
Understanding deep meta-learning
Huisman, M.

Citation
Huisman, M. (2024, January 17). Understanding deep meta-learning. SIKS Dissertation
Series. Retrieved from https://hdl.handle.net/1887/3704815
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3704815
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3704815


Understanding Deep Meta-Learning

Proefschrift

ter verkrijging van

de graad van doctor aan de Universiteit Leiden,

op gezag van rector magnificus prof.dr.ir. H. Bijl,

volgens besluit van het college voor promoties

te verdedigen op woensdag 17 januari 2024

klokke 10:00 uur

door

Mike Huisman

geboren te Delft

in 1997



Promotor:

Prof.dr. A. Plaat

Co-promotor:

Dr. J. N. van Rijn

Promotiecommissie:

Prof.dr. H. C. M. Kleijn

Prof.dr. K. J. Batenburg

Prof.dr. E. O. Postma (Universiteit van Tilburg)

Dr. T. M. Moerland

Dr. S. Magliacane (Universiteit van Amsterdam)

This work was fully funded by Leiden University. SIKS Dissertation Series No. 2024-04. The research
reported in this thesis has been carried out under the auspices of SIKS, the Dutch Research School
for Information and Knowledge Systems.

Copyright © 2023 Mike Huisman.

ISBN 978-94-93330-43-6



Contents

1 Introduction 7
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Stateless neural meta-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Pre-training vs gradient-based meta-learning . . . . . . . . . . . . . . . . . . 10
1.3.3 LSTMs for few-shot learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.4 Subspace adaptation prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Outline of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Overview of Deep Meta-Learning 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 The meta abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 The meta-setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 The meta-learning field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.4 Overview of the rest of this chapter . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Metric-based meta-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Siamese neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.3 Matching networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.4 Prototypical networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.5 Relation networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.6 Graph neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.7 Attentive recurrent comparators . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.8 Metric-based techniques, in conclusion . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Model-based meta-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.2 Recurrent meta-learners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.3 Memory-augmented neural networks (MANNs) . . . . . . . . . . . . . . . . . 37
2.4.4 Meta networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.5 Simple neural attentive meta-learner (SNAIL) . . . . . . . . . . . . . . . . . . 41
2.4.6 Conditional neural processes (CNPs) . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.7 Neural statistician . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.8 Model-based techniques, in conclusion . . . . . . . . . . . . . . . . . . . . . . 45

3



4 CONTENTS

2.5 Optimization-based meta-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5.2 LSTM optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5.3 LSTM meta-learner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5.4 Reinforcement learning optimizer . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.5.5 MAML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5.6 iMAML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5.7 Meta-SGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5.8 Reptile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.5.9 LEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.5.10 Online MAML (FTML) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5.11 LLAMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.5.12 PLATIPUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.5.13 Bayesian MAML (BMAML) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.5.14 Simple differentiable solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.5.15 Optimization-based techniques, in conclusion . . . . . . . . . . . . . . . . . . 64

2.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.6.2 Open challenges and future work . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Stateless Neural Meta-Learning using Second-Order Gradients 71
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.1 MAML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.2 Meta-learner LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Towards stateless neural meta-learning . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4.1 Theoretical relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4.2 Potential problems of the meta-learner LSTM . . . . . . . . . . . . . . . . . . 76
3.4.3 TURTLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.5.1 Hyperparameter analysis on sine-wave regression . . . . . . . . . . . . . . . . 77
3.5.2 Few-shot sine wave regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.5.3 Few-shot image classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.5.4 Cross-domain few-shot learning . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.5.5 Running time comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6 Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Understanding Gradient-Based Meta-Learning and Transfer Learning 85
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.2 Few-shot learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.3 Finetuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.4 Reptile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.5 MAML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 A common framework and interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 90



CONTENTS 5

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5.1 Toy problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.5.2 Few-shot image classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Are LSTMs Good Few-Shot Learners? 105
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3 Meta-learning with LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.1 LSTM architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.2 Meta-learning with LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3.3 Problems with the classical LSTM architecture . . . . . . . . . . . . . . . . . 110
5.3.4 Towards an improved architecture . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Outer product LSTM (OP-LSTM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4.1 The architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4.2 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.5.1 Permutation invariance for the plain LSTM . . . . . . . . . . . . . . . . . . . 118
5.5.2 Performance comparison on few-shot sine wave regression . . . . . . . . . . . 119
5.5.3 Performance comparison on few-shot image classification . . . . . . . . . . . . 120
5.5.4 Analysis of the learned weight updates . . . . . . . . . . . . . . . . . . . . . . 121

5.6 Relation to other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Subspace Adaptation Prior for Few-Shot Learning 127
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3 Background on DARTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.4 Subspace Adaptation Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4.1 Intuition and operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.4.2 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.5.1 Sine wave regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.5.2 The learned subspaces for sine regression . . . . . . . . . . . . . . . . . . . . 139
6.5.3 Matching the problem structure . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.5.4 Few-shot image classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.5.5 Cross-domain few-shot image classification . . . . . . . . . . . . . . . . . . . . 142
6.5.6 Effect of hard pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.5.7 The effect of the gradient order . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.5.8 The learned subspaces for image classification . . . . . . . . . . . . . . . . . . 144
6.5.9 Number of parameters and running time . . . . . . . . . . . . . . . . . . . . . 144

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7 Conclusions 149
7.1 Answers to research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Bibliography 164



6 CONTENTS

A Hyperparameter details for TURTLE 165
A.1 Used hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

B Additional experimental results for OP-LSTM 167
B.1 Sine wave regression: additional results . . . . . . . . . . . . . . . . . . . . . . . . . . 167
B.2 Hyperparameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

B.2.1 Permutation invariance experiments . . . . . . . . . . . . . . . . . . . . . . . 168
B.2.2 Omniglot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
B.2.3 miniImageNet and CUB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

B.3 Robustness to random seeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
B.4 Within-domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
B.5 Cross-domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

C Additional experimental results for SAP 173
C.1 Validation of re-implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
C.2 Cross-domain few-shot image classification . . . . . . . . . . . . . . . . . . . . . . . . 174
C.3 The effect of hard pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
C.4 The learned subspaces for image classification . . . . . . . . . . . . . . . . . . . . . . 174

Summary 177

Dutch summary 181

Acknowledgements 185

Curriculum Vitae 187

List of publications 189

SIKS dissertation series 191



Chapter 1

Introduction

Chapter overview

The invention of neural networks marks a critical milestone in the pursuit of true artificial
intelligence. However, despite their impressive performance on various tasks, deep neural networks
face limitations in learning efficiently. This chapter introduces the concept of deep meta-learning,
an approach aimed at enhancing learning efficiency in neural networks. Despite the development
of numerous new deep meta-learning algorithms, we identify that there remains a research gap
in understanding their performance. We motivate the importance of addressing this research gap
and make steps towards filling this in the remainder of the dissertation. Moreover, this chapter
outlines the specific research questions explored in this dissertation and provides an overview of
its structure.

1.1 Background
Artificial deep neural networks have demonstrated remarkable capabilities, achieving human-level
or even super-human performance across various tasks (Krizhevsky et al., 2012; Silver et al., 2016;
Brown et al., 2020). The performance of these networks, however, hinges on the availability of large
volumes of training data, often necessitating access to high-end computational resources (LeCun et al.,
2015). Without sufficient data, these networks struggle to capture the intricacies of the underlying
task, leading to suboptimal performance and limited generalization. This data dependency and
computational demand pose significant challenges, particularly in domains where data collection
is arduous, expensive, or privacy-sensitive. Overcoming these limitations and improving the data
efficiency of deep neural networks is crucial to unlocking their full potential, enabling them to learn
and adapt from limited data, and facilitating their deployment in resource-constrained environments,
thereby democratizing the use of deep learning.

The learning efficiency of artificial deep neural networks is in stark contrast to human learning, which
is highly efficient (Lake et al., 2015; Salakhutdinov et al., 2012; Schmidt, 2009). That is, humans can
learn new concepts from only a handful of examples or a limited amount of experience. For instance,
if shown a picture of a unique animal species that they have never encountered before, humans can
often grasp its distinguishing features and correctly identify similar instances with high accuracy.
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8 1. INTRODUCTION

In contrast, deep neural networks typically struggle to achieve comparable performance with such
limited data.

One potential explanation for this gap in learning efficiency between human learning and deep
learning is that humans can rely upon a large set of prior knowledge and experience to quickly learn
to perform new tasks (Jankowski et al., 2011; Lake et al., 2017). For example, humans often first
learn to crawl and walk before they learn how to run. This allows us to transfer our movement
patterns and knowledge from crawling and walking to more quickly learn running than would be
possible if we were directly to attempt to learn how to run. Coming back to the example of learning
to identify a new animal species, humans can leverage their understanding of the visual world and
feature detectors from all prior experiences to quickly identify new species from only a handful of
examples.

Deep neural networks, in contrast to humans, are often characterized by their high degree of
specialization towards specific tasks. They typically undergo end-to-end training, meaning they learn
directly from available data without any pre-existing knowledge or prior experience. This lack of
prior knowledge places a considerable burden on deep neural networks, as they essentially attempt to
master complex tasks without having learned foundational skills or basic concepts. In a metaphorical
sense, it is as if these networks are trying to run before learning to crawl or walk. In a more practical
sense, this absence of previously learned movement patterns and task-specific knowledge requires
deep neural networks to rely solely on the limited data provided during training, making the learning
process more challenging and time-consuming. In order to overcome this limitation, deep neural
networks would greatly benefit from the ability to leverage prior experience and existing data that
could be harnessed to facilitate the learning of the given task at hand. By incorporating such prior
knowledge, these networks could potentially enhance their learning efficiency, accelerate the training
process, and achieve higher performance with limited data.

Deep meta-learning (Schmidhuber, 1987; Thrun, 1998; Naik and Mammone, 1992) is the field of
research that aims to endow deep neural networks with the ability to reuse a large set of prior
experiences in order to learn to perform new tasks more efficiently. Since any prior knowledge in
neural networks is encoded in the hyperparameters (such as the initialization parameters when
learning a new task, the learning rate of stochastic gradient descent, or the weight update rule), the
goal of deep meta-learning can be formulated as extracting a good set of hyperparameters from a set
of prior tasks such that new tasks can be learned more efficiently than a neural network without
such prior knowledge. We note that this is a form of transfer learning (Pan and Yang, 2009; Taylor
and Stone, 2009) as we transfer knowledge obtained from previous tasks to a new task in which we
are interested.

A common testbed for deep meta-learning algorithms that we also employ throughout this dissertation
is few-shot learning (Wang et al., 2020b; Ravi and Larochelle, 2017; Vinyals et al., 2016), where the
neural network has to learn different tasks only from a handful of examples, or shots per class. In
few-shot learning scenarios, deep neural networks are presented with a set of classes or categories,
each accompanied by a limited number of labeled instances (shots). The objective is to enable the
network to generalize from this sparse data and quickly adapt to new classes with only a few examples.
This setting closely emulates the remarkable ability of humans to rapidly acquire new knowledge
and skills from minimal exposure and allows us to assess the ability of the networks to reuse prior
knowledge in order to quickly learn to perform new tasks.
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1.2 Motivation

The concept of meta-learning with neural networks was pioneered in the 1980s - 2000s (Schmidhuber,
1987; Bengio et al., 1991; Hochreiter et al., 2001; Thrun, 1998; Naik and Mammone, 1992), but it is
only in recent years that the field has experienced a surge in popularity, driven by promising results
presented by Vinyals et al. (2016), Finn et al. (2017), and other researchers. This increased attention
has led to the introduction of numerous novel techniques, resulting in significant advances in the
few-shot learning performance of these methods. However, despite these achievements, the reasons
behind why certain meta-learning algorithms outperform others often remain elusive. The underlying
principles that determine the success of different meta-learning approaches have received limited
attention and are, therefore, not well understood. This knowledge gap hampers our ability to make
informed design choices and improve deep meta-learning algorithms.

It is crucial to address this research gap to gain knowledge about meta-learning algorithms beyond
simple performance comparisons, such as method A outperforming method B. By delving deeper into
the underlying principles, we can gain a comprehensive understanding of why certain meta-learning
algorithms succeed while others fall short. This deeper insight, in turn, could allow us to design
enhanced deep meta-learning algorithms and reason about the expected impact of specific design
decisions on the performance of different algorithms. In essence, it empowers us to move beyond
empirical observations and establish a theoretical foundation for deep meta-learning, enabling more
robust and effective algorithm development.

Furthermore, an equally important aspect that has received limited attention is investigating how
theoretical principles can be leveraged to improve the performance of meta-learning algorithms. By
bridging the gap between theory and practice, we can uncover valuable insights into how theoretical
foundations can be practically applied to enhance the capabilities of deep meta-learning algorithms.
Understanding the interplay between theoretical principles and algorithmic design choices can guide
the development of more efficient and effective meta-learning techniques, fostering advancements in
few-shot learning and other related fields.

In summary, advancing the understanding of deep meta-learning algorithms is a critical research
direction. By uncovering the underlying principles that govern their success, we can gain valuable
insights beyond simple performance comparisons. This knowledge not only facilitates the development
of improved deep meta-learning algorithms but also provides a theoretical framework to reason about
the influence of different design decisions on their performance. Additionally, exploring the integration
of theoretical principles into practical algorithm development opens up exciting avenues to enhance
the capabilities of deep meta-learning approaches. In this dissertation, we aim to address these
research gaps, so that we can move the field forward even further, paving the way for more robust
and principled meta-learning techniques with broader applicability and superior performance.

1.3 Research questions

This dissertation is a collection of research articles that we have produced following this line of
research. In this section, we give an overview of the research questions that we address as well as
their contextual framework and relationships.
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1.3.1 Stateless neural meta-learning

MAML (Finn et al., 2017) and the meta-learner LSTM (Ravi and Larochelle, 2017) are two popular
deep meta-learning techniques. Interestingly, in writing the overview of deep meta-learning (see
Chapter 2), we intuitively realized that the meta-learner LSTM is a slightly more expressive algorithm
than MAML. In this dissertation, we mathematically prove this intuition: the meta-learner LSTM
encompasses and can learn everything that MAML is capable of learning, and even more. In other
words, the meta-learner LSTM subsumes MAML. Despite this fact, MAML consistently outperforms
the meta-learner LSTM in various tasks in terms of the few-shot learning ability. The reasons behind
this performance gap remain unknown and require further investigation.

Understanding the factors contributing to the superior performance of MAML compared to the
meta-learner LSTM is of utmost importance. By unraveling the mechanisms responsible for this
discrepancy, we can gain valuable insights into the inner workings of these meta-learning techniques.
This research question prompts us to empirically explore potential factors such as architectural
differences, optimization strategies, or inherent biases that might favor MAML’s performance.
Investigating these factors could shed light on the subtle nuances that influence the success or failure
of deep meta-learning algorithms, leading to more informed design choices and ultimately driving
improvements in the field. In short, we aim to answer the following research question.

RQ1: What causes the performance gap between MAML and the meta-learner LSTM?

1.3.2 Pre-training vs gradient-based meta-learning

A related method for improving the learning efficiency of deep neural networks compared with the
deep meta-learning algorithms (MAML, meta-learner LSTM) investigated in the previous research
question, is transfer learning by means of pre-training and finetuning. The idea of this method is to
train a neural network to perform a given source task for which abundant data is available. This is in
contrast to how deep meta-learning techniques are often trained for few-shot learning settings as they
are trained on various tasks for which only a handful of examples are available to learn from. When
presented with a new task, the finetuning approach transfers the parameters obtained by training on
the source task to the target task and consequently fine-tunes these parameters on this target task.
During finetuning, only the head of the network is adjusted whilst the body of the network is kept
frozen. In the case of image classification, on which we focus in this dissertation, this corresponds to
reusing the same feature detectors and only adapting how the different features are linearly combined
to produce class scores.

Whilst the previous research question allowed us to gain a deep understanding of the differences
between two deep meta-learning algorithms (MAML and the meta-learner LSTM), which have been
observed to be successful at few-shot learning in various scenarios, recent results (Chen et al., 2019;
Tian et al., 2020; Mangla et al., 2020) suggest that when evaluated on tasks from a different data
distribution than the one used for training, the simple pre-training and finetuning baseline may be
more effective than more complicated popular meta-learning techniques such as MAML and Reptile
(Nichol et al., 2018). This is surprising as the learning behavior of MAML was shown to mimic that
of finetuning: both rely on reusing learned features (Raghu et al., 2020). This begs the question
of what causes the observed performance differences between these approaches, giving rise to the
following research question.
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RQ2: How do the learning behaviors of finetuning, MAML, and Reptile differ from each other and
how does this influence their ability to quickly learn to perform new tasks?

1.3.3 LSTMs for few-shot learning
The study of research question 1 (RQ1) prompted us to look deeper into using an LSTM for meta-
learning. More specifically, the meta-learner LSTM uses an LSTM at the meta-level : to perform
weight updates for a base-learner network. In 2001, however, Hochreiter et al. (2001) showed that an
LSTM that operates at the data level trained with backpropagation across different tasks is capable
of meta-learning. The LSTM operating at the data level is fed an entire training set, and predictions
for query inputs are then conditioned on the resulting hidden state. Despite the promising results of
this approach on small problems, and more recently, also on reinforcement learning problems (Duan
et al., 2016; Wang et al., 2016), the approach has received little attention in the supervised few-shot
learning setting. In an earlier work that has tested the LSTM (Santoro et al., 2016), the performance
was observed to be inferior compared with other meta-learning algorithms such as MAML and the
meta-learner LSTM. This is surprising, as an LSTM at the data level is a maximally expressive
meta-learning algorithm (Finn and Levine, 2018). We revisit this approach and test it on modern
few-shot learning benchmarks. The research question we investigate is the following.

RQ3: Are LSTMs good few-shot learners when evaluated on modern benchmarks?

1.3.4 Subspace adaptation prior
The previous research questions have all focused on attempting to distill knowledge from empirical
results. This begs the question of whether the opposite direction can also yield fruitful results, that
is, whether the integration of machine learning knowledge can be used to enhance the few-shot
learning capabilities of neural networks. Inspired by classical machine learning knowledge that a
more expressive model (with more parameters) is more prone to overfitting than one with fewer
parameters, we hypothesize that it may be beneficial for deep meta-learning methods to adjust only
a subset of parameters rather than adapting all parameters of trainable layers when learning new
tasks. More specifically, we hypothesize that it is beneficial to learn which subsets of parameters to
adjust in every layer, rather than only the final layer as is common in the pre-training and finetuning
strategy. The idea behind this hypothesis that simply adapting all paramaters neglects potentially
more efficient learning strategies for a given task distribution and may be susceptible to overfitting,
especially in few-shot learning where tasks must be learned from a limited number of examples. In
short, we aim to answer the following research question.

RQ4: Can the few-shot learning ability of deep neural networks be improved by meta-learning which
subsets of parameters to adjust?

1.4 Outline of the dissertation
This dissertation constitutes a collection of research papers and every chapter corresponds to one
paper.

In Chapter 2, we survey the field of deep meta-learning. This serves as a detailed introduction and
overview of the field. In this chapter, we provide the reader with the theoretical foundation for
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describing deep meta-learning algorithms, and we investigate and summarize key methods, which
are categorized into i) metric-, ii) model-, and iii) optimization-based techniques. In addition, we
identify the main open challenges, such as performance evaluations on heterogeneous benchmarks,
and reduction of the computational costs of meta-learning. This chapter corresponds to the following
published research article.

Huisman, M., van Rijn, J. N., & Plaat, A. (2021). A survey of deep meta-learning. Artificial
Intelligence Review, 54(6), 4483-4541. Springer.

In Chapter 3, we investigate our first research question based on the observed performance gap
between the meta-learner LSTM and MAML. We show that the reason for this surprising performance
gap is related to second-order gradients. We construct a new algorithm (named TURTLE) to gain
more insight into the importance of second-order gradients. TURTLE is simpler than the meta-learner
LSTM yet more expressive than MAML and outperforms both techniques at few-shot sine wave
regression and 50% of the tested image classification settings (without any additional hyperparameter
tuning) and is competitive otherwise, at a computational cost that is comparable to second-order
MAML. We find that second-order gradients also significantly increase the accuracy of the meta-learner
LSTM. This chapter is based on the following published research article.

Huisman, M., Plaat, A., & van Rijn, J. N. (2022). Stateless neural meta-learning using second-order
gradients. Machine Learning, 111(9), 3227-3244. Springer.

In Chapter 4, we investigate our second research question. More specifically, we investigate the
observed performance differences between finetuning, MAML, and another meta-learning technique
called Reptile, and show that MAML and Reptile specialize for fast adaptation in low-data regimes
of similar data distribution as the one used for training. Our findings show that both the output
layer and the noisy training conditions induced by data scarcity in the few-shot learning setting play
important roles in facilitating this specialization for MAML. Lastly, we show that the pre-trained
features as obtained by the finetuning baseline are more diverse and discriminative than those learned
by MAML and Reptile. Due to this lack of diversity and distribution specialization, MAML and
Reptile may fail to generalize to target tasks that are more distant to the observed training tasks
whereas finetuning can fall back on the diversity of the learned features. This chapter is based on the
following research articles.

Huisman, M., Plaat, A. & van Rijn, J. N. (2021). A preliminary study on the feature representations
of transfer learning and gradient-based meta-learning techniques. In Fifth Workshop on Meta-Learning
at the Conference on Neural Information Processing Systems.

Huisman, M., Plaat, A. & van Rijn, J. N. (2023). Understanding Transfer Learning and Gradient-
Based Meta-Learning Techniques. Accepted for publication in Machine Learning. Springer.

In Chapter 5, we investigate our third research question. That is, we revisit the classical LSTM
approach to deep meta-learning and show that surprisingly, LSTM outperforms the popular meta-
learning technique MAML on a simple few-shot sine wave regression benchmark, but that LSTM,
expectedly, falls short on more complex few-shot image classification benchmarks. We identify two
potential causes and propose a new method called Outer Product LSTM (OP-LSTM) that resolves
these issues and displays substantial performance gains over the plain LSTM. Compared to popular
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meta-learning baselines, OP-LSTM yields competitive performance on within-domain few-shot image
classification, and performs better in cross-domain settings by 0.5% to 1.9% in accuracy score. While
these results alone do not set a new state-of-the-art, the advances of OP-LSTM are orthogonal to
other advances in the field of meta-learning, yielding new insights in how LSTM work in image
classification, allowing for a whole range of new research directions. This chapter is based on the
following research article.

Huisman, M., Moerland, T. M., Plaat, A., & van Rijn, J. N. (2023). Are LSTMs good few-shot
learners? Machine Learning, 112, 4635–4662. Springer.

In Chapter 6, we investigate our fourth and final research question. That is, we investigate whether
the few-shot learning performance of neural networks can be improved by meta-learning which
parameters to adjust. To investigate this, we propose Subspace Adaptation Prior (SAP), a novel
gradient-based meta-learning algorithm that jointly learns good initialization parameters (prior
knowledge) and layer-wise parameter subspaces in the form of operation subsets that should be
adaptable. In this way, SAP can learn which operation subsets to adjust with gradient descent
based on the underlying task distribution, simultaneously decreasing the risk of overfitting when
learning new tasks. We demonstrate that this ability is helpful as SAP yields superior or competitive
performance in few-shot image classification settings (gains between 0.1% and 3.9% in accuracy).
Analysis of the learned subspaces demonstrates that low-dimensional operations often yield high
activation strengths, indicating that they may be important for achieving good few-shot learning
performance. This chapter is based on the following research article.

Huisman, M., Plaat, A., & van Rijn, J. N. (2023). Subspace Adaptation Prior for Few-Shot Learning.
Machine Learning. Springer.

In the following chapter, we give a detailed overview of the field deep meta-learning, serving as a
basis for the rest of this dissertation.





Chapter 2

Overview of Deep Meta-Learning

Chapter overview

Deep neural networks can achieve great successes when presented with large data sets and
sufficient computational resources. However, their ability to learn new concepts quickly is limited.
Meta-learning is one approach to address this issue, by enabling the network to learn how to
learn. The field of deep meta-learning advances at great speed, but lacks a unified, in-depth
overview of current techniques. With this work1, we aim to bridge this gap. After providing
the reader with a theoretical foundation, we investigate and summarize key methods, which are
categorized into i) metric-, ii) model-, and iii) optimization-based techniques. In addition, we
identify the main open challenges, such as performance evaluations on heterogeneous benchmarks,
and reduction of the computational costs of meta-learning.

2.1 Introduction

In recent years, deep learning techniques have achieved remarkable successes on various tasks,
including game-playing (Mnih et al., 2013; Silver et al., 2016), image recognition (Krizhevsky et al.,
2012; He et al., 2015), and machine translation (Wu et al., 2016). Despite these advances, ample
challenges remain to be solved, such as the large amounts of data and training that are needed to
achieve good performance. These requirements severely constrain the ability of deep neural networks
to learn new concepts quickly, one of the defining aspects of human intelligence (Jankowski et al.,
2011; Lake et al., 2017).

Meta-learning has been suggested as one strategy to overcome this challenge (Naik and Mammone,
1992; Schmidhuber, 1987; Thrun, 1998). The key idea is that meta-learning agents improve their
own learning ability over time, or equivalently, learn to learn. The learning process is primarily
concerned with tasks (set of observations) and takes place at two different levels: an inner- and an
outer-level. At the inner-level, a new task is presented, and the agent tries to quickly learn the
associated concepts from the training observations. This quick adaptation is facilitated by knowledge

1This chapter is based on the following published research article: Huisman, M., van Rijn, J. N., & Plaat, A. (2021).
A survey of deep meta-learning. Artificial Intelligence Review, 54(6), 4483-4541. Springer.
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Figure 2.1: The accuracy scores of the covered techniques on 1-shot miniImageNet classification.
The used feature extraction backbone is displayed on the x-axis. As one can see, there is a strong
relationship between the network complexity and the classification performance.

that it has accumulated across earlier tasks at the outer-level. Thus, whereas the inner-level concerns
a single task, the outer-level concerns a multitude of tasks.

Historically, the term meta-learning has been used with various scopes. In its broadest sense, it
encapsulates all systems that leverage prior learning experience in order to learn new tasks more
quickly (Vanschoren, 2018). This broad notion includes more traditional algorithm selection and
hyperparameter optimization techniques for Machine Learning (Brazdil et al., 2008). In this chapter,
however, we focus on a subset of the meta-learning field which develops meta-learning procedures
to learn a good inductive bias for (deep) neural networks.2 Henceforth, we use the term deep
meta-learning to refer to this subfield of meta-learning.

The field of deep meta-learning is advancing at a quick pace, while it lacks a coherent, unifying
overview, providing detailed insights into the key techniques. Vanschoren (2018) has surveyed
meta-learning techniques, where meta-learning was used in the broad sense, limiting its account
of deep meta-learning techniques. Also, many exciting developments in deep meta-learning have

2Here, inductive bias refers to the assumptions of a model which guide predictions on unseen data (Mitchell, 1980).
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happened after the survey was published. A more recent survey by Hospedales et al. (2021) adopts
the same notion of deep meta-learning as we do, but aims to give a broad overview, omitting technical
details of the various techniques.

We attempt to fill this gap by providing detailed explications of contemporary deep meta-learning
techniques, using a unified notation. More specifically, we cover modern techniques in the field for
supervised and reinforcement learning, that have achieved state-of-the-art performance, obtained
popularity in the field, and presented novel ideas. Extra attention is paid to MAML (Finn et al.,
2017), and related techniques, because of their impact on the field. We show how the techniques
relate to each other, detail their strengths and weaknesses, identify current challenges, and provide
an overview of promising future research directions. One of the observations that we make is that the
network complexity is highly related to the few-shot classification performance (see Figure 2.1). One
might expect that in a few-shot setting, where only few examples are available to learn from, the
number of network parameters should be kept small to prevent overfitting. Clearly, the figure shows
that this does not hold, as techniques that use larger backbones tend to achieve better performance.
One important factor might be that due to the large number of tasks that have been seen by the
network, we are in a setting where similarly large amounts of observations have been evaluated.
This result suggests that the size of the network should be taken into account when comparing
algorithms.

This chapter can serve as educational introduction to the field of deep meta-learning, and as reference
material for experienced researchers in the field. Throughout, we will adopt the taxonomy used
by Vinyals (2017), which identifies three categories of deep meta-learning approaches: i) metric-,
ii) model-, and iii) optimization-based meta-learning techniques.

The remainder of this chapter is structured as follows. Section 2 builds a common foundation on
which we will base our overview of deep meta-learning techniques. Section 3, 4, and 5 cover the main
metric-, model-, and optimization-based meta-learning techniques, respectively. Section 6 provides
an overview of the field, and summarizes the key challenges and open questions. Table 2.1 gives an
overview of notation that we will use throughout this paper.

2.2 Foundation

In this section, we build the necessary foundation for investigating deep meta-learning techniques in
a consistent manner. To begin with, we contrast regular learning and meta-learning. Afterwards,
we briefly discuss how deep meta-learning relates to different fields, what the usual training and
evaluation procedure looks like, and which benchmarks are often used for this purpose. We finish
this section by describing some applications and context of the meta-learning field.

2.2.1 The meta abstraction

In this subsection, we contrast base-level (regular) learning and meta-learning for two different
paradigms, i.e., supervised and reinforcement learning.

Regular supervised learning

In supervised learning, we wish to learn a function fθ : X → Y that learns to map inputs xi ∈ X to
their corresponding outputs yi ∈ Y . Here, θ are model parameters (e.g. weights in a neural network)
that determine the function’s behavior. To learn these parameters, we are given a data set of m
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Expression Meaning

Meta-learning Learning to learn
Tj = (Dtr

Tj
, Dtest

Tj
) A task consisting of a labeled support and query set

Support set The train set Dtr
Tj

associated with a task Tj
Query set The test set Dtest

Tj
associated with a task Tj

xi Example input vector i in the support set
yi (One-hot encoded) label of example input xi from the support set
k Number of examples per class in the support set
N Number of classes in the support and query sets of a task
x Input in the query set
y A (one-hot encoded) label for input x
(f/g/h)◦ Neural network function with parameters ◦
Inner-level At the level of a single task
Outer-level At the meta-level: across tasks
Fast weights A term used in the literature to denote task-specific parameters
Base-learner Learner that works at the inner-level
Meta-learner Learner that operates at the outer-level
θ The parameters of the base-learner network
LD Loss function with respect to task/dataset D
Input embedding Penultimate layer representation of the input
Task embedding An internal representation of a task in a network/system
SL Supervised Learning
RL Reinforcement Learning

Table 2.1: Some notation and meaning, which we use throughout this chapter.

observations: D = {(xi, yi)}mi=1. Thus, given a data set D, learning boils down to finding the correct
setting for θ that minimizes an empirical loss function LD, which must capture how the model is
performing, such that appropriate adjustments to its parameters can be made. In short, we wish to
find

θSL := argmin
θ

LD(θ), (2.1)

where SL stands for “supervised learning". Note that this objective is specific to data set D, meaning
that our model fθ may not generalize to examples outside of D. To measure generalization, one
could evaluate the performance on a separate test data set, which contains unseen examples. A
popular way to do this is through cross-validation, where one repeatedly creates train and test splits
Dtr, Dtest ⊂ D and uses these to train and evaluate a model respectively (Hastie et al., 2009).

Finding globally optimal parameters θSL is often computationally infeasible. We can, however,
approximate them, guided by pre-defined meta-knowledge ω (Hospedales et al., 2021), which includes,
e.g., the initial model parameters θ, choice of optimizer, and learning rate schedule. As such, we
approximate

θSL ≈ gω(D,LD), (2.2)

where gω is an optimization procedure that uses pre-defined meta-knowledge ω, data set D, and loss
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function LD, to produce updated weights gω(D,LD) that (presumably) perform well on D.

Supervised meta-learning

In contrast, supervised meta-learning does not assume that any meta-knowledge ω is given, or pre-
defined. Instead, the goal of meta-learning is to find the best ω, such that our (regular) base-learner
can learn new tasks (data sets) as quickly as possible. Thus, whereas supervised regular learning
involves one data set, supervised meta-learning involves a group of data sets. The goal is to learn
meta-knowledge ω such that our model can learn many different tasks well. Thus, our model is
learning to learn.

More formally, we have a probability distribution of tasks p(T ), and wish to find optimal meta-
knowledge

ω∗ := argmin
ω

ETj∽p(T )︸ ︷︷ ︸
Outer-level

[LTj
(gω(Tj ,LTj

))︸ ︷︷ ︸
Inner-level

]. (2.3)

Here, the inner-level concerns task-specific learning, while the outer-level concerns multiple tasks.
One can now easily see why this is meta-learning: we learn ω, which allows for quick learning of
tasks Tj at the inner-level. Hence, we are learning to learn.

Regular reinforcement learning

In reinforcement learning, we have an agent that learns from experience. That is, it interacts with an
environment, modeled by a Markov Decision Process (MDP) M = (S,A, P, r, p0, γ, T ). Here, S is the
set of states, A the set of actions, P the transition probability distribution defining P (st+1|st, at),
r : S ×A→ R the reward function, p0 the probability distribution over initial states, γ ∈ [0, 1] the
discount factor, and T the time horizon (maximum number of time steps) (Sutton and Barto, 2018;
Duan et al., 2016).

At every time step t, the agent finds itself in state st, in which the agent performs an action at,
computed by a policy function πθ (i.e., at = πθ(st)), which is parameterized by weights θ. In turn, it
receives a reward rt = r(st, πθ(st)) ∈ R and a new state st+1. This process of interactions continues
until a termination criterion is met (e.g. fixed time horizon T reached). The goal of the agent is to
learn how to act in order to maximize its expected reward. The reinforcement learning (RL) goal is
to find

θRL := argmin
θ

Etraj
T∑

t=0

γtr(st, πθ(st)), (2.4)

where we take the expectation over the possible trajectories traj = (s0, πθ(s0), ...sT , πθ(sT )) due to
the random nature of MDPs (Duan et al., 2016). Note that γ is a hyperparameter that can prioritize
short- or long-term rewards by decreasing or increasing it, respectively.

Also in case of reinforcement learning it is often infeasible to find the global optimum θRL, and thus
we settle for approximations. In short, given a learning method ω, we approximate

θRL ≈ gω(Tj ,LTj ), (2.5)
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where again Tj is the given MDP, and gω is the optimization algorithm, guided by pre-defined
meta-knowledge ω.

Note that in a Markov Decision Process (MDP), the agent knows the state at any given time step t.
When this is not the case, it becomes a Partially Observable Markov Decision Process (POMDP),
where the agent receives only observations O, and uses these to update its belief with regard to the
state it is in (Sutton and Barto, 2018).

Meta reinforcement learning

The meta abstraction has as its object a group of tasks, or Markov Decision Processes (MDPs) in the
case of reinforcement learning. Thus, instead of maximizing the expected reward on a single MDP,
the meta reinforcement learning objective is to maximize the expected reward over various MDPs,
by learning meta-knowledge ω. Here, the MDPs are sampled from some distribution p(T ). So, we
wish to find a set of parameters

ω∗ := argmin
ω

ETj∽p(T )︸ ︷︷ ︸
Outer-level

Etraj

T∑
t=0

γtr(st, πgω(Tj ,LTj
)(st))︸ ︷︷ ︸

Inner-level

 . (2.6)

Contrast with other fields

Now that we have provided a formal basis for our discussion for both supervised and reinforcement
meta-learning, it is time to contrast meta-learning briefly with two related areas of machine learning
that also have the goal to improve the speed of learning. We will start with transfer learning.

Transfer Learning In Transfer Learning, one tries to transfer knowledge of previous tasks to new,
unseen tasks (Pan and Yang, 2009; Taylor and Stone, 2009), which can be challenging when new
task comes from a different distribution than the one used for training Iqbal et al. (2018). The
distinction between Transfer Learning and Meta-Learning has become more opaque over time. A
key property of meta-learning techniques, however, is their meta-objective, which explicitly aims to
optimize performance across a distribution over tasks (as seen in previous sections by taking the
expected loss over a distribution of tasks). This objective need not always be present in Transfer
Learning techniques, e.g., when one pre-trains a model on a large data set, and fine-tunes the learned
weights on a smaller data set.

Multi-task learning Another, closely related field, is that of multi-task learning. In multi-task
learning a model is jointly trained to perform well on multiple fixed tasks (Hospedales et al., 2021).
Meta-learning, in contrast, aims to find a model that can learn new (previously unseen) tasks quickly.
This difference is illustrated in Figure 2.2.
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Figure 2.2: The difference between multi-task learning and meta-learning3.

Figure 2.3: Illustration of N -way, k-shot classification, where N = 5, and k = 1. Meta-validation
tasks are not displayed. Adapted from Ravi and Larochelle (2017).

2.2.2 The meta-setup

In the previous section, we have described the learning objectives for (meta) supervised and re-
inforcement learning. We will now describe the general setting that can be used to achieve these
objectives. In general, one optimizes a meta-objective by using various tasks, which are data sets in
the context of supervised learning, and (Partially Observable) Markov Decision Processes in case
of reinforcement learning. This is done in three stages: the i) meta-train stage, ii) meta-validation
stage, and iii) meta-test stage, each of which is associated with a set of tasks.

First, in the meta-train stage, the meta-learning algorithm is applied to the meta-train tasks. Second,
the meta-validation tasks can then be used to evaluate the performance on unseen tasks, which were
not used for training. Effectively, this measures the meta-generalization ability of the trained network,
which serves as feedback to tune, e.g., hyper-parameters of the meta-learning algorithm. Third, the
meta-test tasks are used to give a final performance estimate of the meta-learning technique.

3Adapted from https://meta-world.github.io/

https://meta-world.github.io/
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N-way, k-shot learning

A frequently used instantiation of this general meta-setup is called N -way, k-shot classification
(see Figure 2.3). This setup is also divided into the three stages—meta-train, meta-validation,
and meta-test—which are used for meta-learning, meta-learner hyperparameter optimization, and
evaluation, respectively. Each stage has a corresponding set of disjoint labels, i.e., Ltr, Lval, Ltest ⊂ Y ,
such that Ltr ∩ Lval = ∅, Ltr ∩ Ltest = ∅, and Lval ∩ Ltest = ∅. In a given stage s, tasks/episodes
Tj = (Dtr

Tj
, Dtest

Tj
) are obtained by sampling examples (xi, yi) from the full data set D, such that

every yi ∈ Ls. Note that this requires access to a data set D. The sampling process is guided by
the N -way, k-shot principle, which states that every training data set Dtr

Tj
should contain exactly

N classes and k examples per class, implying that |Dtr
Tj
| = N · k. Furthermore, the true labels of

examples in the test set Dtest
Tj

must be present in the train set Dtr
Tj

of a given task Tj . Dtr
T j acts as a

support set , literally supporting classification decisions on the query set Dtest
Tj

. Importantly, note that
with this terminology, the query set (or test set) of a task is actually used during the meta-training
phase. Furthermore, the fact that the labels across stages are disjoint ensures that we test the ability
of a model to learn new concepts.

The meta-learning objective in the training phase is to minimize the loss function of the model
predictions on the query sets, conditioned on the support sets. As such, for a given task Tj , the
model ‘sees’ the support set, and extracts information from the support set to guide its predictions
on the query set. By applying this procedure to different episodes/tasks Tj , the model will slowly
accumulate meta-knowledge ω, which can ultimately speed up learning on new tasks.

The easiest way to achieve this is by doing this with regular neural networks, but as was pointed
out by various authors (see, e.g., Finn et al. (2017)) more sophisticated architectures will vastly
outperform such network. In the remainder of this chapter, we will review such architectures.

At the meta-validation and meta-test stages, or evaluation phases, the learned meta-information in
ω is fixed. The model is, however, still allowed to make task-specific updates to its parameters θ
(which implies that it is learning). After task-specific updates, we can evaluate the performance on
the test sets. In this way, we test how well a technique performs at meta-learning.

N -way, k-shot classification is often performed for small values of k (since we want our models to
learn new concepts quickly, i.e., from few examples). In that case, one can refer to it as few-shot
learning .

Common benchmarks

Here, we briefly describe some benchmarks that can be used to evaluate meta-learning algo-
rithms.

• Omniglot (Lake et al., 2011): This data set presents an image recognition task. Each image
corresponds to one out of 1 623 characters from 50 different alphabets. Every character was
drawn by 20 people. Note that in this case, the characters are the classes/labels.

• ImageNet (Deng et al., 2009): This is the largest image classification data set, containing
more than 20K classes and over 14 million colored images. miniImageNet is a mini variant of
the large ImageNet data set (Deng et al., 2009) for image classification, proposed by Vinyals
et al. (2016) to reduce the engineering efforts to run experiments. The mini data set contains
60 000 colored images of size 84× 84. There are a total of 100 classes present, each accorded by
600 examples. tieredImageNet (Ren et al., 2018) is another variation of the large ImageNet
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data set. It is similar to miniImageNet, but contains a hierarchical structure. That is, there
are 34 classes, each with its own sub-classes.

• CIFAR-10 and CIFAR-100 (Krizhevsky, 2009): Two other image recognition data sets.
Each one contains 60K RGB images of size 32 × 32. CIFAR-10 and CIFAR-100 contain 10
and 100 classes respectively, with a uniform number of examples per class (6 000 and 600
respectively). Every class in CIFAR-100 also has a super-class, of which there are 20 in the full
data set. Many variants of the CIFAR data sets can be sampled, giving rise to e.g. CIFAR-FS
(Bertinetto et al., 2019) and FC-100 (Oreshkin et al., 2018).

• CUB-200-2011 (Wah et al., 2011): The CUB-200-2011 data set contains roughly 12K RGB
images of birds from 200 species. Every image has some labeled attributes (e.g. crown color,
tail shape).

• MNIST (LeCun et al., 2010): MNIST presents a hand-written digit recognition task,
containing ten classes (for digits 0 through 9). In total, the data set is split into a 60K train
and 10K test gray scale images of hand-written digits.

• Meta-Dataset (Triantafillou et al., 2020): This data set comprises several other data
sets such as Omniglot (Lake et al., 2011), CUB-200 (Wah et al., 2011), ImageNet (Deng et al.,
2009), and more (Triantafillou et al., 2020). An episode is then constructed by sampling a data
set (e.g. Omniglot) and selecting a subset of labels to create train and test splits as before. In
this way, broader generalization is enforced since the tasks are more distant from each other.

• Meta-world (Yu et al., 2019): A meta reinforcement learning data set, containing 50 robotic
manipulation tasks (control a robot arm to achieve some pre-defined goal, e.g. unlocking a
door, or playing soccer). It was specifically designed to cover a broad range of tasks, such that
meaningful generalization can be measured (Yu et al., 2019).

Some applications of meta-learning

Deep neural networks have achieved remarkable results on various tasks including image recognition,
text processing, game playing, and robotics (Silver et al., 2016; Mnih et al., 2013; Wu et al., 2016),
but their success depends on the amount of available data (Sun et al., 2017) and computing resources.
Deep meta-learning reduces this dependency by allowing deep neural nets to learn new concepts
quickly. As a result, meta-learning widens the applicability of deep learning techniques to many
application domains. Such areas include few-shot image classification (Finn et al., 2017; Snell et al.,
2017; Ravi and Larochelle, 2017), robotic control policy learning (Gupta et al., 2018; Clavera et al.,
2019) (see Figure 2.4), hyperparameter optimization (Antoniou et al., 2019; Schmidhuber et al.,
1997), meta-learning learning rules (Bengio et al., 1991, 1997; Miconi et al., 2018, 2019), abstract
reasoning (Barrett et al., 2018), and many more. For a larger overview of applications, we refer
interested readers to Hospedales et al. (2021).

2.2.3 The meta-learning field
As mentioned in the introduction, meta-learning is a broad area of research, as it encapsulates all
techniques that leverage prior learning experience to learn new tasks more quickly (Vanschoren, 2018).
We can classify two distinct communities in the field with a different focus: i) algorithm selection
and hyperparameter optimization for machine learning techniques, and ii) search for inductive bias
in deep neural networks. We will refer to these communities as group i) and group ii) respectively.
Now, we will give a brief description of the first field, and a historical overview of the second.
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Figure 2.4: Learning continuous robotic control tasks is an important application of deep meta-
learning techniques. Image taken from (Yu et al., 2019).

Group i) uses a more traditional approach, to select a suitable machine learning algorithm and
hyperparameters for a new data set D (Peng et al., 2002). This selection can for example be made by
leveraging prior model evaluations on various data sets D′, and by using the model which achieved
the best performance on the most similar data set (Vanschoren, 2018). Such traditional approaches
require (large) databases of prior model evaluations, for many different algorithms. This has led to
initiatives such as OpenML (Vanschoren et al., 2014), where researchers can share such information.
The usage of these systems would limit the freedom in picking the neural network architecture as
they would be constrained to using architectures that have been evaluated beforehand.

In contrast, group ii) adopts the view of a self-improving (neural) agent, which improves its learning
ability over time by finding a good inductive bias (a set of assumptions that guide predictions). We
now present a brief historical overview of developments in this field of deep meta-learning, based on
Hospedales et al. (2021).

Pioneering work was done by Schmidhuber (1987) and Hinton and Plaut (1987). Schmidhuber
developed a theory of self-referential learning, where the weights of a neural network can serve as
input to the model itself, which then predicts updates (Schmidhuber, 1987, 1993). In that same
year, Hinton and Plaut (1987) proposed to use two weights per neural network connection, i.e.,
slow and fast weights, which serve as long- and short-term memory respectively. Later came the
idea of meta-learning learning rules (Bengio et al., 1991, 1997). Meta-learning techniques that
use gradient-descent and backpropagation were proposed by Hochreiter et al. (2001) and Younger
et al. (2001). These two works have been pivotal to the current field of deep meta-learning, as the
majority of techniques rely on backpropagation, as we will see on our journey of contemporary deep
meta-learning techniques.
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Metric Model Optimization

Key idea Input similarity Internal task
representation

Optimize for fast
adaptation

Strength Simple and effective Flexible More robust generalizabil-
ity

pθ(Y |x, Dtr
Tj
)

∑
(xi,yi)∈Dtr

Tj

kθ(x,xi)yi fθ(x, D
tr
Tj
) fgφ(θ,Dtr

Tj
,L

Dtr
Tj

)
(x)

Table 2.2: High-level overview of the three deep meta-learning categories, i.e., i) metric-, ii) model-,
and iii) optimization-based techniques, and their main strengths and weaknesses. Recall that Tj is a
task, Dtr

Tj
the corresponding support set, kθ(x,xi) a kernel function returning the similarity between

the two inputs x and xi, yi are true labels for known inputs xi, θ are base-learner parameters, and
gφ is a (learned) optimizer with parameters φ.

2.2.4 Overview of the rest of this chapter

In the remainder of this chapter, we will look in more detail at individual meta-learning methods. As
indicated before, the techniques can be grouped into three main categories (Vinyals, 2017), namely
i) metric-, ii) model-, and iii) optimization-based methods. We will discuss them in that order.

To help give an overview of the methods, we draw your attention to the following figure and tables.
Table 2.2 summarizes the three categories, and provides key ideas, and strengths of the approaches.
The terms and technical details are explained more fully in the remainder of this chapter. Table 2.3
contains an overview of all techniques that are discussed further on.

2.3 Metric-based meta-learning

At a high level, the goal of metric-based techniques is to acquire—among others—meta-knowledge
ω in the form of a good feature space that can be used for various new tasks. In the context of
neural networks, this feature space coincides with the weights θ of the networks. Then, new tasks
can be learned by comparing new inputs to example inputs (of which we know the labels) in the
meta-learned feature space. The higher the similarity between a new input and an example, the
more likely it is that the new input will have the same label as the example input.

Metric-based techniques are a form of meta-learning as they leverage their prior learning experience
(meta-learned feature space) to ‘learn’ new tasks more quickly. Here, ‘learn’ is used in a non-standard
way since metric-based techniques do not make any network changes when presented with new tasks,
as they rely solely on input comparisons in the already meta-learned feature space. These input
comparisons are a form of non-parametric learning, i.e., new task information is not absorbed into
the network parameters.

