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Chapter 2

Overview of Deep Meta-Learning

Chapter overview

Deep neural networks can achieve great successes when presented with large data sets and
sufficient computational resources. However, their ability to learn new concepts quickly is limited.
Meta-learning is one approach to address this issue, by enabling the network to learn how to
learn. The field of deep meta-learning advances at great speed, but lacks a unified, in-depth
overview of current techniques. With this work1, we aim to bridge this gap. After providing
the reader with a theoretical foundation, we investigate and summarize key methods, which are
categorized into i) metric-, ii) model-, and iii) optimization-based techniques. In addition, we
identify the main open challenges, such as performance evaluations on heterogeneous benchmarks,
and reduction of the computational costs of meta-learning.

2.1 Introduction

In recent years, deep learning techniques have achieved remarkable successes on various tasks,
including game-playing (Mnih et al., 2013; Silver et al., 2016), image recognition (Krizhevsky et al.,
2012; He et al., 2015), and machine translation (Wu et al., 2016). Despite these advances, ample
challenges remain to be solved, such as the large amounts of data and training that are needed to
achieve good performance. These requirements severely constrain the ability of deep neural networks
to learn new concepts quickly, one of the defining aspects of human intelligence (Jankowski et al.,
2011; Lake et al., 2017).

Meta-learning has been suggested as one strategy to overcome this challenge (Naik and Mammone,
1992; Schmidhuber, 1987; Thrun, 1998). The key idea is that meta-learning agents improve their
own learning ability over time, or equivalently, learn to learn. The learning process is primarily
concerned with tasks (set of observations) and takes place at two different levels: an inner- and an
outer-level. At the inner-level, a new task is presented, and the agent tries to quickly learn the
associated concepts from the training observations. This quick adaptation is facilitated by knowledge

1This chapter is based on the following published research article: Huisman, M., van Rijn, J. N., & Plaat, A. (2021).
A survey of deep meta-learning. Artificial Intelligence Review, 54(6), 4483-4541. Springer.
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Figure 2.1: The accuracy scores of the covered techniques on 1-shot miniImageNet classification.
The used feature extraction backbone is displayed on the x-axis. As one can see, there is a strong
relationship between the network complexity and the classification performance.

that it has accumulated across earlier tasks at the outer-level. Thus, whereas the inner-level concerns
a single task, the outer-level concerns a multitude of tasks.

Historically, the term meta-learning has been used with various scopes. In its broadest sense, it
encapsulates all systems that leverage prior learning experience in order to learn new tasks more
quickly (Vanschoren, 2018). This broad notion includes more traditional algorithm selection and
hyperparameter optimization techniques for Machine Learning (Brazdil et al., 2008). In this chapter,
however, we focus on a subset of the meta-learning field which develops meta-learning procedures
to learn a good inductive bias for (deep) neural networks.2 Henceforth, we use the term deep
meta-learning to refer to this subfield of meta-learning.

The field of deep meta-learning is advancing at a quick pace, while it lacks a coherent, unifying
overview, providing detailed insights into the key techniques. Vanschoren (2018) has surveyed
meta-learning techniques, where meta-learning was used in the broad sense, limiting its account
of deep meta-learning techniques. Also, many exciting developments in deep meta-learning have

2Here, inductive bias refers to the assumptions of a model which guide predictions on unseen data (Mitchell, 1980).
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happened after the survey was published. A more recent survey by Hospedales et al. (2021) adopts
the same notion of deep meta-learning as we do, but aims to give a broad overview, omitting technical
details of the various techniques.

We attempt to fill this gap by providing detailed explications of contemporary deep meta-learning
techniques, using a unified notation. More specifically, we cover modern techniques in the field for
supervised and reinforcement learning, that have achieved state-of-the-art performance, obtained
popularity in the field, and presented novel ideas. Extra attention is paid to MAML (Finn et al.,
2017), and related techniques, because of their impact on the field. We show how the techniques
relate to each other, detail their strengths and weaknesses, identify current challenges, and provide
an overview of promising future research directions. One of the observations that we make is that the
network complexity is highly related to the few-shot classification performance (see Figure 2.1). One
might expect that in a few-shot setting, where only few examples are available to learn from, the
number of network parameters should be kept small to prevent overfitting. Clearly, the figure shows
that this does not hold, as techniques that use larger backbones tend to achieve better performance.
One important factor might be that due to the large number of tasks that have been seen by the
network, we are in a setting where similarly large amounts of observations have been evaluated.
This result suggests that the size of the network should be taken into account when comparing
algorithms.

This chapter can serve as educational introduction to the field of deep meta-learning, and as reference
material for experienced researchers in the field. Throughout, we will adopt the taxonomy used
by Vinyals (2017), which identifies three categories of deep meta-learning approaches: i) metric-,
ii) model-, and iii) optimization-based meta-learning techniques.

The remainder of this chapter is structured as follows. Section 2 builds a common foundation on
which we will base our overview of deep meta-learning techniques. Section 3, 4, and 5 cover the main
metric-, model-, and optimization-based meta-learning techniques, respectively. Section 6 provides
an overview of the field, and summarizes the key challenges and open questions. Table 2.1 gives an
overview of notation that we will use throughout this paper.

2.2 Foundation

In this section, we build the necessary foundation for investigating deep meta-learning techniques in
a consistent manner. To begin with, we contrast regular learning and meta-learning. Afterwards,
we briefly discuss how deep meta-learning relates to different fields, what the usual training and
evaluation procedure looks like, and which benchmarks are often used for this purpose. We finish
this section by describing some applications and context of the meta-learning field.

2.2.1 The meta abstraction

In this subsection, we contrast base-level (regular) learning and meta-learning for two different
paradigms, i.e., supervised and reinforcement learning.

Regular supervised learning

In supervised learning, we wish to learn a function fθ : X → Y that learns to map inputs xi ∈ X to
their corresponding outputs yi ∈ Y . Here, θ are model parameters (e.g. weights in a neural network)
that determine the function’s behavior. To learn these parameters, we are given a data set of m
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Expression Meaning

Meta-learning Learning to learn
Tj = (Dtr

Tj
, Dtest

Tj
) A task consisting of a labeled support and query set

Support set The train set Dtr
Tj

associated with a task Tj
Query set The test set Dtest

Tj
associated with a task Tj

xi Example input vector i in the support set
yi (One-hot encoded) label of example input xi from the support set
k Number of examples per class in the support set
N Number of classes in the support and query sets of a task
x Input in the query set
y A (one-hot encoded) label for input x
(f/g/h)◦ Neural network function with parameters ◦
Inner-level At the level of a single task
Outer-level At the meta-level: across tasks
Fast weights A term used in the literature to denote task-specific parameters
Base-learner Learner that works at the inner-level
Meta-learner Learner that operates at the outer-level
θ The parameters of the base-learner network
LD Loss function with respect to task/dataset D
Input embedding Penultimate layer representation of the input
Task embedding An internal representation of a task in a network/system
SL Supervised Learning
RL Reinforcement Learning

Table 2.1: Some notation and meaning, which we use throughout this chapter.

observations: D = {(xi, yi)}mi=1. Thus, given a data set D, learning boils down to finding the correct
setting for θ that minimizes an empirical loss function LD, which must capture how the model is
performing, such that appropriate adjustments to its parameters can be made. In short, we wish to
find

θSL := argmin
θ

LD(θ), (2.1)

where SL stands for “supervised learning". Note that this objective is specific to data set D, meaning
that our model fθ may not generalize to examples outside of D. To measure generalization, one
could evaluate the performance on a separate test data set, which contains unseen examples. A
popular way to do this is through cross-validation, where one repeatedly creates train and test splits
Dtr, Dtest ⊂ D and uses these to train and evaluate a model respectively (Hastie et al., 2009).

Finding globally optimal parameters θSL is often computationally infeasible. We can, however,
approximate them, guided by pre-defined meta-knowledge ω (Hospedales et al., 2021), which includes,
e.g., the initial model parameters θ, choice of optimizer, and learning rate schedule. As such, we
approximate

θSL ≈ gω(D,LD), (2.2)

where gω is an optimization procedure that uses pre-defined meta-knowledge ω, data set D, and loss
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function LD, to produce updated weights gω(D,LD) that (presumably) perform well on D.

Supervised meta-learning

In contrast, supervised meta-learning does not assume that any meta-knowledge ω is given, or pre-
defined. Instead, the goal of meta-learning is to find the best ω, such that our (regular) base-learner
can learn new tasks (data sets) as quickly as possible. Thus, whereas supervised regular learning
involves one data set, supervised meta-learning involves a group of data sets. The goal is to learn
meta-knowledge ω such that our model can learn many different tasks well. Thus, our model is
learning to learn.

More formally, we have a probability distribution of tasks p(T ), and wish to find optimal meta-
knowledge

ω∗ := argmin
ω

ETj∽p(T )︸ ︷︷ ︸
Outer-level

[LTj
(gω(Tj ,LTj

))︸ ︷︷ ︸
Inner-level

]. (2.3)

Here, the inner-level concerns task-specific learning, while the outer-level concerns multiple tasks.
One can now easily see why this is meta-learning: we learn ω, which allows for quick learning of
tasks Tj at the inner-level. Hence, we are learning to learn.

Regular reinforcement learning

In reinforcement learning, we have an agent that learns from experience. That is, it interacts with an
environment, modeled by a Markov Decision Process (MDP) M = (S,A, P, r, p0, γ, T ). Here, S is the
set of states, A the set of actions, P the transition probability distribution defining P (st+1|st, at),
r : S ×A→ R the reward function, p0 the probability distribution over initial states, γ ∈ [0, 1] the
discount factor, and T the time horizon (maximum number of time steps) (Sutton and Barto, 2018;
Duan et al., 2016).

At every time step t, the agent finds itself in state st, in which the agent performs an action at,
computed by a policy function πθ (i.e., at = πθ(st)), which is parameterized by weights θ. In turn, it
receives a reward rt = r(st, πθ(st)) ∈ R and a new state st+1. This process of interactions continues
until a termination criterion is met (e.g. fixed time horizon T reached). The goal of the agent is to
learn how to act in order to maximize its expected reward. The reinforcement learning (RL) goal is
to find

θRL := argmin
θ

Etraj
T∑

t=0

γtr(st, πθ(st)), (2.4)

where we take the expectation over the possible trajectories traj = (s0, πθ(s0), ...sT , πθ(sT )) due to
the random nature of MDPs (Duan et al., 2016). Note that γ is a hyperparameter that can prioritize
short- or long-term rewards by decreasing or increasing it, respectively.

Also in case of reinforcement learning it is often infeasible to find the global optimum θRL, and thus
we settle for approximations. In short, given a learning method ω, we approximate

θRL ≈ gω(Tj ,LTj ), (2.5)
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where again Tj is the given MDP, and gω is the optimization algorithm, guided by pre-defined
meta-knowledge ω.

Note that in a Markov Decision Process (MDP), the agent knows the state at any given time step t.
When this is not the case, it becomes a Partially Observable Markov Decision Process (POMDP),
where the agent receives only observations O, and uses these to update its belief with regard to the
state it is in (Sutton and Barto, 2018).

Meta reinforcement learning

The meta abstraction has as its object a group of tasks, or Markov Decision Processes (MDPs) in the
case of reinforcement learning. Thus, instead of maximizing the expected reward on a single MDP,
the meta reinforcement learning objective is to maximize the expected reward over various MDPs,
by learning meta-knowledge ω. Here, the MDPs are sampled from some distribution p(T ). So, we
wish to find a set of parameters

ω∗ := argmin
ω

ETj∽p(T )︸ ︷︷ ︸
Outer-level

Etraj

T∑
t=0

γtr(st, πgω(Tj ,LTj
)(st))︸ ︷︷ ︸

Inner-level

 . (2.6)

Contrast with other fields

Now that we have provided a formal basis for our discussion for both supervised and reinforcement
meta-learning, it is time to contrast meta-learning briefly with two related areas of machine learning
that also have the goal to improve the speed of learning. We will start with transfer learning.

Transfer Learning In Transfer Learning, one tries to transfer knowledge of previous tasks to new,
unseen tasks (Pan and Yang, 2009; Taylor and Stone, 2009), which can be challenging when new
task comes from a different distribution than the one used for training Iqbal et al. (2018). The
distinction between Transfer Learning and Meta-Learning has become more opaque over time. A
key property of meta-learning techniques, however, is their meta-objective, which explicitly aims to
optimize performance across a distribution over tasks (as seen in previous sections by taking the
expected loss over a distribution of tasks). This objective need not always be present in Transfer
Learning techniques, e.g., when one pre-trains a model on a large data set, and fine-tunes the learned
weights on a smaller data set.

Multi-task learning Another, closely related field, is that of multi-task learning. In multi-task
learning a model is jointly trained to perform well on multiple fixed tasks (Hospedales et al., 2021).
Meta-learning, in contrast, aims to find a model that can learn new (previously unseen) tasks quickly.
This difference is illustrated in Figure 2.2.
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Figure 2.2: The difference between multi-task learning and meta-learning3.

Figure 2.3: Illustration of N -way, k-shot classification, where N = 5, and k = 1. Meta-validation
tasks are not displayed. Adapted from Ravi and Larochelle (2017).

2.2.2 The meta-setup

In the previous section, we have described the learning objectives for (meta) supervised and re-
inforcement learning. We will now describe the general setting that can be used to achieve these
objectives. In general, one optimizes a meta-objective by using various tasks, which are data sets in
the context of supervised learning, and (Partially Observable) Markov Decision Processes in case
of reinforcement learning. This is done in three stages: the i) meta-train stage, ii) meta-validation
stage, and iii) meta-test stage, each of which is associated with a set of tasks.

First, in the meta-train stage, the meta-learning algorithm is applied to the meta-train tasks. Second,
the meta-validation tasks can then be used to evaluate the performance on unseen tasks, which were
not used for training. Effectively, this measures the meta-generalization ability of the trained network,
which serves as feedback to tune, e.g., hyper-parameters of the meta-learning algorithm. Third, the
meta-test tasks are used to give a final performance estimate of the meta-learning technique.

3Adapted from https://meta-world.github.io/

https://meta-world.github.io/
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N-way, k-shot learning

A frequently used instantiation of this general meta-setup is called N -way, k-shot classification
(see Figure 2.3). This setup is also divided into the three stages—meta-train, meta-validation,
and meta-test—which are used for meta-learning, meta-learner hyperparameter optimization, and
evaluation, respectively. Each stage has a corresponding set of disjoint labels, i.e., Ltr, Lval, Ltest ⊂ Y ,
such that Ltr ∩ Lval = ∅, Ltr ∩ Ltest = ∅, and Lval ∩ Ltest = ∅. In a given stage s, tasks/episodes
Tj = (Dtr

Tj
, Dtest

Tj
) are obtained by sampling examples (xi, yi) from the full data set D, such that

every yi ∈ Ls. Note that this requires access to a data set D. The sampling process is guided by
the N -way, k-shot principle, which states that every training data set Dtr

Tj
should contain exactly

N classes and k examples per class, implying that |Dtr
Tj
| = N · k. Furthermore, the true labels of

examples in the test set Dtest
Tj

must be present in the train set Dtr
Tj

of a given task Tj . Dtr
T j acts as a

support set , literally supporting classification decisions on the query set Dtest
Tj

. Importantly, note that
with this terminology, the query set (or test set) of a task is actually used during the meta-training
phase. Furthermore, the fact that the labels across stages are disjoint ensures that we test the ability
of a model to learn new concepts.

The meta-learning objective in the training phase is to minimize the loss function of the model
predictions on the query sets, conditioned on the support sets. As such, for a given task Tj , the
model ‘sees’ the support set, and extracts information from the support set to guide its predictions
on the query set. By applying this procedure to different episodes/tasks Tj , the model will slowly
accumulate meta-knowledge ω, which can ultimately speed up learning on new tasks.

The easiest way to achieve this is by doing this with regular neural networks, but as was pointed
out by various authors (see, e.g., Finn et al. (2017)) more sophisticated architectures will vastly
outperform such network. In the remainder of this chapter, we will review such architectures.

