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Abstract
Red Lists are widely used as an indicator of the status and trends of biodiversity and 
are often used in directing conservation efforts. However, it is unclear whether species 
with a Least Concern status share a common relationship to environmental correlates 
compared to species that are on the Red List. To assess this, we focus here on the 
contribution and correlates of land use, climate, and soil to the occurrence of wild 
bees in the Netherlands. We used observation data and species distribution models 
to explain the relation between wild bees and the environment. Non-threatened bees 
had a relatively higher variable importance of the land use variables to their models, 
as opposed to the climate variables for the threatened bees. The threatened bees 
had a smaller extent of occurrence and occupied areas with more extreme climatic 
conditions. Bees with a Least Concern status showed more positive responses to urban 
green spaces and Red List species showed a different response to climatic variables, 
such as temperature and precipitation. Even though Red List bees were found in 
areas with a higher cover of natural areas, they showed a more selective response 
to natural land use types. Pastures and crops were the main contributing land use 
variables and showed almost exclusively a negative correlation with the distribution 
of all wild bees. This knowledge supports the implementation of appropriate, species-
specific conservation measures, including the preservation of natural areas, and the 
improvement of land use practices in agricultural and urban areas, which may help 
mitigate the negative impacts of future global change on species' distributions.
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1  |  INTRODUC TION

Recent biodiversity loss has led to the assertion that the world is 
amid a sixth mass extinction event (Ceballos et al., 2015). Among 
all invertebrates, vertebrates, and plants, an average of 25% of spe-
cies is at risk of extinction (categorized by the IUCN as vulnerable, 
endangered, or critically endangered; IPBES, 2019). The IUCN Red 
List is an important tool for raising awareness, increasing scientific 
knowledge, and for bringing together relevant stakeholders for the 
conservation of threatened species (Betts et al., 2020). In five de-
cades, it has developed from a small subjective list of threatened 
species to an extensive list with quantitative criteria for the extinc-
tion risk status across taxonomic groups (Betts et al., 2020).

The IUCN Red List assessments use distribution and abun-
dance data to determine trends in extent and area of occupancy 
(IUCN, 2016). They do not involve modeling and do not incorpo-
rate the role of environmental variables on distribution patterns 
(IUCN,  2016; Natural,  2001; Syfert et al.,  2014). Species distri-
bution models (SDMs) are models that can be used to estimate 
species niches and distributions in unsampled areas (Elith & 
Leathwick,  2009).The SDMs can be used to predict the distribu-
tion of a species in a certain time period and geographic region, 
but they can also be used to statistically estimate the relationship 
between environment and species (Araújo et al., 2019). The SDMs 
are rarely used in Red List assessments (Syfert et al.,  2014), even 
though they can provide insight in the correlations between envi-
ronment and species occurrences and thus explain differences in 
the ecology of species with a Least Concern status (LC), referred to 
as non-threatened species in this study, and species with a Red List 
status (RL) with any risk status besides LC, referred to as threatened 
species. Lack of data and limited uptake of methods are important 
obstacles in the long-term growth and consistency of the RLs and 
models can aid in providing standardized estimates for the assess-
ment (reviewed in Cazalis et al., 2022).

Climatic variables and land use variables are widely used 
in SDMs (Booth,  2018; Cordonnier et al.,  2019; Dorrough & 
Scroggie, 2008; Marshall et al., 2021; Santos et al., 2021) and cli-
mate and land use are among the most important drivers of change 
to biodiversity (IPBES, 2019). In general, studies have not shown a 
consistent stronger effect of either climate change or land use and 
land cover change on the distribution of species among different 
taxonomic groups (Santos et al., 2021).The importance of land use 
and climate on species distributions may change over time (Aguirre-
Gutiérrez et al.,  2017), scale (Martin et al.,  2013), and thematic 
resolution (Marshall et al., 2021). Land use can influence the distri-
bution of species through mechanisms such as habitat fragmenta-
tion (Püttker et al., 2020), agricultural land expansion (Dorrough & 
Scroggie, 2008), and urbanization (Cordonnier et al., 2019). Global 
patterns of land use are often correlated with climate (Dale, 1997; 
Thuiller et al., 2004). However, land use and climate act on differ-
ent scales (Martin et al., 2013; Santos et al., 2021) and climate has a 
stronger effect on population distribution and land use on dispersal, 
population viability, and reproductive output (Santos et al., 2021).

