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Abstract
Mobility as a Service (MaaS) and new mobility concepts mutually inspire each other, pro-
vide alternatives for the private car-oriented transport system as we know it, and will offer 
more mobility choices in a single journey than ever. This multitude of mobility choices 
however poses challenges in modeling the travelers’ mode choices in travel demand pre-
diction models. To address these challenges, this paper develops a multimodal tour-based 
mode choice model as part of an activity-based demand model. By explicitly modeling 
access and egress modes, this choice model creates multimodal mode chain sets on a tour 
level based on restrictions with respect to personal vehicle ownership, MaaS subscription 
ownership and vehicle states, and subsequently makes mode choices for every traveler. 
For the creation of these mode chain sets, we introduce the concept of mode categoriza-
tion. Seven mode categories are proposed, which include both private and shared mobility 
concepts. This categorization makes sure that modes are mutually sufficiently different in 
nature, so that reasonably unbiased mode chain choices can be made. Furthermore, the 
reduction to seven categories enables the study of large scenarios, while the introduced cat-
egories still represent new and already existing modes well. The potential of the model is 
illustrated by simulating travel demand in the Metropolitan region Rotterdam-The Hague. 
The results show that our model is capable of making plausible mode choices in the pres-
ence of MaaS and new mobility concepts, and can be used to assess the impact of mobility 
hubs where access and egress mode choice is important.
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Introduction

We are witnessing the development of new transport technologies, such as connected vehi-
cles using 5  G, level 3, 4 or 5 automatic vehicles, and mobile app-based car-sharing or 
ride-sharing services. Mobility as a Service (MaaS) combines all these technologies and 
services, thus offering a tailored mobility package for individual travelers (Jittrapirom et al. 
2017; Hesselgren et al. 2020). In the context of this paper, MaaS is assumed to offer travel-
ers full freedom to choose any traffic mode at any time.

On one hand, MaaS promotes including multiple modes in a single trip (called multi-
modal mode) by the use of mobility hubs and the use of multiple (multimodal) modes in a 
tour (called multimodal mode chain). On the other hand new mobility concepts, such as the 
electrical vehicle, autonomous car, shared bike and Uber, also stimulate the development 
of MaaS (Milakis et al. 2017; Snelder et al. 2019; Wright et al. 2020).

To assess the full potential of MaaS and new mobility concepts, it is crucial that multi-
modality including transfers at hubs can be modelled. Furthermore, it is required that flex-
ible and consistent mode choice within tours can be considered. At the same time, restric-
tions regarding vehicle ownership and availability of modes for different trips in a tour 
must be taken into account.

There is a growing body of literature that focuses on impact assessment of MaaS and 
new mobility concepts using activity based models and discrete choice models (see e.g. 
Narayan et al. (2019); Becker et al. (2020); Diogu (2019)). However, their focus has pre-
dominantly been on unimodal trips or the use of a single mode throughout a complete tour. 
In contrast, multimodal mode choice has been extensively studied in e.g Basu et al. (2018); 
Mounce and Nelson (2019); Saprykin et al. (2022)), but these studies do not check the con-
sistency of mode choices within a tour. The consistency of mode choice on a tour level has 
explicitly been considered in some studies using discrete choice modelling approaches (e.g 
Adnan et al. (2016); Vovsha (2017); Becker et al. (2020)). It is worth noting, though, that 
none of these studies consider multimodal trips, or equivalently, the use of multiple modes 
within a single trip. An important reason why multimodal trips are not considered is that 
the inclusion of these trips in tours with multiple trips results in a huge choice set, espe-
cially when many new modes are considered. Multi-state supernetwork approaches (e.g 
Li et al. (2018)) can consider multimodal trips within tours. However, these methods have 
only considered one new mode and they are hard to apply to large realistic networks due 
to their computational complexity and due to the difficulty to estimate and calibrate their 
parameters. To the best of our knowledge, a tour-based multimodal mode choice model 
that is able to include multiple new mobility concepts and transfers at hubs (i.e. multimodal 
modes) in large-scale realistic networks, while considering restrictions regarding owner-
ship and availability of modes in a tour, has not yet been developed so far.

This paper overcomes this gap in the literature, by developing a methodology to study 
multimodal mode choices, explicitly including the modes brought forth by MaaS and 
new mobility concepts, in the context of activities and related trips that people make dur-
ing a day. Since mobility hubs are required to use multimodal modes, this work thus also 
pays attention to mobility hub modelling. The contributions of this work can be summa-
rized in the following way. In the first place, we develop a multimodal tour-based mode 
choice model, as part of an activity-based demand model called ActivitySim (Gali et al. 
2008), where on the trip level multimodal modes are considered. The underlying model 
creates multimodal mode chain sets on a tour level, based on restrictions with respect to 
personal vehicle ownership, MaaS subscription ownership, vehicle availability and vehicle 
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locations. By imposing these restrictions, it enforces mode consistency throughout the 
whole tour. Subsequently, for each tour, a probit model is used to select the multimodal 
mode chain having the highest utility. As a second contribution, our paper introduces the 
concept of mode categorization: modes with similar properties are placed in a single mode 
category and afterwards considered as the same mode. This alleviates selection bias as a 
result of modes being similar in nature (i.e., it reduces the problem of similar modes having 
a higher likelihood to be chosen). In our specific case, seven categories are introduced that 
cover many new mobility concepts such as micro-modalities (e.g., bike, scooter) and on-
demand public transport. Both private and shared mobility concepts are considered, and all 
the multimodal mode alternatives are based on combinations of those seven modes/mode 
categories. As an additional benefit, this mode categorization reduces the computational 
complexity due to the smaller number of mode alternatives, and as a result the smaller total 
number of multimodal mode combinations. It renders our model numerically efficient: it 
can handle cases with large-scale multimodal mobility corresponding to up to millions of 
travelers. To substantiate this claim, as a last contribution, an illustration example is pre-
sented that considers a large-scale instance that focuses on the Rotterdam-The Hague area 
in the Netherlands. It demonstrates the potential of our methodology, explicitly including 
multimodal modes and mode consistency within tours, for assessing the impact of MaaS, 
mobility hubs and new mobility concepts.

Throughout this paper, a tour is understood to be a series of trips starting and ending 
at home. A trip can consist of multiple legs. We use the term multi-modality in the mean-
ing of intermodality for trips in which different modes are used for different legs of a trips 
(e.g. cycling as access mode, public transport as main mode and walking as egress modes). 
Finally, hubs are locations where people can change modes between different legs within a 
multimodal trip.

The remainder of this paper is organized as follows. In Sect. "Literature review" , rel-
evant literature is presented on unimodal trip modelling, multimodal trip modelling and 
tour modelling. Section "Methodology" explains the details of the compartments our meth-
odology consists of. In Sect. "Illustrational example", we provide a large-scale numerical 
experiment that illustrates the potential of our approach. Finally, Sect.  "Conclusion and 
discussion" presents the conclusions, discussion, and recommendations for future research.

Literature review

This section presents literature on different modelling aspects that are relevant to assess the 
impact of MaaS and new mobility concepts. First, activity-based and discrete choice mod-
elling approaches are presented that assess the impact of MaaS and new mobility concepts 
for unimodal trips. Subsequently, we discuss studies that do consider multimodal trips, but 
disregard consistency of mode choice at the tour level. Finally, we review literature that 
focuses on impact assessment of MaaS and new mobility concepts on tour level.