More formally, metric-based learning techniques aim to learn a similarity kernel, or equivalently,
attention mechanism kθ (parameterized by θ), that takes two inputs x1 and x2, and outputs their
similarity score. Larger scores indicate larger similarity. Class predictions for new inputs x can then
be made by comparing x to example inputs xi, of which we know the true labels yi. The underlying
idea being that the larger the similarity between x and xi, the more likely it becomes that x also
has label yi.
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Name RL Key idea Bench.
Metric-based Input similarity -

Siamese nets ✗ Two-input, shared-weight, class identity network 1, 8

Matching nets ✗
Learn input embeddings for cosine-similarity weighted
predictions 1, 2

Prototypical nets ✗ Input embeddings for class prototype clustering 1, 2, 7
Relation nets ✗ Learn input embeddings and similarity metric 1, 2, 7

ARC ✗ LSTM-based input fusion through interleaved glimpses 1, 2

GNN ✗
Propagate label information to unlabeled inputs in a
graph 1, 2

Model-based Internal and stateful latent task representations -
RMLs ✓ Deploy Recurrent nets on RL problems -

MANNs ✗ External short-term memory module for fast learning 1

Meta nets ✓
Fast reparameterization of base-learner by distinct meta-
learner 1, 2

SNAIL ✓
Attention mechanism coupled with temporal convolu-
tions 1, 2

CNP ✗
Condition predictive model on embedded contextual task
data 1, 8

Neural stat. ✗ Similarity between latent task embeddings 1, 8

Opt.-based Optimize for fast task-specific adaptation -
LSTM optimizer ✗ RNN proposing weight updates for base-leaner 6, 8

LSTM ml. ✓ Embed base-learner parameters in cell state of LSTM 2
RL optimizer ✗ View optimization as RL problem 4, 6

MAML ✓ Learn initialization weights θ for fast adaptation 1, 2

iMAML ✓
Approx. higher-order gradients, independent of optimiza-
tion path 1, 2

Meta-SGD ✓ Learn both the initialization and updates 1, 2
Reptile ✓ Move initialization towards task-specific updated weights 1, 2
LEO ✗ Optimize in lower-dimensional latent parameter space 2, 3

Online MAML ✗ Accumulate task data for MAML-like training 4, 8

LLAMA ✗
Maintain probability distribution over post-update pa-
rameters θ′j

2

PLATIPUS ✗
Learn a probability distribution over weight initializa-
tions θ -

BMAML ✓
Learn multiple initializations Θ, jointly optimized by
SVGD 2

Diff. solvers ✗ Learn input embeddings for simple base-learners 1, 2, 3, 4, 5

Table 2.3: Overview of the discussed deep meta-learning techniques. The table is partitioned into
three sections, i.e., metric-, model-, and optimization-based techniques. All methods in one section
adhere to the key idea of its corresponding category, which is mentioned in bold font. The columns
RL and Bench show whether the techniques are applicable to reinforcement learning settings and
the used benchmarks for testing the performance of the techniques. Note that all techniques are
applicable to supervised learning, with the exception of RMLs. The benchmark column displays
which benchmarks from Section 2.2.2 were used in the paper proposing the technique. The used
coding scheme for this column is the following. 1: Omniglot, 2: miniImageNet, 3: tieredImageNet, 4:
CIFAR-100, 5: CIFAR-FS, 6: CIFAR-10, 7: CUB, 8: MNIST, “-": used other evaluation method that
are non-standard in deep meta-learning and thus not covered in Section 2.2.2. Used abbreviations:
“opt.": optimization, “diff.": differentiable, “bench.": benchmarks.
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Figure 2.5: Illustration of our metric-based example. The blue vector represents the new input from
the query set, whereas the red vectors are inputs from the support set which can be used to guide
our prediction for the new input.

Given a task Tj = (Dtr
Tj
, Dtest

Tj
) and an unseen input vector x ∈ Dtest

Tj
, a probability distribution over

classes Y is computed/predicted as a weighted combination of labels from the support set Dtr
Tj

, using
similarity kernel kθ, i.e.,

pθ(Y |x, Dtr
Tj
) =

∑
(xi,yi)∈Dtr

Tj

kθ(x,xi)yi. (2.7)

Importantly, the labels yi are assumed to be one-hot encoded, meaning that they are represented by
zero vectors with a ‘1’ on the position of the true class. For example, suppose there are five classes in
total, and our example x1 has true class 4. Then, the one-hot encoded label is y1 = [0, 0, 0, 1, 0]. Note
that the probability distribution pθ(Y |x, Dtr

Tj
) over classes is a vector of size |Y |, in which the i-th

entry corresponds to the probability that input x has class Yi (given the support set). The predicted
class is thus ŷ = argmaxi=1,2,...,|Y | pθ(Y |x, S)i, where pθ(Y |x, S)i is the computed probability that
input x has class Yi.

2.3.1 Example

Suppose that we are given a task Tj = (Dtr
Tj
, Dtest

Tj
). Furthermore, suppose that Dtr

Tj
= {([0,−4], 1),

([−2,−4], 2), ([−2, 4], 3), ([6, 0], 4)}, where a tuple denotes a pair (xi, yi). For simplicity, the example
will not use an embedding function, which maps example inputs onto an (more informative) embedding
space. Our query set only contains one example Dtest

Tj
= {([4, 0.5], y)}. Then, the goal is to predict

the correct label for new input [4, 0.5] using only examples in Dtr
Tj

. The problem is visualized in
Figure 2.5, where red vectors correspond to example inputs from our support set. The blue vector is
the new input that needs to be classified. Intuitively, this new input is most similar to the vector
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xi yi ||xi|| xi

||xi||
xi

||xi|| ·
x

||x||

[0,−4] [1, 0, 0, 0] 4 [0,−1] −0.12
[−2,−4] [0, 1, 0, 0] 4.47 [−0.48,−0.89] −0.58
[−2, 4] [0, 0, 1, 0] 4.47 [−0.48, 0.89] −0.37
[6, 0] [0, 0, 0, 1] 6 [1, 0] 0.99

Table 2.4: Example showing pair-wise input comparisons. Numbers were rounded to two decimals.

[6, 0], which means that we expect the label for the new input to be the same as that for [6, 0], i.e.,
4.

Suppose we use a fixed similarity kernel, namely the cosine similarity, i.e., k(x,xi) =
x·xT

i

||x||·||xi|| , where
||v|| denotes the length of vector v, i.e., ||v|| =

√
(
∑

n v
2
n). Here, vn denotes the n-th element of

placeholder vector v (substitute v by x or xi). We can now compute the cosine similarity between
the new input [4, 0.5] and every example input xi, as done in Table 2.4, where we used the facts that
||x|| = || [4, 0.5] || =

√
42 + 0.52 ≈ 4.03, and x

||x|| ≈
[4,0.5]
4.03 = [0.99, 0.12].

From this table and Equation 2.7, it follows that the predicted probability distribution pθ(Y |x, Dtr
Tj
) =

−0.12y1−0.58y2−0.37y3+0.99y4 = −0.12[1, 0, 0, 0]−0.58[0, 1, 0, 0]−0.37[0, 0, 1, 0]+0.99[0, 0, 0, 1] =
[−0.12,−0.58,−0.37, 0.99]. Note that this is not really a probability distribution. That would require
normalization such that every element is at least 0 and the sum of all elements is 1. For the sake of
this example, we do not perform this normalization, as it is clear that class 4 (the class of the most
similar example input [6, 0]) will be predicted.

One may wonder why such techniques are meta-learners, for we could take any single data set D and
use pair-wise comparisons to compute predictions. At the outer-level, metric-based meta-learners are
trained on a distribution of different tasks, in order to learn (among others) a good input embedding
function. This embedding function facilitates inner-level learning, which is achieved through pair-wise
comparisons. As such, one learns an embedding function across tasks to facilitate task-specific
learning, which is equivalent to “learning to learn", or meta-learning.

After this introduction to metric-based methods, we will now cover some key metric-based tech-
niques.

2.3.2 Siamese neural networks

A Siamese neural network (Koch et al., 2015) consists of two neural networks fθ that share the
same weights θ. Siamese neural networks take two inputs x1,x2, and compute two hidden states
fθ(x1), fθ(x2), corresponding to the activation patterns in the final hidden layers. These hidden
states are fed into a distance layer, which computes a distance vector d = |fθ(x1)− fθ(x2)|, where di
is the absolute distance between the i-th elements of fθ(x1) and fθ(x2). From this distance vector,
the similarity between x1,x2 is computed as σ(αTd), where σ is the sigmoid function (with output
range [0,1]), and α is a vector of free weighting parameters, determining the importance of each di.
This network structure can be seen in Figure 2.6.

Koch et al. (2015) applied this technique to few-shot image recognition in two stages. In the first stage,
they train the twin network on an image verification task, where the goal is to output whether two
input images x1 and x2 have the same class. The network is thus stimulated to learn discriminative
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Figure 2.6: Example of a Siamese neural network. Source: Koch et al. (2015).

features. In the second stage, where the model is confronted with a new task, the network leverages
its prior learning experience. That is, given a task Tj = (Dtr

Tj
, Dtest

Tj
), and previously unseen input

x ∈ Dtest
Tj

, the predicted class ŷ is equal to the label yi of the example (xi, yi) ∈ Dtr
Tj

which yields
the highest similarity score to x. In contrast to other techniques mentioned further in this section,
Siamese neural networks do not directly optimize for good performance across tasks (consisting of
support and query sets). However, they do leverage learned knowledge from the verification task to
learn new tasks quicker.

In summary, Siamese neural networks are a simple and elegant approach to perform few-shot learning.
However, they are not readily applicable outside the supervised learning setting.

2.3.3 Matching networks

Matching networks (Vinyals et al., 2016) build upon the idea that underlies Siamese neural networks
(Koch et al., 2015). That is, they leverage pair-wise comparisons between the given support set
Dtr

Tj
= {(xi, yi)}mi=1 (for a task Tj), and new inputs x ∈ Dtest

Tj
from the query set which we want to

classify. However, instead of assigning the class yi of the most similar example input xi, matching
networks use a weighted combination of all example labels yi in the support set, based on the
similarity of inputs xi to new input x. More specifically, predictions are computed as follows:
ŷ =

∑m
i=1 a(x,xi)yi, where a is a non-parametric (non-trainable) attention mechanism, or similarity

kernel. This classification process is shown in Figure 2.7. In this figure, the input to fθ has to be
classified, using the support set Dtr

Tj
(input to gθ).

The attention that is used consists of a softmax over the cosine similarity c between the input
representations, i.e.,

a(x,xi) =
ec(fϕ(x),gφ(xi))∑m
j=1 e

c(fϕ(x),gφ(xj))
, (2.8)

where fϕ and gφ are neural networks, parameterized by ϕ and φ, that map raw inputs to a (lower-
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Figure 2.7: Architecture of matching networks. Source: Vinyals et al. (2016).

dimensional) latent vector, which corresponds to the output of the final hidden layer of a neural
network. As such, the neural networks act as embedding functions. The larger the cosine similarity
between the embeddings of x and xi, the larger a(x,xi), and thus the influence of label yi on the
predicted label ŷ for input x.

Vinyals et al. (2016) propose two main choices for the embedding functions. The first is to use a single
neural network, granting us θ = ϕ = φ and thus fϕ = gφ. This setup is the default form of matching
networks, as shown in Figure 2.7. The second choice is to make fϕ and gφ dependent on the support
set Dtr

Tj
using Long Short-Term Memory networks (LSTMs). In that case, fϕ is represented by an

attention LSTM, and gφ by a bidirectional one. This choice for embedding functions is called Full
Context Embeddings (FCE), and yielded an accuracy improvement of roughly 2% on miniImageNet
compared to the regular matching networks, indicating that task-specific embeddings can aid the
classification of new data points from the same distribution.

Matching networks learn a good feature space across tasks for making pair-wise comparisons between
inputs. In contrast to Siamese neural networks (Koch et al., 2015), this feature space (given by
weights θ) is learned across tasks, instead of on a distinct verification task.

In summary, matching networks are an elegant and simple approach to metric-based meta-learning.
However, these networks are not readily applicable outside of supervised learning settings, and suffer
from performance degradation when label distributions are biased (Vinyals et al., 2016).

2.3.4 Prototypical networks

Just like Matching nets (Vinyals et al., 2016), prototypical nets (Snell et al., 2017) base their class
predictions on the entire support set Dtr

Tj
. However, instead of computing the similarity between

new inputs and examples in the support set, prototypical nets only compare new inputs to class
prototypes (centroids), which are single vector representations of classes in some embedding space.
Since there are less (or equal) class prototypes than the number of examples in the support set, the
amount of required pair-wise comparisons decreases, saving computational costs.

The underlying idea of class prototypes is that for a task Tj , there exists an embedding function that
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Figure 2.8: Prototypical networks for case of few-shot learning. The ck are class prototypes for class
k which are computed by averaging the representations of inputs (colored circles) in the support
set. Note that the representation space is partitioned into three disjoint areas, where each area
corresponds to one class. The class with the closest prototype to the new input x in the query set is
then given as prediction. Source: Snell et al. (2017).

maps the support set onto a space where class instances cluster nicely around the corresponding class
prototypes (Snell et al., 2017). Then, for a new input x, the class of the prototype nearest to that
input will be predicted. As such, prototypical nets perform nearest centroid/prototype classification
in a meta-learned embedding space. This is visualized in Figure 2.8.

More formally, given a distance function d : X×X → [0,+∞) (e.g. Euclidean distance) and embedding
function fθ, parameterized by θ, prototypical networks compute class probabilities pθ(Y |x, Dtr

Tj
) as

follows

pθ(y = k|x, Dtr
Tj
) =

exp[−d(fθ(x), ck)]∑
yi
exp[−d(fθ(x), cyi)]

, (2.9)

where ck is the prototype/centroid for class k and yi are the classes in the support set Dtr
Tj

. Here,
a class prototype for class k is defined as the average of all vectors xi in the support set such that
yi = k. Thus, classes with prototypes that are nearer to the new input x obtain larger probability
scores.

Snell et al. (2017) found that the squared Euclidean distance function as d gave rise to the best
performance. With that distance function, prototypical networks can be seen as linear models. To see
this, note that −d(fθ(x), ck) = −||fθ(x)− ck||2 = −fθ(x)T fθ(x) + 2cTk fθ(x)− cTk ck. The first term
does not depend on the class k, and does thus not affect the classification decision. The remainder
can be written as wT

k fθ(x) + bk, where wk = 2ck and bk = −cTk ck. Note that this is linear in the
output of network fθ, not linear in the input of the network x. Also, Snell et al. (2017) show that
prototypical nets (coupled with Euclidean distance) are equivalent to matching nets in one-shot
learning settings, as every example in the support set will be its own prototype.

In short, prototypical nets save computational costs by reducing the required number of pair-wise
comparisons between new inputs and the support set, by adopting the concept of class prototypes.
Additionally, prototypical nets were found to outperform matching nets (Vinyals et al., 2016) in 5-way,
k-shot learning for k = 1, 5 on Omniglot (Lake et al., 2011) and miniImageNet (Vinyals et al., 2016),
even though they do not use complex task-specific embedding functions. Despite these advantages,
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Figure 2.9: Relation network architecture. First, the embedding network fφ embeds all inputs from
the support set Dtr

Tj
(the five example inputs on the left), and the query input (below the fφ block).

All support set embeddings fφ(xi) are then concatenated to the query embedding fφ(x). These
concatenated embeddings are passed into a relation network gϕ, which computes a relation score for
every pair (xi,x). The class of the input xi that yields the largest relation score gϕ([fφ(x), fφ(xi)])
is then predicted. Source: Sung et al. (2018).

prototypical nets are not readily applicable outside of supervised learning settings.

2.3.5 Relation networks

In contrast to previously discussed metric-based techniques, Relation networks (Sung et al., 2018)
employ a trainable similarity metric, instead of a pre-defined one (e.g. cosine similarity as used in
matching nets (Vinyals et al., 2016)). More specifically, matching nets consist of two chained, neural
network modules: the embedding network/module fφ which is responsible for embedding inputs, and
the relation network gϕ which computes similarity scores between new inputs x and example inputs
xi of which we know the labels. A classification decision is then made by picking the class of the
example input which yields the largest relation score (or similarity). Note that Relation nets thus do
not use the idea of class prototypes, and simply compare new inputs x to all example inputs xi in
the support set, as done by, e.g., matching networks (Vinyals et al., 2016).

More formally, we are given a support set Dtr
Tj

with some examples (xi, yi), and a new (previously
unseen) input x. Then, for every combination (x,xi), the Relation network produces a concatenated
embedding [fφ(x), fφ(xi)], which is vector obtained by concatenating the respective embeddings of x
and xi. This concatenated embedding is then fed into the relation module gϕ. Finally, gϕ computes
the relation score between x and xi as

ri = gϕ([fφ(x), fφ(xi)]). (2.10)

The predicted class is then ŷ = yargmaxi ri . This entire process is shown in Figure 2.9. Remarkably
enough, Relation nets use the Mean-Squared Error (MSE) of the relation scores, rather than the more
standard cross-entropy loss. The MSE is then propagated backwards through the entire architecture
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(Figure 2.9).

The key advantage of Relation nets is their expressive power, induced by the usage of a trainable
similarity function. This expressivity makes this technique very powerful. As a result, it yields better
performance than previously discussed techniques that use a fixed similarity metric.

2.3.6 Graph neural networks

Graph neural networks (Garcia and Bruna, 2017) use a more general and flexible approach than
previously discussed techniques for N -way, k-shot classification. As such, graph neural networks
subsume Siamese (Koch et al., 2015) and prototypical networks (Snell et al., 2017). The graph neural
network approach represents each task Tj as a fully-connected graph G = (V,E), where V is a set of
nodes/vertices and E a set of edges connecting nodes. In this graph, nodes vi correspond to input
embeddings fθ(xi), concatenated with their one-hot encoded labels yi, i.e., vi = [fθ(xi), yi]. For
inputs x from the query set (for which we do not have the labels), a uniform prior over all N possible
labels is used: y = [ 1N , . . . , 1

N ]. Thus, each node contains an input and label section. Edges are
weighted links that connect these nodes.

The graph neural network then propagates information in the graph using a number of local operators.
The underlying idea is that label information can be transmitted from nodes of which we do have
the labels, to nodes for which we have to predict labels. Which local operators are used, is out of
scope for this chapter, and the reader is referred to Garcia and Bruna (2017) for details.

By exposing the graph neural network to various tasks Tj , the propagation mechanism can be altered
to improve the flow of label information in such a way that predictions become more accurate. As
such, in addition to learning a good input representation function fθ, graph neural networks also
learn to propagate label information from labeled examples to unlabeled inputs.

Graph neural networks achieve good performance in few-shot settings (Garcia and Bruna, 2017), and
are also applicable in semi-supervised and active learning settings.

2.3.7 Attentive recurrent comparators

Attentive recurrent comparators (Shyam et al., 2017) differ from previously discussed techniques as
they do not compare inputs as a whole, but by parts. This approach is inspired by how humans
would make a decision concerning the similarity of objects. That is, we shift our attention from one
object to the other, and move back and forth to take glimpses of different parts of both objects.
In this way, information of two objects is fused from the beginning, whereas other techniques (e.g.,
matching networks (Vinyals et al., 2016) and graph neural networks (Garcia and Bruna, 2017)) only
combine information at the end (after embedding both images) (Shyam et al., 2017).

Given two inputs xi and x, we feed them in interleaved fashion repeatedly into a recurrent neural
network (controller): xi,x, . . . ,xi,x. Thus, the image at time step t is given by It = xi if t is even
else x. Then, at each time step t, the attention mechanism focuses on a square region of the current
image: Gt = attend(It,Ωt), where Ωt = Wght−1 are attention parameters, which are computed from
the previous hidden state ht−1. The next hidden state ht+1 = RNN(Gt, ht−1) is given by the glimpse
at time t, i.e., Gt, and the previous hidden state ht−1. The entire sequence consists of g glimpses per
image. After this sequence is fed into the recurrent neural network (indicated by RNN(◦)), the final
hidden state h2g is used as combined representation of xi relative to x. This process is summarized
in Figure 2.10. Classification decisions can then be made by feeding the combined representations
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Figure 2.10: Processing in an attentive recurrent comparator. At every time step, the model takes
a glimpse of a part of an image and incorporates this information into the hidden state ht. The
final hidden state after taking various glimpses of a pair of images is then used to compute a class
similarity score. Source: Shyam et al. (2017).

into a classifier. Optionally, the combined representations can be processed by bi-directional LSTMs
before passing them to the classifier.

The attention approach is biologically inspired, and biologically plausible. A downside of attentive
recurrent comparators is the higher computational cost, while the performance is often not better than
less biologically plausible techniques, such as graph neural networks (Garcia and Bruna, 2017).

2.3.8 Metric-based techniques, in conclusion

In this section, we have seen various metric-based techniques. The metric-based techniques meta-learn
an informative feature space that can be used to compute class predictions based on input similarity
scores. Figure 2.11 shows the relationships between the various metric-based techniques that we have
covered.

As we can see, Siamese networks (Koch et al., 2015) mark the beginning of metric-based, deep
meta-learning techniques in few-shot learning settings. They are the first to use the idea of predicting
classes by comparing inputs from the support and query sets. This idea was generalized in GNNs
(Hamilton et al., 2017; Garcia and Bruna, 2017) where the information flow between support and
query inputs is parametric and thus more flexible. Matching networks (Vinyals et al., 2016) are
directly inspired by Siamese networks as they use the same core idea (comparing inputs for making
predictions), but directly train in the few-shot setting and use cosine similarity as similarity function.
Thus, the auxiliary, binary classification task used by Siamese networks is left out, and matching
networks directly train on tasks. Prototypical networks (Snell et al., 2017) increase the robustness of
input comparisons by comparing every query set input with a class prototype instead of individual
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Figure 2.11: The relationships between the covered metric-based meta-learning techniques.

support set examples. This reduces the number of required input comparisons for a single query
input to N instead of k · N . Relation networks (Sung et al., 2018) replace the fixed, pre-defined
similarity metrics used in matching and prototypical networks by a neural network, which allows
for learning a domain-specific similarity function. Lastly, ARCs (Shyam et al., 2017) take a more
biologically plausible approach by not comparing entire inputs but by taking multiple interleaved
glimpses at various parts of the inputs that are being compared.

Key advantages of these metric-based techniques are that i) the underlying idea of similarity-based
predictions is conceptually simple, and ii) they can be fast at test-time when tasks are small, as the
networks do not need to make task-specific adjustments. However, when tasks at meta-test time
become more distant from the tasks that were used at meta-train time, metric-learning techniques
are unable to absorb new task information into the network weights. Consequently, performance may
degrade.

Furthermore, when tasks become larger, pair-wise comparisons may become prohibitively expensive.
Lastly, most metric-based techniques rely on the presence of labeled examples, which make them
inapplicable outside of supervised learning settings.

2.4 Model-based meta-learning
A different approach to deep meta-learning is the model-based approach. On a high level, model-
based techniques rely upon an adaptive, internal state, in contrast to metric-based techniques, which
generally use a fixed neural network at test-time.

More specifically, model-based techniques maintain a stateful, internal representation of a task. When
presented with a task, a model-based neural network processes the support set in sequential fashion.
At every time step, an input enters, and alters the internal state of the model. Thus, the internal
state can capture relevant task-specific information, which can be used to make predictions for new
inputs.

Because the predictions are based on internal dynamics that are hidden from the outside, model-based
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techniques are also called black-boxes. Information from previous inputs must be remembered, which
is why model-based techniques have a memory component, either in- or externally.

Recall that the mechanics of metric-based techniques were limited to pair-wise input comparisons.
This is not the case for model-based techniques, where the human designer has the freedom to choose
the internal dynamics of the algorithm. As a result, model-based techniques are not restricted to
meta-learning good feature spaces, as they can also learn internal dynamics, used to process and
predict input data of tasks.

More formally, given a support set Dtr
Tj

corresponding to task Tj , model-based techniques compute a
class probability distribution for a new input x as

pθ(Y |x, Dtr
Tj
) = fθ(x, D

tr
Tj
), (2.11)

where f represents the black-box neural network model, and θ its parameters.

2.4.1 Example
Using the same example as in Section 2.3, suppose we are given a task support set Dtr

Tj
= {([0,−4], 1),

([−2,−4], 2), ([−2, 4], 3), ([6, 0], 4)}, where a tuple denotes a pair (xi, yi). Furthermore, suppose our
query set only contains one example Dtest

Tj
= {([4, 0.5], 4)}. This problem has been visualized in

Figure 2.5 (in Section 2.3). For the sake of the example, we do not use an input embedding function:
our model will operate on the raw inputs of Dtr

Tj
and Dtest

Tj
. As an internal state, our model uses

an external memory matrix M ∈ R4×(2+1), with four rows (one for each example in our support
set), and three columns (the dimensionality of input vectors, plus one dimension for the correct
label). Our model proceeds to process the support set in sequential fashion, reading the examples
from Dtr

Tj
one by one, and by storing the i-th example in the i-th row of the memory module. After

processing the support set, the memory matrix contains all examples, and as such, serves as internal
task representation.

Given the new input [4, 0.5], our model could use many different techniques to make a prediction
based on this representation. For simplicity, assume that it computes the dot product between x, and
every memory M(i) (the 2-D vector in the i-th row of M , ignoring the correct label), and predicts the
class of the input which yields the largest dot product. This would produce scores −2,−10,−6, and
24 for the examples in Dtr

Tj
respectively. Since the last example [6, 0] yields the largest dot product,

we predict that class, i.e., 4.

Note that this example could be seen as a metric-based technique where the dot product is used
as similarity function. However, the reason that this technique is model-based is that it stores the
entire task inside a memory module. This example was deliberately easy for illustrative purposes.
More advanced and successful techniques have been proposed, which we will now cover.

2.4.2 Recurrent meta-learners
Recurrent meta-learners (Duan et al., 2016; Wang et al., 2016) are, as the name suggests, meta-learners
based on recurrent neural networks. The recurrent network serves as dynamic task embedding storage.
These recurrent meta-learners were specifically proposed for reinforcement learning problems, hence
we will explain them in that setting.

The recurrence is implemented by e.g. an LSTM (Wang et al., 2016) or a GRU (Duan et al., 2016).
The internal dynamics of the chosen Recurrent Neural Network (RNN) allows for fast adaptation
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Figure 2.12: Workflow of recurrent meta-learners in reinforcement learning contexts. As mentioned
in Section 2.2.1, st, rt, and dt denote the state, reward, and termination flag at time step t. ht refers
to the hidden state at time t. Source: Duan et al. (2016).

to new tasks, while the algorithm used to train the recurrent net gradually accumulates knowledge
about the task structure, where each task is modelled as an episode (or set of episodes).

The idea of recurrent meta-learners is quite simple. That is, given a task Tj , we simply feed the
(potentially processed) environment variables [st+1, at, rt, dt] (see Section 2.2.1) into an RNN at every
time step t. Recall that s, a, r, d denote the state, action, reward, and termination flag respectively.
At every time step t, the RNN outputs an action and a hidden state. Conditioned on its hidden state
ht, the network outputs an action at. The goal is to maximize the expected reward in each trial. See
Figure 2.12 for a visual depiction. From this figure, it also becomes clear why these techniques are
model-based. That is, they embed information from previously seen inputs in the hidden state.

Recurrent meta-learners have shown to perform almost as well as asymptotically optimal algorithms
on simple reinforcement learning tasks (Wang et al., 2016; Duan et al., 2016). However, their
performance degrades in more complex settings, where temporal dependencies can span a longer
horizon. Making recurrent meta-learners better at such complex tasks is a direction for future
research.

2.4.3 Memory-augmented neural networks (MANNs)

The key idea of memory-augmented neural networks (Santoro et al., 2016) is to enable neural networks
to learn quickly with the help of an external memory. The main controller (the recurrent neural
network interacting with the memory) then gradually accumulates knowledge across tasks, while
the external memory allows for quick task-specific adaptation. For this, Santoro et al. (2016) used
Neural Turing Machines (Graves et al., 2014). Here, the controller is parameterized by θ and acts as
the long-term memory of the memory-augmented neural network, while the external memory module
is the short-term memory.

The workflow of memory-augmented neural networks is displayed in Figure 2.13. Note that the data
from a task is processed as a sequence, i.e., data are fed into the network one by one. The support
set is fed into the memory-augmented neural network first. Afterwards, the query set is processed.
During the meta-train phase, training tasks can be fed into the network in arbitrary order. At time
step t, the model receives input xt with the label of the previous input, i.e., yt−1. This was done to
prevent the network from mapping class labels directly to the output (Santoro et al., 2016).
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-

Figure 2.13: Workflow of memory-augmented neural networks. Here, an episode corresponds to a
given task Tj . After every episode, the order of labels, classes, and samples should be shuffled to
minimize dependence on arbitrarily assigned orders. Source: Santoro et al. (2016).

Figure 2.14: Controller-memory interaction in memory-augmented neural networks. Source: Santoro
et al. (2016).

The interaction between the controller and memory is visualized in Figure 2.14. The idea is that
the external memory module, containing representations of previously seen inputs, can be used to
make predictions for new inputs. In short, previously obtained knowledge is leveraged to aid the
classification of new inputs. Note that neural networks also attempt to do this, however, their prior
knowledge is slowly accumulated into the network weights, while an external memory module can
directly store such information.

Given an input xt at time t, the controller generates a key kt, which can be stored in memory
matrix M and can be used to retrieve previous representations from memory matrix M . When
reading from memory, the aim is to produce a linear combination of stored keys in memory matrix
M , giving greater weight to those which have a larger cosine similarity with the current key kt.
More specifically, a read vector wr

t is created, in which each entry i denotes the cosine similarity
between key kt and the memory (from a previous input) stored in row i, i.e., Mt(i). Then, the
representation rt =

∑
i w

r
t (i)M(i) is retrieved, which is simply a linear combination of all keys (i.e.,

rows) in memory matrix M .

Predictions are made as follows. Given an input xt, memory-augmented neural networks use the
external memory to compute the corresponding representation rt, which could be fed into a softmax
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layer, resulting in class probabilities. Across tasks, memory-augmented neural networks learn a good
input embedding function fθ and classifier weights, which can be exploited when presented with new
tasks.

To write input representations to memory, Santoro et al. (2016) propose a new mechanism called
Least Recently Used Access (LRUA). LRUA either writes to the least, or most recently used memory
location. In the former case, it preserves recent memories, and in the latter it updates recently
obtained information. The writing mechanism works by keeping track of how often every memory
location is accessed in a usage vector wu

t , which is updated at every time step according to the
following update rule: wu

t := γwu
t−1 +w

r
t +w

w
t , where superscripts u,w and r refer to usage, write

and read vectors, respectively. In words, the previous usage vector is decayed (using parameter γ),
while current reads (wr

t ) and writes (ww
t ) are added to the usage. Let n be the total number of reads

to memory, and ℓu(n) (ℓu for ‘least used’) be the n-th smallest value in the usage vector wu
t . Then,

the least-used weights are defined as follows:

wℓu
t (i) =

{
0 if wu

t (i) > ℓu(n)

1 else
.

Then, the write vector ww
t is computed as ww

t = σ(α)wr
t−1+(1−σ(α))wℓu

t−1, where α is a parameter
that interpolates between the two weight vectors. As such, if σ(α) = 1, we write to the most recently
used memory, whereas when σ(α) = 0, we write to the least recently used memory locations. Finally,
writing is performed as follows: Mt(i) := Mt−1(i) + ww

t (i)kt, for all i.

In summary, memory-augmented neural networks (Santoro et al., 2016) combine external memory
and a neural network to achieve meta-learning. The interaction between a controller, with long-term
memory parameters θ, and memory M , may also be interesting for studying human meta-learning
(Santoro et al., 2016). In contrast to many metric-based techniques, this model-based technique
is applicable to both classification and regression problems. A downside of this approach is the
architectural complexity.

2.4.4 Meta networks

Meta networks are divided into two distinct subsystems (consisting of neural networks), i.e., the base-
and meta-learner (whereas in memory-augmented neural networks the base- and meta-components
are intertwined). The base-learner is responsible for performing tasks, and for providing the meta-
learner with meta-information, such as loss gradients. The meta-learner can then compute fast
task-specific weights for itself and the base-learner, such that it can perform better on the given task
Tj = (Dtr

Tj
, Dtest

Tj
). This workflow is depicted in Figure 2.15.

The meta-learner consists of neural networks uϕ,mφ, and dψ. Network uϕ is used as input represen-
tation function. Networks dψ and mφ are used to compute task-specific weights ϕ∗ and example-level
fast weights θ∗. Lastly, bθ is the base-learner which performs input predictions. Note that we used
the term fast-weights throughout, which refers to task- or input-specific versions of slow (initial)
weights.

In similar fashion to memory-augmented neural networks (Santoro et al., 2016), meta networks
(Munkhdalai and Yu, 2017) also leverage the idea of an external memory module. However, meta
networks use the memory for a different purpose. The memory stores for each observation xi in the
support set two components, i.e., its representation ri and the fast weights θ∗i . These are then used
to compute a attention-based representation and fast weights for new inputs, respectively.
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Figure 2.15: Architecture of a Meta Network. Source: Munkhdalai and Yu (2017).

The pseudocode for meta networks is displayed in Algorithm 1. First, a sample of the support set is
created (line 1), which is used to compute task-specific weights ϕ∗ for the representation network
uϕ (lines 2-5). Note that uϕ has two tasks, i) it should compute a representation for inputs (xi

(line 10 and 15), and ii) it needs to make predictions for inputs (xi, in order to compute a loss (line
3). To achieve both goals, a conventional neural network can be used that makes class predictions.
The states of the final hidden layer are then used as representation. Typically, the cross entropy is
calculated over the predictions of representation network uϕ. When there are multiple examples per
class in the support set, an alternative is to use a contrastive loss function (Munkhdalai and Yu,
2017).

Then, meta networks iterate over every example (xi, yi) in the support set Dtr
Tj

. The base-learner bθ
attempts to make class predictions for these examples, resulting in loss values Li (line 7-8). The
gradients of these losses are used to compute fast weights θ∗ for example i (line 8), which are then
stored in the i-th row of memory matrix M (line 9). Additionally, input representations ri are
computed and stored in memory matrix R (lines 10-11).

Now, meta networks are ready to address the query set Dtest
Tj

. They iterate over every example
(x, y), and compute a representation r of it (line 15). This representation is matched against the
representations of the support set, which are stored in memory matrix R. This matching gives us
a similarity vector a, where every entry k denotes the similarity between input representation r
and the k-th row in memory matrix R, i.e., R(k) (line 16). A softmax over this similarity vector is
performed to normalize the entries. The resulting vector is used to compute a linear combination of
weights that were generated for inputs in the support set (line 17). These weights θ∗ are specific for
input x in the query set, and can be used by the base-learner b to make predictions for that input
(line 18). The observed error is added to the task loss. After the entire query set is processed, all
involved parameters can be updated using backpropagation (line 20).

Note that some neural networks use both slow- and fast-weights at the same time. Munkhdalai and
Yu (2017) use a so-called augmentation setup for this, as depicted in Figure 2.16.
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Algorithm 1 Meta networks, by Munkhdalai and Yu (2017)

1: Sample S = {(xi, yi) ∽ Dtr
Tj
}Ti=1 from the support set

2: for (xi, yi) ∈ S do
3: Li = error(uϕ(xi), yi)
4: end for
5: ϕ∗ = dψ({∇ϕLi}Ti=1)
6: for (xi, yi) ∈ Dtr

Tj
do

7: Li = error(bθ(xi), yi)
8: θ∗i = mφ(∇θLi)
9: Store θ∗i in i-th position of example-level weight memory M

10: ri = uϕ,ϕ∗(xi)
11: Store ri in i-th position of representation memory R
12: end for
13: Ltask = 0
14: for (x, y) ∈ Dtest

Tj
do

15: r = uϕ,ϕ∗(x)
16: a = attention(R, r) ▷ ak is the cosine similarity between r and R(k)
17: θ∗ = softmax(a)TM
18: Ltask = Ltask + error(bθ,θ∗(x), y)
19: end for
20: Update Θ = {θ,ϕ,ψ,φ} using ∇ΘLtask

In short, meta networks rely on a reparameterization of the meta- and base-learner for every task.
Despite the flexibility and applicability to both supervised and reinforcement learning settings, the
approach is quite complex. It consists of many components, each with its own set of parameters,
which can be a burden on memory-usage and computation time. Additionally, finding the correct
architecture for all the involved components can be time consuming.

2.4.5 Simple neural attentive meta-learner (SNAIL)
Instead of an external memory matrix, SNAIL (Mishra et al., 2018) relies on a special model
architecture to serve as memory. Mishra et al. (2018) argue that it is not possible to use Recurrent
Neural Networks for this, as they have limited memory capacity, and cannot pinpoint specific prior
experiences (Mishra et al., 2018). Hence, SNAIL uses a different architecture, consisting of 1D
temporal convolutions (Oord et al., 2016) and a soft attention mechanism (Vaswani et al., 2017).
The temporal convolutions allow for ‘high band-width’ memory access, and the attention mechanism
allows to pinpoint specific experiences. Figure 2.17 visualizes the architecture and workflow of SNAIL
for supervised learning problems. From this figure, it becomes clear why this technique is model-based.
That is, model outputs are based upon the internal state, computed from earlier inputs.

SNAIL consists of three building blocks. The first is the DenseBlock, which applies a single 1D
convolution to the input, and concatenates (in the feature/horizontal direction) the result. The
second is a TCBlock, which is simply a series of DenseBlocks with exponentially increasing dilation
rate of the temporal convolutions (Mishra et al., 2018). Note that the dilation is nothing but the
temporal distance between two nodes in a network. For example, if we use a dilation of 2, a node at
position p in layer L will receive the activation from node p− 2 from layer L− 1. The third block is
the AttentionBlock, which learns to focus on the important parts of prior experience.
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Figure 2.16: Layer augmentation setup used to combine slow and fast weights. Source: Munkhdalai
and Yu (2017).

In similar fashion to memory-augmented neural networks (Santoro et al., 2016) (Section 2.4.3),
SNAIL also processes task data in sequence, as shown in Figure 2.17. However, the input at time t
is accompanied with the label at time t, instead of t − 1 (as was the case for memory-augmented
neural networks). SNAIL learns internal dynamics from seeing various tasks, so that it can make
good predictions on the query set, conditioned upon the support set.

A key advantage of SNAIL is that it can be applied to both supervised and reinforcement learning
tasks. In addition, it achieves good performance compared to previously discussed techniques. A
downside of SNAIL is that finding the correct architecture of TCBlocks and DenseBlocks can be
time consuming.

2.4.6 Conditional neural processes (CNPs)

In contrast to previous techniques, a conditional neural process (CNP) (Garnelo et al., 2018) does not
rely on an external memory module. Instead, it aggregates the support set into a single aggregated
latent representation. The general architecture is shown in Figure 2.18. As we can see, the conditional
neural process operates in three phases on task Tj . First, it observes the support set Dtr

Tj
, including

the ground-truth outputs yi. Examples (xi, yi) ∈ Dtr
Tj

are embedded using a neural network hθ into
representations ri. Second, these representations are aggregated using operator a to produce a single
representation r of Dtr

Tj
(hence it is model-based). Third, a neural network gϕ processes this single

representation r, new inputs x, and produces predictions ŷ.

Let the entire conditional neural process model be denoted by QΘ, where Θ is a set of all involved
parameters {θ,ϕ}. The training process is different compared to other techniques. Let xTj and yTj

denote all inputs and corresponding outputs in Dtr
Tj

. Then, the first ℓ ∽ U(0, . . . , k ·N − 1) examples
in Dtr

Tj
are used as a conditioning set Dc

Tj
(effectively splitting the support set in a true training set

and a validation set). Given a value of ℓ, the goal is to maximize the log likelihood (or minimize the
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Figure 2.17: Architecture and workflow of SNAIL for supervised and reinforcement learning settings.
The input layer is red. Temporal Convolution blocks are orange; attention blocks are green. Source:
Mishra et al. (2018).

negative log likelihood) of the labels yTj
in the entire support set Dtr

Tj

L(Θ) = −ETj∽p(T )

[
Eℓ∽U(0,...,k·N−1)

(
QΘ(yTj

|Dc
Tj
,xTj

)
)]

. (2.12)

Conditional neural processes are trained by repeatedly sampling various tasks and values of ℓ, and
propagating the observed loss backwards.

In summary, conditional neural processes use compact representations of previously seen inputs to
aid the classification of new observations. Despite its simplicity and elegance, a disadvantage of this
technique is that it is often outperformed in few-shot settings by other techniques such as matching
networks (Vinyals et al., 2016) (see Section 2.3.3).

2.4.7 Neural statistician

A neural statistician (Edwards and Storkey, 2017) differs from earlier approaches as it learns to
compute summary statistics, or meta-features, of data sets in an unsupervised manner. These
latent embeddings (making the approach model-based) can then later be used for making predictions.
Despite the broad applicability of the model, we discuss it in the context of deep meta-learning.

A neural statistician performs both learning and inference. In the learning phase, the model attempts
to produce generative models P̂i for every data set Di. The key assumption that is made by Edwards
and Storkey (2017) is that there exists a generative process Pi, which conditioned on a latent context
vector ci, can produce data set Di. At inference time, the goal is to infer a (posterior) probability
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Figure 2.18: Schematic view of how conditional neural processes work. Here, h denotes a network
outputting a representation for a observation, a denotes an aggregation function for these representa-
tions, and g denotes a neural network that makes predictions for unlabelled observations, based on
the aggregated representation. Source: Garnelo et al. (2018).

Figure 2.19: Neural statistician architecture. Edges are neural networks. All incoming inputs to a
node are concatenated.

distribution over the context q(c|D).

The model uses a variational autoencoder, which consists of an encoder and decoder. The encoder is
responsible for producing a distribution over latent vectors z: q(z|x;ϕ), where x is an input vector,
and ϕ are the encoder parameters. The encoded input z, which is often of lower dimensionality
than the original input x, can then be decoded by the decoder p(x|z;θ). Here, θ are the parameters
of the decoder. To capture more complex patterns in data sets, the model uses multiple latent
layers z1, ...,zL, as shown in Figure 2.19. Given this architecture, the posterior over c and z1, ..,zL
(shorthand z1:L) is given by

q(c, z1:L|D;ϕ) = q(c|D;ϕ)
∏
x∈D

q(zL|x, c;ϕ)
L−1∏
i=1

q(zi|zi+1,x, c;ϕ). (2.13)

The neural statistician is trained to minimize a three-component loss function, consisting of the
reconstruction loss (how well it models the data), context loss (how well the inferred context
q(c|D;ϕ) corresponds to the prior P (c), and latent loss (how well the inferred latent variables zi are
modelled).
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This model can be applied to N -way, few-shot learning as follows. Construct N data sets for every
of the N classes, such that one data set contains only examples of the same class. Then, the neural
statistician is provided with a new input x, and has to predict its class. It computes a context
posterior Nx = q(c|x;ϕ) depending on new input x. In similar fashion, context posteriors are
computed for all of the data sets Ni = q(c|Di;ϕ). Lastly, it assigns the label i such that the difference
between Ni and Nx is minimal.

In summary, the neural statistician (Edwards and Storkey, 2017) allows for quick learning on new
tasks through data set modeling. Additionally, it is applicable to both supervised and unsupervised
settings. A downside is that the approach requires many data sets to achieve good performance
(Edwards and Storkey, 2017).

2.4.8 Model-based techniques, in conclusion

In this section, we have discussed various model-based techniques. Despite apparent differences,
they all build on the notion of task internalization. That is, tasks are processed and represented in
the state of the model-based system. This state can then be used to make predictions. Figure 2.20
displays the relationships between the covered model-based techniques.

MANNs (Santoro et al., 2016) mark the beginning of the deep model-based meta-learning techniques.
They use the idea of feeding the entire support set in sequential fashion into the model and then
making predictions for the query set inputs using the internal state of the model. Such a model-based
approach, where inputs sequentially enter the model was also taken by RMLs (Duan et al., 2016;
Wang et al., 2016) in the reinforcement learning setting. Meta networks (Munkhdalai and Yu,
2017) also use a large black-box solution, but generate task-specific weights for every task that is
encountered. SNAIL (Mishra et al., 2018) tries to improve the memory capacity and ability to
pinpoint memories, which is limited in recurrent neural networks, by using attention mechanisms
coupled with special temporal layers. Lastly, the neural statistician and CNP are two techniques
that try to learn meta-features of data sets in an end-to-end fashion. The neural statistician uses the
distance between meta-features to make class predictions, while the CNP conditions classifiers on
these features.

Advantages of model-based approaches include the flexibility of the internal dynamics of the systems,
and their broader applicability compared to most metric-based techniques. However, model-based
techniques are often outperformed by metric-based techniques in supervised settings (e.g. graph
neural networks (Garcia and Bruna, 2017); Section 2.3.6), may not perform well when presented
with larger data sets (Hospedales et al., 2021), and generalize less well to more distant tasks than
optimization-based techniques (Finn and Levine, 2018). We discuss this optimization-based approach
next.

2.5 Optimization-based meta-learning

Optimization-based techniques adopt a different perspective on meta-learning than the previous two
approaches. They explicitly optimize for fast learning. Most optimization-based techniques do so
by approaching meta-learning as a bi-level optimization problem. At the inner-level, a base-learner
makes task-specific updates using some optimization strategy (such as gradient descent). At the
outer-level, the performance across tasks is optimized.

More formally, given a task Tj = (Dtr
Tj
, Dtest

Tj
) with new input x ∈ Dtest

Tj
and base-learner parameters
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Figure 2.20: The relationships between the covered model-based meta-learning techniques. The
neural statistician and CNP form an island in the model-based approaches.

θ, optimization-based meta-learners return

p(Y |x, Dtr
Tj
) = fgφ(θ,Dtr

Tj
,LTj

)
(x), (2.14)

where f is the base-learner, gφ is a (learned) optimizer that makes task-specific updates to the
base-learner parameters θ using the support data Dtr

Ti
, and loss function LTj

.

2.5.1 Example

Suppose we are faced with a linear regression problem, where every task is associated with a different
function f(x). For this example, suppose our model only has two parameters: a and b, which together
form the function f̂(x) = ax+ b. Suppose further that our meta-training set consists of four different
tasks, i.e., A, B, C, and D. Then, according to the optimization-based view, we wish to find a single
set of parameters {a, b} from which we can quickly learn the optimal parameters for each of the four
tasks, as displayed in Figure 2.21. In fact, this is the intuition behind the popular optimization-based
technique MAML (Finn et al., 2017). By exposing our model to various meta-training tasks, we can
update the parameters a and b to facilitate quick adaptation.

We will now discuss the core optimization-based techniques in more detail.

2.5.2 LSTM optimizer

Standard gradient update rules have the form

θt+1 := θt − α∇θt
LTj

(θt), (2.15)

where α is the learning rate, and LTj
(θt) is the loss function with respect to task Tj and network

parameters at time t, i.e., θt. The key idea underlying LSTM optimizers (Andrychowicz et al., 2016)
is to replace the update term (−α∇LTj (θt)) by an update proposed by an LSTM g with parameters
φ. Then, the new update becomes

θt+1 := θt + gφ(∇θtLTj (θt)). (2.16)
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Figure 2.21: Example of an optimization-based technique, inspired by Finn et al. (2017).

This new update allows the optimization strategy to be tailored to a specific family of tasks. Note
that this is meta-learning, i.e., the LSTM learns to learn. As such, this technique basically learns an
update policy.

The loss function used to train an LSTM optimizer is:

L(φ) = ELTj

[
T∑

t=1

wtLTj (θt)

]
, (2.17)

where T is the number of parameter updates that are made, and wt are weights indicating the
importance of performance after t steps. Note that generally we are only interested in the final
performance after T steps. However, the authors found that the optimization procedure was better
guided by equally weighting the performance after each gradient descent step. As is often done,
second-order derivatives (arising from the dependency between the updated weights and the LSTM
optimizer) were ignored due to the computational expenses associated with the computation thereof.
This loss function is fully differentiable, and thus allows for training an LSTM optimizer (see
Figure 2.22). To prevent a parameter explosion, the same network is used for every coordinate/weight
in the base-learner’s network, causing the update rule to be the same for every parameter. Of course,
the updates depend on their prior values and gradients.

The key advantage of LSTM optimizers is that they can enable faster learning compared to hand-
crafted optimizers, also on different data sets than those used to train the optimizer. However,
Andrychowicz et al. (2016) did not apply this technique to few-shot learning. In fact, they did not
apply it across tasks at all. Thus, it is unclear whether this technique can perform well in few-shot
settings, where few data per class are available for training. Furthermore, the question remains
whether it can scale to larger base-learner architectures.

