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biomarkers in amyotrophic lateral sclerosis

ULF KLÄPPE1,2 , STEFAN SENNFÄLT1,2, ANIKÓ LOVIK3,4, ANJA FINN2, ULRIKA
BOFAISAL2, HENRIK ZETTERBERG5,6,7,8,9,10, KAJ BLENNOW5,6, FREDRIK PIEHL1,2,
IVAN KMEZIC1,2, RAYOMAND PRESS1,2, KRISTIN SAMUELSSON1,2, ANNA
MÅNBERG11, FANG FANG3 & CAROLINE INGRE1,2

1Karolinska Institutet, Stockholm, Sweden, 2Department of Neurology, Karolinska University Hospital, Stockholm,
Sweden, 3Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm,
Sweden, 4Methodology and Statistics Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands,
5Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, M€olndal, Sweden, 6Department of
Psychiatry and Neurochemistry, Institute of Neuroscience and Psychology, Sahlgrenska Academy, University of
Gothenburg, M€olndal, Sweden, 7Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen
Square, London, UK, 8UK Dementia Research Institute at UCL, London, UK, 9Hong Kong Center for
Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China, 10Wisconsin Alzheimer’s Disease Research
Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison,
Madison, WI, USA, and 11Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of
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Abstract
Objective: To describe the diagnostic and prognostic performance, and longitudinal trajectories, of potential biomarkers of
neuroaxonal degeneration and neuroinflammation in amyotrophic lateral sclerosis (ALS). Methods: This case-control study
included 192 incident ALS patients, 42 ALS mimics, 114 neurological controls, and 117 healthy controls from Stockholm,
Sweden. Forty-four ALS patients provided repeated measurements. We assessed biomarkers of (1)neuroaxonal degeneration:
neurofilament light (NfL) and phosphorylated neurofilament heavy (pNfH) in cerebrospinal fluid (CSF) and NfL in serum,
and (2)neuroinflammation: chitotriosidase-1 (CHIT1) and monocyte chemoattractant protein 1 (MCP-1) in CSF. To evalu-
ate diagnostic performance, we calculated the area under the curve (AUC). To estimate prognostic performance, we applied
quantile regression and Cox regression. We used linear regression models with robust standard errors to assess temporal
changes over time. Results: Neurofilaments performed better at differentiating ALS patients from mimics (AUC: pNfH
0.92, CSF NfL 0.86, serum NfL 0.91) than neuroinflammatory biomarkers (AUC: CHIT1 0.71, MCP-1 0.56).
Combining biomarkers did not improve diagnostic performance. Similarly, neurofilaments performed better than neuro-
inflammatory biomarkers at predicting functional decline and survival. The stratified analysis revealed differences accord-
ing to the site of onset: in bulbar patients, neurofilaments and CHIT1 performed worse at predicting survival and
correlations were lower between biomarkers. Finally, in bulbar patients, neurofilaments and CHIT1 increased longitu-
dinally but were stable in spinal patients. Conclusions: Biomarkers of neuroaxonal degeneration displayed better diagnos-
tic and prognostic value compared with neuroinflammatory biomarkers. However, in contrast to spinal patients, in
bulbar patients neurofilaments and CHIT1 performed worse at predicting survival and seemed to increase over time.
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1. Introduction

In amyotrophic lateral sclerosis (ALS) there are no
established biomarkers to definitely diagnose or to
reliably predict prognosis (1). However, there are
potential candidates including the most widely
used neurofilament light chain (NfL) as well as
phosphorylated neurofilament heavy chain (pNfH)
(2–4). Neurofilaments (NFs) are biomarkers of
neuroaxonal degeneration and elevated levels are
found in the cerebrospinal fluid (CSF) and blood
of ALS patients compared with ALS mimics,
patients with other neurological disorders, and
healthy individuals (3, 5–8). Higher levels of NFs
have been linked to faster disease progression and
shorter survival in ALS patients (6, 9–12). In lon-
gitudinal studies, NFs have been reported to be
stable over time since ALS diagnosis (13–17).
Decreasing NfL levels have, in contrast, been used
as an indicator of effect in clinical trials (18, 19),
and tofersen was recently approved merely based
on decreases in NfL (20).

