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Abstract

We use the theory of logarithmic line bundles to construct compactifications of spaces of
oots of a line bundle on a family of curves, generalising work of a number of authors. This
uns via a study of the torsion in the tropical and logarithmic jacobians (recently constructed by

olcho and Wise). Our moduli space carries a ‘double ramification cycle’ measuring the locus
here the given root is isomorphic to the trivial bundle, and we give a tautological formula

or this class in the language of piecewise polynomial functions (as recently developed by
olcho–Pandharipande–Schmitt and Holmes–Schwarz).
2023 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY

icense (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

For a family of smooth proper curves X/S and a positive integer r , the r -torsion
f the relative jacobian, here denoted J [r ], is a finite flat cover of S, playing a central
ole everywhere from Galois representations in number theory to the double ramification
ycle in Gromov–Witten theory. If X is equipped with a line bundle L of relative degree
ivisible by r , then the r th roots of L, denoted1 X (L 1

r ), are a torsor under J [r ], and
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1
r ) = J [r ].
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play a comparably important role, going under the name of (higher) spin structures
when L is a power of the relative canonical bundle of X/S. Our goal in this paper is to
xtend this picture to the case of prestable curves; proper flat curves whose geometric
bres are reduced and connected and have at-worst nodal singularities. Such curves
ppear everywhere in Gromov–Witten theory, and restricting to curves with such mild
ingularities is for some applications harmless, by the semistable reduction theorem.

It is not possible to extend J [r ] to a finite flat group scheme over S in the prestable
ase; already when r = 2 and X/S is the universal elliptic curve over the j-line in
haracteristic zero, one can show that J [2] does not admit any unramified extension over

S. However, we will see that this ramification is the only obstruction. Our first main
heorem states that, after passing to a certain root stack S̃ → S which ‘eats up all the

ramification’, all of the good properties enjoyed by J [r ] and by X (L 1
r ) extend to the

prestable case:

Theorem 1.1. There is a functorial extension of J [r ] to a finite flat group scheme over
S̃, and functorial extensions of the X (L 1

r ) to finite flat J [r ]-torsors over S̃.

The precise definition of the root stack S̃ → S is little delicate, and can be found in
ection 4.2; for now we mention that

(1) S̃→ S is proper, flat and quasi-finite;
(2) S̃ → S is an isomorphism over the open locus in S of smooth curves, and even

the larger locus of compact-type curves.

heorem 1.1 was known due to work of Chiodo [6] under the restrictions that

(1) We work over a field in which r is invertible;
(2) We take X/S to be the universal stable curve over a Deligne–Mumford–Knudsen

moduli space Mg,n of stable curves;
(3) The line bundle L is a power of the relative dualising sheaf ωX/S;

oreover, we will see in Section 4.3 that the root stacks Chiodo constructs are signifi-
antly more ramified than our S̃→ S. The construction of Chiodo runs via line bundles
n twisted curves (prestable curves equipped with some stacky structure at their nodes),
ollowing ideas also explored by Jarvis and Abramovich [1,15]. In the present paper these
re replaced by logarithmic curves in the sense of Kato [16]. Our functorial extensions of

J [r ] and of X (L 1
r ) are described in terms of log line bundles on log curves, in the sense

f Molcho and Wise [21]; the present paper can be seen as a careful study of the torsion
n their logarithmic and tropical jacobians. We can also state a logarithmic version of our

ain theorem, where no root stack S̃→ S is required:

Theorem 1.2. There is a functorial extension of J [r ] to a finite flat logarithmic
roup scheme over S, and functorial extensions of the X (L 1

r ) to finite flat logarithmic
J [r ]-torsors over S.

The fact that the root stack S̃ → S is necessary for the non-logarithmic statement
omes from the fact that the underlying scheme of a logarithmic group scheme need
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ot carry a group structure, see Section 4.1.3 for a more extended discussion of this
oint.

emark 1.3. Work of Caporaso, Casagrande, and Cornalba [5] constructed compactifi-
ations of moduli spaces of roots under less restrictive conditions than Chiodo and Jarvis
for example, allowing arbitrary prestable families X/S as we do), but they do not give

their compactifications group or torsor structures.

The universal curve over the stack X (L 1
r ) carries (locally) a logarithmic line bundle

such that F⊗r ∼= L. The locus in X (L 1
r ) over which F is fibrewise (logarithmically)

trivial carries a natural virtual fundamental class, the r -spin double ramification cycle
R(L1/r ) of L. Our final result is an expression for DR(L1/r ) in terms of piecewise

polynomial functions on the tropicalisation of X (L 1
r ), and may be viewed as a continu-

tion of the story told by [2,12–14,19]. The full expression is lengthy to write out (see
ection 6), but as an immediate corollary we obtain that DR(L1/r ) is ‘tautological’ in the

following sense.

Theorem 1.4. The class DR(L1/r ) in CH(X (L 1
r )) lies in the subring generated by the

images of piecewise polynomials on the tropicalisation of X (L 1
r ), together with the class

L = π∗(c1(L)2).

.1. Strategy of proof

We first prove Theorem 1.2; we construct our compactifications of J [r ] and of X (L 1
r )

rom the torsion in the logarithmic jacobian. The logarithmic jacobian is not a log scheme,
ut is rather a ‘logarithmic space’; a sheaf on the category of log schemes admitting a
og étale cover by a log scheme. Proving that the torsion is in fact a logarithmic scheme
oes via a careful analysis of the minimal objects (in the sense of Gillam [7]).

To derive Theorem 1.1 we first need to build the root stack S̃→ S; this is done by an
xplicit construction in Section 4.2. We then prove that J [r ] and X (L 1

r ) become strict
after base-change to S̃, from which the theorem easily follows.

Finally, to give a formula for DR(L1/r ) we start by giving an explicit description of
the cones of X (L 1

r ) on which we will write our piecewise-polynomials. We then realise
he log line bundle F as a line bundle on a suitable subdivision of the universal curve
ver X (L 1

r ), allowing us to apply the main theorem of [2] to derive our formula.
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2. Background

2.1. Log structures

We write M× for the units of a (commutative) monoid M, and Mgp for its groupi-
fication. Following [16], a log structure on an algebraic space X consists of an étale
sheaf of monoids MX on X together with a map of sheaves α :MX → OX , such that
α : α−1O×X → O×X is an isomorphism; we refer to [16,22] for further details. The ghost
sheaf is MX := MX/M×X . We write X for the underlying algebraic space of a log
algebraic space X , and X = (X , MX ). We work throughout with fine saturated (fs)
log structures. The category of (fs) log schemes is denoted LogSch, and comes with

forgetful functor to the category Sch of schemes. The wide subcategory of LogSch
ith only strict morphisms is denoted Log; the corresponding functor Log→ Sch is a
roupoid fibration (see [23]).

.2. Minimal log structures

A log scheme X induces a Yoneda functor hX :LogSchop
→ Set, but recovering the

unctor hX : Schop
→ Set from hX is a somewhat delicate problem, which has been

ompletely solved by Gillam [7] in a more general context. This will play a central role
n what follows, so we briefly summarise Gillam’s results, as well as adding a couple of
emmas.

We write CFGLogSch for the 2-category of CFGs (categories fibred in groupoids)
ver LogSch. If X → Sch is a CFG then a log structure on X is a factorisation

X → Log → Sch. We write LogCFGSch for the 2-category whose objects are CFGs
ver Sch equipped with a log structure.