Unimodal trip modeling

Owing to its flexibility, robustness and efficiency to model complex travel behavior, Activ-
ity-based modeling (ABM) offers a highly suitable methodology for quantifying the impact 
of MaaS and new mobility concepts (NMC) because it works on the personal level and 
user-centricity and personalisation lay actually in the core of MaaS and NMC  (Miller 
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2018; Franco et  al. 2020). There is a growing body of literature on this approach: for 
example Narayan et  al. (2019) have investigated ride-sourcing for car and public trans-
port in Amsterdam using MATSim, an open-source multi-agent transport simulation 
framework (Horni et al. 2016). Several other studies have also used MATSim. Ciari et al. 
(2012) estimated the car-sharing demand, taking into account individual travel behavior, 
activity patterns, and mode choice. Becker et al. (2020) found that a MaaS scheme with 
shared mobility may slightly decrease travel times and cost, while substantially reducing 
energy consumption. Zwick and Axhausen (2020) analyzed on-demand ridepooling while 
Segui-Gasco et al. (2019) evaluated the impact of different automated mobility-on-demand 
(AMoD) scenarios from travelers, operators and city’s perspective using MATSim and 
IMSim. Together with MATSim, the TASHA model  (Miller et  al. 2005) has been used 
to study the effect of transit-oriented infrastructural investments and transport policies in 
the Greater Toronto Area (Diogu 2019). SimMobility (Adnan et al. 2016), another ABM 
model, has been used to study the advantages and challenges of AMoD compared to mass 
transit systems (Basu et al. 2018). In the study of Parsa et al. (2020), POLARIS (Auld et al. 
2016) is used to predict changes in average daily traffic under the connected and autono-
mous vehicles technology in the Chicago metropolitan area.

Discrete choice models (DCM) have also been used outside activity-based models to 
assess the impact of MaaS and new mobility concepts. The study of Snelder et al. (2019) 
applied a multinomial logit model to analyze the impact of automated driving and shared 
mobility in The Netherlands. A study in Finland (Ratilainen 2017) used choice modeling 
to identify the most important factors that affect traveler’s choices on MaaS packages as 
well as their willingness to pay for those factors. It shows that current public transport 
users are most interested in the use of MaaS packages. Using a latent class choice model 
(LCCM) to identify user groups with different personal preferences in Greater Manchester, 
Matyas and Kamargianni (2021) has shown significant heterogeneity of users’ preferences 
on MaaS monthly subscription. Higher-income and education-level people tend towards 
larger subscriptions. Similarly, Alonso-González et al. (2020) also used LCCM, and they 
found that individuals usually having a multimodal pattern have the highest inclination for 
future MaaS adoption while unimodal car users are the least likely to adopt MaaS. Finally, 
we mention Hensher et  al. (2022, 2023), which use advanced discrete choice models to 
build a commuter mode choice model.

The above-mentioned studies in the first place show that there is ample potential for 
MaaS and new mobility concepts. Importantly, however, their focus has predominantly 
been on unimodal trips or only unimodal modes in a tour, thus ignoring the pivotal role 
multimodal modes play in MaaS. Another omission of the existing literature is that one 
typically does not align the trips that people make during a day, leading to possibly incon-
sistent mode choices within a tour.

Multimodal trip modeling

MaaS and new mobility concepts stimulate the use of multimodal modes. Several stud-
ies have stated that mass public transport (PT) is essential for MaaS and suggest to shape 
complementary services to it  (Basu et al. 2018; Matyas and Kamargianni 2018), such as 
taxis  (Wang and Ross 2017; Saprykin et  al. 2022), a car-sharing system  (Mounce and 
Nelson 2019), or on-demand mobility  (Salazar et  al. 2018). Franco et  al. (2020) studied 
demand responsive transport (DRT) with mass transit in the multimodal journeys. Further-
more, Creemers et  al. (2015); Olvera et  al. (2015); Himmel et  al. (2016) have analyzed 
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access and egress mode choice based on surveys in the context of PT-based multimodal 
mode choice. We also mention Krajzewicz et  al. (2018), where an agent-based demand 
model is used to study multimodal mobility behavior, considering multimodal modes on a 
trip level, but only with PT as a main mode.

On the operational side, Zgraggen et al. (2019) have developed a routing algorithm to 
optimize coordination between new mobility concepts and public transit, while Wright 
et al. (2020) has presented a journey planning app where carpooling and public transport 
are connected. Although these studies do foster the use of multimodal modes within a 
trip by considering multimodal mode choice, they still do not check the consistency of 
mode choices within a tour. Moreover, many of these studies focus on single new mobility 
concepts, while MaaS typically requires the incorporation of a wide range or mixture of 
concepts.

Tour modeling

A relatively low number of studies explicitly check the consistency of modes within a tour. 
Some tour based discrete mode choice models use simplified main tour modes and condi-
tional trip-level mode choices, such as DaySim (Bradley et al. 2010), CT-RAMP (David-
son et al. 2010) and SimMobility (Adnan et al. 2016). The choice set explodes when the 
number of trips in a tour increases. Therefore, TASHA  (Miller et al. 2005) uses a simula-
tion procedure to get the mode choice probability. There are also models that handle all 
feasible tour mode combinations. For example, the stand-alone tour-based mode choice 
model developed by Vovsha (2017) explicitly checks for consistency of modes within 
a tour. CEMDAP  (Bhat et  al. 2004) also models this but only for simple tour combina-
tions. Besides, Hasnine and Habib (2018) proposed a tour-based mode choice mode using 
dynamic discrete choice models, but only two- and three-trips tours are handled. Although 
these tour-based mode choice models check for consistency of mode choices within tours, 
they do not consider multimodal trips withing tours.

Supernetworks are able to consider multimodal trips within tours. In this regard, it 
is also important to consider the works of Arentze and Timmermans (2004); Liao et  al. 
(2010); Fu and Lam (2014); Liao (2016), where multi-state supernetworks have been 
developed to model activity location, time, duration, (multimodal) mode and route choice 
simultaneously, based on least-cost path choices. The supernetwork approach can also con-
sider household joint activity choices simultaneously (Vo et  al. 2020). This approach is 
very powerful, as witnessed by the fact that it is amenable to an extension (e.g. the study 
of Li et al. (2018)) that incorporates free-floating car sharing as an alternative mode. How-
ever, as far as known to the authors, these approaches have not yet been applied to large 
realistic networks due their computational complexity and due to the difficulty to estimate 
and calibrate the parameters.

Conclusions literature review

Although different modelling approaches have been developed and applied to assess the 
impact of MaaS and new mobility concepts, a tour-based multimodal mode choice model 
that is able to include multiple new mobility concepts and transfers at hubs (i.e. multimodal 
modes) in large-scale realistic networks, while considering restrictions regarding owner-
ship and availability of modes in a tour does not yet exist.
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The discrete choice modelling (DCM) and supernetwork approaches are mutually dif-
ferent in nature, both having their advantages. On one hand, the supernetwork approach is 
much more flexible in that it can incorporate all kinds of new modes simultaneously based 
on a ‘unified path choice’ approach. On the other hand, the DCM approach offers more 
flexibility to include mode-specific advantages via alternative specific constants and non-
observable utility via error terms in the underlying utility functions of the choice models. 
Furthermore, its parameters can be estimated based on stated and/or revealed preference 
data. The present paper focuses on a discrete choice modelling approach.