2.5.3 LSTM meta-learner
Instead of having an LSTM predict gradient updates, Ravi and Larochelle (2017) embed the weights
of the base-learner parameters into the cell state (long-term memory component) of the LSTM, giving
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Figure 2.22: Workflow of the LSTM optimizer. Gradients can only propagate backwards through
solid edges. ft denotes the observed loss at time step t. Source: Andrychowicz et al. (2016).

rise to LSTM meta-learners. As such, the base-learner parameters θ are literally inside the LSTM
memory component (cell state). In this way, cell state updates correspond to base-learner parameter
updates. This idea was inspired by the resemblance between the gradient and cell state update rules.
Gradient updates often have the form as shown in Equation 2.15. The LSTM cell state update rule,
in contrast, looks as follows

ct := ft ⊙ ct−1 + αt ⊙ c̄t, (2.18)

where ft is the forget gate (which determines which information should be forgotten) at time t,
⊙ represents the element-wise product, ct is the cell state at time t, and c̄t the candidate cell
state for time step t, and αt the learning rate at time step t. Note that if ft = 1 (vector of ones),
αt = α, ct−1 = θt−1, and c̄t = −∇θt−1

LTt
(θt−1), this update is equivalent to the one used by

gradient-descent. This similarity inspired Ravi and Larochelle (2017) to use an LSTM as meta-learner
that learns to make updates for a base-learner, as shown in Figure 2.23.

More specifically, the cell state of the LSTM is initialized with c0 = θ0, which will be adjusted by the
LSTM to a good common initialization point across different tasks. Then, to update the weights of the
base-learner for the next time step t+ 1, the LSTM computes ct+1, and sets the weights of the base-
learner equal to that. There is thus a one-to-one correspondence between ct and θt. The meta-learner’s
learning rate αt (see Equation 2.18), is set equal to σ(wα · [∇θt−1LTt(θt−1),LTt(θt), θt−1, αt−1]+bα),
where σ is the sigmoid function. Note that the output is a vector, with values between 0 and 1,
which denote the the learning rates for the corresponding parameters. Furthermore, wα and bα are
trainable parameters that part of the LSTM meta-learner. In words, the learning rate at any time
depends on the loss gradients, the loss value, the previous parameters, and the previous learning rate.
The forget gate, ft, determines what part of the cell state should be forgotten, and is computed in a
similar fashion, but with different weights.

To prevent an explosion of meta-learner parameters, weight-sharing is used, in similar fashion to
LSTM optimizers proposed by Andrychowicz et al. (2016) (Section 2.5.2). This implies that the same
update rule is applied to every weight at a given time step. The exact update, however, depends on
the history of that specific parameter in terms of previous learning rate, loss, etc. For simplicity,
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Figure 2.23: LSTM meta-learner computation graph. Gradients can only propagate backwards
through solid edges. The base-learner is denoted as M . (Xt, Yt) are training sets, whereas (X,Y ) is
the test set. Source: Ravi and Larochelle (2017).

second-order derivatives were ignored, by assuming the base-learner’s loss does not depend on the
cell state of the LSTM optimizer. Batch normalization was applied to stabilize and speed up the
learning process.

In short, LSTM optimizers can learn to optimize a base-learner by maintaining a one-to-one corre-
spondence over time between the base-learner’s weights and the LSTM cell state. This allows the
LSTM to exploit commonalities in the tasks, allowing for quicker optimization. However, there are
simpler approaches (e.g. MAML (Finn et al., 2017)) that outperform this technique.

2.5.4 Reinforcement learning optimizer

Li and Malik (2018) proposed a framework which casts optimization as a reinforcement learning
problem. Optimization can then be performed by existing reinforcement learning techniques. At
a high-level, an optimization algorithm g takes as input an initial set of weights θ0 and a task Tj
with corresponding loss function LTj

, and produces a sequence of new weights θ1, . . . ,θT , where
θT is the final solution found. On this sequence of proposed new weights, we can define a loss
function L that captures unwanted properties (e.g. slow convergence, oscillations, etc.). The goal of
learning an optimizer can then be formulated more precisely as follows. We wish to learn an optimal
optimizer

g∗ = argming ETj∽p(T ),θ0∽p(θ0)[L(g(LTj
,θ0))] (2.19)

The key insight is that the optimization can be formulated as a Partially Observable Markov Decision
Process (POMDP). Then, the state corresponds to the current set of weights θt, the action to the
proposed update at time step t, i.e., ∆θt, and the policy to the function that computes the update.
With this formulation, the optimizer g can be learned by existing reinforcement learning techniques.
In their paper, they used an recurrent neural network as optimizer. At each time step, they feed
it observation features, which depend on the previous set of weights, loss gradients, and objective
functions, and use guided policy search to train it.
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In summary, Li and Malik (2018) made a first step towards general optimization through reinforcement
learning optimizers, which were shown able to generalize across network architectures and data sets.
However, the base-learner architecture that was used was quite small. The question remains whether
this approach can scale to larger architectures.

2.5.5 MAML

Figure 2.24: MAML learns an initialization point from which it can perform well on various tasks.
Source: Finn et al. (2017).

Model-agnostic meta-learning (MAML) (Finn et al., 2017) uses a simple gradient-based inner
optimization procedure (e.g. stochastic gradient descent), instead of more complex LSTM procedures
or procedures based on reinforcement learning. The key idea of MAML is to explicitly optimize for
fast adaptation to new tasks by learning a good set of initialization parameters θ. This is shown in
Figure 2.24: from the learned initialization θ, we can quickly move to the best set of parameters
for task Tj , i.e., θ∗j for j = 1, 2, 3. The learned initialization can be seen as the inductive bias of the
model, or simply the set of assumptions (encapsulated in θ) that the model makes with respect to
the overall task structure.

More formally, let θ denote the initial model parameters of a model. The goal is to quickly learn new
concepts, which is equivalent to achieving a minimal loss in few gradient update steps. The amount
of gradient steps s has to be specified upfront, such that MAML can explicitly optimize for achieving
good performance within that number of steps. Suppose we pick only one gradient update step, i.e.,
s = 1. Then, given a task Tj = (Dtr

Tj
, Dtest

Tj
), gradient descent would produce updated parameters

(fast weights)

θ′j = θ − α∇θLDtr
Tj
(θ), (2.20)

specific to task j. The meta-loss of quick adaptation (using s = 1 gradient steps) across tasks can
then be formulated as

ML :=
∑

Tj∽p(T )

LDtest
Tj

(θ′j) =
∑

Tj∽p(T )

LDtest
Tj

(θ − α∇θLDtr
Tj
(θ)), (2.21)

where p(T ) is a probability distribution over tasks. This expression contains an inner gradient
(∇θLTj

(θj)). As such, by optimizing this meta-loss using gradient-based techniques, we have to
compute second-order gradients. One can easily see this in the computation below
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∇θML = ∇θ
∑

Tj∽p(T )

LDtest
Tj

(θ′j)

=
∑

Tj∽p(T )

∇θLDtest
Tj

(θ′j)

=
∑

Tj∽p(T )

L′
Dtest

Tj

(θ′j)∇θ(θ′j)

=
∑

Tj∽p(T )

L′
Dtest

Tj

(θ′j)∇θ(θ − α∇θLDtr
Tj

(θ))

=
∑

Tj∽p(T )

L′
Dtest

Tj

(θ′j)︸ ︷︷ ︸
FOMAML

(∇θθ − α∇2
θLDtr

Tj
(θ)), (2.22)

where we used L′
Dtest

Tj

(θ′j) to denote the derivative of the loss function with respect to the query

set, evaluated at the post-update parameters θ′j . The term α∇2
θLDtr

Tj
(θ) contains the second-order

gradients. The computation thereof is expensive in terms of time and memory costs, especially when
the optimization trajectory is large (when using a larger number of gradient updates s per task).
Finn et al. (2017) experimented with leaving out second-order gradients, by assuming ∇θθ′j = I,
giving us First Order MAML (FOMAML, see Equation 2.22). They found that FOMAML performed
reasonably similar to MAML. This means that updating the initialization using only first order
gradients

∑
Tj∽p(T ) L′

Dtest
Tj

(θ′j) is roughly equal to using the full gradient expression of the meta-loss

in Equation 2.22. One can extend the meta-loss to incorporate multiple gradient steps by substituting
θ′j by a multi-step variant.

MAML is trained as follows. The initialization weights θ are updated by continuously sampling a
batch of m tasks B = {Tj ∽ p(T )}mi=1. Then, for every task Tj ∈ B, an inner update is performed to
obtain θ′j , in turn granting an observed loss LDtest

Tj
(θ′j). These losses across a batch of tasks are used

in the outer update

θ := θ − β∇θ
∑
Tj∈B

LDtest
Tj

(θ′j). (2.23)

The complete training procedure of MAML is displayed in Algorithm 2. At test-time, when presented
with a new task Tj , the model is initialized with θ, and performs a number of gradient updates on
the task data. Note that the algorithm for FOMAML is equivalent to Algorithm 2, except for the
fact that the update on line 8 is done differently. That is, FOMAML updates the initialization with
the rule θ = θ − β

∑
Tj∽p(T ) L′

Dtest
Tj

(θ′j).

Antoniou et al. (2019), in response to MAML, proposed many technical improvements that can
improve training stability, performance, and generalization ability. Improvements include i) updating
the initialization θ after every inner update step (instead of after all steps are done) to increase
gradient propagation, ii) using second-order gradients only after 50 epochs to increase the training
speed, iii) learning layer-wise learning rates to improve flexibility, iv) annealing the meta-learning rate
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Algorithm 2 One-step MAML for supervised learning, by Finn et al. (2017)

1: Randomly initialize θ
2: while not done do
3: Sample batch of J tasks B = T1, . . . , TJ ∽ p(T )
4: for Tj = (Dtr

Tj
, Dtest

Tj
) ∈ B do

5: Compute ∇θLDtr
Tj
(θ)

6: Compute θ′j = θ − α∇θLDtr
Tj
(θ)

7: end for
8: Update θ = θ − β∇θ

∑
Tj∈B LDtest

Tj
(θ′j)

9: end while

β over time, and v) some Batch Normalization tweaks (keep running statistics instead of batch-specific
ones, and using per-step biases).

MAML has obtained great attention within the field of deep meta-learning, perhaps due to its
i) simplicity (only requires two hyperparameters), ii) general applicability, and iii) strong performance.
A downside of MAML, as mentioned above, is that it can be quite expensive in terms of running
time and memory to optimize a base-learner for every task and compute higher-order derivatives
from the optimization trajectories.

2.5.6 iMAML

Instead of ignoring higher-order derivatives (as done by FOMAML), which potentially decreases the
performance compared to regular MAML, iMAML (Rajeswaran et al., 2019) approximates these
derivatives in a way that is less memory-consuming.

Let A denote an inner optimization algorithm (e.g., stochastic gradient descent), which takes a
support set Dtr

Tj
corresponding to task Tj and initial model weights θ, and produces new weights

θ′j = A(θ, Dtr
Tj
). MAML has to compute the derivative

∇θLDtest
Tj

(θ′j) = L′
Dtest

Tj

(θ′j)∇θ(θ′j), (2.24)

where Dtest
Tj

is the query set corresponding to task Tj . This equation is a simple result of applying
the chain rule. Importantly, note that ∇θ(θ′j) differentiates through A(θ, Dtr

Tj
), while L′

Dtest
Tj

(θ′j)

does not, as it represents the gradient of the loss function evaluated at θ′j . Rajeswaran et al. (2019)
make use of the following lemma.

If (I + 1
λ∇2

θLDtr
Tj
(θ′j)) is invertible (i.e., (I + 1

λ∇2
θLDtr

Tj
(θ′j))

−1 exists), then

∇θ(θ′j) =
(
I +

1

λ
∇2
θLDtr

Tj
(θ′j)

)−1

. (2.25)

Here, λ is a regularization parameter. The reason for this is discussed below.
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Combining Equation 2.24 and Equation 2.25, we have that

∇θLDtest
Tj

(θ′j) = L′
Dtest

Tj

(θ′j)

(
I +

1

λ
∇2
θLDtr

Tj
(θ′j)

)−1

. (2.26)

The idea is to obtain an approximate gradient vector gj that is close to this expression, i.e., we want
the difference to be small

gj − L′
Dtest

Tj

(θ′j)

(
I +

1

λ
∇2
θLDtr

Tj
(θ′j)

)−1

= ϵ, (2.27)

for some small tolerance vector ϵ. If we multiply both sides by the inverse of the inverse, i.e.,(
I + 1

λ∇2
θLDtr

Tj
(θ′j)

)
, we get

gTj

(
I +

1

λ
∇2
θLDtr

Tj
(θ′j)

)
gj − gTj L′

Dtest
Tj

(θ′j) = ϵ
′, (2.28)

where ϵ′ absorbed the multiplication factor. We wish to minimize this expression for gj , and that can
be performed using optimization techniques such as the conjugate gradient algorithm (Rajeswaran
et al., 2019). This algorithm does not need to store Hessian matrices, which decreases the memory
cost significantly. In turn, this allows iMAML to work with more inner gradient update steps. Note,
however, that one needs to perform explicit regularization in that case to avoid overfitting. The
conventional MAML did not require this, as it uses only a few number of gradient steps (equivalent
to an early stopping mechanism).

At each inner loop step, iMAML computes the meta-gradient gj . After processing a batch of
tasks, these gradients are averaged and used to update the initialization θ. Since it does not
differentiate through the optimization process, we are free to use any other (non-differentiable)
inner-optimizer.

In summary, iMAML reduces memory costs significantly as it need not differentiate through the
optimization trajectory, also allowing for greater flexibility in the choice of inner optimizer. Addition-
ally, it can account for larger optimization paths. The computational costs stay roughly the same
compared to MAML (Finn et al., 2017). Future work could investigate more inner optimization
procedures (Rajeswaran et al., 2019).

2.5.7 Meta-SGD
Meta-SGD (Li et al., 2017), or meta-stochastic gradient descent, is similar to MAML (Finn et al.,
2017) (Section 2.5.5). However, on top of learning an initialization, Meta-SGD also learns learning
rates for every model parameter in θ, building on the insight that the optimizer can be seen as
trainable entity.

The standard SGD update rule is given in Equation 2.15. The meta-SGD optimizer uses a more
general update, namely

θ′j ← θ −α⊙∇θLDtr
Tj
(θ), (2.29)

where ⊙ is the element-wise product. Note that this means that alpha (learning rate) is now a
vector—hence the bold font— instead of scalar, which allows for greater flexibility in the sense that
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Figure 2.25: Meta-SGD learning process. Source: Li et al. (2017).

each parameter has its own learning rate. The goal is to learn the initialization θ, and learning rate
vector α, such that the generalization ability is as large as possible. More mathematically precise,
the learning objective is

minα,θETj∽p(T )[LDtest
Tj

(θ′j)] = ETj∽p(T )[LDtest
Tj

(θ −α⊙∇θLDtr
Tj
(θ))], (2.30)

where we used a simple substitution for θ′j . LDtr
Tj

and LDtest
Tj

are the losses computed on the support
and query set respectively. Note that this formulation stimulates generalization ability (as it includes
the query set loss LDtest

Tj
, which can be observed during the meta-training phase). The learning

process is visualized in Figure 2.25. Note that the meta-SGD optimizer is trained to maximize
generalization ability after only one update step. Since this learning objective has a fully differentiable
loss function, the meta-SGD optimizer itself can be trained using standard SGD.

In summary, Meta-SGD is more expressive than MAML as it does not only learn an initialization,
but also learning rates per parameter. This, however, does come at the cost of an increased number
of hyperparameters.

2.5.8 Reptile

Reptile (Nichol et al., 2018) is another optimization-based technique that, like MAML (Finn et al.,
2017), solely attempts to find a good set of initialization parameters θ. The way in which Reptile
attempts to find this initialization is quite different from MAML. It repeatedly samples a task,
trains on the task, and moves the model weights towards the trained weights (Nichol et al., 2018).
Algorithm 3 displays the pseudocode describing this simple process.

Algorithm 3 Reptile, by Nichol et al. (2018)

1: Initialize θ
2: for i = 1, 2, . . . do
3: Sample task Tj = (Dtr

Tj
, Dtest

Tj
) and corresponding loss function LTj

4: θ′j = SGD(LDtr
Tj
,θ, k) ▷ Perform k gradient update steps to get θ′j

5: θ := θ + ϵ(θ′j − θ) ▷ Move initialization point θ towards θ′j
6: end for
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Nichol et al. (2018) note that it is possible to treat (θ − θ′j)/α as gradients, where α is the learning
rate of the inner stochastic gradient descent optimizer (line 4 in the pseudocode), and to feed that
into a meta-optimizer (e.g. Adam). Moreover, instead of sampling one task at a time, one could
sample a batch of n tasks, and move the initialization θ towards the average update direction
θ̄ = 1

n

∑n
j=1(θ

′
j − θ), granting the update rule θ := θ + ϵθ̄.

The intuition behind Reptile is that updating the initialization weights towards updated parameters
will grant a good inductive bias for tasks from the same family. By performing Taylor expansions of
the gradients of Reptile and MAML (both first-order and second-order), Nichol et al. (2018) show
that the expected gradients differ in their direction. They argue, however, that in practice, the
gradients of Reptile will also bring the model towards a point minimizing the expected loss over
tasks.

A mathematical argument as to why Reptile works goes as follows. Let θ denote the initial parameters,
and θ∗j the optimal set of weights for task Tj . Lastly, let d be the Euclidean distance function. Then,
the goal is to minimize the distance between the initialization point θ and the optimal point θ∗j ,
i.e.,

minθ ETj∽p(T )[
1

2
d(θ,θ∗j )

2]. (2.31)

The gradient of this expected distance with respect to the initialization θ is given by

∇θETj∽p(T )[
1

2
d(θ,θ∗j )

2] = ETj∽p(T )[
1

2
∇θd(θ,θ∗j )2]

= ETj∽p(T )[θ − θ∗j ], (2.32)

where we used the fact that the gradient of the squared Euclidean distance between two points x1

and x2 is the vector 2(x1 −x2). Nichol et al. (2018) go on to argue that performing gradient descent
on this objective would result in the following update rule

θ = θ − ϵ∇θ
1

2
d(θ,θ∗j )

2

= θ − ϵ(θ∗j − θ). (2.33)

Since we do not know θ∗Tj
, one can approximate this by term by k steps of gradient descent

SGD(LTj ,θ, k). In short, Reptile can be seen as gradient descent on the distance minimization
objective given in Equation 2.31. A visualization is shown in Figure 2.26. The initialization θ is moving
towards the optimal weights for tasks 1 and 2 in interleaved fashion (hence the oscillations).

In conclusion, Reptile is an extremely simple meta-learning technique, which does not need to
differentiate through the optimization trajectory like, e.g., MAML (Finn et al., 2017), saving time
and memory costs. However, the theoretical foundation is a bit weaker due to the fact that it does
not directly optimize for fast learning as done by MAML, and performance may be a bit worse than
that of MAML in some settings.
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Figure 2.26: Schematic visualization of Reptile’s learning trajectory. Here, θ∗1 and θ∗2 are the optimal
weights for tasks T1 and T2 respectively. The initialization parameters θ oscillate between these.
Adapted from Nichol et al. (2018).

2.5.9 LEO
Latent Embedding Optimization, or LEO, was proposed by Rusu et al. (2019) to combat an issue
of gradient-based meta-learners, such as MAML (Finn et al., 2017) (see Section 2.5.5), in few-shot
settings (N -way, k-shot). These techniques operate in a high-dimensional parameter space using
gradient information from only few examples, which could lead to poor generalization.

Figure 2.27: Workflow of Latent Embedding Optimization (LEO). adapted from Rusu et al. (2019).

LEO alleviates this issue by learning a lower-dimensional latent embedding space, which indirectly
allows us to learn a good set of initial parameters θ. Additionally, the embedding space is conditioned
upon tasks, allowing for more expressivity. In theory LEO could find initial parameters for the entire
base-learner network, but the authors only experimented with setting the parameters for the final
layers.

The complete workflow of LEO is shown in Figure 2.27. As we can see, given a task Tj , the
corresponding support set Dtr

Tj
is fed into an encoder, which produces hidden codes for each example

in that set. These hidden codes are paired and concatenated in every possible manner, granting us
(Nk)2 pairs, where N is the number of classes in the training set, and k the number of examples per
class. These paired codes are then fed into a relation net (Sung et al., 2018) (see Section 2.3.5). The
resulting embeddings are grouped by class, and parameterize a probability distribution over latent
codes zn (for class n) in a low dimensional space Z. More formally, let xℓ

n denote the ℓ-th example
of class n in Dtr

Tj
. Then, the mean µe

n and variance σe
n of a Gaussian distribution over latent codes

for class n are computed as
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µe
n,σ

e
n =

1

Nk2

k∑
ℓp=1

N∑
m=1

k∑
ℓq=1

gϕr

(
gϕe

(xℓp
n ), gϕe

(xℓq
m)
)
, (2.34)

where ϕr,ϕe are parameters for the relation net and encoder respectively. Intuitively, the three
summations ensure that every example with class n in Dtr

Tj
is paired with every example from all

classes n. Given µe
n, and σe

n, one can sample a latent code zn ∽ N(µe
n, diag(σ

e2
n )) for class n, which

serves as latent embedding of the task training data.

The decoder can then generate a task-specific initialization θn for class n as follows. First, one
computes a mean and variance for a Gaussian distribution using the latent code

µd
n,σ

d
n = gϕd

(zn). (2.35)

These are then used to sample initialization weights θn ∽ N(µd
n, diag(σ

d2
n )). The loss from the

generated weights can then be propagated backwards to adjust the embedding space. In practice,
generating such high-dimensional set of parameters from a low-dimensional embedding can be quite
problematic. Therefor, LEO uses pre-trained models, and only generates weights for the final layer,
which limits the expressivity of the model.

A key advantage of LEO is that it optimizes in a lower-dimensional latent embedding space, which
aids generalization performance. However, the approach is more complex than e.g. MAML (Finn
et al., 2017), and its applicability is limited to few-shot learning settings.

2.5.10 Online MAML (FTML)

Online MAML (Finn et al., 2019) is an extension of MAML (Finn et al., 2017) to make it applicable
to online learning settings (Anderson, 2008). In the online setting, we are presented with a sequence
of tasks Tt with corresponding loss functions {LTt

}Tt=1, for some potentially infinite time horizon
T . The goal is to pick a sequence of parameters {θt}Tt=1 that performs well on the presented loss
functions. This objective is captured by the RegretT over the entire sequence, which is defined by
Finn et al. (2019) as follows

RegretT =

T∑
t=1

LTt
(θ′t)−minθ

T∑
t=1

LTt
(θ′t), (2.36)

where θ are the initial model parameters (just as MAML), and θ′t are parameters resulting from
a one-step gradient update (starting from θ) on task t. Here, the left term reflects the updated
parameters chosen by the agent (θt), whereas the right term presents the minimum obtainable loss
(in hindsight) from a single fixed set of parameters θ. Note that this setup assumes that the agent can
make updates to its chosen parameters (transform its initial choice at time t from θt to θ′t).

Finn et al. (2019) propose FTML (Follow The Meta Leader), inspired by FTL (Follow The Leader)
(Hannan, 1957; Kalai and Vempala, 2005), to minimize the regret. The basic idea is to set the
parameters for the next time step (t+ 1) equal to the best parameters in hindsight, i.e.,
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θt+1 := argminθ

t∑
k=1

LTk
(θ′k). (2.37)

The gradient to perform meta-updates is then given by

gt(θ) := ∇θETk∽pt(T )LTk
(θ′k), (2.38)

where pt(T ) is a uniform distribution over tasks 1, ..., t (at time t).

Algorithm 4 contains the full pseudocode for FTML. In this algorithm, MetaUpdate performs a
few (Nmeta) meta-steps. In each meta-step, a task is sampled from B, together with train and test
mini-batches to compute the gradient gt in Equation 2.37. The initialization θ is then updated
(θ := θ − βgt(θ)), where β is the meta-learning rate. Note that the memory usage keeps increasing
over time, as at every time step t, we append tasks to the buffer B, and keep task data sets in
memory.

Algorithm 4 FTML by Finn et al. (2019)

Require: Performance threshold γ
1: Initialize empty task buffer B
2: for t = 1,... do
3: Initialize data set Dt = ∅
4: Append Tt to B
5: while |Dt| < N do
6: Append batch of data {(xi, yi)}ni=1 to Dt

7: θt = MetaUpdate(θt, B, t)
8: Compute θ′t
9: if LDtest

Tt
(θ′t) < γ then

10: Save |Dt| as the efficiency for task Tt
11: end if
12: end while
13: Save final performance LDtest

Tt
(θ′t)

14: θt+1 = θt
15: end for

In summary, Online MAML is a robust technique for online-learning (Finn et al., 2019). A downside
of this approach is the computational costs that keep growing over time, as all encountered data are
stored. Reducing these costs is a direction for future work. Also, one could experiment how well the
approach works when more than one inner gradient update steps per task are used, as mentioned by
Finn et al. (2019).

2.5.11 LLAMA

Grant et al. (2018) mold MAML into a probabilistic framework, such that a probability distribution
over task-specific parameters θ′j is learned, instead of a single one. In this way, multiple potential
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solutions can be obtained for a task. The resulting technique is called LLAMA (Laplace Approximation
for Meta-Adaptation). Importantly, LLAMA is only developed for supervised learning settings.

A key observation is that a neural network fθ′
j
, parameterized by updated parameters θ′j (obtained

from few gradient updates using Dtr
Tj

), outputs class probabilities p(yi|xi,θ
′
j). To minimize the error

on the query set Dtest
Tj

, the model must output large probability scores for the true classes. This
objective is captured in the maximum log likelihood loss function

LDtest
Tj

(θ′j) = −
∑

xi,yi∈Dtest
Tj

log p(yi|xi,θ
′
j). (2.39)

Simply put, if we see a task j as a probability distribution over examples pTj
, we wish to maximize

the probability that the model predicts the correct class yi, given an input xi. This can be done by
plain gradient descent, as shown in Algorithm 5, where β is the meta-learning rate. Line 4 refers
to ML-LAPLACE, which is a subroutine that computes task-specific updated parameters θ′j , and
estimates the negative log likelihood (loss function) which is used to update the initialization θ, as
shown in Algorithm 6. Grant et al. (2018) approximated the quadratic curvature matrix Ĥ using
K-FAC (Martens and Grosse, 2015).

The trick is that the initialization θ defines a distribution p(θ′j |θ) over task-specific parameters
θ′j . This distribution was taken to be a diagonal Gaussian (Grant et al., 2018). Then, to sample
solutions for a new task Tj , one can simply generate possible solutions θ′j from the learned Gaussian
distribution.

Algorithm 5 LLAMA by Grant et al. (2018)

1: Initialize θ randomly
2: while not converged do
3: Sample a batch of J tasks: B = T1, ..., TJ ∽ p(T )
4: Estimate E(xi,yi)∽pTj

[−log p(yi|xi,θ)]∀Tj ∈ B using ML-LAPLACE
5: θ = θ − β∇θ

∑
j E(xi,yi)∽pTj

[−log p(yi|xi,θ)

6: end while

Algorithm 6 ML-LAPLACE (Grant et al., 2018)

1: θ′j = θ
2: for k=1,...,K do
3: θ′j = θ

′
j + α∇θ′

j
log p(yi ∈ Dtr

Tj
|θ′j ,xi ∈ Dtr

Tj
)

4: end for
5: Compute curvature matrix Ĥ = ∇2

θ′
j
[−log p(yi ∈ Dtest

Tj
|θ′j ,xi ∈ Dtest

Tj
)] +∇2

θ′
j
[−log p(θ′j |θ)]

6: return −log p(yi ∈ Dtest
Tj
|θ′j ,xi ∈ Dtest

Tj
) + η log[det(Ĥ)]

In short, LLAMA extends MAML in probabilistic fashion, such that one can obtain multiple solutions
for a single task, instead of one. This does, however, increase the computational costs. On top of
that, the used Laplace approximation (in ML-LAPLACE) can be quite inaccurate (Grant et al.,
2018).
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2.5.12 PLATIPUS
PLATIPUS (Finn et al., 2018) builds upon the probabilistic interpretation of LLAMA (Grant et al.,
2018), but learns a probability distribution over initializations θ, instead of task-specific parameters
θ′j . Thus, PLATIPUS allows one to sample an initialization θ ∽ p(θ), which can be updated with
gradient descent to obtain task-specific weights (fast weights) θ′j .

Algorithm 7 PLATIPUS training algorithm by Finn et al. (2018)

1: Initialize Θ = {µθ,σ2
θ,vq,γp,γq}

2: while Not done do
3: Sample batch of tasks B = {Tj ∽ p(T )}mi=1

4: for Tj ∈ B do
5: Dtr

Tj
, Dtest

Tj
= Tj

6: Compute ∇µθ
LDtest

Tj
(µθ)

7: Sample θ ∽ q = N(µθ − γq∇µθ
LDtest

Tj
(µθ),vq)

8: Compute ∇θLDtr
Tj
(θ)

9: Compute fast weights θ′i = θ − α∇θLDtr
Tj
(θ)

10: end for
11: p(θ|Dtr

Tj
) = N(µθ − γp∇µθ

LDtr
Tj
(µθ),σ

2
θ)

12: Compute ∇Θ

[∑
Tj
LDtest

Tj
(ϕi) +DKL(q(θ|Dtest

Tj
), p(θ|Dtr

Tj
))
]

13: Update Θ using the Adam optimizer
14: end while

The approach is best explained by its pseudocode, as shown in Algorithm 7. In contrast to the
original MAML, PLATIPUS introduces five more parameter vectors (line 1). All of these parameters
are used to facilitate the creation of Gaussian distributions over prior initializations (or simply priors)
θ. That is, µθ represents the vector mean of the distributions. σ2

q, and vq represent the covariances
of train and test distributions respectively. γx for x = q, p are learning rate vectors for performing
gradient steps on distributions q (line 6 and 7) and P (line 11).

The key difference with the regular MAML is that instead of having a single initialization point θ, we
now learn distributions over priors: q and P , which are based on query and support data sets of task
Tj respectively. Since these data sets come from the same task, we want the distributions q(θ|Dtest

Tj
),

and p(θ|Dtr
Tj
) to be close to each other. This is enforced by the Kullback–Leibler divergence (DKL)

loss term on line 12, which measures the distance between the two distributions. Importantly, note
that q (line 7) and P (line 11) use vector means which are computed with one gradient update
steps using the query and support data sets respectively. The idea is that the mean of the Gaussian
distributions should be close to the updated mean µθ, because we want to enable fast learning. As
one can see, the training process is very similar to that of MAML (Finn et al., 2017) (Section 2.5.5),
with some small adjustments to allow us to work with the probability distributions over θ.

At test-time, one can simply sample a new initialization θ from the prior distribution p(θ|Dtr
Tj
) (note

that q cannot be used at test-time as we do not have access to Dtest
Tj

), and apply a gradient update
on the provided support set Dtr

Tj
. Note that this allows us to sample multiple potential initializations

θ for the given task.

The key advantage of PLATIPUS is that it is aware of its own uncertainty, which greatly increases
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the applicability of deep meta-learning in critical domains such as medical diagnosis (Finn et al.,
2018). Based on this uncertainty, it can ask for labels of some inputs it is unsure about (active
learning). A downside to this approach, however, are the increased computational costs, and the fact
that it is not applicable to reinforcement learning.

2.5.13 Bayesian MAML (BMAML)

Bayesian MAML (Yoon et al., 2018) is another probabilistic variant of MAML that can generate
multiple solutions. However, instead of learning a distribution over potential solutions, BMAML
simply keeps M possible solutions, and optimizes them in joint fashion. Recall that probabilistic
MAMLs (e.g., PLATIPUS) attempt to maximize the data likelihood of task Tj , i.e., p(ytest

j |θ′j),
where θ′j are task-specific fast weights obtained by one or more gradient updates. Yoon et al. (2018)
model this likelihood using Stein Variational Gradient Descent (SVGD) (Liu and Wang, 2016).

To obtain M solutions, or equivalently, parameter settings θm, SVGD keeps a set of M particles
Θ = {θm}Mi=1. At iteration t, every θt ∈ Θ is updated as follows

θt+1 = θt + ϵ(ϕ(θt)) (2.40)

where ϕ(θt) =
1

M

M∑
m=1

[
k(θmt ,θt)∇θm

t
log p(θmt ) +∇θm

t
k(θmt ,θt)

]
. (2.41)

Here, k(x,x′) is a similarity kernel between x and x′. The authors used a radial basis function (RBF)
kernel, but in theory, any other kernel could be used. Note that the update of one particle depends
on the other gradients of particles. The first term in the summation (k(θmt ,θt)∇θm

t
log p(θmt )) moves

the particle in the direction of the gradients of other particles, based on particle similarity. The
second term (∇θm

t
k(θmt ,θt)) ensures that particles do not collapse (repulsive force) (Yoon et al.,

2018).

These particles can then be used to approximate the probability distribution of the test labels

p(ytest
j |θ′j) ≈

1

M

M∑
m=1

p(ytest
j |θmTj

), (2.42)

where θmTj
is the m-th particle obtained by training on the support set Dtr

Tj
of task Tj .

Yoon et al. (2018) proposed a new meta-loss to train BMAML, called the Chaser Loss. This loss relies
on the insight that we want the approximated parameter distribution (obtained from the support set
pnTj

(θTj |Dtr,Θ0)) and true distribution p∞Tj
(θTj |Dtr ∪Dtest) to be close to each other (since the task

is the same). Here, n denotes the number of SVGD steps, and Θ0 is the set of initial particles, in
similar fashion to the initial parameters θ seen by MAML. Since the true distribution is unknown,
Yoon et al. (2018) approximate it by running SVGD for s additional steps, granting us the leader
Θn+s

Tj
, where the s additional steps are performed on the combined support and query set. The

intuition is that as the number of updates increases, the obtained distributions become more like
the true one. Θn

Tj
in this context is called the chaser as it wants to get closer to the leader. The

proposed meta-loss is then given by
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LBMAML(Θ0) =
∑
Tj∈B

M∑
m=1

||θn,mTj
− θn+s,m

Tj
||22. (2.43)

The full pseudocode of BMAML is shown in Algorithm 8. Here, Θn
Tj
(Θ0) denotes the set of particles

after n updates on task Tj , and SG means “stop gradients" (we do not want the leader to depend on
the initialization, as the leader must lead).

Algorithm 8 BMAML by Yoon et al. (2018)

1: Initialize Θ0

2: for t=1,... until convergence do
3: Sample a batch of tasks B from p(T )
4: for task Tj ∈ B do
5: Compute chaser Θn

Tj
(Θ0) = SV GDn(Θ0;D

tr
Tj
, α)

6: Compute leader Θn+s
Tj

(Θ0) = SV GDs(Θ
n
Tj
(Θ0);D

tr
Tj
∪Dtest

Tj
, α)

7: end for
8: Θ0 = Θ0 − β∇Θ0

∑
Tj∈B d(Θn

Tj
(Θ0), SG(Θn+s

Tj
(Θ0)))

9: end for

In summary, BMAML is a robust optimization-based meta-learning technique that can propose M
potential solutions to a task. Additionally, it is applicable to reinforcement learning by using Stein
Variational Policy Gradient instead of SVGD. A downside of this approach is that one has to keep
M parameter sets in memory, which does not scale well. Reducing the memory costs is a direction
for future work (Yoon et al., 2018). Furthermore, SVGD is sensitive to the selected kernel function,
which was pre-defined in BMAML. However, Yoon et al. (2018) point out that it may be beneficial
to learn the kernel function instead. This is another possibility for future research.

2.5.14 Simple differentiable solvers

Bertinetto et al. (2019) take a quite different approach. That is, they pick simple base-learners that
have an analytical closed-form solution. The intuition is that the existence of a closed-form solution
allows for good learning efficiency. They propose two techniques using this principle, namely R2-D2
(Ridge Regression Differentiable Discriminator), and LR-D2 (Logistic Regression Differentiable
Discriminator). We cover both in turn.

Let gϕ : X → Re be a pre-trained input embedding model (e.g. a CNN), which outputs embeddings
with a dimensionality of e. Furthermore, assume that we use a linear predictor function f(gϕ(xi)) =
gϕ(xi)W , where W is a e× o weight matrix, and o is the output dimensionality (of the label). When
using (regularized) Ridge Regression (done by R2-D2), one uses the optimal W , i.e.,

W ∗ = argmin
W

||XW − Y ||22 + γ||W ||2

= (XTX + γI)−1XTY, (2.44)

where X ∈ Rn×e is the input matrix, containing n rows (one for each embedded input gϕ(xi)),
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Y ∈ Rn×o is the output matrix with correct outputs corresponding to the inputs, and γ is a
regularization term to prevent overfitting. Note that the analytical solution contains the term
(XTX) ∈ Re×e, which is quadratic in the size of the embeddings. Since e can become quite large
when using deep neural networks, Bertinetto et al. (2019) use Woodburry’s identity

W ∗ = XT (XXT + γI)−1Y, (2.45)

where XXT ∈ Rn×n is linear in the embedding size, and quadratic in the number of examples, which
is more manageable in few-shot settings, where n is very small. To make predictions with this Ridge
Regression based model, one can compute

Ŷ = αXtestW
∗ + β, (2.46)

where α and β are hyperparameters of the base-learner that can be learned by the meta-learner, and
Xtest ∈ Rm×e corresponds to the m test inputs of a given task. Thus, the meta-learner needs to
learn α, β, γ, and ϕ (embedding weights of the CNN).

The technique can also be applied to iterative solvers when the optimization steps are differentiable
(Bertinetto et al., 2019). LR-D2 uses the Logistic Regression objective and Newton’s method as
solver. Outputs y ∈ {−1,+1}n are now binary. Let w denote a parameter row of our linear model
(parameterized by W ). Then, the i-th iteration of Newton’s method, updates wi as follows

wi = (XTdiag(si)X + γI)−1XTdiag(si)zi, (2.47)

where µi = σ(wT
i−1X), si = µi(1− µi), zi = wT

i−1X + (y − µi)/si, and σ is the sigmoid function.
Since the term XTdiag(si)X is a matrix of size e× e, and thus again quadratic in the embedding
size, Woodburry’s identity is also applied here to obtain

wi = XT (XXT + λdiag(si)−1)−1zi, (2.48)

making it quadratic in the input size, which is not a big problem since n is small in the few-shot
setting. The main difference compared to R2-D2 is that the base-solver has to be run for multiple
iterations to obtain W .

In the few-shot setting, the base-level optimizers compute the weight matrix W for a given task Ti.
The obtained loss on the query set of a task LDtest is then used to update the parameters ϕ of the
input embedding function (e.g. CNN) and the hyperparameters of the base-learner.

Lee et al. (2019) have done similar work to Bertinetto et al. (2019), but with linear Support
Vector Machines (SVMs) as base-learner. Their approach is dubbed MetaOptNet, and achieved
state-of-the-art performance on few-shot image classification.

In short, simple differentiable solvers are simple, reasonably fast in terms of computation time, but
limited to few-shot learning settings. Investigating the use of other simple base-learners is a direction
for future work.
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2.5.15 Optimization-based techniques, in conclusion

Optimization-based aim to learn new tasks quickly through (learned) optimization procedures.
Note that this closely resembles base-level learning, which also occurs through optimization (e.g.,
gradient descent). However, in contrast to base-level techniques, optimization-based meta-learners
can learn the optimizer and/or are exposed to multiple tasks, which allows them to learn to learn
new tasks quickly. Figure 2.28 shows the relationships between the covered optimization-based
techniques.

As we can see, the LSTM optimizer (Andrychowicz et al., 2016), which replaces hand-crafted
optimization procedures such as gradient descent by a trainable LSTM, can be seen as the starting
point for these optimization-based meta-learning techniques. Li and Malik (2018) also aim to learn
a the optimization procedure with reinforcement learning instead of gradient-based methods. The
LSTM meta-learner (Ravi and Larochelle, 2017) extends the LSTM optimizer to the few-shot setting
by not only learning the optimization procedure, but also a good set of initial weights. This way, it
can be used across tasks. MAML (Finn et al., 2017) is a simplification of the LSTM meta-learner as
it replaces the trainable LSTM optimizer by hand-crafted gradient descent. MAML has received
considerable attention within the field of deep meta-learning, and has, as one can see, inspired many
other works.

Meta-SGD is an enhancement of MAML that not only learns the initial parameters, but also the
learning rates (Li et al., 2017). LLAMA (Grant et al., 2018), PLATIPUS (Finn et al., 2018), and
online MAML (Finn et al., 2019) extend MAML to the active and online learning settings. LLAMA
and PLATIPUS are probabilistic interpretations of MAML, which allow them to sample multiple
solutions for a given task and to quantify their uncertainty. BMAML (Yoon et al., 2018) takes a more
discrete approach as it jointly optimizes a discrete set of M initializations. iMAML (Rajeswaran et al.,
2019) aims to overcome the computational expenses associated with the computation of second-order
derivatives, which is needed by MAML. Through implicit differentiation, they also allow for the use
of non-differentiable inner loop optimization procedures. Reptile (Nichol et al., 2018) is an elegant
first-order meta-learning algorithm for finding a set of initial parameters and removes the need of
computing higher-order derivatives. LEO (Rusu et al., 2019) tries to improve the robustness of
MAML by optimizing in lower-dimensional parameter space through the use of an encoder-decoder
architecture. Lastly, R2-D2, LR-D2 (Bertinetto et al., 2019), and Lee et al. (2019) use simple classical
machine learning methods (ridge regression, logistic regression, SVM, respectively) as classifier on
top of a learned feature extractor.

A key advantage of optimization-based approaches is that they can achieve better performance
on wider task distributions than, e.g., model-based approaches (Finn and Levine, 2018). However,
optimization-based techniques optimize a base-learner for every task that they are presented with
and/or learn the optimization procedure, which is computationally expensive (Hospedales et al.,
2021).

Optimization-based meta-learning is a very active area of research. We expect future work to be
done in order to reduce the computational demands of these methods, and improve the solution
quality and level of generalization. We think that benchmarking and reproducibility research will
play an important role in these improvements.
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Figure 2.28: The relationships between the covered optimization-based meta-learning techniques.
As one can see, MAML has a central position in this network of techniques as it has inspired many
other works.
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2.6 Concluding Remarks
In this section, we give a helicopter view of all that we discussed, and the field of deep meta-learning
in general. We will also discuss challenges and future research.

2.6.1 Overview
In recent years, there has been a shift in focus in the broad meta-learning community. Traditional
algorithm selection and hyperparameter optimization for classical machine learning techniques (e.g.
Support Vector Machines, Logistic Regression, Random Forests, etc.) have been augmented by deep
meta-learning, or equivalently, the pursuit of self-improving neural networks that can leverage prior
learning experience to learn new tasks more quickly. Instead of training a new model from scratch
for different tasks, we can use the same (meta-learning) model across tasks. As such, meta-learning
can widen the applicability of powerful deep learning techniques to domains where fewer data are
available and computational resources are limited.

Deep meta-learning techniques are characterized by their meta-objective, which allows them to
maximize performance across various tasks, instead of a single one, as is the case in base-level learning
objectives. This meta-objective is reflected in the training procedure of meta-learning methods, as
they learn on a set of different meta-training tasks. The few-shot setting lends itself nicely towards
this end, as tasks consist of few data points. This makes it computationally feasible to train on many
different tasks, and it allows us to evaluate whether a neural network can learn new concepts from
few examples. Task construction for training and evaluation does require some special attention.
That is, it has been shown beneficial to match training and test conditions (Vinyals et al., 2016), and
perhaps train in a more difficult setting than the one that will be used for evaluation (Snell et al.,
2017).

On a high level, there are three categories of deep meta-learning techniques, namely i) metric-,
ii) model-, and iii) optimization-based ones, which rely on i) computing input similarity, ii) task
embeddings with states, and iii) task-specific updates, respectively. Each approach has strengths and
weaknesses. Metric-learning techniques are simple and effective (Garcia and Bruna, 2017), but are not
readily applicable outside of the supervised learning setting (Hospedales et al., 2021). Model-based
techniques, on the other hand, can have very flexible internal dynamics, but lack generalization ability
to more distant tasks than the ones used at meta-train time (Finn and Levine, 2018). Optimization-
based approaches have shown greater generalizability, but are in general computationally expensive,
as they optimize a base-learner for every task (Finn and Levine, 2018; Hospedales et al., 2021).

Table 2.2 provides a concise, tabular overview of these approaches. Many techniques have been
proposed for each one of the categories, and the underlying ideas may vary greatly, even within
the same category. Table 2.3, therefore, provides an overview of all methods and key ideas that
we have discussed in this chapter, together with their applicability to supervised learning (SL) and
reinforcement learning (RL) settings, key ideas, and benchmarks that were used for testing them.
Table 2.5 displays an overview of the 1- and 5-shot classification performances (reported by the
original authors) of the techniques on the frequently used miniImageNet benchmark. Moreover, it
displays the used backbone (feature extraction module) as well as the final classification mechanism.
From this table, it becomes clear that the 5-shot performance is typically better than the 1-shot
performance, indicating that data scarcity is a large bottleneck for achieving good performance.
Moreover, there is a strong relationship between the expressivity of the backbone and the performance.
That is, deeper backbones tend to give rise to better classification performance. The best performance
is achieved by MetaOptNet, yielding a 1-shot accuracy of 64.09% and a 5-shot accuracy of 80.00%.
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Note however that MetaOptNet used a deeper backbone than most of the other techniques.

2.6.2 Open challenges and future work
Despite the great potential of deep meta-learning techniques, there are still open challenges, which
we discuss here.

Figure 2.1 in Section 2.1 displays the accuracy scores of the covered meta-learning techniques on
1-shot miniImageNet classification. Techniques which were not tested in this setting by the original
authors are omitted. As we can see, the performance of the techniques is related to the expressivity
of the used backbone (ordered in increasing order on the x-axis). For example, the best performing
techniques, LEO and MetaOptNet, use the largest network architectures. Moreover, the fact that
different techniques use different backbones poses a problem as it is difficult to fairly compare their
classification performance. An obvious question arises to which degree the difference in performance
is due to methodological improvements, or due to the fact that a better backbone architecture
was chosen. For this reason, we think that it would be useful to perform a large scale benchmark
test where techniques are compared when they use the same backbones. This would also allow
us to get a more clear idea of how the expressivity of the feature extraction module affects the
performance.

Another challenge of deep meta-learning techniques is that they can be susceptible to the memorization
problem (meta-overfitting), where the neural network has memorized tasks seen at meta-training time,
and fails to generalize to new tasks. More research is required to better understand this problem.
Clever task design and meta-regularization may prove useful to avoid such problems (Yin et al.,
2020).

Another problem is that most of the meta-learning techniques discussed in this chapter are evaluated
on narrow benchmark sets. This means that the data that the meta-learner used for training are not
too distant from the data used for evaluating its performance. As such, one may wonder how well
these techniques are actually able to adapt to more distant tasks. Chen et al. (2019) showed that the
ability to adapt to new tasks decreases as they become more distant from the tasks seen at training
time. Moreover, a simple non-meta-learning baseline (based on pre-training and fine-tuning) can
outperform state-of-the-art meta-learning techniques when meta-test tasks come from a different
data set than the one used for meta-training.

In reaction to these findings, Triantafillou et al. (2020) have recently proposed the Meta-Dataset
benchmark, which consists of various previously used meta-learning benchmarks such as Omniglot
(Lake et al., 2011) and ImageNet (Deng et al., 2009). In a similar spirit, Ullah et al. (2022) have
released Meta-Album, a dataset consisting of 30 datasets from 10 different domains. This way,
meta-learning techniques can be evaluated in more challenging settings where tasks are diverse.
Following Hospedales et al. (2021), we think that this new benchmark can prove to be a good
mean towards the investigation and development of meta-learning algorithms for such challenging
scenarios.