We write

Φ :LogCFGSch → CFGLogSch (2.2.1)

or the natural 2-functor; this is analogous to taking a log scheme X and looking at the
esulting Yoneda functor hX :LogSchop

→ Set. Gillam [7] proves that this 2-functor is
fully faithful, and gives a precise characterisation of the essential image. Starting with
an object X of CFGLogSch, he defines a subset of the objects of X which he calls the
minimal objects; we write X for the full subcategory of X whose objects are minimal.
Gillam shows that the CFG X lies in the essential image of Φ if and only if X has
‘enough’ minimal objects (in a precise sense) and that, in that case, the fibred category
X → CFGLogSch → CFGSch (where the latter morphism forgets the log structure) has
the property that Φ(X ) = X .

xample 2.1. Let X be the category fibred in setoids over LogSch whose objects over
a log scheme T are elements m ∈ M

gp
T such that either m or −m lies in MT . This lies in

the essential image of Φ. More precisely, equip P1 with its standard toric log structure,
and write [P1/Gm] for the quotient by the scaling action. This is a logarithmic algebraic
stack, in particular an object of LogCFGSch, and Φ([P1/Gm]) = X . Here we see how
taking the preimage under Φ can create extra inertia; essentially the log structure rigidifies
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way some of that inertia. This kind of phenomenon will play an important role in what
ollows, especially in Section 3.3.

Let ϕ : X → Y be a 1-morphism in CFGLogSch, and suppose that ϕ is representable
by strict objects in LogCFGSch; by this we mean that for every T in LogCFGSch and
1-morphism Φ(T )→ Y , the fibre product X ×Y Φ(T ) lies in the essential image of Φ,
and moreover that the morphism X ×Y Φ(T )→ Φ(T ) is strict. Suppose in addition that
the relative inertia of ϕ is trivial, so that X×Y Φ(T ) is in fact a category fibred in setoids
over Sch. One deduces quite easily from Gillam’s machinery the next two lemmas.

Lemma 2.2. The minimal objects of X are exactly those objects which map to minimal
objects of Y .

Note that strictness is needed for both inclusions of minimal objects, even when X
and Y are taken to be log schemes. To see this consider the (non-strict) morphism

ϕ : SpecZ[N2]→ SpecZ[N]; (1, 1)← [ 1. (2.2.2)

Here the identity on SpecZ[N2] is minimal but does not map to a minimal object, and
the object

SpecZ[N]→ SpecZ[N2]; a← [ (a, b) (2.2.3)

is not minimal but is mapped to a minimal object.

Lemma 2.3. Suppose in addition that Y lies in the essential image of Φ. Then X lies
in the essential image of Φ.

2.3. Root stacks

Logarithmic geometry gives a powerful perspective on root stacks, as we now describe.
The relation to classical root stacks is explained in Example 2.10. For our input data, let
X be a log scheme, and let j :MX → R a morphism of sheaves of monoids on X such
that the saturation of the image of j in R is equal to R.

Definition 2.4. The j th root of X is the full subcategory j√X of Φ(X ) consisting of
those t : T → X such that the map t−1MX → MT factors via t−1 j : t−1MX → t−1 R.

The factorisation in Definition 2.4 is automatically unique, as a consequence of the
following lemma.

Lemma 2.5. Let X, j :MX → R as above. Let f, g : R → N be two morphisms to a
heaf of sharp and saturated monoids. If j ◦ f = j ◦ g then f = g.

roof. Let f, g : R→ N be two morphisms to a sharp N such that f ◦ j = g ◦ j . Let r
be a section of R; then after possibly localising, there exists an integer d > 0 such that
dr is in the image of j . Hence f (dr ) = g(dr ), i.e. d( f (r ) − g(r )) = 0 in N gp. As N
is saturated, f (r )− g(r ) is in N ; as N is integral, d( f (r )− g(r )) = 0 in N ; and finally

ecause N is sharp f (r ) = g(r ) in N . □
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Lemma 2.6. The subcategory j√X of minimal objects is equal to the subcategory of j√X
consisting of those t : T → X for which the factorisation MT → t∗R is an isomorphism.

Recall that morphisms in j√X are induced by morphisms of X -log schemes T → T ′

that are strict. We can make j√X into a category fibred in groupoids over Sch/X by
sending T → X to the underlying morphism of schemes.

In [4, Def. 4.16] Borne and Vistoli define similarly a stack of roots X R|MX
via

he machinery of Deligne–Faltings log structures. Comparing the definitions one easily
erifies

emma 2.7. There is natural equivalence j√X → X R|MX
of CFG over Sch/X.

Definition 2.8 ([4, 4.1, 4.3]). A Kummer homomorphism f : A→ B of finitely generated
monoids is an injective morphism such that for every b ∈ B there exists a positive integer

such that db is in A. Let X be a scheme. A system of denominators is a morphism
f coherent sheaves of monoids A → B on Xet such that the induced morphisms at
eometric stalks are Kummer homomorphisms.

emma 2.9. Let X be a log scheme and j :MX → R be a system of denominators. Then
j√X → X is relatively representable by proper, quasi-finite, finitely presented algebraic
tacks. If moreover for every geometric point x : SpecΩ → X the order of Rgp/M

gp
X is

prime to the characteristic of Ω , then j√X → X is representable by Deligne–Mumford
stacks.

Proof. This is proposition 4.19 of [4], which applies by Lemma 2.7. □

Example 2.10. Let X be a regular scheme and ι : D ↪→ X an irreducible closed
subscheme of codimension 1. Given an integer r > 0 invertible on X , there is a classical
notion of root stack of order r along D, denoted r

√
X, D → X ; it is the stack over X

whose points over t : T → X are triples of a line bundle L on T , a section l of L, and
an isomorphism L⊗r

→ t∗O(D) sending l⊗r to 1. The map r
√

X, D → X is obtained,
locally on X , by taking a finite flat cover Y → X obtained by extracting a r -root of a
function cutting out D; and then taking the stack quotient [Y/µr ] by the natural action
of µr on Y .

If we endow X with its divisorial log structure MX induced by D then the ghost sheaf
MX is naturally identified with ι∗N, and in particular has a unique generating section
. Writing j :MX → MX for the multiplication by r , there is a natural isomorphism
j√X → r

√
X, D sending an object t : T → j√X to a triple (L, l, ϕ) constructed as follows:

he image of e in MT is uniquely divisible by r , say re′ = e. The preimage of e′ under
T → MT is a O×T -torsor, denoted O×T (−e). The associated invertible sheaf OT (−e)

comes with a map to OT induced by the log structure. Then we take L to be its dual
OT (e) and l to be its distinguished global section. The isomorphism ϕ is induced by the
quality re′ = e.
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.4. Log curves

efinition 2.11 ([17]). Let S be a log scheme. A morphism π : X → S of log algebraic
paces is a log curve if it is proper, log smooth, integral, and all geometric fibres are
educed, connected and of pure dimension 1.

The underlying scheme of a log curve is a prestable curve. Unless otherwise noted,
ll log curves we consider will be vertical; in other words, the corresponding prestable
urves are unmarked.

Let k be an algebraically closed field and X/(Spec k, M) a log curve. From the
escription of the local structure of log curves at nodes (see [17]), at every node p ∈ X
here is a canonical non-zero element δp ∈ M and isomorphism

MX,p ∼=
M⊕ N⟨e1⟩ ⊕ N⟨e2⟩

e1 + e2 = δp
. (2.4.1)

Writing X for the dual graph of X , we label each edge ep of X by the associated element
δp ∈ M. We think of these labels as the lengths of the edges; in the special case where
M = N this fits with the intuitive notion of a graph with positive integer edge lengths.
The metric graph X is the tropicalisation of X .