At the meta-validation and meta-test stages, or evaluation phases, the learned meta-information in
ω is fixed. The model is, however, still allowed to make task-specific updates to its parameters θ
(which implies that it is learning). After task-specific updates, we can evaluate the performance on
the test sets. In this way, we test how well a technique performs at meta-learning.

N -way, k-shot classification is often performed for small values of k (since we want our models to
learn new concepts quickly, i.e., from few examples). In that case, one can refer to it as few-shot
learning .

Common benchmarks

Here, we briefly describe some benchmarks that can be used to evaluate meta-learning algo-
rithms.

• Omniglot (Lake et al., 2011): This data set presents an image recognition task. Each image
corresponds to one out of 1 623 characters from 50 different alphabets. Every character was
drawn by 20 people. Note that in this case, the characters are the classes/labels.

• ImageNet (Deng et al., 2009): This is the largest image classification data set, containing
more than 20K classes and over 14 million colored images. miniImageNet is a mini variant of
the large ImageNet data set (Deng et al., 2009) for image classification, proposed by Vinyals
et al. (2016) to reduce the engineering efforts to run experiments. The mini data set contains
60 000 colored images of size 84× 84. There are a total of 100 classes present, each accorded by
600 examples. tieredImageNet (Ren et al., 2018) is another variation of the large ImageNet
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data set. It is similar to miniImageNet, but contains a hierarchical structure. That is, there
are 34 classes, each with its own sub-classes.

• CIFAR-10 and CIFAR-100 (Krizhevsky, 2009): Two other image recognition data sets.
Each one contains 60K RGB images of size 32 × 32. CIFAR-10 and CIFAR-100 contain 10
and 100 classes respectively, with a uniform number of examples per class (6 000 and 600
respectively). Every class in CIFAR-100 also has a super-class, of which there are 20 in the full
data set. Many variants of the CIFAR data sets can be sampled, giving rise to e.g. CIFAR-FS
(Bertinetto et al., 2019) and FC-100 (Oreshkin et al., 2018).

• CUB-200-2011 (Wah et al., 2011): The CUB-200-2011 data set contains roughly 12K RGB
images of birds from 200 species. Every image has some labeled attributes (e.g. crown color,
tail shape).

• MNIST (LeCun et al., 2010): MNIST presents a hand-written digit recognition task,
containing ten classes (for digits 0 through 9). In total, the data set is split into a 60K train
and 10K test gray scale images of hand-written digits.

• Meta-Dataset (Triantafillou et al., 2020): This data set comprises several other data
sets such as Omniglot (Lake et al., 2011), CUB-200 (Wah et al., 2011), ImageNet (Deng et al.,
2009), and more (Triantafillou et al., 2020). An episode is then constructed by sampling a data
set (e.g. Omniglot) and selecting a subset of labels to create train and test splits as before. In
this way, broader generalization is enforced since the tasks are more distant from each other.

• Meta-world (Yu et al., 2019): A meta reinforcement learning data set, containing 50 robotic
manipulation tasks (control a robot arm to achieve some pre-defined goal, e.g. unlocking a
door, or playing soccer). It was specifically designed to cover a broad range of tasks, such that
meaningful generalization can be measured (Yu et al., 2019).

Some applications of meta-learning

Deep neural networks have achieved remarkable results on various tasks including image recognition,
text processing, game playing, and robotics (Silver et al., 2016; Mnih et al., 2013; Wu et al., 2016),
but their success depends on the amount of available data (Sun et al., 2017) and computing resources.
Deep meta-learning reduces this dependency by allowing deep neural nets to learn new concepts
quickly. As a result, meta-learning widens the applicability of deep learning techniques to many
application domains. Such areas include few-shot image classification (Finn et al., 2017; Snell et al.,
2017; Ravi and Larochelle, 2017), robotic control policy learning (Gupta et al., 2018; Clavera et al.,
2019) (see Figure 2.4), hyperparameter optimization (Antoniou et al., 2019; Schmidhuber et al.,
1997), meta-learning learning rules (Bengio et al., 1991, 1997; Miconi et al., 2018, 2019), abstract
reasoning (Barrett et al., 2018), and many more. For a larger overview of applications, we refer
interested readers to Hospedales et al. (2021).

2.2.3 The meta-learning field
As mentioned in the introduction, meta-learning is a broad area of research, as it encapsulates all
techniques that leverage prior learning experience to learn new tasks more quickly (Vanschoren, 2018).
We can classify two distinct communities in the field with a different focus: i) algorithm selection
and hyperparameter optimization for machine learning techniques, and ii) search for inductive bias
in deep neural networks. We will refer to these communities as group i) and group ii) respectively.
Now, we will give a brief description of the first field, and a historical overview of the second.
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Figure 2.4: Learning continuous robotic control tasks is an important application of deep meta-
learning techniques. Image taken from (Yu et al., 2019).

Group i) uses a more traditional approach, to select a suitable machine learning algorithm and
hyperparameters for a new data set D (Peng et al., 2002). This selection can for example be made by
leveraging prior model evaluations on various data sets D′, and by using the model which achieved
the best performance on the most similar data set (Vanschoren, 2018). Such traditional approaches
require (large) databases of prior model evaluations, for many different algorithms. This has led to
initiatives such as OpenML (Vanschoren et al., 2014), where researchers can share such information.
The usage of these systems would limit the freedom in picking the neural network architecture as
they would be constrained to using architectures that have been evaluated beforehand.

In contrast, group ii) adopts the view of a self-improving (neural) agent, which improves its learning
ability over time by finding a good inductive bias (a set of assumptions that guide predictions). We
now present a brief historical overview of developments in this field of deep meta-learning, based on
Hospedales et al. (2021).

Pioneering work was done by Schmidhuber (1987) and Hinton and Plaut (1987). Schmidhuber
developed a theory of self-referential learning, where the weights of a neural network can serve as
input to the model itself, which then predicts updates (Schmidhuber, 1987, 1993). In that same
year, Hinton and Plaut (1987) proposed to use two weights per neural network connection, i.e.,
slow and fast weights, which serve as long- and short-term memory respectively. Later came the
idea of meta-learning learning rules (Bengio et al., 1991, 1997). Meta-learning techniques that
use gradient-descent and backpropagation were proposed by Hochreiter et al. (2001) and Younger
et al. (2001). These two works have been pivotal to the current field of deep meta-learning, as the
majority of techniques rely on backpropagation, as we will see on our journey of contemporary deep
meta-learning techniques.
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Metric Model Optimization

Key idea Input similarity Internal task
representation

Optimize for fast
adaptation

Strength Simple and effective Flexible More robust generalizabil-
ity

pθ(Y |x, Dtr
Tj
)

∑
(xi,yi)∈Dtr

Tj

kθ(x,xi)yi fθ(x, D
tr
Tj
) fgφ(θ,Dtr

Tj
,L

Dtr
Tj

)
(x)

Table 2.2: High-level overview of the three deep meta-learning categories, i.e., i) metric-, ii) model-,
and iii) optimization-based techniques, and their main strengths and weaknesses. Recall that Tj is a
task, Dtr

Tj
the corresponding support set, kθ(x,xi) a kernel function returning the similarity between

the two inputs x and xi, yi are true labels for known inputs xi, θ are base-learner parameters, and
gφ is a (learned) optimizer with parameters φ.

2.2.4 Overview of the rest of this chapter

In the remainder of this chapter, we will look in more detail at individual meta-learning methods. As
indicated before, the techniques can be grouped into three main categories (Vinyals, 2017), namely
i) metric-, ii) model-, and iii) optimization-based methods. We will discuss them in that order.

To help give an overview of the methods, we draw your attention to the following figure and tables.
Table 2.2 summarizes the three categories, and provides key ideas, and strengths of the approaches.
The terms and technical details are explained more fully in the remainder of this chapter. Table 2.3
contains an overview of all techniques that are discussed further on.

2.3 Metric-based meta-learning

At a high level, the goal of metric-based techniques is to acquire—among others—meta-knowledge
ω in the form of a good feature space that can be used for various new tasks. In the context of
neural networks, this feature space coincides with the weights θ of the networks. Then, new tasks
can be learned by comparing new inputs to example inputs (of which we know the labels) in the
meta-learned feature space. The higher the similarity between a new input and an example, the
more likely it is that the new input will have the same label as the example input.

Metric-based techniques are a form of meta-learning as they leverage their prior learning experience
(meta-learned feature space) to ‘learn’ new tasks more quickly. Here, ‘learn’ is used in a non-standard
way since metric-based techniques do not make any network changes when presented with new tasks,
as they rely solely on input comparisons in the already meta-learned feature space. These input
comparisons are a form of non-parametric learning, i.e., new task information is not absorbed into
the network parameters.

More formally, metric-based learning techniques aim to learn a similarity kernel, or equivalently,
attention mechanism kθ (parameterized by θ), that takes two inputs x1 and x2, and outputs their
similarity score. Larger scores indicate larger similarity. Class predictions for new inputs x can then
be made by comparing x to example inputs xi, of which we know the true labels yi. The underlying
idea being that the larger the similarity between x and xi, the more likely it becomes that x also
has label yi.
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Name RL Key idea Bench.
Metric-based Input similarity -

Siamese nets ✗ Two-input, shared-weight, class identity network 1, 8

Matching nets ✗
Learn input embeddings for cosine-similarity weighted
predictions 1, 2

Prototypical nets ✗ Input embeddings for class prototype clustering 1, 2, 7
Relation nets ✗ Learn input embeddings and similarity metric 1, 2, 7

ARC ✗ LSTM-based input fusion through interleaved glimpses 1, 2

GNN ✗
Propagate label information to unlabeled inputs in a
graph 1, 2

Model-based Internal and stateful latent task representations -
RMLs ✓ Deploy Recurrent nets on RL problems -

MANNs ✗ External short-term memory module for fast learning 1

Meta nets ✓
Fast reparameterization of base-learner by distinct meta-
learner 1, 2

SNAIL ✓
Attention mechanism coupled with temporal convolu-
tions 1, 2

CNP ✗
Condition predictive model on embedded contextual task
data 1, 8

Neural stat. ✗ Similarity between latent task embeddings 1, 8

Opt.-based Optimize for fast task-specific adaptation -
LSTM optimizer ✗ RNN proposing weight updates for base-leaner 6, 8

LSTM ml. ✓ Embed base-learner parameters in cell state of LSTM 2
RL optimizer ✗ View optimization as RL problem 4, 6

MAML ✓ Learn initialization weights θ for fast adaptation 1, 2

iMAML ✓
Approx. higher-order gradients, independent of optimiza-
tion path 1, 2

Meta-SGD ✓ Learn both the initialization and updates 1, 2
Reptile ✓ Move initialization towards task-specific updated weights 1, 2
LEO ✗ Optimize in lower-dimensional latent parameter space 2, 3

Online MAML ✗ Accumulate task data for MAML-like training 4, 8

LLAMA ✗
Maintain probability distribution over post-update pa-
rameters θ′j

2

PLATIPUS ✗
Learn a probability distribution over weight initializa-
tions θ -

BMAML ✓
Learn multiple initializations Θ, jointly optimized by
SVGD 2

Diff. solvers ✗ Learn input embeddings for simple base-learners 1, 2, 3, 4, 5

Table 2.3: Overview of the discussed deep meta-learning techniques. The table is partitioned into
three sections, i.e., metric-, model-, and optimization-based techniques. All methods in one section
adhere to the key idea of its corresponding category, which is mentioned in bold font. The columns
RL and Bench show whether the techniques are applicable to reinforcement learning settings and
the used benchmarks for testing the performance of the techniques. Note that all techniques are
applicable to supervised learning, with the exception of RMLs. The benchmark column displays
which benchmarks from Section 2.2.2 were used in the paper proposing the technique. The used
coding scheme for this column is the following. 1: Omniglot, 2: miniImageNet, 3: tieredImageNet, 4:
CIFAR-100, 5: CIFAR-FS, 6: CIFAR-10, 7: CUB, 8: MNIST, “-": used other evaluation method that
are non-standard in deep meta-learning and thus not covered in Section 2.2.2. Used abbreviations:
“opt.": optimization, “diff.": differentiable, “bench.": benchmarks.
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Figure 2.5: Illustration of our metric-based example. The blue vector represents the new input from
the query set, whereas the red vectors are inputs from the support set which can be used to guide
our prediction for the new input.

Given a task Tj = (Dtr
Tj
, Dtest

Tj
) and an unseen input vector x ∈ Dtest

Tj
, a probability distribution over

classes Y is computed/predicted as a weighted combination of labels from the support set Dtr
Tj

, using
similarity kernel kθ, i.e.,

pθ(Y |x, Dtr
Tj
) =

∑
(xi,yi)∈Dtr

Tj

kθ(x,xi)yi. (2.7)

Importantly, the labels yi are assumed to be one-hot encoded, meaning that they are represented by
zero vectors with a ‘1’ on the position of the true class. For example, suppose there are five classes in
total, and our example x1 has true class 4. Then, the one-hot encoded label is y1 = [0, 0, 0, 1, 0]. Note
that the probability distribution pθ(Y |x, Dtr

Tj
) over classes is a vector of size |Y |, in which the i-th

entry corresponds to the probability that input x has class Yi (given the support set). The predicted
class is thus ŷ = argmaxi=1,2,...,|Y | pθ(Y |x, S)i, where pθ(Y |x, S)i is the computed probability that
input x has class Yi.

2.3.1 Example

Suppose that we are given a task Tj = (Dtr
Tj
, Dtest

Tj
). Furthermore, suppose that Dtr

Tj
= {([0,−4], 1),

([−2,−4], 2), ([−2, 4], 3), ([6, 0], 4)}, where a tuple denotes a pair (xi, yi). For simplicity, the example
will not use an embedding function, which maps example inputs onto an (more informative) embedding
space. Our query set only contains one example Dtest

Tj
= {([4, 0.5], y)}. Then, the goal is to predict

the correct label for new input [4, 0.5] using only examples in Dtr
Tj

. The problem is visualized in
Figure 2.5, where red vectors correspond to example inputs from our support set. The blue vector is
the new input that needs to be classified. Intuitively, this new input is most similar to the vector
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xi yi ||xi|| xi

||xi||
xi

||xi|| ·
x

||x||

[0,−4] [1, 0, 0, 0] 4 [0,−1] −0.12
[−2,−4] [0, 1, 0, 0] 4.47 [−0.48,−0.89] −0.58
[−2, 4] [0, 0, 1, 0] 4.47 [−0.48, 0.89] −0.37
[6, 0] [0, 0, 0, 1] 6 [1, 0] 0.99

Table 2.4: Example showing pair-wise input comparisons. Numbers were rounded to two decimals.

[6, 0], which means that we expect the label for the new input to be the same as that for [6, 0], i.e.,
4.

Suppose we use a fixed similarity kernel, namely the cosine similarity, i.e., k(x,xi) =
x·xT

i

||x||·||xi|| , where
||v|| denotes the length of vector v, i.e., ||v|| =

√
(
∑

n v
2
n). Here, vn denotes the n-th element of

placeholder vector v (substitute v by x or xi). We can now compute the cosine similarity between
the new input [4, 0.5] and every example input xi, as done in Table 2.4, where we used the facts that
||x|| = || [4, 0.5] || =

√
42 + 0.52 ≈ 4.03, and x

||x|| ≈
[4,0.5]
4.03 = [0.99, 0.12].

From this table and Equation 2.7, it follows that the predicted probability distribution pθ(Y |x, Dtr
Tj
) =

−0.12y1−0.58y2−0.37y3+0.99y4 = −0.12[1, 0, 0, 0]−0.58[0, 1, 0, 0]−0.37[0, 0, 1, 0]+0.99[0, 0, 0, 1] =
[−0.12,−0.58,−0.37, 0.99]. Note that this is not really a probability distribution. That would require
normalization such that every element is at least 0 and the sum of all elements is 1. For the sake of
this example, we do not perform this normalization, as it is clear that class 4 (the class of the most
similar example input [6, 0]) will be predicted.