As mentioned earlier in this section, deep meta-learning has the appealing prospect of widening
the applicability of deep learning techniques to more real-world domains. For this, increasing the
generalization ability of these techniques is very important. Additionally, the computational costs
associated with the deployment of meta-learning techniques should be small. While these techniques
can learn new tasks quickly, meta-training can be quite computationally expensive. Thus, decreasing
the required computation time and memory costs of deep meta-learning techniques remains an open
challenge.
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Name Backbone Classifier 1-shot 5-shot

Metric-based
Siamese nets - - -
Matching nets 64-64-64-64 Cosine sim. 43.56± 0.84 55.31± 0.73
Prototypical nets 64-64-64-64 Euclidean dist. 49.42± 0.78 68.20± 0.66
Relation nets 64-96-128-256 Sim. network 50.44± 0.82 65.32± 0.70
ARC - 64-1 dense 49.14±− -
GNN 64-96-128-256 Softmax 50.33± 0.36 66.41± 0.63

Model-based
RMLs - - -
MANNs - - -
Meta nets 64-64-64-64-64 64-Softmax 49.21± 0.96 -
SNAIL Adj. ResNet-12 Softmax 55.71± 0.99 68.88± 0.92
CNP - - -
Neural stat. - - -

Opt.-based
LSTM optimizer - - -
LSTM ml. 32-32-32-32 Softmax 43.44± 0.77 60.60± 0.71
RL optimizer - - -
MAML 32-32-32-32 Softmax 48.70± 1.84 63.11± 0.92
iMAML 64-64-64-64 Softmax 49.30± 1.88 -
Meta-SGD 64-64-64-64 Softmax 50.47± 1.87 64.03± 0.94
Reptile 32-32-32-32 Softmax 48.21± 0.69 66.00± 0.62
LEO WRN-28-10 Softmax 61.76± 0.08 77.59± 0.12
Online MAML - - -
LLAMA 64-64-64-64 Softmax 49.40± 1.83 -
PLATIPUS - - -
BMAML 64-64-64-64-64 Softmax 53.80± 1.46 -
Diff. solvers

R2-D2 96-192-384-512 Ridge regr. 51.8± 0.2 68.4± 0.2
LR-D2 96-192-384-512 Log. regr. 51.90± 0.20 68.70± 0.20
MetaOptNet ResNet-12 SVM 64.09 ± 0.62 80.00 ± 0.45

Table 2.5: Comparison of the accuracy scores of the covered meta-learning techniques on 1- and
5-shot miniImageNet classification. Scores are taken from the original papers. The ± indicates
the 95% confidence interval. The backbone is the used feature extraction module. The classifier
column shows the final layer(s) that were used to transform the features into class predictions. Used
abbreviations: “sim.": similarity, “Adj.": adjusted, and “dist.": distance, “log.": logistic, “regr.":
regression, “ml.": meta-learner, “opt.": optimization.



2.6. CONCLUDING REMARKS 69

Some real world problems demand systems that can perform well in online, or active learning settings.
The investigation of deep meta-learning in these settings (Finn et al., 2018; Yoon et al., 2018; Finn
et al., 2019; Munkhdalai and Yu, 2017; Vuorio et al., 2018) remains an important direction for future
work.

Yet another direction for future research is the creation of compositional deep meta-learning systems,
which instead of learning flat and associative functions x→ y, organize knowledge in a compositional
manner. This would allow them to decompose an input x into several (already learned) components
c1(x), ..., cn(x), which in turn could help the performance in low-data regimes (Tokmakov et al.,
2019).

The question has been raised whether contemporary deep meta-learning techniques actually learn
how to perform rapid learning, or simply learn a set of robust high-level features, which can be
(re)used for many (new) tasks. Raghu et al. (2020) investigated this question for the most popular
deep meta-learning technique MAML, and found that it largely relies on feature reuse. It would be
interesting to see whether we can develop techniques that rely more on fast learning, and what the
effect would be on performance.

Lastly, it may be useful to add more meta-abstraction levels, giving rise to, e.g., meta-meta-learning,
meta-meta-...-learning (Hospedales et al., 2021; Schmidhuber, 1987).

This chapter provides a comprehensive exploration of the field of deep meta-learning, offering a
thorough analysis of different prominent deep meta-learning techniques, their interconnections, and
their relative performances. The broad and in-depth overview of the field of deep meta-learning
obtained in this chapter serves as a springboard for the research performed in the remaining chapters
of this dissertation. For instance, in writing this chapter, we came to understand intuitively that the
meta-learner LSTM and MAML are tightly connected in the sense that the former could emulate
what MAML learns, but it could also do more. Surprisingly, however, the meta-learner LSTM is
outperformed by MAML in terms of its few-shot learning performance. Subsequently, in Chapter 3,
we aim to investigate the underlying factors that contribute to this performance gap. Chapter 4
and Chapter 5 follow a similar pattern, where we investigate empirically observed performance
disparities between different methods and aim to understand the underlying factors contributing to
these disparities.

Chapter 6, in contrast, takes the opposite perspective. That is, rather than trying to gain an
increased understanding of deep meta-learning methods starting from empirical observations, we
start from theoretical machine learning knowledge and investigate whether the integration into a
deep meta-learning algorithm can improve the few-shot learning performance.





Chapter 3

Stateless Neural Meta-Learning using
Second-Order Gradients

Chapter overview

Meta-learning can be used to learn a good prior that facilitates quick learning; two popular
approaches are MAML and the meta-learner LSTM. These two methods represent important and
different approaches in meta-learning. In this work1, we study the two and formally show that
the meta-learner LSTM subsumes MAML, although MAML, which is in this sense less general,
outperforms the other. We suggest the reason for this surprising performance gap is related to
second-order gradients. We construct a new algorithm (named TURTLE) to gain more insight
into the importance of second-order gradients. TURTLE is simpler than the meta-learner LSTM
yet more expressive than MAML and outperforms both techniques at few-shot sine wave regression
and 50% of the tested image classification settings (without any additional hyperparameter
tuning) and is competitive otherwise, at a computational cost that is comparable to second-order
MAML. We find that second-order gradients also significantly increase the accuracy of the
meta-learner LSTM. When MAML was introduced, one of its remarkable features was the use of
second-order gradients. Subsequent work focused on cheaper first-order approximations. On the
basis of our findings, we argue for more attention for second-order gradients.

3.1 Introduction
In this chapter, we study the relationship between two popular deep meta-learning methods: MAML
(Finn et al., 2017) and the meta-learner LSTM (Ravi and Larochelle, 2017). Recall that MAML
aims to learn a good weight initialization from which it can learn new tasks quickly using regular
gradient descent. In addition to learning a good weight initialization, the meta-learner LSTM (Ravi
and Larochelle, 2017) attempts to learn the optimization procedure in the form of a separate LSTM
network. The meta-learner LSTM is more general than MAML in the sense that the LSTM can learn
to perform gradient descent (see Section 3.4) or something better.

1This chapter is based on the following published research article: Huisman, M., Plaat, A., & van Rijn, J. N.
(2022). Stateless neural meta-learning using second-order gradients. Machine Learning, 111(9), 3227-3244. Springer.
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This suggests that the performance of MAML can be mimicked by the meta-learner LSTM on
few-shot image classification. However, our experimental results and those by Finn et al. (2017)
show that this is not necessarily the case. The meta-learner LSTM fails to find a solution in the
meta-landscape that learns as well as gradient descent.

In this chapter, we aim to investigate the performance gap between MAML and the meta-learner
LSTM. We hypothesize that the underperformance of the meta-learner LSTM could be caused by
(i) the lack of second-order gradients, or (ii) the fact that an LSTM is used as an optimizer. To
investigate these hypotheses, we introduce TURTLE, which is similar to the meta-learner LSTM but
uses a fully-connected feed-forward network as an optimizer instead of an LSTM and, in addition, uses
second-order gradients. Although both MAML and the meta-learner LSTM are by now surpassed by
other state-of-the-art techniques, such as LEO (Rusu et al., 2019) and MetaOptNet (Lee et al., 2019)
(see Section 3.2), they are still relevant and widely used. The aim of this chapter is to gain insight
into the performance gap between the meta-learner LSTM and MAML, leading to the following
contributions:

• We formally show that the meta-learner LSTM subsumes MAML.

• We formulate a new meta-learning algorithm called TURTLE to overcome two potential
shortcomings of the meta-learner LSTM. We demonstrate that TURTLE successfully closes
the performance gap to MAML as it outperforms MAML (and the meta-learner LSTM) on
sine wave regression, and various settings involving miniImageNet and CUB by at least 1%
accuracy without any additional hyperparameter tuning. TURTLE requires roughly the same
amount of computation time as second-order MAML.

• Based on the results of TURTLE, we enhance the meta-learner LSTM by using raw gradients as
meta-learner input and second-order information and show these changes result in a performance
boost of 1-6% accuracy, indicating the importance of second-order gradients.

3.2 Related work
The success of deep learning techniques has been largely limited to domains where abundant data
and large compute resources are available (LeCun et al., 2015). The reason for this is that learning a
new task requires large amounts of resources. Meta-learning is an approach that holds the promise of
relaxing these requirements by learning to learn. The field has attracted much attention in recent
years, resulting in many new techniques, which can be divided into metric-based, model-based, and
optimization-based approaches (see Chapter 2). In our work, we focus on an optimization-based
approach, which includes both MAML and the meta-learner LSTM (see Figure 2.28).

MAML (Finn et al., 2017) aims to find a good weight initialization from which new tasks can
be learned quickly within several gradient update steps. As shown in Figure 2.28, many works
build upon the key idea of MAML, for example, to decrease the computational costs (Nichol et al.,
2018; Rajeswaran et al., 2019), increase the applicability to online and active learning settings
(Grant et al., 2018; Finn et al., 2018), or increase the expressivity of the algorithm (Li et al., 2017;
Park and Oliva, 2019a; Lee and Choi, 2018). Despite its popularity, MAML does no longer yield
state-of-the-art performance on few-shot learning benchmarks (Lu et al., 2020), as it is surpassed
by, for example, latent embedding optimization (LEO) (Rusu et al., 2019) which optimizes the
initial weights in a lower-dimensional latent space, and MetaOptNet (Lee et al., 2019), which stacks
a convex model on top of the meta-learned initialization of a high-dimensional feature extractor.
Although these approaches achieve state-of-the-art techniques on few-shot benchmarks, MAML is
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elegant and generally applicable as it can also be used in reinforcement learning settings (Finn et al.,
2017).

While the meta-learner LSTM (Ravi and Larochelle, 2017) learns both an initialization and an
optimization procedure, it is generally hard to properly train the optimizer (Metz et al., 2019; Simons,
2022). As a result, techniques that use hand-crafted learning rules instead of trainable optimizers may
yield better performance. It is perhaps for this reason that most meta-learning algorithms use simple,
hand-crafted optimization procedures to learn new tasks, such as regular gradient descent (Bottou,
2004), Adam (Kingma and Ba, 2015), or RMSprop (Tieleman and Hinton, 2017). Andrychowicz et al.
(2016), show that learned optimizers may learn faster and yield better performance than gradient
descent.

The goal of our work is to investigate why MAML often outperforms the meta-learner LSTM, while
the latter is at least as expressive as the former (see Section 3.4.1).2 Finn and Levine (2018) have
shown that the reverse also holds: MAML can approximate any learning algorithm. However, this
theoretical result only holds for sufficiently deep base-learner networks. Thus, for a given network
depth, it does not say that MAML subsumes the meta-learner LSTM. In contrast, our result that
the meta-learner LSTM subsumes MAML holds for any base-learner network and depth.

In order to investigate the performance gap between the meta-learner LSTM and MAML, we propose
TURTLE which replaces the LSTM module from the meta-learner LSTM with a feed-forward neural
network. Note that Metz et al. (2019) also used a regular feed-forward network as an optimizer.
However, they were mainly concerned with understanding and correcting the difficulties that arise
from training an optimizer and do not learn a weight initialization for the base-learner network as we
do. Baik et al. (2020) also use a feed-forward network on top of MAML but its goal is to generate
a per-step learning rate and weight decay coefficients. The feed-forward network in TURTLE, in
contrast, generates direct weight updates.

3.3 Preliminaries

In this section, we explain the notation and the concepts of the two methods that we investigate
(MAML and the meta-learner LSTM). Whilst these methods are also described in Chapter 2, here we
present the methods in a way that is helpful for this chapter, emphasizing certain properties using
slightly different notation.

3.3.1 MAML

As mentioned before, MAML (Finn et al., 2017) attempts to learn a set of initial neural network
parameters θ from which we can quickly learn new tasks within T steps of gradient descent, for a
small value of T . Thus, given a task Tj = (Dtr
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Here, α is the inner learning rate and LD(φ) the loss of the network with weights φ on dataset D.
Note that the first set of weights in the sequence is equal to the initialization, i.e., θ(0)j = θ.

2Link to our code: https://github.com/mikehuisman/revisiting-learned-optimizers

https://github.com/mikehuisman/revisiting-learned-optimizers
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Figure 3.1: The workflow of the meta-learner LSTM (Ravi and Larochelle, 2017). The base-learner
parameters are updated by an LSTM meta-learner network. The base-learner is denoted as M .
(Xt, Yt) are support sets, whereas (X,Y ) is the query set. Note that the figure uses subscripts to
indicate time steps and not tasks, i.e., θT are the parameters at step T and not the initial parameters
for task T .

Given a distribution of tasks p(T ), we can formalize the objective of MAML as finding the initial
parameters

argmin
θ

ETj∽p(T )

[
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Tj
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(T )
j )

]
. (3.2)

Note that the loss is taken with respect to the query set, whereas θ(T )
j is computed on the support

set Dtr
TJ

.

The initialization parameters θ are updated by optimizing this objective in Equation 3.2, where
the expectation over tasks is approximated by sampling a batch of tasks. Importantly, updating
these initial parameters requires backpropagation through the optimization trajectories on the tasks
from the batch. This implies the computation of second-order derivatives, which is computationally
expensive. However, Finn et al. (2017) have shown that first-order MAML, which ignores these
higher-order derivatives and is computationally less demanding, works just as well as the complete,
second-order MAML version.

3.3.2 Meta-learner LSTM
The meta-learner LSTM by Ravi and Larochelle (2017) can be seen as an extension of MAML as it
does not only learn the initial parameters θ but also the optimization procedure which is used to learn
a given task. Note that MAML only uses a single base-learner network, while the meta-learner LSTM
uses a separate meta-network to update the base-learner parameters, as shown in Figure 3.1. Thus,
instead of computing (θ

(0)
j ,θ

(1)
j ,θ

(2)
j , ...,θ

(T )
j ) using regular gradient descent as done by MAML, the

meta-learner LSTM learns a procedure that can produce such a sequence of updates, using a separate
meta-network.

This trainable optimizer takes the form of a special LSTM module, which is applied to every weight
in the base-learner network after the gradients and loss are computed on the support set. The idea
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is to embed the base-learner weights into the cell state c of the LSTM module. Thus, for a given
task Tj , we start with cell state c(0)j = θ. After this initialization phase, the base-learner parameters
(which are now inside the cell state) are updated as
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where ⊙ is the element-wise product, the two sigmoid factors σ are the parameterized forget
gate f (t)

j and learning rate i(t)j vectors that steer the learning process, ∇
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are parameterized by weight matrices W f ,W i and bias vectors bf and bi, respectively. These
parameters steer the inner learning on tasks and are updated using regular, hand-crafted optimizers
after every meta-training task. As noted by Ravi and Larochelle (2017), this is equivalent to gradient
descent when c(t) = θ(t)j , and the sigmoidal factors are equal to 1 and α, respectively.

In spite of the fact that the LSTM module is applied to every weight individually to produce updates,
it does maintain a separate hidden state for each of them. In a similar fashion to MAML, updating
the initialization parameters (and LSTM parameters) would require propagating backwards through
the optimization trajectory for each task. To circumvent the computational costs associated with this
expensive operation, the meta-learner LSTM assumes that input gradients and losses are independent
of the parameters in the LSTM.

3.4 Towards stateless neural meta-learning

In this section, we study the theoretical relationship between MAML and the meta-learner LSTM.
Based on the resulting insight, we formulate a new meta-learning algorithm called TURTLE (stateless
neural meta-learning) which is simpler than the meta-learner LSTM and more expressive than
MAML.

3.4.1 Theoretical relationship

There is a subsumption relationship between MAML and the LSTM meta-learner. The gradient
update rule used by MAML uses a fixed learning rate and no weight decay. The LSTM meta-learner,
on the other hand, can learn a dynamic weight decay and learning rate schedule. These observations
gives rise to the following theorem:

Theorem 1. The meta-learner LSTM subsumes MAML

Proof. We prove this theorem by showing that there is a parameterization of the LSTM meta-learner
such that it updates the base-learner weights using gradient descent with a fixed learning rate α and
without weight decay. In other words, we show that there exist W f , bf ,Wi, bi such that the update
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made by the LSTM meta-learner is equivalent to that made by MAML
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The update of the meta-learner LSTM (Equation 3.3) satisfies this relationship when c(0)j = θ
(satisfied by construction), the weight decay is equal a vector of ones 1, and the learning rate to
α1. The weight decay condition condition can be met by setting Wf to a matrix of zeros and bf

to vector of sufficiently large values to push the output of the sigmoid near its saturation point (1).
Since the learning rate 0 < α < 1 falls within the codomain of the sigmoid function, the learning rate
condition can also be met by setting Wi to a matrix of zeros and bf = − ln( 1−α

α )1. Thus, we have
shown that it is possible to parameterize the LSTM meta-learner so that it mimics gradient descent
with any learning rate 0 < α ≤ 1.

3.4.2 Potential problems of the meta-learner LSTM

The theoretical insight that meta-learner LSTM subsumes MAML is not congruent with empirical
findings which show that MAML outperforms the meta-learner LSTM on the miniImageNet image
classification benchmark (Finn et al., 2017; Ravi and Larochelle, 2017), indicating that LSTM is
unable to successfully navigate the error landscape to find a solution at least as good as the one
found by MAML.

A potential cause is that the meta-learner LSTM attempts to learn a stateful optimization procedure,
allowing it to employ dynamic weight decay and learning rate schedules for learning new tasks. While
this gives the technique more flexibility in learning an optimization algorithm, it may also negatively
affect meta-optimization as it may be harder to find a good dynamic optimization algorithm than a
static one because the space of dynamic algorithms is less constrained. In addition, we conjecture
that the loss landscape for dynamic algorithms is less smooth because the weight decay and learning
rate schedules, which can have a large influence on the performance, depend on parameter trajectories
(paths from initialization to task-specific parameters). We hypothesize that removing the stateful
nature of the trainable optimizer may smoothen the meta-landscape as it constrains the space of
possible solutions and removes the dependency of the learning rate on parameter trajectories, which
can stabilize learning. For this reason, we replace the LSTM module in TURTLE with a regular
fully-connected, feed-forward network, which is stateless.

Another potential cause of the underperformance could be the first-order assumption made by the
meta-learner LSTM, which we briefly mentioned in Section 3.3.2. Effectively, this disconnects the
computational graph by stating that weight updates made at time step t by the meta-network do
not influence the inputs that this network receives at future time steps t < t′ < T . Consequently, the
algorithm ignores curvature information which can be important for stable training. While first-order
MAML achieves similar performance to MAML, we think that the loss landscape of the LSTM
meta-learner is less smooth (for reasons mentioned above), which can exacerbate the harmful effect
of the first-order assumption. To overcome this issue, we use second-order gradients by default in
TURTLE and investigate the effect of making the first-order assumption.
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3.4.3 TURTLE

In an attempt to make the meta-landscape easier to navigate, we introduce a new algorithm, TURTLE,
which trains a feed-forward meta-network to update the base-learner parameters. TURTLE is simpler
than the meta-learner LSTM as it uses a stateless feed-forward neural network as a trainable optimizer,
yet more expressive than MAML as its meta-network can learn to perform gradient descent.

The trainable optimizer in TURTLE is thus a fully-connected feed-forward neural network. We
denote the batch of inputs that this network receives at time step t in the inner loop for task Tj as
I
(t)
j ∈ Rn×d, where n and d are the number of base-learner parameters and the dimensionality of the

inputs, respectively. The exact inputs that this network receives will be determined empirically, but
two choices, inspired by the meta-learner LSTM, are: (i) the gradients with respect to all parameters
and (ii) the current loss (repeated n times for each parameter in the base-network).

Moreover, we could mitigate the absence of a state in the meta-network by including a time step
t ∈ {0, 1, ..., T − 1} and/or historical information such as a moving average of previous gradients or
updates made by the meta-network. We denote the latter by h(t)

j which is updated by

h
(t+1)
j = βh

(t)
j + (1− β)v

(t)
j , (3.6)

where 0 ≤ β ≤ 0 is a constant that determines the time span over which previous inputs affect the
new state h(t+1)

j , and v(t)j ∈ Rn is the new information (either the updates or gradients at time step
t). When using previous updates, we initialize h(0)

j by a vector of zeros.

Weight updates are then computed as follows

θ
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j = θ
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j +α⊙ gϕ(I
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j ), (3.7)

where α ∈ Rn is a vector of learning rates per parameter. Note that this weight update equation is
simpler than the one used by the meta-learner LSTM (see Equation 3.3) as our meta-network gϕ is
stateless. Therefore, we do not have parameterized forget and input gates. Moreover, the learning
rates per parameter in α are not constrained to be within the interval [0, 1] as is the case for the
meta-learner LSTM due to the use of the sigmoid function.

In Algorithm 9 we show, in different colors, the code for MAML (red), the meta-learner LSTM
(blue), and TURTLE (green). Although the code structure of the three meta-learners is similar, the
update rules are quite different. Both the base- and meta-learner parameters θ and ϕ are updated
by backpropagation through the optimization trajectories (line 11).

3.5 Experiments

In this section, we describe our experimental setup and the results that we obtained.

3.5.1 Hyperparameter analysis on sine-wave regression

Here, we investigate the effect of the order of information (first- versus second-order), the number
of updates T per task, and further increasing the number of layers of the meta-network on the
performance of TURTLE on 5-shot sine wave regression. The results are displayed in Figure 3.2.
Note that in this experiment, we fixed the learning rate vector α to be a vector of ones, which means
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Algorithm 9 MAML meta-learner LSTM TURTLE

1: Initialize parameters Θ = {θ} {θ,ϕ} {θ,ϕ}
2: Initialize gϕ as N.A. LSTM feed-forward network
3: repeat
4: Sample batch of J tasks B = {Tj ∽ p(T )}Jj=1

5: for Tj = (Dtr
Tj
, Dte

Tj
) in B do

6: θ
(0)
j = θ

7: for t = 1, ..., T do
8: Update θ(t)j using Eq. 3.1 Eq. 3.3 Eq. 3.7
9: end for

10: end for
11: Update Θ using

∑
Tj∈B LDte

Tj
(θ

(T )
j )

12: until convergence

that the updates proposed by the meta-network are directly added to the base-learner parameters
without any scaling. Moreover, the only input that the meta-network receives is the gradient of
the loss on the support set with respect to a base-learner parameter, and every hidden layer of the
meta-network consists of 20 nodes followed by ReLU nonlinearities.

As we can see, the difference between first- and second-order MAML is relatively small, which was
also found by Finn et al. (2017). In contrast, this is not the case for TURTLE, where the first-order
variant fails to achieve a similar performance as second-order TURTLE. Furthermore, we see that
the stability of TURTLE decreases as T increases as the confidence intervals become larger and the
performance with fewer hidden layers deteriorates. Lastly, we find that 5 or 6 hidden layers yield the
best performance across different values of T . For this reason, all further TURTLE experiments will
be conducted with a meta-network of 5 hidden layers.

3.5.2 Few-shot sine wave regression
First, we compare the performance of TURTLE to that of MAML and the meta-learner LSTM
on sine wave regression, which was originally proposed by Finn et al. (2017). We follow their
experimental setup and use 70K, 1K, and 2K tasks for training, validation, and testing respectively.
All experiments are performed 30 times with different random weight initializations of the base- and
meta-learner networks. We perform meta-validation every 2.5K tasks for hyperparameter tuning.
The meta-test results of this experiment are displayed in Figure 3.3. As we can see, TURTLE,
which uses second-order gradients, systematically outperforms the meta-learner LSTM, which uses
first-order gradients.

3.5.3 Few-shot image classification
Without additional hyperparameter tuning, we now investigate the performance of 5-step TURTLE
on few-shot image classification tasks, following the setup used in Chen et al. (2019). In addition, we
investigate the importance of second-order gradients in this setting. For this, we use miniImageNet
(Vinyals et al., 2016) (with the class splits proposed by Ravi and Larochelle (2017)) and CUB (Wah
et al., 2011). We use the same base-learner network used by Snell et al. (2017) and Chen et al. (2019).
Each algorithm is run with 5 different random weight initializations.
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Figure 3.2: Influence of the order, number of update steps, and number of hidden layers (horizontal
axis) on the meta-validation performance of TURTLE on 5-shot sine wave regression. We also plot
the performance of first- and second-order MAML for comparison. Note that a lower MSE loss
corresponds to better performance. The vertical bars indicate the 95% confidence intervals.

We compare the performance against three simple transfer-learning models, following Chen et al.
(2019): train from scratch, finetuning, and baseline++. Based on our hyperparameter experiments
for TURTLE, we also investigate an enhanced version of the meta-learner LSTM which uses raw
gradients as meta-learner input and second-order information. The meta-test accuracy scores on 5-way
miniImageNet and CUB classification are displayed in Table 3.1. Note that we use the best-reported
hyperparameters for MAML and the meta-learner LSTM on miniImageNet, while we use the best
hyperparameters found on sine wave regression for TURTLE. Despite this, TURTLE and second-order
meta-learner LSTM outperform MAML and other techniques in 50% of the tested scenarios while
they yield the competitive performance in the other scenarios. As we can see, the performances of all
models are better on 5-shot classification compared with 1-shot classification. Looking at the results
for miniImageNet, we see that the addition of second-order gradients increases the performance of
both the meta-learner LSTM and TURTLE. An overview of the exact hyperparameter values that

3Our enhanced version of the meta-learner LSTM, which takes raw gradients as inputs, uses second-order gradients,
and makes 8 updates per task.
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Figure 3.3: Median meta-test performance of MAML, the meta-learner LSTM, and TURTLE on
5-shot sine wave regression. Note that a lower error indicates better performance. The vertical bars
indicate the 95% confidence intervals.

were used for all techniques can be found in Appendix A.

3.5.4 Cross-domain few-shot learning
We also investigate the robustness of the meta-learning algorithms when a task distribution shift
occurs. For this, we train the techniques on miniImageNet and evaluate their performance on CUB
tasks (and vice versa), following Chen et al. (2019). This is a challenging setting that requires a more
general learning ability than for the experiments above. The results are shown in Table 3.4. Also
in these challenging scenarios, second-order gradients are important to increase the performance of
both the meta-learner LSTM and TURTLE. More specifically, the omission of second-order gradients
can lead to large performance penalties, ranging from 1% to 5% accuracy.

3.5.5 Running time comparison
Lastly, we compare the running times of MAML, the meta-learner LSTM, and TURTLE on mini-
ImageNet and CUB. A run comprises the time it costs to perform meta-training, meta-validation,
and meta-testing on miniImageNet, and evaluation on CUB. We measure the average time in full
hours across 5 runs on nodes with a Xeon Gold 6126 2.6GHz 12 core CPU and PNY GeForce RTX
2080TI GPU. The results are displayed in Figure 3.4. As we can see, the first-order algorithms are
the fastest, while the second-order algorithms are slower (so-MAML and TURTLE). However, the
performance of the first-order meta-learner LSTM and first-order TURTLE is worse than that of
the second-order variants, indicating the importance of second-order gradients. For MAML, we do
not observe such a difference between the first- and second-order variants. TURTLE is, despite
its name, not much slower than the second-order MAML (SO-MAML), indicating that the time
complexity is dominated by learning the base-learner initialization parameters. In fact, we observe
that TURTLE is slightly faster than MAML, indicating that our implementation of the latter is not
optimally efficient. In addition, we note that TURTLE is faster than the second-order (enhanced)
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Table 3.1: Median meta-test accuracy scores and 95% confidence intervals over 5 runs of 5-way image
classification on miniImageNet (left) and CUB (right). The best performance is displayed in bold
font. Note that a higher accuracy indicates better performance.

miniImageNet CUB
1-shot 5-shot 1-shot 5-shot

TrainFromScratch 0.29 ± 0.00 0.40 ± 0.00 0.30 ± 0.00 0.46 ± 0.00
Finetuning 0.38 ± 0.00 0.56 ± 0.00 0.33 ± 0.01 0.53 ± 0.01
Baseline++ 0.44 ± 0.00 0.58 ± 0.00 0.36 ± 0.01 0.53 ± 0.01

Meta-learner LSTM 0.45 ± 0.01 0.61 ± 0.00 0.50 ± 0.00 0.65 ± 0.01
Meta-learner LSTM3 0.48 ± 0.01 0.63 ± 0.01 0.53 ± 0.01 0.71 ± 0.00

FO-MAML 0.46 ± 0.01 0.63 ± 0.00 0.52 ± 0.00 0.72 ± 0.01
MAML 0.47 ± 0.01 0.63 ± 0.00 0.52 ± 0.00 0.73 ± 0.01

First-order TURTLE 0.43 ± 0.01 0.59 ± 0.04 0.50 ± 0.00 0.64 ± 0.03
TURTLE 0.48 ± 0.01 0.62 ± 0.01 0.53 ± 0.00 0.72 ± 0.01

Table 3.2: Median meta-test accuracy scores and 95% confidence intervals over 5 runs of 5-way image
classification on miniImageNet (left) and CUB (right). The best performance is displayed in bold
font. Note that a higher accuracy indicates better performance.

miniImageNet CUB
1-shot 5-shot 1-shot 5-shot

Meta-learner LSTM 0.45 ± 0.01 0.61 ± 0.00 0.50 ± 0.00 0.65 ± 0.01
Meta-learner LSTM∗ 0.48 ± 0.01 0.63 ± 0.01 0.53 ± 0.01 0.71 ± 0.00

FO-MAML 0.46 ± 0.01 0.63 ± 0.00 0.52 ± 0.00 0.72 ± 0.01
MAML 0.47 ± 0.01 0.63 ± 0.00 0.52 ± 0.00 0.73 ± 0.01

First-order TURTLE 0.43 ± 0.01 0.59 ± 0.04 0.50 ± 0.00 0.64 ± 0.03
TURTLE 0.48 ± 0.01 0.62 ± 0.01 0.53 ± 0.00 0.72 ± 0.01

LSTM meta-learner.

3.6 Discussion and future work
In this chapter, we have formally shown that the meta-learner LSTM (Ravi and Larochelle, 2017)
subsumes MAML (Finn et al., 2017). Experiments of Finn et al. (2017) and ourselves, however, show
that MAML outperforms the meta-learner LSTM. We formulated two hypotheses for this surprising
finding and, in turn, we formulated a new meta-learning algorithm named TURTLE, which is simpler
than the meta-learner LSTM as it is stateless, yet more expressive than MAML because it can learn
the weight update rule as it features a separate meta-network.

We empirically demonstrate that TURTLE is capable of outperforming both MAML and the
(first-order) meta-learner LSTM on sine wave regression and—without additional hyperparameter
tuning—on the frequently used miniImageNet benchmark. This shows that better update rules exist
for fast adaptation than regular gradient descent, which is in line with findings by Andrychowicz
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Table 3.3: Median meta-test accuracy scores and 95% confidence intervals over 5 runs of 5-way image
classification on miniImageNet (left) and CUB (right). The best performance is displayed in bold
font. Note that a higher accuracy indicates better performance.

miniImageNet CUB
1-shot 5-shot 1-shot 5-shot

Meta-learner LSTM 0.45 ± 0.01 0.61 ± 0.00 0.50 ± 0.00 0.65 ± 0.01
MAML 0.47 ± 0.01 0.63 ± 0.00 0.52 ± 0.00 0.73 ± 0.01
TURTLE 0.48 ± 0.01 0.62 ± 0.01 0.53 ± 0.00 0.72 ± 0.01

Table 3.4: Median meta-test accuracy scores in 5-way cross-domain classification (train on tasks from
one dataset and evaluate on tasks from another dataset). The median accuracy and 95% confidence
intervals were computed over 5 runs. The meta-learner LSTM2 refers to our enhanced version of the
meta-learner LSTM, which takes raw gradients as inputs, uses second-order gradients, and makes 8
updates per task.

miniImageNet → CUB CUB → miniImageNet

1-shot 5-shot 1-shot 5-shot

TrainFromScratch 0.30 ± 0.00 0.46 ± 0.00 0.29 ± 0.00 0.40 ± 0.00
Finetuning 0.33 ± 0.00 0.52 ± 0.01 0.29 ± 0.00 0.41 ± 0.00
Baseline++ 0.35 ± 0.01 0.52 ± 0.01 0.26 ± 0.00 0.31 ± 0.01

Meta-learner LSTM 0.34 ± 0.01 0.52 ± 0.01 0.29 ± 0.01 0.37 ± 0.00
Meta-learner LSTM2 0.37 ± 0.00 0.55 ± 0.01 0.32 ± 0.01 0.43 ± 0.01

FO-MAML 0.34 ± 0.01 0.54 ± 0.01 0.31 ± 0.00 0.45 ± 0.01
MAML 0.35 ± 0.00 0.56 ± 0.01 0.31 ± 0.00 0.47 ± 0.00

fo-TURTLE 0.36 ± 0.00 0.54 ± 0.02 0.30 ± 0.00 0.31 ± 0.01
TURTLE 0.38 ± 0.00 0.56 ± 0.01 0.30 ± 0.00 0.44 ± 0.00

et al. (2016). Moreover, we enhanced the meta-learner LSTM by using raw gradients as meta-learner
input and second-order gradient information, as they were found to be important for TURTLE. Our
results indicate that this enhanced version of the meta-learner LSTM systematically outperforms the
original technique by 1− 6% accuracy.

In short, these results show that second-order gradients are important for improving the few-shot
image classification performance of the meta-learner LSTM and TURTLE, at the cost of additional
runtime. In contrast, first-order MAML is a good approximation to second-order MAML as it yields
similar performance (Finn et al., 2017). This finding supports our hypothesis that the loss landscape
of MAML is smoother than that of meta-learning techniques that learn both the initialization
parameters and a gradient-based optimization procedure.

Limitations and open challenges

While TURTLE and the enhanced meta-learner LSTM were shown to yield good performance, it
has to be noted that this comes at the cost of increased computational expenses compared with
first-order algorithms. That is, these second-order algorithms perform backpropagation through the
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Table 3.5: Median meta-test accuracy scores in 5-way cross-domain classification (train on tasks from
one dataset and evaluate on tasks from another dataset). The median accuracy and 95% confidence
intervals were computed over 5 runs. The meta-learner LSTM2 refers to our enhanced version of the
meta-learner LSTM, which takes raw gradients as inputs, uses second-order gradients, and makes 8
updates per task.

miniImageNet → CUB CUB → miniImageNet

1-shot 5-shot 1-shot 5-shot

Meta-learner LSTM 0.34 ± 0.01 0.52 ± 0.01 0.29 ± 0.01 0.37 ± 0.00
Meta-learner LSTM∗ 0.37 ± 0.00 0.55 ± 0.01 0.32 ± 0.01 0.43 ± 0.01

FO-MAML 0.34 ± 0.01 0.54 ± 0.01 0.31 ± 0.00 0.45 ± 0.01
MAML 0.35 ± 0.00 0.56 ± 0.01 0.31 ± 0.00 0.47 ± 0.00

fo-TURTLE 0.36 ± 0.00 0.54 ± 0.02 0.30 ± 0.00 0.31 ± 0.01
TURTLE 0.38 ± 0.00 0.56 ± 0.01 0.30 ± 0.00 0.44 ± 0.00

entire optimization trajectory which requires storing intermediate updates and the computation of
second-order gradients. While this is also the case for MAML, it has been shown that first-order
MAML achieves a similar performance whilst avoiding this expensive backpropagation process,
yielding an excellent trade-off between performance and computational costs. For TURTLE, however,
this is not the case, which means that other approaches should be investigated in order to reduce
the computational costs. Future research may draw inspiration from Rajeswaran et al. (2019) who
approximated second-order gradients in order to speed up MAML.

Our experiments also show that the training stability of TURTLE deteriorates as the number of
inner updates increases. This is a known problem of meta-learning techniques that aim to learn
the optimization algorithm. Metz et al. (2019) show that this instability is due to the fact that the
meta-loss landscape becomes increasingly pathological as the number of inner updates increases.
Future work is required to make it feasible to train such techniques for a large number of updates.
Moreover, we note that we have only investigated the performances of MAML, TURTLE, and the
LSTM meta-learner in 1- and 5-shot settings It would be interesting to investigate in future work how
well MAML, TURTLE, and the LSTM meta-learner perform when more shots and ways (classes)
are available per task. It may be possible that the performances of these techniques converge to the
same point as the amount of available data increases. The intuition behind this is that given enough
data, there is no need for a meta-learned prior to successfully learn the task.

Successfully using meta-learning algorithms in scenarios where task distribution shifts occur remains
an important open challenge in the field of meta-learning. Our cross-domain experiment demonstrates
that the learned optimization procedure by TURTLE generalizes to different tasks than the ones
seen at training time, which is in line with findings by Andrychowicz et al. (2016). For this
reason, we think that learned optimizers may be an important piece of the puzzle to broaden the
applicability of meta-learning techniques to real-world problems. Future work can further investigate
this hypothesis.

Our findings further show the benefit of learning an optimizer in addition to the initialization weights
and highlight the importance of second-order gradients.

In this chapter, we have gained a deep understanding of the differences between two deep meta-
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Figure 3.4: The running times and few-shot learning accuracy scores on 1-shot (left) and 5-shot
(right) miniImageNet image classification of the different techniques for 5 runs with different random
seeds.

learning algorithms (MAML and the meta-learner LSTM), which have been observed to be successful
at few-shot learning in various scenarios. A related method for improving the learning efficiency
of deep neural networks compared with the deep meta-learning algorithms (MAML, meta-learner
LSTM) investigated in the previous research question, is transfer learning by means of pre-training
and finetuning. The idea of this method is to train a neural network to perform a given source task
for which abundant data is available. Recent results (Chen et al., 2019; Tian et al., 2020; Mangla
et al., 2020) suggest that when evaluated on tasks from a different data distribution than the one
used for training, the simple pre-training and finetuning baseline may be more effective than more
complicated popular meta-learning techniques such as MAML and Reptile (Nichol et al., 2018).
This is surprising as the learning behavior of MAML was shown to mimic that of finetuning: both
rely on reusing learned features (Raghu et al., 2020). This begs the question of what causes the
observed performance differences between these approaches. We investigate the differences in learning
behaviors of finetuning, MAML, and Reptile in the next chapter.

Moreover, the study performed in this chapter prompts us to look deeper into using an LSTM for
meta-learning. More specifically, the meta-learner LSTM uses an LSTM at the meta-level : to perform
weight updates for a base-learner network. In 2001, however, Hochreiter et al. (2001) showed that an
LSTM that operates at the data level trained with backpropagation across different tasks is capable
of meta-learning. The LSTM operating at the data level is fed an entire training set, and predictions
for query inputs are then conditioned on the resulting hidden state. This classical approach to
meta-learning has received little attention in supervised few-shot learning scenarios, whilst it has
been demonstrated to be successful at various reinforcement learning problems (Duan et al., 2016;
Wang et al., 2016). In Chapter 5, We revisit this LSTM approach and test it on modern supervised
few-shot learning benchmarks.



Chapter 4

Understanding Gradient-Based
Meta-Learning and Transfer
Learning

Chapter overview

Deep neural networks can yield good performance on various tasks but often require large
amounts of data to train them. Meta-learning received considerable attention as one approach
to improve the generalization of these networks from a limited amount of data. Whilst meta-
learning techniques have been observed to be successful at this in various scenarios, recent results
suggest that when evaluated on tasks from a different data distribution than the one used for
training, a baseline that simply finetunes a pre-trained network may be more effective than
more complicated meta-learning techniques such as MAML, which is one of the most popular
meta-learning techniques. This is surprising as the learning behaviour of MAML mimics that of
finetuning: both rely on re-using learned features. We investigate1 the observed performance
differences between finetuning, MAML, and another meta-learning technique called Reptile,
and show that MAML and Reptile specialize for fast adaptation in low-data regimes of similar
data distribution as the one used for training. Our findings show that both the output layer
and the noisy training conditions induced by data scarcity play important roles in facilitating
this specialization for MAML. Lastly, we show that the pre-trained features as obtained by
the finetuning baseline are more diverse and discriminative than those learned by MAML and
Reptile. Due to this lack of diversity and distribution specialization, MAML and Reptile may
fail to generalize to out-of-distribution tasks whereas finetuning can fall back on the diversity of
the learned features.

1This chapter is based on the following articles.
Huisman, M., Plaat, A. & van Rijn, J. N. (2021). A preliminary study on the feature representations of transfer

learning and gradient-based meta-learning techniques. In Fifth Workshop on Meta-Learning at the Conference on
Neural Information Processing Systems.

Huisman, M., Plaat, A. & van Rijn, J. N. (2023). Understanding Transfer Learning and Gradient-Based Meta-
Learning Techniques. Accepted for publication in Machine Learning. Springer.
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4.1 Introduction

Whilst the field of deep meta-learning has attracted much attention due to its promising prospect of
enabling neural networks to learn from fewer data, recent results (Chen et al., 2019; Tian et al., 2020;
Mangla et al., 2020) suggest that simply pre-training a network on a large dataset and finetuning
only the final layer of the network (the final layer) may be more effective at learning new image
classification tasks quickly than more complicated meta-learning techniques such as MAML (Finn
et al., 2017) and Reptile (Nichol et al., 2018) when the data distribution is different from the one used
for training. In contrast, MAML and Reptile often outperform finetuning when the data distribution
is similar to the one used during training. These phenomena are not well understood and surprising as
Raghu et al. (2020) have shown that the adaptation behaviour of MAML resembles that of finetuning
when learning new tasks: most of the changes take place in the final layer of the network while the
body of the network is mostly kept frozen.

In this chapter, we aim to find an explanation for the observed performance differences between MAML
and finetuning. More specifically, we aim to answer the following two research questions:

1. Why do MAML and Reptile outperform finetuning in within-distribution settings?

2. Why can finetuning outperform gradient-based meta-learning techniques such as MAML and
Reptile (Nichol et al., 2018) when the test data distribution diverges from the training data
distribution?

Both questions focus on the few-shot image classification settings. We base our work on MAML,
Reptile and finetuning, as these are influential techniques that have sparked a large body of follow-up
methods that use the underlying ideas. Since the questions that we aim to answer are inherently
harder than just a simple performance comparison, answering them for the models that are at the
basis of this body of literature will be the right starting point. We think that developing a better
understanding of these influential methods is of great value and can cascade further onto the more
complex methods built on top of these.

Based on our analysis of the learning objectives of the three techniques (finetuning, MAML, Reptile),
we hypothesize that MAML and Reptile specialize for adaptation in low-data regimes of tasks from
the training distribution, giving them an advantage in within-distribution settings. However, since
they may settle for initial features that are inferior compared with finetuning due to their negligence,
or relative negligence, of the initial performance, they may perform comparatively worse when the
test data distribution diverges from the training distribution.

The primary contributions of our work are the following. First, we show the importance of the output
layer weights and data scarcity during training for Reptile and MAML to facilitate specialization for
quick adaptation in low-data regimes of similar distributions, giving them an advantage compared
with finetuning. Second, we show that the pre-trained features of the finetuning technique are more
diverse and discriminative than those learned by MAML and Reptile, which can be advantageous in
out-of-distribution settings.2

2All code for reproducing our results can be found at https://github.com/mikehuisman/
transfer-meta-feature-representations

https://github.com/mikehuisman/transfer-meta-feature-representations
https://github.com/mikehuisman/transfer-meta-feature-representations
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4.2 Related work

Meta-learning is a popular approach to enable deep neural networks to learn from a few data by
learning an efficient learning algorithm. Many architectures and model types have been proposed,
such as MAML (Finn et al., 2017), the meta-learner LSTM (Ravi and Larochelle, 2017), TUR-
TLE (Chapter 3) and MetaOptNet (Lee et al., 2019). However, our understanding of newly proposed
techniques remains limited in some cases. For example, different techniques use different backbones
which raises the question of whether performance differences between techniques are due to new
model-types or due to the difference in used backbones (see Chapter 2).

Chen et al. (2019) was one of the first that investigated this question by performing a fair comparison
between popular meta-learning techniques, including MAML (Finn et al., 2017), on few-shot image
classification benchmarks such as miniImageNet (Vinyals et al., 2016; Ravi and Larochelle, 2017)
and CUB (Wah et al., 2011). Their results show that MAML often outperforms finetuning when
the test tasks come from a similar data distribution as the training distribution when using shallow
backbones. When the backbone becomes deeper and/or the domain differences between training
and test tasks increase, however, this performance gap is reduced and, in some cases, finetuning
outperforms MAML.

In addition to these findings by Chen et al. (2019), Tian et al. (2020) demonstrate that simply
finetuning a pre-trained feature embedding module yields better performance than popular meta-
learning techniques (including MAML) on few-shot benchmarks. Mangla et al. (2020) and Yang et al.
(2021) further support this finding as they have proposed new few-shot learning techniques based on
finetuning pre-trained networks which significantly outperform meta-learning techniques.

These performance differences between simple finetuning and more sophisticated techniques such as
MAML may be surprising, as Raghu et al. (2020); Ding (2023) found that the learning behaviour of
MAML is similar to that of finetuning on image classification benchmarks. More specifically, they
compared the feature representations of MAML before and after task-specific adaptation, and show
that MAML relies mostly on feature re-use instead of quick adaptation because the body of the
network is barely adjusted, which resembles the learning dynamics of finetuning (see Section 4.3.3).
Collins et al. (2020) compared the feature representations of MAML and the finetuning method
(expected risk minimization) in linear regression settings and found that MAML finds an initialization
closer to the hard tasks, characterized by their gentle loss landscapes with small gradients. We
demonstrate a similar property: MAML has greater flexibility in picking an initialization as long as
the post-adaptation performance is good.

In this chapter, we aim to unite the findings of Raghu et al. (2020) and Chen et al. (2019) by finding
an answer to the question of why finetuning can outperform meta-learning techniques such as MAML
and Reptile (Nichol et al., 2018) in some image classification scenarios while it is outperformed in other
scenarios (when using a shallow backbone or when train/test task distributions are similar).

4.3 Background

In this section, we briefly revise supervised learning, few-shot learning (the main problem setting
used in this chapter), finetuning, MAML, and Reptile, using slightly different notation compared
with Chapter 2 to aid in understanding the rest of this chapter.
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4.3.1 Supervised learning
In the supervised learning setting, we have a joint probability distribution over inputs x and
corresponding outputs y, i.e., p(x,y). In the context of deep learning, the goal is to build deep neural
networks that can predict for any given input x the correct output y. Throughout this chapter,
we assume that the neural network architecture f is fixed and that we only wish to find a set of
parameters θ such that the network predictions fθ(x) are as good as possible. This can be done by
updating the parameters θ in order to minimize a loss function Lxi,yi

(θ) that captures how well the
network parameterized by θ is performing on input xi and corresponding output yi. Here, network
parameters θ are a weight matrix, where θ(i:j) represent the weights of the ith until the jth layer
(inclusive), where 0 < i < j ≤ L. Thus, under the joint distribution p(x,y), we wish to find

argmin
θ

E
xi,yi

[Lxi,yi
(θ)] , (4.1)

where (xi,yi) are sampled from the joint distribution p(x,y), i.e., xi,yi ∼ p(x,y).

The most common way to approximate these parameters is by performing gradient descent on
that loss function, which means that we update the parameters in the direction of the steepest
descent

θ(t+1) = θ(t) − α∇θ(t) E
xi,yi

[
Lxi,yi

(θ(t))
]
. (4.2)

Here, ∇θ(t) is the gradient with respect to θ(t), t indicates the time step, and α the learning rate or
step size.

4.3.2 Few-shot learning
Few-shot learning is a special case of supervised learning, where the goal is to learn new tasks from
only a limited number of examples, which is the main focus of this chapter and the techniques
described below. In order to enhance the learning process on a limited number of examples, the
learner is presented with an additional set of tasks, so that it can learn about the learning process.
Here, every task Tj consists of a data distribution pj(x,y) and a loss function L. Since the loss
function is often assumed to be fixed across all tasks, we henceforth use the term ‘task’ to refer to the
task data distribution. The loss function is often assumed to be fixed, and therefore, we henceforth
mean data distribution pj(x,y) or a sample from this distribution, depending on the context. One
notable exception is made in Section 4.5.1, where we abstract away from data distributions and
define a task purely abstractly as a loss function.