Differences in the environmental requirements of threatened and 
non-threatened species have been found in several groups of spe-
cies. For example, threatened plants tend to require a more restricted 
range of soil pH values compared to the LC plants (Gustafsson, 1994; 
Pärtel et al.,  2004). Besides environmental requirements, non-
threatened and threatened species tend to differ in their biological 
traits. For example, threatened seabirds tend to be larger than non-
threatened seabirds (Gaston & Blackburn, 1995; Richards et al., 2021) 
and threatened seabirds were found to occupy a smaller habitat 
breadth compared to non-threatened species (Richards et al., 2021). 
Red Listed bees were found to be larger than non-threatened bees, 
and they visited more threatened food plants as a pollen source 
(Scheper et al., 2014). Threatened species tend to have a lower spe-
cies richness of parasites compared to non-threatened species in pri-
mates (Altizer et al., 2007) and plants (Gibson et al., 2010). Moreover, 
plants with a higher floral complexity are more likely to be threatened 
than plants with simpler flowers (Stefanaki et al., 2015).

There is a lack of knowledge on factors determining the distri-
bution of insects and even though SDMs are applied to a wide range 
of species, insects are an underrepresented group (Lobo,  2016). 
Bees in the Netherlands are a suitable group of organisms to study 
differences between threatened and non-threatened species as 
there are over 300 bee species, of which 181 (55%) are listed as 
threatened and 150 as non-threatened (Reemer,  2018; Figure  1). 
The Dutch Red List is based on both the trend in the distribution 
or number of reproductive individuals since 1950 and the actual 
distribution (Reemer,  2018), while for the European Red List 79% 
of the bee species do not have sufficient data for population trends 
(Nieto et al., 2014). As the Netherlands has a small land surface area 
(33,647 km2; CBS, 2022) and we are using fine resolution spatial data, 
we are expecting to find a high contribution of land use as opposed 
to a higher contribution of climate at a larger scale. Similar to the rest 
of Europe, the Netherlands has been affected by agricultural inten-
sification, one of the most influential drivers of biodiversity decline 
in Europe (Henle et al.,  2008). In the last century, there has been 
an increase in the agricultural intensification, for example, massive 

F I G U R E  1 Andrena haemorrhoa represents a common species 
in the Netherlands and is classified as Least Concern on the Dutch 
wild bee Red List.
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application of fertilizers, in the Netherlands, and the proportion of 
semi-natural habitat for pollinators has decreased to only one-fifth of 
its original area in the Netherlands since 1900 (Scheper et al., 2014). 
Besides land use and climate, soil characteristics are an important 
factor for many wild bees (reviewed in Antoine & Forrest,  2021) 
and around 250 of the bees in the Netherlands are ground-nesting 
(Peeters et al., 2012). Here we evaluate whether LC and RL bees dif-
fer in their location and distribution among land use, climate, and soil 
categories. Following this, we compare the response of LC and RL 
bees to specific types of natural, urban, and agricultural land uses.

2  |  MATERIAL S AND METHODS

2.1  |  Abiotic data acquisition and processing

As explanatory variables for the SDMs, we used Dutch national 
climate, land use, and soil data at a spatial resolution of 
100 m × 100 m. For all modeled species, the study extent included 
the land within the political boundary of the Netherlands, 
excluding the grid cells with complete cover of saltwater. We 
selected uncorrelated land use variables from various sources that 
can be classified as natural (Inter Provinciaal Overleg, 2016), urban 
(CBS,  2012) and agricultural areas (Ministerie van Economische 
Zaken, 2015). The values of the variables are the percentage cover 
of the respective land use types within the grid cells. We calculated 
an additional variable, the summed number of land uses, which is 
the sum of land uses categories per grid cell. As climate variables, 
we used daily temperature and rainfall data obtained from the 
Royal Netherlands Meteorological Institute from 2005 to 2014. 
We aggregated the climate data to bioclimatic variables (Fick & 
Hijmans, 2017) that represent ecologically relevant variables using 
the dismo package version 1.3-3 (Hijmans et al., 2017). Of these 
bioclimatic variables, we selected a set of uncorrelated variables 
that included annual mean temperature (bio 1), temperature 
seasonality (bio 4), mean daily mean air temperatures of the wettest 
quarter (bio 8), annual precipitation amount (bio 12), precipitation 
amount of the driest month (bio 14), and precipitation seasonality 
(bio 15; Fick & Hijmans,  2017). The Pearson's correlation 
coefficient was determined in the usdm package version 1.1.18 
(Naimi et al.,  2014) with a threshold at 0.7, commonly used as a 
cut-off for collinearity (Dormann et al., 2013). We used data from 
the Dutch soil map from 2006 (Grondsoortenkaart,  2006) that 
included the main soil types in the Netherlands: sand, peat, light 
clay, heavy clay, light zavel, heavy zavel, loam, and moerig op zand 
(Silvis & Voskuilen, 2016) described in Table S1.

