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A B S T R A C T   

The life cycle assessment framework was adapted to the territorial level (the “territorial LCA”) to assess the 
environmental impacts and services of land-use planning scenarios. Given the various geographical conditions of 
the territory, the potential alternatives of land-use scenarios could be enormous. To prevent the iterative process 
of proposing and comparing alternative scenarios, this work aims to move one step further to automatically 
generate optimal planning scenarios by linking the novel territorial LCA with multi-objective optimization 
(MOO). A fuzzy optimization approach is adopted to deal with the trade-offs among objectives and to generate 
optimized scenarios, minimizing the environmental damages and maximizing the satisfaction level of the desired 
land-use functions subjected to constraints such as area availability and demand. Geographical Information 
System (GIS) is employed to manipulate geographic datasets for spatial assessment. An illustrative case study 
tests the novel integrated method (the territorial LCA, MOO, and GIS) on its ability to propose optimal land-use 
planning for bioenergy production in a region in Belgium. The study results reveal the competition of land uses 
for different energy products, the trade-offs among impact categories, and potential impacts on other territories if 
implementing optimal land planning for the territory under study. The optimization outcomes can help decision- 
making on the optimal locations for different crop types (i.e., miscanthus, willow, and maize in the case study) 
and utilizations (i.e., electricity, heat, biogas, and bioethanol in this study) complying with the objectives and 
constraints. This integrated tool holds the potential to assist policymakers when deciding on how to use the 
territory facing the global context of increasing demands for multiple uses of bio-based products, such as for food, 
feed, fuel, fiber, and chemicals. Limitations of the current method and its potential for real-world applications are 
discussed, such as expanding the scope to include life cycle sustainability assessment and taking farmers’ 
behavior and crop rotation into account.   

1. Introduction 

In the global spirit toward bioeconomy, many countries and regions 
have committed to promoting bio-based products as an essential strat-
egy to reduce greenhouse gas emissions (GHG) while safeguarding the 
regulating, supporting, provisioning, and cultural ecosystem services 
(Bryan et al., 2015). Meanwhile, researchers have observed increasing 
land-use competition in the food production (Tilman et al., 2009) and 
undesirable environmental issues due to direct and indirect land-use 
changes (dLUC, iLUC) (Sala et al., 2000). In this context, optimal 
land-use planning with a holistic perspective is needed in organizing 
agricultural activities to reach multiple objectives for sustainable 

development (Barral and Maceira, 2012). 
To prevent significant adverse effects on the environment while 

reaching specific development objectives (e.g., to reduce energy-related 
GHG), the corresponding development plans (e.g., the provisioning of a 
significant part of the territorial energy mix with biomass) need to be 
carefully evaluated at the early stage in the decision-making process, as 
required by European directive on the strategic environmental assess-
ment (SEA) (EU, 2001). Such plans can be defined at different scales and 
recent studies have put a particular emphasis on the territorial level 
(Sohn et al., 2018; Beaussier et al., 2019, 2022; Borghino et al., 2021). 
The territory is defined as a geographical area in which stakeholders are 
under the same local government, signifying the role of local 
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stakeholders who can make strategic decisions tailored to that region’s 
environmental constraints and potentials (Koponen and Le Net, 2021; 
Mazzi et al., 2017). This work focuses on agricultural territory, in which 
most land uses, or economic activities are based on agriculture, and the 
decision-makers need to balance multiple agricultural products and 
services and the environmental impacts (Nitschelm et al., 2016). 

Among different assessment tools, Life Cycle Assessment (LCA) has 
been advocated to support land planning due to its ability to identify 
trade-offs across impact categories, life cycle stages, and different ter-
ritories (Loiseau et al., 2012). Several studies aim to support land-use 
planning by combining with LCA to assess emissions from agricultural 
inputs (Li et al., 2021; Carauta et al., 2021), comparing impacts from 
alternative land-use choices (Solinas et al., 2019), and analyzing 
regional variances for producing energy (Nilsson et al., 2020). These 
studies first select one major function (e.g., biogas production) and 
compare different scenarios from a life-cycle environmental perspective. 
A territory (including agricultural territory) is a multifunctional system 
providing multiple environmental, social, and economic services (Bor-
ghino et al., 2021). In this direction, the “Territorial LCA” was proposed, 
which adapts LCA at the territorial scale to compare alternative land 
planning scenarios that provide multiple functions (Loiseau et al., 2013, 
2014, 2018). The territorial LCA could be used to assess all production 
and consumption activities within the territory (Loiseau et al., 2013), or 
focus on one sector, e.g., agricultural territory that provides multiple 
products and services. For example, Nitschelm et al. (2016) developed 
the conceptual framework of the “spatialized territorial LCA” to assess 
the environmental impacts of an agricultural territory with a higher 
level of spatial accuracy. Borghino et al. (2021) and Rogy et al. (2022) 
compared alternative agricultural land planning scenarios with the 
territorial LCA framework. Beaussier et al. (2022) couple the territorial 
LCA with the economic model of the forest sector and compare the 
eco-efficiency of scenarios with or without a subsidy for wood energy 
consumption. 