Let X/S be a log curve. To every geometric fibre Xs one can associate the dual graph
s of the log curve; and in turn to this graph is associated the free finitely generated

belian group H1(Xs,Z), whose rank is the first Betti number of Xs . In [9, Definition
.29] the authors introduce a locally quasi-finite étale S-algebraic space, the tropical
omology of X/S, denoted H1,X/S , whose geometric fibres are naturally identified with
he groups H1(Xs,Z). Note that H1,X/S is generally very far from being separated over
S, as it maps isomorphically to S over the locus of compact-type curves, and has infinite

bre over any point outside that locus.

.5. The logarithmic and tropical jacobians

In this section we briefly recall the key definitions from [21], to which we refer for
etails and proofs. We begin by introducing two sheaves of abelian groups on LogSch/S
or the strict étale topology:

Gtrop
m : T ↦→ M

gp
T (T )

Glog
m : T ↦→ Mgp

T (T ),

referred to as the tropical and logarithmic multiplicative groups respectively.

2.5.1. The intersection pairing
The tropical homology H1,X/S of Section 2.4 is equipped with a natural intersection

pairing

∩:H1,X/S ×H1,X/S → Gtrop
m , (2.5.1)

which over a geometric point s of S sends two directed cycles γ , γ ′ ∈ H1,X/S to the sum

γ ∩ γ ′ :=
∑

γ ′(e)δe (2.5.2)

e∈γ
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over directed edges e in γ where (writing −e for the same edge with opposite orientation)
we set

γ ′(e) =

⎧⎪⎨⎪⎩
1 if e ∈ γ ′

−1 if − e ∈ γ ′

0 else.
(2.5.3)

.5.2. The bounded monodromy condition
Given two elements a, b of a monoid M , we say that a is bounded by b if there exist

integers m and n such that both a − mb and nb − a lie in M
Given a log curve X over (Spec k, M) with k an algebraically closed field k, and

given a map α : H1(X) → M
gp

, we say that α has bounded monodromy around a cycle
∈ H1(X) if α(γ ) is bounded by the length of γ (i.e. by the sum of the lengths of the

dges appearing in γ ). We say α has bounded monodromy if it has so around γ for all
∈ H1(X).
If X/S is a log curve, we write

Hom(H1,X/s,Gtrop
m )† ⊆ Hom(H1,X/s,Gtrop

m ) (2.5.4)

or the subsheaf consisting of those homomorphisms which have bounded monodromy
n each geometric fibre.

This condition of bounded monodromy plays a central role in the construction of the
ogarithmic and tropical jacobians in [21]. However, for us it will not be so prominent,
s we are mainly intersected in torsion points, for which the condition is automatic.

.5.3. The logarithmic and tropical jacobians
The intersection pairing furnishes a natural injective map

H1,X/S → Hom(H1,X/s,Gtrop
m ) (2.5.5)

hich on geometric fibres sends a cycle γ to the map γ ′ ↦→ γ ′ ∩ γ . One checks easily
that the image of H1,X/s has bounded monodromy, inducing an injection

H1,X/S → Hom(H1,X/s,Gtrop
m )†. (2.5.6)

efinition 2.12. The tropical jacobian TroPic0
X/S is the cokernel of (2.5.6), as a functor

rom log schemes over S to abelian groups.

Molcho and Wise also define a larger object, the tropical Picard space TroPicX/S ,
of which TroPic0

X/S is the degree-zero part. But the details of the definition are not so
mportant to us, as our technical results concern torsion elements, which always have
egree zero.

If X is a log scheme, a log line bundle on X is a Glog
m -torsor for the strict étale

opology. If X/S is a log curve and L on X a log line bundle, the natural map Glog
m →

Gm09trop induces a Gtrop
m -torsor L̄ on X . If S is a geometric point then we identify L̄

ith an element of H 1(X, M
gp

) = Hom(H1(X), M
gp

), and we say that L has bounded
onodromy if the corresponding map H1(X) → M

gp
does so. For general S we say L

has bounded monodromy if it does so over every geometric point of S.
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efinition 2.13. The log Picard space of X/S, denoted LogPicX/S , is the strict-étale
heaf on S of isomorphism classes of log line bundles on X with bounded monodromy.

Logarithmic line bundles have an integer-valued degree, and we write LogPic0
X/S for

he degree-zero part.
Analogously we write PicX/S for the relative Picard space of X/S, and Pic0

X/S for the
pen subgroup consisting of those line bundles with multidegree 0, i.e. degree 0 on each
rreducible component of each geometric fibre of X/S. The natural map O×X → Mgp

X
nduces a map

PicX/S → LogPicX/S (2.5.7)

which preserves total degree. This induces an exact sequence

0→ Pic0
X/S → LogPicX/S → TroPicX/S → 0 (2.5.8)

hich restricts to an exact sequence

0→ Pic0
X/S → LogPic0

X/S → TroPic0
X/S → 0. (2.5.9)

. Multiplication by r on TroPic and LogPic

Let X/S be a log curve and r a positive integer. In this section we prove certain basic
tructural results about the ‘multiplication by r ’ map on the logarithmic and tropical
acobians of X/S. We begin by summarising these results.

heorem 3.1. The multiplication by r map TroPicX/S → TroPicX/S is:

(1) Relatively representable by algebraic stacks with log structure.
(2) Proper, integral, log flat and quasi-finite.
(3) Is an isomorphism in degree 0 over the open locus in S over which X is of compact

type.
(4) Is log étale if r is invertible on S.

Theorem 3.2. The multiplication by r map LogPicX/S → LogPicX/S is repre-
sentable by proper flat quasi-finite algebraic spaces with log structure. If the r-torsion
TroPicX/S[r ] → S is strict then the underlying map of algebraic spaces LogPic

X/S
→

LogPic
X/S

is étale and respects the group structures.

Proving these results will occupy the remainder of this section. Applications to
compactifying spaces of roots of line bundles will be pursued in Section 4.

3.1. The basic log structures Mγ /r

Fix a positive integer r . Let X/S be a nuclear log curve in the sense of [9, definition
3.39] (essentially, S is ‘small enough’), with base monoid M = M (S), and let γ ∈ H (X).
S 1



586 D. Holmes and G. Orecchia / Expo. Math. 41 (2023) 577–602

a

L

L

P

s

w

n

Definition 3.3. We define Mγ /r to be the saturation of M inside

Nγ :=
M

gp
⊕ H1(X)

(γ · γ ′,−rγ ′) : γ ′ ∈ H1(X)
, (3.1.1)

nd we define

fγ /r : H1(X)→ Mγ /r ; γ
′
↦→ (0, γ ′). (3.1.2)

We verify that this definition depends only on the equivalence class of γ in the quotient
H1(X)/r H1(X):

emma 3.4. Let γ1, γ2 ∈ H1(X).

(1) If γ1−γ2 ∈ r H1(X) then there is a unique isomorphism of monoids Mγ1/r → Mγ2/r

which is the identity on M, and it takes fγ1/r to fγ2/r .
(2) Suppose there exists an isomorphism of monoids Mγ1/r → Mγ2/r which is the

identity on M. Then for all γ ∈ H1(X) we have (γ1 − γ2) · γ ∈ rMX .