Tasks are commonly sampled from a large meta-dataset D ∽ ps(x,y), which itself is a sample from a
source distribution ps. In the case of classification, this is often done as follows. Suppose that the
source distribution from which dataset D is sampled, is defined over a set of classes Y = {c1, c2, . . . , cn}.
Then, we can create tasks Tj by considering only a subspace of this source distribution corresponding
to a subset of classes Sj ⊆ Y. The method can then be evaluated on tasks sampled from a disjoint
subset of classes Sm ⊆ Y, where Sm ∩ Sj =.

Below, we give a concrete example of this procedure for the popular N-way k-shot classification
setting (Finn et al., 2017; Vinyals et al., 2016; Snell et al., 2017). Suppose that we have a classification
dataset D = {(x1,y1), (x2,y2), . . . , (xM ,yM)} of examples. Then, we can create an N -way k-shot
task Tj by sampling a subset of N labels Sj ⊆ Y, where |Sj | = N . Moreover, we sample precisely
k examples for every class to form a training set, or support set Dtr

Tj
, for that task, consisting of
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|Dtr
Tj
| = N · k examples. Lastly, the test set, or query set Dte

Tj
, is obtained by sampling examples of

the subset of classes Sj from D that are not present in the support set. Techniques then train on the
support set and evaluated on the query set in order to measure how well they have learned the task.
This is the problem setting that we will use throughout this chapter.

The deployment of an algorithm for few-shot learning is often done in three stages. In the meta-
training stage, the algorithm is presented with training tasks and uses them to adjust the prior,
such as the initialization parameters. After every X training tasks, the meta-validation stage takes
place, where the learner is validated on unseen meta-validation tasks. Finally, after the training is
completed, the learner with the best validation performance is evaluated in the meta-test phase,
where the learner is confronted with new tasks that have not been seen during training and validation.
Importantly, the tasks between meta-training, meta-validation, and meta-test phases are disjoint.
For example, in image classification, the classes in the meta-training tasks are not allowed to occur in
meta-test tasks as we are interested in measuring the learning ability instead of memorization ability.
In regression settings, every task has its own ground-truth function (as in Section 4.5.1). For example,
every task could be a sine wave with a certain phase and amplitude (Finn et al., 2017).

4.3.3 Finetuning

Achieving good generalization by minimizing the objective in Equation 4.1 using gradient-based
optimization often requires large amounts of data. This raises the question of how we can perform
few-shot learning of tasks. The transfer learning technique called finetuning tackles this problem as
follows. In the pre-training phase, it minimizes Equation 4.1 on a given source distribution ps(x,y)
using gradient descent as shown in Equation 4.2. This leads to a sequence of updates that directly
update the initialization parameters. Then, it freezes the feature extraction module of the network:
all parameters of the network through the penultimate layer, i.e., θ(1:L−1) where L is the number of
layers. When presented with a target distribution pj(x,y) from which we can sample fewer data, we
can simply re-use the learned feature embedding module fθ(1:L−1)

(all hidden layers of the network
excluding the output layer) for this new problem. Then, in the finetuning phase, it only trains the
parameters in the final layer of the network θ(L) (the final layer).

By reducing the number of trainable parameters on the target problem, this technique effectively
reduces the model complexity and prevents overfitting issues associated with the data scarcity in few-
shot learning scenarios. This comes at the cost of not being able to adjust the feature representations
of inputs. As a consequence, this approach fails when the pre-trained embedding module fails to
produce informative representations of the target problem inputs.

4.3.4 Reptile

Instead of joint optimization on the source distribution, Reptile (Nichol et al., 2018) is a meta-learning
algorithm and thus aims to learn how to learn. For this, it splits the source distribution ps(x,y)
into a number of smaller task distributions p1(x,y), p2(x,y), . . . , pn(x,y), corresponding to tasks
T1, T2, . . . Tn. On a single task Tj for j ∈ {1, . . . , n}, its objective is to minimize Equation 4.1 under
the task distribution pj(x,y) using T gradient descent update steps as shown in Equation 4.2. This
results in a sequence of weight updates θ → θ

(1)
j → . . .→ θ

(T )
j . After task-specific adaptation, the

initial parameters θ are moved into the direction of θ(T )
j

θ = θ + ϵ
(
θ
(T )
j − θ

)
, (4.3)
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where ϵ is the step size. Intuitively, this update interpolates between the current initialization
parameters θ and the task-specific parameters θ

(T )
j . The updated initialization θ is then used as

starting point when presented with new tasks, and the same process is repeated. It is easy to show
that this update procedure corresponds to performing first-order optimization of the multi-step
objective

argmin
θ

E
Tj∼p(T )

(
T−1∑
t=0

E
xi,yi∼pj

[
Lt+1(θ

(t)
j )
])

, (4.4)

where Lt+1 is shorthand for the loss on a mini-batch sampled at time step t.

4.3.5 MAML

Another popular gradient-based meta-learning technique is MAML (Finn et al., 2017). Just like
Reptile, MAML also splits the source distribution ps(x,y) into a number of smaller task distributions
p1(x,y), p2(x,y), . . . , pn(x,y), corresponding to tasks T1, T2, . . . Tn. On the training tasks, it aims to
learn a weight initialization θ from which new tasks can be learned more efficiently. However, instead
of optimizing a multi-step loss function, MAML only optimizes the final performance after task-
specific adaptation. More specifically, this means that MAML is only interested in the performance
of the final weights θ

(T )
j on a task and not in intermediate performances of weights θ

(t)
j for t < T . In

other words, MAML aims to find

argmin
θ

E
Tj∼p(T )

(
E

xi,yi∼pj

[
LT (θ

(T)
j )

])
. (4.5)

To find these parameters, MAML updates its initialization parameters as follows

θ = θ − β∇θLT+1(θ
(T )
j ), (4.6)

where β is the learning rate and∇θLT+1(θ
(T )
j ) = ∇

θ
(T )
j
LT+1(θ

(T )
j )∇θθ

(T )
j . The factor∇θθ

(T )
j contains

second-order gradients and can be ignored by assuming that ∇θθ
(T )
j = I is the identity matrix, in a

similar fashion to what Reptile does. This assumption gives rise to first-order MAML (fo-MAML)
and significantly increases the training efficiency in terms of running time and memory usage, whilst
achieving roughly the same performance as the second-order MAML version (Finn et al., 2017).
In short, first-order MAML updates its initialization in the gradient update direction of the final
task-specific parameters. In this chapter, we focus on first-order MAML, as Finn et al. (2017) have
shown this to perform similarly to second-order MAML.

4.4 A common framework and interpretation
The three discussed techniques can be seen as part of a general gradient-based optimization framework,
as shown in Algorithm 10. All algorithms try to find a good set of initial parameters as specified
by their objective functions. The parameters are initialized randomly in line 1. Then, these initial
parameters are iteratively updated based on the learning objectives (the loop starting from line
2).

This iterative updating procedure continues as follows. First, the data distribution is selected to
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Table 4.1: Overview of the loss functions and corresponding focus of finetuning, Reptile, and MAML.

Algorithm Loss function Focus

Finetuning E
xi,yi

[Lxi,yi
(θ)] Initial performance

Reptile E
Tj∼p(T )

(
T−1∑
t=0

E
xi,yi∼pj

[
Lt+1(θ

(t)
j )
])

Multi-step performance

MAML E
Tj∼p(T )

(
E

xi,yi∼pj

[
LT (θ

(T)
j )

])
Final performance

sample data from (line 3). That is, finetuning uses the full joint distribution ps(x,y) of the source
problem, whereas Reptile and MAML select task distributions pj(x,y) (obtained by sub-sampling
a set of instances coming from a subset of labels from the full distribution ps). Next, we make
T task-specific updates on mini-batches sampled from the distribution p that was selected in the
previous stage (lines 4–8). Lastly, the initial parameters θ are updated using the outcomes of the
task-specific adaptation phase.

Note that in this general gradient-based optimization framework, all techniques update their initial-
ization parameters based on a single distribution p at a time. One could also choose to use batches
of distributions, or meta-batches, in order to update the initialization θ. This can be incorporated by
using the average of the losses of the different distributions as an aggregated loss function.

Algorithm 10 General gradient-based optimization: finetuning reptile MAML

1: Randomly initialize θ
2: while not converged do
3: Select data distribution p = ps pj ∼ p(T ) pj ∼ p(T )
4: Set θ(0) = θ
5: for t = 0, ..., T − 1 do
6: Sample a batch of data x,y ∼ p
7: Compute θ(t+1) = θ(t) −∇θ(t)Lt+1(θ

(t))
8: end for
9: Update θ by θ = θ(T ) Equation 4.3 Equation 4.6

10: end while

Table 4.1 gives an overview of the three algorithms. As we can see, finetuning only optimizes for the
initial performance and does not take into account the performance after adaptation. This means
that its goal is to correctly classify any input x from the source problem distribution ps. Reptile, on
the other hand, optimizes both for initial performance, as well as performance after every update step.
This means that Reptile may settle for an initialization with somewhat worse initial performance
compared with finetuning, as long as the performance during task-specific adaptation makes up for
this initial deficit. MAML is the most extreme in the sense that it can settle for an initialization
with poor initial performance, as long as the final performance is good.

In short, Reptile and MAML can be interpreted as look-ahead algorithms as they take the performance
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after task-specific adaptation into account whereas finetuning does not. Moreover, fo-MAML relies
purely on the look-ahead mechanism and neglects the initial performance while Reptile also takes
the initial and intermediate performances into account. This means that MAML may outperform
finetuning with a low-capacity network (with the worst initial performance) where there is not enough
capacity to store features that are directly useful for new tasks. The reason for this is likely that
finetuning will be unable to obtain good embeddings for all of the training tasks and does not have
a mechanism to anticipate what features would be good to learn future tasks better. MAML, on
the other hand, does have this capability, and can thus settle for a set of features with worse initial
performance that lends itself better for learning new tasks. In contrast, when we have high-capacity
networks with enough expressivity to store all relevant features for a task, finetuning may outperform
MAML as it optimizes purely for initial performance without any additional adaptation, which can
be prone to overfitting to the training data of the tasks due to the limited amount of available data.
Lastly, one may expect Reptile to take place between MAML and finetuning: it works better than
finetuning when using low-capacity backbones while it may be slightly worse than finetuning when
using larger-capacity networks (but better than MAML).

Although MAML focuses on the performance after learning, it has been shown that its learning
behaviour is similar to that of finetuning: it mostly relies on feature re-use and not on fast learning
(Raghu et al., 2020). This means that when a distribution shift occurs, which means that the test
tasks become more distant from the tasks that were used for training, MAML may be ill-positioned
due to poor initial performance compared with finetuning which can fall back on more directly useful
initial features.

4.5 Experiments
In this section, we perform various experiments to compare the learning behaviours of finetuning,
MAML, and Reptile, in order to be able to study their within-distribution and out-of-distribution
qualities that can help us answer the two research questions posed in Section 4.1. All experiments
are conducted using single PNY GeForce RTX 2080TI GPUs. In order to study the question of why
MAML and Reptile can outperform finetuning in within-distribution settings with a shallow Conv-4
backbone, we perform the following three first experiments. Moreover, to investigate why finetuning
can outperform MAML and Reptile in out-of-distribution settings, addressing our second research
question, we perform experiment four listed below.

1. Toy problem (Section 4.5.1) We study the behaviour of the algorithms on a within-distribution
toy problems where there are only two tasks without noise in the loss signals caused by a
shortage of training data. This allows us to investigate the initializations that the methods
settle for after training. This allows us to see why MAML and Reptile may have an advantage
over finetuning in within-distribution settings.

2. The effect of the output layer (Section 4.5.2) Finetuning removes the learned output layer
and replaces it with a randomly initialized one when presented with a new task. MAML and
Reptile, on the other hand, do not do this, and can directly start from the learned initialization
weights for both the body and output layer of the network. To investigate whether this
gives these two methods an advantage over finetuning in within-distrbution few-shot image
classification, we investigate the effect of replacing the learned output layers with randomly
initialized ones before learning a new task. This allows us to determine the importance of
having a learned weight initialization for the output layer and whether this is something that
can explain the advantage of MAML and Reptile over finetuning in these settings.
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3. Specialization for robustness against overfitting (Section 4.5.2) Another difference
between the methods is that finetuning is trained on regular mini-batches of data, whilst
MAML and Reptile are trained explicitly for post-adaptation performance on noisy loss signals
induced by the limited amount of available training data. To investigate the importance of
explicitly training under noisy conditions, we study the performances of MAML and Reptile
as a function of the number of examples present in the training condition. Here, the risk of
overfitting is inversely related to the number of training examples k per task.

4. Information content in the learned initializations (Section 4.5.2) Lastly, we investigate
the within-distribution and out-of-distribution learning performances of finetuning, MAML,
and Reptile, with three different backbones of different expressive power (Conv-4, Resnet-10,
Resnet-18). More specifically, we propose a measure of broadness or discriminative power of
the features and investigate whether this is related to the few-shot learning abilities of these
methods to see whether the discriminative power of the three methods differ and can account
for the potential superiority of finetuning in the out-of-distribution setting.
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(a) Scenario a, with T = 5
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(b) Scenario a, with T = 25

−150 −100 −50 0 50 100 150 200
Parameter value

0

2000

4000

6000

8000

10000

L
os

s

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
en

si
ty

Task 1

Task 2

Finetuning

Reptile

MAML

(c) Scenario b, with T = 5
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(d) Scenario b, with T = 25

Figure 4.1: Average initialization that finetuning, Reptile, and MAML converge to when using T = 5
or T = 25 adaptation steps per task. In scenario a (top figures), finetuning and Reptile both pick an
initialization in the centre of the two optima where the initial loss is minimal. MAML neglects the
initial performance and thus is freer to select an initialization point, especially when T is larger. In
scenario b (bottom figures) the loss of task 2 is no longer convex and has a reasonably flat plateau.
Finetuning and Reptile get stuck in the optimum of the first task and fail to learn the second task
successfully, while MAML finds a location from which it can arrive at both optima.
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4.5.1 Toy problem

First, we study the behaviour of finetuning, Reptile, and MAML in two synthetic scenarios a and
b, consisting of two tasks each. In this subsection, we use a slightly more abstract notion of tasks
compared with the rest of the text, and define tasks purely abstractly by loss functions. These tasks
can be considered the meta-train set, and the goal of the algorithms is to find good initialization
parameters on this task distribution. We represent tasks by their loss landscape, which we have
constructed by hand for illustrative purposes. In scenario a, the two task loss landscapes are
quadratic functions of a single parameter x. More specifically, the losses for this scenario are given
by ℓa1(x) = 1.3(x− 5)2 and ℓa2(x) = (x− 100)2. In scenario b, the first task loss landscape is the same
ℓb1 = ℓa1 while the second task represents a more complex function:

ℓb2(x) =

{
(x− 100)2 x > 50

−5x+ 2750 x ≤ 50
(4.7)

The respective algorithms train by sampling tasks in an interleaved fashion, and by adapting the
parameter x based on the loss landscape of the sampled task. We investigate the behaviour of Reptile
and MAML when they make T = 5 or T = 25 task-specific adaptation steps. For this, we average the
found solutions of the techniques over 100 different runs with initial x values that are equally spaced
in the interval [−200,+200]. We find that finetuning converges to the same point regardless of the
initialization and is thus represented by a single vertical line. For Reptile and MAML, the found
solution depends on the initialization, which is why we represent the found solution as a probability
density. A Jupyter notebook for reproducing these results can be found on our GitHub page.

Based on the learning objectives of the techniques, we expect finetuning to settle for an initialization
that has a good initial performance on both tasks (small loss values). Furthermore, we expect that
MAML will pick any initialization point from which it can reach minimal loss on both tasks within
T steps. Reptile is expected to find a mid-way solution between finetuning and MAML.

The results of these experiments are displayed in Figure 4.1. In scenario a (top figures), we see that
both finetuning and Reptile prefer an initialization at the intersection of the two loss curves, where
the initial loss is minimal. MAML, on the other hand, neglects the initial performance when T = 25
and leans more to the right, whilst ensuring that it can reach the two optima within T steps. The
reason that it prefers an initialization on the right of the intersection is that the loss landscape of
task 1 is steeper, which means that task adaptation steps will be larger. Thus, a location at the right
of the intersection ensures good learning of task 2 and yields comparatively fast learning on the first
task.

In scenario b (bottom figures), the loss landscape of task 2 has a relatively flat plateau on the left-hand
side. Because of this, finetuning and Reptile will be pulled towards the optimum (also the joint
optimum) of the first task due to the larger gradients compared with the small gradients of the flat
region of the second task when T is small. The solution that is found by MAML when T = 5 depends
on the random initialization of the parameter, as can be seen in plot c). That is, when the random
initialization is on the left of the plateau, MAML can not look beyond the flat region, implying that
it will also be pulled towards the minimum of task 1. When T = 25, allowing the Reptile and MAML
to look beyond the flat region, we see that Reptile either finds an initialization at x = 50 (when the
starting point x0 is on the right-hand side of the plateau) or at the joint optimum at x = 0 (when it
starts with x0 on the plateau). In the latter case, the post-adaptation performance of Reptile on
both tasks is not optimal because it cannot reach the optimum of task 2. MAML, on the other hand,
does not suffer from this suboptimality because it neglects the initial and intermediate performance
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and simply finds an initialization at x ≈ 85 from which it can reach both the optima of tasks 1 and
2.

4.5.2 Few-shot image classification

We continue our investigations by studying why MAML and Reptile can outperform finetuning in
within-distribution few-shot image classification settings (see Section 4.3.2) when using a Conv-4
backbone. For these experiments, we use the N -way k-shot classification setting (see Section 4.3.2)
on the miniImageNet (Vinyals et al., 2016; Ravi and Larochelle, 2017) and CUB (Wah et al., 2011)
benchmarks. miniImageNet is a mini variant of the large ImageNet dataset (Deng et al., 2009) for
image classification, consisting of 60 000 colored images of size 84× 84. The dataset contains 100
classes and 600 examples per class. We use the same train/validation/test class splits as in Ravi
and Larochelle (2017). The CUB dataset contains roughly 12 000 RGB images of birds from 200
species (classes). We use the same setting and train/validation/test class splits as in Chen et al.
(2019).

Note that using real datasets entails that we move away from the abstract task definition as in the
previous toy experiment, where the loss signal of the task was perfect. Instead, the loss signal is
now approximated by sampling a finite set of data points for every task (for MAML and Reptile) or
batch (for finetuning) and computing the performance of the methods on it.

For finetuning and MAML, we tune the hyperparameters on the meta-validation tasks using random
search with a budget of 30 function evaluations for every backbone and dataset. We train MAML
on 60 000 tasks in the 1-shot setting and on 40 000 tasks in the 5-shot setting, and validate its
performance every 2 500 tasks. The checkpoint with the highest validation accuracy is then evaluated
on 600 holdout test tasks. Similarly, finetuning is trained on 60 000 batches of data from the training
split when we evaluate it in the 1-shot setting and on 40 000 batches when evaluating it in the 5-shot
setting. Note that finetuning is trained on simple mini-batches of data instead of tasks consisting
of a support and query set, and is later validated and tested on unseen validation and test tasks,
respectively. In a similar fashion as for MAML, we validate its performance every 2 500 batches. Due
to the computational expenses, for Reptile, we use the best-reported hyperparameters and training
iterations on 5-way 1-shot miniImageNet as found by Nichol et al. (2018). We use Torchmeta for the
implementation of the data loaders (Deleu et al., 2019). We note that a single run of MAML and
finetuning finish within one day, while Reptile finished within 4 days, perhaps due to the absence of
parallelism in the implementation we used.

The role of the output layer

Here, we investigate whether the fact that MAML and Reptile reuse their learned output layer when
learning new tasks alter their inner-learning behaviour and give them an advantage in performance
compared with finetuning, which removes the learned output layer and replaces it with a randomly
initialized one when learning a new task. In short, we study the role of the output layer on the
performance and inner-loop adaptation behaviour of MAML and Reptile. For this, we perform
meta-training for MAML and Reptile on 5-way 1-shot miniImageNet classification, and study the
effect of replacing the learned output layer initialization weights with random weights on their ability
to learn new tasks. Note that even though the weight initialization of the output layer may be random,
it is still trained on the support sets of unseen tasks, therefore, finetuned to the task upon which it
will be evaluated. Figure 4.2 displays the effect of replacing the output layer of the meta-learned
weight initialization by MAML and Reptile meta-trained on 5-way 1-shot miniImageNet, with a
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Figure 4.2: The difference in the average gradient norms during inner-loop adaptation between
MAML (left) and Reptile (right) with a learned output layer and a randomly initialized one on
5-way 1-shot miniImageNet (MIN; top row) and CUB (bottom row). The 95% confidence intervals
are within the size of the symbols. The learned output layers have a higher gradient norm at the
beginning of the training phase.

randomly initialized one on the gradient norms during the inner-loop adaptation procedure. As we
can see, the networks of the variants with a learned output layer receive larger gradient norms at the
first few updates compared with the variants using a randomly initialized output layer, indicating
that the learned output layer alters the learning behaviour of the algorithms. However, at the end
of adaptation for a given task, the gradient norms are close to zero for both variants, indicating
that both have converged to a local minimum. This implies that the learned initialization of the
output layer has a distinct influence on the learning behaviour of new tasks. More specifically, using
a learned output layer may aid in finding an initialization in the loss landscape that is sensitive to
tasks and can be quickly adapted, explaining the larger gradient norms.

Next, we investigate whether reusing the learned output layers also leads to performance differences.
For this, we investigate the influence of replacing the learned output layers in MAML and Reptile with
randomly initialized ones when starting to learn new tasks on their learning performance for different
numbers of update steps. The results are shown in Figure 4.3. As we can see, replacing the output
layer with a random one leads to worse performance. Increasing the number of updates improves
the performance for MAML, while the reverse is true for Reptile. In the end, the performance gap
introduced by replacing the output layers with random ones is not closed, indicating that the output
layers play an important role in successful inner-loop adaptation.
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Figure 4.3: The difference in performance between MAML (left) and Reptile (right) with a learned
output layer and a randomly initialized one on 5-way 1-shot miniImageNet (MIN; top row) and CUB
(bottom row) for different numbers of update steps. The 95% confidence intervals are displayed as
shaded regions. Learning new tasks starting with a random output layer fails to achieve the same
end performance as with the learned output layer.



98 4. UNDERSTANDING GRADIENT-BASED META-LEARNING AND TRANSFER LEARNING

Specialization for robustness against overfitting

In this subsection, we investigate the influence of the level of data scarcity in the support set on the
performance of MAML and Reptile. We hypothesize that both algorithms learn an initialization that
is robust against overfitting when the number of examples in the support set per class (k) is small.
This would imply that their performance would suffer when the number of examples in the support
sets in training tasks is large due to the reduced need to become robust against overfitting, disabling
the meta-learning techniques to become robust to overfitting during task-specific adaptation. We
investigate this for 5-way miniImageNet image classification by varying the number of examples
in the support set of meta-training tasks and measuring the performance on tasks with only one
example per class (1-shot setting).

Figure 4.4 displays the results of these experiments. As we can see, there is an adverse effect of
increasing the number of support examples per task on the final 1-shot performance of MAML. This
shows that for MAML, it is important to match the training and test conditions so the initialization
parameters can become robust against overfitting induced by data scarcity. In addition, we observe
that Reptile is unstable due to its sensitivity to different hyperparameters on miniImageNet, even in
the setting where k = 1. This is caused by the fact that Reptile is not allowed to sample mini-batches
of data from the support set. Instead, we force it to use the full support set to investigate the effect
of the number of support examples. When the number of examples is close to ten, which is the
mini-batch size commonly used, as by the original authors (Nichol et al., 2018), there is a slight
increase in performance for Reptile on miniImageNet, supporting the observation that it is sensitive
to the chosen hyperparameters. On CUB, in contrast, we observe that the performance improves
with the number of examples per class at training time, although the maximum number of examples
investigated is 25 due to the fact that not every class has more examples than that. This illustrates
that the sensitivity to hyperparameters depends on the chosen dataset.

Information content in the learned initializations

Next, we investigate the relationship between the few-shot image classification performance and the
discriminative power of the learned features by the three techniques for different backbones (Conv-4,
ResNet10, ResNet18 (He et al., 2015)).

After deploying the three techniques on the datasets in a 5-way 1-shot manner, we measure the
discriminative power of the learned initializations. Figure 4.5 visualizes this procedure for MAML and
Reptile; finetuning follows a similar procedure. First, we extract the learned initialization parameters
from the techniques. Second, we load these initializations into the base-learner network, freeze all
hidden layers, and replace the output layer with a new one. The new output layer contains one node
for every of the |Ctest| classes in the meta-test data. Third, we fine-tune this new output layer on the
meta-test data in a non-episodic manner, which corresponds to regular supervised learning on the
meta-test dataset. We use a 60/40 train/test split and evaluate the final performance on the latter.
We refer to the resulting performance measure as the joint classification accuracy, which aims to
indicate the discriminative power of the learned initialization, evaluated on data from unseen classes.
Note that we use the expressions “discriminative power” and “information content” of the learned
backbone synonymously.

The results of this experiment are shown in Figure 4.6. From this figure, we see that finetuning
yields the best joint classification accuracy in all scenarios. From this figure, we see the following
things.

• The within-distribution few-shot learning performance is better than the out-of-distribution
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Figure 4.4: The effect of the number of training examples per class in the support set on the
performance of MAML (left) and Reptile (right) on 5-way 1-shot miniImageNet (MIN; top row) and
CUB (bottom row) classification. The larger the number of examples, the worse the few-shot learning
performance of MAML. The error bars show the maximum and minimum performance over 5 runs
with different random seeds. Note that the test tasks contain only a single example per class in the
support set.



100 4. UNDERSTANDING GRADIENT-BASED META-LEARNING AND TRANSFER LEARNING

k

N

Support
set

Query
set

1. Meta-training

Input

CNN

Episodic meta-training data

N

Non-episodic meta-test data

Input

CNN3. Fine-tuning

2. Copy

Trainable

Frozen

Figure 4.5: Flow chart for measuring the joint classification accuracy for meta-learning techniques.
First, we train the techniques in an episodic manner on all data in the meta-train set. Second, we
copy and freeze the learned initialization parameters and replace the output layer with a new one.
Third, we fine-tune this new output layer on all meta-test data in a non-episodic manner. As such,
the meta-test data is split into a non-episodic train and a non-episodic test set. Finally, we evaluate
the learned evaluation on the hold-out test split of the meta-test data. We refer to the resulting
performance measure as the joint classification accuracy. Note that finetuning follows the same
procedure, with the exception that it trains non-episodically (on batches instead of tasks) on the
meta-training data.

Table 4.2: Individual correlations between the joint classification accuracy and the few-shot learning
performance. The Pearson correlation coefficients are indicated as r and corresponding p-values as
p. We note that the results for each of the three few-shot learning techniques are produced with
three different backbone networks. As such, correlations should be interpreted with utmost care.
Significant correlations (using a threshold of α = 0.005) are displayed in bold. “MIN": miniImageNet.

MIN MIN → CUB CUB CUB → MIN

Finetuning r=0.82, p=2e-4 r=0.71, p=3e-3 r=0.96, p=7e-9 r=0.28, p=0.31
MAML r=-0.77, p=8e-4 r=-0.85, p=6e-5 r=0.36, p=0.18 r=0.90, p=4e-6
Reptile r=0.27, p=0.3 r=0.50, p=0.06 r=0.3, p=0.28 r=0.31, p=0.27

performance for all techniques

• MAML achieves the best few-shot learning performance when using a shallow backbone (conv-4)

• When the backbone becomes deeper, the features learned by MAML become less discriminative

• Finetuning learns the most discriminative set of features for direct joint classification on a large
set of classes

However, we note that the joint classification performance either weakly correlates or does not
correlate with the few-shot learning performance across the different techniques. We note that these
correlation patterns may be affected by the fact that we used the best-reported hyperparameters
for Reptile for the Conv-4 backbone, while we also use ResNet-10 and ResNet-18 backbones (He
et al., 2015) in different settings. For finetuning, however, we do observe an improvement in few-shot
learning performance as the backbone becomes deeper.
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Figure 4.6: The joint classification accuracy (x-axes) plotted against the 5-way 1-shot performance
(y-axis) on all test classes. For every technique, there are 15 results plotted, corresponding to 3
backbones (Conv-4=red, ResNet-10=green, ResNet-18=blue) and 5 runs per setting. The Pearson
correlation coefficients (r) and p-values are displayed in the subcaptions. The general correlations
between the few-shot learning performance and joint classification accuracy range from weak to mild.

Next, we investigate whether there are statistically significant relationships per technique between the
joint classification accuracy and the few-shot performance. Table 4.2 displays the Pearson correlation
and corresponding p-values for individual techniques for the experiment in Section 4.5.2. As we can
see, there are strong and significant (α = 0.005) correlations between the joint classification accuracy
and the few-shot learning performance of finetuning in three settings. For MAML, there are strong
negative correlations on miniImageNet and miniImageNet → CUB, indicating that a lower joint
classification accuracy is often associated with better few-shot learning performance. For Reptile, the
correlations are non-significant and mild to weak.

4.6 Conclusion
In this chapter, we investigated 1) why MAML and Reptile can outperform finetuning in within-
distribution settings, and 2) why finetuning can outperform gradient-based meta-learning techniques
such as MAML and Reptile when the test data distribution diverges from the training data distribu-
tion.

We have shown how the optimization objectives of the three techniques can be interpreted as
maximizing the direct performance, post-adaptation performance, and a combination of the two,
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respectively. That is, finetuning aims to maximize the direct performance whereas MAML aims to
maximize the performance after a few adaptation steps, making it a look-ahead objective. Reptile is
a combination of the two as it focuses on both the initial performance as well as the performance
after every update step on a given task. As a result, finetuning will favour an initialization that
jointly minimizes the loss function, whereas MAML may settle for an inferior initialization that yields
more promising results after a few gradient update steps. Reptile picks something in between these
two extremes. Our synthetic example in Section 4.5.1 shows that these interpretations of the learning
objectives allow us to understand the chosen initialization parameters.

Our empirical results show that these different objectives translate into different learned initializations.
We have shown that MAML and Reptile specialize for adaptation in low-data regimes of the training
tasks distribution, which explains why these techniques can outperform finetuning as observed by
Chen et al. (2019); Finn et al. (2017); Nichol et al. (2018), answering our first research question.
Both the weights of the output layer and the data scarcity in training tasks play an important role
in facilitating this specialization, allowing them to gain an advantage over finetuning.

Moreover, we have found that finetuning learns a broad and diverse set of features that allows
it to discriminate between many different classes. MAML and Reptile, in contrast, optimize a
look-ahead objective and settle for a less diverse and broad feature space as long as it facilitates
robust adaptation in low-data regimes of the same data distribution (as that is used to optimize the
look-ahead objective). This can explain findings by Chen et al. (2019), who show that finetuning
can yield superior few-shot learning performance in out-of-distribution settings. However, we do not
observe a general correlation between the feature diversity and the few-shot learning performance
across finetuning, Reptile, and MAML.

Another result is that MAML yields the best few-shot learning performance when using the Conv-4
backbone in all settings. Interestingly, the features learned by MAML become less discriminative
as the depth of the backbone increases. This may indicate an over-specialization, and it may be
interesting to see whether adding a penalty for narrow features may prevent this and increase the
few-shot learning performance with deeper backbones and in out-of-distribution settings, which has
been observed to be problematic by Rusu et al. (2019) and Chen et al. (2019) respectively. As
this is beyond the scope of our research questions, we leave this for future work. Another fruitful
direction for future work would be to quantify the distance or similarity between different tasks and
to investigate the behaviour of meta-learning algorithms as a function of this quantitative measure.
An additional benefit of such a measure of task similarity would be that it could allow us to detect
when a new task is within-distribution or out-of-distribution, which could inform the choice of which
algorithm to use.

In summary, our results suggest that the answer to our second research question is that MAML
and Reptile may fail to quickly learn out-of-distribution tasks due to their over-specialization to
the training data distribution caused by their look-ahead objective, whereas finetuning learns broad
features that allow it to learn new out-of-distribution concepts. This is supported by the fact that
in almost all scenarios, there are statistically significant relationships between the broadness of the
learned features and the few-shot learning ability for finetuning.

In this chapter, we explored an alternative approach to deep meta-learning for increasing the learning
efficiency of deep neural networks, namely pretraining and finetuning. More specifically, we compared
the learning behaviors of finetuning, MAML, and Reptile. In the following chapters, we return to
the realm of deep meta-learning to investigate LSTMs for few-shot learning (Chapter 5), and to
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investigate whether the integration of classical machine learning knowledge can improve the few-shot
learning behavior of deep neural networks (Chapter 6).





Chapter 5

Are LSTMs Good Few-Shot
Learners?

Chapter overview

Deep learning requires large amounts of data to learn new tasks well, limiting its applicability
to domains where such data is available. Meta-learning overcomes this limitation by learning how
to learn. In 2001, Hochreiter et al. showed that an LSTM trained with backpropagation across
different tasks is capable of meta-learning. Despite promising results of this approach on small
problems, and more recently, also on reinforcement learning problems, the approach has received
little attention in the supervised few-shot learning setting. We revisit1 this approach and test
it on modern few-shot learning benchmarks. We find that LSTM, surprisingly, outperform the
popular meta-learning technique MAML on a simple few-shot sine wave regression benchmark,
but that LSTM, expectedly, fall short on more complex few-shot image classification benchmarks.
We identify two potential causes and propose a new method called Outer Product LSTM (OP-
LSTM) that resolves these issues and displays substantial performance gains over the plain
LSTM. Compared to popular meta-learning baselines, OP-LSTM yields competitive performance
on within-domain few-shot image classification, and performs better in cross-domain settings by
0.5% to 1.9% in accuracy score. While these results alone do not set a new state-of-the-art, the
advances of OP-LSTM are orthogonal to other advances in the field of meta-learning, yield new
insights in how LSTM work in image classification, allowing for a whole range of new research
directions. For reproducibility purposes, we publish all our research code publicly.

5.1 Introduction

In this chapter, we investigate a classical approach to meta-learning with neural networks that was
pioneered by Hochreiter et al. (2001) and Younger et al. (2001). More specifically, they have shown
that LSTMs trained with gradient descent are capable of meta-learning. At the inner level—when
presented with a new task—the LSTM ingests training examples with corresponding ground-truth

1This chapter is based on the following research article: Huisman, M., Moerland, T. M., Plaat, A., & van Rijn,
J. N. (2023). Are LSTMs good few-shot learners? Machine Learning, 112, 4635–4662. Springer.
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outputs and conditions its predictions for new inputs on the resulting hidden state (the general
idea for using recurrent neural networks for meta-learning has been visualized in Figure 5.1). The
idea is that the training examples that are fed into the LSTM can be remembered or stored by the
LSTM in its internal states, allowing predictions for new unseen inputs to be based on the training
examples. This way, the LSTM can implement a learning algorithm in the recurrent dynamics,
whilst the weights of the LSTM are kept frozen. During meta-training, the weights of the LSTM are
only adjusted at the outer level (across tasks) by backpropagation, which corresponds to updating
the inner-level learning program. By exposing the LSTM to different tasks which it cannot solve
without learning, the LSTM is stimulated to learn tasks by ingesting the training examples which
it is fed. The initial experiments of Hochreiter et al. (2001) and Younger et al. (2001) have shown
promising results on simple and low-dimensional toy problems. Meta-learning with LSTMs has also
been successfully extended to reinforcement learning settings (Duan et al., 2016; Wang et al., 2016),
and demonstrates promising learning speed on new tasks.

To the best of our knowledge, the LSTM approach has, in contrast, not been studied on more
complex and modern supervised few-shot learning benchmarks by the research community, which
has already shifted its attention to more developing new and more complex methods (Finn et al.,
2017; Snell et al., 2017; Flennerhag et al., 2020; Park and Oliva, 2019b). In our work, we revisit the
idea of meta-learning with LSTMs and study the ability of the learning programs embedded in the
weights of the LSTM to perform few-shot learning on modern benchmarks. We find that an LSTM
outperforms the popular meta-learning technique MAML (Finn et al., 2017) on a simple few-shot
sine wave regression benchmark, but that it falls short on more complex few-shot image classification
benchmarks.

By studying the LSTM architecture in the context of meta-learning, we identify two potential causes
for this underperformance, namely 1) the fact that it is not invariant to permutations of the training
data and 2) that the input representation and learning procedures are intertwined. We propose a
general solution to the first problem and propose a new meta-learning technique, Outer Product LSTM
(OP-LSTM), where we solve the second issue by learning the weight update rule for a base-learner
network using an LSTM, in addition to good initialization parameters for the base-learner. This
approach is similar to that of Ravi and Larochelle (2017), but differs in how the weights are updated
with the LSTM and that in our approach, the LSTM does not use hand-crafted gradients as inputs
in order to produce weight updates. Our experiments demonstrate that OP-LSTM yields substantial
performance gains over the plain LSTM.

In this chapter, we investigate the following matters.

• We study the ability of a plain LSTM to perform few-shot learning on modern few-shot learning
benchmarks and show that it yields surprisingly good performance on simple regression problems
(outperforming MAML (Finn et al., 2017)), but is outperformed on more complex classification
problems.

• We identify two problems with the plain LSTM for meta-learning, namely 1) the fact that it is
not invariant to permutations of the training data and 2) that the input representation and
learning procedures are intertwined, and propose solutions to overcome them by 1) an average
pooling strategy and 2) decoupling the input representation from the learning procedure.

• We propose a novel LSTM architecture called Outer Product LSTM (OP-LSTM) that overcomes
the limitations of the classical LSTM architecture and yields substantial performance gains on
few-shot learning benchmarks.
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Figure 5.1: The use of a recurrent neural network for few-shot learning. The support set Dtr
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=

{(x1,y1), . . . , (xM ,yM )} is fed as a sequence into the RNN. The predictions ŷj for new query points
x̂j are conditioned on the resulting state. We note that feeding the tuples (xi,yi) does not lead to the
RNN directly outputting the presented labels (drastic overfitting) as the goal is to make predictions
for query inputs, for which the ground-truth outputs are unknown. Alternatively, the support set
could be fed into the RNN in a temporally offset manner (e.g., feed support tuples (xi,yi−1) into
the RNN) as in Santoro et al. (2016) or in different ways (for example feed the error instead of the
ground-truth target) (Hochreiter et al., 2001).

• We discuss that OP-LSTM can approximate MAML (Finn et al., 2017) as well as Prototypical
network (Snell et al., 2017) as it can learn to perform the same weight matrix updates. Since
OP-LSTM does not update the biases, it can only approximate these two methods.

Compared to popular meta-learning baselines, including MAML (Finn et al., 2017), Prototypical
network (Snell et al., 2017), and Warp-MAML (Flennerhag et al., 2020), OP-LSTM yields competitive
performance on within-domain few-shot image classification, and outperforms them in cross-domain
settings by 0.5% to 1.9% in raw accuracy score. While these results alone do not set a new state-of-
the-art, the advances of OP-LSTM are orthogonal to other advances in the field of meta-learning,
allowing for a whole range of new research directions, such as using OP-LSTM to update the weights
in gradient-based meta-learning techniques (Flennerhag et al., 2020; Park and Oliva, 2019b; Lee and
Choi, 2018) rather than regular gradient descent. For reproducibility and verifyability purposes, we
make all our research code publicly available.2

5.2 Related work
Earlier work with LSTMs Meta-learning with recurrent neural networks was originally proposed
by Hochreiter et al. (2001) and Younger et al. (2001). In their pioneering work, Hochreiter et al.
(2001) also investigated other recurrent neural network architectures for the task of meta-learning,
but it was observed that Elman networks and vanilla recurrent neural networks failed to meta-learn
simple Boolean functions. Only the LSTM was found to be successful at learning simple functions.
For this reason, we solely focus on LSTM in our work.

The idea of meta-learning with an LSTM at the data level has also been investigated and shown to
achieve promising results in the context of reinforcement learning (Duan et al., 2016; Wang et al.,

2See: https://github.com/mikehuisman/lstm-fewshotlearning-oplstm

https://github.com/mikehuisman/lstm-fewshotlearning-oplstm
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2016; Alver and Precup, 2021). In the supervised meta-learning community, however, the idea of
meta-learning with an LSTM at the data level (Hochreiter et al., 2001; Younger et al., 2001) has not
gained much attention. A possible explanation for this is that Santoro et al. (2016) compared their
proposed memory-augmented neural network (MANN) to an LSTM and found that the latter was
outperformed on few-shot Omniglot (Lake et al., 2015) classification. However, it was not reported
how the hyperparameters of the LSTM were tuned and whether it was a single-layer LSTM or
a multi-layer LSTM. In addition, the LSTM was fed the input data as a sequence which is not
permutation invariant, which can hinder its performance. We propose a permutation-invariant
method of feeding training examples into recurrent neural networks and perform a detailed study of
the performance of LSTM on few-shot learning benchmarks.

In concurrent work, Kirsch et al. (2022) investigates the ability of transformer architectures to
implement learning algorithms, a baseline with a similar name as our proposed method was proposed
(“Outer product LSTM”). We emphasize, however, that their method is different from ours (OP-
LSTM) as it is a model-based approach that ingests the entire training set and query input into a
slightly modified LSTM architecture (with an outer product update and inner product read-out) to
make predictions, whereas in our OP-LSTM, the LSTM acts on a meta-level to update the weights of
a base-learner network. Hollmann et al. (2023) investigates the ability of a transformer architecture
to implement a general learning algorithm to quickly solve tabular classification problems. This
work is similar to ours in the sense that it also investigates meta-learning general purpose learning
algorithms, but differs in that they are interested in tabular problems and transformers, whereas we
focus on LSTMs for few-shot image classification. Moreover, we do not generate synthetic data for
meta-training on the main problem of interest (few-shot image classification).

In concurrent works done by Kirsch et al. (2022) and Chan et al. (2022), the ability of the classical
LSTM architecture to implement a learning algorithm was also investigated. They observed that
it was unable to embed a learning algorithm into its recurrent dynamics on image classification
tasks. However, the focus was not on few-shot learning, and no potential explanation for this
phenomenon was given. In our work, we investigate the LSTM’s ability to learn a learning algorithm
in settings where only one or five examples are present per class, dive into the inner working
mechanics to formulate two hypotheses as to why the LSTM architecture is incapable of learning a
good learning algorithm, and as a result, propose OP-LSTM which overcomes the limitations and
performs significantly better than the classical LSTM architecture.

Different LSTM architectures for meta-learning Santoro et al. (2016) used an LSTM as a
read/writing mechanism to an external memory in their MANN technique. Kirsch and Schmidhuber
(2021) proposed to replace every weight in a neural network with a recurrent neural network that
communicates through forward and backward messages. The system was shown able to learn
backpropagation and can be used to improve upon it. Our proposed method OP-LSTM can also
learn to implement backpropagation (see Section 5.6). Other works (Ravi and Larochelle, 2017;
Andrychowicz et al., 2016) have also used an LSTM for meta-learning the weight update procedure.
Instead of feeding the training examples into the LSTM, as done by the plain LSTM (Hochreiter
et al., 2001; Younger et al., 2001), the LSTM was fed gradients so that it could propose weight
updates for a separate base-learner network. Our proposed method OP-LSTM is similar to these
two approaches that meta-learn the weight update rules as we use an LSTM to update the weights
(2D hidden states) of a base-learner network. Note that this strategy thus also deviates from the
plain LSTM approach, which is fed raw input data. In our approach, the LSTM acts on predictions
and ground-truth targets or messages. In addition, we use a coordinate-wise architecture where the
same LSTM is applied to different nodes in the network. A difference with other learning-to-optimize
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Figure 5.2: The architecture of an LSTM cell. The LSTM maintains an inner cell state ct and hidden
state ht over time that are updated with new incoming data xt. The forget ft, input it, output ot,
and cell c̄t gates regulate how these states are updated. Image adapted from Olah (2015).

works (Ravi and Larochelle, 2017; Andrychowicz et al., 2016) is that we do not feed gradients into the
LSTM and that we update the weights (2D hidden states) through outer product update rules.

5.3 Meta-learning with LSTM

In this section, we briefly review the LSTM architecture (Hochreiter and Schmidhuber, 1997),
explain the idea of meta-learning with an LSTM through backpropagation as proposed by Hochreiter
et al. (2001) and Younger et al. (2001), discuss two problems with this approach in the context of
meta-learning and propose solutions to solve them.

Additionally, we propose solutions to this problem. We prove that a single-layer RNN followed by a
linear layer is incapable of embedding a classification learning algorithm in its recurrent dynamics
and show by example that an LSTM adding a single linear layer is sufficient to achieve this type of
learning behavior in a simple setting.

5.3.1 LSTM architecture

LSTM (Hochreiter and Schmidhuber, 1997) is a recurrent neural network architecture suitable for
processing sequences of data. The architecture of an LSTM cell is displayed in Figure 5.2. It maintains
an internal state and uses four gates to regulate the information flow within the network

ft = σ(Wf [ht−1,xt] + bf ), (5.1)
it = σ(Wi[ht−1,xt] + bi), (5.2)
ot = σ(Wo[ht−1,xt] + bo), (5.3)
c̄t = tanh(Wc[ht−1,xt] + bc). (5.4)

Here, θ = {Wf ,Wc,Wi,Wo,bf ,bc,bi,bo} are the parameters of the LSTM, [a,b] represents the
concatenation of a and b, σ is the sigmoid function (applied element-wise) and ft, it,ot, c̄t ∈ Rdh
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are the forget, input, output, and cell gates, respectively. These gates regulate the information flow
within the network to produce the next cell and hidden states

ct = ft ⊙ ct−1 + it ⊙ c̄t, (5.5)
ht = ot ⊙ tanh(ct). (5.6)

The hidden state and cell state are obtained by applying LSTM gθ to inputs (xt,xt−1, . . . ,x1),
i.e.,

[ht, ct] = gθ(xt,xt−1, . . . ,x1) (5.7)
= mθ(xt;ht−1, ct−1). (5.8)

5.3.2 Meta-learning with LSTM
Hochreiter et al. (2001) and Younger et al. (2001) show that the LSTM can perform learn-
ing purely through unrolling its hidden state over time with fixed weights. When presented
with a new task Tj—denoting the concatenation of an input and its target as x′

t = (xt,yt)—
the support set Dtr

Tj
= {(x1,y1), . . . , (xM ,yM )} = {x′

1,x
′
2, . . . ,x

′
M}, is fed as a sequence, e.g.,

(x1,null), (x2,y1), . . . , (xM ,yM−1), into the LSTM to produce a hidden state hM (Dtr
Tj
). Predictions

for unseen inputs (queries) x̂ are then conditioned on the hidden state hM (Dtr
Tj
) and cell state cM (Dtr

Tj
),

where we have made it explicit that hM and cM are functions of the support data. More specifically,
the hidden state of the query input x̂ = [x,yM ] is computed as [ĥ, ĉ] = mθ(x̂;hM (Dtr

Tj
), cM (Dtr

Tj
)),

and this hidden state is used either directly for prediction or can be fed into a classifier function
(which also uses fixed weights). Since the weights of the LSTM are fixed when presented with a new
task, the learning takes place in the recurrent dynamics, and the hidden state hM (Dtr

Tj
) is responsible

for guiding predictions on unseen inputs x̂. Note that there are different ways to feed the support data
into the LSTM, as one can also use additional data such as the error on the previous input or feed the
current input together with its target tuples (xt,yt) (as done in Figure 5.1 and our implementation).
We use the latter strategy in our experiments as we found it to be most effective.

This recurrent learning algorithm can be obtained by performing meta-training on various tasks
which require the LSTM to perform learning through its recurrent dynamics. Given a task, we feed
the training data into the LSTM, and then feed in query inputs to make predictions. The loss on
these query predictions can be backpropagated through the LSTM to update the weights across
different tasks. Note, however, that during the unrolling of the LSTM over the training data, the
weights of the LSTM are held fixed. The weights are thus only updated across different tasks (not
during adaptation to individual tasks) to improve the recurrent learning algorithm. By adjusting the
weights of the LSTM using backpropagation across different tasks, we are essentially changing the
learning program of the LSTM and hence performing meta-learning.

5.3.3 Problems with the classical LSTM architecture
The classical LSTM architecture suffers from two issues that may limit its ability to implement
recurrent learning algorithms.