While comparing a baseline with proposed alternative scenarios is 
necessary to achieve final land planning proposals, this does not ensure 
that optimal scenarios are identified (Saner et al., 2014). The optimal 
plan could be hard to reach because the number of potential land-use 
configurations could be high, resulting from the spatial heterogeneity 
in the territory (e.g., soil type, climate zone) (Nitschelm et al., 2016), 
increasingly diversified land-use purposes (e.g., biofuel and fine chem-
icals), and constraints (e.g., land availability) (Budzinski et al., 2019). 
Furthermore, these land-use scenarios would present the trade-offs be-
tween different objectives, which poses a challenge to making decisions 
(Nilsson et al., 2020). Multi-objective optimization (MOO) could be used 
to overcome these challenges, which allows incorporating all planning 
variables and constraints into a mathematical model and offering the 
planners the land-use scenarios that are already optimized over multiple 
objectives. 

Linking LCA with multi-objective optimization (MOO), first pro-
posed by Azapagic and Clift (1999), has been applied in the environ-
mental management of bio-based production systems, such as supply 
chain management (Miret et al., 2016), process optimization (Arora 
et al., 2017), and farm activity management (Capitanescu et al., 2017). 
We reviewed articles that use optimization for the agriculture sector 
based on LCA (Supplementary Information, SI-1, section 1), and pre-
sented the studies that determine which lands are the most suitable for 
which crops or uses (i.e., the optimal spatial distribution of land uses). In 
total, eight research articles were found, indicating that this field has 
been underexploited, which confirms the statement made by Almeida 
et al. (2016). In these works that focus on the optimal spatial distribu-
tion of land uses, Geographic Information System (GIS) is used to 
calculate spatially explicit LCA (Almeida et al., 2016; Kreidenweis et al., 
2016; Galán-Martín et al., 2017; Nguyen et al., 2019), assess land suit-
ability (Yuan et al., 2018), record water sources allocation (Marzban 
et al., 2022; Ren et al., 2022) and propose optimal facility locations 
(Almeida et al., 2016). However, these works mainly focus on the spatial 

allocation of single-use (e.g., bioethanol production), which should be 
extended to optimize land uses for multiple purposes as the land use 
competition intensifies (Miret et al., 2016; Yao et al., 2017). 

This work aims to make a methodological advancement in linking 
territorial LCA with MOO and GIS, generating optimal agricultural land 
use scenarios at a territorial scale considering their spatial perfor-
mances, multiple and potentially conflicting objectives, and territorial 
constraints. The paper proceeds by first describing the methods in 
general, followed by a proof-of-concept case study focusing on the 
functions of producing meat and various bioenergy products in the 
Walloon agricultural territory to illustrate the framework’s capabilities. 
Limitations and potential utilizations are discussed. 

2. Material and methods 

2.1. The territorial life cycle optimization framework proposal 

The proposed framework (Fig. 1) proceeds by first defining the goal 
and scope, followed by inventory and indicator assessment (i.e., envi-
ronmental impacts and products and services), multi-objective optimi-
zation, and interpretation. 

Defining the goal and scope sets the main features of an LCA study, 
including the research objectives and the system boundaries (e.g., from 
“cradle-to-gate”) (ISO, 2006). In the proposed territorial life cycle 
optimization (TLCO) framework, the objectives (e.g., increasing biogas 
production by 10%) and planning variables (e.g., the potential locations 
for the new services or productions and the associated alternative crop 
types) are first defined in this step. Since the study is carried out to 
support informed decision-making processes in land planning, the 
functional unit (FU) is defined as the management of the territory for 
providing, usually, various agricultural products and services. Note that 
the provided products and services by the land uses within the territory 
are defined as the land use function (LUF) in correspondence with the 
territorial LCA approach (Loiseau et al., 2013). The geographically 
limited area of the agricultural territory under management acts as a 
constraint in the optimization model. 

The inventory assessment stage calculates the spatially explicit in-
ventory on a pre-defined spatial resolution for the unit processes of all 
the land use options specified in the goal and scope stage. The output of 
this step indicates the potential emissions and resources used if allo-
cating different land uses at different locations. The unit processes 
describing land use for different purposes are spatialized based on 
spatially explicit simulation models and corresponding spatial data. For 
the process that does not change as a function of their location (e.g., 
emissions from producing 1 kg of fertilizers), the life cycle inventory 
(LCI) database could be used to extract their emission factors. 

The indicator evaluation step assesses two categories of indicators, i. 
e., spatially explicit environmental impacts and products and services (i. 
e., LUFs), for the unit processes of all the land use options. The spatially 
explicit inventory would be translated to environmental impacts 
through the life cycle impact assessment (LCIA) method using charac-
terization factors (CFs), representing the damage caused in that location. 
For the categories that are sensitive to local conditions, such as fresh-
water eutrophication and terrestrial acidification, using CFs with fine 
native spatial resolution could better represent the spatial variability of 
the impacts (Mutel et al., 2019; Pfister et al., 2020). Spatial variances 
could also be accounted for in LUFs evaluation. 

At the step of MOO, the outputs of the spatialized environmental 
impacts and the LUFs for each alternative land use serve as input vari-
ables feeding into the optimization model, including objectives and 
constraints. The output of the TLCO framework is the optimal land-use 
scenarios, including biomass utilization strategies (which crop for 
which purpose?) and spatial allocations (which location for which 
crop?) under territorial objectives and constraints. In the final inter-
pretation step, the optimal scenarios and their associated environmental 
impacts and LUFs are discussed, and suggestions are made. 