Proof.

(1) First we show the map exists. We write γ1 − γ2 = rγ0, and define

ϕ :M
gp
⊕ H1(X)→ M

gp
⊕ H1(X); (m, γ ) ↦→ (m + γ · γ0, γ ). (3.1.3)

This map evidently commutes with the inclusions of M and with the maps fγi /r ,
and we compute

ϕ(γ1 · γ,−rγ ) = (γ1 · γ − rγr · γ,−rγ ) = (γ2 · γ,−rγ ), (3.1.4)

hence ϕ induces a map on the Mγi /r . For the uniqueness of the map, it is enough
to check this on the submonoids rMγi /r , but these submonoids are contained in
M, and we are assuming our map is the identity on M.

(2) If such a map existed it would have to take (rm, rγ ) to (rm + γ · (γ1 − γ2), rγ ),
and the latter is divisible by r . □

emma 3.5. The inclusion M→ Mγ /r is integral.2

roof. We have to show the following: for every m1, m2 ∈ M and n1, n2 ∈ Mγ /r such
that m1 + n1 = m2 + n2 in Mγ /r , there exist an n′ ∈ Mγ /r and m ′1, m ′2 ∈ M such that
ni = n′+m ′i and m1+m ′1 = m2+m ′2. Fix a basis γ1, . . . , γg for H1(X). From the exact
equence

0→ M
gp
→ Nγ → H1(X)/r H1(X) (3.1.5)

e deduce that for every element n ∈ Nγ there exist a unique element α(n) ∈ M
gp

and integers 0 ≤ a1(n), . . . , ag(n) < r such that n = α(n) +
∑g

1 a j (n)γ j . Moreover if
∈ Mγ /r ⊆ Nγ then rn ∈ M so α(rn) = rn, hence α(n) ∈ M by saturation of M. We

write α :Mγ /r → M and ai :Mγ /r → {0, . . . , r−1} for the functions so constructed. Now

2 See [22, definition 4.6.2] for a definition of integral morphism of monoids.
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et m1, m2, n1, n2 be as above. We have a j (n1) = a j (n1 + m1) = a j (n2 + m2) = a j (n2)
or all 0 ≤ j < r . Let n′ =

∑
a j (n1)γ j and for i = 1, 2 let m ′i = α(ni ) so that we have

i = n′+m ′i which fulfils the first condition we needed to check. This implies moreover
hat m1 +m ′1 + n′ = m2 +m ′2 + n′, hence m1 +m ′1 = m2 +m ′2 by integrality of M. □

3.2. Realising TroPic[r ] as a root stack

We write H1 := H1,X/S for the tropical homology of X/S. From the natural exact
sequence

0→ H1 → Hom(H1,Gtrop
m )†→ TroPic0

→ 0 (3.2.1)

of Definition 2.12 and the fact that the middle term has no torsion, we obtain an exact
sequence

0→ TroPic[r ]→
H1

rH1
→

Hom(H1,Gtrop
m )†

rHom(H1,Gtrop
m )†

. (3.2.2)

enote by M the ghost sheaf of the log algebraic space H1/rH1. The tropical curve
×S H1/rH1 carries a tautological cycle γ well-defined up to multiples of r , which

etermines a system of denominators M→ Mγ /r on H1/rH1 (see Definition 2.8).

emma 3.6. The inclusion TroPicX/S[r ] ↪→ H1/rH1 is the root stack j
√
H1/rH1 with

espect to the monoid extension j :M→ Mγ /r .

The reader concerned about how a root stack can be an inclusion may be reassured
y recalling from Section 4.2 that root stacks are log monomorphisms.

roof. From the exact sequence (3.2.2) we see that for every T → S

TroPic[r ](T ) = {γ ∈ H1/rH1(T ) such that ∩ γ is divisible by r}.

owever ∩γ is divisible by r if and only if MS → MS,γ /r is an isomorphism. The
diagram

M MS

Mγ /r MS,γ /r

∼=

shows that this is in turn equivalent to the map of monoids M→ MS factoring via Mγ /r .
So we find that

TroPic[r ](T ) = {γ : T → H1/rH1 such that M→ MS factors via Mγ /r }

which is exactly the desired root stack. □

Theorem 3.7. The structure map TroPic[r ]→ S is:

(1) Relatively representable by algebraic stacks with log structure;
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(2) Finitely presented, log flat, flat and quasi-finite.
(3) If log étale If r is invertible on S;
(4) Is an isomorphism over the open locus in S over which X is of compact type.

roof. The map is the composition of the strict étale morphism H1/rH1 → S with the
oot stack TroPic[r ] = j

√
H1/rH1 → H1/rH1. All properties of parts (1) and (2) follow

rom Lemma 2.9, except flatness. To prove flatness, we refer to [4], paragraph above
roposition 4.13: let P → Q be an étale-local chart for the system of denominators

j :M → Mγ /r of Lemma 3.6. The tori P̂ = Hom(Pgp,Gm) and Q̂ = Hom(Qgp,Gm)
act naturally on SpecZ[P] and SpecZ[Q] respectively and the actions make the map

pecZ[Q]→ SpecZ[P] equivariant. The log structure on H1/rH1 induces a morphism
rom H1/rH1 to the quotient stack [SpecZ[P]/P̂]. Now [4, Proposition 4.13] tells us that

TroPic[r ] is the fibre product H1/rH1×[SpecZ[P]/P̂] [SpecZ[Q]/Q̂]. To prove flatness of
TroPic[r ]→ H1/rH1 it suffices therefore to prove flatness of SpecZ[Q]→ SpecZ[P].
This follows from [22, Prop. 4.6.7] and Lemma 3.5. Part (3) is proven in the same way
as flatness, observing that the map Pgp

→ Qgp has cokernel of order invertible on S and
SpecZ[Q]→ SpecZ[P] is therefore log étale. Finally part (4) follows from the fact that
TroPic0

X/S vanishes on the locus where H1 = 0, which is exactly the locus where X/S
is of compact-type. □

3.3. On the underlying algebraic stack of the torsion of LogPic

Lemma 3.8. The minimal objects of LogPicX/S are exactly the objects which map to
minimal objects of TroPicX/S , and LogPicX/S is representable by an algebraic stack with
log structure.

Proof. Immediate from Lemmas 2.2 and 2.3. □

Let T/S be a log scheme. Perhaps replacing T by a strict étale cover, we may assume
hat CT /T admits a section and hence that any map T → LogPicC/S can be represented
y a log line bundle on T . Then a map T → LogPicX/S[r ] can be represented by a
og line bundle L on XT such that L⊗r descends to a line bundle3 on T . A morphism
T/S,L)→ (T ′/S,L′) consists of a morphism of log schemes f : T → T ′ over X , such

that L∨ ⊗ f ∗L′ descends to a line bundle on T . The exact sequence

1→ Pic0
X/S → LogPicX/S → TroPicX/S → 1 (3.3.1)

and the divisibility of Pic0
X/S in the strict flat topology gives an exact sequence of sheaves

in the strict flat topology on LogSchS:

1→ Pic0
X/S[r ]→ LogPicX/S[r ]→ TroPicX/S[r ]→ 1. (3.3.2)

This shows that LogPicX/S[r ] is also representable by an algebraic stack with log
structure, and that its minimal objects are exactly those that map to minimal objects
of TroPic[r ]. However, there is an important difference between TroPicX/S[r ] and

3 It might seem more natural to write ‘log line bundle on T ’ here. But this is the strict-S-etale sheafification
of the condition that L⊗r be trivial.
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ogPicX/S[r ]: the underlying algebraic stack of the latter is actually an algebraic space,
i.e. has trivial stabilisers (cf. Example 2.1), as we now show.