One may wonder why such techniques are meta-learners, for we could take any single data set D and
use pair-wise comparisons to compute predictions. At the outer-level, metric-based meta-learners are
trained on a distribution of different tasks, in order to learn (among others) a good input embedding
function. This embedding function facilitates inner-level learning, which is achieved through pair-wise
comparisons. As such, one learns an embedding function across tasks to facilitate task-specific
learning, which is equivalent to “learning to learn", or meta-learning.

After this introduction to metric-based methods, we will now cover some key metric-based tech-
niques.

2.3.2 Siamese neural networks

A Siamese neural network (Koch et al., 2015) consists of two neural networks fθ that share the
same weights θ. Siamese neural networks take two inputs x1,x2, and compute two hidden states
fθ(x1), fθ(x2), corresponding to the activation patterns in the final hidden layers. These hidden
states are fed into a distance layer, which computes a distance vector d = |fθ(x1)− fθ(x2)|, where di
is the absolute distance between the i-th elements of fθ(x1) and fθ(x2). From this distance vector,
the similarity between x1,x2 is computed as σ(αTd), where σ is the sigmoid function (with output
range [0,1]), and α is a vector of free weighting parameters, determining the importance of each di.
This network structure can be seen in Figure 2.6.

Koch et al. (2015) applied this technique to few-shot image recognition in two stages. In the first stage,
they train the twin network on an image verification task, where the goal is to output whether two
input images x1 and x2 have the same class. The network is thus stimulated to learn discriminative
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Figure 2.6: Example of a Siamese neural network. Source: Koch et al. (2015).

features. In the second stage, where the model is confronted with a new task, the network leverages
its prior learning experience. That is, given a task Tj = (Dtr

Tj
, Dtest

Tj
), and previously unseen input

x ∈ Dtest
Tj

, the predicted class ŷ is equal to the label yi of the example (xi, yi) ∈ Dtr
Tj

which yields
the highest similarity score to x. In contrast to other techniques mentioned further in this section,
Siamese neural networks do not directly optimize for good performance across tasks (consisting of
support and query sets). However, they do leverage learned knowledge from the verification task to
learn new tasks quicker.

In summary, Siamese neural networks are a simple and elegant approach to perform few-shot learning.
However, they are not readily applicable outside the supervised learning setting.

2.3.3 Matching networks

Matching networks (Vinyals et al., 2016) build upon the idea that underlies Siamese neural networks
(Koch et al., 2015). That is, they leverage pair-wise comparisons between the given support set
Dtr

Tj
= {(xi, yi)}mi=1 (for a task Tj), and new inputs x ∈ Dtest

Tj
from the query set which we want to

classify. However, instead of assigning the class yi of the most similar example input xi, matching
networks use a weighted combination of all example labels yi in the support set, based on the
similarity of inputs xi to new input x. More specifically, predictions are computed as follows:
ŷ =

∑m
i=1 a(x,xi)yi, where a is a non-parametric (non-trainable) attention mechanism, or similarity

kernel. This classification process is shown in Figure 2.7. In this figure, the input to fθ has to be
classified, using the support set Dtr

Tj
(input to gθ).

The attention that is used consists of a softmax over the cosine similarity c between the input
representations, i.e.,

a(x,xi) =
ec(fϕ(x),gφ(xi))∑m
j=1 e

c(fϕ(x),gφ(xj))
, (2.8)

where fϕ and gφ are neural networks, parameterized by ϕ and φ, that map raw inputs to a (lower-
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Figure 2.7: Architecture of matching networks. Source: Vinyals et al. (2016).

dimensional) latent vector, which corresponds to the output of the final hidden layer of a neural
network. As such, the neural networks act as embedding functions. The larger the cosine similarity
between the embeddings of x and xi, the larger a(x,xi), and thus the influence of label yi on the
predicted label ŷ for input x.

Vinyals et al. (2016) propose two main choices for the embedding functions. The first is to use a single
neural network, granting us θ = ϕ = φ and thus fϕ = gφ. This setup is the default form of matching
networks, as shown in Figure 2.7. The second choice is to make fϕ and gφ dependent on the support
set Dtr

Tj
using Long Short-Term Memory networks (LSTMs). In that case, fϕ is represented by an

attention LSTM, and gφ by a bidirectional one. This choice for embedding functions is called Full
Context Embeddings (FCE), and yielded an accuracy improvement of roughly 2% on miniImageNet
compared to the regular matching networks, indicating that task-specific embeddings can aid the
classification of new data points from the same distribution.

Matching networks learn a good feature space across tasks for making pair-wise comparisons between
inputs. In contrast to Siamese neural networks (Koch et al., 2015), this feature space (given by
weights θ) is learned across tasks, instead of on a distinct verification task.

In summary, matching networks are an elegant and simple approach to metric-based meta-learning.
However, these networks are not readily applicable outside of supervised learning settings, and suffer
from performance degradation when label distributions are biased (Vinyals et al., 2016).

2.3.4 Prototypical networks

Just like Matching nets (Vinyals et al., 2016), prototypical nets (Snell et al., 2017) base their class
predictions on the entire support set Dtr

Tj
. However, instead of computing the similarity between

new inputs and examples in the support set, prototypical nets only compare new inputs to class
prototypes (centroids), which are single vector representations of classes in some embedding space.
Since there are less (or equal) class prototypes than the number of examples in the support set, the
amount of required pair-wise comparisons decreases, saving computational costs.

The underlying idea of class prototypes is that for a task Tj , there exists an embedding function that
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Figure 2.8: Prototypical networks for case of few-shot learning. The ck are class prototypes for class
k which are computed by averaging the representations of inputs (colored circles) in the support
set. Note that the representation space is partitioned into three disjoint areas, where each area
corresponds to one class. The class with the closest prototype to the new input x in the query set is
then given as prediction. Source: Snell et al. (2017).

maps the support set onto a space where class instances cluster nicely around the corresponding class
prototypes (Snell et al., 2017). Then, for a new input x, the class of the prototype nearest to that
input will be predicted. As such, prototypical nets perform nearest centroid/prototype classification
in a meta-learned embedding space. This is visualized in Figure 2.8.

More formally, given a distance function d : X×X → [0,+∞) (e.g. Euclidean distance) and embedding
function fθ, parameterized by θ, prototypical networks compute class probabilities pθ(Y |x, Dtr

Tj
) as

follows

pθ(y = k|x, Dtr
Tj
) =

exp[−d(fθ(x), ck)]∑
yi
exp[−d(fθ(x), cyi)]

, (2.9)

where ck is the prototype/centroid for class k and yi are the classes in the support set Dtr
Tj

. Here,
a class prototype for class k is defined as the average of all vectors xi in the support set such that
yi = k. Thus, classes with prototypes that are nearer to the new input x obtain larger probability
scores.

Snell et al. (2017) found that the squared Euclidean distance function as d gave rise to the best
performance. With that distance function, prototypical networks can be seen as linear models. To see
this, note that −d(fθ(x), ck) = −||fθ(x)− ck||2 = −fθ(x)T fθ(x) + 2cTk fθ(x)− cTk ck. The first term
does not depend on the class k, and does thus not affect the classification decision. The remainder
can be written as wT

k fθ(x) + bk, where wk = 2ck and bk = −cTk ck. Note that this is linear in the
output of network fθ, not linear in the input of the network x. Also, Snell et al. (2017) show that
prototypical nets (coupled with Euclidean distance) are equivalent to matching nets in one-shot
learning settings, as every example in the support set will be its own prototype.

In short, prototypical nets save computational costs by reducing the required number of pair-wise
comparisons between new inputs and the support set, by adopting the concept of class prototypes.
Additionally, prototypical nets were found to outperform matching nets (Vinyals et al., 2016) in 5-way,
k-shot learning for k = 1, 5 on Omniglot (Lake et al., 2011) and miniImageNet (Vinyals et al., 2016),
even though they do not use complex task-specific embedding functions. Despite these advantages,
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Figure 2.9: Relation network architecture. First, the embedding network fφ embeds all inputs from
the support set Dtr

Tj
(the five example inputs on the left), and the query input (below the fφ block).

All support set embeddings fφ(xi) are then concatenated to the query embedding fφ(x). These
concatenated embeddings are passed into a relation network gϕ, which computes a relation score for
every pair (xi,x). The class of the input xi that yields the largest relation score gϕ([fφ(x), fφ(xi)])
is then predicted. Source: Sung et al. (2018).

prototypical nets are not readily applicable outside of supervised learning settings.

2.3.5 Relation networks

In contrast to previously discussed metric-based techniques, Relation networks (Sung et al., 2018)
employ a trainable similarity metric, instead of a pre-defined one (e.g. cosine similarity as used in
matching nets (Vinyals et al., 2016)). More specifically, matching nets consist of two chained, neural
network modules: the embedding network/module fφ which is responsible for embedding inputs, and
the relation network gϕ which computes similarity scores between new inputs x and example inputs
xi of which we know the labels. A classification decision is then made by picking the class of the
example input which yields the largest relation score (or similarity). Note that Relation nets thus do
not use the idea of class prototypes, and simply compare new inputs x to all example inputs xi in
the support set, as done by, e.g., matching networks (Vinyals et al., 2016).

More formally, we are given a support set Dtr
Tj

with some examples (xi, yi), and a new (previously
unseen) input x. Then, for every combination (x,xi), the Relation network produces a concatenated
embedding [fφ(x), fφ(xi)], which is vector obtained by concatenating the respective embeddings of x
and xi. This concatenated embedding is then fed into the relation module gϕ. Finally, gϕ computes
the relation score between x and xi as

ri = gϕ([fφ(x), fφ(xi)]). (2.10)

The predicted class is then ŷ = yargmaxi ri . This entire process is shown in Figure 2.9. Remarkably
enough, Relation nets use the Mean-Squared Error (MSE) of the relation scores, rather than the more
standard cross-entropy loss. The MSE is then propagated backwards through the entire architecture
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(Figure 2.9).

The key advantage of Relation nets is their expressive power, induced by the usage of a trainable
similarity function. This expressivity makes this technique very powerful. As a result, it yields better
performance than previously discussed techniques that use a fixed similarity metric.

2.3.6 Graph neural networks

Graph neural networks (Garcia and Bruna, 2017) use a more general and flexible approach than
previously discussed techniques for N -way, k-shot classification. As such, graph neural networks
subsume Siamese (Koch et al., 2015) and prototypical networks (Snell et al., 2017). The graph neural
network approach represents each task Tj as a fully-connected graph G = (V,E), where V is a set of
nodes/vertices and E a set of edges connecting nodes. In this graph, nodes vi correspond to input
embeddings fθ(xi), concatenated with their one-hot encoded labels yi, i.e., vi = [fθ(xi), yi]. For
inputs x from the query set (for which we do not have the labels), a uniform prior over all N possible
labels is used: y = [ 1N , . . . , 1

N ]. Thus, each node contains an input and label section. Edges are
weighted links that connect these nodes.

The graph neural network then propagates information in the graph using a number of local operators.
The underlying idea is that label information can be transmitted from nodes of which we do have
the labels, to nodes for which we have to predict labels. Which local operators are used, is out of
scope for this chapter, and the reader is referred to Garcia and Bruna (2017) for details.

By exposing the graph neural network to various tasks Tj , the propagation mechanism can be altered
to improve the flow of label information in such a way that predictions become more accurate. As
such, in addition to learning a good input representation function fθ, graph neural networks also
learn to propagate label information from labeled examples to unlabeled inputs.

Graph neural networks achieve good performance in few-shot settings (Garcia and Bruna, 2017), and
are also applicable in semi-supervised and active learning settings.

2.3.7 Attentive recurrent comparators

Attentive recurrent comparators (Shyam et al., 2017) differ from previously discussed techniques as
they do not compare inputs as a whole, but by parts. This approach is inspired by how humans
would make a decision concerning the similarity of objects. That is, we shift our attention from one
object to the other, and move back and forth to take glimpses of different parts of both objects.
In this way, information of two objects is fused from the beginning, whereas other techniques (e.g.,
matching networks (Vinyals et al., 2016) and graph neural networks (Garcia and Bruna, 2017)) only
combine information at the end (after embedding both images) (Shyam et al., 2017).

Given two inputs xi and x, we feed them in interleaved fashion repeatedly into a recurrent neural
network (controller): xi,x, . . . ,xi,x. Thus, the image at time step t is given by It = xi if t is even
else x. Then, at each time step t, the attention mechanism focuses on a square region of the current
image: Gt = attend(It,Ωt), where Ωt = Wght−1 are attention parameters, which are computed from
the previous hidden state ht−1. The next hidden state ht+1 = RNN(Gt, ht−1) is given by the glimpse
at time t, i.e., Gt, and the previous hidden state ht−1. The entire sequence consists of g glimpses per
image. After this sequence is fed into the recurrent neural network (indicated by RNN(◦)), the final
hidden state h2g is used as combined representation of xi relative to x. This process is summarized
in Figure 2.10. Classification decisions can then be made by feeding the combined representations
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Figure 2.10: Processing in an attentive recurrent comparator. At every time step, the model takes
a glimpse of a part of an image and incorporates this information into the hidden state ht. The
final hidden state after taking various glimpses of a pair of images is then used to compute a class
similarity score. Source: Shyam et al. (2017).

into a classifier. Optionally, the combined representations can be processed by bi-directional LSTMs
before passing them to the classifier.

The attention approach is biologically inspired, and biologically plausible. A downside of attentive
recurrent comparators is the higher computational cost, while the performance is often not better than
less biologically plausible techniques, such as graph neural networks (Garcia and Bruna, 2017).

2.3.8 Metric-based techniques, in conclusion

In this section, we have seen various metric-based techniques. The metric-based techniques meta-learn
an informative feature space that can be used to compute class predictions based on input similarity
scores. Figure 2.11 shows the relationships between the various metric-based techniques that we have
covered.

As we can see, Siamese networks (Koch et al., 2015) mark the beginning of metric-based, deep
meta-learning techniques in few-shot learning settings. They are the first to use the idea of predicting
classes by comparing inputs from the support and query sets. This idea was generalized in GNNs
(Hamilton et al., 2017; Garcia and Bruna, 2017) where the information flow between support and
query inputs is parametric and thus more flexible. Matching networks (Vinyals et al., 2016) are
directly inspired by Siamese networks as they use the same core idea (comparing inputs for making
predictions), but directly train in the few-shot setting and use cosine similarity as similarity function.
Thus, the auxiliary, binary classification task used by Siamese networks is left out, and matching
networks directly train on tasks. Prototypical networks (Snell et al., 2017) increase the robustness of
input comparisons by comparing every query set input with a class prototype instead of individual
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Figure 2.11: The relationships between the covered metric-based meta-learning techniques.

support set examples. This reduces the number of required input comparisons for a single query
input to N instead of k · N . Relation networks (Sung et al., 2018) replace the fixed, pre-defined
similarity metrics used in matching and prototypical networks by a neural network, which allows
for learning a domain-specific similarity function. Lastly, ARCs (Shyam et al., 2017) take a more
biologically plausible approach by not comparing entire inputs but by taking multiple interleaved
glimpses at various parts of the inputs that are being compared.

Key advantages of these metric-based techniques are that i) the underlying idea of similarity-based
predictions is conceptually simple, and ii) they can be fast at test-time when tasks are small, as the
networks do not need to make task-specific adjustments. However, when tasks at meta-test time
become more distant from the tasks that were used at meta-train time, metric-learning techniques
are unable to absorb new task information into the network weights. Consequently, performance may
degrade.

Furthermore, when tasks become larger, pair-wise comparisons may become prohibitively expensive.
Lastly, most metric-based techniques rely on the presence of labeled examples, which make them
inapplicable outside of supervised learning settings.

2.4 Model-based meta-learning
A different approach to deep meta-learning is the model-based approach. On a high level, model-
based techniques rely upon an adaptive, internal state, in contrast to metric-based techniques, which
generally use a fixed neural network at test-time.