In recent years, evidence of neuroinflammation
in ALS has emerged (21, 22). Proteomics of CSF
have led to the identification of proteins involved
in neuroinflammatory processes, with CHIT1, a
biomarker of microglia activation, being the most
studied (17, 23). The chemokine monocyte
chemoattractant protein-1 (MCP-1) is another
protein related to myeloid activation that is also
likely elevated in the CSF of ALS patients (9, 16).
Few studies have however described CHIT1 and
MCP-1 trajectories over time since ALS diagnosis.

Most previous studies on ALS biomarkers have
relied on analyses of CSF, but the introduction of
more sensitive methods that allow much lower
concentrations to be measured in blood, such as
single-molecule array (Simoa), now facilitate track-
ing of dynamic changes over time (24). Still, vari-
able estimates of how well NfL correlates between
CSF and blood from ALS patients have been
reported (Spearman’s rho: 0.62 to 0.84)
(15,25–28).

In this study we aimed to compare the diagnos-
tic and prognostic performance, as well as the lon-
gitudinal trajectories, of potential biomarkers
reflecting neuroaxonal degeneration (NfL and
pNfH) and neuroinflammation (CHIT1 and
MCP-1) in both CSF and blood of ALS patients
and controls.

2. Materials and methods

2.1. Study design and participants

We conducted a case-control study, and a longitu-
dinal study of ALS patients, in Stockholm,
Sweden. Study participants were prospectively
recruited between March 2016 and March 2021 at
the Karolinska ALS Clinical Research Center

(ALS CRC), a tertiary clinic that cares for all ALS
patients in Stockholm. Of all 381 individuals diag-
nosed with motor neuron disease (MND) during
this time period, 192 ALS patients consented and
were included in the study (Figure S1). Of these,
44 patients provided repeated measurements, and
were included in the analysis of longitudinal trajec-
tories of the biomarkers. Survival status was noted
from the date of diagnosis until the date of death
or invasive ventilation, or until 8 February 2023,
whichever came first.

Individuals evaluated at the ALS CRC with
suspicion of ALS, but who were diagnosed with
other diseases (not MND), were recruited as ALS
mimics (n¼ 42) (Table 1). We also included 114
patients with other neurological diseases as neuro-
logical controls, grouped as patients with inflam-
matory diseases (multiple sclerosis [MS], chronic
inflammatory demyelinating polyneuropathy
[CIDP], or paraproteinemic demyelinating poly-
neuropathy [PDN]) (INC; n¼80) or non-inflam-
matory diseases (normal pressure hydrocephalus,
headache, spinal stenosis, hypersomnia, etc.)
(NINC; n¼34) (Table S1). Siblings and partners
of the ALS patients were included as healthy con-
trols (n¼ 117).

2.2. Clinical data

Functional disability was assessed using the revised
ALS Functional Rating Scale (ALSFRS-R).
Baseline progression rate was calculated as 48
minus the ALSFRS-R score at diagnosis divided
by the number of months from onset to diagnosis.
Longitudinal progression rate was calculated as the
ALSFRS-R score at diagnosis minus the ALSFRS-
R score at last visit divided by number of months
between the two measurements (time between
diagnosis and last ALSFRS-R score; median: 16.3
months; interquartile range: 8.1–27.0 months). At
diagnosis, patients were also evaluated using the
revised El Escorial Criteria (29) and classified
using King’s clinical staging system (King’s) (30).
Signs of frontotemporal degeneration (FTD) at
diagnosis were based on a combination of clinical
observations by the neurologist and cognitive
screening tools (Edinburgh Cognitive and
Behavioral ALS Scale and Montreal Cognitive
Assessment).