Proposition 3.9. The stack LogPicX/S[r ] is equivalent over SchS to a category fibred
n setoids over SchS .

roof. Let (T/S,L) be a minimal object of LogPicX/S[r ]. The automorphisms of this
bject over the identity on T in SchS are morphisms of log schemes t : T → T satisfying:

(1) t is the identity on the underlying scheme T ;
(2) t commutes with the structure map MS → MT ;
(3) the log line bundle L∨ ⊗ t∗L on XT descends to a line bundle on T .

e will show that these conditions together force t to be the identity on T . Now, since
T,L) is minimal over X , the ghost sheaf MT is given by (t∗MS)γ0/r for some γ0 ∈ H1(X).

In particular for every m ∈ MT we have that rm lies in the image of MS → MT . This
mplies by point (2) that t :MT → MT is the identity. Given m ∈ MT , we write α−1m for

the preimage in MT , a Gm-torsor. Since t acts trivially on MT it therefore acts on each
uch torsor; we denote the action by

tm :α−1m → α−1m. (3.3.3)

We will identify tm with the unique element of Gm such that the action is multiplication
by that element. Condition (2) implies that tm = 1 for every m ∈ MT which lies in the
image of MS → MT . Since t acts trivially on MS we see that the log line bundle L∨⊗t∗L
s trivial tropically. This says exactly that it comes from a line bundle of multidegree 0

on X . To identify this line bundle, let

f : H1(X)→ t∗MSγ /r = MT ; γ
′
↦→ (0, γ ′) (3.3.4)

e the map of (3.1.2), representing the tropicalisation of L. We define a map

ϕ : H1(X)→ Gm; γ ↦→ t f (γ ). (3.3.5)

Then the class of L∨ ⊗ t∗L is given by the image of ϕ under the natural injective map

Hom(H1(X),Gm)→ Pic0
X/S . (3.3.6)

In particular, the line bundle L∨ ⊗ t∗L descends to S if and only if t f (γ ) = 1 for every
γ ∈ H1(X). Now MT = (t∗MS)γ0/r is generated by the image of MS together with the
mages of elements of H1(X) under the map f , so we see that tm = 1 for all m ∈ MT ,
ence t is the identity. □

emark 3.10. In the setup of the proof of the previous proposition, an automorphism
: T → T satisfying only conditions (1) and (2) of the above proof need not be trivial;
n this situation the elements tm need only satisfy (tm)r

= 1. This is why TroPicX/S[r ]
is only an algebraic stack with log structure, not an algebraic space; it may admit finite
non-trivial stabilisers of order dividing r .

Example 3.11. Suppose that S = T = Spec k is a geometric point, with MS = N.
Suppose that X/S consists of an irreducible genus 0 curve with a single node of length
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1. The tropical curve X consists of a vertex with a single loop of length 1; hence H1/rH1

s the constant group scheme Z/rZ with strict log structure. Suppose for simplicity that
is a prime number; the root stack TroPicX/S[r ] → H1/rH1 looks as follows: it is

he identity over the zero section; while over each non-zero γ ∈ Z/rZ it is given by
(Bµr ,N)→ (Spec k,N), where the map on ghost sheaves is multiplication by r . On the

ther hand, the map

LogPicX/S[r ]→ TroPicX/S[r ]

is the identity over the zero section and is the strict map

(Spec k,N)→ (Bµr ,N)

on the remaining r − 1 sections.

Corollary 3.12. The structure map LogPicX/S[r ] → S is representable by proper flat
uasi-finite algebraic spaces with log structure. If TroPicX/S[r ] → S is strict then the
nderlying algebraic space of LogPicX/S[r ] → S is étale and admits a natural group
tructure.

roof. Representability is Proposition 3.9; the other assertions are immediate from
heorem 3.7 and the short exact sequence (2.5.8). □

4. Compactifying spaces of roots of a line bundle

Let X/S be a log curve, r a positive integer, and L on X a line bundle of fibrewise
total degree divisible by r . In this section we apply results of the previous section to
studying the moduli of r th roots of L.

4.1. Compactifying the space of roots of a line bundle

Definition 4.1. The moduli space of logarithmic rth roots of L, denoted S(L 1
r ), is the

fibre product

S(L 1
r ) LogPicX/S

S LogPicX/S .

r

L

(4.1.1)

It carries a universal log curve X
S(L

1
r )

by pullback, and the map

S(L
1
r )→ LogPicX/S

nduces strict étale locally on S an equivalence class of log line bundles L 1
r such that

(L 1
r )⊗r ∼ L.
=
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.1.1. The smooth case
If X/S is smooth (equivalently, strict) then S(L 1

r ) is exactly the classical space of r th
oots of L. It is a finite flat cover of S of degree r2g , and is étale if r is invertible on

S. The space S(O 1
r ) is a group scheme over S, and the spaces S(L 1

r ) are torsors under
S(O 1

r ). Locally on S the universal r th root is represented by a log line bundle L 1
r on

X
S(L

1
r )

over S(L 1
r ), and this log line bundle is actually a line bundle, and admits an

isomorphism

(L
1
r )⊗r ∼= L. (4.1.2)

4.1.2. In compact type
All but the last of the above claims carry over unchanged to the case where X/S is of

ompact type. The log line bundle L 1
r on X

S(L
1
r )

can still be represented by a line bundle
n X

S(L
1
r )

, however Eq. (4.1.2) holds only on the level of log line bundles. Suppose S
s log regular; then this means that (locally on S) there exists a vertical Cartier divisor
D on X

S(L
1
r )

such that

(L
1
r )⊗r ∼= L(D). (4.1.3)

This D is chosen so as to make the multidegree of L divisible by r ; this determines D
up to addition of a pullback from S.

4.1.3. Beyond compact type; logarithmic version
If X/S is not of compact type then by Corollary 3.12 the moduli space S(L 1

r ) is a finite
at scheme over S of degree r2g with a log structure, and is log étale if r is invertible on

S. However, it is not in general étale even if r is invertible on S; in particular this implies
hat S(O 1

r ) is not in general a group scheme. On the other hand, it is a logarithmic group
cheme. One way to say this is that the Yoneda functor

S(O
1
r ) :Schop

S → Set (4.1.4)

does not admit a factorisation via the forgetful functor Gp→ Set, but the Yoneda functor

S(O
1
r ) :LogSchop

S → Set (4.1.5)

does come with a factorisation via the forgetful functor Gp → Set. Alternatively,
e might think of our logarithmic group scheme as being given by the data of a
ultiplication map

m : S(O
1
r )×S S(O

1
r )→ S(O

1
r ), (4.1.6)

however taking the underlying scheme does not commute with fs logarithmic fibre
products; there is a natural map

S(O
1
r )× S(O

1
r )→ S(O

1
r )× S(O

1
r ), (4.1.7)
S S
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but it is not an isomorphism, and there is no way to complete the dashed arrow in the
diagram

S(O 1
r )×S S(O 1

r ) S(O 1
r )

S(O 1
r )×S S(O 1

r )

m

(4.1.8)

so as to make it commute. If we replace the line bundle O by L, and talk about torsors
ather than groups, then exactly the same happens; the logarithmic scheme S(L 1

r ) is
a (logarithmic) torsor under the logarithmic group scheme S(O 1

r ), but if we take the
underlying scheme then it is not a torsor (indeed, there is nothing for it to be torsor
under, as S(O 1

r ) is not a group).