T. Ding et al.                                                                                                                                                                                                                                     
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2.2. Case study 

The case study is shaped along with the 2050 low-carbon scenario for 
Belgium (Cornet et al., 2013), which projects the transitioning scenarios 
for each sector to reach the promised GHG reduction target of 80–95% 
by 2050 relative to 1990. In the agriculture sector, the number of ani-
mals can be reduced by 43% in 2050 compared to 2010 as a result of 
reducing meat consumption to a healthy diet, which can lead to up to a 
46% reduction in GHG emissions (Cornet et al., 2013). As animal 

production heavily relies on land use, including cropland and pasture 
(temporary and permanent) (Phelps and Kaplan, 2017), reducing the 
animal number (in head) would release part of the land occupied for 
animal and animal feed production. This released area could be utilized 
for energy crops to facilitate another low-carbon society goal, i.e., in-
crease biomass for energy from indigenous production, reaching 30% 
more in 2050 in the most ambitious scenario (Cornet et al., 2013). Note 
that bioenergy could be generated from various biomass resources, 
including agriculture and forestry residues, organic wastes, surplus 

Fig. 1. The proposed territorial life cycle optimization framework (TLCO). LCI: life cycle inventory.  

Fig. 2. Agricultural land use and proportion for animal feed in the Walloon region (South of Belgium).  
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forestry, and energy crops (Cornet et al., 2013). Resources such as 
organic waste are considered to be more sustainable as it entails fewer 
direct impacts on land compared to energy crops that are 
land-demanding (Beringer et al., 2011). However, energy crops such as 
miscanthus that are land-demanding constitute most of this bioenergy 
increase potential in Belgium, as identified by (Gauthier and Somer, 
2013). Since the large-scale cultivation of bioenergy crops would reflect 
changes in environmental impacts and products and services, it is 
meaningful to develop a model that generates optimal scenarios to have 
the maximum satisfaction on the bioenergy demand and minimum 
environmental impacts, taking full account of objectives, constraints, 
and spatial variances. 

In this context, the framework is implemented in the Wallonia 
administrative region (1690 Kha), where more than half of agricultural 
land is for animal production (Fig. 2). Walloon authority is responsible 
for setting the regional strategic plans to define territorial development 
objectives (such as agriculture, environment, and land uses) (Hanocq, 
2011). 

2.2.1. Goal and scope 
The purpose of the study is to decide where to cultivate which crop 

and to which energy form to convert so that the environmental impacts 
are minimized while the satisfaction of the bioenergy target is maxi-
mized, respecting the meat demand in the study region. The case study 
aims to demonstrate the integrated model of TLCO to support land 
planning, which relies on several assumptions and simplicities as below. 

We defined the available area from meat production for conversion 
as 191 Kha, which was calculated based on meat demand (i.e., animal 
head number) to maintain a healthy and balanced diet (Cornet et al., 
2013) and average land area demand per animal head (Ding et al., 
2021). This behavior change in meat consumption reduction could lead 
to an increase in consumption of, e.g., vegetables, which is not consid-
ered in this study. Similarly, any indirect effect from increased bio-
energy through market mechanisms is not considered. Besides, it should 
be noted that plowing permanent grassland to cultivate annual crops is 
not allowed in Europe (Commission Delegated Regulation (EU), 2014). 
However, the assumed available area for conversion (191 Kha) includes 
cropland and both temporary and permanent grassland, given that the 
specific locations of the permanent grassland are not available. Crop 
rotation is not considered in this study. 

The FU is defined as utilizing the potentially available area, i.e., 191 
Kha, from animal land use for one year to satisfy the demand for animal 
and bioenergy. We evaluated climate change (CC) and freshwater 
eutrophication (FE) as two environmental indicators and bioenergy 
production, including electricity (E), heat (H), biogas (BG), and bio-
ethanol (BE) as the functional indicators along with environmental 
impacts and associated with the FU. The selected potential bioenergy 
crops are miscanthus, willow, and maize according to their attractive 
environmental profile and cultivation experience in the Walloon region. 
The three conversion approaches (i.e., combustion, anaerobic digestion, 
and bioethanol refinery) and the bioenergy crop types (i.e., miscanthus, 
willow, and maize) exist in Wallonia. However, not all links could be 
observed, e.g., bioethanol production also exists in the region, but the 
feedstock is mainly from wheat. 

Fig. 3 shows all the possible land use options with the three feed-
stocks and conversion techniques without considering the limitations on 
their industrial potential. The conversion pathways are used in the 
optimization model to analyze all the possibilities of feedstock selection 
and utilization. The study’s system boundary for environmental impact 
assessment is “cradle to factory gate”, including the farm cultivation, 
transportation, and conversion in the facilities to energy products. This 
case study does not include other steps, e.g., storage. 

2.2.2. Inventory and indicator evaluation 
The cultivation stage includes the processes associated with 1 ha of 

land being cultivated by a particular crop for one year (without 

considering crop rotation). Depending on the crop type, the specific 
operations are different, but all the operations ranging from field 
preparation to the harvested crops are included. They were extracted 
from crop cultivation inventory in the ecoinvent database (ecoinvent 
v3.5 cut-off, SI-1) with Brightway2, an open-source framework for 
advanced LCA calculations (Mutel, 2015), and Activity-browser 
(Steubing et al., 2019) which provide a graphical interface to Bright-
way2. The in- and off-territory processes for each pathway were 
differentiated manually, according to (Ding et al., 2020). 