Among the ALS patients, there were no miss-
ing data on clinical characteristics including site of
onset, ALSFRS-R, progression rate, King’s,
revised El Escorial criteria, body mass index
(BMI), and signs of FTD at diagnosis. However,
there were missing data on C9orf72 status (missing
n¼ 44; 22.9%).
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2.3. Sample collection and measurements

Blood and CSF were collected from ALS patients
within 90 days after diagnosis. Samples were col-
lected from ALS mimics and some neurological
controls (CIDP, PDN and all NINCs) during the
diagnostic work-up, and from MS controls at vari-
able times during the disease course. CSF was
obtained through lumbar puncture using polypro-
pylene tubes and centrifuged for ten minutes at
400 g at room temperature. Blood was drawn into
serum separator tubes and EDTA tubes (for
plasma) and centrifuged for ten minutes at 2000 g
at room temperature. All samples were aliquoted
within two hours, directly frozen and then stored
in −80 �C.

The measurements of NFs, CHIT1 and MCP-1
in CSF were based on sandwich enzyme-linked
immunoassay (ELISA) techniques. We used com-
mercially available ELISA kits: pNfH from
Euroimmun, L€ubeck, Germany; NfL from
UmanDiagnostics, Sweden; CHIT1 from CircuLex,
MBL, Japan; MCP-1 from R&D Systems,
Minneapolis, MN, USA. Serum and plasma NfL
were measured using a Simoa assay (Quanterix,
Billerica, MA). The CSF was diluted 2-10-fold
depending on the assay. Twenty-four readings of
pNfH (one mimic, 10 INC, nine NINC, and four
healthy controls) and 15 readings of CHIT1 (13
ALS patients, one mimic, and one healthy control)
were below the detection limits of the assays. These
were assigned the value of the lower limit of

Table 1. List of ALS mimics.

Mimic number Diagnosis

1 Progressive multifocal leukoencephalopathy.
2 Motor neuropathy.
3 Inclusion body myositis, multiple system atrophy (parkinsonian type) and polyneuropathy.
4 Spinal stenosis and neuroborreliosis.
5 Dysarthria and dysphagia of unknown origin.
6 Isolated unilateral hypoglossal nerve paralysis, possibly due to atlanto-occipital dislocation.
7 Polyneuropathy.
8 Vasculitic neuropathy.
9 Degenerative spine (cervical and especially lumbar).
10 Dysarthria and dysphagia due to radiation therapy after base of tongue cancer.
11 Neuroborreliosis.
12 Dysarthria and dysphagia. Halted progression. Unknown cause.
13 Paraneoplastic process resulting in lower motor neuron involvement in one arm. Colon cancer with liver metastases and

prostate cancer.
14 Cervical spinal stenosis and polyneuropathy.
15 Spastic paraparesis.
16 Spastic paraparesis.
17 Dysarthria and dysphagia due to base of tongue cancer.
18 Parkinson’s disease.
19 Progressive supranuclear palsy.
20 Polyneuropathy and dementia.
21 Benign fasciculations, axonal polyneuropathy and lumbar degeneration.
22 Familial prion disease (probably fatal familial insomnia).
23 Neuroborreliosis, cervical spondylosis and polyneuropathy.
24 Myelopathy, neuropathy and myopathy partly explained by excessive alcohol consumption.
25 Pronounced degenerative cervical spine.
26 Polymyositis.
27 Myelopathy due to radiation therapy after breast cancer.
28 Parkinson’s disease.
29 Lumbar spondylosis.
30 Drug induced polyneuropathy.
31 Cervical radiculopathy.
32 Benign fasciculations.
33 Multiple system atrophy (parkinsonian type).
34 Benign fasciculations.
35 Unknown myopathy.
36 Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP).
37 Psychological stress and fatigue.
38 Multiple sclerosis.
39 Benign fasciculations.
40 Benign fasciculations.
41 Bulbar dystonia.
42 Suspected mitochondrial disease (motor neuropathy and leukodystrophy).