4.2. From logarithmic groups to root stacks

As we have seen, if one is prepared to work in the logarithmic category then S(O 1
r )

has a group structure and S(L 1
r ) a torsor structure (even beyond compact type). However,

if one prefers to tarry in the world of schemes then good behaviour of the schemes S(O 1
r )

and S(L 1
r ) can be restored after passing to a root stack of S. We define MX/S,r to be the

saturation of the image of MS in

MS ⊕ (H1(X)⊗Z H1(X))
(γ · γ ′,−rγ ⊗ γ ′)

, (4.2.1)

with natural injective map j :MS → MX/S,r . One checks as in Lemma 3.5 that this is
n integral system of denominators, hence the root stack S̃ := j√S → S is a proper flat

quasi-finite map, and is an isomorphism over the open locus in S over which X is strict.
he idea of this root stack is that it ‘eats up all the ramification’ from the spaces S(L 1

r )
(note that S̃ does not depend on L – it works for all line bundles of total degree divisible

y r ). The next lemma makes this intuition precise.

emma 4.2. The natural map from the log fibre product S(L 1
r )×S S̃ to S̃ is strict.

Proof. We work strict-étale locally, so assume that X/S is nuclear. Since LogPicX/S

is strict over TroPicX/S it is enough to prove the lemma with S(L 1
r ) replaced by

TroPicX/S[r ] (note that every line bundle is tropically trivial). The latter is realised in
Lemma 3.6 as a root stack of the tropical homology H1,X/S = H1 → S. We may work
locally on this strict etale cover H1 of S, which comes down to choosing a 1-cycle γ on
he tropicalisation X of X . Then by Lemma 3.6 the inclusion TroPicX/S[r ] ↪→ H1/rH1

s the root stack j
√
H1/rH1 with respect to the monoid extension j :M → Mγ /r of

efinition 3.3. Note that there is a natural map

ϕ :M → M ; (m, γ ′) ↦→ (m, γ ⊗ γ ′) (4.2.2)
γ /r X/S,r



D. Holmes and G. Orecchia / Expo. Math. 41 (2023) 577–602 593

U
t

w
a

T

p
i

I
w
e

4

t

nravelling the definitions of root stacks and their minimal objects, we need to show
hat the induced map

Mγ /r ⊕MS
MX/S,r → MX/S,r (4.2.3)

(with pushout taken in the category of sharp fs monoids) is an isomorphism. This in
turn comes down to showing that the kernel of ϕgp is torsion. But clearly ϕ commutes

ith the injections from MS to Mγ /r and MX/S,r , and the cokernels of these injections
re torsion, from which the claim follows. □

heorem 4.3. After base-change to S̃:

(1) the underlying scheme S(O 1
r ) is a finite flat group scheme, and is étale if r is

invertible on S;
(2) the underlying scheme S(L 1

r ) is an fppf torsor under S(O 1
r ). If r is invertible on

S then it is an étale torsor (in particular, it is finite étale).

Proof. The corresponding logarithmic statements are in Section 4.1. In general these do
not imply analogous statements for the underlying schemes, but in the strict case (which
applies by Lemma 4.2) they do. □

4.3. Examples of the root stack S̃

Suppose now that X/S has minimal log structure and that S is log regular; the
rototypical example is that X/S is a stable of genus g, the induced map S → Mg

s smooth, and the log structure on S is pulled back from the log structure on Mg given
by the boundary divisor. Suppose that X/S is nuclear (i.e. S is ‘small enough’) with
graph X, and write E for the set of edges and Ens for the set of non-separating edges.
Then MX/S = NE , but S̃ will only ‘see’ the non-separating edges.

4.3.1. Case of a cyclic graph
First, suppose that h1(X) = 1 (so the non-separating edges all lie on a single cycle),

then S̃→ S is the root stack associated to the natural map

MS = NE
→

NE
⊕ N

(
∑

e∈Ens ℓ(e), 0) ∼ (0, r )
(4.3.1)

n terms of classical root stacks of Cartier divisors, this is just root stack S(
√
∆ns)→ S,

here ∆ns is the union of the boundary divisors in S corresponding to non-separating
dges.

.3.2. Case of a tree with loops attached
Next suppose that every non-separating edge is a loop (equivalently h1(X) = #Ens),

hen S̃→ S is the root stack associated to the map

M = NE
→ NE (4.3.2)
S
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sending the length ℓ(e) of an edge e to ℓ(e) if e is separating, and rℓ(e) otherwise. In
erms of classical root stacks of Cartier divisors, this is the fibre product

×
e∈Ens

S(
√

ℓ(e)) (4.3.3)

where the fibre product is taken over S, and S(
√

ℓ(e)) → S is the root stack in the
rreducible boundary divisor corresponding to ℓ(e).

.3.3. Comparison to Chiodo’s root stacks
In the particular case where S =Mg,n we can compare to Chiodo’s constructions [6].

From these examples we can see that we take a significantly milder root stack of Mg,n

than Chiodo, in two ways:

(1) Chiodo extracts roots at boundary divisors corresponding to both separating and
non-separating nodes, whereas we only extract them for non-separating nodes;

(2) Chiodo always extracts a root of each boundary component separately (as in
(4.3.3)), whereas we are often able to extract a milder root stack, as for example
in (4.3.1).

To verify the root stacks that Chiodo takes in these examples, the most direct way is to
inspect the proof of [6, Theorem 4.1.4].

5. A spin generalisation of the double ramification cycle

If X/S is a smooth proper curve and L on X a line bundle, the double ramification
cycle DR(L) measures the locus in S over which L is fibre-wise trivial. Extending this
to a log curve X/S has been a somewhat lengthy process (see [2,8,18]), and we know
now that the DR cycle lives more naturally in the logarithmic Chow rings4 of S, defined
as the colimit of Chow rings of log blowups of S; see [3] for details on log Chow,
and [11,12,19,20] for the resulting logarithmic DR cycle.

The logarithmic Picard space LogPicX/S is not algebraic and hence does not have
a Chow group; but it does admit a log blowup which is algebraic, and hence has a
well-defined log Chow group. The substack of LogPicX/S consisting of those objects
which are isomorphic to pullbacks of log line bundles from S (the ‘unit section’ of
LogPicX/S) becomes after suitable log blowup a regularly embedded substack, and hence
has a fundamental class DRlog

∈ LogCH(LogPicX/S).
With the technology of [21] we can give a very concise definition of the double

ramification cycle: the line bundle L on X induces a map ϕL : S → LogPicX/S , and
we define DRlog(L) := ϕ!LDRlog

∈ LogCH(S). The intrepid reader may enjoy verifying
that this is equivalent to the definition from [11]; the simplest route is via [12]. The
classical DR cycle of [2,8,18] is then recovered by pushing this logarithmic class down
to a classical Chow class on S.

4 Throughout this section our Chow rings are taken in an operational sense, so we do not have to worry
about singularities of S.
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With this approach in hand it is rather easy to define analogues of the DR cycle for
th roots of L. The stack S(L 1

r ) comes with a natural map ϕ
L

1
r
: S(L 1

r ) → LogPicX/S ,
and we define

DR
1
r ,log(L) = ϕ!