Non-temporal training data LSTMs work with sequences of data. When using an LSTM in the
meta-learning context, the recurrent dynamics should implement a learning algorithm and process
the support dataset. This support dataset Dtr

Tj
= {(x1,y1), . . . , (xM ,yM )} = {x′

1,x
′
2, . . . ,x

′
M},
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however, is a set rather than a sequence. This means that we would want the hidden embedding
after processing the support data to be invariant with respect to the order in which the examples
are fed into the LSTM. Put more precisely, given any two permutations of the M training examples
π = (π1, π2, . . . , πM ) and π′ = (π′

1, π
′
2, . . . , π

′
M ), we want to enforce

gθ(x
′
π1
,x′

π2
, . . . ,x′

πM
) = gθ(x

′
π′
1
,x′

π′
2
, . . . ,x′

π′
M
), (5.9)

where x′
πi

is the i-th input (possibly containing target or error information) under permutation π
and x′

π′
i

the input under permutation π′.

Intertwinement of embedding and learning In the LSTM approach proposed by Hochreiter
et al. (2001) and Younger et al. (2001), the recurrent dynamics implement a learning algorithm. At
the same time, however, the hidden state also serves as an input embedding. Thus, in this approach,
the input embedding and learning procedures are intertwined. This may be problematic because a
learning procedure may be highly complex and nonlinear, whilst the optimal input embedding may
be simple and linear. For example, suppose that we feed convolutional features into a plain LSTM.
Normally, we often compute predictions using a linear output layer. Thus, a simple single-layer LSTM
may be the best in terms of input representation. However, the learning ability of a single-layer
LSTM may be too limited, leading to bad performance. In other words, stacking multiple LSTM
layers may be beneficial for finding a better learning algorithm, but the resulting input embedding
may be too complex, which can lead to overfitting. On the other hand, a good but simple input
embedding may overly restrict the search space of learning algorithms, resulting in a bad learning
algorithm.

An LSTM with sufficiently large hidden dimensionality may be able to separate the learning from
the input representation by using the first N dimensions of the hidden representations to perform
learning and to preserve important information for the next time step, and using the remaining
dimensions to represent the input. However, this poses a challenging optimization problem due to
the risk of overfitting and the large number of parameters that would be needed.

5.3.4 Towards an improved architecture

These potential issues of the classical LSTM architecture inspire us to develop an architecture that is
better suited for meta-learning.

Non-temporal data → average pooling In order to enforce invariance of the hidden state and
cell state with respect to the order of the support data, we can pool the individual embeddings. That
is, given an initial state of the LSTM st = [ht, ct], we update the state by processing the support
data as a batch and by average pooling, i.e.,

st+1 = [ht+1, ct+1] =
1

M

M∑
i=1

mθ(x
′
i;ht, ct). (5.10)

Note that one time step now corresponds to processing the entire support dataset once, since st+1 is
a function thereof. Our proposed batch processing for a single time step (during which we ingest the
support data) has been visualized in Figure 5.3.
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RNNRNN RNNRNN RNNRNN...

RNNRNN RNNRNN ... RNNRNN

Support set Query set

Figure 5.3: Our proposed batch processing of the support data, resulting in a state that is permutation
invariant. Every support example (xi,yi) is processed in parallel, and the resulting hidden states are
aggregated with mean-pooling (denoted by the symbol ·̄). The predictions ŷj for new query points
x̂j are conditioned on the resulting permutation-invariant state. Note that the support data is only
fed once into the RNN (a single time step t), although it is possible to make multiple passes over the
data, by feeding the mean-pooled state into the RNN at the next time step.

Intertwinement of embedding and learning The problems associated with the intertwinement
of the embedding and learning procedures can be solved by decoupling them. In this way, we create
two separate procedures: 1) the embedding procedure, and 2) the learning procedure. The embedding
procedure can be implemented by a base-learner neural network, and the learning procedure by a
meta-network that updates the weights of the base-learner network.

In the plain LSTM approach, where the learning procedure is intertwined with the input representation
mechanism, predictions would be conditioned on the hidden state h(x,h(Dtr

Tj
), c(Dtr

Tj
)). Instead, we

choose to use the inner product between the hidden state (acting as weight vector) and the embedding
of current input a(L)(x), i.e.,

ŷ(x) = a(L)(x) = h(L)(Dtr
Tj
)T︸ ︷︷ ︸

learning

a(L−1)(x)︸ ︷︷ ︸
embedding

, (5.11)

where a(L−1)(x) is the representation of input x in layer L−1 of some base-learner network (consisting
of L layers), whose weights are updated by a meta-network. We use the inner product to force
interactions between the learning and embedding components, so that the predictions can not rely on
either of the two separately. Note that by computing predictions in this way, we effectively decouple
the learning algorithm implemented by hidden state dynamics from the input representation. A
problem with this approach is that the output is a single scalar. In order to obtain an arbitrary
output dimension dout > 1, we should multiply the input representation a(L−1)(x) with a matrix
H ∈ Rdout×din , i.e., ŷ(x) = H(L)a(L−1)(x). In order to obtain H(L), one could use a separate LSTM
with a hidden dimension of din per output dimension, but the number of required LSTMs would
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grow linearly with the output dimensionality. Instead, we use the outer product, which requires
only one hidden vector of size din that can be outer-multiplied with a vector of size dout. We detail
the computation of 2D weight matrices H (hidden states) with the outer product rule in the next
section.

Note that the 2D hidden state H can be seen as a weight matrix of a regular feed-forward neural
network, which allows us to generalize this approach to networks with an arbitrary number of layers,
where we have a 2D hidden state H(ℓ) for every layer ℓ ∈ {1, 2, . . . , L} in a network with L layers. Our
approach can then be seen as meta-learning an outer product weight update rule for the base-learner
network such that it can quickly adapt to new tasks.

5.4 Outer product LSTM (OP-LSTM)

Here, we propose a new technique, called Outer Product LSTM (OP-LSTM), based on the problems
of the classical LSTM architecture for meta-learning and our suggested solutions. We begin by
discussing the architecture, then cover the learning objective and algorithm, and end by studying the
relationship between OP-LSTM and other methods.

5.4.1 The architecture

Since we can view the 2D hidden states H(ℓ) in OP-LSTM as weight matrices that act on the input,
the OP-LSTM can be interpreted as a regular fully-connected neural network. The output of the
OP-LSTM for a given input x is given by

fθ(x, D
tr
Tj
, T ) = σ(L)(H

(L)
T a

(L−1)
T (x) + b(L)), (5.12)

where Dtr
Tj

is the support dataset of the task, L the number of layers of the base-learner network, and
T the number of time steps that the network unrolls (trains) over the entire support set. Here, σ(L)

is the activation function used in layer L, b(L) the bias vector in the output layer, and a
(L−1)
T (x)

the input to layer L after making T passes over the support set and having received the query
input.

Put more precisely, the activation in layer ℓ at time step t, as a function of an input x, is denoted
a
(ℓ)
t (x) and defined as follows

a
(ℓ)
t (x) =

{
x if ℓ = 0 (input layer),
σ(ℓ)(H

(ℓ)
t a

(ℓ−1)
t (x) + b(ℓ)) otherwise.

(5.13)

Note that this defines the forward dynamics of the architecture. Here, the Hℓ
t ∈ Rd

(ℓ)
out×d

(ℓ)
in is the

2D hidden state that is updated by pooling over the normalized 2D outer product hidden states
h
(ℓ)
t+1(x

′
i)a

(ℓ−1)
t (x′

i)
T associated with individual training examples x′

i = (xi,yi), i.e.,

H
(ℓ)
t+1 = H

(ℓ)
t +

γ

M

M∑
i=1

h
(ℓ)
t+1(x

′
i)a

(ℓ−1)
t (xi)

T

||h(ℓ)
t+1(x

′
i)a

(ℓ−1)
t (xi)T ||F

, (5.14)

where γ is the step size of the updates and ||·||F is the Frobenius norm. We perform this normalization
for numerical stability. Note that this update using average pooling ensures that the resulting hidden
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Figure 5.4: The workflow of OP-LSTM. We have visualized two layers of the base-learner network.
During the forward pass, the 2D hidden states H

(ℓ)
t act as weight matrices of a feed-forward neural

network that act on the input of that layer a
(ℓ−1)
t . This linear combination H

(ℓ)
t a

(ℓ−1)
t (xi) is passed

through a nonlinearity σ and added with a bias vector b(ℓ) to produce the activation a
(ℓ)
t (xi). The

entire forward pass is displayed by the black arrows. The red arrows, on the other hand, indicate
the backward pass using the coordinate-wise LSTM. The outer product (⊗) of the resulting hidden
state h

(ℓ+1)
t and the inputs from the previous layer a

(ℓ)
t are added to the 2D hidden state H

(ℓ+1)
t to

produce H
(ℓ+1)
t+1 (blue arrow), which can be interpreted as the updated weight matrix.

states H(ℓ)
t are invariant to permutations of the support data. Moreover, we observe that this equation

defines the backward dynamics of the architecture (updating the 2D hidden states). However, this
equation does not yet tell us how the hidden states h

(ℓ)
t+1(x

′
i) are computed.

We use a coordinate-wise LSTM so that the same LSTM can be used in layers of arbitrary dimensions,
in similar fashion as Ravi and Larochelle (2017); Andrychowicz et al. (2016). This means that we
maintain a state s

(ℓ)
t,j = [h

(ℓ)
t,j , c

(ℓ)
t,j ] for every individual node j in the state vector and every layer

ℓ ∈ {1, 2, . . . , L} over time steps t. In order to obtain the hidden state vector for a given layer ℓ and
time step t, we simply concatenate the individual hidden states computed by the coordinate-wise
LSTM, i.e., h(ℓ)

t = [h
(ℓ)
t,1, h

(ℓ)
t,2, . . . , h

(ℓ)

t,d(ℓ) ]
T , where d(ℓ) is the number of neurons in layer ℓ. The LSTM

weights to update these states are shared across all layers and nodes with the same activation function.
For classification experiments, we often have two LSTMs: one for the final layer which uses a softmax
activation function, and one for the body of the network, which uses the ReLU activation. This
allows OP-LSTM to learn weight updates akin to gradient descent, where the backward computation
is tied to each nonlinearity in the base-learner network (as this can not be done by a single LSTM,
due to the different non-linearities of the softmax and the RELU activation). We use pooling over
the support data in order to update the states using a coordinate-wise approach, where every element
of the hidden state h

(ℓ)
t of a given layer ℓ is updated independently by a single LSTM.

In order to compute the next state s
(ℓ)
t+1,j of node j in layer ℓ, we need to have the previous state

consisting of the previous hidden state h
(ℓ)
t,j and cell state c

(ℓ)
t,j of that node. Moreover, we need to
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feed the LSTM an input, which we define as z
(ℓ)
t,j . In OP-LSTM, we define this input as

z
(ℓ)
t,j (x

′
i) =

{
[(a

(ℓ)
t (xi))j , (yi)j ] if ℓ = L (output layer),

[(a
(ℓ)
t (xi))j , ((H

(ℓ+1)
t )Th

(ℓ+1)
t (xi))j ] otherwise.

(5.15)

Note that for the output layer L, the input to the LSTM corresponds to the current prediction and
the ground-truth output, which share the same dimensionality. For the earlier layers in the network,
we do not have access to the ground-truth signals. Instead, we view the hidden state of the output
layer LSTM as errors and propagate them backward through the 2D hidden states H

(ℓ+1)
t , hence

the expression (H
(ℓ+1)
t )Th

(ℓ+1)
t (xi) for earlier layers. We note that this is akin to backpropagation,

where error messages δ(ℓ+1) are passed backward through the weights of the network.

Given an input x′
i, the next state s

(ℓ)
t+1,j can then be computed by applying the LSTM mθ to the

input z
(ℓ)
t,j (x

′
i), conditioned on the previous hidden state h

(ℓ)
t,j and cell state c

(ℓ)
t,j .

s
(ℓ)
t+1,j(x

′
i) = [h

(ℓ)
t+1,j(x

′
i), c

(ℓ)
t+1,j(x

′
i)] = mθ(z

(ℓ)
t,j (x

′
i);h

(ℓ)
t,j , c

(ℓ)
t,j ), (5.16)

where z
(ℓ)
t,j (x

′
i) is the input to the LSTM used to update the state. These individual states are

averaged over all training inputs to obtain

s
(ℓ)
t+1,j = [h

(ℓ)
t+1,j , c

(ℓ)
t+1,j ] =

1

M

M∑
i=1

s
(ℓ)
t+1,j(x

′
i). (5.17)

Note that we can obtain a state vector, hidden vector, and cell state vector, by concatenation,
i.e., s

(ℓ)
t+1,j(x

′
i) = [s

(ℓ)
t+1,1(x

′
i), s

(ℓ)
t+1,2(x

′
i), . . . , s

(ℓ)

t+1,d(ℓ)(x
′
i)], h

(ℓ)
t+1,j(x

′
i) = [h

(ℓ)
t+1,1(x

′
i), h

(ℓ)
t+1,2(x

′
i), . . . ,

h
(ℓ)

t+1,d(ℓ)(x
′
i)], and c

(ℓ)
t+1,j(x

′
i) = [c

(ℓ)
t+1,1(x

′
i), c

(ℓ)
t+1,2(x

′
i), . . . , c

(ℓ)

t+1,d(ℓ)(x
′
i)].

5.4.2 The algorithm

OP-LSTM is trained to minimize the expected loss on the query sets conditioned on the support
sets, where the expectation is with respect to a distribution of tasks. Put more precisely, we
wish to minimize ETj∽p(T )

[
LDte

Tj
(Θ)
]
, where Θ = {θ,H(1)

0 ,H
(2)
0 , . . . ,H

(L)
0 ,b(1),b(2), . . . ,b(L)}. This

objective can be approximated by sampling batches of tasks, updating the weights using the learned
outer product rules, and evaluating the loss on the query sets. Across tasks, we update Θ using
gradient descent. In practice, we use the cross-entropy loss for classification tasks and the MSE loss
for regression tasks.

The pseudocode for OP-LSTM is displayed in Algorithm 11. First, we randomly initialize the
initial 2D hidden states H

(ℓ)
0 and the LSTM parameters θ. We group these parameters as Θ =

{θ,H(1)
0 ,H

(2)
0 , . . . ,H

(L)
0 }, which will be meta-learned across different tasks. Given a task Tj , we make

T updates on the entire support set Dtr
Tj

by processing the examples individually, updating the 2D

hidden states H
(ℓ)
t , and computing the new hidden states of the coordinate-wise LSTM for every

layer s
(ℓ)
t . After having made T updates on the support data, we compute the loss of the model

on the query set Dte
Tj

. The gradient of this loss with respect to all parameters Θ is added to the
gradient buffer. Once a batch of tasks B has been processed in this way, we perform a gradient
update on Θ and repeat this process until convergence or a maximum number of iterations has been
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reached.

Algorithm 11 Meta-learning with outer product LSTM (OP-LSTM)

1: Randomly initialize H
(ℓ)
0 and biases b(ℓ) for all 1 ≤ ℓ ≤ L

2: Randomly initialize LSTM parameters θ, set h
(ℓ)
o = 0, c(ℓ)0 = 0

3: repeat
4: Initialize gradient buffer ζ = 0
5: Sample batch of J tasks B = {Tj ∽ p(T )}Jj=1

6: for Tj = (Dtr
Tj
, Dte

Tj
) in B do

7: set h
(ℓ)
o = 0, c(ℓ)0 = 0 for all 1 ≤ ℓ ≤ L

8: for t = 1, ..., T do
9: for x′

i = (xi,yi) ∈ Dtr
Tj

do

10: Compute predictions a
(L)
t−1(xi) (Equation 5.13)

11: Compute z
(ℓ)
t (x′

i) and h
(ℓ)
t (xi) for 1 ≤ ℓ ≤ L with backward message passing (see

Equation 5.15 and Equation 5.16)
12: Update H

(ℓ)
t for 1 ≤ ℓ ≤ L (Equation 5.14)

13: end for
14: Compute s

(ℓ)
t for 1 ≤ ℓ ≤ L (Equation 5.17) through concatenation

15: end for
16: Compute query predictions LDte

Tj
({H(ℓ)

T }Lℓ=1)

17: Update gradient buffer ζ = ζ + 1
J∇ΘLDte

Tj
({H(ℓ)

T }Lℓ=1)

18: end for
19: Update Θ = Θ− βζ
20: until convergence

5.5 Experiments

In this section, we aim to answer the following research questions:

• How do the performance and training stability of a plain LSTM compare when processing the
support data as a sequence versus as a set with average pooling? (see Section 5.5.1)

• How well does the plain LSTM perform at few-shot sine wave regression and within- and
cross-domain image classification problems compared with popular meta-learning methods such
as MAML (Finn et al., 2017) and Prototypical network (Snell et al., 2017)? (see Section 5.5.2
and Section 5.5.3)

• Does OP-LSTM yield a performance improvement over the simple LSTM and the related
approaches MAML and Prototypical network in few-shot sine wave regression and within- and
cross-domain image classification problems? (see Section 5.5.2 and Section 5.5.3)

• How does OP-LSTM adjust the weights of the base-learner network? (see Section 5.5.4)

For our experiments, we use few-shot sine wave regression (Finn et al., 2017) as an illustrative
task, and popular few-shot image classification benchmarks, namely Omniglot (Lake et al., 2015),
miniImageNet (Ravi and Larochelle, 2017; Vinyals et al., 2016), and CUB (Wah et al., 2011). We
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use MAML (Finn et al., 2017), prototypical network (Snell et al., 2017), SAP (see Chapter 6) and
Warp-MAML (Flennerhag et al., 2020) as baselines. The former two are popular meta-learning
methods and can both be approximated by the OP-LSTM (see Section 5.6), allowing us to investigate
the benefit of OP-LSTM’s expressive power. The last two baselines are used to investigate how OP-
LSTM compares to state-of-the-art gradient-based meta-learning methods in terms of performance,
although it has to be noted that that OP-LSTM is orthogonal to that method, in the sense that
OP-LSTM could be used on top of Warp-MAML. However, this is a nontrivial extension and we
leave this for future work. We run every technique on a single GPU (PNY GeForce RTX 2080TI)
with a computation budget of 2 days (for detailed running times, please see Section B.2.3). Each
experiment is performed with 3 different random seeds, where the random seed affects the random
weight initialization of the neural networks as well as the used training tasks, validation tasks, and
testing tasks. Below, we describe the different experimental settings that we use. Note that we do
not aim to achieve state-of-the-art performance, but rather investigate whether the plain LSTM is
a competitive method for few-shot learning on modern benchmarks and whether OP-LSTM yields
improvements over the plain LSTM, MAML, and Prototypical network.

Sine wave regression This toy problem was originally proposed by Finn et al. (2017) to study
meta-learning methods. In this setting, every task Tj corresponds to a sine wave sj = Aj · sin(x− pj),
where Aj and pj are the amplitude and phase of the task, sampled uniformly at random from the
intervals [0.1, 5.0] and [0, π], respectively. The goal is to predict for a given task the correct output y
given an input x after training on the support set, consisting of k examples. The performance of
learning is measured in the query set, consisting of 50 input-output. For the plain LSTM approach, we
use a multi-layer LSTM trained with Backpropagation through Time (BPTT) using Adam (Kingma
and Ba, 2015). During meta-training, the LSTM is shown 70 000 training tasks. Every 2 500 tasks,
we perform meta-validation on 1 000 tasks, and after having selected the best validated model, we
evaluate the performance on 2 000 meta-test tasks.

Few-shot image classification In case of few-shot image classification, all methods are trained
for 80 000 episodes on training tasks and we perform meta-validation every 2 500 episodes. The best
learner is then evaluated on 600 hold-out test tasks, each task having a number of examples per class
in the support set as indicated by the experiment (ranging from 1–10) as well as a query set of 15
examples per class. We repeat every experiment 3 times with different random seeds, meaning the
that weight initializations and tasks are different across runs, although the class splits for sampling
training/validation/testing tasks are kept fixed. For the Omniglot image classification dataset, we
used a fully-connected neural network as base-learner for MAML and OP-LSTM, following Santoro
et al. (2016) and Finn et al. (2017). The network consists of 4 fully-connected blocks with dimensions
256-128-64-64. Every block consists of a linear layer, followed by BatchNorm and ReLU activation.
Every layer of the base-learner network is an OP-LSTM block. The plain LSTM approach uses
an LSTM as base-learner. For MAML, we use the best reported hyperparameters by Finn et al.
(2017). We performed hyperparameter tuning for LSTM and OP-LSTM using random search and
grid search, respectively (details can be found in Appendix B.2). Note that as such, the comparison
against MAML and Prototypical networks is only for illustrative purposes, as the hyperparameter
optimization procedure on these methods has, due to computational restrictions, not been executed
under the same conditions.

For the miniImageNet and CUB image classification datasets, we use the Conv-4 base-learner network
for all methods, following Snell et al. (2017); Finn et al. (2017). This base-learner consists of 4 blocks,
where every block consists of 64 feature maps created with 3× 3 kernels, BatchNorm, and ReLU



118 5. ARE LSTMS GOOD FEW-SHOT LEARNERS?

nonlinearity. MAML uses a linear output layer to compute predictions, the plain LSTM operates
on the flattened features extracted by the convolutional layers (as an LSTM taking image data as
input does not scale well), whereas OP-LSTM uses an OP-LSTM block (see Figure 5.4) on these
flattened features. Importantly, OP-LSTM is only used in the final layer as it does currently not
support propagating messages backward through max pooling layers.

We first study the within-domain performance of the meta-learning methods, where test tasks are
sampled from the same dataset as the one used for training (albeit with unseen classes). Afterward,
we also study the cross-domain performance, where the techniques train on tasks from a given
dataset and are evaluated on test tasks from another dataset. More specifically, we use the scenarios
miniImageNet → CUB (train on miniImageNet and evaluate on CUB) and vice versa.

5.5.1 Permutation invariance for the plain LSTM
First, we investigate the difference in performance of the plain LSTM approach when processing the
support data as a sequence (x1,y1), . . . , (xk,yk) or as a set {(x1,y1), . . . , (xk,yk)} (see Section 5.3.4)
on few-shot sine wave regression and few-shot Omniglot classification. For the former, every task
consists of 50 query examples, whereas for the latter, we have 10 query examples per class. We tuned
the LSTM that processes the support data sequentially with random search (details in appendix).
We compare the performance of this tuned sequential model to that of an LSTM with batching
(with the same hyperparameter configuration) to see whether the resulting permutation invariance
is helpful for the performance and training stability of the LSTM. To measure the stability of the
training process, we compute the confidence interval over the mean performances obtained over 3
different runs rather than over all performances concatenated for the different runs, as done in later
experiments for consistency with the literature.
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Figure 5.5: The average accuracy score of a plain LSTM with sequential and batch support data
processing on few-shot sine wave regression (left) and Omniglot classfication (right) for different
numbers of training examples per task. Note that a lower MSE (left) or a higher accuracy (right)
corresponds to better performance. The results are averaged over 3 runs (each measured over
600 meta-test tasks) with different random seeds and the 95% confidence intervals over the mean
performances of the runs are shown as shaded regions. Additionally, in the right plot, we have added
scatter marks to indicate the average performances per run (dots, unconnected, 3 per setting). Batch
processing performs on par or outperforms sequential processing and improves the training stability
over different runs.
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The results of this experiment are shown in Figure 5.5. In the case of few-shot sine wave regression
(left subfigure), the performance of the LSTM with batching is on par or better compared with
the sequential LSTM as the MSE score of the former is smaller or equal. We also note that the
performance tends to improve with the amount of available training data. A similar, although more
convincing, pattern can be seen in the case of few-shot Omniglot classification (right subfigure),
where the LSTM with batching significantly outperforms the sequential LSTM across the different
numbers of training examples per class. Surprisingly, in this case the performance of the LSTM does
not improve as the number of examples per class increases. We found that this is due to training
stability issues of the plain LSTM (as shown by the confidence intervals): for some runs, the LSTM
does not learn and yields random performance, and in other runs the learning starts only after a
certain period of burn-in iterations and fails to reach convergence within 80K meta-iterations (see
appendix Section B.2.2 for detailed learning curves for every run). For the LSTM with batching, we
do not observe such training stability issues. This shows that batching not only helps improve the
performance, but also greatly increases the training stability. Note that the fact that the shaded
confidence interval of the sequential LSTM goes above the performance obtained by the batching
LSTM is an artifact of using symmetrical confidence intervals above and below the mean trend:
the sequential LSTM never outperforms the batching LSTM. As we can see, the MSE loss for both
approaches decreases as the size of the support set increases, as more training data is available for
learning. Furthermore, we see that the performance of the LSTM with batching improves with
the number of available training data, whereas this is not the case for the sequential LSTM, which
struggles to yield competitive performance. Overall, the results imply that the permutation invariance
is a helpful inductive bias to improve the few-shot learning performance. Consequently, we will use
the LSTM with batching henceforth.

5.5.2 Performance comparison on few-shot sine wave regression
Next, we compare the performance of the plain LSTM with batching, our proposed OP-LSTM,
as well as MAML (Finn et al., 2017). To ensure a fair comparison with MAML, we tuned the
hyperparameters in the same way as for the plain LSTM as done in the previous subsection on
5-shot sine wave regression. For this tuning, we used the default base-learner architecture consisting
of two hidden layers with 40 ReLU nodes, followed by an output layer of 1 node. Afterward, we
searched over different architectures with different numbers of parameters such that the expressivity
in terms of the number of parameters does not limit the performance of MAML. We used the same
base-learner architecture for the OP-LSTM as MAML without additional tuning.

Table 5.1: Average test MSE on few-shot sine wave regression. The 95% confidence intervals are
displayed as ±x, and calculated over all meta-test tasks. We used batch processing for the LSTM
and OP-LSTM. The best performances are dislpayed in bold font.

Parameters 5-shot 10-shot 20-shot

MAML 17 018 0.18 ± 0.009 0.033 ± 0.003 0.005 ± 0.001
LSTM 20 201 0.04 ± 0.002 0.010 ± 0.001 0.007 ± 0.000
OP-LSTM 18 107 0.11 ± 0.009 0.008 ± 0.001 0.003 ± 0.000

The test performances on the sine wave regression taska are displayed in Table 5.1. We note MAML,
despite having a comparable number of parameters (models with more parameters than LSTM and
OP-LSTM performed worse), is outperformed by LSTM and OP-LSTM, indicating that LSTM and
OP-LSTM have discovered more efficient learning algorithms for sine wave tasks. Comparing LSTM
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with OP-LSTM, we see that the former yields the best performance in the 5-shot setting, whereas
OP-LSTM outperforms LSTM in the 10-shot and 20-shot settings.

5.5.3 Performance comparison on few-shot image classification

Within-domain Next, we investigate the within-domain performance of OP-LSTM and LSTM on
few-shot image classification problems, namely, Omniglot, miniImageNet, and CUB. The results for
the Omniglot dataset are displayed in Table 5.2. Note that the LSTM has many more parameters
than the other methods as it consists of multiple fully-connected layers with large hidden dimensions,
which were found to give the best validation performance. As we can see, the plain LSTM (with
batching) does not yield competitive performance compared with the other methods, in spite of the
fact that it has many more parameters and, in theory, could learn any learning algorithm. This
shows that the LSTM is hard to optimize and struggles to find a good solution in more complex
few-shot learning settings, i.e., image classification. OP-LSTM, on the other hand, which separates
the learning procedure from the input representation, yields competitive performance compared with
MAML and ProtoNet in both the 1-shot and 5-shot settings, whilst using fewer parameters than the
plain LSTM.

Table 5.2: The mean test accuracy (%) on 5-way Omniglot classification across 3 different runs.
The 95% confidence intervals are displayed as ±x, and calculated over all runs and meta-test tasks
(600 per run). The plain LSTM is outperformed by MAML. All methods (except LSTM) used a
fully-connected feed-forward classifier. The best performances are dislpayed in bold font.

Technique parameters 1-shot 5-shot

MAML 247 621 84.1 ± 0.90 93.5 ± 0.30
ProtoNet 247 621 83.6 ± 0.88 93.4 ± 0.29

LSTM 13 530 097 72.6 ± 0.90 84.8 ± 0.50
OP-LSTM (ours) 249 167 84.3 ± 0.90 91.8 ± 0.30

The results for miniImageNet and CUB are displayed in Table 5.3. Note that again, the LSTM uses
more parameters than other methods as it consists of multiple large fully-connected layers which were
found to yield the best validation performance. Nonetheless, it is applied on top of representations
computed with the Conv-4 backbone, which is also used by all other methods. As we can see, the
plain LSTM approach performs at chance level, again suggesting that the optimization problem of
finding a good learning algorithm is too complex for this problem. The OP-LSTM, on the other hand,
yields competitive or superior performance compared with all tested baselines on both miniImageNet
and CUB, regardless of the number of shots, which shows the advantage of decoupling the input
representation from the learning procedure.

Cross-domain Next, we investigate the cross-domain performance of the LSTM and OP-LSTM,
where the test tasks come from a different a different dataset than the training tasks. We test this in
two scenarios: train on miniImageNet and evaluate on CUB (MIN → CUB) and vice verse (CUB →
MIN). The results of this experiment are displayed in Table 5.4. Again, the plain LSTM does not
outperform a random classifier, whilst the OP-LSTM yields superior performance in every tested
scenario, showing its versatility in this challenging setting.
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Table 5.3: Meta-test accuracy scores on 5-way miniImageNet and CUB classification over 3 runs.
The 95% confidence intervals are displayed as ± x, and calculated over all runs and meta-test tasks
(600 per run). All methods used a Conv-4 backbone as a feature extractor. The “-" indicates that
the method did not finish within 2 days of running time. The best performances are dislpayed in
bold font.

miniImageNet CUB

Technique parameters 1-shot 5-shot 1-shot 5-shot

MAML 121 093 48.6 ± 1.04 63.0 ± 0.54 57.5 ± 1.04 74.8 ± 0.51
Warp-MAML 231 877 50.4 ± 1.04 65.6 ± 0.53 59.6 ± 1.00 74.2 ± 0.51
SAP 412 852 53.0 ± 1.08 67.6 ± 0.51 63.5 ± 1.00 73.9 ± 0.51
ProtoNet 121 093 50.1 ± 1.04 65.4 ± 0.53 50.9 ± 1.01 63.7 ± 0.55

LSTM 55 879 349 20.2 ± 0.20 19.4 ± 0.20 - -
OP-LSTM (ours) 141 187 51.9 ± 1.04 67.9 ± 0.50 60.2 ± 1.04 73.1 ± 0.52

Table 5.4: Average cross-domain meta-test accuracy scores over 5 runs using a Conv-4 backbone.
Techniques trained on tasks from one data set and were evaluated on tasks from another data set.
The 95% confidence intervals are displayed as ± x, and calculated over all runs and meta-test tasks.
The “-" indicates that the method did not finish within 2 days of running time. The best performances
are dislpayed in bold font.

MIN → CUB CUB → MIN

1-shot 5-shot 1-shot 5-shot

MAML 37.9 ± 0.40 53.6 ± 0.40 31.1 ± 0.36 45.8 ± 0.39
Warp-MAML 42.0 ± 0.43 56.9 ± 0.42 31.1 ± 0.35 41.3 ± 0.36
SAP 41.5 ± 0.44 58.0 ± 0.41 33.3 ± 0.39 47.1 ± 0.39
ProtoNet 39.7 ± 0.41 56.0 ± 0.41 31.7 ± 0.34 45.3 ± 0.38

LSTM 20.1 ± 0.28 20.0 ± 0.25 - -
OP-LSTM (ours) 42.3 ± 0.42 58.5 ± 0.41 35.8 ± 0.40 49.0 ± 0.40

5.5.4 Analysis of the learned weight updates

Lastly, we investigate how OP-LSTM updates the weights of the base-learner network. More
specifically, we measure the cosine similarity and Euclidean distance between the OP-LSTM updates
and updates made by gradient descent or Prototypical network. Denoting the initial final classifier
weight matrix as H

(L)
0 , the OP-LSTM update direction after T updates is ∆OP = H⃗

(L)
T − H⃗

(L)
0 ,

where M⃗ means that we vectorize the matrix by flattening it. Similarly, we can measure the
update compared with the initial weight matrix and those obtained by employing nearest-prototype
classification (H(L)

Proto) as done in Prototypical network or gradient descent H
(L)
GD , where the latter is

obtained by performing T gradient update steps (with a learning rate of 0.01). These updates are
associated with the update direction vectors ∆Proto = H⃗

(L)
Proto − H⃗

(L)
0 and ∆GD = H⃗

(L)
GD − H⃗

(L)
0 . We

can then measure the distance between the update direction ∆OP of the OP-LSTM and ∆Proto and
∆GD . As a distance measure, we use the Euclidean distance. In addition, we also measure the cosine
similarity between the update directions as an inverse distance measure that is invariant to the scale
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and magnitudes of the vectors. After every 2 500 episodes, we measure these Euclidean distances and
cosine similarity scores on the validation tasks, and average the results over 3 runs.

The results of this experiment are displayed in Figure 5.6. As we can see, the cosine similarity
between the weight update directions of OP-LSTM and gradient descent and prototype-based
classifiers increases with training time. OP-LSTM very quickly learns to update the weights in
a similar direction as gradient descent, followed by a gradual decline in similarity, which is later
followed by a gradual increase. This gradual decline may be to incorporate more prototype-based
updates. Looking at the Euclidean distance, we observe the same pattern for the similarity compared
with the prototype-based classifier, as the distance between the updates decreases (indicating a
higher similarity). The Euclidean distance between OP-LSTM updates and gradient updates slightly
increase over time, which may be a side effect of the sensitivity to scale and magnitude of this distance
measure. Thus, even if both would perform gradient descent, but with different learning rates, The
cosine similarity gives a better idea of directional similarity as it abstracts away from the magnitude
of the vectors.
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Figure 5.6: The average cosine similarity (left) and Euclidean distance (right) between the weight
update directions of the OP-LSTM and a prototype-based and gradient-based classifier as a function
of time on 5-way 1-shot miniImageNet classification. Each point on the x-axis indicates a validation
step, which is performed after every 2 500 episodes. The results are averaged over 3 runs with
different random seeds and the 95% confidence intervals are shown as shaded regions. The confidnce
intervals are within the size of the symbols and imperceptible. As time progresses, the updates
performed by OP-LSTM become more similar to those of gradient descent and prototype-based
classifiers (increasing cosine similarity).

5.6 Relation to other methods

Here, we study the relationship of OP-LSTM to other existing meta-learning methods. More
specifically, we aim to show that OP-LSTM is a general meta-learning approach, which can approximate
the behaviour of different classes of meta-learning, such as optimization-based meta-learners (e.g.,
MAML, Finn et al. (2017)) and metric-based methods (e.g., Prototypical network, Snell et al.
(2017)).



5.6. RELATION TO OTHER METHODS 123

Model-agnostic meta-learning (MAML) MAML (Finn et al., 2017) aims to learn good
initialization parameters for a base-learner network θ = {W(1)

0 ,W
(2)
0 , . . . ,W

(L)
0 ,b

(1)
0 ,b

(2)
0 , . . . ,b

(L)
0 }

such that new tasks can be learned efficiently using a few gradient update steps. Here, W(ℓ)
0 is the

initial weight matrix of layer ℓ and b
(ℓ)
0 the initial bias vector of layer ℓ when presented with a new

task.

The initial 2D hidden states H
(ℓ)
0 in OP-LSTM can be viewed as the initial weights W

(ℓ)
0 of the

neural network in MAML. In MAML, the weights in layer ℓ for a given input are updated as
W

(ℓ)
t+1 = W

(ℓ)
t − ηδ(ℓ)(p(ℓ−1)(x))T , where a(i)(x) (with 1 ≤ i ≤ L) is the vector of post-activation

values in layer i as a result of the input x, and δ(i) = ∇a(i)L(x), where L(x,y) is the loss on input x
given the ground-truth target y, and η is the learning rate.

Instead of using this hand-crafted weight update rule, OP-LSTM learns the update rule using the
outer product of LSTM hidden states and the input activation. From Equation 5.14 it follows that OP-
LSTM is capable of updating the weights H

(ℓ)
t with gradient descent by setting h

(ℓ)
t+1(x) = −ηδ(ℓ) =

−η∇a(ℓ)L(x,y). (Note that in Equation 5.14 the gradient is also normalized by the Frobenius norm,
which is formally not part of MAML.) We note that the inputs to the coordinate-wise LSTM contain
the necessary information to compute the errors δ(ℓ) in every layer. That is, for the output layer, the
LSTM receives the ground-truth output and prediction in the output layer. For earlier layers, the
LSTM receives the backpropagated messages (the errors), as well as the activations. Consequently,
OP-LSTM can update the 2D hidden states H(ℓ) with gradient descent, as MAML. OP-LSTM is
thus an approximate generalization of MAML as it could learn to perform the same weight matrix
updates, although OP-LSTM does not update the bias vectors given a task.

Prototypical network Prototypical network (Snell et al., 2017) aims to learn good initial weights
θ = {W(1)

0 ,W
(2)
0 , . . . ,W

(L−1)
0 ,b

(1)
0 ,b

(2)
0 , . . . ,b

(L−1)
0 } for all parameters except for the final layer,

such that a nearest-prototype classifier yields good performance. Let fθ(xi) be the embeddings
produced by this (L− 1)-layered network for a given observation xi (from the support set). Note
that the network has (L − 1) layers as this is the feature embedding module without the output
layer. Prototypical network computes centroids cn = 1

|Xn|
∑

xi∈Xn
fθ(xi) for every class n, where

Xn is the set of all support inputs with ground-truth class n, and fθ(x) is the embedding of input x.
Then, the predicted score of a new input x̂ for class n is then given by ŷn(x̂) =

exp(−d(fθ(x̂),cn))∑
n′ exp(−d(fθ(x̂),cn′ ))

,
where d(xi,xj) = ||xi − xj ||22 is the squared Euclidean distance, and n′ is a variable iterating over all
classes.

This nearest-prototype classifier can be seen as a regular linear output layer (Triantafillou et al.,
2020). To see this, note that the prediction score for class j is given by

ŷj(x̂) = ||fθ(x̂)− cn||22 = (fθ(x̂)− cn)
T (fθ(x̂)− cn) (5.18)

= fθ(x̂)
T fθ(x̂)− 2fθ(x̂)

T cn + cTncn (5.19)

∝ −2fθ(x̂)T cn + cTncn, (5.20)

where we ignored the first term (fθ(x̂)T fθ(x̂)) as it is constant across all classes n. The prediction
score for class j is thus obtained by taking the dot product between the input embedding fθ(x̂) and
−2cn and by adding a bias term bn = cTncn. Thus, the prototype-based classifier is equivalent to a
linear output layer, i.e., x̂ = W(L)fθ(x̂) +b(L) where the n-th row of W(L) corresponds to −2cn and
the n-th element of b(L) is equal to cTncn. OP-LSTM can approximate the behavior of Prototypical
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network with T = 1 steps per task as follows. First, assume that the underlying base-learner network
is the same for Prototypical network and OP-LSTM, i.e., the initialization of the hidden state is
equivalent to the initial weights of the base-learner used by Prototypical network H

(ℓ)
0 = W

(ℓ)
0 for

ℓ ∈ {1, 2, . . . , L − 1}, and that the hidden state of the output layer in OP-LSTM is a matrix of
zeros, i.e., H(L)

0 = 0. Second, let the hidden states of the LSTM in OP-LSTM be be a vector of
zeros h(ℓ) = 0 for every layer ℓ < L, and let the hidden state of the output layer given the example
x′
i = (xi,yi) be the label identity function h(L)(x′

i) = yi (which can be learned by an LSTM). Then,
OP-LSTM will update the hidden states as follows using Equation 5.14. The n-th row of H(L) will
equal γ 1

M

∑
xi∈Xn

a(L−1)(xi)
||a(L−1)(xi)||F

, where Xn = {xi ∈ Dtr
Tj
|yi = en} is the set of training inputs with

class n, and γ and M are the learning rate of OP-LSTM and number of examples respectively. Note
that this expression corresponds to the scaled prototype (mean of the embeddings) of class n, that is,
γc̄n, where c̄n = 1

M

∑
xi∈Xn

a(L−1)(xi)
||a(L−1)(xi)||F

. The prediction for the n-th class for a given input x̂ is

thus given by γc̄Tna
(L−1)(x) + b

(L)
n , where we omitted the time step for a(L−1) and bn is a fixed bias

in the output layer. Note that for γ = −2, the first term (−2c̄Tna(L−1)(x)) resembles the first term in
the prediction made by Prototypical network for class n, which is given by −2cTna(L−1)(x), where
a(L−1)(x) = fθ(x). Hence, OP-LSTM can learn to approximate (up to the bias term) a normalized
Prototypical network classifier.

We have thus shown that OP-LSTM can learn to implement a parametric learning algorithm (gradient
descent) as well as a non-parametric learning algorithm (prototype-based classifier), demonstrating
the flexibility of the approach.

5.7 Conclusions
Meta-learning is a strategy to enable deep neural networks to learn from small amounts of data. The
field has witnessed an increase in popularity in recent years, and many new techniques are being
developed. However, the potential of some of the earlier techniques have not been studied thoroughly,
despite promising initial results. In our work, we revisited the plain LSTM approach proposed by
Hochreiter et al. (2001) and Younger et al. (2001). This approach simply ingests the training data for
a given task, and conditions the predictions of new query inputs on the resulting hidden state.

We analysed this approach from a few-shot learning perspective and uncovered two potential issues
for embedding a learning algorithm into the weights of the LSTM: 1) the hidden embeddings of the
support set are not permutation invariant, and 2) the learning algorithm and the input embedding
mechanism are intertwined, which leads to a challenging optimization problem and an increased risk
of overfitting. In our work, we proposed to overcome issue 1) by mean pooling the embeddings of
individual training examples, rendering the obtained embedding permutation invariant. We found
that this method is highly effective and increased the performance of the plain LSTM on both few-shot
sine wave regression and image classification. Moreover, with this first solution, the plain LSTM
approach already outperformed the popular meta-learning method MAML (Finn et al., 2017) on the
former problem. It struggled, however, to yield good performance on few-shot image classification
problems, highlighting the difficulty of optimizing this approach.

In order to resolve this difficulty, we proposed a new technique, Outer Product LSTM (OP-LSTM),
that uses an LSTM to update the weights of a base-learner network. By doing this, we effectively
decouple the learning algorithm (the weight updates) from the input representation mechanism (the
base-learner), solving issue 2), as done in previous works (Ravi and Larochelle, 2017; Andrychowicz
et al., 2016). Compared with previous works, OP-LSTM does not receive gradients as inputs. Our
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theoretical analysis shows that OP-LSTM is capable of performing an approximate form of gradient
descent (as done in MAML (Finn et al., 2017)) as well as a nearest prototype based approach (as done
in Prototypical network (Snell et al., 2017)), showing the flexibility and expressiveness of the method.
Empirically, we found that OP-LSTM overcomes the optimization issues associated with the plain
LSTM approach on few-shot image classification benchmarks, whilst using fewer parameters. It yields
competitive or superior performance compared with MAML (Finn et al., 2017) and Prototypical
network (Snell et al., 2017), both of which it can approximate.

Future work When the base-learner is a convolutional neural network, we applied OP-LSTM on
top of the convolutional feature embeddings. A fruitful direction for future research would be to
propose a more general form of OP-LSTM that can update also the convolutional layers. This would
require new backward message passing protocols to go through pooling layers often encountered in
convolutional neural networks.

Moreover, we note that OP-LSTM is one way to overcome the two issues associated with the plain
LSTM approach, but other approaches could also be investigated. For example, one could try to
implement a convLSTM (Shi et al., 2015) such that the LSTM can be applied directly to raw inputs,
instead of only after the convolutional backbone in case of image classification problems.

Another fruitful direction for future work would be to investigate different recurrent neural architec-
tures and their ability to perform meta-learning. In the pioneering work of Hochreiter et al. (2001)
and Younger et al. (2001), it was shown that only LSTMs were successful whereas vanilla recurrent
neural networks and Elman networks failed to meta-learn simple functions. It would be interesting
to explore how architectural design choices influence the ability of recurrent networks to perform
meta-learning.

Lastly, OP-LSTM is a method to learn the weight update rule for a base-learner network, and is thus
orthogonal to many advances and new methods in the field of meta-learning, such as Warp-MAML
(Flennerhag et al., 2020) and SAP (see Chapter 6). Since this is a nontrivial extension of these
methods, we leave this for future work. We think that combining these methods could yield new
state-of-the-art performance.

In this chapter, in a similar fashion to previous chapters, we aimed to gain an increased understanding
of deep meta-learning starting from empirical observations. In the following chapter, we reverse
this approach and investigate whether the integration of classical machine learning knowledge can
improve the few-shot learning behavior of deep neural networks.





Chapter 6

Subspace Adaptation Prior for
Few-Shot Learning

Chapter overview

Gradient-based meta-learning techniques aim to distill useful prior knowledge from a set
of training tasks such that new tasks can be learned more efficiently with gradient descent.
While these methods have achieved successes in various scenarios, they commonly adapt all
parameters of trainable layers when learning new tasks. This neglects potentially more efficient
learning strategies for a given task distribution and may be susceptible to overfitting, especially
in few-shot learning where tasks must be learned from a limited number of examples. To
address these issues, we propose Subspace Adaptation Prior (SAP)1, a novel gradient-based
meta-learning algorithm that jointly learns good initialization parameters (prior knowledge) and
layer-wise parameter subspaces in the form of operation subsets that should be adaptable. In
this way, SAP can learn which operation subsets to adjust with gradient descent based on the
underlying task distribution, simultaneously decreasing the risk of overfitting when learning
new tasks. We demonstrate that this ability is helpful as SAP yields superior or competitive
performance in few-shot image classification settings (gains between 0.1% and 3.9% in accuracy).
Analysis of the learned subspaces demonstrates that low-dimensional operations often yield high
activation strengths, indicating that they may be important for achieving good few-shot learning
performance. For reproducibility purposes, we publish all our research code publicly.

6.1 Introduction

In this chapter, we revisit the popular deep meta-learning technique model-agnostic meta-learning
(MAML) (Finn et al., 2017) that learns a prior in the form of the initialization parameters of the
neural network. Learning a new task is then done by performing gradient descent starting from this
meta-learned initialization. This approach, which is also widely used by techniques that are based
on MAML (Lee and Choi, 2018; Flennerhag et al., 2020; Park and Oliva, 2019b; Yoon et al., 2018;

1This chapter is based on the following research article: Huisman, M., Plaat, A., & van Rijn, J. N. (2023).
Subspace Adaptation Prior for Few-Shot Learning. Machine Learning. Springer.
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Nichol et al., 2018), updates all of the parameters of every trainable layer with gradient descent
when learning new tasks, which may be suboptimal for a given task distribution and may lead to
overfitting since there are more degrees of freedom to fit the noise in the data. Especially in few-shot
learning, where tasks are noisy due to the fact that only limited examples are available, these issues
could hinder performance.

To address these issues and investigate the research question of whether the few-shot learning
performance of deep neural networks can be improved by meta-learning which subsets of parameters
to adjust, we propose a new gradient-based meta-learning technique called Subspace Adaptation Prior
(SAP) that jointly learns good initialization parameters as well as layer-wise subspaces in which
to perform gradient descent when learning new tasks. More specifically, SAP is given access to a
candidate pool of operations for every layer that transforms the hidden representations, and it learns
which of these subsets to adjust in order to learn new tasks quickly, similar to DARTS (Liu et al.,
2019). Here, every operation corresponds to a parameter subspace. Note that this method serves as
a form of regularization and allows SAP to find more efficient adaptation strategies than adjusting
all parameters of trainable layers. In addition, it utilizes implicit gradient modulation to warp (Lee
and Choi, 2018; Flennerhag et al., 2020) these subspaces per layer such that gradient descent can
quickly adapt to new tasks, if they share a common structure.

We empirically demonstrate that SAP is able to find efficient parameter subspaces, or operation
subsets, that match the underlying task structure in simple synthetic settings and yield good few-shot
learning. Moreover, SAP outperforms gradient-based meta-learning techniques—that do not have
the ability to learn in which structured subspaces to perform gradient descent—on few-shot sine
wave regression and performs on-par or favorably in various few-shot image classification settings. In
short, the contributions of this chapter are the following:

• We propose SAP, a new meta-learning algorithm for few-shot learning that jointly learns good
initialization parameters and parameter subspaces in the form of operation subsets in which to
perform gradient descent.