2.2  |  Species data acquisition and cleaning

The bee observation data originated from the European Invertebrate 
Survey Netherlands (EIS, 2020). The data includes observations from 

various sources in the period from 2004 to 2019, and it is collected 
by both professionals and amateurs. The observations were filtered 
using spatial thinning at 300 m in the spThin package version 0.2.0 
(Aiello-Lammens et al., 2015). Only the bee species with at least 15 
observations were modeled, resulting in a total of 222 bee species 
(Table S2), across the Netherlands (Figure  2). We used the Dutch 
Red List (Reemer, 2018) and European Red List (Nieto et al., 2014) 
for dividing the bees into non-threatened (LC) and threatened (RL) 
bees (Syfert et al., 2014).

2.3  |  Model building and evaluation

Species distribution models represent tools that can numerically 
combine environmental data and species observations or abun-
dance (Elith & Leathwick,  2009). MaxEnt is a machine learning 
algorithm for species distribution modeling that includes con-
trols for model complexity (Phillips et al., 2006). It performs sol-
idly among other presence-only algorithms (Kaky et al.,  2020; 
Lissovsky & Dudov,  2021), especially when the sample size is 
smaller (Aguirre-Gutiérrez et al., 2013). Additionally, the MaxEnt 
algorithm is more efficient in handling collinearity among predic-
tor variables (De Marco & Nóbrega, 2018; Feng et al., 2019). For 
modeling bee distributions, we used MaxEnt version 3.4.1 (Phillips 
et al., 2006) in R (R Core Team, 2020) with the packages: dismo 
version 1.3-9 (Hijmans et al.,  2017) and ENMeval version 2.0.4 
(Muscarella et al.,  2014). We ran a range of regularization mul-
tiplier values and feature classes, including linear (L), quadratic 
(Q), hinge (H), threshold (T), and product (P) features, which rep-
resent functions of the predictor variables and can add potential 
complexity (Phillips & Dudík, 2008). The regularization multiplier, 
which controls allowable model complexity, ranged from 1 to 15, 
where higher values increasingly penalize complexity (Phillips & 
Dudík,  2008). We tested the following combinations of feature 
types: L, L + Q, H, L + Q + H, L + Q + H + P, L + Q + H + P + T (Data S1). 
From these models, the model with the lowest AICc (Burnham & 
Anderson, 2002) was selected per individual modeled species and 
ties were broken with lowest 10% training omission rate. Other 
evaluation measures that have been calculated, include the av-
erage continuous Boyce Index (Hirzel et al., 2006) and Minimum 
Training Presence omission rate (Muscarella et al., 2014), the area 
under the curve (AUC) of the receiver operating characteristic for 
SDMs of the calibration and evaluation dataset (Radosavljevic & 
Anderson,  2014) and they can be found in Data  S2. The evalu-
ation measures were calculated based on the evaluation dataset 
and the division between calibration and evaluation data was done 
following the procedure of a spatial block validation (Muscarella 
et al., 2014) with four distinct geographical areas: one part evalu-
ation data and three parts calibration data. The number of back-
ground points was set to 10,000 from the whole study region. A 
summary of the models following the ODMAP protocol (Zurell 
et al., 2020) can be found in Table S3.
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4 of 13  |     MOENS et al.