More specifically, model-based techniques maintain a stateful, internal representation of a task. When
presented with a task, a model-based neural network processes the support set in sequential fashion.
At every time step, an input enters, and alters the internal state of the model. Thus, the internal
state can capture relevant task-specific information, which can be used to make predictions for new
inputs.

Because the predictions are based on internal dynamics that are hidden from the outside, model-based
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techniques are also called black-boxes. Information from previous inputs must be remembered, which
is why model-based techniques have a memory component, either in- or externally.

Recall that the mechanics of metric-based techniques were limited to pair-wise input comparisons.
This is not the case for model-based techniques, where the human designer has the freedom to choose
the internal dynamics of the algorithm. As a result, model-based techniques are not restricted to
meta-learning good feature spaces, as they can also learn internal dynamics, used to process and
predict input data of tasks.

More formally, given a support set Dtr
Tj

corresponding to task Tj , model-based techniques compute a
class probability distribution for a new input x as

pθ(Y |x, Dtr
Tj
) = fθ(x, D

tr
Tj
), (2.11)

where f represents the black-box neural network model, and θ its parameters.

2.4.1 Example
Using the same example as in Section 2.3, suppose we are given a task support set Dtr

Tj
= {([0,−4], 1),

([−2,−4], 2), ([−2, 4], 3), ([6, 0], 4)}, where a tuple denotes a pair (xi, yi). Furthermore, suppose our
query set only contains one example Dtest

Tj
= {([4, 0.5], 4)}. This problem has been visualized in

Figure 2.5 (in Section 2.3). For the sake of the example, we do not use an input embedding function:
our model will operate on the raw inputs of Dtr

Tj
and Dtest

Tj
. As an internal state, our model uses

an external memory matrix M ∈ R4×(2+1), with four rows (one for each example in our support
set), and three columns (the dimensionality of input vectors, plus one dimension for the correct
label). Our model proceeds to process the support set in sequential fashion, reading the examples
from Dtr

Tj
one by one, and by storing the i-th example in the i-th row of the memory module. After

processing the support set, the memory matrix contains all examples, and as such, serves as internal
task representation.

Given the new input [4, 0.5], our model could use many different techniques to make a prediction
based on this representation. For simplicity, assume that it computes the dot product between x, and
every memory M(i) (the 2-D vector in the i-th row of M , ignoring the correct label), and predicts the
class of the input which yields the largest dot product. This would produce scores −2,−10,−6, and
24 for the examples in Dtr

Tj
respectively. Since the last example [6, 0] yields the largest dot product,

we predict that class, i.e., 4.

Note that this example could be seen as a metric-based technique where the dot product is used
as similarity function. However, the reason that this technique is model-based is that it stores the
entire task inside a memory module. This example was deliberately easy for illustrative purposes.
More advanced and successful techniques have been proposed, which we will now cover.

2.4.2 Recurrent meta-learners
Recurrent meta-learners (Duan et al., 2016; Wang et al., 2016) are, as the name suggests, meta-learners
based on recurrent neural networks. The recurrent network serves as dynamic task embedding storage.
These recurrent meta-learners were specifically proposed for reinforcement learning problems, hence
we will explain them in that setting.

The recurrence is implemented by e.g. an LSTM (Wang et al., 2016) or a GRU (Duan et al., 2016).
The internal dynamics of the chosen Recurrent Neural Network (RNN) allows for fast adaptation
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Figure 2.12: Workflow of recurrent meta-learners in reinforcement learning contexts. As mentioned
in Section 2.2.1, st, rt, and dt denote the state, reward, and termination flag at time step t. ht refers
to the hidden state at time t. Source: Duan et al. (2016).

to new tasks, while the algorithm used to train the recurrent net gradually accumulates knowledge
about the task structure, where each task is modelled as an episode (or set of episodes).

The idea of recurrent meta-learners is quite simple. That is, given a task Tj , we simply feed the
(potentially processed) environment variables [st+1, at, rt, dt] (see Section 2.2.1) into an RNN at every
time step t. Recall that s, a, r, d denote the state, action, reward, and termination flag respectively.
At every time step t, the RNN outputs an action and a hidden state. Conditioned on its hidden state
ht, the network outputs an action at. The goal is to maximize the expected reward in each trial. See
Figure 2.12 for a visual depiction. From this figure, it also becomes clear why these techniques are
model-based. That is, they embed information from previously seen inputs in the hidden state.

Recurrent meta-learners have shown to perform almost as well as asymptotically optimal algorithms
on simple reinforcement learning tasks (Wang et al., 2016; Duan et al., 2016). However, their
performance degrades in more complex settings, where temporal dependencies can span a longer
horizon. Making recurrent meta-learners better at such complex tasks is a direction for future
research.

2.4.3 Memory-augmented neural networks (MANNs)

The key idea of memory-augmented neural networks (Santoro et al., 2016) is to enable neural networks
to learn quickly with the help of an external memory. The main controller (the recurrent neural
network interacting with the memory) then gradually accumulates knowledge across tasks, while
the external memory allows for quick task-specific adaptation. For this, Santoro et al. (2016) used
Neural Turing Machines (Graves et al., 2014). Here, the controller is parameterized by θ and acts as
the long-term memory of the memory-augmented neural network, while the external memory module
is the short-term memory.

The workflow of memory-augmented neural networks is displayed in Figure 2.13. Note that the data
from a task is processed as a sequence, i.e., data are fed into the network one by one. The support
set is fed into the memory-augmented neural network first. Afterwards, the query set is processed.
During the meta-train phase, training tasks can be fed into the network in arbitrary order. At time
step t, the model receives input xt with the label of the previous input, i.e., yt−1. This was done to
prevent the network from mapping class labels directly to the output (Santoro et al., 2016).
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-

Figure 2.13: Workflow of memory-augmented neural networks. Here, an episode corresponds to a
given task Tj . After every episode, the order of labels, classes, and samples should be shuffled to
minimize dependence on arbitrarily assigned orders. Source: Santoro et al. (2016).

Figure 2.14: Controller-memory interaction in memory-augmented neural networks. Source: Santoro
et al. (2016).

The interaction between the controller and memory is visualized in Figure 2.14. The idea is that
the external memory module, containing representations of previously seen inputs, can be used to
make predictions for new inputs. In short, previously obtained knowledge is leveraged to aid the
classification of new inputs. Note that neural networks also attempt to do this, however, their prior
knowledge is slowly accumulated into the network weights, while an external memory module can
directly store such information.

Given an input xt at time t, the controller generates a key kt, which can be stored in memory
matrix M and can be used to retrieve previous representations from memory matrix M . When
reading from memory, the aim is to produce a linear combination of stored keys in memory matrix
M , giving greater weight to those which have a larger cosine similarity with the current key kt.
More specifically, a read vector wr

t is created, in which each entry i denotes the cosine similarity
between key kt and the memory (from a previous input) stored in row i, i.e., Mt(i). Then, the
representation rt =

∑
i w

r
t (i)M(i) is retrieved, which is simply a linear combination of all keys (i.e.,

rows) in memory matrix M .

Predictions are made as follows. Given an input xt, memory-augmented neural networks use the
external memory to compute the corresponding representation rt, which could be fed into a softmax
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layer, resulting in class probabilities. Across tasks, memory-augmented neural networks learn a good
input embedding function fθ and classifier weights, which can be exploited when presented with new
tasks.

To write input representations to memory, Santoro et al. (2016) propose a new mechanism called
Least Recently Used Access (LRUA). LRUA either writes to the least, or most recently used memory
location. In the former case, it preserves recent memories, and in the latter it updates recently
obtained information. The writing mechanism works by keeping track of how often every memory
location is accessed in a usage vector wu

t , which is updated at every time step according to the
following update rule: wu

t := γwu
t−1 +w

r
t +w

w
t , where superscripts u,w and r refer to usage, write

and read vectors, respectively. In words, the previous usage vector is decayed (using parameter γ),
while current reads (wr

t ) and writes (ww
t ) are added to the usage. Let n be the total number of reads

to memory, and ℓu(n) (ℓu for ‘least used’) be the n-th smallest value in the usage vector wu
t . Then,

the least-used weights are defined as follows:

wℓu
t (i) =

{
0 if wu

t (i) > ℓu(n)

1 else
.

Then, the write vector ww
t is computed as ww

t = σ(α)wr
t−1+(1−σ(α))wℓu

t−1, where α is a parameter
that interpolates between the two weight vectors. As such, if σ(α) = 1, we write to the most recently
used memory, whereas when σ(α) = 0, we write to the least recently used memory locations. Finally,
writing is performed as follows: Mt(i) := Mt−1(i) + ww

t (i)kt, for all i.

In summary, memory-augmented neural networks (Santoro et al., 2016) combine external memory
and a neural network to achieve meta-learning. The interaction between a controller, with long-term
memory parameters θ, and memory M , may also be interesting for studying human meta-learning
(Santoro et al., 2016). In contrast to many metric-based techniques, this model-based technique
is applicable to both classification and regression problems. A downside of this approach is the
architectural complexity.

2.4.4 Meta networks

Meta networks are divided into two distinct subsystems (consisting of neural networks), i.e., the base-
and meta-learner (whereas in memory-augmented neural networks the base- and meta-components
are intertwined). The base-learner is responsible for performing tasks, and for providing the meta-
learner with meta-information, such as loss gradients. The meta-learner can then compute fast
task-specific weights for itself and the base-learner, such that it can perform better on the given task
Tj = (Dtr

Tj
, Dtest

Tj
). This workflow is depicted in Figure 2.15.

The meta-learner consists of neural networks uϕ,mφ, and dψ. Network uϕ is used as input represen-
tation function. Networks dψ and mφ are used to compute task-specific weights ϕ∗ and example-level
fast weights θ∗. Lastly, bθ is the base-learner which performs input predictions. Note that we used
the term fast-weights throughout, which refers to task- or input-specific versions of slow (initial)
weights.

In similar fashion to memory-augmented neural networks (Santoro et al., 2016), meta networks
(Munkhdalai and Yu, 2017) also leverage the idea of an external memory module. However, meta
networks use the memory for a different purpose. The memory stores for each observation xi in the
support set two components, i.e., its representation ri and the fast weights θ∗i . These are then used
to compute a attention-based representation and fast weights for new inputs, respectively.
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Figure 2.15: Architecture of a Meta Network. Source: Munkhdalai and Yu (2017).

The pseudocode for meta networks is displayed in Algorithm 1. First, a sample of the support set is
created (line 1), which is used to compute task-specific weights ϕ∗ for the representation network
uϕ (lines 2-5). Note that uϕ has two tasks, i) it should compute a representation for inputs (xi

(line 10 and 15), and ii) it needs to make predictions for inputs (xi, in order to compute a loss (line
3). To achieve both goals, a conventional neural network can be used that makes class predictions.
The states of the final hidden layer are then used as representation. Typically, the cross entropy is
calculated over the predictions of representation network uϕ. When there are multiple examples per
class in the support set, an alternative is to use a contrastive loss function (Munkhdalai and Yu,
2017).

Then, meta networks iterate over every example (xi, yi) in the support set Dtr
Tj

. The base-learner bθ
attempts to make class predictions for these examples, resulting in loss values Li (line 7-8). The
gradients of these losses are used to compute fast weights θ∗ for example i (line 8), which are then
stored in the i-th row of memory matrix M (line 9). Additionally, input representations ri are
computed and stored in memory matrix R (lines 10-11).

Now, meta networks are ready to address the query set Dtest
Tj

. They iterate over every example
(x, y), and compute a representation r of it (line 15). This representation is matched against the
representations of the support set, which are stored in memory matrix R. This matching gives us
a similarity vector a, where every entry k denotes the similarity between input representation r
and the k-th row in memory matrix R, i.e., R(k) (line 16). A softmax over this similarity vector is
performed to normalize the entries. The resulting vector is used to compute a linear combination of
weights that were generated for inputs in the support set (line 17). These weights θ∗ are specific for
input x in the query set, and can be used by the base-learner b to make predictions for that input
(line 18). The observed error is added to the task loss. After the entire query set is processed, all
involved parameters can be updated using backpropagation (line 20).

Note that some neural networks use both slow- and fast-weights at the same time. Munkhdalai and
Yu (2017) use a so-called augmentation setup for this, as depicted in Figure 2.16.
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Algorithm 1 Meta networks, by Munkhdalai and Yu (2017)

1: Sample S = {(xi, yi) ∽ Dtr
Tj
}Ti=1 from the support set

2: for (xi, yi) ∈ S do
3: Li = error(uϕ(xi), yi)
4: end for
5: ϕ∗ = dψ({∇ϕLi}Ti=1)
6: for (xi, yi) ∈ Dtr

Tj
do

7: Li = error(bθ(xi), yi)
8: θ∗i = mφ(∇θLi)
9: Store θ∗i in i-th position of example-level weight memory M

10: ri = uϕ,ϕ∗(xi)
11: Store ri in i-th position of representation memory R
12: end for
13: Ltask = 0
14: for (x, y) ∈ Dtest

Tj
do

15: r = uϕ,ϕ∗(x)
16: a = attention(R, r) ▷ ak is the cosine similarity between r and R(k)
17: θ∗ = softmax(a)TM
18: Ltask = Ltask + error(bθ,θ∗(x), y)
19: end for
20: Update Θ = {θ,ϕ,ψ,φ} using ∇ΘLtask

In short, meta networks rely on a reparameterization of the meta- and base-learner for every task.
Despite the flexibility and applicability to both supervised and reinforcement learning settings, the
approach is quite complex. It consists of many components, each with its own set of parameters,
which can be a burden on memory-usage and computation time. Additionally, finding the correct
architecture for all the involved components can be time consuming.

2.4.5 Simple neural attentive meta-learner (SNAIL)
Instead of an external memory matrix, SNAIL (Mishra et al., 2018) relies on a special model
architecture to serve as memory. Mishra et al. (2018) argue that it is not possible to use Recurrent
Neural Networks for this, as they have limited memory capacity, and cannot pinpoint specific prior
experiences (Mishra et al., 2018). Hence, SNAIL uses a different architecture, consisting of 1D
temporal convolutions (Oord et al., 2016) and a soft attention mechanism (Vaswani et al., 2017).
The temporal convolutions allow for ‘high band-width’ memory access, and the attention mechanism
allows to pinpoint specific experiences. Figure 2.17 visualizes the architecture and workflow of SNAIL
for supervised learning problems. From this figure, it becomes clear why this technique is model-based.
That is, model outputs are based upon the internal state, computed from earlier inputs.

SNAIL consists of three building blocks. The first is the DenseBlock, which applies a single 1D
convolution to the input, and concatenates (in the feature/horizontal direction) the result. The
second is a TCBlock, which is simply a series of DenseBlocks with exponentially increasing dilation
rate of the temporal convolutions (Mishra et al., 2018). Note that the dilation is nothing but the
temporal distance between two nodes in a network. For example, if we use a dilation of 2, a node at
position p in layer L will receive the activation from node p− 2 from layer L− 1. The third block is
the AttentionBlock, which learns to focus on the important parts of prior experience.
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Figure 2.16: Layer augmentation setup used to combine slow and fast weights. Source: Munkhdalai
and Yu (2017).

In similar fashion to memory-augmented neural networks (Santoro et al., 2016) (Section 2.4.3),
SNAIL also processes task data in sequence, as shown in Figure 2.17. However, the input at time t
is accompanied with the label at time t, instead of t − 1 (as was the case for memory-augmented
neural networks). SNAIL learns internal dynamics from seeing various tasks, so that it can make
good predictions on the query set, conditioned upon the support set.

A key advantage of SNAIL is that it can be applied to both supervised and reinforcement learning
tasks. In addition, it achieves good performance compared to previously discussed techniques. A
downside of SNAIL is that finding the correct architecture of TCBlocks and DenseBlocks can be
time consuming.