Mimics were evaluated at the time of the diagnostic work-up, and their medical records were reviewed again in November 2022, to
ensure that they did not convert to ALS or to other motor neuron diseases.

Neurodegenerative biomarkers outperform neuroinflammatory biomarkers in ALS 3



quantification (pNfH 62.5ng/L and CHIT1
141ng/L). Intra- and inter-assay variability was
below 10%.

Neurofilaments were measured in all partici-
pants. CHIT1 and MCP-1 were measured in all
ALS patients, all ALS mimics, and 13 healthy con-
trols. In 83 of 114 neurological controls and nine
of 117 healthy controls, plasma was analyzed
instead of serum. To enable comparisons between
plasma and serum measurements, a separate
cohort of 126 controls was used as reference to
compare serum and plasma concentrations of NfL,
concluding that serum concentration was 11%
higher than the corresponding value in plasma
(Figure S2). Therefore, serum NfL for these
neurological and healthy controls was estimated by
calculating the plasma NfL concentrations
times 1.11.

2.4. Statistical analysis

Pearson’s v2-test was used to determine differences
in proportions of categorical variables between
groups. Due to non-normality of the continuous
variables, Mann-Whitney U test was applied to
test differences between groups whereas
Spearman’s rank correlation (rho) was used to cal-
culate correlations between continuous variables.
Diagnostic performance of the biomarkers was
evaluated with Area Under the Curve (AUC) and
Receiver Operating Characteristics (ROC) curves,
with adjustment for age at measurement. To com-
pare the AUCs, tests for equality between AUCs
were performed (31). Youden index was used to
derive the optimal cutoff for each biomarker from
the ROC curves, giving equal weight to sensitivity
and specificity (32). Because data were non-nor-
mally distributed, quantile regression was applied
to make inferences on the median longitudinal
progression rates, instead of the more common lin-
ear model. Cox proportional hazard regression was
used to analyze the risk of death in relation to bio-
marker levels, with time since measurement as
underlying time scale. The proportional hazards
assumption was met for all Cox models. For both
quantile regression and Cox model, biomarker
concentrations were divided into tertiles, and
adjustments were made for sex, age at diagnosis,
site of onset, classification according to the revised
El Escorial criteria, diagnostic delay, baseline
ALSFRS-R, baseline progression rate, BMI, and
signs of FTD at diagnosis (33, 34). Due to incom-
pleteness in C9orf72 status, it was adjusted for in a
separate sensitivity analysis. A genotype of the
CHIT1 gene causes lower levels of CHIT1 in CSF
and serum (35, 36). The prevalence of homozy-
gous carriers of this genotype is estimated at 3–9%
in European populations (11, 35, 37, 38), i.e. in
the same range as the number of study participants
with undetectable CHIT1 concentrations in ourT
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study (n¼16; 6.5%). Therefore, CHIT1 values
<200ng/L (n¼ 13 ALS patients, one mimic, and
two healthy controls) were dropped in separate
sensitivity analyses. Repeated measurements of the
biomarker concentrations were analyzed among 44
ALS patients, using a linear regression model with
cluster-robust standard errors. In all analyses, we
set statistical significance at 5%. We performed the
analyses in Stata software, version 16 (StataCorp,
College Station, TX).

2.5. Protocol approvals and registrations

This study was approved by the Swedish Ethical
Review Authority (Dnrs 2014/1815-31/4,
2017/1895-31/1, 2009/2107-31/2, 2017/952-31).
The study followed the ethical principles of the
Declaration of Helsinki.

3. Results

3.1. Participant characteristics

ALS patients differed from ALS mimics with
regard to sex (female 44.8% vs. 23.8%; p¼ 0.01)
but not age (median 67.6 years vs. 71.2 years;
p¼0.20), and from neurological and healthy

controls in age (median 51.0 years and 50.5 years,
respectively; p<0.001 for both) but not sex
(53.5% and 39.1%, respectively; p¼0.14 and
0.61, respectively) (Table 2). The characteristics
of the ALS patients in our study were similar to
the characteristics of all ALS patients diagnosed at
ALS CRC during the same period (Table S2).