2.4  |  Statistical analyses

Differences in the extent of occurrence, location, and percentage 
of natural land cover (sum of the percentage cover of individual nat-
ural land use variables) between LC and RL were compared using a 
Wilcoxon signed-rank test (Hollander et al., 2013). Additionally, we 

wanted to see whether RL species were found in more extreme 
climate conditions compared to LC species. We tested this by (i) 
first calculating the mean value of each bioclimatic variable across 
the observation range of each modeled species, (ii) for each spe-
cies we then calculated how many standard deviations this average 
was away from the average value of that variable across the whole 

F I G U R E  2 The spatial distribution 
of observation data for Red List and 
Least Concern wild bee species in the 
Netherlands (a) and their difference in 
spatial distribution on the longitudinal (b) 
and latitudinal (c) axis. (b, c) The distance 
in kilometers between the average 
longitude and latitude orientation of 
the modeled species and the average 
longitude and latitude values of all 
observations.
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study extent, and (iii) finally, we statistically tested whether there 
was a significant difference between the mean number of stand-
ard deviations for LC and RL species using a Kruskal–Wallis test 
(Kruskal & Wallis, 1952) with a post-hoc Dunn's test (Dunn, 1964).

Permutation importance is a measure of variable importance in 
the SDMs, and it is calculated by randomizing the values of a vari-
able for presence and background samples while keeping the other 
variables constant (Jarnevich et al., 2016; Kalle et al., 2013). It is 
expressed as the change in training AUC of the final model con-
verted to percentages (Kalle et al., 2013). Differences in permuta-
tion importance from the SDMs of the land use, climate, and soil 
variables, summed per category, were compared between the best 
performing models of the LC and RL bees with base R and the FSA 
package version 0.9.4 (Ogle et al., 2023), using a Kruskal–Wallis test 
(Kruskal & Wallis, 1952) with a post-hoc Dunn's test (Dunn, 1964). 
We adjusted the p-values for multiple comparisons with the Holm 
method (Holm, 1979). Using a linear regression and a nonparamet-
ric rank-based regression model in the Rfit package version 0.24.2 
(Kloke & McKean, 2012), we calculated the relation between the 
variable importance of land use, climate, and soil and the RL status 
and extent of occurrence. The overall significance of the linear mod-
els has the null-hypothesis that all of the coefficients are zero, and 
this was tested with the F-statistic in base R (James et al., 2013). The 
best performing regression model was selected based on the lowest 
AICc values. The extent of occurrence is an often used measure in 
RL assessments (Syfert et al., 2014). It is the area that includes the 
outermost locations or inferred locations (Syfert et al., 2014) and it 
was calculated using the sf package version 1.0.9 (Pebesma, 2018).

The relationship between habitat suitability of the best perform-
ing model and each environmental variable was calculated using 
the response function in the dismo package version 1.3-9 (Hijmans 
et al.,  2017), resulting in marginal response curves with the other 
variables at their median value. The response of the species to each 
environmental variable was deemed positive or negative when the 
correlation coefficient (Spearman's) between the habitat suitability 
and the individual environmental variable in the marginal response 
curves was higher than .7, similar to (Marshall et al., 2021). If the vari-
able was not included in the best performing SDM or when the habi-
tat suitability and the individual environmental variable did not show 
a correlation coefficient (Spearman's) higher than .7, we considered 
the relation between the two as no response. The differences in 
responses of modeled species to variables were assessed with a 
Cochran–Mantel–Haenszel test (CMH; Cochran,  1954), using the 
post-hoc test with the Fisher's exact test (Freeman & Halton, 1951), 
in the Rcompanion package version 2.4.1 (Mangiafico, 2021).

3  |  RESULTS

3.1  |  Differences in the observation data

The extent of occurrence, location, percentage of natural land cover, 
and the values of the climate variables for the observations differed 

between LC and RL species. The LC wild bees differed significantly 
in their extent of occurrence from the RL bees (W = 10,135; p < .001), 
having an average of 40,468 (±993.42) km2 compared to an aver-
age of 25,675 (±1278.21) km2. The location of the LC bees' observa-
tions, averaged per species, were on average 3.38 km more toward 
the West of the Netherlands (W = 5010; p = .018) than the RL spe-
cies and 12.07 km more to the North (W = 7422, p = .0074; Figure 2). 
Additionally, LC species were observed in areas with a lower percent-
age cover of natural areas (42.71% ± 1.31%) compared to the RL spe-
cies (47.92% ± 1.90%) and this difference was significant (W = 5076, 
p-value = .026). The observations of the LC species were closer to the 
mean of possible climatic values in the Netherlands compared to the 
RL species for bioclim 1 (Kruskal–Wallis chi-squared [χ2] = 114.44; 
p = .0035), bioclim 4 (W = 3058; p < .001), bioclim 8 (p < .001), bioclim 
12 (p < .001), and bioclim 15 (p < .001; Figure 3).