Methodology

Our model can be interpreted as a component of an activity-based model (ABM). As such, 
we wish to implement the model in an activity-based travel-demand modelling package 
that already contains all other components required to run the ABM as a whole. For pur-
poses of practicality, this software package should be available on an open-source basis and 
be able to handle vast amounts of data. Next to this, the end user should be able to alter the 
utility function without changing the source code. As ActivitySim (cf. Gali et al. (2008)) 
satisfies all these requirements, we have opted to implement our model as a component 
of ActivitySim. An explanation of how our model interacts with ActivitySim is now in 
order. First, a population is synthesized as pointed out in Snelder et al. (2021). ActivitySim 
then makes long-term decisions, taking into account the number of cars each household 
owns, parking availability, work/school locations, etc. Next, the daily main activity purpose 
of each person is determined considering the interaction with other household members. 
After this, each individual makes decisions on the number of tours to be undertaken that 
day, and the number of stops in each tour including the start time, duration, the destinations 
and modes of each trip in the tour. The trip mode chosen at this stage is not final, but it will 
be considered by our model as the main mode of the uni- or multimodal mode to be cho-
sen. In particular, our new tour-based mode chain choice model subsequently determines 
access and egress modes to generate a feasible trip mode combination for the tour.

The next subsection details the mode categorization into seven main mode categories, 
which are also used in the numerical experiment of Sect. "Illustrational example". We 
argue that this categorization covers most of the traditional as well as new mobility modes. 
Afterwards, multimodal mode alternatives from these seven main modes are derived, 
which enables us to explain how our multimodal mode choice model works.

Mode categorization

We now describe the unimodal mode alternatives included in our ABM. In doing so, the 
notion of mode categorization is introduced, meaning that modes from different categories 
should be seen as different in nature. The main goal of this categorization is the reduction 
of selection bias at the mode choice selection stage of the model, as will be explained in 
greater detail later in this section. The underlying categories can be chosen in many ways, 
in line with the analysis that needs to be performed. To illustrate, seven different modes 
categories will be identified depending on the speed, weight, vehicle space per person, and 
passenger capacities, where it is noted that most of the traditional travel modes as well 
as new mobility modes fit into these categories. An advantage of using mode categories 
instead of single modes is that new modes can easily be added to the model as long as they 
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fit within one of the seven categories. Per aspect, we distinguish between the following 
elements:

• Speed (km/h): s ∈ {≤ 5, 5 − −20, 20 − −30,> 30};
• Weight: w ∈ { mm ,≥ car };
• Vehicle space per person: vs ∈ {≤ 0.25, 0.25 − 0.5,> 0.5};
• Passenger capacity: pc ∈ {< 1, 1 − 8,> 8}.

The vehicle space per person is defined as the space a person occupies compared to a pas-
senger car unit (pcu). Pedestrians and people in public transport fit for instance in the first 
class ( ≤ 0.25 pcu), cyclists in the second class (0.25–0.5 pcu), and car drivers in the third 
category ( > 0.5 pcu). As a result, there are 4 × 2 × 3 × 3 = 72 combinations. However, not 
all the combinations are valid. Below all infeasible combinations are listed including an 
argumentation:

• {w ≥ car} & {s ≤ 30}: a vehicle that weighs at least as much as a car should drive faster 
than 30 km/h.

• {w ≥ car} & {pc < 1}: a vehicle that weighs at least as much as a car should have 
capacity for one or more passengers.

• {w ≥ car} & {pc > 8} & {vs > 0.25}: the passenger capacity exceeding 8 implies that 
the vehicle space should be in the category ‘ ≤ 0.25’.

• {w = mm} & {pc ≥ 1}: micro-modalities do not have space for passengers.
• {w = mm} & {s > 30}: micro-modalities will not move faster than 30 km/h.
• {w = mm} & {vs > 0.5}: micro-modalities do not take that much space.
• {w = mm} & {s > 5} & {vs ≤ 0.25}: assuming that the speed of anyone with a means of 

micro-modality transport is higher than 5 km/h, the vehicle space per person is higher 
than a quarter of a pcu.

• {w = mm} & {s ≤ 5 } & {vs > 0.25}: micro-modalities moving at such low speeds typi-
cally take less space than the quarter of a passenger car unit.

Eliminating the invalid combinations, seven mode categories remain; see Table 1. The 
last column provides, for each category, a representative example, which we will now 
comment on. The abbreviations presented in this table are used in the remainder of this 
paper. The walk mode (wa) has a speed less than 5 km/h. The bike (b) mode corresponds 
with a travel mode with a speed between 5 and 20 km/h, thus covering (non-motorized) 
scooters as well. For the e-bike (eb) mode the speed is between 20 and 30 km/h, so that it 

Table 1  Overview feasible mode 
categories

Category s (in km/h) w vs (in pcu) pc Example

Micro5 ≤ 5 mm ≤ 0.25 < 1 walk (wa)
Micro15 5–20 mm 0.25–0.5 < 1 bike (b)
Micro25 20–30 mm 0.25–0.5 < 1 e-bike (eb)
Private > 30 ≥ car > 0.5 1–8 car (c)
Shared private > 30 ≥ car 0.25–0.5 1–8 cp

Shared on demand > 30 ≥ car ≤ 0.25 1–8 drt

Shared traditional > 30 ≥ car ≤ 0.25 > 8 pt
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also covers e-scooters. The car mode (c) effectively represents a transportation mode with 
speeds over 30 km/h (which can be electric or even autonomous). Here, both private and 
shared (e-)bikes and cars are considered. Car passengers (cp) can ride a private car with 
someone else from their household, or use a shared car (such as a taxi). Demand respon-
sive transport (drt) includes minibuses, shared taxis or shuttles of which the passenger 
capacity is smaller than the capacity of traditional public transport. Conventional public 
transport (pt) includes bus, tram, metro, and train.

The categorization example shown in this paper was chosen based on expert judgement 
so as to distinguish between modes as much as possible. It could happen, however, that 
mode categorization, although it reduces selection bias significantly and enables efficient, 
tractable computation, may lead to heterogeneity issues. That is, travelers may still have 
different personal preferences regarding two modes which are placed in the same category. 
The categorization may therefore be further optimized to diminish these issues as much as 
possible while retaining the positive effects of selection bias reduction and computational 
efficiency; cf. Sect. "Conclusion and discussion".

Multimodal mode alternatives

Now that unimodal mode alternative are explained, it remains to explain the multimodal 
mode alternatives. Each multimodal mode contains an access mode, a main mode and an 
egress mode, so that there are 7 × 7 × 7 = 343 multimodal mode alternatives. To model 
multimodal modes, two types of hub locations are considered. A hub is a place where 
travelers change their travel mode within a trip, i.e., travelers use a unimodal mode to travel 
from an origin to a hub location and then switch to another travel mode to continue their 
journey. The two hub types are c-pt and c-b hubs. For each origin–destination zone pair, 
hubs are first selected where the maximum cycle distance to/from the hubs is 3 km, the 
maximum distance for pt is 10 km, and the minimum car distance is 20 km. Then, the best 
hub is selected based on shortest travel distance. However, not all multimodal modes are 
valid. The following rules are used to select valid multimodal modes: 

 1. Each of the seven unimodal modes are valid access, main or egress modes.
 2. For all unimodal modes, walk is implicitly used as access and egress mode, because 

it is always necessary to walk a short distance to, e.g., your bike, car, or pt stop.
 3. When wa, b or eb is used as main mode, the access and egress mode can only be wa.
 4. If a traveler owns a MaaS subscription and he/she chooses to use b, eb or c, this traveler 

uses a shared bike, shared e-bike or shared-car, even in case he/she owns these vehicles 
privately as well.