This study accounts for four location-dependent parameters: dLUC 
emissions, regionalized characterization factors (rCF) for FE, potential 
dry matter yield, and distance to the closest conversion facilities, which 
were aggregated at the municipal level (SI-1, section 2 equation 1). 
dLUC emission was calculated as the CO2 released due to soil distur-
bance and removing current land cover for energy crop cultivation 
amortized for a rotation period of 20 years following IPCC guidelines 
(SI-1 section 2). The average transportation distance between the mu-
nicipality to the conversion facility was calculated from the municipal 
center to the closest facility that can perform the corresponding con-
version for each crop. The facilities are the real authorized plants, and 
their locations were extracted directly from (SPW., 2020) and converted 
to the coordinates through a python package of Geopy (2020). These 
plants’ locations are displayed in the SI-1. The transportation distances 
were determined on a layer of the existing Belgium road network, 
retrieved and manipulated with a python package of OSMnx (Boeing, 
2017). Converting 1 ha of feedstock into alternative energy forms was 
calculated based on the inventory of energy production data from the 
ecoinvent database (v3.5) and literature, combined with 
spatially-explicit biomass yield (SI-1). 

The two environmental indicators, CC and FE, were calculated 
through the LCIA method of IMPACT World + at the midpoint (Bulle 
et al., 2019). The rCF for FE were imported with Brightway2 and clipped 
to the Walloon region to quantify different crops’ spatial explicit FE 
impacts within the region. The impact on CC is not a regionalized impact 
indicator. Thus, we calculated its value with global default CFs provided 
by IMPACT World+. Site-generic CFs were used to quantify off-territory 
impacts on CC and FE. The main gases involved are CO2, CH4, and N2O 
for CC, phosphate, and phosphorus for FE. 

2.2.3. Multi-objective optimization 
The MOO was designed to search for the optimal land-use allocation 

scenarios, including land-use (i.e., meat-related or bioenergy production 
from miscanthus, willow, or maize) and bioenergy products selection (i. 
e., heat, electricity, biogas, or bioethanol) so that the impacts on CC and 
FE are minimized while the satisfaction of the 2050 transition target is 
maximized. 

This work uses a fuzzy programming approach, which was first 
proposed by Zimmermann (1978), to deal with trade-offs among 
different objectives. Compared to other widely-used MOO techniques, e. 
g., ε-constraint optimization searching a set of Pareto solutions (Mav-
rotas, 2009) and weighted sum approach (Marler and Arora, 2010), the 

Fig. 3. Conversion pathways of producing bioenergy. *Co-products 
from residue. 
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fuzzy approach offers a computationally efficient and simple alternative 
to program optimization under uncertainty (Tan, 2005). Instead of crisp 
objectives and constraints, fuzzy optimization allows a certain level of 
tolerance deviating from aspirant value and converts the problem to 
maximize the satisfaction level of all objectives and constraints (Tan 
et al., 2008). 

The fuzzy formulation of the case study is presented in SI-1 (section 
3). The tolerance and aspirant values of each objective are defined in SI- 
1, which were calculated based on the upper bounds and lower bounds. 
The upper limits of CC and FE were set not to exceed the current impacts 
caused by feed production, which were based on our previous work 
(Ding et al., 2021). The energy production bounds were defined as 40% 
lower or higher than the energy production targets (the target for each 
energy form is defined as providing 30% of current bioenergy produc-
tion according to Cornet et al. (2013). Note that these values can be 
defined by experts or stakeholders, in the same manner that LCA defines 
the weighting factors (ISO, 2006). Besides, this study defines the 
constraint of the maximum area that could be released from animal land 
use (i.e., 191 Kha) so that the rest of the animal land use could satisfy the 
meat demand in a healthy and balanced diet. The available area in each 
municipality is also limited to not exceed the land use area for livestock 
production in each municipality (data provided in SI-2). 

3. Results 

3.1. Indicator performance 

The impacts (Fig. 4) and functional indicator (Fig. 5) score of each 
conversion pathway (Fig. 3) are presented first in this section, which 
were calculated as the average values over different municipals in the 
Walloon region. The results indicate that for biogas production, mis-
canthus is feasible since it has the lowest impacts on CC and FE (Fig. 4) 
and the highest biogas yield (Fig. 5). Using maize for bioethanol pro-
duction shows advantages from both environmental and energy yield 
perspectives. Note that though CC impacts from maize cultivation are 
significantly higher than the others, the total value accounting for 
transportation and conversion (Fig. 4) is lower mainly due to its lower 
impacts from conversion. Detailed process contributions at the cultiva-
tion stage are presented in SI-1 (section 2). The feasible crop for elec-
tricity and heat production is miscanthus from the perspectives of lower 
CC impact and higher bioenergy yield, whereas willow is a better choice 
from the FE perspective. Such results indicate the conflicts in the choices 
of feedstocks. 

The indicator scores of converting through CHP from alternative 
crops at the municipal level are presented in Fig. 6 (Performances of 
other conversion pathways are presented in SI-1 (section 2). The results 
indicate the conflicts in the choices of locations. Allocating crops in the 

northwestern part of the region shows better performance on CC than on 
the southeastern side. This spatial variation is mainly because the 
northwestern side has a higher occupation of the annual crops (Fig. 2). 
Substituting annual crops will generate less GHG emissions, thereby less 
CC impacts than substituting grassland, which has a higher occupation 
on the southeastern side. The miscanthus and willow have similar soil 
organic carbon as grassland (Holder et al., 2019), leading to even 
negative CC substituting annual crops at the municipal level (SI-1 sec-
tion 2). In contrast, the northwestern side tends to cause a higher impact 
on FE due to the higher rCF provided by IMPACT World+. Regarding 
energy yield, strong spatial contrast can be observed among crop types. 
For example, the municipalities located on the northwestern side tend to 
have higher yields for miscanthus production but lower for willow 
production. 