3.2  |  Differences in the species distribution models

The 117 LC species and 105 RL species differed in the summed per-
mutation importance of land use, climate, and soil, and the extent 
of occurrence of the modeled species showed a strong correlation 
with the summed permutation importance. We found that land use 
variable importance was significantly more important for LC bees 
compared to RL bees using the summed permutation importance 
(59.71% ± 2.00% and 48.54% ± 2.58%, respectively; Kruskal–Wallis 
chi-squared [χ2] = 235; post-hoc Dunn's test p = .016) (Figure 4a). The 
summed permutation importance of climate was significantly less 
important for the LC species than for the RL species (23.94% ± 1.68% 
and 32.85% ± 2.46%, respectively; χ2 = 235; p = .048). The variable im-
portance of soil variables did not differ significantly between LC and 
RL species (16.35% ± 1.26% and 17.65% ± 1.56%; χ2 = 235; p = .83). 
We ran parametric and nonparametric models for the variable im-
portance of land use climate and soil, since not all residuals had a nor-
mal distribution. The extent of occurrence was part of the regression 
model as an explanatory variable and the p-values for parametric (p) 
and nonparametric (pnp) were calculated. The best performing re-
gression model for the land use variable importance, included a posi-
tive correlation of the extent of occurrence (β1; p < .001/pnp < .001) 
and the RL status (β2; p = .033/pnp = .037), and the model was signifi-
cant (p < .001/pnp < .001; R

2 = .38/Rnp
2 = .34; Figure 4b; Table S4). For 

the climate models the best performing model also resulted in the 
formula with a positive correlation with the extent of occurrence 
(β1; p < .001/pnp < .001) and RL status (β2; p = .038/pnp = .004), and 
the model was significant (p < .001/pnp < .001; R2 = .33/Rnp

2 = .29; 
Table S5). The best performing model for the variable importance of 
soil was the model with only a positive correlation with the extent of 
occurrence, but this model was not significant (p = .059/pnp = .039).

When the individual variables were compared, the LC wild 
bees had a significantly higher permutation importance (Kruskal–
Wallis chi-squared [χ2] = 1233.3) than the RL species for number 
of land uses (p = .0016), crop (p = .0038), freshwater (p < .001), salt-
water (p < .001), heather (p < .001), production forest (p = .0096), 
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semi-natural forest (p = .0033), semi-natural grassland (p < .001), 
and urban green (p = .031), while the LC species had a lower per-
mutation importance for pasture (p < .001). Crop and pasture were 
the variables with the average highest permutation importance 
(12.80 ± 0.71; 11.44 ± 0.79, respectively; Figure 5b).

The LC wild bees had a significantly higher permutation impor-
tance than RL wild bees for bioclim 12 (2.12 ± 0.27 and 1.58 ± 0.36; 
χ2 = 121.39; p = .0019), bioclim 14 (2.12 ± 0.27 and 1.58 ± 0.36; 
χ2 = 121.39; p = .0019) and bioclim 15 (2.12 ± 0.27 and 1.58 ± 0.36; 
Kruskal–Wallis chi-squared [χ2] = 121.39; p = .0019; Figure 6b).

Comparing the individual soil variables, the LC species had a 
significantly higher permutation importance (χ2 = 275.56) for light 
clay (p = .011), light zavel (p = .0047) and loam (p < .001), and lower 
for peat (p < .001). For all wild bees, sand (7.82 ± 0.91) and peat 
(3.73 ± 0.33) had a higher permutation importance than the other 
variables (Figure S1B).

3.3  |  Response toward land use, climate, and soil

The LC and RL bees showed almost exclusively negative responses 
or no response to cropland and pasture and this effect was espe-
cially strong for species with larger extent of occurrence (Figure 5a; 
Figure S2A). For the majority of land use, climate, and soil variables 
LC species more often showed a positive or negative response 
compared to RL species for most land use variables (Appendix S1). 
When the ratio between positive response and negative response 
was compared between LC and RL species (χ2 = 24.27; p < .001), 

LC species showed more often a positive response to urban green 
(p < .001).

In general, LC species had significantly more often positive re-
sponses to multiple natural land use variables compared to RL spe-
cies (Kruskal–Wallis chi-squared [χ2] = 254.74; p < .001; Figure S3).