 5. Transfers within public transport are possible, but not considered as a mode switch.
 6. In scenarios without MaaS, cars should return home at the end of a tour.
 7. In scenarios without MaaS, bike or e-bike should return home or can stay at hubs/

stations at the end of a tour.
 8. In scenarios without MaaS, when the car is the main mode, the access or egress mode 

should be wa. This simplification ensures that only one hub is used.
 9. In scenarios without MaaS, b and eb cannot be used as egress mode in a sub-tour.
 10. At a c-pt hub, c/cp can switch to pt or drt mode, while pt or drt can switch to c/cp 

mode.
 11. At a c-pt hub, drt can switch to pt, while pt can switch to drt mode.
 12. At a c-b hub, c/cp/drt can switch to b/eb mode, while b/eb can switch to c/cp/drt.



Transportation 

1 3

 13. travelers can change their travel mode only once within a trip (walking excluded). To 
ensure that a multimodal mode always has one access mode, one main mode and one 
egress mode, either the access or egress mode is wa. b-pt-b is an exception. (Due to 
lack of service data, eb-pt-eb is not included; conceptually it is no problem to add this 
option once this data is available.)

 14. c is only considered as main mode. This is because in The Netherlands, Park+Ride 
facilities are located at the edges of cities, so people typically prefer to use pt or b for 
the last part of their trip (CROW-KpVV 2008). Hence, c is not used as an access and/
or egress mode in this paper.

The non-MaaS related rules are based on the large-scale travel survey OViN/ODiN (see 
Centraal Bureau voor de Statistiek (2018)), while the MaaS-related rules are based on the 
judgement of stakeholders. Based on the considerations provided above, just 32 multi-
modal modes remain out of the possible 343. They are provided in Fig. 1.

It is worth stressing that our modeling framework is highly flexible. In principle, it 
can also include various other multimodal modes, thus also multimodal modes using c as 
access/egress mode, or multimodal modes that do not include wa. In the next section, it is 
explained how to calculate the utility of multimodal modes.

Multimodal mode utility calculation

It is left to consider the calculation of utilities of the multimodal mode alternatives. In 
particular, the utility function of multimodal modes is derived from the utility functions of 
unimodal modes. It covers socio-demographic attributes, travel times and costs.

Fig. 1  Selected multimodal modes
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The socio-demographic attributes include age, gender, driving license, household 
number of cars, household income, household composition, education level and activity 
type; there are N attributes, with Cj denoting the value of the j-th attribute. The parameters 
for these attributes and the mode alternative specific constant (ASC) are set equal to the 
parameters of the main mode of the trip. Intuitively, it would feel natural to also include 
the socio-demographic attributes and ASC of the access and egress mode in the utility 
function. This would however entail a comprehensive estimation of the associated coeffi-
cients, because these are not known in the literature. By including only the attributes of the 
main mode, already known estimations based on unimodal modes are used, while they are 
expected to model the utility reasonably well.

The utility contributions of the search time (ST), travel time (TT), operational cost (O), 
start-up cost (SU), parking cost (P) are summed over the access, main and egress mode. 
Furthermore, a multimodal mode will consist of two transfers, from access mode to main 
mode and from main mode to egress mode. Hence, the utility contribution of the hub trans-
fer time (Ttransfer ) is summed over these two transfers.

As for the inclusion of error terms in the utility function, we apply the error term struc-
ture adopted in Miller et al. (2005) and in doing so expand it to a multimodal setting. This 
work advocates the use of two error terms, only one of which is resampled between trips. 
Translating this to our setting, this means that we include terms �multimodal and �multimodal 
in the utility function that represent the errors made in computing the utility of the mul-
timodal mode of the trip. The first term �multimodal is specific to the mode and traveler. It 
models the personal preference with respect to a mode, and is not resampled whenever 
the same mode/traveler combination is regarded for a different trip (both within a tour or 
across multiple tours), so as to enforce consistency. That is, by not resampling this number, 
it is ensured that throughout the decision making for different trips, each traveler retains its 
personal preferences concerning mode choice.

The second term �multimodal is not only specific to the model and traveler, but also to 
the actual trip. This term models any other random effects, which can vary between trips, 
even though the same traveler/mode combination is considered. As a result, in contrast to 
�multimodal , �multimodal is resampled when making a choice for a different trip, even though 
the same mode/traveler combination is considered. Both of the error terms are assumed to 
follow a normal distribution, each with mean zero and appropriately chosen variance.

In summary, the utility function of the multimodal mode thus becomes:

here, � tt,i is the coefficient corresponding to travel time of the access, main and egress 
mode respectively (indexed by i ∈ {acc, main, egr} ); the coefficients � cost,i and � tt,walk are 
defined analogously. The transfer time at hubs are assumed to be constant: for c-b hubs it is 
set to 5 min, and for c-pt hubs to 8 min based. These transfer times are based on the public 
transport transfer times reported in Schakenbos and Nijenstein (2014) for the Netherlands. 
The transfer mode is assumed to be wa.

(1)

Umultimodal =ASCmain +
N
∑

j=1
�j,mainCj +

∑

i∈{acc, main, egr}
� tt,i(STi + TTi)

+
∑

i∈{acc, main, egr}
� cost,i(Oi + SUi + Pi)

+
∑

i∈{acc−main,main−egr}
� tt,walkTtransfer,i + �multimodal + �multimodal.
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The travel time and travel cost differ for private and shared vehicles. It depends on the 
combined value of three personal attributes which one should be used: driving license, car 
ownership and MaaS subscription. If a person owns a MaaS subscription and has a driving 
license the utility of a car is computed using the attributes for shared vehicles even if she/
he also owns a private vehicle. Otherwise the attributes of private vehicles are used. For 
bike or e-bike, it works similarly except for the fact that a driving license is not required.

It is worth noting that the utility function of a multimodal mode is based on that of a 
traditional unimodal mode. In fact, the utility function of a non-shared unimodal mode is 
given by

The differences that can be observed between (1) and (2) stem from the difference in nature 
between multimodal and traditional unimodal modes. For example, (2) does not include 
terms for the access and egress modes, as a unimodal mode only consists of a single (main) 
mode. Next to this, traditional unimodal modes do not include search times and transfer 
times, which is why they are not represented in (2) either.

It is also noteworthy that the above-explained error term structure of Miller et al. (2005) 
is beneficial for use in our setup because of the fact that the sum of the two error terms 
�multimodal and �multimodal is again normally distributed. This is due to the property that the 
sum of normally distributed random variables is again normally distributed. Furthermore, 
when the utility of the mode choices in a complete tour needs to be calculated, typically the 
utilities of the mode choices for the individual trips are added up. Due to the same prop-
erty, the aggregate error term of the utility on a tour level is again normally distributed. As 
a result, the choice model resolves to a multinomial probit model, which is a widely used in 
this context. The choice model is further commented on in the following section.

