis.

Our findings further show the benefit of learning an optimizer in addition to the initialization weights
and highlight the importance of second-order gradients.

In this chapter, we have gained a deep understanding of the differences between two deep meta-
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Figure 3.4: The running times and few-shot learning accuracy scores on 1-shot (left) and 5-shot
(right) miniImageNet image classification of the different techniques for 5 runs with different random
seeds.

learning algorithms (MAML and the meta-learner LSTM), which have been observed to be successful
at few-shot learning in various scenarios. A related method for improving the learning efficiency
of deep neural networks compared with the deep meta-learning algorithms (MAML, meta-learner
LSTM) investigated in the previous research question, is transfer learning by means of pre-training
and finetuning. The idea of this method is to train a neural network to perform a given source task
for which abundant data is available. Recent results (Chen et al., 2019; Tian et al., 2020; Mangla
et al., 2020) suggest that when evaluated on tasks from a different data distribution than the one
used for training, the simple pre-training and finetuning baseline may be more effective than more
complicated popular meta-learning techniques such as MAML and Reptile (Nichol et al., 2018).
This is surprising as the learning behavior of MAML was shown to mimic that of finetuning: both
rely on reusing learned features (Raghu et al., 2020). This begs the question of what causes the
observed performance differences between these approaches. We investigate the differences in learning
behaviors of finetuning, MAML, and Reptile in the next chapter.

Moreover, the study performed in this chapter prompts us to look deeper into using an LSTM for
meta-learning. More specifically, the meta-learner LSTM uses an LSTM at the meta-level : to perform
weight updates for a base-learner network. In 2001, however, Hochreiter et al. (2001) showed that an
LSTM that operates at the data level trained with backpropagation across different tasks is capable
of meta-learning. The LSTM operating at the data level is fed an entire training set, and predictions
for query inputs are then conditioned on the resulting hidden state. This classical approach to
meta-learning has received little attention in supervised few-shot learning scenarios, whilst it has
been demonstrated to be successful at various reinforcement learning problems (Duan et al., 2016;
Wang et al., 2016). In Chapter 5, We revisit this LSTM approach and test it on modern supervised
few-shot learning benchmarks.