Comparing the positive and negative ratio for LC and RL 
species in their response toward climate variables, LC species 
showed more often a positive response, as opposed to a negative 
response, (χ2 = 0.14; p < .001) for bioclim 12 (p < .001) and more 
often a negative response for bioclim 4 (p = .049) and bioclim 15 
(p = .029; Figure 6a). All wild bee species had consistently positive 
responses to mean annual air temperature (bioclim 1), tempera-
ture seasonality (bioclim 4), and precipitation amount of the driest 
month (bioclim 14), also across different extent of occurrences 
(Figure S2B). The bees had mainly negative responses to precipita-
tion seasonality (bioclim 15).

For the soil variables, the ratio between positive and negative 
response was not significantly different between LC and RL species. 
The majority of the modeled species showed a positive response to-
ward peat, light clay, and heavy clay, while both negative and positive 
responses were found for sand, light zavel, and loam (Figure S1A).

3.4  |  Difference between European and Dutch 
red list

All 222 modeled species had a Dutch Red List status, but 19.37% 
did not have a European Red List status and were labeled as data 

F I G U R E  3 The graph shows the 
deviation, expressed as the standard 
deviation from the average of the 
bioclimatic variable in the Netherlands for 
Least Concern species (blue) and Red List 
species (red). The average of the values 
per species are based on the location of 
the observation data from the European 
Invertebrate Survey Netherlands 
(EIS, 2020). Significance values indicate 
the p-value of the post-hoc Dunn's test 
(Dunn, 1964) after a Kruskal–Wallis test 
(Kruskal & Wallis, 1952).
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deficient (DD), indicating missing distribution or abundance informa-
tion for large parts of their European range (Nieto et al., 2014). The 
Red List status of species occurring on both lists was as follows: 93 
species with a LC status on both lists, 13 species with a RL status 
on both lists, 67 species with a RL status in the Netherlands and LC 
status in Europe, and 6 species with a LC status in the Netherlands 
and a RL status in Europe. When we performed the analyses using 
the conservation status of the European Red List we found the same 
trend as for the Dutch Red List with a higher permutation impor-
tance of land use for the LC species compared to the RL species 
(59.05% ± 1.82% and 38.30% ± 4.64%) and a lower permutation im-
portance of climate (25.37% ± 1.65% and 40.41% ± 5.91%). However, 
with the limited number of RL species on the European Red List (19) 
these differences were not significant. The DD species were more 
similar to the RL species: 44.38% ± 4.08% summed permutation 

importance of land use and 33.11% ± 3.53% contribution of climate. 
The land use summed permutation importance was significantly dif-
ferent (Kruskal–Wallis chi-squared [χ2] = 244.9; p < .001) from the LC 
species (p = .029). Differences in the extent of occurrence showed 
a similar trend, when the European Red List was used, and the DD 
species had a similar average to the RL species. The extent of occur-
rence was different (χ2 = 55.09; p < .001) between LC and RL species 
(p = .0033) and LC and DD species (p = .035).

4  |  DISCUSSION

Through an analysis of variable contribution of climate, land use, and 
soil, we have presented differences in the factors driving the distri-
bution of not-threatened (LC) and threatened (RL) wild bee species 

F I G U R E  4 Difference in variable 
contribution of land use, climate, and 
soil to the distribution of Least Concern 
(LC) and Red List (RL) Dutch bees 
expressed as the summed permutation 
importance (a) and the relation between 
the summed permutation importance, 
RL status and the extent of occurrence 
of the species (b). The R2 is calculated 
from a linear regression model, using the 
extent of occurrence and the RL status as 
explanatory variables.
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8 of 13  |     MOENS et al.

in the Netherlands. Our results demonstrate that climatic variables 
exerted a greater influence on the models of RL species, while land 
use variables were more important for the LC species, although 
this pattern varied based on how widely distributed a species was. 
Interestingly, this greater importance of climate for RL species was 
associated with distributions that reflect the climate extremes of the 
Netherlands. Global climate change may result in a higher mortality 
of species that are not able to acclimate fast enough to new climatic 
conditions or a disruption of ecological interactions due to a differ-
ence in the capability of thermal acclimation between species (Rohr 
et al.,  2018). In the case of insects, climate can particularly affect 
those insects that are limited by their climatic envelope through 
mechanisms such as the induction of torpor or aestivation or distur-
bance of the diapause (Sands, 2018).