2.4.6 Conditional neural processes (CNPs)

In contrast to previous techniques, a conditional neural process (CNP) (Garnelo et al., 2018) does not
rely on an external memory module. Instead, it aggregates the support set into a single aggregated
latent representation. The general architecture is shown in Figure 2.18. As we can see, the conditional
neural process operates in three phases on task Tj . First, it observes the support set Dtr

Tj
, including

the ground-truth outputs yi. Examples (xi, yi) ∈ Dtr
Tj

are embedded using a neural network hθ into
representations ri. Second, these representations are aggregated using operator a to produce a single
representation r of Dtr

Tj
(hence it is model-based). Third, a neural network gϕ processes this single

representation r, new inputs x, and produces predictions ŷ.

Let the entire conditional neural process model be denoted by QΘ, where Θ is a set of all involved
parameters {θ,ϕ}. The training process is different compared to other techniques. Let xTj and yTj

denote all inputs and corresponding outputs in Dtr
Tj

. Then, the first ℓ ∽ U(0, . . . , k ·N − 1) examples
in Dtr

Tj
are used as a conditioning set Dc

Tj
(effectively splitting the support set in a true training set

and a validation set). Given a value of ℓ, the goal is to maximize the log likelihood (or minimize the
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Figure 2.17: Architecture and workflow of SNAIL for supervised and reinforcement learning settings.
The input layer is red. Temporal Convolution blocks are orange; attention blocks are green. Source:
Mishra et al. (2018).

negative log likelihood) of the labels yTj
in the entire support set Dtr

Tj

L(Θ) = −ETj∽p(T )

[
Eℓ∽U(0,...,k·N−1)

(
QΘ(yTj

|Dc
Tj
,xTj

)
)]

. (2.12)

Conditional neural processes are trained by repeatedly sampling various tasks and values of ℓ, and
propagating the observed loss backwards.

In summary, conditional neural processes use compact representations of previously seen inputs to
aid the classification of new observations. Despite its simplicity and elegance, a disadvantage of this
technique is that it is often outperformed in few-shot settings by other techniques such as matching
networks (Vinyals et al., 2016) (see Section 2.3.3).

2.4.7 Neural statistician

A neural statistician (Edwards and Storkey, 2017) differs from earlier approaches as it learns to
compute summary statistics, or meta-features, of data sets in an unsupervised manner. These
latent embeddings (making the approach model-based) can then later be used for making predictions.
Despite the broad applicability of the model, we discuss it in the context of deep meta-learning.

A neural statistician performs both learning and inference. In the learning phase, the model attempts
to produce generative models P̂i for every data set Di. The key assumption that is made by Edwards
and Storkey (2017) is that there exists a generative process Pi, which conditioned on a latent context
vector ci, can produce data set Di. At inference time, the goal is to infer a (posterior) probability
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Figure 2.18: Schematic view of how conditional neural processes work. Here, h denotes a network
outputting a representation for a observation, a denotes an aggregation function for these representa-
tions, and g denotes a neural network that makes predictions for unlabelled observations, based on
the aggregated representation. Source: Garnelo et al. (2018).

Figure 2.19: Neural statistician architecture. Edges are neural networks. All incoming inputs to a
node are concatenated.

distribution over the context q(c|D).

The model uses a variational autoencoder, which consists of an encoder and decoder. The encoder is
responsible for producing a distribution over latent vectors z: q(z|x;ϕ), where x is an input vector,
and ϕ are the encoder parameters. The encoded input z, which is often of lower dimensionality
than the original input x, can then be decoded by the decoder p(x|z;θ). Here, θ are the parameters
of the decoder. To capture more complex patterns in data sets, the model uses multiple latent
layers z1, ...,zL, as shown in Figure 2.19. Given this architecture, the posterior over c and z1, ..,zL
(shorthand z1:L) is given by

q(c, z1:L|D;ϕ) = q(c|D;ϕ)
∏
x∈D

q(zL|x, c;ϕ)
L−1∏
i=1

q(zi|zi+1,x, c;ϕ). (2.13)

The neural statistician is trained to minimize a three-component loss function, consisting of the
reconstruction loss (how well it models the data), context loss (how well the inferred context
q(c|D;ϕ) corresponds to the prior P (c), and latent loss (how well the inferred latent variables zi are
modelled).
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This model can be applied to N -way, few-shot learning as follows. Construct N data sets for every
of the N classes, such that one data set contains only examples of the same class. Then, the neural
statistician is provided with a new input x, and has to predict its class. It computes a context
posterior Nx = q(c|x;ϕ) depending on new input x. In similar fashion, context posteriors are
computed for all of the data sets Ni = q(c|Di;ϕ). Lastly, it assigns the label i such that the difference
between Ni and Nx is minimal.

In summary, the neural statistician (Edwards and Storkey, 2017) allows for quick learning on new
tasks through data set modeling. Additionally, it is applicable to both supervised and unsupervised
settings. A downside is that the approach requires many data sets to achieve good performance
(Edwards and Storkey, 2017).

2.4.8 Model-based techniques, in conclusion

In this section, we have discussed various model-based techniques. Despite apparent differences,
they all build on the notion of task internalization. That is, tasks are processed and represented in
the state of the model-based system. This state can then be used to make predictions. Figure 2.20
displays the relationships between the covered model-based techniques.

MANNs (Santoro et al., 2016) mark the beginning of the deep model-based meta-learning techniques.
They use the idea of feeding the entire support set in sequential fashion into the model and then
making predictions for the query set inputs using the internal state of the model. Such a model-based
approach, where inputs sequentially enter the model was also taken by RMLs (Duan et al., 2016;
Wang et al., 2016) in the reinforcement learning setting. Meta networks (Munkhdalai and Yu,
2017) also use a large black-box solution, but generate task-specific weights for every task that is
encountered. SNAIL (Mishra et al., 2018) tries to improve the memory capacity and ability to
pinpoint memories, which is limited in recurrent neural networks, by using attention mechanisms
coupled with special temporal layers. Lastly, the neural statistician and CNP are two techniques
that try to learn meta-features of data sets in an end-to-end fashion. The neural statistician uses the
distance between meta-features to make class predictions, while the CNP conditions classifiers on
these features.

Advantages of model-based approaches include the flexibility of the internal dynamics of the systems,
and their broader applicability compared to most metric-based techniques. However, model-based
techniques are often outperformed by metric-based techniques in supervised settings (e.g. graph
neural networks (Garcia and Bruna, 2017); Section 2.3.6), may not perform well when presented
with larger data sets (Hospedales et al., 2021), and generalize less well to more distant tasks than
optimization-based techniques (Finn and Levine, 2018). We discuss this optimization-based approach
next.

2.5 Optimization-based meta-learning

Optimization-based techniques adopt a different perspective on meta-learning than the previous two
approaches. They explicitly optimize for fast learning. Most optimization-based techniques do so
by approaching meta-learning as a bi-level optimization problem. At the inner-level, a base-learner
makes task-specific updates using some optimization strategy (such as gradient descent). At the
outer-level, the performance across tasks is optimized.

More formally, given a task Tj = (Dtr
Tj
, Dtest

Tj
) with new input x ∈ Dtest

Tj
and base-learner parameters
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Figure 2.20: The relationships between the covered model-based meta-learning techniques. The
neural statistician and CNP form an island in the model-based approaches.

θ, optimization-based meta-learners return

p(Y |x, Dtr
Tj
) = fgφ(θ,Dtr

Tj
,LTj

)
(x), (2.14)

where f is the base-learner, gφ is a (learned) optimizer that makes task-specific updates to the
base-learner parameters θ using the support data Dtr

Ti
, and loss function LTj

.

2.5.1 Example

Suppose we are faced with a linear regression problem, where every task is associated with a different
function f(x). For this example, suppose our model only has two parameters: a and b, which together
form the function f̂(x) = ax+ b. Suppose further that our meta-training set consists of four different
tasks, i.e., A, B, C, and D. Then, according to the optimization-based view, we wish to find a single
set of parameters {a, b} from which we can quickly learn the optimal parameters for each of the four
tasks, as displayed in Figure 2.21. In fact, this is the intuition behind the popular optimization-based
technique MAML (Finn et al., 2017). By exposing our model to various meta-training tasks, we can
update the parameters a and b to facilitate quick adaptation.

We will now discuss the core optimization-based techniques in more detail.

2.5.2 LSTM optimizer

Standard gradient update rules have the form

θt+1 := θt − α∇θt
LTj

(θt), (2.15)

where α is the learning rate, and LTj
(θt) is the loss function with respect to task Tj and network

parameters at time t, i.e., θt. The key idea underlying LSTM optimizers (Andrychowicz et al., 2016)
is to replace the update term (−α∇LTj (θt)) by an update proposed by an LSTM g with parameters
φ. Then, the new update becomes

θt+1 := θt + gφ(∇θtLTj (θt)). (2.16)
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Figure 2.21: Example of an optimization-based technique, inspired by Finn et al. (2017).

This new update allows the optimization strategy to be tailored to a specific family of tasks. Note
that this is meta-learning, i.e., the LSTM learns to learn. As such, this technique basically learns an
update policy.

The loss function used to train an LSTM optimizer is:

L(φ) = ELTj

[
T∑

t=1

wtLTj (θt)

]
, (2.17)

where T is the number of parameter updates that are made, and wt are weights indicating the
importance of performance after t steps. Note that generally we are only interested in the final
performance after T steps. However, the authors found that the optimization procedure was better
guided by equally weighting the performance after each gradient descent step. As is often done,
second-order derivatives (arising from the dependency between the updated weights and the LSTM
optimizer) were ignored due to the computational expenses associated with the computation thereof.
This loss function is fully differentiable, and thus allows for training an LSTM optimizer (see
Figure 2.22). To prevent a parameter explosion, the same network is used for every coordinate/weight
in the base-learner’s network, causing the update rule to be the same for every parameter. Of course,
the updates depend on their prior values and gradients.

The key advantage of LSTM optimizers is that they can enable faster learning compared to hand-
crafted optimizers, also on different data sets than those used to train the optimizer. However,
Andrychowicz et al. (2016) did not apply this technique to few-shot learning. In fact, they did not
apply it across tasks at all. Thus, it is unclear whether this technique can perform well in few-shot
settings, where few data per class are available for training. Furthermore, the question remains
whether it can scale to larger base-learner architectures.

2.5.3 LSTM meta-learner
Instead of having an LSTM predict gradient updates, Ravi and Larochelle (2017) embed the weights
of the base-learner parameters into the cell state (long-term memory component) of the LSTM, giving
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Figure 2.22: Workflow of the LSTM optimizer. Gradients can only propagate backwards through
solid edges. ft denotes the observed loss at time step t. Source: Andrychowicz et al. (2016).

rise to LSTM meta-learners. As such, the base-learner parameters θ are literally inside the LSTM
memory component (cell state). In this way, cell state updates correspond to base-learner parameter
updates. This idea was inspired by the resemblance between the gradient and cell state update rules.
Gradient updates often have the form as shown in Equation 2.15. The LSTM cell state update rule,
in contrast, looks as follows

ct := ft ⊙ ct−1 + αt ⊙ c̄t, (2.18)

where ft is the forget gate (which determines which information should be forgotten) at time t,
⊙ represents the element-wise product, ct is the cell state at time t, and c̄t the candidate cell
state for time step t, and αt the learning rate at time step t. Note that if ft = 1 (vector of ones),
αt = α, ct−1 = θt−1, and c̄t = −∇θt−1

LTt
(θt−1), this update is equivalent to the one used by

gradient-descent. This similarity inspired Ravi and Larochelle (2017) to use an LSTM as meta-learner
that learns to make updates for a base-learner, as shown in Figure 2.23.

More specifically, the cell state of the LSTM is initialized with c0 = θ0, which will be adjusted by the
LSTM to a good common initialization point across different tasks. Then, to update the weights of the
base-learner for the next time step t+ 1, the LSTM computes ct+1, and sets the weights of the base-
learner equal to that. There is thus a one-to-one correspondence between ct and θt. The meta-learner’s
learning rate αt (see Equation 2.18), is set equal to σ(wα · [∇θt−1LTt(θt−1),LTt(θt), θt−1, αt−1]+bα),
where σ is the sigmoid function. Note that the output is a vector, with values between 0 and 1,
which denote the the learning rates for the corresponding parameters. Furthermore, wα and bα are
trainable parameters that part of the LSTM meta-learner. In words, the learning rate at any time
depends on the loss gradients, the loss value, the previous parameters, and the previous learning rate.
The forget gate, ft, determines what part of the cell state should be forgotten, and is computed in a
similar fashion, but with different weights.

To prevent an explosion of meta-learner parameters, weight-sharing is used, in similar fashion to
LSTM optimizers proposed by Andrychowicz et al. (2016) (Section 2.5.2). This implies that the same
update rule is applied to every weight at a given time step. The exact update, however, depends on
the history of that specific parameter in terms of previous learning rate, loss, etc. For simplicity,
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Figure 2.23: LSTM meta-learner computation graph. Gradients can only propagate backwards
through solid edges. The base-learner is denoted as M . (Xt, Yt) are training sets, whereas (X,Y ) is
the test set. Source: Ravi and Larochelle (2017).

second-order derivatives were ignored, by assuming the base-learner’s loss does not depend on the
cell state of the LSTM optimizer. Batch normalization was applied to stabilize and speed up the
learning process.

In short, LSTM optimizers can learn to optimize a base-learner by maintaining a one-to-one corre-
spondence over time between the base-learner’s weights and the LSTM cell state. This allows the
LSTM to exploit commonalities in the tasks, allowing for quicker optimization. However, there are
simpler approaches (e.g. MAML (Finn et al., 2017)) that outperform this technique.

2.5.4 Reinforcement learning optimizer

Li and Malik (2018) proposed a framework which casts optimization as a reinforcement learning
problem. Optimization can then be performed by existing reinforcement learning techniques. At
a high-level, an optimization algorithm g takes as input an initial set of weights θ0 and a task Tj
with corresponding loss function LTj

, and produces a sequence of new weights θ1, . . . ,θT , where
θT is the final solution found. On this sequence of proposed new weights, we can define a loss
function L that captures unwanted properties (e.g. slow convergence, oscillations, etc.). The goal of
learning an optimizer can then be formulated more precisely as follows. We wish to learn an optimal
optimizer

g∗ = argming ETj∽p(T ),θ0∽p(θ0)[L(g(LTj
,θ0))] (2.19)

The key insight is that the optimization can be formulated as a Partially Observable Markov Decision
Process (POMDP). Then, the state corresponds to the current set of weights θt, the action to the
proposed update at time step t, i.e., ∆θt, and the policy to the function that computes the update.
With this formulation, the optimizer g can be learned by existing reinforcement learning techniques.
In their paper, they used an recurrent neural network as optimizer. At each time step, they feed
it observation features, which depend on the previous set of weights, loss gradients, and objective
functions, and use guided policy search to train it.
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In summary, Li and Malik (2018) made a first step towards general optimization through reinforcement
learning optimizers, which were shown able to generalize across network architectures and data sets.
However, the base-learner architecture that was used was quite small. The question remains whether
this approach can scale to larger architectures.

2.5.5 MAML

Figure 2.24: MAML learns an initialization point from which it can perform well on various tasks.
Source: Finn et al. (2017).

Model-agnostic meta-learning (MAML) (Finn et al., 2017) uses a simple gradient-based inner
optimization procedure (e.g. stochastic gradient descent), instead of more complex LSTM procedures
or procedures based on reinforcement learning. The key idea of MAML is to explicitly optimize for
fast adaptation to new tasks by learning a good set of initialization parameters θ. This is shown in
Figure 2.24: from the learned initialization θ, we can quickly move to the best set of parameters
for task Tj , i.e., θ∗j for j = 1, 2, 3. The learned initialization can be seen as the inductive bias of the
model, or simply the set of assumptions (encapsulated in θ) that the model makes with respect to
the overall task structure.