L
1
r
DRlog

∈ LogCH(S(L
1
r )). (5.0.1)

This of course can be pushed forward to a classical class

DR
1
r (L) ∈ CH(S(L

1
r )). (5.0.2)

Finally we explain how to specialise the above to moduli of spin curves. We fix non-
negative integers g, n and write Mg,n for the stack of stable n-marked log curves of genus
g — this is the familiar moduli space of Deligne–Mumford–Knudsen, with log structure
oming from the normal-crossings boundary. We denote the markings by p1, . . . , pn .
hoose integers k and r with r positive and dividing k(2g − 2), and choose integers
1, . . . , an summing to k(2g − 2)/r . Then the moduli stack

Mg,n([ω⊗k
X/S(−

∑
i

rai pi )]
1
r ) (5.0.3)

is a finite flat cover of Mg,n of degree r2g , and carries the class of log line bundles

[L] := [ω
k
r
X/S(−

∑
i ai pi )]. The pullback

ϕ![L]DRlog
∈ LogCH(Mg,n([ω⊗k

X/S(−
∑

i

rai pi )]
1
r )) (5.0.4)

is a natural spin-analogue of the log DR cycle, and can as usual be pushed down to
CH(Mg,n([ω⊗k

X/S(−
∑

i rai pi )]
1
r )).

6. Formulae for spin DR

In this section we write down a formula for the class

DR
1
r (L) ∈ CH(S(L

1
r )).

f (5.0.2), where L is a line bundle of total degree 0 (if the total degree is non-zero
hen the corresponding cycle is simply zero). This will be expressed via the language
f piecewise-polynomial functions, as described in [10,12,19]. In brief, (strict) piecewise
olynomials on a log stack T are sections of the symmetric algebra Sym•MT , and there is
map Ψ taking piecewise polynomials of degree d to elements of CH(T ) of codimension

d . We will describe DR
1
r (L) in terms of piecewise polynomials on S(L 1

r ).
While the definition of the class DR

1
r (L) does not require that the universal r th root of

be representable globally on S by a log line bundle, the formula we write will require
his (just as in [2]). To this end, we will assume that our curve C/S admits a section
hrough the smooth locus (this is essentially always the case when studying DR cycles),
o that the universal r th root can be represented by a log line bundle trivialised along

the chosen section. We will use this log line bundle without further comment in what
follows.
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6.1. Cones of the space of roots

In order to write down piecewise polynomial functions on S(L 1
r ) we need a fairly

explicit description of the cones/charts of S(L 1
r ) in terms of the cones of S. To this end,

let s be a strict geometric point of S with ghost sheaf Ms , and write Xs for the Ms-tropical
curve (metrised graph) coming from Xs . Let sr be the same geometric point but with an
th root adjoined to each element of Ms , and let Xsr be the tropical curve obtained by

base-changing to Msr and then dividing each edge into a chain of exactly r edges of
equal length.

We write V for the set of vertices of Xs and Vr for the vertices of Xsr , and define E
and Er similarly; in particular

#Er = r#E and #Vr = #V + (r − 1)#E . (6.1.1)

he group of divisors Div(Xs) is the free abelian group on V , and we define similarly
iv(Xsr ). We write PL = H 0(Xs, M

gp
s ) for the set of piecewise-linear functions, and

similarly PLr = H 0(Xsr , M
gp
sr

); equivalently this can be seen as the functions from V
(respectively Vr ) to Ms (respectively Msr ) with integer slopes; again, we refer to [10,12]
for more explanation of these notions. If α is a piecewise linear function then we write
∂α for the map taking an oriented edge to the slope of α along that edge. We have ‘sum
of outgoing slopes’ maps

∇ :PL→ Div(Xs) and ∇ :PLr → Div(Xsr ); (6.1.2)

he images of these maps are called the principal divisors. The multidegree deg(L) can
e seen as a divisor on Xs , or as a divisor on Xsr supported on the vertices in V ⊆ Vr .

To explicitly describe the sr -points of S(L 1
r ), we first choose a set of divisors D

on the Xsr which are coset representatives for the cosets mapping to [deg(L)] under
multiplication by r

r :
Div(Xsr )

PLr
→

Div(Xsr )
PLr

. (6.1.3)

In other words, each D is a divisor on Xsr such that r D is linearly equivalent to deg(L),
and we choose one such D from each linear equivalence class.

For each D we choose a piecewise linear function αD such that r D = deg(L(αD));
his αD is unique up to addition of a constant.

emma 6.1. Fix D and αD as above. Then there exists a piecewise linear function
∈ PLr such that α + rβ is constant on V ⊆ Vr .

roof. Fix a vertex v0 ∈ V ; after addition of a constant we may assume that α(v0) = 0.
onsider a vertex v connected to v0 by an edge e ∈ E , which gets divided into r parts in

Er ; write v0 = u0, u1, . . . , ur = v for the vertices of Er along that edge. Then the sum
f the outgoing slopes of α vanishes modulo r at each of u1, . . . , ur−1 (since deg(L) is

supported on V , and r | r D), so writing s for the slope of α from u to u we have
i i i+1
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| si − si+1. Then

α(v) =
r−1∑
i=0

si
ℓ(e)

r

=

(
s0 +

r−1∑
i=0

si − s0

r

)
r
ℓ(e)

r

(6.1.4)

hence α(v) is divisible by r in Mr . Applying this to each edge of the graph yields that
| α(v) for all v ∈ V , and moreover that for every e ∈ E with endpoints v and v′ that

(e) | α(v)− α(v′).
Now choose an orientation on each edge in E . We define β to take the value −α(v)/r

or v ∈ V and for each interior vertex on an edge going away from v. To see that β is
iecewise linear, consider an edge e ∈ E joining vertices v and v′; then as noted above
e have ℓ(e) | α(v) − α(v′), hence ℓ(e)/r (the length of any of the r -segments of e in

Er ) divides the difference in values of β between the points of segments. □

Replacing αD by αD + rβ and D by D + ∇β we may and do assume that αD takes
he value 0 on each vertex in V ⊆ Vr .

emma 6.2. If (D′, αD′ ) is another pair with D linearly equivalent to D′ and αD′

anishing on V , then there exists β ∈ PLr vanishing on V with D′ = D + div β.

roof. We have

r D = degL+∇αD and r D′ = degL+∇αD′ ,

so if D′ = D+∇β then rβ − (αD − αD′ ) is constant. Hence β is constant on V , and so
can be chosen to vanish on V . □

Finally, for each D we choose representatives of the isomorphism classes of line
bundles F on Xsr with F⊗r ∼

−→ L(αD). The cones resulting from different choices
of F will be canonically isomorphic, so we do not need to distinguish between them
when writing a formula below.