A potential threat to pollinating insects is a decrease in syn-
chrony between the bee and the pollinated flower phenology 
(Hegland et al., 2009; Pyke et al., 2016). This suggests that special-
ist species, with a limited climate envelope, would be particularly at 
risk in climatic change scenarios and it has been observed in other 
species that specialists are declining and slowly being replaced by 
generalist species (Clavel et al., 2011). Due to the limited range of 

these species, they occupy a subset of the Dutch climate and will be 
more vulnerable to changes in any direction. Moreover, an import-
ant factor in the decline of bees is their host pollen plant (Scheper 
et al., 2014). The difference in climate contribution between RL and 
LC species may also originate from populations living at the upper 
or lower limits of their potential environmental niche. Other re-
search has shown that endangered plants tend to live in the envi-
ronmental extremes, such as very moist or dry areas (Boulangeat 
et al., 2012; Van Bodegom et al., 2014) and we found a similar trend 
for bees. Several RL bee species are found only in the South of the 
Netherlands as climatic conditions are more suitable there (Peeters 
et al., 2012). The European Red List assessment is not restrained by 
the smaller geographic region of the Netherlands. Using the cate-
gories of the European Red List, we still found a higher contribution 
of climate for the RL species and a higher contribution of land use 
for the LC species. These results support that RL species are more 
affected by climate, even when potential niche truncation due to re-
stricting the focal extent to political boundaries, is considered.

The higher contribution of land use variables in the models of the 
LC species and more widespread distribution suggests that the dis-
tribution of LC species is mainly affected by land use variables that 

F I G U R E  5 The response to different 
land use variables in the species 
distribution models of Least Concern and 
Red List wild bees (a) and the permutation 
importance with the standard error (b). 
The bars represent the percentage of 
species that showed a negative correlation 
(dark orange), a positive correlation (light 
orange), or no significant correlation 
(neutral) with the land use variable. For 
every land use category, the left stacked 
bars represent the Least Concern species, 
and the right stacked bars represent the 
Red List species.
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vary on a small scale in contrast to climate variables that are known 
to act on a broader scale (Santos et al., 2021). After accounting for 
the effect of the extent of occurrence on land use variables, the trend 
was the opposite, and the RL species had a higher importance of land 
use to their models. These results could indicate a higher negative 
effect of land use categories, such as pasture and crops. Surprisingly, 
we found no negative responses to the number of land use classes, 
although the RL species had fewer positive responses. Although the 
number of land uses per grid cells has its limitations, for example, it 
does not take into account the proportion of each land use category 
similar to Oehri et al. (2020), it can give an indication of landscape 
heterogeneity. A more heterogeneous landscape could provide 
nesting opportunities and/or suitable habitats for more species of 
pollinators than homogeneous landscapes (Andersson et al., 2014; 
Bennett & Lovell, 2019). In general, an increase in land uses can have 
positive effects such as landscape complementation, habitat diver-
sity, and spreading of risk (Fahrig et al., 2019). However, very high 
numbers of land uses in a landscape could indicate a fragmented 

landscape, with a lack of refuge for the pollinators in homogeneous 
landscapes with only agriculture or urban area (Jauker et al., 2009; 
Kleijn et al., 2011). The less positive responses to the number of land 
uses by the RL species could indicate a higher sensitivity to habitat 
fragmentation.