• We demonstrate the advantage of learning parameter subspaces as SAP outperforms existing
methods by at least 18% on few-shot sine wave regression and yields competitive or superior
performance on popular few-shot image classification benchmarks (improvements in classification
accuracy scores range from 0.1% to 3.9%).

• We investigate the learned layer-wise parameter subspaces on synthetic few-shot sine wave
regression and image classification problems and find that small subsets of adjustable parameters
(simple parameter subspaces), including feature transformations such as element-wise scaling
and shifting are assigned large weights, suggesting that they play an important role in achieving
good performance with SAP.

• For reproducibility and verifyability purposes, we make all our research code publicly available.2

6.2 Related work

We review related work on optimization-based meta-learning, neural architecture search and gradient
modulation.

2See: https://github.com/mikehuisman/subspace-adaptation-prior

https://github.com/mikehuisman/subspace-adaptation-prior
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Optimization-based meta-learning Our proposed technique belongs to the category of optimization-
based meta-learning (Vinyals, 2017) (also see Chapter 2), which employs optimization methods to
learn new tasks (Yoon et al., 2018; Bertinetto et al., 2019; Lee et al., 2019). These methods aim to
meta-learn good settings for various hyperparameters, such as the initialization parameters, such
that new tasks can be learned quickly using optimization methods. These methods vary from regular
stochastic gradient descent, as used in MAML (Finn et al., 2017) and Reptile (Nichol et al., 2018), to
meta-learned procedures where a network updates the weights of a base-learner (Ravi and Larochelle,
2017; Andrychowicz et al., 2016; Li et al., 2017; Rusu et al., 2019; Li and Malik, 2018) (also see
Chapter 3). SAP aims to learn good initialization parameters such that new tasks can be learned
quickly with regular gradient descent, similar to MAML.

This is a form of transfer learning (Taylor and Stone, 2009; Pan and Yang, 2009) where we transfer
knowledge—in this case the initialization parameters—obtained on a set of source tasks to a new
target task that we are confronted with. The idea is also related to the idea of domain adaptation
(DA) (Daumé III, 2009; Farahani et al., 2021), although in DA it is often assumed that we have a
single task but two different data distributions (a source distribution and a target distribution). Note
that in deep meta-learning (Hospedales et al., 2021) (also see Chapter 2), we have set of various
different training tasks and aim to transfer knowledge to a new target task, different from the ones
seen at training time.

Neural architecture search (NAS) for meta-learning The techniques mentioned above assume
a pre-specified network architecture. Recently, there has been some work on combining meta-learning
with neural architecture search, where the architecture can also be learned. Kim et al. (2018)
performs meta-learning as a subroutine to NAS, meaning that meta-training is performed for every
candidate architecture, which can be computationally expensive. This problem can be overcome by
combining gradient-based meta-learning with gradient-based neural architecture search such that the
architecture and initialization parameters can be optimized jointly instead of separately. A popular
gradient-based meta-learning algorithm is DARTS (Liu et al., 2019) which starts with a candidate
pool of operations (as in SAP) and learns which of them to use, thereby learning an appropriate
architecture. Learning which subspaces or subsets of operations to use per layer, as done in SAP, can
be seen as applying DARTS over the candidate operation sets. A difference between DARTS and
SAP is that we fix the base-learner parameters when adapting to new tasks, which can then serve to
warp, or transform, the gradients such that gradient descent can quickly move to a good solution for
new tasks (see below). Moreover, SAP updates the initialization parameters of all meta-trainable
parameters with a MAML-like update (to maximize post-adaptation performance), while DARTS
uses a Reptile-like update (to maximize multi-step performance). We describe DARTS in full detail
in Section 6.3.

Lian et al. (2019) were the first to combine DARTS (Liu et al., 2019) with gradient-based meta-
learning in order to learn a base-learner architecture that can be quickly adapted to new tasks. They
perform hard-pruning, which requires re-running the meta-training phase for every new task, which is
computationally expensive. In parallel to this work, Elsken et al. (2020) proposed a similar approach
(MetaNAS) that does not perform hard-pruning and thus side-steps these expensive re-running
procedures. In contrast to these works, which learn and adapt the base-learner network architecture
as well as all of the parameters to every new task, SAP assumes a fixed base-learner architecture as
a starting point and aims to learn a set of operations that are inserted per layer (see Section 6.4)
that are responsible for quickly adapting to new tasks. In SAP, the architecture of the network is
frozen at test time, in contrast to, for example, the architecture of the networks learned by MetaNAS
(Elsken et al., 2020).
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Gradient modulation in gradient-based meta-learning Recent works that build upon MAML
have shown that gradient modulation can improve the generalization of optimization-based techniques
(Sun et al., 2019). Explicit gradient modulation techniques directly transform the gradient updates
when learning new tasks (Simon et al., 2020) through, for example, diagonal matrix multiplication (Li
et al., 2017), or block-diagonal preconditioning (Park and Oliva, 2019b). Implicit gradient modulation
techniques do not directly operate on the gradients but rely on indirect transformations. CAVIA
(Zintgraf et al., 2019) separates shared parameters from context parameters. The latter serve as
additional inputs to one or more layers of the neural network and are adjusted when learning a new
task, whilst the shared parameters are kept fixed. Other examples of implicit gradient modulation
methods are T-Net (Lee and Choi, 2018) and Warp-MAML (Flennerhag et al., 2020). SAP also
performs implicit gradient modulation in a similar fashion to these two techniques.

T-Net inserts linear projection transformations directly after every matrix multiplication in the
base-learner. The weights of these transformations are frozen when learning new tasks, and only the
base-learner weights are adjusted. The goal is to meta-learn good initialization parameters of the
base-learner weights as well as the transformation weights, such that new tasks can be learned more
quickly. These transformation layers serve to implicitly modulate the gradients of the base-learner
parameters so that gradient descent can quickly move to good solutions for new tasks. MT-Net
is an extension to T-Net, which also learns to mask certain features, preventing them from being
adapted when learning new tasks. We also investigated whether feature masking was useful for
SAP, but found that it decreased performance. Warp-MAML is a generalization of T-Net as it does
not require that the inserted transformation layers are linear, that is, the theoretical framework
allows these transformation layers to be non-linear and consist of multiple layers (arbitrary neural
networks).

Both T-Net and Warp-MAML adjust all parameters of trainable layers, as is common in gradient-
based meta-learning. However, this may be suboptimal for a given task distribution and lead to
overfitting due to the large degree of freedom to fit the noise in the data. MT-Net, on the other hand,
freezes certain features, which, in turn, also requires certain weights to be frozen but this is rather
inflexible as that does not allow us to perform simple operations such as element-wise scaling of all
features, which may be helpful for a given task distribution. To overcome these issues, we propose
SAP, which learns per trainable layer which operations from a pre-defined candidate pool to use and
adapt when learning new tasks, instead of resorting to regular matrix multiplications in which all
weights are adjusted when learning new tasks (as done by other methods). While the expressivity of
SAP is equivalent to T-Net and Warp-MAML (when using linear warp layers), the candidate pool
of operations allows SAP to learn which operations are important for the given task distribution,
thereby structuring the weight updates.

SAP is similar to T-Net and Warp-MAML in the sense that the linear base layers Wℓ (see Section 6.4)
of the network in SAP can be seen as the warp layers or transformation layers that are used in T-Net
and Warp-MAML, which act as implicit preconditioning layers that warp the loss surface to aid
gradient descent in finding a good solution. Due to the similarities between T-Net, Warp-MAML,
and SAP, they serve as excellent baselines to investigate whether the ability of SAP to learn which
operation subsets to adapt when learning new tasks is helpful for few-shot learning. Concurrently to
our work, Jiang et al. (2022) have proposed a subspace meta-learning algorithm. Whilst the title is
similar, they explicitly meta-learn the bases for K subspaces. Then, when learning a new task, they
aim to find linear combinations of the basis vectors of each of the subspaces that give rise to the
best parameters for the given task in the subspaces. The subset containing the parameters with the
lowest training loss is then used to obtain predictions for the query/test set. Note that their work is
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different in that we do not learn basis vectors for different subspaces, but instead insert candidate
operations that act to transform intermediate representations in the base-learner network to allow
for faster learning and modulating the gradients.

6.3 Background on DARTS

In this section, we briefly describe DARTS (Liu et al., 2019), which is a gradient-based neural
architecture search method that we build upon in this chapter. The goal of DARTS is to find a
suitable neural architecture for a given problem. To do this, DARTS assumes a set of candidate
operations that can be used to transform an input into an output. These candidate operations
form a weighted graph as shown in Figure 6.1. In the figure, every node oi(x) corresponds to a
candidate operation and the weights of the edges correspond to the activation strengths of the
different operations. These weights are initially unknown and DARTS aims to learn them jointly
with the initial parameters of every operation. The output of the layer in the figure is given by

O(x) =
n∑

i=1

wioi(x), (6.1)

where wi is the weight of operation i and
∑n

i=1 wi = 1 (e.g., by using a softmax). For our purposes,
we only consider DARTS for searching over operations for a single layer, but it can be used for
multi-layer architectures as well.

In addition to learning the weights wi, DARTS simultaneously learns good parameters for every
operation oi. We denote the group of all activation weights as λ = {w1, w2, . . . , wn} and all operation
parameters as θ. DARTS adopts a method similar to MAML for learning λ and θ. That is, given a
training task Tj = (Dtr

Tj
, Dte

Tj
), DARTS performs a gradient update step on the operation weights θ

as follows

θ′j = θ − α∇θ,λLDtr
Tj
(θ, λ). (6.2)

Note that this is similar to Equation 2.20 in Chapter 2 with the exception that we now have activation
strength parameters λ, which are kept constant during this inner-loop adaptation step. After updating
the operation parameters θ, DARTS computes the loss of the new model on the query set, i.e.,
LDte

Tj
(θ′j , λ) and updates the activation strengths using gradient descent on this loss

λ = λ− β∇λLDte
Tj
(θ′j , λ). (6.3)

Similarly to MAML (see Chapter 2 and Chapter 3), this update also contains second-order gradients,
but first-order approximations can be made. In DARTS, the weights of the operations θ are simply
updated to their new values, that is, θ = θ′j , i.e., after every task in the meta-train set, we update
the initialization parameters θ to the parameters that were obtained after training on task Tj .

6.4 Subspace Adaptation Prior

In this section, we motivate and present our proposed technique called Subspace Adaptation Prior
(SAP).
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...

?
? ?

Figure 6.1: Intuitive visualization of DARTS. It is given a set of candidate operations O and aims
to learn the weights of the edges (indicated as ?), corresponding to the strengths of the different
operations oi(x). The output of the weighted graph is a convex combination of the different operations
O(x) =∑n

i=1 wioi(x).

6.4.1 Intuition and operations

Our method (SAP) builds on MAML as we also aim to learn good initialization parameters such
that good performance can be achieved after a small number of gradient updates. However, MAML
adapts all of its network parameters when presented with a new task, which may be suboptimal for
the given task distribution and lead to overfitting. Our method, SAP, is given a pool of candidate
operations per layer (described below) and it learns per layer which subset of operations should be
adjusted to adapt to a new task. Since all of the operations that SAP can choose from per layer are
subsumed in terms of expressivity by a full-rank matrix multiplication (or convolution in the case of
image data), this can be understood as learning in which parameter subspaces to perform gradient
descent so that new tasks can be learned more efficiently.

This is a form of regularization and can help the network to exploit structures in problems. For
example, take the distribution of tasks Tj corresponding to different sine waves gj(x) = Aj ·sin(x−pj),
where Aj is the amplitude and pj the phase. There exists a common structure amongst these tasks:
a given sine wave can be transformed into any other sine wave by simply shifting the input and
scaling the output. This has been visualized in Figure 6.2. Techniques that adapt all parameters may
overwrite the sine function and overfit to the noise, whereas theoretically, SAP could learn to keep
these parameters fixed and that shifting the input and scaling the output are the most important
operations and consequently, that gradient descent should be performed in the parameter subspaces
corresponding to these operations. Sine waves form a simplistic example to demonstrate the idea
of SAP, however, we note that also for image classification tasks, simple operations such as scaling
and shifting feature maps can be useful too (Sun et al., 2019; Perez et al., 2018; Requeima et al.,
2019). SAP can discover such underlying structures and use them to enhance its few-shot learning
abilities.
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Figure 6.2: SAP can learn the activation strengths of candidate operations Oℓ (corresponding to
parameter subspaces) that match the problem structure. Suppose we are given a sine wave task
distribution, where every task Tj is a sine wave gj(x) = Aj · sin(x− pj), where pj is the phase and
Aj the amplitude. Instead of adapting all parameters of the network on a new task, SAP can learn
to keep the sine network parameters (sin) frozen and that the input shift (shift in O1) and output
scale (scale in OL+1) are the most important operations to adjust (bold and dark-colored arrows),
matching the role of the phase and amplitude, respectively.

Candidate operations The candidate operations that SAP uses are specified by hand before meta-
training. In order to preserve the original expressivity of the base-learner network, the operations are
elementary linear algebra operations that are subsumed by full-rank matrix multiplication.

Table 6.1 displays all the operations that we use for both fully-connected and convolutional layers.
The MTL scale operation was proposed by Sun et al. (2019). By construction, we require that
the output of an operation set must have the same dimensionality as the input. Recall that in
the case of fully-connected layers, all candidate operations can be expressed by a single matrix
multiplication where only a subset of the entries is used. For example, an element-wise scale can be
performed by multiplying the input with a diagonal matrix where the diagonal entries correspond
to the element-wise scalars, and the non-diagonal entries are zero. In this way, every candidate
operation occupies a part of the full operation set matrix. This also holds for convolutions, which
can be seen as a stack of matrices.

We also include singular value (SVD) decomposition operations, where three v-rank matrices A =
UΣV T are multiplied to obtain a transformation matrix A ∈ ⋗×⋉ with the same dimensionality
as a full-rank transform T ∈ Rm×n (although with a lower rank). Here, U ∈ Rm×v, Σ ∈ Rv×v, and
V T ∈ Rv×n. The obtained transformation A is then applied to the input.

Below, we describe how these operations are interleaved with the base-learner network and how SAP
learns which subsets to adjust.

6.4.2 The algorithm

Architecture Let fθ be a neural network with parameters θ, where the output, or prediction, is
given by

fθ(x) = WLσ(. . . σ(W2σ(W1x))). (6.4)
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Fully-connected Convolutional
Operation Dimensionality Operation Dimensionality

Identity N.A. Identity N.A.
Matrix multiplication d× d Convolution C × C × k × k
SVD-matrix multiplication d× v SVD convolution C × C × k × v
Element-wise scale d 1x1 convolution C × C
Scalar scale 1 MTL scale C × C
Vector shift d Channel-wise scale C
Scalar shift 1 Channel-wise shift C

Scalar shift 1

Table 6.1: The candidate operations for fully-connected and convolutional network layers and the
corresponding dimensionality of the subspace in which gradient will be performed. Here, d is the
dimensionality of the input in the case of a fully-connected layer and C is the number of input and
output dimensions of candidate operations in the case of convolutional layers. k is the kernel size of
convolutions and v < k is a variable dimension for SVD matrices.

Here, L is the number of layers of the network, σ is a non-linear activation function, and Wℓ is the
weight matrix for layer ℓ ∈ {1, 2, . . . , L} (which can also include the bias by concatenating a 1 at
the top of the input vector). Note that θ = {W1,W2, . . . ,WL} is the set of all base-learner weight
matrix parameters. In SAP, we insert sets of candidate operations Oℓ = {oℓ1, . . . , oℓnℓ

} before the
application of weight matrices Wℓ and after computing the final output, as shown in Figure 6.3.
Here, nℓ is the number of operations in the candidate set Oℓ in layer ℓ. Each of these operations
oℓi ∈ Oℓ act on the input, giving rise to partial outputs oℓi(z

ℓ) of the same dimensionality of the
inputs, where zℓ is the input to the ℓ-th operation layer. The final output of applying the candidate
operations is a convex combination of the partial outputs, that is,

Oℓzℓ =

nℓ∑
i=1

wℓ
io

ℓ
i(z

ℓ), (6.5)

Figure 6.3: A diagram of a feed-forward pass in SAP. Sets of operations Oℓ are interleaved with
base-learner weights Wℓ. The operation sets perform a convex combination of a number of operations
{oℓ1, . . . , oℓnℓ

}. SAP learns the strengths of each of the candidate operations and thereby learns in
which parameter subspaces gradient descent can effectively adapt the network to learn new tasks.
The operation strengths and the weight matrices Wℓ are frozen when adapting to new tasks. Only
the operation parameters are adjusted at test time.
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where z1 = x and wℓ
i is the activation strength of operation oℓi . We require that

∑nℓ

i=1 w
ℓ
i = 1 and

0 ≤ wi ≤ 1. Learning these activation strengths can be seen as neural architecture search. Thus, the
output of the neural network in SAP is given by

fΘ(x) = OL+1WLOLσ(. . . σ(W2O2σ(W1O1x))), (6.6)

where Θ = {θ, ϕ, λ} is the set of the initial hyperparameter values for the base-learner weights (θ),
the operation weights (ϕ), and the activation weights (λ). Note that ϕ = {O1,O2, . . . ,OL+1} are
the parameters corresponding to the operations in all layers (see Section 6.4.1), and λ is the set
containing all wℓ

i for all layers ℓ ∈ {1, 2, . . . , L+ 1}.

Importantly, each of these candidate operations oℓi are subsumed or equivalent in terms of expressivity
with full-rank matrix multiplication. For example, candidate operations can include element-wise
shifting or multiplication of the input by a fixed scalar or by a vector, which can also be done by
weight matrix multiplication. Since the application of a set of operations Oℓ of such expressivity can
be seen as a single matrix multiplication (hence the suggestive notation), the expressivity of an SAP
network is equivalent to that of the original network. To see this, note that the application of two
weight matrices to an input can be written as the application of a single weight matrix to the input
x, that is, W(Ox) = (WO)x = W′x, where W and O are weight matrices, and W′ = WO. For the
sake of another example, suppose that we have a set of two operations in O: scalar multiplication
s · z and matrix multiplication Mz (preserving the dimensionality of z). Furthermore, suppose
that the two operations are applied with activation strengths w1 and w2, granting us the output
z′ = w1s · z+ w2Mz. We can rewrite this as z′ = w1sIz+ w2Mz = (w1sI + w2M)z = Oz, where
O = (w1sI + w2M) and I is the identity matrix. For a more intuitive example, suppose that a
base-layer is a fully-connected layer, and we add a fully-connected operation to alter the resulting
representation, maintaining the original dimensionality. The composition of the two fully-connected
layers is effectively linear and equally expressive as a single fully-connected layer. Thus, introducing
the operations used by SAP does not alter the expressivity of the original base-learner
network.

Crucially, this insight that we can write the weighted combination of different operations as a single
weight matrix multiplication Ox, where O is a weighted combination of different structured matrices,
reveals that SAP effectively learns what subset of parameters of this weight matrix O and thus of
WO to adjust by learning the activation strengths λ. In this work, we use the expressions “learning
which subsets of parameters to adjust” and “learning in what subspaces to perform gradient descent”
synonymously.

Meta-learning The activation strengths wℓ
i are meta-learned by SAP in addition to the ini-

tialization parameters of the operations Oℓ and the base-learner weights Wℓ. Note that learning
the wℓ

i corresponds to learning in which parameter subspaces gradient descent is performed when
learning new tasks, which can be done through the layer-wise application of the gradient-based neural
architecture search technique DARTS (Liu et al., 2019). Let θ denote the initial parameters of the
weight matrices Wℓ, ϕ the parameters of all candidate operations Oℓ, and λ the activation strengths
wℓ

i of all individual candidate operation. Recall that Θ = {θ, ϕ, λ}.

When presented with a new task Tj , the candidate operation activation strengths λ and the base-
learner parameters θ are frozen, and only the candidate operation parameters ϕ are updated using
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gradient descent for T steps

ϕ
(t+1)
j ← ϕ(t) − α∇ϕ(t)LTj (θ, ϕ

(t), λ), (6.7)

where ϕ(0) is initialized with ϕ. At the meta-level, the goal is to find good initial parameter settings
for all involved parameters such that the task-specific performance is maximized. Thus, we wish to
find

argmin
Θ={θ,ϕ,λ}

E
Tj∽p(T )

LTj (θ, ϕ
(T )
j , λ), (6.8)

where ϕ
(T )
j denotes the task-specific parameters obtained through one or more gradient update steps

on task Tj . In other words, we wish to find good initial values for the parameters θ, ϕ, and λ such
that new tasks can be learned quickly by updating the operation parameters ϕ. This meta-objective
can also be optimized through gradient descent by updating

Θ← Θ− β∇Θ

∑
Tj∈B

LTj (θ, ϕ
(T )
j , λ). (6.9)

The full algorithm for application to few-shot learning is shown in Algorithm 12. At the start (line
1), we initialize the parameters of the base-learner θ randomly. The candidate operation parameters
ϕ are initialized to leave the input unaffected (for example, scalars are initialized to 1 and biases to
0). The layer-wise activation strengths wℓ

i of the candidate operations are initialized to the uniform
distribution. After this initialization, we repeat the following steps until a stopping criterion is met,
such as having sampled a certain number of task batches, or observing decreasing performance on
held-out validation tasks. We randomly sample batches of tasks (line 3), initialize the task-specific
parameters ϕ(0) = ϕ, and make T gradient update steps on the support set of every task (lines 6–8),
and perform meta-updates to the initialization parameters Θ (line 11) using the query sets of the
tasks. Note that the meta-update requires the computation of second-order gradients as we have to
compute the gradient of the inner-level gradients. The complexity of this is quadratic in the number
of parameters, but can be avoided by using the first-order assumption ∇ϕϕ

(T )
j = I.

Algorithm 12 Subspace Adaptation Prior (SAP)

Require: p(T )
Require: α, β
1: initialize θ, ϕ, λ
2: while not converged do
3: sample batch of tasks B = {Tj = (Dtr

Tj
, Dte

Tj
) ∽ p(T )}Mj=1

4: for task Tj = (Dtr
Tj
, Dte

Tj
) ∈ B do

5: initialize task-specific parameters ϕ
(0)
j = ϕ

6: for t = 0, . . . , T − 1 do
7: compute gradient update ϕ

(t+1)
j using Equation 6.7 on Dtr

Tj

8: end for
9: end for

10: update initial parameters Θ = {θ, ϕ, λ} using Equation 6.9
11: end while
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Pruning The scores wℓ
i represent the activation strengths of the different candidate operations/subspaces,

and can also be used for pruning the operations, for example, in a layer-wise or regular top-K fashion.
By default, we do not hard-prune operations and maintain a convex combination of different candidate
operations unless explicitly mentioned otherwise. Note that we cannot simply drop low activation
strength operations from the network as that changes the composite features and layerwise activa-
tion statistics. Hard-pruning requires re-training the network with only the selected (non-pruned)
subspaces/operations.

6.4.3 Analysis

One may wonder what the role is of inserting operation sets Oℓ in the base-learner network since
they have the same expressivity as weight matrices. In other words, why do we have two consecutive
matrix multiplications WℓOℓx if that is equivalent to having one matrix multiplication Ux, where
U = WℓOℓ. There are two reasons for maintaining two separate matrices, which we describe
below.

Regularization First, having a set of operations Oℓ allows SAP to learn which sets, corresponding
to weight subspaces of a full-rank matrix, are relevant for a given task distribution. Choosing
lower-dimensional subspaces is a form of regularization, as fewer parameters can be adjusted to fit
the noise in the data.

Gradient modulation Second, when computing gradient updates for the operation parameters
ϕℓ of a given layer ℓ, the frozen base-layers Wℓ implicitly modulate the gradients since the error
signal traverses backward through Wℓ to Oℓ. This method of gradient modulation was proposed
by Lee and Choi (2018). Below, we borrow the analysis performed in that paper to illustrate the
modulation.

Suppose we are presented with a task Tj and that the output for a given layer in the network is given
v = WOx, where x is the input to the layer. Moreover, assume that the loss of the network on task
Tj is given by LTj

Then, the parameters of the operations O are updated using a gradient update
step, and we obtain the new output

vnew = W(O − α∇OLTj
)x (6.10)

= v − α(W∇OLTj
)x. (6.11)

Note that we slightly abuse notation here since the parameters of the operations are denoted as
ϕ. As we can see, the change in the layer’s output ∆(vnew ,v) is negatively proportional to the
(W∇OLTj

). Here, W warps the gradients with respect to the operation parameters. The warping of
these gradients is meta-learned across tasks such that within a few gradient updates in warped space,
a good performance can be achieved (Flennerhag et al., 2020; Lee and Choi, 2018; Park and Oliva,
2019b).

As a consequence, SAP can learn both in which parameter subspaces to perform gradient descent by
learning appropriate subsets of operations, as well as learn how to warp these subspaces so that few
gradient updates yield good performance.
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6.5 Experiments

In this section, we aim to answer the following research questions:

• Does learning suitable layer-wise operations/subspaces improve meta-learning performance on
sine wave regression? (Section 6.5.1)

• Do the learned strengths of subspaces/operations match the task structure in a simple synthetic
setting? (Section 6.5.2, Section 6.5.3)

• How well does SAP perform at few-shot image classification? (Section 6.5.4)

• How well does SAP perform at cross-domain few-shot image classification? (Section 6.5.5)

• Is hard subspace pruning beneficial for the performance of SAP? (Section 6.5.6)

• What is the influence of second-order gradients on the performance of SAP? (Section 6.5.7)

• What operations are important for few-shot image classification? (Section 6.5.8)

• How does SAP compare in terms of the running time and and number of trainable parameters
compared to the baselines? (Section 6.5.9)

6.5.1 Sine wave regression

First, we study the few-shot learning performance of SAP on few-shot sine wave regression, which
is commonly used in the meta-learning community (Finn et al., 2017; Li et al., 2017; Park and
Oliva, 2019b). Here, the goal is to learn sine wave regression tasks Tj corresponding to sine curves
gj(x) = Aj · sin(x− pj) from a limited set of k examples. The amplitudes Aj and phases pj of these
sine curves are randomly sampled from the intervals [0.1, 5.0] and [0, π], respectively. While the
results on sine-wave regression are not our main contribution, the structure of these problems were a
motivation for the development of this method, and therefore this is a good test-case on which we
expect SAP to perform well. Of course, SAP can only be considered a valuable contribution when it
also works on more relevant problem types, which we explore in the following sections.

We use the same base-learner architecture, a fully-connected neural network with 2 hidden ReLU
layers of 40 nodes each, as in (Finn et al., 2017). For the SVD operations (see candidate operations
in Section 6.4.2), we use ranks 5, 10, and 15 in the candidate pools. All candidate operations
were initialized to have no effect on the network predictions at the start (transformation matrices
were initialized to identity matrices, biases to 0, and scale operations to 1). All techniques are
meta-trained on 70 000 tasks using one update step per task and a meta-batch size of 4. We perform
validation every 2 500 tasks to select the best performing model, which will be tested after 1 and 10
gradient update steps on 2 000 meta-test tasks consisting of k support examples and 50 query data
points.

As baselines, we compare against MAML, T-Net, and MT-Net (Lee and Choi, 2018) as well as
Warp-MAML (Flennerhag et al., 2020) as are highly similar to SAP, which allows us to investigate
the advantage of SAP’s ability to learn which subsets of operations to adjust. We refrain from
comparing against MetaNAS (Elsken et al., 2020), as this technique also adjusts the architecture at
meta-test time and is orthogonal to SAP and the methods we compare against. For all methods, we
use the same hyperparameters as reported in (Finn et al., 2017; Lee and Choi, 2018). In this case,
however, Warp-MAML is equivalent to T-Net as both use insert linear “transformation” or “warp”
layers in the base-learner network. The results of the experiments are displayed in Table 6.2. In this
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5-shot 10-shot

params T=1 T=10 T=1 T=10

MAML 1 761 0.73 ± 0.016 0.42 ± 0.011 0.49 ± 0.011 0.15 ± 0.005
T-Net 4 962 0.53 ± 0.014 0.24 ± 0.009 0.33 ± 0.009 0.09 ± 0.004
MT-Net 5 043 0.55 ± 0.013 0.19 ± 0.005 0.34 ± 0.008 0.06 ± 0.002

SAP (ours) 10 013 0.47 ± 0.012 0.10 ± 0.003 0.28 ± 0.008 0.04 ± 0.001

Table 6.2: The mean MSE meta-test loss on 5- and 10-shot sine wave regression after T = 1 and
T = 10 update steps. The results are averaged over 5 runs with different random seeds and the
95% confidence intervals are displayed as ± x. The number of parameters is shown in the column
“params”, even though the used backbones are equally expressive.

table, we can see that SAP consistently outperforms all tested baselines, supporting the hypothesis
that it is indeed beneficial to learn in which subspaces to perform gradient descent. We have also
performed experiments with SAP and the feature masking method used in MT-Net, where some
features are frozen based on learned feature masking probabilities, but found that it decreases the
performance, which may be due to the low-dimensional operations present in the architecture, which
are more susceptible to being completely frozen as soon as a single feature is masked.

6.5.2 The learned subspaces for sine regression

Next, we investigate (in the same setting as above) the importance of the different candidate
operations for quick adaptation to new tasks to see whether the operations match the task structure.
We hypothesize that shifting the input and scaling the output are important operations as they are
inherent in the definition of a sine wave gj(x) = Aj · sin(x− pj). To investigate this, we inspect the
activation strengths wℓ

i of the operations of the best models across 5 different runs with different
random seeds. The operations that were used are were introduced in Table 6.1 (left side). The results
for SAP with T = 1 are displayed in Figure 6.4 (similar results are obtained when making T = 10
updates and therefore omitted for brevity). As we can see, the most important transformations on
the input and output are a scalar shift and multiplication, respectively. In other words, SAP has
learned that shifting the input and scaling the output are effective operations to learn new tasks.
Note that these operations match the structure of sine waves. While this confirms our hypothesis,
SAP also assigns relatively large importance to operations that are not directly observable in the
mathematical definition of sine curves such as an output shift and intermediate shifts.

6.5.3 Matching the problem structure

To further investigate the ability of SAP to match the learned candidate operation strengths to
the structure of the problem, we investigate whether changes in the problem structure amount to
changes in the learned activation strengths by SAP for the different operations. For this, we consider
a synthetic sine wave regression problem that generalizes the settings studied by Finn et al. (2017)
and Li et al. (2017). In this setting, we create different task families (task distributions) that are
characterized by the mathematical operations inherent in the ground-truth function. All task families
share the following template for the ground-truth function g(x) = A · sin(f ·x−p)+β, where A is the
amplitude, f the frequency, p the phase, and β the output offset. What distinguishes task families is
which of these parameters they include in the functional description. For example, task family A
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Figure 6.4: The importance of the different operations in SAP for 5-shot sine wave regression. The
results are averaged across 5 runs with different random seeds and the standard deviations are shown
as ±x. NA entries indicate that these operations were not in the candidate pool for that layer, and
“mul” means multiplication. The y-axis indicates the layer on which the operations act, and the x-axis
displays the different candidate operations. Simple scalar multiplication and shifting, and vector
shifts obtain high activation strengths in all layers. The input shift and output scale (inherently
present in the definition of a sine wave) obtain high activation strengths.

may fix the amplitude and vary the frequency, phase, and output offset, whereas task family A may
vary the amplitude and fix the rest. Each task family is thus defined by which of these parameters
are varied among tasks from that family and which are kept constant. If a given parameter is not
varied, we fix it to a value that leaves the function unaltered (i.e., A, f, p = 1 and β = 0). In total,
there are 24 = 16 task families that can be constructed by varying or fixing these parameters.

We perform meta-training on each of these task families separately and investigate whether SAP
discovers the operations that are inherently present in the task structure. The experimental details
follow those used in Section 6.5.1 with the exception that only operations were included that could be
present in the task families to be able to measure whether SAP correctly detects and uses them. We
use 20-shots per task and set the number of inner updates to T = 1. The results of this experiment
are displayed in Figure 6.5. As we can see, SAP assigns higher activation strengths to operations that
are inherently present in the task families in three out of four cases, i.e., input scale (frequency), input
shift (phase), and output shift. A statistical T-test shows that these differences in mean activation
strengths are statistically significant, using a threshold of 0.05. For the input scale, however, we
observe that SAP assigns similar activation strength to the input scale activation, regardless of
whether such an operation was present in the task family. This may indicate that SAP uses other
operations to compensate for this, such as vector multiplications or matrix multiplications in later
layers. Overall, these results suggest in this simple synthetic setting, SAP is capable of learning to
use operations that appear in the problem structure in 75% of the scenarios.

6.5.4 Few-shot image classification
Next, we investigate the performance of SAP in few-shot image classification settings, where the
goal is to learn new image classification tasks from a few examples. For this, we use the popular
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Figure 6.5: The mean activation strengths of the different operations corresponding to the intrinsic
parameters that were varied within task families. The vertical bars display 95% confidence intervals
over 5 runs with different random seeds. Each task family has the following template g(x) =
A · sin(f · x− p) + β and differs in which of these operations are varied among tasks. If operations
are inherently present in a task family, SAP assigns higher activation strengths to them than if they
are not present in 3 out of 4 cases, indicating that the operations often match the problem structure.

Hyperparameter Range

Inner learning rate LogUniform(1e-3, 6e-1)
Inner update steps (training) Uniform(1,10)
Inner update steps (testing) Uniform(inner steps training, 15)
Meta-batch size Uniform(1,10)
Gradient masking Uniform({False,True})

Table 6.3: The ranges and sampling types for the hyperparameters, which were tuned with random
search. The bounds are inclusive.

N -way k-shot classification setup (see Chapter 2) on miniImageNet (Vinyals et al., 2016; Ravi and
Larochelle, 2017) and tieredImageNet (Ren et al., 2018). We use the frequently used Conv-4 backbone
(Finn et al., 2017; Lee and Choi, 2018; Flennerhag et al., 2020), consisting of four blocks, where each
block contains 3× 3 convolutions, a max pooling layer, 2D BatchNorm, and a ReLU nonlinearity. In
the literature, this backbone has been used with 64 channels for every convolutional block (Snell
et al., 2017; Vinyals et al., 2016) as well as 32 channels (Finn et al., 2017; Nichol et al., 2018). For
this reason, we present the results for SAP on both variants. The final feature representations are
flattened and fed into a softmax output layer. All techniques were trained for 60 000 episodes and
were validated after every 2 500 tasks and we use the best-reported hyperparameters by the original
authors.

We tuned a subset of the hyperparameters for SAP on the meta-validation tasks using random search
with a function evaluation budget of 30 runs. Each run was restricted to finish within 7 days on a
single PNY GeForce RTX 2080TI GPU. Runs that took longer (e.g., because of a large meta-batch
size) were discarded from the hyperparameter search. The used hyperparameter ranges and sampling
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types that were used for the random search are displayed in Table 6.3. Due to computational
constraints, we adopted the best reported hyperparameters of the baseline methods as reported in
their respective papers. As such, the comparison against these baselines is in this experiment only
for illustrative purposes, as the hyperparameter optimization procedure on these methods has not
been executed under the same conditions.

1-shot 5-shot

32 channels 64 channels 32 channels 64 channels

MAML 48.0 ± 0.8 46.7 ± 0.8 64.4 ± 0.4 63.6 ± 0.4
T-Net 48.9 ± 0.8 48.7 ± 0.8 65.3 ± 0.4 -
MT-Net 48.5 ± 0.8 49.3 ± 0.8 63.0 ± 0.4 -
Warp-MAML 49.5 ± 0.8 49.8 ± 0.8 63.9 ± 0.4 64.6 ± 0.4

SAP (ours) 51.6 ± 0.8 52.8 ± 0.8 65.9 ± 0.4 67.4 ± 0.4

Table 6.4: Meta-test accuracy scores on 5-way miniImageNet classification over 5 runs with two
variants of the Conv-4 backbone, that is, with 32 or 64 channels per block. The 95% confidence
intervals are displayed as ± x. “-” indicates that the experiments required more GPU VRAM than
available.

The results for the experiments on 5-way miniImageNet and tieredImageNet classification are displayed
in Table 6.4 and Table 6.5. Note that the results for 5-shot T-Net and MT-Net are missing as
they were unable to run on our GPU with 12GB of VRAM. As we can see, the performance of the
techniques improves when using 64 channels compared with 32, with the exception of MAML on
miniImageNet and T-Net in the 1-shot setting on miniImageNet. As we can see, SAP consistently
outperforms all tested baselines in all tested settings (with gains between 1.1% to 3.3% accuracy),
indicating that it is beneficial to learn subsets of operations on which gradient descent is performed
in the case of few-shot image classification.

1-shot 5-shot

32 channels 64 channels 32 channels 64 channels

MAML 50.7 ± 0.8 51.5 ± 0.8 65.2 ± 0.4 66.6 ± 0.4
T-Net 49.4 ± 0.8 51.7 ± 0.8 64.6 ± 0.4 -
MT-Net 49.8 ± 0.9 51.5 ± 0.8 64.6 ± 0.4 -
Warp-MAML 51.8 ± 0.8 53.3 ± 0.8 66.0 ± 0.4 68.2 ± 0.4

SAP (ours) 52.9 ± 0.8 54.5 ± 0.8 69.3 ± 0.3 71.3 ± 0.4

Table 6.5: Meta-test accuracy scores on 5-way tieredImageNet classification over 5 runs with two
variants of the Conv-4 backbone, that is, with 32 or 64 channels per block. The 95% confidence
intervals are displayed as ± x. “-” indicates that the experiments required more GPU VRAM than
available.

6.5.5 Cross-domain few-shot image classification
Next, we study the performance of SAP in a more challenging cross-domain few-shot image classifi-
cation setting. In this setting, techniques are trained on tasks from dataset A and evaluated on tasks
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from another dataset B, in contrast to the setting used above, where the techniques were evaluated
on unseen tasks from the same dataset used for training. We use the same setting as Chen et al.
(2019), in which we train on miniImageNet and evaluate on CUB (Wah et al., 2011). In addition, we
also train on tieredImageNet (Ren et al., 2018) and test on CUB. All other experimental details are
the same as above.

The results of this experiment are shown in Table 6.6. As we can see, SAP performs on par with
Warp-MAML in the 1-shot setting for MIN → CUB. Both outperform the other tested baselines in
that scenario. In other cases, however, SAP yields performance improvements ranging from 0.5% to
3.9% accuracy. This supports the hypothesis that it is beneficial to learn which subsets of operations
to adjust when learning new tasks.

MIN → CUB Tiered → CUB
1-shot 5-shot 1-shot 5-shot

MAML 37.3 ± 0.3 54.7 ± 0.3 38.1 ± 0.3 55.1 ± 0.3
T-Net 38.0 ± 0.3 55.6 ± 0.3 37.5 ± 0.3 54.8 ± 0.3
MT-Net 37.1 ± 0.3 53.1 ± 0.3 38.0 ± 0.3 55.5 ± 0.3
Warp-MAML 41.0 ± 0.3 55.3 ± 0.3 40.9 ± 0.3 56.8 ± 0.3

SAP (ours) 40.9 ± 0.3 55.8 ± 0.3 41.1 ± 0.3 60.7 ± 0.3

Table 6.6: Average cross-domain meta-test accuracy scores over 5 runs a 32-channel Conv-4 backbone.
Techniques trained on tasks from one data set were evaluated on tasks from another data set. The
95% confidence intervals are displayed as ± x.

6.5.6 Effect of hard pruning

Next, we investigate the effect of hard pruning the number of operations per layer, which is a common
feature of DARTS (Liu et al., 2019), and therefore also inherited by SAP. For this, we compare the
performance of SAP without hard pruning and SAP where we only retain the top-K operations as
indicated by their strength scores. The hard-pruned SAP is re-trained using only the candidate
operations which were not pruned. The results of this experiment with a 32-channel Conv-4 backbone
are displayed in Table 6.7 (for the 64-channel variant, please see Table 5.4 in the appendix). As we can
see, hard pruning can have a mild positive effect on the meta-learning performance, whilst reducing
computational costs due to the fact that fewer parameters have to be trained. This also implies
that some operations may indeed be suboptimal for a given task distribution, which soft-pruning is
not able to completely filter out, and that a model which fully excludes these, can achieve better
performance. We note, however, that the 95% confidence intervals are overlapping, suggesting that
these performance increases are not significant.

6.5.7 The effect of the gradient order

All tested techniques require the computation of second-order gradients by default. Here, we
investigate how the performance of SAP is affected by making a first-order approximation. We
compare this first-order variant with the regular second-order variant, using the same experimental
settings as used in Section 6.5.4. The results of this experiment are shown in Table 6.8. As we can
see, the first-order approximation is consistently outperformed by the regular variant, with differences
between 0.2% and 7.3 % accuracy, indicating that second-order gradients play an important role in
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miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

No pruning 51.6 ± 0.8 65.9 ± 0.4 52.9 ± 0.8 69.3 ± 0.3

Top-1 51.4 ± 0.8 65.8 ± 0.4 52.8 ± 0.8 69.4 ± 0.4
Top-2 51.8 ± 0.8 66.3 ± 0.4 53.4 ± 0.8 69.4 ± 0.4
Top-3 51.8 ± 0.8 66.3 ± 0.4 53.0 ± 0.9 69.9 ± 0.4

Table 6.7: Mean meta-test accuracy scores on miniImageNet and tieredImageNet with 95% confidence
intervals over 5 different runs. We used a Conv-4 backbone with 32 channels for these results.

achieving good performance.

miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

SAP (first-order) 51.4 ± 0.8 63.7 ± 0.4 47.2 ± 0.8 62.0 ± 0.4
SAP (second-order) 51.6 ± 0.8 65.9 ± 0.4 52.9 ± 0.8 69.3 ± 0.3

Table 6.8: Meta-test accuracy scores on miniImageNet and tieredImageNet classification over 5 runs
using the Conv-4 backbone with 32 channels. The 95% confidence intervals are displayed as ± x.

6.5.8 The learned subspaces for image classification
In order to gain insight into what operations are important for achieving good few-shot learning
performance in SAP, we investigate the learned activation strengths for the different candidate
operations. The operations that were used are were introduced in Table 6.1 (right side). In Figure 6.6,
we can see these learned strengths in SAP on 1-shot 5-way miniImageNet using the Conv-4 backbone
with 32 channels (similar patterns are seen for the backbone with 64 channels as can be seen in
Figure C.1 in the appendix). As we can see, high-dimensional convolutional operations (conv1x1,
conv3x3, convSVD) obtain low activation strengths, while lower-dimensional subspaces/operations
such as shifts (scalar and vector) and MTL scale yield larger strengths. The greatest strength
is assigned to the former throughout all layers. This may indicate that the higher-dimensional
operations lead to overfitting, while the lower-dimensional operations are more suited for adapting to
tasks when only limited data is available. Consequently, this implies that it is indeed beneficial to
adapt subsets of operations when learning new tasks.

6.5.9 Number of parameters and running time
Lastly, we compare the running times and the number of parameters used by the different methods
on few-shot image classification. These statistics were measured whilst performing the experiments in
Section 6.5.4 and the results are displayed in Table 6.9. As we can see, SAP has the largest number
of parameters, even though the backbone is equally expressive as that used by others. The running
time of SAP, however, is often less than that of the baselines. This is caused by the fact that all
methods use different hyperparameter settings in order to optimize the performance, which relates
to the running time. For example, a larger meta-batch size or number of updates per task leads to
an increase in running time. SAP uses the smallest meta-batch size and number of updates and
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Figure 6.6: The importance of the different subspaces/operations in SAP on 5-way 1-shot miniIma-
geNet using Conv-4 with 32 channels. The results are averaged across 5 runs with different random
seeds and the standard deviations are shown as ±x. NA entries indicate that these operations were
not in the candidate pool for that layer. Simple scalar shift and vector shift operations obtain the
highest activation strengths throughout the convolutional network.

hence yields the quickest running time. Note that these runtimes do not include the hyperparameter
optimization that was performed, which adds a factor to the runtimes.

miniImageNet tieredImageNet

params 1-shot 5-shot 1-shot 5-shot

MAML 32 901 11h36min ± 7min 8h20min ± 1min 11h34min ± 5min 8h25min ± 4min
T-Net 37 022 33h05min ± 19min 30h20min ± 7min 33h25min ± 23min 30h30min ± 17min
MT-Net 37 150 33h33min ± 8min 30h22min ± 14min 33h49min ± 40min 30h47min ± 18min
Warp-MAML 60 645 7h19min ± 6min 7h17min ± 8min 7h35min ± 13min 7h19min ± 5min
SAP (first-order) 106 196 1h26min ± 2min 1h4min ± 0min 1h51min ± 6min 2h12min ± 4min
SAP 106 196 3h59min ± 0min 6h09min ± 0min 1h51min ± 6min 9h24min ± 19min

Table 6.9: The number of trainable parameters (“params”) and mean running times on miniImageNet
and tieredImageNet classification over 5 runs using the Conv-4 backbone with 32 channels. The
standard deviations are displayed as ± x min. In spite of the differences in the number of parameters,
the backbones are equally expressive. SAP was found to work best with a small meta-batch size
and number of updates per task compared with the other approaches and hence yields the quickest
running time.

6.6 Conclusions

In this chapter, we introduced, Subspace Adaptation Prior (SAP), a novel meta-learning algorithm
that jointly learns a good neural network initialization and good parameter subspaces (or subsets of
operations) in which new tasks can be learned within a few gradient descent updates from a few data.
SAP overcomes the limitations of current state-of-the-art gradient-based meta-learning techniques
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which perform gradient descent in full parameter space as they adjust all parameters (Finn et al.,
2017; Lee and Choi, 2018; Flennerhag et al., 2020), which may be suboptimal, and may lead to
overfitting during few-shot learning. Note, however, that our goal is not to yield state-of-the-art
performance. Instead, we investigate the question of whether the few-shot learning performance of
deep neural networks can be improved by meta-learning which subsets of parameters to adjust.

Our experiments show that SAP outperforms similar existing gradient-based meta-learners in few-
shot sine wave regression, yields better performance in single-domain few-shot image classification
settings, and yields competitive or superior performance in cross-domain few-shot image classification.
This highlights the advantage of learning suitable subspaces in which to perform gradient descent
when learning new tasks. This could be due to the regularization effect of not having to adjust all
parameters as well as due to the ability to match structures inherently present in task families. Our
experiments in Section 6.5.3 on synthetic task families demonstrate that the SAP is able to learn
operations that match the task structure in simple settings in 75% of the cases. In other cases, it may
compensate by using other operations that are not inherently present in the task structure.

Inspection of the subspace activation strengths in few-shot image classification reveals that simple and
low-dimensional operations, such as shifting features by a single scalar or element-wise by a vector,
are important. This is in line with recent work and findings (Triantafillou et al., 2021; Requeima
et al., 2019; Bateni et al., 2020) which show that adapting pre-trained embeddings by means of
such low-dimensional transformations, such as FiLM layers (Perez et al., 2018), can yield excellent
performance. Furthermore, we found that hard-pruning the subspaces in SAP, or operations, such
that only a discrete subset is used instead of a convex combination, was slightly beneficial, although
no statistically significant differences were found.

Future work One limitation of SAP is that it requires the computation of second-order gradients
by default during meta-training in order to update the initialization parameters, in a similar fashion
as other gradient-based meta-learners such as MAML (Finn et al., 2017), (M)T-Net (Lee and Choi,
2018), and Warp-MAML (Flennerhag et al., 2020). These second-order gradients require O(N2)
storage, where N is the number of total network parameters, which is prohibitive for deep networks.
This limitation can be bypassed by using a first-order approximation, which comes at the cost of a
performance penalty (between 0.2% and 7.3% accuracy in our experiments).

Gradient-based meta-learning methods struggle to scale well to deep networks as recent work suggests
that simple pre-training and fine-tuning of the output layer (Tian et al., 2020; Chen et al., 2021) (also
see Chapter 4) can yield superior performance on common few-shot image classification benchmarks.
This is also the reason, besides searching for energy-efficient few-shot learners, that in our experiments
we focus on relatively shallow backbones that adapt all layers when learning new tasks, instead of
only the output layer.