Choice model

After the utility calculation, a multimodal mode choice is generated through the following 
two steps.

⋆ Step 1: generate multimodal mode chain sets. Using the 32 multimodal modes, valid 
multimodal mode chain sets are generated for each tour type by taking into account the 
long-term decisions made in an earlier stage of the ABM. To this end, vehicle ownership 
and availability restrictions of the travelers are considered. We also factor in mode consist-
ency on a tour level. Vehicle ownership here should be interpreted as a combination of car, 
bike and e-bike ownership: there are 8 combinations ranging from not owning a vehicle to 
full ownership of all three vehicles. For each ownership combination, all valid multimodal 
mode chains of different tour types are generated consisting of 2 trips, 3 trips, 4 trips with-
out sub-tour, 4 trips including a sub-tour or 5 trips. In the settings considered, these tour 
types typically cover the vast majority (more than 98% according to OViN data (Centraal 
Bureau voor de Statistiek 2018) between 2013 and 2015) of all tours. For other tour types 
the model chooses one of the seven unimodal modes. We apply the rules with respect to 
mode ownership, mode availability in the tour, locations where vehicles should be returned 

(2)
Uunimodal = ASCmain +

N
∑

j=1
�j,mainCj

+ � tt,mainTTmain + � cost,main(Omain + SUmain + Pmain) + �unimodal + �unimodal.
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and mode allowance as explained in Zhou et al. (2020) in combination with the following 
rules for the situation without MaaS: 

1. c is a valid main mode in an inbound trip when the egress mode is walk;
2. c is a valid main mode in an outbound trip when the access mode is walk;
3. b/eb is a valid access mode or egress mode in inbound and outbound trips (where it is 

recalled that (e-)bikes can be left at hubs/stations).

For instance, in a scenario without MaaS, if a tour consists of a trip from home to work 
and a trip from work back to home, the combination wa-c-b from home to work and b-c-wa 
from work to home is valid, whereas wa-c-b combined with b-pt-wa is not valid because 
the privately owned car has not returned home.

The description above is based on the condition that the traveling person does not have 
a MaaS subscription. If he/she does, then all constraints on the mode choice per trip are 
relaxed. This means that the traveler can pick up shared cars or bikes on all locations where 
they are available. Hence, the number of possible multimodal mode chains is simply the 
full combination of all 32 modes for each tour type.

⋆ Step 2: select a multimodal mode chain from the set of valid multimodal mode chains. 
To make a multimodal mode chain choice, we regard the set of valid mode chains as gener-
ated by step 1 corresponding to the individual’s vehicle ownership, tour type and the main 
modes of the trips within the tour. Subsequently, the total utility of each multimodal mode 
chain in this set is calculated for the complete tour, by adding together the utilities of the 
(unimodal or multimodal) modes corresponding to each trip within the tour; cf. Eq. (1). 
The multimodal mode chain having the highest utility will then be the selected multimodal 
mode chain.

It is worth emphasizing that in this approach, there is no computation of probabilities 
concerning which mode chain set should be selected. Due to the normally distributed error 
terms in (1) and (2), these probabilities would not allow for a manageable closed-form 
expression in this case. Rather, as is usual in a probit model such as this one, mode chain 
sets are selected directly by checking which one corresponds to the highest utility. Due 
to the presence of the normally distributed error terms in the utility functions, stochastic-
ity is however involved, so that this approach should not be mistaken with a determinis-
tic approach. In fact, since the uncertainty in the utility functions is represented by a nor-
mally distributed component, the current approach is reminiscent of the multinomial probit 
choice model.

Illustrational example

In this section, it is demonstrated how the ABM, that includes our tour-based multimodal 
mode choice model, can be used to simulate the travel demand. This is done by means 
of a large-scale numerical experiment, corresponding to the metropolitan region Rotter-
dam–The Hague (MRDH) in the Netherlands. In our setup we explicitly include, in the way 
discussed in the previous section, the scenario that MaaS and new mobility concepts are 
available. The type of results that are obtained illustrates the added value of our approach 
for assessing the impact of MaaS and new mobility concepts, and is as such an indispensa-
ble tool facilitating future policy evaluation.
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As mentioned, first a population synthesizer  (Snelder et al. 2021) has been used to 
generate a population. It contains, per individual, the home location, household situ-
ation, gender, driving license, education level, student public transport card, income 
level, roots of the individuals, bike type, vehicle type and urbanization level. For this 
illustrational case, we focus on the population of the cities of Delft, Pijnacker, Nootdorp 
and Zoetermeer, being located between the two major cities in the MRDH area (Fig. 2). 
The output of this population synthesizer yielded a population of 278,698 inhabitants, 
together making up 131,466 households for the year of 2016. Of this generated popu-
lation, 16% of this population is younger than 15, 15% is between 15 and 25, 26% is 
between 25 and 45, 27% is between 45 and 65 and 16% is older than 65.

The MRDH road network includes access roads besides the main roads, while out-
side MRDH only the main roads have been included. The network also contains hubs 
(depicted by the red and orange points in Fig. 2), where travelers can transfer from car 
to (e-)bike or from car to PT and vice versa.

For each origin–destination pair, the level of service data (including distance, travel 
time and cost for the seven main modes directly) has been derived using the values pre-
sented in Table 2 concerning current-day modes and the results in Snelder et al. (2021) 
on future modes. Where applicable, the source of these numbers are mentioned in the 
table. If no source is mentioned, these numbers are assumption-based. If a shared mode 

Fig. 2  Population living area (in yellow) between The Hague and Rotterdam, the orange and red points are 
hubs. (Color figure online)
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happens not to be available at the origin or not allowed at the destination, then a very 
high impedance is imposed to ensure that the mode will not be selected (i.e., the model 
will assign a very low utility to this mode). It may strike as odd that several prices are 
set at zero. For example, the time-dependent price for the shared bike is set to 0 euro per 
minute. This is however not an unreasonable assumption, as shared bikes are usually 
hired per day in The Netherlands.

Model parameters

Since some unimodal and multimodal modes are at the moment hardly ever used, it is not 
possible to estimate all model parameters. In our case, we therefore decided to restrict the 
estimation to all unimodal modes for which sufficient data is available; here we rely on 
the large-scale travel survey OViN/ODiN (Centraal Bureau voor de Statistiek 2018) in the 
Netherlands for the years 2013–2017. The model parameters for drt are inherited from 
the car passenger mode. The model parameters for the eb mode are based on those of the 
b mode. The utilities for the multimodal modes are computed using the parameters of the 
unimodal modes as explained by Eq. (1). While we deem these numbers to be representa-
tive, setting up a detailed estimation of model parameters pertaining to MaaS and/or new 
mobility concepts is outside of the scope of this paper. In this respect, it should be kept in 
mind that our primary objective here is to demonstrate the kind of scenario evaluation that 
can be performed with our approach.