Our study, consistent with research on bumblebees in Belgium 
(Marshall et al.,  2021) revealed mixed responses of wild bees to 
urban habitats. The higher number of positive responses to urban 
habitats for LC species, compared to RL species may reflect spe-
cific traits that are conducive to city dwelling. Previous studies 
have suggested that urban areas tend to host smaller bees that are 
cavity-nesting and have later activity periods and eusocial behavior 
(Banaszak-Cibicka & Żmihorski, 2012; Buchholz & Egerer, 2020). In 
contrast, bees showed no positive response to crops and pastures, 
which constitute a sizable portion of the Dutch landscape. Studies 
have found more often a lower species richness in agricultural areas 
compared to urban and natural areas (reviewed in Prendergast 
et al., 2022). The exclusively negative responses to crops and pas-
ture in this study could be due to the intensively managed agri-
culture in the Netherlands (Scheper et al., 2014) and the exclusion 
of landscape elements, which can provide essential nesting and 
floral resources for pollinators (Garibaldi et al.,  2014; Timberlake 
et al., 2019). Notably, RL were observed more often in natural areas 
than LC bees, but they also demonstrated a greater selectivity to-
ward certain natural land use types. The increased natural land use 
selectivity for RL bees is supported by the lower average number 
of favorable natural land use types that they responded positively 
toward. These results support earlier reports suggesting that the 
niche of RL species is narrower than that of LC species (Pandolfo 
et al., 2016; Pärtel et al., 2004; Richards et al., 2021). The more spe-
cific natural land use requirements for the RL species would be in 
line with a study on plant species in the Netherlands that found a 
preference of RL species toward locations with a higher natural land 
cover (Pan et al., 2021). New conservation strategies have emerged, 
and these strategies focus more on the RL species and their habitats 
(Volis, 2019) and propose to examine the physiological and ecolog-
ical needs of the RL species and identify locations for assisted col-
onization (Tomlinson et al., 2022). Our findings highlight the need 
to preserve specific natural land uses, to safeguard the survival of 
threatened RL species. These results underscore the importance of 
incorporating such habitats into existing protected areas and con-
servation strategies, with a species-specific approach (Ghisbain 
et al., 2020). Our analyses show that nearly all the modeled bees 
exhibited a negative response to agricultural areas, indicating that 
improvements to agriculture may offer some relief to LC bees, but 
are unlikely to benefit RL species. Even though landscape elements 
can provide a habitat even for threatened bees (Marja et al., 2018), it 
is unlikely that small strips of farmland can replace the vast expanses 
of flower-rich hay meadows and other extensive agricultural habi-
tats that once dominated the landscape.

Even though researchers have proposed that models can pro-
vide valuable information for the Red List assessments, it has 
rarely been implemented (reviewed in Cazalis et al.,  2022). This 

F I G U R E  6 The response to annual mean temperature (bio 1), 
temperature seasonality (bio 4), mean daily mean air temperatures 
of the wettest quarter (bio 8), annual precipitation amount (bio 12), 
precipitation amount of the driest month (bio 14) and precipitation 
seasonality (bio 15) in the species distribution models of Least 
Concern and Red List Dutch wild bees (a) and the permutation 
importance with the standard error (b). The bars represent the 
percentage of species that showed a negative correlation (dark 
orange), or a positive correlation (light orange) or no significant 
correlation (neutral) with the bioclimatic variable.
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knowledge-implementation gap remains and efforts could be made 
to improve collaboration between Red List practitioners and aca-
demic researchers (Cazalis et al., 2022). Achieving such collabora-
tion, could allow models, such as the models used in this study, to 
significantly contribute to the Red List assessments. A recent study 
applied a machine-learning technique to the data deficient species 
of the Red List and results suggested that these species are more 
threatened than the data sufficient species (Borgelt et al., 2022). 
Our study supports that the wild bees listed as threatened on the 
European Red List were more similar to the Data deficient species 
than the non-threatened bees in their response to land use and cli-
mate and their extent of occurrence.

The discrepancies in the importance of land use and climate on 
the distribution of LC and RL species highlight the need for further 
investigation into the underlying mechanisms behind this difference. 
Such research can enhance our understanding of species-specific 
factors that increase the risk of becoming threatened. Moreover, 
identifying how climate and land use interact and impact population 
dynamics (Schulte To Bühne et al., 2021) is crucial for predicting the 
future distribution of LC and RL species, which are likely to respond 
differently to future change (Marshall et al., 2018).

5  |  CONCLUSIONS

In this study we compared the contribution of land use, climate 
and soil to the species distribution models of wild bees in the 
Netherlands. Non-threatened (LC) bees had a higher variable 
importance of the land use variables to their models, as opposed to 
the climate variables for the threatened (RL) bees. The threatened 
bees had a smaller extent of occurrence and occupied areas with 
more extreme climatic conditions. Additionally, the LC and RL bees 
differed in their responses toward urban green and selectivity toward 
natural land uses, and climate variables, such as annual precipitation, 
annual mean temperature, and precipitation seasonality. Crops and 
pastures were the main contributing land use variables having a 
negative correlation with the distribution of nearly all bee species. 
Surprisingly, bees showed a positive response toward the number 
of land uses, although the number of RL bees that showed a positive 
response, was lower. This supports the benefit of a diverse landscape 
for wild bees or could be a result of the detrimental effect of the 
omnipresent agricultural area in the Netherlands. The knowledge 
from this study supports the implementation of appropriate, 
species-specific conservation measures, including the preservation 
of natural areas, and the improvement of land use practices in 
agricultural and urban areas, which may help mitigate the negative 
impacts of future global change on species' distributions.
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