3.2. Biomarker concentrations and correlations

All biomarker concentrations were higher among
ALS patients at time of diagnosis compared with
all other groups, except for MCP-1 (Table 2;
Figure 1; Table S1). Comparing spinal and bulbar
patients, there was no difference in any biomarker
at time of diagnosis (p¼0.57, 0.79, 0.19, 0.13,
and 0.61 for pNfH, CSF NfL, serum NfL,
CHIT1, and MCP-1, respectively).

Among ALS patients, NfL and pNfH concen-
trations correlated strongly with each other,
whereas inflammatory biomarkers demonstrated
weaker correlations with each other and with NFs
(Table 3; Figure S3). Correlations were generally
weaker in bulbar than in spinal patients.

Figure 1. Box plots for biomarker concentrations in ALS patients, ALS mimics, and different control groups. Note: Biomarker
concentrations are shown on a logarithmic scale in ng/L. Differences are calculated using Mann–Whitney U test. ��� p<0.001. NS:
Not statistically significant. INC: Inflammatory neurological controls. NINC: Non-inflammatory neurological controls. HC: Healthy
controls. pNfH: phosphorylated neurofilament heavy. NfL: neurofilament light. CHIT1: chitotriosidase-1. MCP-1: monocyte
chemoattractant protein-1.
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3.3. Diagnostic performance

AUC was higher for pNfH compared with CSF
NfL (p¼0.007) for differentiating ALS patients
from ALS mimics (Table 4; Figure S4). When
assessing study participants who provided both
CSF and serum measurements, there was no dif-
ference between serum NfL and pNfH (p¼0.81),
or between serum NfL and CSF NfL (p¼ 0.27).
AUCs for NFs were higher than for CHIT1 and
MCP-1 (p<0.001 for all comparisons).
Combining pNfH, CSF NfL, CHIT1 and MCP-1
did not improve the diagnostic performance com-
pared with pNfH alone (p¼ 0.53). AUCs compar-
ing bulbar and spinal patients separately were
similar for all biomarkers.

3.4. Prognostic performance

Comparing low to high concentrations of NFs,
there was an increase in predicted median longitu-
dinal progression rates, and risk of death, in both
simple and multivariable models, although the
multivariable progression rate model was not sig-
nificant for pNfH (Figure 2; Table S3; Kaplan-
Meier curves in Figure S5). Serum NfL performed
particularly well, both for progression rate and sur-
vival. For CHIT1 and MCP-1, there was an
increased risk of death by comparing low to
medium concentrations. Adding all CSF bio-
markers into a multivariable Cox model and using
backward elimination, pNfH and CHIT1 emerged
as strongest predictors of death (Table S4). Only
minor changes were detected in the models add-
itionally adjusted for C9orf72 status (Table S5).

When comparing bulbar and spinal patients,
NFs and CHIT1 seemed to predict survival better
for spinal patients (Table S6). In spinal patients,
serum NfL performed particularly well (hazard
ratio [HR] in the multivariable analysis comparing
low to medium concentrations 4.39 [95% CI
2.35–8.20], and HR comparing low to high 3.29
[95% CI 1.55–6.97]). The only biomarker with a
statistically significant hazard ratio for bulbar
patients after multivariable adjustment was pNfH
(HR comparing low to high 2.47 [95% CI 1.11–
5.35]). The longitudinal progression rate could
not be predicted by any biomarker when stratifying
the analysis by site of onset.