3.2. Multi-objective optimization 

The objective values when optimizing single objectives and multiple 
objectives are presented in Table 1. We also present the optimal mu-
nicipalities assigned to crop implementation and their conversion 
pathways in Fig. 7. The municipalities marked as “not assigned” will 
keep the current land use for feed to satisfy the meat demand. The 
detailed assigned area for each municipality is presented in SI-2. 

In single-objective optimization, this illustrative example shows an 
extreme case when no energy production target is set. The results show 
that there are trade-offs among bioenergy production and environ-
mental impacts. Minimizing FE impacts (both in- and off-territory im-
pacts) would allocate no bioenergy production while maximizing energy 
production would allocate miscanthus, willow, or maize for different 
conversions (Table 1, Fig. 7). Besides, minimizing CC (both in- and off- 
territory impacts) would cause a 2 ton PO4 P-limeq impact on FE, which 
is higher than the optimal status (0 kton PO4 P-limeq) if the objective is 
to minimize FE. 

The values in the brackets are the outcomes of the single objective 
model when the objective is set to only minimize in-territory impacts on 
CC without taking the off-territory performance into account. These 
values in brackets are higher than the outcomes when both in- and off- 
territory performance are considered. This is because the model tends to 
assign all the municipalities with a negative score on in-territory CC 
impacts with energy crops, which causes total impacts higher when 
adding off-territory impacts. The distinction of whether taking off- 
territory performance into optimization highlights the pollution trans-
fers between territories. 

Fuzzy linear programming results provide a compromised solution 
for the six objectives, with objective function values lying between the 
optimum and the worst status, satisfying more than 71% of the objec-
tives. The optimal allocation map from the fuzzy optimization model 

Fig. 4. Contribution of different life cycle stages to the impacts on climate change and freshwater eutrophication (CHP: combined heat and power).  
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reveals that mainly the northwest municipalities would be assigned for 
bioenergy production. This compromised solution is achieved under the 
specific tolerance setting on the satisfaction level for each objective. By 
adjusting these pre-defined feasibility threshold parameters, one can 
prioritize the objectives (sensitivity to the tolerance setting on the 
optimal results are presented in SI-1 section 4). 

4. Discussion 

4.1. Support land-use planning with territorial LCA and optimization 

This work aims to develop an integrated methodological framework 
that combines the territorial LCA, MOO, and GIS to generate optimized 
land-use scenarios, which could support agricultural land-use planning. 
The consideration of the life cycle impacts of multiple products and 

Fig. 5. Bioenergy yield of each conversion pathway (CHP: combined heat and power).  

Fig. 6. Indicator score of CHP from alternative energy crops of miscanthus, willow, and maize (CC: climate change (kg CO2eq/ha); FE: freshwater eutrophication (kg 
PO4 P-lim eq/ha); E: electricity (kWh); H: heat (MJ/ha)). 

Table 1 
The trade-offs among six objectives and fuzzy optimization solutions (values in bracket represent in-and off-territory impacts when the objective is limited to only 
minimize in-territory performance. CC: climate change, FE: freshwater eutrophication, E: electricity, H: heat, BG: biogas, BE: bioethanol).   

Min. CC Min. FE Max. E or H Max. BG Max. BE MOO (overall 
λ = 0.71) 

Membership value 

CC (Mton CO2eq) − 0.0001 (0.09) 0.00 0.17 0.20 1.89 0.19 0.71 
FE (kton PO4 P-limeq) 0.002 (0.19) 0.00 0.25 0.52 1.03 0.15 0.74 
E (TWh) 0.02 (2.77) 0.00 3.82 0.00 1.15 0.85 1.00 
H (TWh) 0.07 (7.77) 0.00 10.72 0.00 1.71 2.24 0.71 
BG (TWh) 0.00 0.00 0.00 8.48 0.00 0.08 0.71 
BE (TWh) 0.00 0.00 0.00 0.00 5.59 0.53 0.71  
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services produced by the land uses facilitates comprehensive analysis, 
which is meaningful and novel in supporting land-use planning (Loiseau 
et al., 2018). Although many tools and models developed to evaluate 
environmental impacts and services and could support land-use plan-
ning (Polasky et al., 2008; Kennedy et al., 2016; Azuara-García et al., 
2022), LCA stands out to perform multi-criteria assessment throughout 
the life cycle of the products and services provided by land uses (Loiseau 
et al., 2012). This work generating optimal land-use allocation for 
multiple products based on their spatial explicit life cycle impacts is 
needed, as mentioned by Miret et al. (2016) and Beaussier et al. (2019). 

The case study shows that the framework can facilitate decision- 
making at the strategic level, providing optimal solutions that comply 
with the pre-defined objectives and restrictions (Fig. 7). The optimal 
allocation for multiple land uses could provide on-ground guidance on 
farmers’ land-use decisions. For example, many academic articles have 
pointed out that although a high budget has been already allocated to 
support farmers’ adopting sustainable practices, a limited steering effect 
is observed in Europe (Lupp et al., 2014; Reed et al., 2014; Hristov et al., 
2020). They also pointed out that one of the potential solutions is to 
introduce a spatial dimension and align per-hectare payments for land 
use promotion with spatial parameters. Our work could contribute to 
this potential solution, by providing insights on optimal allocation for 
multiple land uses based on the territorial LCA approach that takes 
spatial variances and territorial objectives into account. In the case 
study, the optimal allocation for bioenergy land use is on the northwest 
side, which might indicate that strategic planners could focus on bio-
energy crop promotion (e.g., through subsidies) on the northwest side 
rather than the southeast side. 