6.2. Piecewise polynomial functions on the cones

We define our strict piecewise polynomial function locally on S(L 1
r ), so fix a prestable

raph Xs , a divisor D on Xsr , a piecewise linear function αD , and a line bundle F with
⊗r ∼= L(αD) as above.
We recall from [2] the class ηL = π∗(c1(L)2) ∈ CH(S), and similarly define

ηL(αD ) := π∗(c1(L(αD))2). (6.2.1)

ince we chose αD to vanish on each vertex v ∈ V we have c1(L) · c1(O(αD)) = 0, so

η = π (c (L)2)+ π (c (O(α ))2) = η + π (c (O(α ))2). (6.2.2)
L(αD ) ∗ 1 ∗ 1 D L ∗ 1 D
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Now π∗(c1(O(α))2) is the image of the piecewise linear function∑
v∈Vr

αD(v)deg(O(αD))(v) (6.2.3)

on S(L 1
r ). Noting that

deg(O(αD))(v) = ∇(αD)(v). (6.2.4)

we define a piecewise linear function Pη = Pη(D) on S(L 1
r ) by

Pη :=
1
r2

∑
v∈Vr

αD(v)∇αD(v). (6.2.5)

Now for a positive integer R we define a piecewise-polynomial function fR(D) by

fR(D) :=
∑
w

R−h1(Γ )
∏

e=(h,h′)

exp(
w(h)w(h′)

2
ℓ(e)) (6.2.6)

here the sum runs over weightings5 w modulo R on Xsr for the divisor D, and the
roduct runs over edges e of Xsr .

emma 6.3. On quasi-compact opens of S, the values of fR(D) are eventually
olynomial in R.

roof. This can be proven by a slight variant on the arguments in Aaron Pixton’s
ppendix to [13]. □

Hence we can define Pw = Pw(D) to be the value of this polynomial at R = 0, a
iecewise polynomial function on S. Then for each integer 0 ≤ d we define

Pd (D) = [exp(
−Pη(D)

2
)Pw(D)]d (6.2.7)

where the subscript d means that we take the part in homogeneous degree d .

Lemma 6.4. The piecewise polynomial function Pd is independent of the choice of coset
representative D.

Proof. Suppose that D′, αD′ is another choice of coset representatives. Then by
Lemma 6.2 we know that there exists a piecewise linear function β on Γr vanishing
on V and with D − D′ = div β and α′ = α + rβ. Any such β can be formed as an
integer linear combination of what we will call primitive piecewise linear functions on
Γr : given a vertex u ∈ Vr \ V we define a piecewise linear function βu to take value
0 away from u, and to take value ℓ/r at u, where ℓ is the length of the edge of Γ on
which u lives. Thus it suffices to verify that the piecewise polynomial function Pd does
not change when we replace D by D+ div βu and α by α+ rβu for some u ∈ Vr \ V . In

5 In the sense of [2]: a weighting mod R for D is a function w from half-edges of Xsr to {0, . . . , R−1}
such that w(h)+w(h′) = 0 mod R if h, h′ form an edge, and such that the sum of the weights of half-edges
at a vertex v is equal to −D(v) modulo R.
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hat follows we fix one such u, and to simplify notation we write β := βu and α := αD .
We write u1 and u2 for the vertices in Vr which lie immediately to either side of u.

We begin by computing the effect of β separately on Pη and on Pw. First, Pη:

r2 PηL(α+rβ) =

∑
v∈Vr

(α + rβ)(v)∇(α + rβ)(v)

=

∑
v

α(v)∇α(v)+ r
∑

v

β(v)∇α(v)

+ r
∑

v

α(v)∇β(v)+ r2
∑

v

β(v)∇β(v)

= r2 PηL(α) + r
ℓ

r
∇α(u)+ r (−2α(u)+ α(u1)+ α(u2))− 2r2 l

r
= r2 PηL(α) − 2ℓ(∇α(u)− r ),

= r2 PηL(α) − 2ℓr (D(u)− 1),

(6.2.8)

here for the penultimate equality we use the definition of ∇α(u):

∇α(u) =
α(u1)− α(u)

ℓ/r
+

α(u2)− α(u)
ℓ/r

, (6.2.9)

and for the final equality we use that r D = degL + ∇α and that degL(u) = 0 since
∈ Vr \ V .
Next we compute the effect of addition of β on fR , and hence on Pw. We have

fR(D + β) :=
∑
w

R−h1(Γ )
∏

e=(h,h′)

exp(
w(h)w(h′)

2
ℓ(e)) (6.2.10)

here the sum runs over weightings modulo R on Xsr for the divisor D+div β. We write
β for the map assigning to each half-edge the slope of β along that half-edge (this has
he same data-type as a weighting, but does not in general satisfy its axioms). Now if w

s a weighting for D then w − ∂β is a weighting for D + div β. Hence

fR(D + β) =
∑
w

R−h1(Γ )
∏

e=(h,h′)

exp(
(w − ∂β)(h)(w − ∂β)(h′)

2
ℓ(e)) (6.2.11)

here w runs over weightings modulo R for D. But ∂β takes the value 1 on the edge
1 from u to u1 and e2 from u to u2 (both of which have length ℓ/r ), and 0 on all the
ther edges. Hence

fR(D + β)

=

∑
w

R−h1(Γ )
∏

e=(h,h′)

exp(
(w − ∂β)(h)(w − ∂β)(h′)

2
ℓ(e))

= exp((−w(e1)− w(e2)+ 1)ℓ/r )
∑
w

R−h1(Γ )
∏

e=(h,h′)

exp(
w(h)w(h′)

2
ℓ(e))

= exp((−D(u)+ 1)ℓ/r ) fR(D).

(6.2.12)
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f
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r

Hence we deduce that

Pw(D + β) = Pw(D) exp((−D(u)+ 1)ℓ/r ). (6.2.13)

Putting this together, we find

exp(
−Pη(D + β)

2
)Pw(D + β)

= exp(
ℓ

r
(D(u)− 1)) exp(−

Pη(D)
2

) exp((−D(u)+ 1)ℓ/r )Pw(D)

= exp(−
Pη(D)

2
)Pw(D)

(6.2.14)

as required. □

This lemma implies that Pg−d is a well-defined piecewise polynomial function on
S(L 1

r ). Next we define

P =
g∑

d=0

1
d!

(
−ηL

2r2

)d

Ψ (Pg−d ) ∈ CH(S(L
1
r )), (6.2.15)

where Ψ is the map from [12] taking a piecewise polynomial to the corresponding
(operational) Chow class.

Theorem 6.5.

[P]g = DR
1
r (L) ∈ CH(S(L

1
r )). (6.2.16)

Proof. If we take r = 1 then S(L 1
r ) = S, and the formula P is the translation of the main

ormula of [2] into the language of piecewise polynomial functions; see [10, Theorem
6] for details of this translation. The case of any r ∈ Z>0 can be deduced from the case
= 1 by pullback. Namely, after passing to a proper surjective cover of S(L 1

r ) we may
make canonical choices of the divisors D (for example, by giving an orientation to each
edge of the graphs Xs and requiring the support of D to be moved as far as possible
towards the start of the edge). Moreover (perhaps after another such cover) we subdivide
each edge of the curve X into a chain of r − 1 copies of the projective line (so that its
graph is Xsr ). Then DR

1
r (L) is simply the DR cycle associated to the line bundle F with

F⊗r ∼
−→ L(αD). To see this, note that DR measures the locus where a log line bundle

is trivial, or equivalently the locus where a line bundle is logarithmically trivial, and use
that logarithmic triviality is unaffected by passing to subdivisions of the curve by [21,
Theorem 4.4.1]. The formula P is simply the result of applying the r = 1 case of the
formula to the line bundle F . □

Remark 6.6. The extent to which Theorem 6.5 can be considered a ‘formula’ for
DR

1
r (L) is of course dependent on how one feels about piecewise polynomial functions.

One positive point is that these things are quite easy to compute with; in [10] we use
this language to give formulae for the log DR cycle, including a SAGE implementation
for piecewise polynomials on (blowups of) the moduli space of curves.
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