More formally, let θ denote the initial model parameters of a model. The goal is to quickly learn new
concepts, which is equivalent to achieving a minimal loss in few gradient update steps. The amount
of gradient steps s has to be specified upfront, such that MAML can explicitly optimize for achieving
good performance within that number of steps. Suppose we pick only one gradient update step, i.e.,
s = 1. Then, given a task Tj = (Dtr

Tj
, Dtest

Tj
), gradient descent would produce updated parameters

(fast weights)

θ′j = θ − α∇θLDtr
Tj
(θ), (2.20)

specific to task j. The meta-loss of quick adaptation (using s = 1 gradient steps) across tasks can
then be formulated as

ML :=
∑

Tj∽p(T )

LDtest
Tj

(θ′j) =
∑

Tj∽p(T )

LDtest
Tj

(θ − α∇θLDtr
Tj
(θ)), (2.21)

where p(T ) is a probability distribution over tasks. This expression contains an inner gradient
(∇θLTj

(θj)). As such, by optimizing this meta-loss using gradient-based techniques, we have to
compute second-order gradients. One can easily see this in the computation below
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∇θML = ∇θ
∑

Tj∽p(T )

LDtest
Tj

(θ′j)

=
∑

Tj∽p(T )

∇θLDtest
Tj

(θ′j)

=
∑

Tj∽p(T )

L′
Dtest

Tj

(θ′j)∇θ(θ′j)

=
∑

Tj∽p(T )

L′
Dtest

Tj

(θ′j)∇θ(θ − α∇θLDtr
Tj

(θ))

=
∑

Tj∽p(T )

L′
Dtest

Tj

(θ′j)︸ ︷︷ ︸
FOMAML

(∇θθ − α∇2
θLDtr

Tj
(θ)), (2.22)

where we used L′
Dtest

Tj

(θ′j) to denote the derivative of the loss function with respect to the query

set, evaluated at the post-update parameters θ′j . The term α∇2
θLDtr

Tj
(θ) contains the second-order

gradients. The computation thereof is expensive in terms of time and memory costs, especially when
the optimization trajectory is large (when using a larger number of gradient updates s per task).
Finn et al. (2017) experimented with leaving out second-order gradients, by assuming ∇θθ′j = I,
giving us First Order MAML (FOMAML, see Equation 2.22). They found that FOMAML performed
reasonably similar to MAML. This means that updating the initialization using only first order
gradients

∑
Tj∽p(T ) L′

Dtest
Tj

(θ′j) is roughly equal to using the full gradient expression of the meta-loss

in Equation 2.22. One can extend the meta-loss to incorporate multiple gradient steps by substituting
θ′j by a multi-step variant.

MAML is trained as follows. The initialization weights θ are updated by continuously sampling a
batch of m tasks B = {Tj ∽ p(T )}mi=1. Then, for every task Tj ∈ B, an inner update is performed to
obtain θ′j , in turn granting an observed loss LDtest

Tj
(θ′j). These losses across a batch of tasks are used

in the outer update

θ := θ − β∇θ
∑
Tj∈B

LDtest
Tj

(θ′j). (2.23)

The complete training procedure of MAML is displayed in Algorithm 2. At test-time, when presented
with a new task Tj , the model is initialized with θ, and performs a number of gradient updates on
the task data. Note that the algorithm for FOMAML is equivalent to Algorithm 2, except for the
fact that the update on line 8 is done differently. That is, FOMAML updates the initialization with
the rule θ = θ − β

∑
Tj∽p(T ) L′

Dtest
Tj

(θ′j).

Antoniou et al. (2019), in response to MAML, proposed many technical improvements that can
improve training stability, performance, and generalization ability. Improvements include i) updating
the initialization θ after every inner update step (instead of after all steps are done) to increase
gradient propagation, ii) using second-order gradients only after 50 epochs to increase the training
speed, iii) learning layer-wise learning rates to improve flexibility, iv) annealing the meta-learning rate
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Algorithm 2 One-step MAML for supervised learning, by Finn et al. (2017)

1: Randomly initialize θ
2: while not done do
3: Sample batch of J tasks B = T1, . . . , TJ ∽ p(T )
4: for Tj = (Dtr

Tj
, Dtest

Tj
) ∈ B do

5: Compute ∇θLDtr
Tj
(θ)

6: Compute θ′j = θ − α∇θLDtr
Tj
(θ)

7: end for
8: Update θ = θ − β∇θ

∑
Tj∈B LDtest

Tj
(θ′j)

9: end while

β over time, and v) some Batch Normalization tweaks (keep running statistics instead of batch-specific
ones, and using per-step biases).

MAML has obtained great attention within the field of deep meta-learning, perhaps due to its
i) simplicity (only requires two hyperparameters), ii) general applicability, and iii) strong performance.
A downside of MAML, as mentioned above, is that it can be quite expensive in terms of running
time and memory to optimize a base-learner for every task and compute higher-order derivatives
from the optimization trajectories.

2.5.6 iMAML

Instead of ignoring higher-order derivatives (as done by FOMAML), which potentially decreases the
performance compared to regular MAML, iMAML (Rajeswaran et al., 2019) approximates these
derivatives in a way that is less memory-consuming.

Let A denote an inner optimization algorithm (e.g., stochastic gradient descent), which takes a
support set Dtr

Tj
corresponding to task Tj and initial model weights θ, and produces new weights

θ′j = A(θ, Dtr
Tj
). MAML has to compute the derivative

∇θLDtest
Tj

(θ′j) = L′
Dtest

Tj

(θ′j)∇θ(θ′j), (2.24)

where Dtest
Tj

is the query set corresponding to task Tj . This equation is a simple result of applying
the chain rule. Importantly, note that ∇θ(θ′j) differentiates through A(θ, Dtr

Tj
), while L′

Dtest
Tj

(θ′j)

does not, as it represents the gradient of the loss function evaluated at θ′j . Rajeswaran et al. (2019)
make use of the following lemma.

If (I + 1
λ∇2

θLDtr
Tj
(θ′j)) is invertible (i.e., (I + 1

λ∇2
θLDtr

Tj
(θ′j))

−1 exists), then

∇θ(θ′j) =
(
I +

1

λ
∇2
θLDtr

Tj
(θ′j)

)−1

. (2.25)

Here, λ is a regularization parameter. The reason for this is discussed below.
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Combining Equation 2.24 and Equation 2.25, we have that

∇θLDtest
Tj

(θ′j) = L′
Dtest

Tj

(θ′j)

(
I +

1

λ
∇2
θLDtr

Tj
(θ′j)

)−1

. (2.26)

The idea is to obtain an approximate gradient vector gj that is close to this expression, i.e., we want
the difference to be small

gj − L′
Dtest

Tj

(θ′j)

(
I +

1

λ
∇2
θLDtr

Tj
(θ′j)

)−1

= ϵ, (2.27)

for some small tolerance vector ϵ. If we multiply both sides by the inverse of the inverse, i.e.,(
I + 1

λ∇2
θLDtr

Tj
(θ′j)

)
, we get

gTj

(
I +

1

λ
∇2
θLDtr

Tj
(θ′j)

)
gj − gTj L′

Dtest
Tj

(θ′j) = ϵ
′, (2.28)

where ϵ′ absorbed the multiplication factor. We wish to minimize this expression for gj , and that can
be performed using optimization techniques such as the conjugate gradient algorithm (Rajeswaran
et al., 2019). This algorithm does not need to store Hessian matrices, which decreases the memory
cost significantly. In turn, this allows iMAML to work with more inner gradient update steps. Note,
however, that one needs to perform explicit regularization in that case to avoid overfitting. The
conventional MAML did not require this, as it uses only a few number of gradient steps (equivalent
to an early stopping mechanism).

At each inner loop step, iMAML computes the meta-gradient gj . After processing a batch of
tasks, these gradients are averaged and used to update the initialization θ. Since it does not
differentiate through the optimization process, we are free to use any other (non-differentiable)
inner-optimizer.

In summary, iMAML reduces memory costs significantly as it need not differentiate through the
optimization trajectory, also allowing for greater flexibility in the choice of inner optimizer. Addition-
ally, it can account for larger optimization paths. The computational costs stay roughly the same
compared to MAML (Finn et al., 2017). Future work could investigate more inner optimization
procedures (Rajeswaran et al., 2019).

2.5.7 Meta-SGD
Meta-SGD (Li et al., 2017), or meta-stochastic gradient descent, is similar to MAML (Finn et al.,
2017) (Section 2.5.5). However, on top of learning an initialization, Meta-SGD also learns learning
rates for every model parameter in θ, building on the insight that the optimizer can be seen as
trainable entity.

The standard SGD update rule is given in Equation 2.15. The meta-SGD optimizer uses a more
general update, namely

θ′j ← θ −α⊙∇θLDtr
Tj
(θ), (2.29)

where ⊙ is the element-wise product. Note that this means that alpha (learning rate) is now a
vector—hence the bold font— instead of scalar, which allows for greater flexibility in the sense that



54 2. OVERVIEW OF DEEP META-LEARNING

Figure 2.25: Meta-SGD learning process. Source: Li et al. (2017).

each parameter has its own learning rate. The goal is to learn the initialization θ, and learning rate
vector α, such that the generalization ability is as large as possible. More mathematically precise,
the learning objective is

minα,θETj∽p(T )[LDtest
Tj

(θ′j)] = ETj∽p(T )[LDtest
Tj

(θ −α⊙∇θLDtr
Tj
(θ))], (2.30)

where we used a simple substitution for θ′j . LDtr
Tj

and LDtest
Tj

are the losses computed on the support
and query set respectively. Note that this formulation stimulates generalization ability (as it includes
the query set loss LDtest

Tj
, which can be observed during the meta-training phase). The learning

process is visualized in Figure 2.25. Note that the meta-SGD optimizer is trained to maximize
generalization ability after only one update step. Since this learning objective has a fully differentiable
loss function, the meta-SGD optimizer itself can be trained using standard SGD.

In summary, Meta-SGD is more expressive than MAML as it does not only learn an initialization,
but also learning rates per parameter. This, however, does come at the cost of an increased number
of hyperparameters.

2.5.8 Reptile

Reptile (Nichol et al., 2018) is another optimization-based technique that, like MAML (Finn et al.,
2017), solely attempts to find a good set of initialization parameters θ. The way in which Reptile
attempts to find this initialization is quite different from MAML. It repeatedly samples a task,
trains on the task, and moves the model weights towards the trained weights (Nichol et al., 2018).
Algorithm 3 displays the pseudocode describing this simple process.

Algorithm 3 Reptile, by Nichol et al. (2018)

1: Initialize θ
2: for i = 1, 2, . . . do
3: Sample task Tj = (Dtr

Tj
, Dtest

Tj
) and corresponding loss function LTj

4: θ′j = SGD(LDtr
Tj
,θ, k) ▷ Perform k gradient update steps to get θ′j

5: θ := θ + ϵ(θ′j − θ) ▷ Move initialization point θ towards θ′j
6: end for
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Nichol et al. (2018) note that it is possible to treat (θ − θ′j)/α as gradients, where α is the learning
rate of the inner stochastic gradient descent optimizer (line 4 in the pseudocode), and to feed that
into a meta-optimizer (e.g. Adam). Moreover, instead of sampling one task at a time, one could
sample a batch of n tasks, and move the initialization θ towards the average update direction
θ̄ = 1

n

∑n
j=1(θ

′
j − θ), granting the update rule θ := θ + ϵθ̄.

The intuition behind Reptile is that updating the initialization weights towards updated parameters
will grant a good inductive bias for tasks from the same family. By performing Taylor expansions of
the gradients of Reptile and MAML (both first-order and second-order), Nichol et al. (2018) show
that the expected gradients differ in their direction. They argue, however, that in practice, the
gradients of Reptile will also bring the model towards a point minimizing the expected loss over
tasks.

A mathematical argument as to why Reptile works goes as follows. Let θ denote the initial parameters,
and θ∗j the optimal set of weights for task Tj . Lastly, let d be the Euclidean distance function. Then,
the goal is to minimize the distance between the initialization point θ and the optimal point θ∗j ,
i.e.,

minθ ETj∽p(T )[
1

2
d(θ,θ∗j )

2]. (2.31)

The gradient of this expected distance with respect to the initialization θ is given by

∇θETj∽p(T )[
1

2
d(θ,θ∗j )

2] = ETj∽p(T )[
1

2
∇θd(θ,θ∗j )2]

= ETj∽p(T )[θ − θ∗j ], (2.32)

where we used the fact that the gradient of the squared Euclidean distance between two points x1

and x2 is the vector 2(x1 −x2). Nichol et al. (2018) go on to argue that performing gradient descent
on this objective would result in the following update rule

θ = θ − ϵ∇θ
1

2
d(θ,θ∗j )

2

= θ − ϵ(θ∗j − θ). (2.33)

Since we do not know θ∗Tj
, one can approximate this by term by k steps of gradient descent

SGD(LTj ,θ, k). In short, Reptile can be seen as gradient descent on the distance minimization
objective given in Equation 2.31. A visualization is shown in Figure 2.26. The initialization θ is moving
towards the optimal weights for tasks 1 and 2 in interleaved fashion (hence the oscillations).

In conclusion, Reptile is an extremely simple meta-learning technique, which does not need to
differentiate through the optimization trajectory like, e.g., MAML (Finn et al., 2017), saving time
and memory costs. However, the theoretical foundation is a bit weaker due to the fact that it does
not directly optimize for fast learning as done by MAML, and performance may be a bit worse than
that of MAML in some settings.
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Figure 2.26: Schematic visualization of Reptile’s learning trajectory. Here, θ∗1 and θ∗2 are the optimal
weights for tasks T1 and T2 respectively. The initialization parameters θ oscillate between these.
Adapted from Nichol et al. (2018).

2.5.9 LEO
Latent Embedding Optimization, or LEO, was proposed by Rusu et al. (2019) to combat an issue
of gradient-based meta-learners, such as MAML (Finn et al., 2017) (see Section 2.5.5), in few-shot
settings (N -way, k-shot). These techniques operate in a high-dimensional parameter space using
gradient information from only few examples, which could lead to poor generalization.

Figure 2.27: Workflow of Latent Embedding Optimization (LEO). adapted from Rusu et al. (2019).

LEO alleviates this issue by learning a lower-dimensional latent embedding space, which indirectly
allows us to learn a good set of initial parameters θ. Additionally, the embedding space is conditioned
upon tasks, allowing for more expressivity. In theory LEO could find initial parameters for the entire
base-learner network, but the authors only experimented with setting the parameters for the final
layers.

The complete workflow of LEO is shown in Figure 2.27. As we can see, given a task Tj , the
corresponding support set Dtr

Tj
is fed into an encoder, which produces hidden codes for each example

in that set. These hidden codes are paired and concatenated in every possible manner, granting us
(Nk)2 pairs, where N is the number of classes in the training set, and k the number of examples per
class. These paired codes are then fed into a relation net (Sung et al., 2018) (see Section 2.3.5). The
resulting embeddings are grouped by class, and parameterize a probability distribution over latent
codes zn (for class n) in a low dimensional space Z. More formally, let xℓ

n denote the ℓ-th example
of class n in Dtr

Tj
. Then, the mean µe

n and variance σe
n of a Gaussian distribution over latent codes

for class n are computed as
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µe
n,σ

e
n =

1

Nk2

k∑
ℓp=1

N∑
m=1

k∑
ℓq=1

gϕr

(
gϕe

(xℓp
n ), gϕe

(xℓq
m)
)
, (2.34)

where ϕr,ϕe are parameters for the relation net and encoder respectively. Intuitively, the three
summations ensure that every example with class n in Dtr

Tj
is paired with every example from all

classes n. Given µe
n, and σe

n, one can sample a latent code zn ∽ N(µe
n, diag(σ

e2
n )) for class n, which

serves as latent embedding of the task training data.