Other limitations are that SAP introduces more parameters and that the candidate pools of operations
are selected by hand, despite the fact that these operations are general. One direction for future
work could be to design a method to discover such subspaces from scratch, instead of relying on
a candidate set of operations, perhaps using an auto-encoder that generates the weights of a layer
based on latent codes as used by Rusu et al. (2019). Masking the adaptation of these latent codes
using Gumbel-softmax (Jang et al., 2017; Maddison et al., 2017) as done by MT-Net (Lee and Choi,
2018) would amount to adjusting only a subset of the parameters when performing gradient descent.
This can reduce the number of parameters and may also help to scale gradient-based meta-learners,
including SAP, to deep networks and make them competitive with approaches relying on pre-trained
features, which is an open challenge.
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Finally, orthogonal work has proposed a method that can also adjust the architecture during the
meta-test phase (Elsken et al., 2020). Since this showed great potential, it would be worthwhile
to combine this with SAP. Moreover, it would be interesting to investigate the sensitivity of SAP
related methods such as MetaNAS to the chosen operations or blocks that these methods can
select to use. We leave these ideas for future work, which has the potential to further advance the
state-of-the-art.

This chapter is the final chapter that presents research results. In the next chapter, we take a step
back and return to the big picture, revisiting and answering our original research questions, and
proposing directions for future work.





Chapter 7

Conclusions

Chapter overview

In this dissertation, we have investigated the field of deep meta-learning and focused on
addressing several research questions related to the performance and understanding of deep meta-
learning algorithms with the aim of extracting knowledge about deep meta-learning algorithms
beyond simple performance comparisons (method A outperforms method B). In addition, we
have investigated how theoretical principles can be used to improve the performance of deep
meta-learning algorithms. In this chapter, we revisit and answer the research questions listed
in Chapter 1, discuss the implications and limitations of our work, and propose several fruitful
directions for future research.

7.1 Answers to research questions
RQ1: What causes the performance gap between MAML and the meta-learner LSTM?

For the investigation of this research question, we have proposed a simplified version of the meta-
learner LSTM called TURTLE, by using a feedforward neural network instead of an LSTM and raw
inputs rather than preprocessed inputs. When using a first-order approximation of the meta-gradients
in a similar fashion to the original meta-learner LSTM, TURTLE performs on par with the meta-
learner LSTM. When using second-order gradients, however, TURTLE systematically yields better
performance. Moreover, we have shown that by enhancing the meta-learner LSTM with the same
inputs as TURTLE and second-order gradients, the observed performance gap to MAML was closed.
This shows that the answer to this research question is the fact that the original meta-learner LSTM
used processed inputs and a first-order approximation of the meta-gradients to perform meta-updates
rather than the exact meta-gradients, which contain second-order effects.

Interestingly, the effect of making first-order approximations is different for MAML compared with
the meta-learner LSTM and TURTLE. For MAML, it was shown by Finn et al. (2017) that using
first-order approximations of the meta-gradients yields comparable performance compared with the
exact second-order gradients. For the other two methods, however, this is not the case, suggesting that
learning a weight update procedure (as done by TURTLE and the meta-learner LSTM) introduces
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more curvature into the meta-loss landscape. Nonetheless, learning a weight update procedure can
be beneficial for performance, as also noted by Andrychowicz et al. (2016).

Lastly, we note that whilst we have managed to close the observed performance gap by using
second-order gradients, this comes at the cost of increased computational cost as there are O(N2)
second-order gradients to be computed, where N is the number of parameters of the neural network.
This can be intractable for larger neural networks with millions of parameters.

RQ2: How do the learning behaviors of finetuning, MAML, and Reptile differ from each other and
how does this influence their ability to quickly learn to perform new tasks?

These techniques have distinct optimization objectives and exhibit varying behaviors, which in turn
affect their ability to learn new tasks quickly.

In the research conducted in Chapter 4, the optimization objectives of these techniques were interpreted
as maximizing different performance aspects. Finetuning aims to maximize direct performance with
the current set of parameters. It focuses on improving performance without explicitly considering
future adaptation steps. On the other hand, MAML aims to maximize performance after a few
adaptation steps, making it a look-ahead objective. It searches for an initialization that may not
yield the best immediate performance but leads to promising results after a few gradient update
steps. Reptile combines both direct performance and performance after each update step, striking a
balance between the two extremes. As a result of these differing objectives, finetuning tends to favor
an initialization that jointly minimizes the loss function, emphasizing immediate performance. In
contrast, MAML may settle for an inferior initialization if it shows potential for improvement after
adaptation steps. Reptile finds a middle ground, considering both initial performance and subsequent
adaptation.

Furthermore, our research has demonstrated that MAML and Reptile exhibit a specialization for
adaptation in low-data scenarios within the distribution of training tasks. This specialization is
facilitated by two key factors: the weights of the output layer and the scarcity of data in the training
tasks. These factors allow MAML and Reptile to explicitly specialize for few-shot learning, giving
them an advantage over finetuning when the test tasks are similar to those seen at training time. It
is worth noting finetuning cannot specialize for few-shot learning using these two factors, as it begins
with a random output layer when learning to perform a new task, and the finetuning method is not
pre-trained on simulated low-data tasks.

Our results further show that finetuning learns a broad and diverse set of features that allows it to
discriminate between many different classes. MAML and Reptile, in contrast, optimize a look-ahead
objective and settle for a less diverse and broad feature space as long as it facilitates robust adaptation
in low-data regimes. This can explain findings by Chen et al. (2019), who show that finetuning can
yield superior few-shot learning performance when tasks become distant from the training tasks,
which is further supported by the fact that there are statistically significant relationships between
the broadness of the learned features and the few-shot learning ability for finetuning.

Another result is that MAML yields the best few-shot learning performance when using a shallow
convolutional backbone. Interestingly, the features learned by MAML become less discriminative as
the depth of the backbone increases. This may indicate an over-specialization. We did not observe
such a phenomenon for the finetuning method.
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RQ3: Are LSTMs good few-shot learners when evaluated on modern benchmarks?

In Chapter 5, we revisited the plain LSTM approach–originally proposed by Hochreiter et al. (2001)
and Younger et al. (2001)–and analyzed it from a few-shot learning perspective. The main idea of
this approach is that given a new task, we can enter the entire training dataset into the LSTM, and
afterward enter query inputs for which we want to obtain predictions. This plain LSTM approach
thus ingests training data for a specific task and conditions predictions for new query inputs on the
resulting hidden state. However, as we have argued, there are two potential issues associated with
this approach:

1. The hidden embeddings of the support set are not permutation invariant.

2. The learning algorithm and the input embedding mechanism are intertwined, leading to a
challenging optimization problem and an increased risk of overfitting.

To address the first issue, mean pooling is proposed to make the embeddings permutation invariant.
This method significantly improves the performance of the plain LSTM on few-shot sine wave
regression and image classification tasks. It even outperforms the popular meta-learning method
MAML on the sine wave regression problem. However, it still struggles to achieve good performance
on few-shot image classification tasks, highlighting the optimization difficulties of the plain LSTM
approach.

To overcome these difficulties, a new technique called Outer Product LSTM (OP-LSTM) is proposed.
OP-LSTM uses an LSTM to update the weights of a base-learner network, effectively decoupling
the learning algorithm from the input representation mechanism. This resolves the second issue and
allows for more effective optimization. The theoretical analysis shows that OP-LSTM can perform an
approximate form of gradient descent (similar to MAML) and a nearest prototype-based approach
(similar to Prototypical Networks), demonstrating its flexibility and expressiveness. Empirically, we
demonstrate that OP-LSTM overcomes the optimization issues associated with the plain LSTM
approach in few-shot image classification benchmarks while using fewer parameters. It achieves
competitive or superior performance compared to MAML and Prototypical Networks, which it can
approximate.

In summary, while the plain LSTM approach initially had limitations, improvements such as mean
pooling and the development of OP-LSTM have made LSTMs more effective as few-shot learners,
yielding competitive performance in various few-shot learning tasks.

RQ4: Can the few-shot learning ability of deep neural networks be improved by learning which
subsets of parameters to adjust?

In Chapter 6, we proposed a new deep meta-learning algorithm called Subspace Adaptation Prior
(SAP). SAP jointly learns a good neural network initialization and good parameter subspaces (or
subsets of operations) in which new tasks can be learned within a few gradient descent updates from
a few data. That is, instead of adapting all parameters when learning a new task, which may be
suboptimal and may lead to overfitting during few-shot learning, SAP learns which parameters to
adjust when adapting to new tasks.

Our experiments show that SAP outperforms similar existing gradient-based meta-learners in few-shot
sine wave regression, yields better performance in single-domain few-shot image classification settings,
and yields competitive or superior performance in cross-domain few-shot image classification, where
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the test tasks are more distant to the training tasks. This highlights the advantage of learning
suitable subspaces in which to perform gradient descent when learning new tasks.

This could be due to the regularization effect of not having to adjust all parameters as well as due to
the ability to match structures inherently present in task families. Our experiments in Section 6.5.3
on synthetic task families demonstrate that the SAP is able to learn operations that match the task
structure in simple settings in 75% of the cases. In other cases, it may compensate by using other
operations that are not inherently present in the task structure.

Inspection of the subspace activation strengths in few-shot image classification reveals that simple and
low-dimensional operations, such as shifting features by a single scalar or element-wise by a vector,
are important. This is in line with recent work and findings (Triantafillou et al., 2021; Requeima
et al., 2019; Bateni et al., 2020) which show that adapting pre-trained embeddings by means of
such low-dimensional transformations, such as FiLM layers (Perez et al., 2018), can yield excellent
performance.

One limitation of SAP is that it requires the computation of second-order gradients by default
during meta-training in order to update the initialization parameters, in a similar fashion as other
gradient-based meta-learners such as MAML (Finn et al., 2017), (M)T-Net (Lee and Choi, 2018),
and Warp-MAML (Flennerhag et al., 2020). This limitation can be bypassed by using a first-order
approximation, which comes at the cost of a performance penalty (between 0.2% and 7.3% accuracy
in our experiments).

Gradient-based meta-learning methods struggle to scale well to deep networks as recent work suggests
that simple pre-training and fine-tuning of the output layer (Tian et al., 2020; Chen et al., 2021;
Huisman et al., 2021) can yield superior performance on common few-shot image classification
benchmarks. This is also the reason, besides searching for energy-efficient few-shot learners, that in
our experiments we focus on relatively shallow backbones that adapt all layers when learning new
tasks, instead of only the output layer. Other limitations are that SAP introduces more parameters
and that the candidate pools of operations are selected by hand, despite the fact that these operations
are general.

7.2 Future work
This dissertation represents significant progress in advancing our understanding of deep meta-learning
algorithms beyond mere performance evaluations. However, with each step forward, we uncover a
multitude of unanswered questions. Consequently, our research opens up numerous promising avenues
for future exploration, aimed at delving even deeper into the inner workings of deep meta-learning
algorithms, which, in turn, can lead to enhanced performance. In addition to the future work
directions mentioned in the individual research chapters, below we describe future research directions
that we think are most fruitful based on a high-level view of this entire dissertation.

Quantification of task distances A popular criticism of deep meta-learning methods is that their
few-shot learning performance is often evaluated on tasks that are quite similar to the tasks seen a
training time (within-distribution) (Chen et al., 2019; Triantafillou et al., 2020; Ullah et al., 2022),
thereby giving an overly optimistic picture of their ability to generalize from limited data. The reason
for this is that the test tasks are often sampled from the same dataset from which the training tasks
were sampled. This critique has sparked interest in evaluating deep meta-learning techniques on
test tasks sampled from different datasets than those used for training (out-of-distribution), which
is also what we have done throughout Chapter 3, Chapter 4, Chapter 5, and Chapter 6. While
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this is an important step forward, we argue that it would be even more beneficial to use a measure
that quantifies how similar a given test task is compared to the training task distribution, which is
something that has also been studied in the field of algorithm selection (Brazdil et al., 2022; Peng
et al., 2002). This would allow us to perform a deeper investigation into the inner workings of deep
meta-learning algorithms and evaluate their performance as a function of the novelty of tasks. This
increased understanding could translate itself into new algorithms or training objectives and improved
performance in more challenging scenarios, where the test tasks deviate from the observed training
tasks.

Deep meta-learning on different data modalities One of the limitations of the present disserta-
tion lies in the fact that our results were solely obtained on few-shot image classification benchmarks.
Recently, the field has also moved towards testing meta-learning algorithms on different data modali-
ties such as text (Lee et al., 2022; Sun et al., 2021), audio (Heggan et al., 2022; Shi et al., 2020), and
video (Alet et al., 2021; Wang et al., 2020a). We think that it is an important direction for future
work to explore the impact of the data modality, such as images, text, video, and speech, on the
performance and behavior of deep meta-learning algorithms. Investigating this promising direction of
future work will enable a more comprehensive understanding of how different types of data influence
the effectiveness and adaptability of meta-learning techniques. By delving into these unexplored
territories, we can uncover potential variations in the capabilities and limitations of meta-learning
algorithms across various modalities, paving the way for more informed and tailored approaches in
future research.

Towards more general deep meta-learning In Chapter 5 we have revisited the idea of using an
LSTM as a general meta-learning algorithm (Hochreiter et al., 2001; Younger et al., 2001) that is
fed the training data and can make predictions on new inputs conditioned on the resulting hidden
state. A problem with this approach is that the learning algorithm and the input representations
are intertwined, which can render the optimization difficult and make the approach susceptible to
overfitting. That is, when applying this approach to image data, the LSTM module (the learning
algorithm) is applied after a convolutional feature extractor (the input representation). Normally,
however, the input representation would be directly fed into a linear layer. By feeding the input
representation into an LSTM module, which can consist of multiple stacked LSTMs, the input
representation is passed through multiple nonlinearities that could lead to overfitting. We solved
this issue by decoupling the input representation from the learning algorithm by having the LSTM
module parameterize an outer-product weight update function. However, one could also argue that
the main problem is not the intertwinement of the learning algorithm and input representation,
but rather the fact that the learning algorithm is applied after the input representation has been
computed.

An alternative would be to intertwine the learning algorithm with the input representation from the
lowest level of abstraction to the computation of the prediction. This could be implemented through
a convolutional LSTM (convLSTM) (Shi et al., 2015) that maintains a state also in the convolutional
layers. This can facilitate learning at lower levels of input representation. It is also possible to
investigate other architectures for this purpose such as general transformer architectures. Given the
success of other prompt-based models, we think that this approach, whilst computationally expensive,
could lead to novel learning algorithms and improved few-shot learning performance.

Understanding black-box learning algorithms While the general-purpose meta-learning al-
gorithms belonging to the black-box/model-based category of deep meta-learning techniques have
the potential to improve the few-shot learning capabilities of deep neural networks, it is difficult
to interpret their inner workings (how they adapt to new tasks). Future work can aim to address
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this interpretability challenge, and allow us to gain valuable insights that, in turn, can enable
us to develop new hand-crafted learning algorithms. That is, by studying the behavior of these
black-box/meta-based meta-learning models, we can uncover novel learning strategies, principles, or
heuristics that could be employed in the development of even more efficient interpretable learning
algorithms. Increasing our understanding of black-box models can also help bridge the gap between
cutting-edge deep learning techniques and traditional, interpretable approaches. Additionally, by
unraveling the inner workings of these powerful meta-learning algorithms, we can enhance their
trustworthiness and facilitate the integration of these models into real-world applications where
explainability and interpretability are essential. Overall, addressing the challenges associated with
interpretability not only contributes to the advancement of deep meta-learning techniques but also
opens up new avenues to assisting human researchers in designing new learning algorithms.
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Appendix A

Hyperparameter details for
TURTLE

This is the appendix for Chapter 3, where we describe additional hyperparameter details.

A.1 Used hyperparameters
For all techniques mentioned below, we performed meta-validation after every 2,500 training tasks.
The best-resulting configuration was evaluated at meta-test time.

For sine wave regression, we use the same base-learner network as Finn et al. (2017), i.e., a fully-
connected feed-forward network consisting of a single input node followed by two hidden layers with
40 ReLU nodes each and a final single-node output layer.

For few-shot image classification problems, we use the same base-learner network as used by Snell
et al. (2017) and Chen et al. (2019). This network is a stack of four identical convolutional blocks.
Each block consists of 64 convolutions of size 3× 3, batch normalization, a ReLU nonlinearity, and a
2D max-pooling layer with a kernel size of 2. The resulting embeddings of the 84 × 84 × 3 input
images are flattened and fed into a dense layer with N nodes (one for every class in a task). The
base-learner is trained to minimize the cross-entropy loss on the query set, conditioned on the support
set.

Transfer learning baselines Note that these models (TrainFromScratch, finetuning, baseline++)
pre-trained on minibatches of size 16 sampled from the joint data obtained by merging all meta-
training tasks. At test time, they were trained for 100 steps on mini-batches of size 4 sampled from
new tasks following Chen et al. (2019). Every 25 steps, we evaluated their performance on the entire
support set to select the best configuration to test on the query set.

LSTM meta-learner For selecting the hyperparameters of the LSTM meta-learner1, we followed
Ravi and Larochelle (2017). That is, we use a 2-layer architecture, and Adam as meta-optimizer with
a learning rate of 0.001. The batch size was set equal to the size of the task. Meta-gradients were

1Used code: https://github.com/markdtw/meta-learning-lstm-pytorch.
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clipped to have a norm of at most 0.25, following. The meta-network receives four inputs obtained
by preprocessing the loss and gradients using in similar fashion to Andrychowicz et al. (2016) and
Ravi and Larochelle (2017). On miniImageNet and CUB, the LSTM optimizer is set to perform 12
updates per task when the number of examples per class is k = 1 and 5 updates when k = 5.

MAML Again, we follow Finn et al. (2017) for selecting the hyperparameters, except for the
meta-batch size on sine wave regression as we found it not to help performance. This means that the
inner learning rate was set to 0.01 and the outer learning rate to 0.001, with Adam as meta-optimizer.
These settings hold for both sine wave regression and image classification. When T > 1, we use
gradient value clipping with a threshold of 10. On image classification, MAML was set to optimize
the initial parameters based on T = 5 update steps, but an additional 5 steps were made afterwards
to further increase the performance. Moreover, we used a meta-batch size of 4 and 2 for 1- and 5-shot
image classification respectively.

TURTLE We performed many experiments with the hyperparameters of TURTLE on sine wave
regression. Here, we only report the settings that were found to give the best performance, which
were also used on the image classification problems. That is, the meta-network consists of 5 hidden
layers of 20 nodes each. Every hidden node is followed by a ReLU nonlinearity. The input consists
of a raw gradient, a historical real-valued number indicating the moving average of the previous
input gradients with a (with a beta decay of 0.9), and a time step integer t ∈ {0, ..., T − 1}. The
output layer consists of a single node which corresponds to the proposed weight update. For training,
we used meta-batches of size 2. Additionally, TURTLE maintains a separate learning rate for all
weights in the base-learner network. Lastly, TURTLE uses second-order gradients and Adam as
meta-optimizer with a learning rate of 0.001.



Appendix B

Additional experimental results for
OP-LSTM

This is the appendix for Chapter 5, where we present additional experimental results.

B.1 Sine wave regression: additional results

We also performed an experiment to investigate the effect of the input representation on the
performance of the plain LSTM approach (proposed by Younger et al. (2001); Hochreiter et al.
(2001)) on the 5-shot sine wave regression performance. The experimental setting follows the setup
described in Section 5.5.1. For every input format, we performed hyperparameter tuning with the
same randomly sampled hyperparameter configurations using Table B.2. The performances of the
best validated models per input format are displayed in Table B.1. The best performance is obtained
by feeding the current input, previous target, and the previous prediction into the LSTM, although
the differences with other inputs are small.

Table B.1: The influence of different input information on the performance of the LSTM on 5-shot
sine wave regression. 95% confidnce intervals are displayed as ±x.

Input xt Prev target yt−1 Prev pred ŷt−1 Prev error et−1 5-shot MSE

✓ ✓ 0.04 ± 0.002
✓ ✓ ✓ 0.03 ± 0.002
✓ ✓ ✓ 0.05 ± 0.004
✓ ✓ ✓ ✓ 0.06 ± 0.011
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B.2 Hyperparameter tuning

B.2.1 Permutation invariance experiments

For the permutation invariance experiments on few-shot sine wave regression, we sampled 20 random
configurations for the plain LSTM from the distributions displayed in Table B.2 and validated their
performance on 5-shot (k = 5) sine-wave regression. We selected the best configuration and evaluated
it on the meta-test tasks,

Table B.2: The used ranges and distributions for tuning the hyperparameters with random search for
sine wave regression.

Hyperparameter Range

Number of layers Uniform({1,2,3,4})
Hidden dimensions Uniform({1,3,8,20,40})
Meta-batch size Uniform({1,2,3,4})
Learning rate LogUniform(1e-5, 4e-2)
Unroll steps Uniform({1,2,. . . ,14})

For Omniglot, we performed random search with a function evaluation budget of 100, with a fixed
learning rate of 0.001. The architecture of the plain LSTM with sequential data processing was sampled
uniformly at random from {1024-512-256-128-64,2048-1024-512-128-64,2048-1024-512-256-128,1024-
600-400-200-92,1024-512-512-256-128-64,1024-512-512-256-256-128-64, 612-400-256-128-64,1024-1024-
1024-512-256-128-64,2048-1024-512-180-100,1024-580-280-160-80,256-128-64, 512-256-128-64,128-64-
64-64,256-128-64,512-256-64,256-128-100,128-64-64-64-64,64-64-64-64,50-50}, the number of passes
over the support data T was sampled uniformly at random from {1, 2, . . . , 10}, and the meta-batch
size from {1, 2, . . . , 32}. We used the best hyperparameter configuration of the sequential plain LSTM
for the plain LSTM with batching to compare the differences in performance.

B.2.2 Omniglot

For the plain LSTM approach, we used the best hyperparameter configuration found for the
permutation invariance experiments.

For OP-LSTM, we performed a grid search, varying the meta-batch size within {1,4,8,16,32}, the
architecture of the coordinate-wise LSTM within {20-1, 10-10-1, 40-5, 40-20-1, 20-20-20-5} (note
that the last element is always 1 because it operates per coordinate), and the number of passes over
the support set within {1,3,5,10}.

Detailed learning curves for the plain LSTM on Omniglot Here, we show the validation
learning curves of the sequential LSTM and the LSTM which uses batching to complement the results
displayed in Section 5.5.1. Figure B.1 displays the validation learning curves of the LSTM with batch
data ingestion (top row) and the LSTM with sequential data processing (bottom row). As we can
see, batching increases the stability of the training process and makes the LSTM less sensitive to
the random initialization, as every run succeeds to reach convergence in contrast to the sequential
LSTM.
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Figure B.1: The mean validation accuracy of the LSTM over time on Omniglot for every of the
three different runs, for different numbers of examples per class k. Top row: LSTM with batching
(mean-pooling). Bottom row: LSTM with sequential data ingestion. As we can see, batching
improves the stability of the training process.

B.2.3 miniImageNet and CUB

For plain LSTM, we used random search with a budget of 130 function evaluations, the meta-batch
size was sampled uniformly between 1 and 48, the number of layers between 1 and 4, the hidden size
log-uniformly between 32 and 3200, and the number of passes T over the support dataset uniformly
between 2 and 9.

For OP-LSTM, we performed the same grid search as for Omniglot. We use the best found
hyperparameters for both methods on miniImageNet also on CUB.

We also measured the running times of the techniques on miniImageNet and CUB, as shown in
Table B.3. We note that the running times may be affected by the server’s load and thus can only
give a rough estimation of the required amount of compute time. As we can see, the plain LSTM is
the slowest method, despite achieving random performance on miniImageNet. OP-LSTM, in contrast,
is more efficient.

B.3 Robustness to random seeds

Here, we investigate the robustness of the investigated methods to the random seed for the few-shot
image classification experiments performed in Section 5.5.3. We perform th Instead of computing
the confidence intervals over the performances of all test tasks for all seeds, we now compute the
confidence interval over the mean test performance per run. As we perform three runs per method,
we compute the confidence intervals over three observations per method. Note that the mean
performance does not change as taking the mean of the three means will be equivalent (as the means
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Table B.3: Mean running times on 5-way miniImageNet and CUB classification over 3 runs. All
methods used a Conv-4 backbone as a feature extractor. “xhymin” means x hours and y minutes.
The “-" indicates that the method did not finish within 2 days of running time.

miniImageNet CUB

Technique params 1-shot 5-shot 1-shot 5-shot

MAML 121 093 13h9min 12h1min 26h57min 17h39min
Warp-MAML 231 877 12h25min 12h30min 13h6min 12h48min
SAP 412 852 5h40min 11h14min 7h11min 11h17min
ProtoNet 121 093 4h14min 5h6min 31h18min 38h46min

LSTM 55 879 349 40h14min 46h47min - -
OP-LSTM (ours) 141 187 4h50min 5h31min 31h58min 40h8min

are based on an equal number of task performances).

B.4 Within-domain

Here, we present additional results for the conducted within-domain image classification experi-
ments.

Omniglot The mean test performance and confidence intervals over the random seeds for Omniglot
image classification are shown in Table B.4. As we can see, the confidence intervals are higher than
in previous experiments because the intervals are computed over 3 observations instead of 1800
individual test task performances (600 per run). As we can see, the LSTM is unstable, supporting the
hypothesis that the optimization problem is difficult. OP-LSTM, on the other hand, is less sensitive
to the chosen random seed and has a stability that is comparable to that of MAML.

Table B.4: The mean test accuracy (%) on 5-way Omniglot classification across 3 different runs. The
95% confidence intervals, computed over the mean performances of the 3 different random seeds, are
displayed as ±x. The plain LSTM is outperformed by MAML. All methods (except LSTM) used a
fully-connected feed-forward classifier.

Technique parameters 1-shot 5-shot

MAML 247 621 84.1 ± 3.10 93.5 ± 0.70
ProtoNet 247 621 83.6 ± 0.52 93.4 ± 1.48

LSTM 13 530 097 72.6 ± 3.87 84.8 ± 6.12
OP-LSTM (ours) 249 167 84.3 ± 3.18 91.8 ± 0.70

MiniImageNet and CUB The mean test performance and confidence intervals over the random
seeds for miniImageNet and CUB image classification are shown in Table B.5. In contrast to what we
observed on Omniglot, the LSTM is now more stable. This is caused by the fact that it consistently
fails to learn a learning algorithm that performs better than random guessing, and thus performs
stably at chance level.
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Table B.5: Meta-test accuracy scores on 5-way miniImageNet and CUB classification over 3 runs.
The 95% confidence intervals, computed over the mean performances of the 3 different random seeds,
are displayed as ± x. All methods used a Conv-4 backbone as a feature extractor. The “-" indicates
that the method did not finish within 2 days of running time.

miniImageNet CUB

Technique params 1-shot 5-shot 1-shot 5-shot

MAML 121 093 48.6 ± 4.00 63.0 ± 0.33 57.5 ± 0.83 74.8 ± 2.10
Warp-MAML 231 877 50.4 ± 2.58 65.6 ± 0.98 59.6 ± 2.15 74.2 ± 2.51
SAP 412 852 53.0 ± 3.71 67.6 ± 0.47 63.5 ± 6.24 73.9 ± 1.57
ProtoNet 121 093 50.1 ± 4.06 65.4 ± 2.84 50.9 ± 2.35 63.7 ± 0.47

LSTM 55 879 349 20.2 ± 0.60 19.4 ± 0.47 - -
OP-LSTM (ours) 141 187 51.9 ± 2.52 67.9 ± 2.40 60.2 ± 1.58 73.1 ± 1.57

Table B.6: Average cross-domain meta-test accuracy scores over 5 runs using a Conv-4 backbone.
Techniques trained on tasks from one data set and were evaluated on tasks from another data set.
The 95% confidence intervals, computed over the mean performances of the 3 different random seeds,
are displayed as ± x. The “-" indicates that the method did not finish within 2 days of running time.

MIN → CUB CUB → MIN

1-shot 5-shot 1-shot 5-shot

MAML 37.9 ± 2.22 53.6 ± 0.67 31.1 ± 1.19 45.8 ± 2.06
Warp-MAML 42.0 ± 0.85 56.9 ± 4.16 31.1 ± 1.59 41.3 ± 1.37
SAP 41.5 ± 3.72 58.0 ± 1.79 33.3 ± 2.33 47.1 ± 1.28
ProtoNet 39.7 ± 4.11 56.0 ± 4.89 31.7 ± 0.20 45.3 ± 1.84

LSTM 20.1 ± 0.77 20.0 ± 0.40 - -
OP-LSTM (ours) 42.3 ± 1.90 58.5 ± 1.49 35.8 ± 2.98 49.0 ± 0.80

B.5 Cross-domain
Lastly, we compute the confidence intervals in cross-domain settings and display the results in
Table B.6. Again, the LSTM is a stable random guesser. The other algorithms are less stable, but
do yield a better performance. We cannot observe a general pattern of stability in the sense that one
algorithm is consistently more stable than others.





Appendix C

Additional experimental results for
SAP

In this appendix for Chapter 6, we show additional experimental results on few-shot image classifica-
tion.

C.1 Validation of re-implementation

1-shot 5-shot

Reported Local Repr Reported Local repr

MAML 48.7 ± 1.8 48.0 ± 0.8 63.2 ± 0.9 64.4 ± 0.4
T-Net 50.9 ± 1.8 48.9 ± 0.8 - 65.3 ± 0.4
MT-Net 51.7 ± 1.8 48.5 ± 0.8 - 63.0 ± 0.4
Warp-MAML∗ - 49.5 ± 0.8 - 63.9 ± 0.4

SAP (ours) - 51.6 ± 0.8 - 65.9 ± 0.4

Table C.1: Mean meta-test accuracy scores on 5-way miniImageNet classification over 5 runs using a
Conv-4 backbone with 32 channels. The 95% confidence intervals are displayed as ± x. ∗ Flennerhag
et al. (2020) only reported the performance of Warp-MAML with 128 feature maps per convolutional
block instead of 32, as displayed in the table.

We re-implemented the baselines to ensure a fair comparison in the used setting, and because the code
of Warp-MAML has not been made available for other researchers. To verify our re-implementations
of the baselines (T-Net, MT-Net, and Warp-MAML), we compare the reported performances to the
ones that we obtain. The results of the image classification experiments are displayed in Table C.1. As
we can see, there are minor differences between the reported performances and our local reproduction
of their results. Also with the original code of T-Net and MT-Net, we were unable to reproduce
their results. Other people have encountered similar issues reproducing the reported numbers of
meta-learning techniques, including MAML, T-Net, and MT-Net.1

1There is an open issue on the GitHub repository of MT-Net about the inability to reproduce their reported results
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C.2 Cross-domain few-shot image classification
In Table C.2, we show the cross-domain few-shot learning classification results when using 64 channels
with the Conv-4 backbone. Also in this case, SAP outperforms other tested baselines. We also
note that the performance of SAP is improved when using 64 channels compared with 32 (see
Section 6.5.5).

MIN → CUB Tiered → CUB

1-shot 5-shot 1-shot 5-shot

MAML 37.1 ± 0.3 53.7 ± 0.3 38.8 ± 0.3 56.8 ± 0.3
T-Net 38.3 ± 0.3 OOM 39.9 ± 0.3 OOM
MT-Net 37.3 ± 0.3 OOM 39.1 ± 0.3 OOM
Warp-MAML 40.7 ± 0.3 56.2 ± 0.3 42.5 ± 0.3 58.9 ± 0.3

SAP (ours) 41.6 ± 0.3 57.8 ± 0.3 43.3 ± 0.3 64.3 ± 0.3

Table C.2: Average cross-domain meta-test accuracy scores over 5 runs using a 64-channel Conv-4
backbone. Techniques trained on tasks from one data set were evaluated on tasks from another data
set. The 95% confidence intervals are displayed as ± x.

C.3 The effect of hard pruning
Table C.3 displays the effect of hard pruning when using 64 channels instead of 32. As we can see,
hard pruning is slightly beneficial, but again, not significantly.

miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

No pruning 52.8 ± 0.8 67.4 ± 0.4 54.5 ± 0.8 71.3 ± 0.4

Top-1 52.8 ± 0.8 67.6 ± 0.4 55.1 ± 0.8 72.7 ± 0.4
Top-2 52.9 ± 0.8 67.6 ± 0.4 54.1 ± 0.8 72.7 ± 0.4
Top-3 52.6 ± 0.8 67.4 ± 0.4 55.0 ± 0.8 72.4 ± 0.4

Table C.3: Mean meta-test accuracy scores on 5-way miniImageNet and tieredImageNet classification
with 95% confidence intervals computed over 5 different runs. We used a Conv-4 backbone with 64
channels for these results.

C.4 The learned subspaces for image classification
Figure C.1 displays the learned activation strengths of SAP on 5-way 1-shot miniImageNet using
Conv-4 with 64 channels. Similar patterns are observed for the 32-channel case.

on miniImageNet. See https://github.com/yoonholee/MT-net/issues/5. Other researchers such as Antoniou et al.
(2019) have also reported issues reproducing MAML.

https://github.com/yoonholee/MT-net/issues/5
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Figure C.1: The importance of the different subspaces/operations in SAP on 5-way 1-shot miniIma-
geNet using Conv-4 with 64 channels. The results are averaged across 5 runs with different random
seeds and the standard deviations are shown as ±x. NA entries indicate that these operations were
not in the candidate pool for that layer. Simple scalar shift and vector shift operations obtain the
highest activation strengths throughout the convolutional network.





Summary

Deep neural networks have demonstrated impressive performance in various domains, often achieving
human-level or super-human capabilities. However, their success heavily relies on the availability of
extensive training data, which becomes problematic in domains where data collection is challenging,
costly, or privacy-sensitive. Enhancing the data efficiency of deep neural networks and overcoming
these limitations is of utmost importance. By doing so, we can unlock the full potential of these
networks, enabling them to learn and adapt effectively even when presented with limited data.
This improvement also paves the way for their deployment in resource-constrained environments,
promoting the democratization of deep learning by making it more accessible and applicable across
various domains.

One of the potential causes of their inefficient learning ability is the fact that deep neural networks
are often trained from scratch in an end-to-end way. Deep meta-learning has emerged as a rapidly
growing field to improve the learning efficiency of deep neural networks by endowing them with
the ability to reuse prior experiences and knowledge. This dissertation focuses specifically on the
application of deep meta-learning in few-shot learning scenarios, where networks need to rapidly
adapt to new tasks with only a limited number of examples.

Despite recent progress in few-shot learning, the underlying principles that drive the success of
meta-learning algorithms are still poorly understood, impeding algorithm development and design
choices. In this dissertation, we take steps to bridge this knowledge gap by gaining a comprehensive
understanding of the fundamental principles of popular deep meta-learning algorithms, enabling more
informed algorithm development, and establishing robust theoretical foundations. Additionally, this
work explores the integration of theoretical principles into practical algorithm design to enhance the
capabilities of deep meta-learning approaches. By addressing these research gaps, this dissertation aims
to advance the field, paving the way for more effective and principled meta-learning techniques that
offer broader applicability and superior performance. Below is a brief outline of the dissertation.

Chapter 2 serves as an extensive introduction and overview, providing readers with a solid theoretical
foundation for understanding deep meta-learning algorithms. We delve into key methods and
categorize them into three main categories: i) metric-based techniques, ii) model-based techniques,
and iii) optimization-based techniques. By exploring these approaches, we aim to provide a holistic
understanding of the diverse methodologies employed in deep meta-learning. Furthermore, we
identify and discuss the primary open challenges in the field. These challenges include the need for
performance evaluations on heterogeneous benchmarks to ensure the robustness and generalizability
of meta-learning algorithms.

In Chapter 3, we investigate an empirically observed performance gap between two popular and
highly related deep meta-learning algorithms: the meta-learner LSTM and MAML. We found

177



178 Summary

this performance gap surprising based on our work in Chapter 2 as the meta-learner LSTM is
more expressive than MAML and could, in theory, emulate the behavior of MAML. To gain a
deeper understanding of this performance gap, we introduce a novel algorithm called TURTLE.
The design and analysis of TURTLE reveal that the notable performance gap can be attributed to
the influence of second-order gradients. We find that second-order gradients can also significantly
increase the accuracy of the meta-learner LSTM with slight modifications of the inputs provided to
the LSTM.

A related method to deep meta-learning is the transfer learning method commonly known as
pre-training and fine-tuning. In Chapter 4, we investigate the observed performance differences
between finetuning, MAML, and another meta-learning technique called Reptile. We present evidence
indicating that MAML and Reptile exhibit a tendency to specialize in rapidly adapting to low-data
regimes characterized by similar data distributions as the ones used during training. Our findings
highlight the importance of both the output layer and the presence of noisy training conditions
induced by data scarcity in the few-shot learning setting. These factors contribute significantly
to enabling the specialization observed in MAML and Reptile. Additionally, we demonstrate that
the pre-trained features obtained through the finetuning baseline exhibit greater diversity and
discriminative power compared to those learned by MAML and Reptile. This lack of diversity and
distribution specialization in MAML and Reptile may hinder their ability to generalize effectively
to target tasks that differ significantly from the observed training tasks. In contrast, finetuning
can leverage the diverse set of learned features to adapt more successfully to such distant target
tasks.

In Chapter 5, we revisit a classical LSTM approach to deep meta-learning, where the idea is to feed
a training dataset into an LSTM and to condition the predictions of query inputs on the resulting
hidden state. This approach is known to be maximally expressive, that is, the LSTM could learn to
implement any learning algorithm. Despite the promising results of this approach on small problems
and on reinforcement learning problems, the approach has received little attention in the supervised
few-shot learning setting. We show that LSTM outperforms the popular meta-learning technique
MAML on a simple few-shot sine wave regression benchmark, but that LSTM, expectedly, falls
short on more complex few-shot image classification benchmarks. We identify two potential factors
contributing to the observed limitations and propose a novel method called Outer Product LSTM
(OP-LSTM) to address these issues effectively. OP-LSTM surpasses the performance of plain LSTM
and exhibits substantial performance gains. While these results alone do not set a new state-of-the-art,
the advances of OP-LSTM are orthogonal to other advances in the field of meta-learning, yielding
new insights in how LSTM works in image classification, allowing for a whole range of new research
directions.

In Chapter 6, we investigate whether the integration of the fact that more expressive models are more
likely to overfit can improve the few-shot learning performance by meta-learning which parameters
to adjust. To investigate this, we propose Subspace Adaptation Prior (SAP), a novel gradient-based
meta-learning algorithm that jointly learns good initialization parameters (prior knowledge) and
layer-wise parameter subspaces in the form of operation subsets that should be adaptable. In
this way, SAP can learn which operation subsets to adjust with gradient descent based on the
underlying task distribution, simultaneously decreasing the risk of overfitting when learning new
tasks. We demonstrate that this ability is helpful as SAP yields superior or competitive performance
in few-shot image classification settings (gains between 0.1% and 3.9% in accuracy). Analysis of the
learned subspaces demonstrates that low-dimensional operations often yield high activation strengths,
indicating that they may be important for achieving good few-shot learning performance.
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As such, in this dissertation, we have analyzed and performed empirical validation of various
meta-learning systems, including MAML, Reptile, finetuning and various LSTM-based approaches.
Additionally, we have explored the integration of theoretical principles for practical algorithm
development. In short, we have made a small step toward understanding deep meta-learning
algorithms, paving the way for more robust and principled meta-learning techniques with broader
applicability and superior performance.





Dutch summary

Diepe neurale netwerken hebben indrukwekkende prestaties laten zien in verschillende domeinen,
vaak met capaciteiten op menselijk of bovenmenselijk niveau. Hun succes hangt echter sterk af
van de beschikbaarheid van uitgebreide trainingsdata, wat problematisch wordt in domeinen waar
het verzamelen van zulke data uitdagend, kostbaar of privacygevoelig is. Het verbeteren van de
data-efficiëntie van diepe neurale netwerken en het overkomen van deze beperkingen is van groot
belang. Door dit te doen, kunnen we het volledige potentieel van deze netwerken ontsluiten, waardoor
ze effectief kunnen leren en zich kunnen aanpassen, zelfs wanneer ze met beperkte gegevens worden
geconfronteerd. Deze verbetering maakt ook de weg vrij voor hun inzet in omgevingen met beperkte
middelen, waardoor de democratisering van deep learning wordt bevorderd door het toegankelijker
en toepasbaarder te maken in verschillende domeinen.

Een van de mogelijke oorzaken van hun inefficiënte leervermogen is het feit dat diepe neurale
netwerken vaak zonder enige voorkennis worden getraind. Deep meta-learning is naar voren gekomen
als een snelgroeiend veld om de leerefficiëntie van diepe neurale netwerken te verbeteren door ze de
mogelijkheid te geven om eerdere ervaringen en kennis te hergebruiken. Dit proefschrift richt zich
specifiek op de toepassing van deep meta-learning in scenario’s voor leren met weinig trainingsdata,
waarbij netwerken zich snel moeten aanpassen aan nieuwe taken met slechts een beperkt aantal
voorbeelden per taak.

Ondanks de recente vooruitgang op dit gebied van few-shot learning, worden de onderliggende
principes die het succes van meta-learning-algoritmen stimuleren nog steeds slecht begrepen, wat de
ontwikkeling van algoritmen en ontwerpkeuzes belemmert. In dit proefschrift nemen we stappen om
deze kenniskloof te overbruggen door een uitgebreid begrip te verwerven van de fundamentele principes
van populaire deep meta-learning algoritmen, waardoor een beter geïnformeerde ontwikkeling van
algoritmen mogelijk wordt en een robuuste theoretische basis wordt gelegd. Bovendien onderzoekt
dit werk de integratie van theoretische principes in praktisch algoritmeontwerp om de prestaties van
deep meta-learning technieken te verbeteren. Door deze onderzoekshiaten aan te pakken, beoogt
dit proefschrift het veld vooruit helpen en de weg vrij te maken voor meer effectieve en principiële
meta-learning technieken die een bredere toepasbaarheid en superieure prestaties bieden. Hieronder
volgt een kort overzicht van het proefschrift.

Hoofdstuk 2 dient als een uitgebreide inleiding en overzicht en biedt lezers een solide theoretische
basis voor het begrijpen van deep meta-learning algoritmen. We verdiepen ons in de belangrijkste
methoden en categoriseren ze in drie hoofdcategorieën: i) op metrische gegevens gebaseerde technieken,
ii) op modellen gebaseerde technieken en iii) op optimalisatie gebaseerde technieken. Door deze
benaderingen te onderzoeken, willen we een holistisch begrip bieden van de diverse methodologieën
die worden gebruikt bij deep meta-learning. Verder identificeren en bespreken we de belangrijkste
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openstaande uitdagingen in het veld. Deze uitdagingen omvatten de behoefte aan prestatie-evaluaties
op heterogene benchmarks om de robuustheid en generaliseerbaarheid van meta-learning algoritmen
te waarborgen.

In Hoofdstuk 3 onderzoeken we een empirisch waargenomen prestatiekloof tussen twee populaire
en sterk verwante deep meta-learning algoritmen: de meta-learning LSTM en MAML. We vonden
deze prestatiekloof verrassend op basis van ons werk in Hoofdstuk 2 omdat de meta-learning LSTM
expressiever is dan MAML en in theorie het gedrag van MAML zou kunnen nabootsen. Om deze
prestatiekloof beter te begrijpen, introduceren we een nieuw algoritme genaamd TURTLE. Het
ontwerp en de analyse van TURTLE laten zien dat de opmerkelijke prestatiekloof kan worden
toegeschreven aan de invloed van gradiënten van de tweede orde. We vinden dat gradiënten van de
tweede orde ook de nauwkeurigheid van de meta-learning LSTM aanzienlijk kunnen verhogen met
kleine aanpassingen van de invoer die aan de LSTM wordt geleverd.

Een verwante methode aan deep meta-learning is de overdrachtsleermethode die algemeen bekend staat
als pre-training en fine-tuning. In Hoofdstuk 4 onderzoeken we de waargenomen prestatieverschillen
tussen finetuning, MAML en een andere meta-learning techniek genaamd Reptile. We presenteren
resultaten die aangeven dat MAML en Reptile de neiging vertonen om zich te specialiseren in
snelle aanpassing aan low-data-regimes die worden gekenmerkt door vergelijkbare datadistributies
als degene die tijdens de training worden gebruikt. Onze bevindingen benadrukken het belang
van zowel de uitvoerlaag als de aanwezigheid van noisy trainingsomstandigheden veroorzaakt door
gegevensschaarste in de few-shot leeromgeving. Deze factoren dragen aanzienlijk bij aan het mogelijk
maken van de specialisatie die wordt waargenomen in MAML en Reptile. Bovendien tonen we aan
dat de vooraf getrainde functies die zijn verkregen via de finetuning-baseline een grotere diversiteit en
onderscheidend vermogen vertonen in vergelijking met die geleerd door MAML en Reptile. Dit gebrek
aan diversiteit en distributiespecialisatie in MAML en Reptile kan hun vermogen belemmeren om
effectief te generaliseren naar doeltaken die aanzienlijk verschillen van de geobserveerde trainingstaken.
Finetuning daarentegen kan gebruikmaken van de diverse reeks aangeleerde functies om zich met
meer succes aan te passen aan dergelijke verre doeltaken.

In Hoofdstuk 5 gaan we terug naar een klassieke LSTM-benadering van deep meta-learning, waarbij
het idee is om een trainingsdataset in een LSTM in te voeren en de voorspellingen voor nieuwe
datapunten te conditioneren op de resulterende verborgen staat van het netwerk. Het is bekend
dat deze benadering maximaal expressief is, dat wil zeggen dat de LSTM zou kunnen leren om elk
leeralgoritme te implementeren. Ondanks de veelbelovende resultaten van deze aanpak bij kleine
problemen en bij reinforcement learning problemen, heeft de aanpak weinig aandacht gekregen in de
supervised learning hoek. We laten zien dat LSTM beter presteert dan de populaire meta-learning
techniek MAML op een eenvoudige sinusgolf regressiebenchmark, maar dat LSTM zoals verwacht
tekort schiet op complexere few-shot beeldclassificatie benchmarks. We identificeren twee potentiële
factoren die bijdragen aan de waargenomen beperkingen en stellen een nieuwe methode voor, Outer
Product LSTM (OP-LSTM) genaamd, om deze problemen effectief aan te pakken. OP-LSTM
overtreft de prestaties van gewone LSTM en vertoont aanzienlijke prestatieverbeteringen. Hoewel
deze resultaten geen nieuwe state-of-the-art vormen, staan de vorderingen van OP-LSTM orthogonaal
op andere vorderingen op het gebied van meta-learning, wat nieuwe inzichten oplevert in hoe LSTM
werkt bij beeldclassificatie, en nieuwe onderzoeksrichtingen oplevert.

In Hoofdstuk 6 onderzoeken we of de integratie van het feit dat meer expressieve modellen eerder
geneigd zijn tot overfitten, de leerprestaties van neurale netwerken kan verbeteren door te meta-leren
welke parameters moeten worden aangepast. Om dit te onderzoeken, stellen we Subspace Adaptation
Prior (SAP) voor, een nieuw op gradiënt gebaseerd meta-learning algoritme dat gezamenlijk goede
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initialisatieparameters (voorkennis) en laaggewijze parameter subspaces leert in de vorm van subsets
van bewerkingen die aanpasbaar moeten zijn. Op deze manier kan SAP leren welke bewerkingssubsets
moeten worden aangepast op basis van de onderliggende taakverdeling, terwijl tegelijkertijd het
risico van overfitting wordt verminderd bij het aanleren van nieuwe taken. We tonen aan dat deze
mogelijkheid nuttig is, aangezien SAP superieure of concurrerende prestaties levert bij classificatie-
instellingen voor weinig opnamen (winsten tussen 0,1% en 3,9% in nauwkeurigheid). Analyse van
de aangeleerde deelruimten laat zien dat laag-dimensionale operaties vaak hoge activeringssterk-
tes opleveren, wat aangeeft dat ze belangrijk kunnen zijn voor het bereiken van goede ‘few-shot’
leerprestaties.

Als zodanig hebben we in dit proefschrift analyse en empirische validatie uitgevoerd van verschillende
meta-learning systemen, waaronder MAML, Reptile, finetuning en verschillende op LSTM gebaseerde
benaderingen. Daarnaast hebben we de integratie van theoretische principes voor praktische algoritme-
ontwikkeling onderzocht. Kortom, we hebben een kleine stap gezet in de richting van een beter begrip
van deep meta-learning-algoritmen, waarmee we de weg hebben vrijgemaakt voor robuustere en meer
principiële meta-learning-technieken met een bredere toepasbaarheid en superieure prestaties.
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