4.2. Outlooks of TLCO framework to support land-use planning 

The key limitation of the TLCO model is its application in guiding 
real-world land-use planning. The optimal solutions may provide on- 
ground guidance but may not be used as the “blueprint” to replicate 
the optimal land planning. A real-world agricultural territory is a com-
plex and dynamic system, in which multiple stakeholders and associated 
socio-economic factors influence its future development. Especially the 
current work has not accounted for real land-use decision makers – 
farmers, who have their preferences and objectives (e.g., farm income) 
that may drive the landscape development in the real world away from 
the optimal land-use allocation that complies with territory objectives. 

Further study could be conducted to account for farmers’ decisions in 
the model by using agent-based modeling (ABM), which allows the 
simulation of a set of agents interacting and system dynamicity (Miller 

et al., 2013; Baustert and Benetto, 2017). Besides, the participatory 
approach is also feasible to enhance the applicability of the current work 
by capturing stakeholders’ insights (including farmers) in land-use 
planning, improving stakeholders’ understanding of the system, and 
clarifying the impacts of changes to help the decision-making (Shahpari, 
2019; Shahpari et al., 2021; Chopin et al., 2019). By accounting for 
multiple stakeholders’ preferences and simulating their decisions, re-
searchers could explore alternative policy interventions and associated 
simulated results to propose the ones that align with the optimal solu-
tions at the territorial level (Brunner et al., 2016; Bartkowski et al., 
2020). Besides, researchers have explored generating directly feasible 
policy solutions that account for farm-level optimization objectives, e.g., 
bilevel optimization (Whittaker et al., 2017; Bostian et al., 2021), and 
multi-agent system coupling heuristic optimization (Huang and Song, 
2019; Zhao et al., 2019). 

In addition, the agricultural territory is a social-ecological system 
(Huber et al., 2018). Thus improving socioeconomic consideration is 
necessary for dealing with land-use planning issues in the real world 
(Santibañez-Aguilar et al., 2014). This work adopts the concept of LUFs, 
which could reflect the socioeconomic performances of different land 
uses. However, further work should be conducted to assess sustainability 
indicators on the same dashboard using the life cycle thinking (Loiseau 
et al., 2013). Social LCA (Macombe et al., 2013) or life cycle sustain-
ability assessment (Notarnicola et al., 2017) is therefore promoted to be 
adopted at the territorial level (Loiseau et al., 2018). Besides, developing 
an integrated model has been promoted by several studies to assess the 
sustainability of the territory system, e.g., linking the bottom-up 
approach of ABM for socioeconomic consideration from individual 
stakeholders (Vance et al., 2022; Bichraoui-Draper et al., 2015) and 
top-down approach of system dynamics to account feedback relation-
ship between socioeconomic and environmental impacts (Cavicchi, 
2020; Onat et al., 2017). 

Another issue for land planners is to have a comprehensive under-
standing of the indirect consequences of local bioenergy development. 
For example, the decision to introduce a large amount of new crops to 
the territory could cause iLUC due to the displacement of marginal crops 
in the global market (Vadenbo et al., 2017). Besides, changes in one 
sector might also bring indirect effects in another sector through 
competition and synergy (Beaussier et al., 2019). However, modeling 
these indirect effects is challenging to capture the causal relationship 
accurately (Van Stappen et al., 2011) and how to integrate these de-
velopments systematically and coherently in this framework needs 
further study. 

Fig. 7. Optimal allocations of the three alternative crops under six single objective optimization scenarios and fuzzy optimization (The first six figures were obtained 
by optimizing a single objective function subject to the constraints of the limited available area; the last figure on the lower right was obtained through fuzzy 
optimization with pre-defined tolerance values for each objective in SI-1; not assigned represent the land will remain the same as the present land use, i.e., animal 
land use). 
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4.3. Limitations of the case study 

This case study is limited in data collection for simplicity and 
demonstration purpose. Researchers could enhance their case studies by 
collecting more comprehensive and accurate data. For example, more 
sophisticated models and spatial data could be used to estimate the 
spatially explicit inventory for in-territory activities (Beaujouan et al., 
2002). In the calculation for off-territory impacts, we extracted in-
ventory from the ecoinvent and used site-generic CF to quantify their 
impacts instead of regionalized CF provided at the country level as 
performed in the work of Mutel and Hellweg (2009). As the planners 
have little influence on the products outside the territory, and the lo-
cations of the off-territory activities are not certain, our results using 
site-generic CF for off-territory activities are relevant and informative 
for decision-makers at the territorial level. Further studies could be 
performed to improve the accuracy by collecting more accurate infor-
mation on the locations of off-territory activities (e.g., using 
multi-regional-input-output data) and using regionalized CF to assess 
their impacts (Pfister et al., 2020). 

Besides, we assumed that all the grassland could be potentially 
released from animal production reduction, regardless of whether it is 
permanent or temporary, due to a lack of data. However, this assump-
tion can be arbitrary and cause results less accurate as the conversion of 
permanent grassland is restricted in Europe (Commission Delegated 
Regulation (EU), 2014) for its essential role in maintaining carbon stocks 
(Lessire et al., 2019). Crop rotation is also one of the major practical 
issues regarding integrating bioenergy crop production in the existing 
farming practice (e.g., maize silage followed by miscanthus) (Mangold 
et al., 2019). 