The decoder can then generate a task-specific initialization θn for class n as follows. First, one
computes a mean and variance for a Gaussian distribution using the latent code

µd
n,σ

d
n = gϕd

(zn). (2.35)

These are then used to sample initialization weights θn ∽ N(µd
n, diag(σ

d2
n )). The loss from the

generated weights can then be propagated backwards to adjust the embedding space. In practice,
generating such high-dimensional set of parameters from a low-dimensional embedding can be quite
problematic. Therefor, LEO uses pre-trained models, and only generates weights for the final layer,
which limits the expressivity of the model.

A key advantage of LEO is that it optimizes in a lower-dimensional latent embedding space, which
aids generalization performance. However, the approach is more complex than e.g. MAML (Finn
et al., 2017), and its applicability is limited to few-shot learning settings.

2.5.10 Online MAML (FTML)

Online MAML (Finn et al., 2019) is an extension of MAML (Finn et al., 2017) to make it applicable
to online learning settings (Anderson, 2008). In the online setting, we are presented with a sequence
of tasks Tt with corresponding loss functions {LTt

}Tt=1, for some potentially infinite time horizon
T . The goal is to pick a sequence of parameters {θt}Tt=1 that performs well on the presented loss
functions. This objective is captured by the RegretT over the entire sequence, which is defined by
Finn et al. (2019) as follows

RegretT =

T∑
t=1

LTt
(θ′t)−minθ

T∑
t=1

LTt
(θ′t), (2.36)

where θ are the initial model parameters (just as MAML), and θ′t are parameters resulting from
a one-step gradient update (starting from θ) on task t. Here, the left term reflects the updated
parameters chosen by the agent (θt), whereas the right term presents the minimum obtainable loss
(in hindsight) from a single fixed set of parameters θ. Note that this setup assumes that the agent can
make updates to its chosen parameters (transform its initial choice at time t from θt to θ′t).

Finn et al. (2019) propose FTML (Follow The Meta Leader), inspired by FTL (Follow The Leader)
(Hannan, 1957; Kalai and Vempala, 2005), to minimize the regret. The basic idea is to set the
parameters for the next time step (t+ 1) equal to the best parameters in hindsight, i.e.,
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θt+1 := argminθ

t∑
k=1

LTk
(θ′k). (2.37)

The gradient to perform meta-updates is then given by

gt(θ) := ∇θETk∽pt(T )LTk
(θ′k), (2.38)

where pt(T ) is a uniform distribution over tasks 1, ..., t (at time t).

Algorithm 4 contains the full pseudocode for FTML. In this algorithm, MetaUpdate performs a
few (Nmeta) meta-steps. In each meta-step, a task is sampled from B, together with train and test
mini-batches to compute the gradient gt in Equation 2.37. The initialization θ is then updated
(θ := θ − βgt(θ)), where β is the meta-learning rate. Note that the memory usage keeps increasing
over time, as at every time step t, we append tasks to the buffer B, and keep task data sets in
memory.

Algorithm 4 FTML by Finn et al. (2019)

Require: Performance threshold γ
1: Initialize empty task buffer B
2: for t = 1,... do
3: Initialize data set Dt = ∅
4: Append Tt to B
5: while |Dt| < N do
6: Append batch of data {(xi, yi)}ni=1 to Dt

7: θt = MetaUpdate(θt, B, t)
8: Compute θ′t
9: if LDtest

Tt
(θ′t) < γ then

10: Save |Dt| as the efficiency for task Tt
11: end if
12: end while
13: Save final performance LDtest

Tt
(θ′t)

14: θt+1 = θt
15: end for

In summary, Online MAML is a robust technique for online-learning (Finn et al., 2019). A downside
of this approach is the computational costs that keep growing over time, as all encountered data are
stored. Reducing these costs is a direction for future work. Also, one could experiment how well the
approach works when more than one inner gradient update steps per task are used, as mentioned by
Finn et al. (2019).

2.5.11 LLAMA

Grant et al. (2018) mold MAML into a probabilistic framework, such that a probability distribution
over task-specific parameters θ′j is learned, instead of a single one. In this way, multiple potential



2.5. OPTIMIZATION-BASED META-LEARNING 59

solutions can be obtained for a task. The resulting technique is called LLAMA (Laplace Approximation
for Meta-Adaptation). Importantly, LLAMA is only developed for supervised learning settings.

A key observation is that a neural network fθ′
j
, parameterized by updated parameters θ′j (obtained

from few gradient updates using Dtr
Tj

), outputs class probabilities p(yi|xi,θ
′
j). To minimize the error

on the query set Dtest
Tj

, the model must output large probability scores for the true classes. This
objective is captured in the maximum log likelihood loss function

LDtest
Tj

(θ′j) = −
∑

xi,yi∈Dtest
Tj

log p(yi|xi,θ
′
j). (2.39)

Simply put, if we see a task j as a probability distribution over examples pTj
, we wish to maximize

the probability that the model predicts the correct class yi, given an input xi. This can be done by
plain gradient descent, as shown in Algorithm 5, where β is the meta-learning rate. Line 4 refers
to ML-LAPLACE, which is a subroutine that computes task-specific updated parameters θ′j , and
estimates the negative log likelihood (loss function) which is used to update the initialization θ, as
shown in Algorithm 6. Grant et al. (2018) approximated the quadratic curvature matrix Ĥ using
K-FAC (Martens and Grosse, 2015).

The trick is that the initialization θ defines a distribution p(θ′j |θ) over task-specific parameters
θ′j . This distribution was taken to be a diagonal Gaussian (Grant et al., 2018). Then, to sample
solutions for a new task Tj , one can simply generate possible solutions θ′j from the learned Gaussian
distribution.

Algorithm 5 LLAMA by Grant et al. (2018)

1: Initialize θ randomly
2: while not converged do
3: Sample a batch of J tasks: B = T1, ..., TJ ∽ p(T )
4: Estimate E(xi,yi)∽pTj

[−log p(yi|xi,θ)]∀Tj ∈ B using ML-LAPLACE
5: θ = θ − β∇θ

∑
j E(xi,yi)∽pTj

[−log p(yi|xi,θ)

6: end while

Algorithm 6 ML-LAPLACE (Grant et al., 2018)

1: θ′j = θ
2: for k=1,...,K do
3: θ′j = θ

′
j + α∇θ′

j
log p(yi ∈ Dtr

Tj
|θ′j ,xi ∈ Dtr

Tj
)

4: end for
5: Compute curvature matrix Ĥ = ∇2

θ′
j
[−log p(yi ∈ Dtest

Tj
|θ′j ,xi ∈ Dtest

Tj
)] +∇2

θ′
j
[−log p(θ′j |θ)]

6: return −log p(yi ∈ Dtest
Tj
|θ′j ,xi ∈ Dtest

Tj
) + η log[det(Ĥ)]

In short, LLAMA extends MAML in probabilistic fashion, such that one can obtain multiple solutions
for a single task, instead of one. This does, however, increase the computational costs. On top of
that, the used Laplace approximation (in ML-LAPLACE) can be quite inaccurate (Grant et al.,
2018).
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2.5.12 PLATIPUS
PLATIPUS (Finn et al., 2018) builds upon the probabilistic interpretation of LLAMA (Grant et al.,
2018), but learns a probability distribution over initializations θ, instead of task-specific parameters
θ′j . Thus, PLATIPUS allows one to sample an initialization θ ∽ p(θ), which can be updated with
gradient descent to obtain task-specific weights (fast weights) θ′j .

Algorithm 7 PLATIPUS training algorithm by Finn et al. (2018)

1: Initialize Θ = {µθ,σ2
θ,vq,γp,γq}

2: while Not done do
3: Sample batch of tasks B = {Tj ∽ p(T )}mi=1

4: for Tj ∈ B do
5: Dtr

Tj
, Dtest

Tj
= Tj

6: Compute ∇µθ
LDtest

Tj
(µθ)

7: Sample θ ∽ q = N(µθ − γq∇µθ
LDtest

Tj
(µθ),vq)

8: Compute ∇θLDtr
Tj
(θ)

9: Compute fast weights θ′i = θ − α∇θLDtr
Tj
(θ)

10: end for
11: p(θ|Dtr

Tj
) = N(µθ − γp∇µθ

LDtr
Tj
(µθ),σ

2
θ)

12: Compute ∇Θ

[∑
Tj
LDtest

Tj
(ϕi) +DKL(q(θ|Dtest

Tj
), p(θ|Dtr

Tj
))
]

13: Update Θ using the Adam optimizer
14: end while

The approach is best explained by its pseudocode, as shown in Algorithm 7. In contrast to the
original MAML, PLATIPUS introduces five more parameter vectors (line 1). All of these parameters
are used to facilitate the creation of Gaussian distributions over prior initializations (or simply priors)
θ. That is, µθ represents the vector mean of the distributions. σ2

q, and vq represent the covariances
of train and test distributions respectively. γx for x = q, p are learning rate vectors for performing
gradient steps on distributions q (line 6 and 7) and P (line 11).

The key difference with the regular MAML is that instead of having a single initialization point θ, we
now learn distributions over priors: q and P , which are based on query and support data sets of task
Tj respectively. Since these data sets come from the same task, we want the distributions q(θ|Dtest

Tj
),

and p(θ|Dtr
Tj
) to be close to each other. This is enforced by the Kullback–Leibler divergence (DKL)

loss term on line 12, which measures the distance between the two distributions. Importantly, note
that q (line 7) and P (line 11) use vector means which are computed with one gradient update
steps using the query and support data sets respectively. The idea is that the mean of the Gaussian
distributions should be close to the updated mean µθ, because we want to enable fast learning. As
one can see, the training process is very similar to that of MAML (Finn et al., 2017) (Section 2.5.5),
with some small adjustments to allow us to work with the probability distributions over θ.

At test-time, one can simply sample a new initialization θ from the prior distribution p(θ|Dtr
Tj
) (note

that q cannot be used at test-time as we do not have access to Dtest
Tj

), and apply a gradient update
on the provided support set Dtr

Tj
. Note that this allows us to sample multiple potential initializations

θ for the given task.

The key advantage of PLATIPUS is that it is aware of its own uncertainty, which greatly increases
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the applicability of deep meta-learning in critical domains such as medical diagnosis (Finn et al.,
2018). Based on this uncertainty, it can ask for labels of some inputs it is unsure about (active
learning). A downside to this approach, however, are the increased computational costs, and the fact
that it is not applicable to reinforcement learning.

2.5.13 Bayesian MAML (BMAML)

Bayesian MAML (Yoon et al., 2018) is another probabilistic variant of MAML that can generate
multiple solutions. However, instead of learning a distribution over potential solutions, BMAML
simply keeps M possible solutions, and optimizes them in joint fashion. Recall that probabilistic
MAMLs (e.g., PLATIPUS) attempt to maximize the data likelihood of task Tj , i.e., p(ytest

j |θ′j),
where θ′j are task-specific fast weights obtained by one or more gradient updates. Yoon et al. (2018)
model this likelihood using Stein Variational Gradient Descent (SVGD) (Liu and Wang, 2016).

To obtain M solutions, or equivalently, parameter settings θm, SVGD keeps a set of M particles
Θ = {θm}Mi=1. At iteration t, every θt ∈ Θ is updated as follows

θt+1 = θt + ϵ(ϕ(θt)) (2.40)

where ϕ(θt) =
1

M

M∑
m=1

[
k(θmt ,θt)∇θm

t
log p(θmt ) +∇θm

t
k(θmt ,θt)

]
. (2.41)

Here, k(x,x′) is a similarity kernel between x and x′. The authors used a radial basis function (RBF)
kernel, but in theory, any other kernel could be used. Note that the update of one particle depends
on the other gradients of particles. The first term in the summation (k(θmt ,θt)∇θm

t
log p(θmt )) moves

the particle in the direction of the gradients of other particles, based on particle similarity. The
second term (∇θm

t
k(θmt ,θt)) ensures that particles do not collapse (repulsive force) (Yoon et al.,

2018).

These particles can then be used to approximate the probability distribution of the test labels

p(ytest
j |θ′j) ≈

1

M

M∑
m=1

p(ytest
j |θmTj

), (2.42)

where θmTj
is the m-th particle obtained by training on the support set Dtr

Tj
of task Tj .

Yoon et al. (2018) proposed a new meta-loss to train BMAML, called the Chaser Loss. This loss relies
on the insight that we want the approximated parameter distribution (obtained from the support set
pnTj

(θTj |Dtr,Θ0)) and true distribution p∞Tj
(θTj |Dtr ∪Dtest) to be close to each other (since the task

is the same). Here, n denotes the number of SVGD steps, and Θ0 is the set of initial particles, in
similar fashion to the initial parameters θ seen by MAML. Since the true distribution is unknown,
Yoon et al. (2018) approximate it by running SVGD for s additional steps, granting us the leader
Θn+s

Tj
, where the s additional steps are performed on the combined support and query set. The

intuition is that as the number of updates increases, the obtained distributions become more like
the true one. Θn

Tj
in this context is called the chaser as it wants to get closer to the leader. The

proposed meta-loss is then given by
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LBMAML(Θ0) =
∑
Tj∈B

M∑
m=1

||θn,mTj
− θn+s,m

Tj
||22. (2.43)

The full pseudocode of BMAML is shown in Algorithm 8. Here, Θn
Tj
(Θ0) denotes the set of particles

after n updates on task Tj , and SG means “stop gradients" (we do not want the leader to depend on
the initialization, as the leader must lead).

Algorithm 8 BMAML by Yoon et al. (2018)

1: Initialize Θ0

2: for t=1,... until convergence do
3: Sample a batch of tasks B from p(T )
4: for task Tj ∈ B do
5: Compute chaser Θn

Tj
(Θ0) = SV GDn(Θ0;D

tr
Tj
, α)

6: Compute leader Θn+s
Tj

(Θ0) = SV GDs(Θ
n
Tj
(Θ0);D

tr
Tj
∪Dtest

Tj
, α)

7: end for
8: Θ0 = Θ0 − β∇Θ0

∑
Tj∈B d(Θn

Tj
(Θ0), SG(Θn+s

Tj
(Θ0)))

9: end for

In summary, BMAML is a robust optimization-based meta-learning technique that can propose M
potential solutions to a task. Additionally, it is applicable to reinforcement learning by using Stein
Variational Policy Gradient instead of SVGD. A downside of this approach is that one has to keep
M parameter sets in memory, which does not scale well. Reducing the memory costs is a direction
for future work (Yoon et al., 2018). Furthermore, SVGD is sensitive to the selected kernel function,
which was pre-defined in BMAML. However, Yoon et al. (2018) point out that it may be beneficial
to learn the kernel function instead. This is another possibility for future research.

2.5.14 Simple differentiable solvers

Bertinetto et al. (2019) take a quite different approach. That is, they pick simple base-learners that
have an analytical closed-form solution. The intuition is that the existence of a closed-form solution
allows for good learning efficiency. They propose two techniques using this principle, namely R2-D2
(Ridge Regression Differentiable Discriminator), and LR-D2 (Logistic Regression Differentiable
Discriminator). We cover both in turn.

Let gϕ : X → Re be a pre-trained input embedding model (e.g. a CNN), which outputs embeddings
with a dimensionality of e. Furthermore, assume that we use a linear predictor function f(gϕ(xi)) =
gϕ(xi)W , where W is a e× o weight matrix, and o is the output dimensionality (of the label). When
using (regularized) Ridge Regression (done by R2-D2), one uses the optimal W , i.e.,

W ∗ = argmin
W

||XW − Y ||22 + γ||W ||2

= (XTX + γI)−1XTY, (2.44)

where X ∈ Rn×e is the input matrix, containing n rows (one for each embedded input gϕ(xi)),
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Y ∈ Rn×o is the output matrix with correct outputs corresponding to the inputs, and γ is a
regularization term to prevent overfitting. Note that the analytical solution contains the term
(XTX) ∈ Re×e, which is quadratic in the size of the embeddings. Since e can become quite large
when using deep neural networks, Bertinetto et al. (2019) use Woodburry’s identity

W ∗ = XT (XXT + γI)−1Y, (2.45)

where XXT ∈ Rn×n is linear in the embedding size, and quadratic in the number of examples, which
is more manageable in few-shot settings, where n is very small. To make predictions with this Ridge
Regression based model, one can compute

Ŷ = αXtestW
∗ + β, (2.46)

where α and β are hyperparameters of the base-learner that can be learned by the meta-learner, and
Xtest ∈ Rm×e corresponds to the m test inputs of a given task. Thus, the meta-learner needs to
learn α, β, γ, and ϕ (embedding weights of the CNN).