3.5. Longitudinal analysis

In a longitudinal analysis with a median follow-up
of 1.1 year (range: one month to 3.9 years),
including ALS patients with at least two measure-
ments, there was no clear temporal change in any
biomarker after controlling for age at diagnosis
(Table 5; Figure 3). However, when analyzing bul-
bar and spinal patients separately, NFs and
CHIT1 increased over time in those with bulbar
onset. Levels were stable among spinal patients,
except for pNfH that decreased over time, but
with a low coefficient of determination. There
were two patients with follow-up time longer than
three years. Restricting the follow-up time to three
years did not change the results. In a post-hoc ana-
lysis, applying a non-parametric bootstrap quantile
regression model on the median change, the results
were similar to the above analysis (Table S7).

3.6. Sensitivity analysis of CHIT1

In a sensitivity analysis, study participants with
very low CHIT1 concentrations (<200 ng/L;
n¼ 16) were removed. This yielded slightly stron-
ger results for CHIT1 in all analyses except for
temporal trends (Tables S8-S11).

Table 3. Correlation matrix of biomarkers measured in ALS
patients at the time of diagnosis.

pNfH
CSF
NfL

Serum
NfL CHIT1 MCP-1

CSF NfL 0.84*** 1.00
- Spinal patients 0.91���
- Bulbar patients 0.73���
Serum NfL 0.75*** 0.78*** 1.00
- Spinal patients 0.82��� 0.83���
- Bulbar patients 0.57��� 0.65���
CHIT1 0.43*** 0.44*** 0.28** 1.00
- Spinal patients 0.54��� 0.57��� 0.44���
- Bulbar patients 0.22 0.18 −0.14
MCP-1 0.22** 0.28*** 0.19 0.28*** 1.00
- Spinal patients 0.28�� 0.36��� 0.27� 0.21�
- Bulbar patients 0.19 0.20 0.01 0.37��

Note: Correlations are estimated using Spearman rank order
correlation (rho). For paired CSF: n¼192, including 114
onset spinal patients and 70 bulbar onset patients. For paired
CSF-serum: n¼105, including 69 spinal onset patients and
31 bulbar onset patients. Paired biomarkers were sampled on
the same day. �p<0.05, ��p<0.01, and ���p<0.001. pNfH:
phosphorylated neurofilament heavy. NfL: neurofilament
light. CHIT1: chitotriosidase-1. MCP-1: monocyte
chemoattractant protein-1.

Table 4. Area under the curve (AUC) for differentiating ALS
patients from ALS mimics, adjusted for age at measurement,
together with optimal cutoffs (estimated with Youden index)
and their sensitivity and specificity.

Biomarker
AUC

(95% CI)
Cutoff
(ng/L) Sensitivity Specificity

pNfH 0.92 (0.86–0.98) 726 94.3% 83.3%
CSF NfL 0.86 (0.78–0.94) 2,588 90.6% 76.2%
serum NfL 0.91 (0.84–0.97) 56.4 91.7% 76.7%
CHIT1 0.71 (0.63–0.80) 3,379 75.5% 64.3%
MCP-1 0.56 (0.44–0.67) 535 84.4% 28.6%

Note: pNfH, CSF NfL, CHIT1 and MCP-1 were measured in
CSF of the 192 ALS patients and 42 mimics. Serum NfL was
measured in 157 ALS patients and 30 mimics. CI:
Confidence interval. pNfH: phosphorylated neurofilament
heavy. NfL: neurofilament light. CHIT1: chitotriosidase-1.
MCP-1: monocyte chemoattractant protein-1.
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4. Discussion

In this case-control study including 192 incident
ALS cases from a tertiary clinic in Stockholm,
Sweden, biomarkers of neuroaxonal degeneration
performed better than biomarkers of neuroinflam-
mation as potential diagnostic and prognostic bio-
markers, and the performance of serum NfL was
comparable to that of CSF NfL. However, there
were substantial differences between bulbar and
spinal patients.