In the case study, we only introduced different bioenergy products as 
the new LUFs and estimated two impact categories (CC and FE), which 
can be expanded by considering other biomass functions (e.g., bio-
plastics, fine chemicals) and more impact categories (or endpoint impact 
evaluation, e.g., ecosystem quality). Such expansion could improve the 
model by optimizing the full biomass uses over rather holistic impact 
categories. Also, the facilities’ locations were assumed to be fixed, and 
their conversion capacities are not considered in the optimization. By 
parameterizing the potential new locations and facility capacity (e.g., 
modifying the linear optimization model in this study into mixed-integer 
linear programming), other elements in the whole supply chain of en-
ergy production can participate in the optimization. 

4.4. Application in other territories 

Though the general modeling approach proposed by this work is 
widely applicable, the data should be tailored for the specific region that 
is under study. Especially, the magnitude of the emissions from dLUC 
calculated depends largely on the previous land use (grassland or annual 
land) and other site-specific conditions. It should be noted that various 
data sources with different spatial resolutions are aggregated at the same 
level, which is necessary to facilitate the results’ communication. 
However, since different resolutions to aggregate data could lead to 
significant differences in the optimization results (Sharara et al., 2020), 
selecting the appropriate one is critical to reducing the uncertainty of 
the results (O’Keeffe et al., 2016). Our resolution selection (i.e., mu-
nicipals) is reasonable considering the spatial variability, data avail-
ability, and results’ communication (SI-1, section 2). However, the 
appropriate resolution for the applications implemented in other terri-
tories might be different, which needs to be carefully selected. 

5. Conclusion 

As a policy instrument, land-use planning plays a critical role in 
balancing conflicting objectives, especially in increasingly intense 
competition for limited land resources. It is required to think about the 
land allocation for different purposes wisely to come to optimal land-use 

plans so that environmental disturbance can be minimized while soci-
etal needs and benefits can be maximally satisfied. The developed 
framework is meaningful as it provides a solid foundation linking the 
territorial LCA with optimization to support such plans. The territorial 
LCA is used to assess the impacts and services provided for different land 
planning scenarios. The optimization is used to build optimal scenarios 
automatically based on the assessed results from territorial LCA. By 
linking these two approaches coherently, facilitated with GIS to handle 
spatial data, the proposed method can propose optimal crop allocation 
and its energy conversion, contributing to supporting agricultural land- 
use planning decisions. 

The illustrative case study explores the application of the model on 
land use for bioenergy purposes in the Walloon region. Though simpli-
fied with several limitations, the case study shows that the model holds 
the potential to search for the territory’s optimal locations for multiple 
land-use functions complying with multiple territory objectives and 
constraints. Further research focusing on the extensions of the basic 
model is needed to improve the framework’s utility and results’ accu-
racy, such as including other functions than energy production, assess-
ing the social impacts of land-use planning at the territorial level, and 
adding a dynamic dimension and indirect impacts. 
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déchets. 

T. Ding et al.                                                                                                                                                                                                                                     

https://doi.org/10.1016/j.jenvman.2022.116946
https://doi.org/10.1016/j.jenvman.2022.116946
https://doi.org/10.1016/j.biombioe.2016.04.010
https://doi.org/10.1016/j.jclepro.2017.01.148
https://doi.org/10.1016/j.jclepro.2017.01.148
http://refhub.elsevier.com/S0301-4797(22)02519-1/sref3
http://refhub.elsevier.com/S0301-4797(22)02519-1/sref3


Journal of Environmental Management 328 (2023) 116946

9

Azapagic, A., Clift, R., 1999. Life cycle assessment and multiobjective optimisation. 
J. Clean. Prod. 7 (2), 135–143. https://doi.org/10.1016/S0959-6526(98)00051-1. 

Azuara-García, G., Palacios, E., Montesinos-Barrios, P., 2022. Embedding sustainable 
land-use optimization within system dynamics: bidirectional feedback between 
spatial and non-spatial drivers. Environ. Model. Software 155, 105463. https://doi. 
org/10.1016/j.envsoft.2022.105463. 

Barral, M.P., Maceira, N.O., 2012. Land-use planning based on ecosystem service 
assessment: a case study in the Southeast Pampas of Argentina. Agric. Ecosyst. 
Environ. 154, 34–43. https://doi.org/10.1016/j.agee.2011.07.010. 

Bartkowski, B., Beckmann, M., Drechsler, M., et al., 2020. Aligning agent-based modeling 
with multi-objective land-use allocation: identification of policy gaps and feasible 
pathways to biophysically optimal landscapes. Front. Environ. Sci. 8 https://doi.org/ 
10.3389/fenvs.2020.00103. 

Baustert, P., Benetto, E., 2017. Uncertainty analysis in agent-based modelling and 
consequential life cycle assessment coupled models: a critical review. J. Clean. Prod. 
156, 378–394. https://doi.org/10.1016/j.jclepro.2017.03.193. 

Beaujouan, V., Durand, P., Ruiz, L., et al., 2002. A hydrological model dedicated to 
topography-based simulation of nitrogen transfer and transformation: rationale and 
application to the geomorphology– denitrification relationship. Hydrol. Process. 16 
(2), 493–507. https://doi.org/10.1002/hyp.327. 

Beaussier, T., Caurla, S., Bellon-Maurel, V., et al., 2019. Coupling economic models and 
environmental assessment methods to support regional policies: a critical review. 
J. Clean. Prod. 216, 408–421. https://doi.org/10.1016/j.jclepro.2019.01.020. 