Table 2  List of input parameters used in level of service

Name Value Source

Shared bike:
Price for shared bike 0.00 €/min OV-fiets (NS Reizigers 2023),

Mobike (Micromobiliteit.nl 2023),
Donkey Republic (Frederik 2023)

Start-up cost of shared bike €1.925 OV-fiets, Mobike, Donkey Republic
Factor speed (shared) e-bike 1.5 25 km/h: 15 km/h
Price shared e-bike 0.3 €/min Felyx scooter (Felyx 2023)
Car sharing
Price car sharing 0.1 €/min Greenwheels (Greenwheels 2023)
Start-up cost car sharing €0 Greenwheels
Factor speed car-sharing car 1
Price car passenger in shared-vehicle 0.35 €/min
Start-up cost of car passenger in shared-vehicle €3.00 Uber (Uber Technologies, Inc 2022)
pcu value car passenger in shared-vehicle 1
drt
Factor speed drt 1
Waiting time constant drt 0
Start-up cost drt €3.00 Uber
pcu value for passenger in DRT vehicle 0.2 Assumed 5 passengers



Transportation 

1 3

Scenario description

Table 3 gives an overview of all scenarios that are considered in our illustration case. All 
the assumptions related to the scenarios are summarized in Appendix A2. The reference 
scenario, scenario 1, disables the drt mode (demand-responsive transport), so there are six 
unimodal modes. There are also no shared services, so people cannot rent a shared car or 
shared (e-)bike or use the drt services. In all other scenarios the drt mode is enabled.

In the scenarios having ‘16.5% MaaS’ in their names, it is assumed that 10% of the peo-
ple younger than 15 or older than 65 have a MaaS subscription, while 20% of the people 
between 15 and 65 have a MaaS subscription. As a result, on average 16.5% of the popula-
tion has a MaaS subscription. In any of the MaaS scenarios, having a MaaS subscription 
implies that a person can use a shared car/bike/e-bike, or use a shared taxi, minibus or 
other shared mode, which does not belong to the traditional public transport modes (bus, 
tram, metro, train).

In the scenarios having ‘100% MaaS’ in their names, 100% of the population has a 
MaaS subscription. In scenarios 2 and 3 multimodal trips are excluded. These scenarios 
show how MaaS and new mobility concepts can be included as main modes in a mode 
choice model, the numerical results providing an indication of the potential of shared 
mobility concepts and drt. Scenarios 4 and 5 do include multimodal modes, so as to assess 
the added value of modeling access and egress modes and show the potential of hubs. In 
scenario 6 the parking costs have been increased, to study whether hubs in these circum-
stances are used more intensively to avoid higher parking costs. In scenarios 7 and 8 the 
operational cost of all modes have been reduced in order to study its effect on the mode 
choice. In scenario 9 this has also been done, except for the shared car mode. This way, one 
can quantify the possible impact of a flexible cost mechanism to further reduce car usage.

Table 3  Scenario overview; ‘mm’ stands for multimodal

# Scenario name MaaS
subscription%

Run multi-
modal
mode chain 
model

Parking cost
w.r.t. normal

Operation Cost
w.r.t. normal

1 Reference 0 No 1.0 1.0
2 16.5% MaaS 16.5 No 1.0 1.0
3 100% MaaS 100 No 1.0 1.0
4 16.5% MaaS + mm 16.5 Yes 1.0 1.0
5 100% MaaS + mm 100 Yes 1.0 1.0
6 16.5% MaaS + mm +

 Parking 200%
16.5 Yes 2.0 1.0

7 100% MaaS + mm +
 Cost 50%

100 Yes 1.0 0.5

8 100% MaaS + mm +
Cost 20%

100 Yes 1.0 0.2

9 100% MaaS + mm +
 Cost 20% (except car)

100 Yes 1.0 0.2
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Scenario results

Using an ActivitySim implementation, which includes the model described in this paper 
as the multimodal mode choice component, we have simulated the aforementioned nine 
scenarios. Each of these scenarios took about 5 h to run on a server (CPU: Intel Xeon(R) 
2.4GHz, Memory: 128 GB). This section discusses the numerical findings pertaining to the 
various scenarios. The modal split effects are shown in Fig. 3. In scenarios 1 and 2, wa and 
b are the dominant modes because the main destinations are in the city centers. In scenario 
2 the share of drt trips is 7%, which is relatively high given the fact that the drt mode is 
available for only 16.5% of the population; compared to scenario 1, these drt trips mainly 
stem from wa and cp. There is also a modest (order of 1%) increase in e-bike trips. When 
everybody owns a MaaS subscription, in scenario 3, the total share of c trips decreases 
from 22.4% to 18% while the share of eb trips increases from 4% to 8%. So MaaS prompts 
people to choose the eb mode (instead of c). This also results in a significant decrease in 
the total number of car kilometres: this number goes down by as much as 7%.

In scenario 4, 3.3% of all trips use multimodal modes (such as combinations of c, pt and 
b/eb). Among those trips, 89% uses the c-pt hubs and 11% uses the c-b hubs. In particular, 
the share of trips using c-b hubs with private car and bike is only 0.05%. This low percent-
age is in line with our expectation because currently, the share of park and ride is also very 
low: in the OViN 2016 data, just 0.02% of all trips in the Netherlands uses a c-b hub.

In the extreme scenario 5, the total share of c trips reduces from 22.4% to 13%. Those 
c trips are mainly shifted to e-bikes and multimodal modes. This results in an increase by 
a factor of 2 of e-bike trips (to 7.9%), and an increase of multimodal mode use (to 10.7%). 
This shift can be explained by the fact that shared mobility concepts make it easier to use 
multimodal modes and do not impose any restrictions with respect to mode availability. 
The higher travel time via a hub is compensated by a reduced cost, recalling that car park-
ing at hubs is free (as was assumed in Sect. "Scenario description") and that the cost for a 
shared e-bike is also relatively low (as can be seen in Table 2).

Fig. 3  Modal split in different scenarios. Sharing and non-sharing trips are aggregated, and multimodal 
mode trips are aggregated
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In scenario 6 the parking cost has been increased by 100%, relative to scenario 4. The 
total number of trips using a car has decreased from 20.8% to 20.1%. This small change 
can be explained by the fact that the daily parking costs are on average low for private car 
travelers. However, the number of trips using a private car, whose destinations are the three 
most visited paid parking zones, has reduced by 10.6% (from 2590 to 2316), which is again 
in line with what could be expected. Based on the modal splits observed for scenarios 5 
and 6, one can conclude that the mode choice is sensitive to MaaS subscription ownership 
and parking cost.

In scenario 7 and 8 the operational cost has been decreased to 50% and 20%, respec-
tively, with respect to scenario 5. Compared to 7.9% of e-bike trips in scenario 5, the per-
centage of e-bike trips increases: it becomes 10.9% in scenario 7 and 14.5% in scenario 
8. These trips have primarily shifted from bike trips and walk trips. The multimodal trips 
have also slightly increased to 11.6% and 12%, respectively, compared to 10.7% in scenario 
5 due to the overall lower cost.trave

In scenario  9, again all operational costs have been decreased to 20%, but this time 
except for the private and shared car modes. The total car trips percentage decreases to 
11.5% compared to 13.5% in scenario 8. Those car trips have mainly shifted to other uni-
modal modes.

We continue, in Fig. 4, by analyzing the resulting trip length distribution of a few multi-
modal modes of scenario 4, normalized by the total number of trips per mode. Clearly, c-pt 
hubs are used for longer trips than the trips c-b hubs are used for. The top 3 most visited 
hubs are the hubs located on the boundaries of the cities Delft, Zoetermeer and The Hague 
(the three red circles in Fig. 2). This makes sense, as travelers prefer to switch from c to 
b/eb or pt to enter the cities and switch back to c when leaving the cities.