Diagnostic performance was better for pNfH
compared with CSF NfL, as reported by some
studies (26, 39–41), although others have shown
similar performance (6, 11, 28, 42). Importantly,
serum NfL and CSF NfL showed comparable per-
formance, as previously reported (25, 26, 28, 42).
CHIT1 could also discriminate ALS patients from
mimics, but performed less well than NFs and
worse than previously reported, even when exclud-
ing CHIT1 concentrations <200 ng/L (9, 43–45).
We failed to show elevated concentrations of
MCP-1 in ALS patients compared with mimics,
and MCP-1 could not differentiate ALS patients

from mimics, contrasting one previous (and
smaller) study (9). Combining biomarkers did not
improve diagnostic performance, which has also
been reported before (44).

We present an optimal cutoff in differentiating
ALS patients from ALS mimics for pNfH of
726 ng/L, which is in the upper range of previously
reported cutoffs (460-768 ng/L) (6, 7, 39–41). Our
cutoff for CSF NfL of 2,588 ng/L is in concord-
ance with many previous studies (6, 25, 26, 39).
For serum NfL, our cutoff was 56.4 ng/L. Earlier
studies on NfL in blood found cutoffs between 62
and 97ng/L in serum (14, 42, 46), and between
32.7 and 95.4 ng/L in plasma (25, 26). Such wide
range is possibly dependent on the diagnoses
included in the mimics groups.

As previously reported (6, 9–12), we found
that NFs were good predictors for both progres-
sion rate and survival. Serum NfL was found to
perform particularly well, consistent with findings
of two earlier studies (12, 26). CHIT1 and MCP-
1 did not reliably predict survival or progression
rate. However, when adding all CSF biomarkers in
a multivariable Cox model and using backward

Figure 2. Predicting longitudinal progression rate and survival among ALS patients. (A-B) Quantile regression models predicting
median longitudinal progression rate in relation to biomarker levels (medium and high versus low), in simple (A) and multivariable (B)
analyses. (C-D) Cox proportional hazards regression models predicting survival with biomarker levels (medium and high versus low), in
simple (C) and multivariable (D) analyses. Note: 192 patients with CSF and 157 patients with serum. In multivariable analyses the
following variables were adjusted for: sex, age at diagnosis, BMI at diagnosis, site of onset, El Escorial diagnostic criteria, diagnostic
delay, baseline ALSFRS-R, baseline progression rate, and sign of FTD at diagnosis. Biomarker concentrations were divided into
tertiles, with low/medium/high concentrations. pNfH: phosphorylated neurofilament heavy. NfL: neurofilament light. CHIT1:
chitotriosidase-1. MCP-1: monocyte chemoattractant protein-1.
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elimination, pNfH and CHIT1 emerged as the
strongest predictors. Also, combining pNfH and
CHIT1 provided lower Akaike Information
Criterion (AIC) (47) than with pNfH alone, indi-
cating that both biomarkers of neurodegeneration
and neuroinflammation carry predictive informa-
tion. Additionally, when merely analyzing spinal
patients CHIT1 performed well in the survival
analysis. Previous studies on the predictive value
of CHIT1 show inconsistent results, probably due
to small sample size, different adjustment for cova-
riables, and inclusion of a low proportion of
deceased patients (9, 11, 12, 43–45, 48, 49).

In the longitudinal analysis of 44 ALS patients,
we found no overall temporal change in any bio-
marker, in line with earlier studies13–17.

Interestingly, we found substantial differences
between bulbar and spinal patients in several of
our analyses. Compared with spinal patients, in
bulbar patients, 1) NFs and CHIT1 performed
worse at predicting survival (with a particular
advantage of serum NfL in spinal patients, and of
pNfH in bulbar patients), 2) correlations between
biomarkers were slightly weaker at the time of
diagnosis, and 3) NFs and CHIT1 seemed to
increase over time. All biomarkers seemed stable
over time since diagnosis in spinal patients, except
for pNfH, which showed decreasing concentration
over time but with a low R2. This suggests a differ-
ence in how these biomarkers are expressed and/or
leaked into the CSF and blood depending on site
of onset.