Beaussier, T., Caurla, S., Bellon-Maurel, V., et al., 2022. Deepening the territorial Life 
Cycle Assessment approach with partial equilibrium modelling: first insights from an 
application to a wood energy incentive in a French region. Resour. Conserv. Recycl. 
179, 106024 https://doi.org/10.1016/j.resconrec.2021.106024. 

Beringer, T., Lucht, W., Schaphoff, S., 2011. Bioenergy production potential of global 
biomass plantations under environmental and agricultural constraints. GCB 
Bioenergy 3 (4), 299–312. https://doi.org/10.1111/j.1757-1707.2010.01088.x. 

Bichraoui-Draper, N., Xu, M., Miller, S.A., et al., 2015. Agent-based life cycle assessment 
for switchgrass-based bioenergy systems. Resour. Conserv. Recycl. 103, 171–178. 
https://doi.org/10.1016/j.resconrec.2015.08.003. 

Boeing, G., 2017. OSMnx: new methods for acquiring, constructing, analyzing, and 
visualizing complex street networks. Comput. Environ. Urban Syst. 65, 126–139. 
https://doi.org/10.1016/j.compenvurbsys.2017.05.004. 

Borghino, N., Corson, M., Nitschelm, L., et al., 2021. Contribution of LCA to decision 
making: a scenario analysis in territorial agricultural production systems. J. Environ. 
Manag. 287, 112288 https://doi.org/10.1016/j.jenvman.2021.112288. 

Bostian, M.B., Barnhart, B.L., Kurkalova, L.A., et al., 2021. Bilevel optimization of 
conservation practices for agricultural production. J. Clean. Prod. 300, 126874 
https://doi.org/10.1016/j.jclepro.2021.126874. 

Brunner, S.H., Huber, R., Grêt-Regamey, A., 2016. A backcasting approach for matching 
regional ecosystem services supply and demand. Environ. Model. Software 75, 
439–458. https://doi.org/10.1016/j.envsoft.2015.10.018. 

Bryan, B.A., Crossman, N.D., Nolan, M., et al., 2015. Land use efficiency: anticipating 
future demand for land-sector greenhouse gas emissions abatement and managing 
trade-offs with agriculture, water, and biodiversity. Global Change Biol. 21 (11), 
4098–4114. https://doi.org/10.1111/gcb.13020. 

Budzinski, M., Sisca, M., Thrän, D., 2019. Consequential LCA and LCC using linear 
programming: an illustrative example of biorefineries. Int. J. Life Cycle Assess. 24 
(12), 2191–2205. https://doi.org/10.1007/s11367-019-01650-6. 

Bulle, C., Margni, M., Patouillard, L., et al., 2019. IMPACT World+: a globally 
regionalized life cycle impact assessment method. Int. J. Life Cycle Assess. 24, 
1653–1674. https://doi.org/10.1007/s11367-019-01583-0. 

Capitanescu, F., Marvuglia, A., Navarrete Gutiérrez, T., et al., 2017. Multi-stage farm 
management optimization under environmental and crop rotation constraints. 
J. Clean. Prod. 147, 197–205. https://doi.org/10.1016/j.jclepro.2017.01.076. 

Carauta, M., Troost, C., Guzman-Bustamante, I., et al., 2021. Climate-related land use 
policies in Brazil: how much has been achieved with economic incentives in 
agriculture? Land Use Pol. 109, 105618 https://doi.org/10.1016/j. 
landusepol.2021.105618. 

Cavicchi, B., 2020. A “system dynamics perspective” of bioenergy governance and local, 
sustainable development. Syst. Res. Behav. Sci. 37 (2), 315–332. https://doi.org/ 
10.1002/sres.2631. 

Chopin, P., Bergkvist, G., Hossard, L., 2019. Modelling biodiversity change in 
agricultural landscape scenarios - a review and prospects for future research. Biol. 
Conserv. 235, 1–17. https://doi.org/10.1016/j.biocon.2019.03.046. 

Commission Delegated Regulation (EU), 2014. Commission Delegated Regulation (EU) 
No 639/2014 of 11 March 2014 Supplementing Regulation (EU) No 1307/2013 of 
the European Parliament and of the Council Establishing Rules for Direct Payments 
to Farmers under Support Schemes within the Framework of the Common 
Agricultural Policy and Amending Annex X to that Regulation, p. 47. 

Cornet, M., Duerinck, J., Laes, E., et al., 2013. Scenarios for a Low Carbon Belgium by 
2050, p. 119. November.  

Ding, T., Bourrelly, S., Achten, W.M.J., 2020. Operationalising Territorial Life Cycle 
Inventory through the Development of Territorial Emission Factor for European 
Agricultural Land Use. 

Ding, T., Bourrelly, S., Achten, W.M.J., 2021. Application of territorial emission factors 
with open-access data—a territorial LCA case study of land use for livestock 
production in Wallonia. Int. J. Life Cycle Assess. https://doi.org/10.1007/s11367- 
021-01949-3. 

EU, 2001. Directive 2001/42/EC of the European Parliament and of the Council of 27 
June 2001, on the assessment of the effects of certain plans and programmes on the 
environment. Off J Eur Communities 197, 30–37. 
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Loiseau, E., Aissani, L., Le Féon, S., et al., 2018. Territorial Life Cycle Assessment (LCA): 
what exactly is it about? A proposal towards using a common terminology and a 
research agenda. J. Clean. Prod. 176, 474–485. https://doi.org/10.1016/j. 
jclepro.2017.12.169. 
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