As a further sanity check, we zoom in on one specific hub (‘Kralingse Zoom’, located 
near the highway pass through Rotterdam), particularly focusing on the wa-c-b mode. Fig-
ure 5 shows the origins and destinations of travelers using this hub. When considering sce-
nario 4 instead of the reference scenario 1, on average the traveled distance increases by 
2.1 km and the travel time by 10 min. This may be surprising, as there seems to be no 

Fig. 4  Trip length distribution for wa-c-b/eb, wa-c-pt 
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incentive for a shift to a mode having higher travel distance or travel time. However, it 
should be stressed that in Scenario 4 no parking costs are involved when transferring at 
a mobility hub, so that leaving the car at the hub and traveling further with e.g. bike is 
an attractive option. This makes that the (explained) utilities of the wa-c-b mode and the 
car mode are in general very close to each other, despite the longer travel distance and/
or time of the wa-c-b mode. Due to the utilities being close to each other, the error terms 
�multimodal and �multimodal play a large role in the ultimate decision of the individual traveler. 
As a result, due to the heterogeneity of the travelers, not only car is chosen often as a mode 
in Scenario 4, but also modes that are multimodal. These multimodal modes are not chosen 
in the reference scenario 1. Therefore, since multimodal modes such as the wa-c-b mode 
usually incur a larger travel distance and time to reach a destination than unimodal modes, 
it is conceivable that the average traveled distances and average incurred travel times are 
larger in scenario 4 than in scenario 1. According to (Jonkeren et al. 2018), when a bike 
is used as access/egress mode for PT, the average cycle distance is between one and three 

Fig. 5  Trip origins (yellow blocks) and destinations (light red blocks) using the same hub (red point) by the 
wa-c-b mode. (Color figure online)
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kilometers. The additional average of 2.1 kms incurred in scenario 4 can thus be covered 
by bike, adding to the plausibility of our results.

Personal preference for the use of multimodal modes

To get an impression of which groups of the traveling public have a personal preference 
for multimodal modes given the ownership of a MaaS subscription, the results of sce-
nario five werea nalyzed further. In this scenario, each traveler holds a MaaS subscription. 
While only regarding trips undertaken using a multimodal mode, education, income and 
age of the travelers were tracked since they are important factors affecting people’s choice 
of using MaaS according to Matyas and Kamargianni (2021). The results show that low-
educated people (36%) and people with low or middle-level household incomes (78.6%) 
are the main MaaS users. This is not surprising, since these travelers may not own private 
vehicles and the MaaS subscription is assumed to be offered for free. Regarding age, the 
majority of the multimodal mode users are between 25 and 65 years old (62.2%). This can 
be explained by the fact that the main travel purpose of these trips is for work (38.1%), 
which is most relevant for this age group. Note that we assumed that the parameters in the 
utility function are the same for all groups of travelers. It is recommend to estimate user 
group specific parameters in follow-up research and to study how that would affect the 
results.

Sensitivity analysis

As mentioned in Sect. "Multimodal mode utility calculation", there are two normally dis-
tributed error terms incorporated into the utility function, so as to represent the unobserved 
utility; see Eq. (1). Without loss of generality due to the alternative-specific constants, both 
distributions are assumed to have a zero mean. Furthermore, we have assumed both error 
terms to have the same variance. In particular, the value of this variance is determined such 
that the standard deviation (i.e., the square root of the variance) of the sum of the two error 
terms equals 50% of the average absolute utility of all modes.

In addition, experiments were run where the value of the variance was set so that the 
standard deviation of the combined error terms was equal to only 10% of the average abso-
lute utility. In this case, in scenario 4, the percentage of multimodal trips reduced from 
3.3% to 1.5%. Hence, with a small standard deviation, the multimodal modes are unattrac-
tive compared to the unimodal modes. This can be explained by the fact that the mode hav-
ing the highest utility is selected, and generally the utilities of unimodal modes are higher 
than that of multimodal modes. This experiment quantifies the impact of the variance on 
the modal split. In general, one must conclude that an appropriate value of the variance 
must be identified e.g. by using survey data.

Conclusion and discussion

In this paper, we presented a novel tour-based multimodal mode choice model for the 
impact assessment of new mobility concepts and Mobility as a Service. It includes mode 
consistency restrictions with respect to personal vehicle ownership, MaaS subscription 
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ownership and vehicle states. We also introduced the concept of mode categorization. 
More specifically, it was shown that categorization into seven main modes includes most 
of the traditional modes and new mobility concepts like micro-modalities and on-demand 
public transport. Other new modalities can be added to the framework as well, and the 
model can deal with both shared and non-shared modalities. The categorization helps to 
reduce selection bias, while it induces numerical efficiency: our model is able to handle 
large scenarios up to millions of inhabitants.

A possible drawback of categorization, however, could be that it introduces heterogene-
ity issues. That is, travelers could still have different personal preferences regarding two 
modes in a single category, leading to anomalous choice behavior. Solving these hetero-
geneity issues is a topic for further research. That is, by selecting different aspect elements 
than those chosen in Sect. "Mode categorization", or even choosing different aspects, this 
issue may be reduced to a minimum. With this model, insight in the expected impact of 
new mobility concepts and Mobility as a Service on mode choice can be obtained. Moreo-
ver, it can be used to analyze the accessibility of hub locations in the future.

Concerning the multimodal mode alternatives, these are assumed in this study to include 
just a single main mode. However, one may reason that there may be more than one main 
mode used within a single trip. For example, think of a park and ride service, which uses 
both a car and a public transport mode. Although the inclusion of multiple main modes 
in a multimodal mode alternative is no problem from a modeling point of view, this will 
aggravate the computational complexity because of the exponential increase in the number 
of mode combinations. This is a point for further research.

Next, in the current study, in the utility calculation of the multimodal mode alterna-
tives only the ASC and the socio-demographic attributes of the underlying main mode are 
considered. The reason behind this is that in this way, previously estimated coefficients of 
these attributes in a unimodal setting could be used. This however leads to the possibly 
undesirable effect that personal preferences on the various access or egress modes are not 
taken into account. To include these modes, a comprehensive estimation of coefficients in 
a multimodal setting is required. A possible approach could be that of dynamic discrete 
choice modeling studied by Hasnine and Habib (2018).

Furthermore, when making multimodal mode choices, the model either requires the 
traveler to fully use their private vehicles or shared vehicles, without allowing a mixed 
use of private and shared vehicles. This can be improved upon by extending the model 
with an additional choice model, which decides when a traveler uses a shared or a non-
shared mode, in case the traveler has access to both. Such a choice model would need to 
be based on data concerning personal preferences of travelers. Moreover, mobility pack-
ages (Esztergár-Kiss and Kerényi 2020) and the type of sharing services such as free-float-
ing or station-based sharing also affect the multimodal mode choice patterns (Kopp et al. 
2015). Since free-floating services were assumed in a situation with MaaS, the model can 
be improved by including station-based sharing.