The difference in serum NfL and CSF NfL
correlation between spinal and bulbar patients
could be explained by lower BMI in bulbar
patients. Lower BMI is associated with higher
serum NfL concentrations (50, 51), also in our
study (serum NfL and BMI: Spearman’s rho
−0.25; p¼0.001; posthoc analysis). Upon generat-
ing a NfL/BMI ratio and running Spearman’s
rank-order correlation, Spearman’s rho in spinal
patients stayed nearly unchanged on 0.82, but
increased from 0.65 to 0.77 in bulbar patients, i.e.
close to that in spinal patients.

4.1. Strengths and limitations

The strengths of this study are a relatively large
sample size with incident ALS cases only, and
almost complete data on patient characteristics.
Also, there were no differences in clinical charac-
teristics between our patient sample and all inci-
dent ALS patients in Stockholm during the same
period, indicating good generalizability.
Furthermore, the very high number of deceased
patients during follow-up strengthens the validity
of the survival analysis.

There are several limitations in our study. We
did not test for the specific genotype associated with
very low CHIT1 levels. However, we explored theT
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potential bias by performing a sensitivity analysis
removing all patients with CHIT1 concentrations
<200ng/L. Results were in general more striking
after removal of these samples. C9orf72 status is
often reported as predictor of ALS survival (9, 33,
52). We had a high degree of incompleteness in
C9orf72 status (22.9%), but in sensitivity analyses
further adjusting for C9orf72 status, we did not find
evidence of strong confounding effect. For some of
our neurological (85% of INCs; 26.9% of NINCs)
and healthy (7.8%) controls, NfL was analyzed in
plasma instead of serum, although we had serum
analyzed for all ALS patients and all ALS mimics.
Plasma levels were converted to serum levels using a
separate cohort as reference. This could potentially
have affected the analyses of INCs and NINCs. Our
primary comparison group was ALS mimics. In this
group, we included all persons who were were eval-
uated at the ALS CRC with the suspicion of ALS,
but who were diagnosed with other diseases or
symptoms unrelated to MND. Therefore, the com-
parison group contains a wide range of diagnoses,
which possibly impedes a comparison to other stud-
ies. However, our cutoffs are similar to other studies,
indicating that this might not be a large limitation.
ALS patients were generally older than the neuro-
logical and healthy controls, and because neurofila-
ment concentrations correlate positively with age

(although this relationship is possibly not so strong
among ALS patients) (2, 51, 53–55), comparisons
with neurological and healthy controls could have
been affected. However, ALS patients were similar
in age to the ALS mimics, which was the primary
comparison group of this study. Patients included in
the longitudinal analysis of biomarkers had lower
progression rate, lived longer, and displayed lower
NF concentrations compared with patients in the
entire cohort (Table S12). As a result this analysis
does not pertain to all ALS patients. Also, the longi-
tudinal analysis had low sample size, generating wide
confidence intervals, but this is to some extent allevi-
ated by the stable results across biomarkers. Finally,
due to difficulties in collecting CSF, the number of
healthy controls with CSF was very limited.

5. Conclusions

In conclusion, biomarkers of neuroaxonal degener-
ation outperformed biomarkers of neuroinflamma-
tion as potential diagnostic and prognostic
biomarkers in ALS. Importantly, the diagnostic per-
formance of serum NfL was comparable to CSF
NfL, indicating that serum NfL could be analyzed
instead of CSF NfL in the diagnostic work-up of
ALS. Also, the differences in NFs in bulbar versus
spinal patients suggest that NFs should possibly be

Figure 3. Temporal patterns per biomarker for each ALS patient from date of first sampling and with mean change (assuming a linear
model, from the longitudinal analysis in Table 5), for spinal and bulbar onset patients separately (all measured in ng/L). pNfH:
phosphorylated neurofilament heavy. NfL: neurofilament light. CHIT1: chitotriosidase-1. MCP-1: monocyte chemoattractant protein-1.
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approached differently in these groups in clinical
practice, research, and clinical trials.
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