The technique can also be applied to iterative solvers when the optimization steps are differentiable
(Bertinetto et al., 2019). LR-D2 uses the Logistic Regression objective and Newton’s method as
solver. Outputs y ∈ {−1,+1}n are now binary. Let w denote a parameter row of our linear model
(parameterized by W ). Then, the i-th iteration of Newton’s method, updates wi as follows

wi = (XTdiag(si)X + γI)−1XTdiag(si)zi, (2.47)

where µi = σ(wT
i−1X), si = µi(1− µi), zi = wT

i−1X + (y − µi)/si, and σ is the sigmoid function.
Since the term XTdiag(si)X is a matrix of size e× e, and thus again quadratic in the embedding
size, Woodburry’s identity is also applied here to obtain

wi = XT (XXT + λdiag(si)−1)−1zi, (2.48)

making it quadratic in the input size, which is not a big problem since n is small in the few-shot
setting. The main difference compared to R2-D2 is that the base-solver has to be run for multiple
iterations to obtain W .

In the few-shot setting, the base-level optimizers compute the weight matrix W for a given task Ti.
The obtained loss on the query set of a task LDtest is then used to update the parameters ϕ of the
input embedding function (e.g. CNN) and the hyperparameters of the base-learner.

Lee et al. (2019) have done similar work to Bertinetto et al. (2019), but with linear Support
Vector Machines (SVMs) as base-learner. Their approach is dubbed MetaOptNet, and achieved
state-of-the-art performance on few-shot image classification.

In short, simple differentiable solvers are simple, reasonably fast in terms of computation time, but
limited to few-shot learning settings. Investigating the use of other simple base-learners is a direction
for future work.
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2.5.15 Optimization-based techniques, in conclusion

Optimization-based aim to learn new tasks quickly through (learned) optimization procedures.
Note that this closely resembles base-level learning, which also occurs through optimization (e.g.,
gradient descent). However, in contrast to base-level techniques, optimization-based meta-learners
can learn the optimizer and/or are exposed to multiple tasks, which allows them to learn to learn
new tasks quickly. Figure 2.28 shows the relationships between the covered optimization-based
techniques.

As we can see, the LSTM optimizer (Andrychowicz et al., 2016), which replaces hand-crafted
optimization procedures such as gradient descent by a trainable LSTM, can be seen as the starting
point for these optimization-based meta-learning techniques. Li and Malik (2018) also aim to learn
a the optimization procedure with reinforcement learning instead of gradient-based methods. The
LSTM meta-learner (Ravi and Larochelle, 2017) extends the LSTM optimizer to the few-shot setting
by not only learning the optimization procedure, but also a good set of initial weights. This way, it
can be used across tasks. MAML (Finn et al., 2017) is a simplification of the LSTM meta-learner as
it replaces the trainable LSTM optimizer by hand-crafted gradient descent. MAML has received
considerable attention within the field of deep meta-learning, and has, as one can see, inspired many
other works.

Meta-SGD is an enhancement of MAML that not only learns the initial parameters, but also the
learning rates (Li et al., 2017). LLAMA (Grant et al., 2018), PLATIPUS (Finn et al., 2018), and
online MAML (Finn et al., 2019) extend MAML to the active and online learning settings. LLAMA
and PLATIPUS are probabilistic interpretations of MAML, which allow them to sample multiple
solutions for a given task and to quantify their uncertainty. BMAML (Yoon et al., 2018) takes a more
discrete approach as it jointly optimizes a discrete set of M initializations. iMAML (Rajeswaran et al.,
2019) aims to overcome the computational expenses associated with the computation of second-order
derivatives, which is needed by MAML. Through implicit differentiation, they also allow for the use
of non-differentiable inner loop optimization procedures. Reptile (Nichol et al., 2018) is an elegant
first-order meta-learning algorithm for finding a set of initial parameters and removes the need of
computing higher-order derivatives. LEO (Rusu et al., 2019) tries to improve the robustness of
MAML by optimizing in lower-dimensional parameter space through the use of an encoder-decoder
architecture. Lastly, R2-D2, LR-D2 (Bertinetto et al., 2019), and Lee et al. (2019) use simple classical
machine learning methods (ridge regression, logistic regression, SVM, respectively) as classifier on
top of a learned feature extractor.

A key advantage of optimization-based approaches is that they can achieve better performance
on wider task distributions than, e.g., model-based approaches (Finn and Levine, 2018). However,
optimization-based techniques optimize a base-learner for every task that they are presented with
and/or learn the optimization procedure, which is computationally expensive (Hospedales et al.,
2021).

Optimization-based meta-learning is a very active area of research. We expect future work to be
done in order to reduce the computational demands of these methods, and improve the solution
quality and level of generalization. We think that benchmarking and reproducibility research will
play an important role in these improvements.
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Figure 2.28: The relationships between the covered optimization-based meta-learning techniques.
As one can see, MAML has a central position in this network of techniques as it has inspired many
other works.
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2.6 Concluding Remarks
In this section, we give a helicopter view of all that we discussed, and the field of deep meta-learning
in general. We will also discuss challenges and future research.

2.6.1 Overview
In recent years, there has been a shift in focus in the broad meta-learning community. Traditional
algorithm selection and hyperparameter optimization for classical machine learning techniques (e.g.
Support Vector Machines, Logistic Regression, Random Forests, etc.) have been augmented by deep
meta-learning, or equivalently, the pursuit of self-improving neural networks that can leverage prior
learning experience to learn new tasks more quickly. Instead of training a new model from scratch
for different tasks, we can use the same (meta-learning) model across tasks. As such, meta-learning
can widen the applicability of powerful deep learning techniques to domains where fewer data are
available and computational resources are limited.

Deep meta-learning techniques are characterized by their meta-objective, which allows them to
maximize performance across various tasks, instead of a single one, as is the case in base-level learning
objectives. This meta-objective is reflected in the training procedure of meta-learning methods, as
they learn on a set of different meta-training tasks. The few-shot setting lends itself nicely towards
this end, as tasks consist of few data points. This makes it computationally feasible to train on many
different tasks, and it allows us to evaluate whether a neural network can learn new concepts from
few examples. Task construction for training and evaluation does require some special attention.
That is, it has been shown beneficial to match training and test conditions (Vinyals et al., 2016), and
perhaps train in a more difficult setting than the one that will be used for evaluation (Snell et al.,
2017).

On a high level, there are three categories of deep meta-learning techniques, namely i) metric-,
ii) model-, and iii) optimization-based ones, which rely on i) computing input similarity, ii) task
embeddings with states, and iii) task-specific updates, respectively. Each approach has strengths and
weaknesses. Metric-learning techniques are simple and effective (Garcia and Bruna, 2017), but are not
readily applicable outside of the supervised learning setting (Hospedales et al., 2021). Model-based
techniques, on the other hand, can have very flexible internal dynamics, but lack generalization ability
to more distant tasks than the ones used at meta-train time (Finn and Levine, 2018). Optimization-
based approaches have shown greater generalizability, but are in general computationally expensive,
as they optimize a base-learner for every task (Finn and Levine, 2018; Hospedales et al., 2021).

Table 2.2 provides a concise, tabular overview of these approaches. Many techniques have been
proposed for each one of the categories, and the underlying ideas may vary greatly, even within
the same category. Table 2.3, therefore, provides an overview of all methods and key ideas that
we have discussed in this chapter, together with their applicability to supervised learning (SL) and
reinforcement learning (RL) settings, key ideas, and benchmarks that were used for testing them.
Table 2.5 displays an overview of the 1- and 5-shot classification performances (reported by the
original authors) of the techniques on the frequently used miniImageNet benchmark. Moreover, it
displays the used backbone (feature extraction module) as well as the final classification mechanism.
From this table, it becomes clear that the 5-shot performance is typically better than the 1-shot
performance, indicating that data scarcity is a large bottleneck for achieving good performance.
Moreover, there is a strong relationship between the expressivity of the backbone and the performance.
That is, deeper backbones tend to give rise to better classification performance. The best performance
is achieved by MetaOptNet, yielding a 1-shot accuracy of 64.09% and a 5-shot accuracy of 80.00%.
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Note however that MetaOptNet used a deeper backbone than most of the other techniques.

2.6.2 Open challenges and future work
Despite the great potential of deep meta-learning techniques, there are still open challenges, which
we discuss here.

Figure 2.1 in Section 2.1 displays the accuracy scores of the covered meta-learning techniques on
1-shot miniImageNet classification. Techniques which were not tested in this setting by the original
authors are omitted. As we can see, the performance of the techniques is related to the expressivity
of the used backbone (ordered in increasing order on the x-axis). For example, the best performing
techniques, LEO and MetaOptNet, use the largest network architectures. Moreover, the fact that
different techniques use different backbones poses a problem as it is difficult to fairly compare their
classification performance. An obvious question arises to which degree the difference in performance
is due to methodological improvements, or due to the fact that a better backbone architecture
was chosen. For this reason, we think that it would be useful to perform a large scale benchmark
test where techniques are compared when they use the same backbones. This would also allow
us to get a more clear idea of how the expressivity of the feature extraction module affects the
performance.

Another challenge of deep meta-learning techniques is that they can be susceptible to the memorization
problem (meta-overfitting), where the neural network has memorized tasks seen at meta-training time,
and fails to generalize to new tasks. More research is required to better understand this problem.
Clever task design and meta-regularization may prove useful to avoid such problems (Yin et al.,
2020).

Another problem is that most of the meta-learning techniques discussed in this chapter are evaluated
on narrow benchmark sets. This means that the data that the meta-learner used for training are not
too distant from the data used for evaluating its performance. As such, one may wonder how well
these techniques are actually able to adapt to more distant tasks. Chen et al. (2019) showed that the
ability to adapt to new tasks decreases as they become more distant from the tasks seen at training
time. Moreover, a simple non-meta-learning baseline (based on pre-training and fine-tuning) can
outperform state-of-the-art meta-learning techniques when meta-test tasks come from a different
data set than the one used for meta-training.

In reaction to these findings, Triantafillou et al. (2020) have recently proposed the Meta-Dataset
benchmark, which consists of various previously used meta-learning benchmarks such as Omniglot
(Lake et al., 2011) and ImageNet (Deng et al., 2009). In a similar spirit, Ullah et al. (2022) have
released Meta-Album, a dataset consisting of 30 datasets from 10 different domains. This way,
meta-learning techniques can be evaluated in more challenging settings where tasks are diverse.
Following Hospedales et al. (2021), we think that this new benchmark can prove to be a good
mean towards the investigation and development of meta-learning algorithms for such challenging
scenarios.

As mentioned earlier in this section, deep meta-learning has the appealing prospect of widening
the applicability of deep learning techniques to more real-world domains. For this, increasing the
generalization ability of these techniques is very important. Additionally, the computational costs
associated with the deployment of meta-learning techniques should be small. While these techniques
can learn new tasks quickly, meta-training can be quite computationally expensive. Thus, decreasing
the required computation time and memory costs of deep meta-learning techniques remains an open
challenge.
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Name Backbone Classifier 1-shot 5-shot

Metric-based
Siamese nets - - -
Matching nets 64-64-64-64 Cosine sim. 43.56± 0.84 55.31± 0.73
Prototypical nets 64-64-64-64 Euclidean dist. 49.42± 0.78 68.20± 0.66
Relation nets 64-96-128-256 Sim. network 50.44± 0.82 65.32± 0.70
ARC - 64-1 dense 49.14±− -
GNN 64-96-128-256 Softmax 50.33± 0.36 66.41± 0.63

Model-based
RMLs - - -
MANNs - - -
Meta nets 64-64-64-64-64 64-Softmax 49.21± 0.96 -
SNAIL Adj. ResNet-12 Softmax 55.71± 0.99 68.88± 0.92
CNP - - -
Neural stat. - - -

Opt.-based
LSTM optimizer - - -
LSTM ml. 32-32-32-32 Softmax 43.44± 0.77 60.60± 0.71
RL optimizer - - -
MAML 32-32-32-32 Softmax 48.70± 1.84 63.11± 0.92
iMAML 64-64-64-64 Softmax 49.30± 1.88 -
Meta-SGD 64-64-64-64 Softmax 50.47± 1.87 64.03± 0.94
Reptile 32-32-32-32 Softmax 48.21± 0.69 66.00± 0.62
LEO WRN-28-10 Softmax 61.76± 0.08 77.59± 0.12
Online MAML - - -
LLAMA 64-64-64-64 Softmax 49.40± 1.83 -
PLATIPUS - - -
BMAML 64-64-64-64-64 Softmax 53.80± 1.46 -
Diff. solvers

R2-D2 96-192-384-512 Ridge regr. 51.8± 0.2 68.4± 0.2
LR-D2 96-192-384-512 Log. regr. 51.90± 0.20 68.70± 0.20
MetaOptNet ResNet-12 SVM 64.09 ± 0.62 80.00 ± 0.45

Table 2.5: Comparison of the accuracy scores of the covered meta-learning techniques on 1- and
5-shot miniImageNet classification. Scores are taken from the original papers. The ± indicates
the 95% confidence interval. The backbone is the used feature extraction module. The classifier
column shows the final layer(s) that were used to transform the features into class predictions. Used
abbreviations: “sim.": similarity, “Adj.": adjusted, and “dist.": distance, “log.": logistic, “regr.":
regression, “ml.": meta-learner, “opt.": optimization.
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Some real world problems demand systems that can perform well in online, or active learning settings.
The investigation of deep meta-learning in these settings (Finn et al., 2018; Yoon et al., 2018; Finn
et al., 2019; Munkhdalai and Yu, 2017; Vuorio et al., 2018) remains an important direction for future
work.

Yet another direction for future research is the creation of compositional deep meta-learning systems,
which instead of learning flat and associative functions x→ y, organize knowledge in a compositional
manner. This would allow them to decompose an input x into several (already learned) components
c1(x), ..., cn(x), which in turn could help the performance in low-data regimes (Tokmakov et al.,
2019).

The question has been raised whether contemporary deep meta-learning techniques actually learn
how to perform rapid learning, or simply learn a set of robust high-level features, which can be
(re)used for many (new) tasks. Raghu et al. (2020) investigated this question for the most popular
deep meta-learning technique MAML, and found that it largely relies on feature reuse. It would be
interesting to see whether we can develop techniques that rely more on fast learning, and what the
effect would be on performance.

Lastly, it may be useful to add more meta-abstraction levels, giving rise to, e.g., meta-meta-learning,
meta-meta-...-learning (Hospedales et al., 2021; Schmidhuber, 1987).

This chapter provides a comprehensive exploration of the field of deep meta-learning, offering a
thorough analysis of different prominent deep meta-learning techniques, their interconnections, and
their relative performances. The broad and in-depth overview of the field of deep meta-learning
obtained in this chapter serves as a springboard for the research performed in the remaining chapters
of this dissertation. For instance, in writing this chapter, we came to understand intuitively that the
meta-learner LSTM and MAML are tightly connected in the sense that the former could emulate
what MAML learns, but it could also do more. Surprisingly, however, the meta-learner LSTM is
outperformed by MAML in terms of its few-shot learning performance. Subsequently, in Chapter 3,
we aim to investigate the underlying factors that contribute to this performance gap. Chapter 4
and Chapter 5 follow a similar pattern, where we investigate empirically observed performance
disparities between different methods and aim to understand the underlying factors contributing to
these disparities.

Chapter 6, in contrast, takes the opposite perspective. That is, rather than trying to gain an
increased understanding of deep meta-learning methods starting from empirical observations, we
start from theoretical machine learning knowledge and investigate whether the integration into a
deep meta-learning algorithm can improve the few-shot learning performance.