As mentioned above, incorporation of a choice model on whether to use a shared or 
non-shared mode requires additional data on personal preferences. In this spirit, it should 
also be mentioned that there are many other points where accuracy could be improved even 
further if data were available on the personal preferences of travelers. Then, utility func-
tions could be personalized by having the attributes depend on these data. One may for 
example think of personal preferences regarding future modes, for which hardly any data 
is available currently, or the willingness to use MaaS. It should be mentioned, though, that 
data on personal preferences regarding current-day modes are available. Hence, it is cur-
rently possible to include personal preferences regarding current-day modes in the model. 
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A non-trivial process of parameter estimation is required to this end, which is outside the 
scope of the current paper. The same holds when one would be interested in applying the 
model to regions outside of the Netherlands. In this case, while the model can be applied 
fully analogously, the OViN data cannot be used anymore. As such, this inevitably requires 
the estimation and subsequent calibration of relevant coefficients in the utility functions 
based on local survey data.

Other than applying the model to other regions, there are many ways in which the model 
can be used to obtain useful insights. For example, as eluded to at the start of Sect. "Illus-
trational example", the illustrational example mainly considers pricing schemes which are 
based on a pay-per-use principle. The model may however also be used to study the impact 
of other types of pricing schemes, for example, those generating revenue by letting the 
travelers pay for holding a MaaS subscription. This again requires additional data on per-
sonal preferences. In this regard, the options are endless: all kinds of ’business models’ can 
be considered.

We proceed by commenting on the scaling capabilities of the model. As reported at the 
start of Sect. "Scenario results", a scenario in the illustrational example took about five 
hours to run using code which was not optimized for speed. While not the focus of this 
paper, this calculation time can be reduced drastically. When one would optimize the code, 
one is able to handle large traffic systems within a reasonable amount of computation time; 
cf. Zhou et al. (2023). On top of this, if the GPU of a computer would be exploited for 
multi-threaded purposes in the spirit of our study Zhou et al. (2019), the computation time 
would be reduced even further. As mentioned in that paper, this way the computation time 
can be sped up by a factor up to 50. Thus, by taking these steps, the current model is 
amenable for use in analyzing large regions. As another idea of increasing the speed of 
the model, one may think of reducing the number of mode alternatives by excluding com-
binations of modes as a multimodal mode based on the location of the traveler. Indeed, 
considering the locations of the travelers, one may restrict the available multimodal modes 
available to them even further than done in this paper by considering the availability, 
accessibility and affordability at the traveler’s location. This was however not incorporated 
in this paper, so as to show the applicability of our model to larger areas including cities, 
where typically (almost) all modes are available.

Finally, this work takes network congestion into account by basing the travel times 
on level-of-service data. While we expect this to be reasonably accurate, one may won-
der whether the feedback from a network assignment model can be incorporated into the 
current travel demand model. While this may lead to improvements, incorporating such a 
‘feedback loop’ presents methodological challenges and merits a study on its own.

Appendix: Assumptions

In this section, the assumptions made in the paper are summarized. We distinguish between 
the assumptions made in the methodological part of the paper and the assumptions made 
in the scenario modeling. The assumptions in the former category, which also include the 
rules set up in Sect. "Multimodal mode alternatives", are compiled in Sect. "Assumptions 
in the methodology". The remaining assumptions pertaining to the modeling of the sce-
narios are listed in Sect. "Assumptions in the scenarios".
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Appendix 1: Assumptions in the methodology

• Each of the seven unimodal modes is a valid access, main or egress mode.
• For all unimodal modes, walk is implicitly used as the access and exit mode, because it 

is always necessary to walk a short distance, for example, to the bike, car, or pt stop.
• When wa, b or eb is used as the main mode, the access and egress mode can only be wa.
• If a traveler owns a MaaS subscription and he/she chooses to use b, eb or c, we let this 

traveler use a shared bike, shared e-bike or shared-car, even in case he/she owns these 
vehicles privately as well.

• Transfers within public transport are possible, but not considered as a mode switch.
• In scenarios without MaaS, cars should return home at the end of a tour.
• In scenarios without MaaS, bike or e-bike should return home or can stay at hubs/sta-

tions at the end of a tour.
• In scenarios without MaaS, when the car is the main mode, the access or egress mode 

should be wa. This simplification ensures that only one hub is used.
• In scenarios without MaaS, b and eb cannot be used as egress mode in a sub-tour.
• At a c-pt hub, c/cp can switch to the pt or drt mode, while pt or drt can switch to c/cp 

mode.
• At a c-pt hub, drt can switch to pt, while pt can switch to drt mode.
• At a c-b hub, c/cp/drt can switch to b/eb mode, while b/eb can switch to c/cp/drt.
• Travelers can change their travel mode only once within a trip (walking excluded). To 

ensure that a multimodal mode always has one access mode, one main mode and one 
egress mode, either the access or egress mode is wa. b-pt-b is an exception. (Due to 
lack of service data, we have not included eb-pt-eb; conceptually, it is not a problem to 
add this option once these data are available.)

• c is only considered as main mode. This is because in The Netherlands, Park+Ride 
facilities are located at the edges of cities, so people typically prefer to use pt or b for 
the last part of their trip (CROW-KpVV 2008). Hence, c is not used as an access and/or 
egress mode in this paper.

• For the situation without MaaS, c is a valid main mode in an inbound trip when the 
egress mode is walk;

• For the situation without MaaS, c is a valid main mode in an outbound trip when the 
access mode is walk;

• For the situation without MaaS, b/eb is a valid access mode or egress mode in inbound 
and outbound trips (where it is recalled that (e-)bikes can be left at hubs/stations).

• Both error terms �multimodal and �multimodal in the utility function are assumed to follow a 
normal distribution, each with mean zero and appropriately chosen variance.

• The transfer time at hubs is a constant: for c-b hubs it is set to 5 min, and for the c-pt 
hubs to 8 min according to the public transport transfer times reported in Schakenbos 
and Nijenstein (2014), which considers these parameters in the Netherlands.

• The transfer mode is assumed to be wa.
• There are no constraints for travelers to use any available modes if they own a MaaS 

subscription.

Appendix 2: Assumptions in the scenarios

In the scenarios considered in the illustrational example, the following assumptions were 
made.
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• Average time to search for shared bike is 1 min.
• Average time to search for a car sharing possibility is 5 min.
• The waiting time for the car passenger in a shared vehicle (e.g., taxi) is 5 min.
• The use of shared bikes, car-sharing, and being a car passenger in a shared vehicle is 

allowed everywhere: there are no restrictions for shared modes based on location..
• There is no other cost for the DRT mode except the start-up cost.
• The parking rates per zone assumed in the scenarios are those reported in RDW (2015). 

While in practice parking rates tend to vary between days and over time, we have used 
a simplified approach in which parking rates are fixed (i.e., we picked the rates of Tues-
day afternoon at 3PM). The hourly parking rates in a traffic analysis zone are calculated 
as weighted averages of all parking places in the corresponding zone.

• Parking at hubs is considered to be free of charge.
• Holding a MaaS subscription is free of charge.
• It is assumed that 10% of the traveling public younger than 15 or older than 65 hold 

a MaaS subscription, the percentage of the public between 15 and 65 years old hold-
ing a MaaS subscription reads 20%. As a result, on average 16.5% of the population 
has a MaaS subscription.

• Holding a MaaS subscription implies that a traveler can use a shared car/bike/e-bike, 
or use a shared taxi, minibus or other shared mode, which does not belong to the tra-
ditional public transport modes (bus, tram, metro, train).
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