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Abstract
Red	Lists	are	widely	used	as	an	indicator	of	the	status	and	trends	of	biodiversity	and	
are	often	used	in	directing	conservation	efforts.	However,	it	is	unclear	whether	species	
with	a	Least	Concern	status	share	a	common	relationship	to	environmental	correlates	
compared	to	species	that	are	on	the	Red	List.	To	assess	this,	we	focus	here	on	the	
contribution	and	correlates	of	 land	use,	 climate,	 and	soil	 to	 the	occurrence	of	wild	
bees	in	the	Netherlands.	We	used	observation	data	and	species	distribution	models	
to	explain	the	relation	between	wild	bees	and	the	environment.	Non-	threatened	bees	
had	a	relatively	higher	variable	importance	of	the	land	use	variables	to	their	models,	
as	opposed	 to	 the	 climate	variables	 for	 the	 threatened	bees.	The	 threatened	bees	
had	a	smaller	extent	of	occurrence	and	occupied	areas	with	more	extreme	climatic	
conditions.	Bees	with	a	Least	Concern	status	showed	more	positive	responses	to	urban	
green	spaces	and	Red	List	species	showed	a	different	response	to	climatic	variables,	
such	 as	 temperature	 and	 precipitation.	 Even	 though	 Red	 List	 bees	 were	 found	 in	
areas	with	a	higher	cover	of	natural	areas,	 they	showed	a	more	selective	 response	
to	natural	 land	use	 types.	Pastures	and	crops	were	 the	main	contributing	 land	use	
variables	and	showed	almost	exclusively	a	negative	correlation	with	the	distribution	
of	all	wild	bees.	This	knowledge	supports	the	implementation	of	appropriate,	species-	
specific	conservation	measures,	including	the	preservation	of	natural	areas,	and	the	
improvement	of	 land	use	practices	 in	agricultural	and	urban	areas,	which	may	help	
mitigate	the	negative	impacts	of	future	global	change	on	species'	distributions.
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1  |  INTRODUC TION

Recent	biodiversity	 loss	has	 led	 to	 the	 assertion	 that	 the	world	 is	
amid	 a	 sixth	mass	 extinction	 event	 (Ceballos	 et	 al.,	2015).	Among	
all	invertebrates,	vertebrates,	and	plants,	an	average	of	25%	of	spe-
cies	is	at	risk	of	extinction	(categorized	by	the	IUCN	as	vulnerable,	
endangered,	or	critically	endangered;	IPBES,	2019).	The	IUCN	Red	
List	is	an	important	tool	for	raising	awareness,	increasing	scientific	
knowledge,	and	for	bringing	together	relevant	stakeholders	for	the	
conservation	of	 threatened	species	 (Betts	et	al.,	2020).	 In	 five	de-
cades,	 it	 has	 developed	 from	 a	 small	 subjective	 list	 of	 threatened	
species	to	an	extensive	list	with	quantitative	criteria	for	the	extinc-
tion	risk	status	across	taxonomic	groups	(Betts	et	al.,	2020).

The	 IUCN	 Red	 List	 assessments	 use	 distribution	 and	 abun-
dance	 data	 to	 determine	 trends	 in	 extent	 and	 area	 of	 occupancy	
(IUCN,	2016).	 They	 do	 not	 involve	modeling	 and	 do	 not	 incorpo-
rate	 the	 role	 of	 environmental	 variables	 on	 distribution	 patterns	
(IUCN,	 2016;	 Natural,	 2001;	 Syfert	 et	 al.,	 2014).	 Species	 distri-
bution	 models	 (SDMs)	 are	 models	 that	 can	 be	 used	 to	 estimate	
species	 niches	 and	 distributions	 in	 unsampled	 areas	 (Elith	 &	
Leathwick,	 2009).The	 SDMs	 can	 be	 used	 to	 predict	 the	 distribu-
tion	 of	 a	 species	 in	 a	 certain	 time	 period	 and	 geographic	 region,	
but	they	can	also	be	used	to	statistically	estimate	the	relationship	
between	environment	and	species	(Araújo	et	al.,	2019).	The	SDMs	
are	 rarely	used	 in	Red	List	 assessments	 (Syfert	et	 al.,	 2014),	 even	
though	they	can	provide	 insight	 in	the	correlations	between	envi-
ronment	 and	 species	 occurrences	 and	 thus	 explain	 differences	 in	
the	ecology	of	species	with	a	Least	Concern	status	(LC),	referred	to	
as	non-	threatened	species	in	this	study,	and	species	with	a	Red	List	
status	(RL)	with	any	risk	status	besides	LC,	referred	to	as	threatened	
species.	Lack	of	data	and	limited	uptake	of	methods	are	important	
obstacles	 in	the	long-	term	growth	and	consistency	of	the	RLs	and	
models	can	aid	in	providing	standardized	estimates	for	the	assess-
ment	(reviewed	in	Cazalis	et	al.,	2022).

Climatic	 variables	 and	 land	 use	 variables	 are	 widely	 used	
in	 SDMs	 (Booth,	 2018;	 Cordonnier	 et	 al.,	 2019;	 Dorrough	 &	
Scroggie,	2008;	Marshall	 et	 al.,	2021;	 Santos	et	 al.,	2021)	 and	 cli-
mate	and	land	use	are	among	the	most	important	drivers	of	change	
to	biodiversity	(IPBES,	2019).	In	general,	studies	have	not	shown	a	
consistent	stronger	effect	of	either	climate	change	or	land	use	and	
land	 cover	 change	 on	 the	 distribution	 of	 species	 among	 different	
taxonomic	groups	(Santos	et	al.,	2021).The	 importance	of	 land	use	
and	climate	on	species	distributions	may	change	over	time	(Aguirre-	
Gutiérrez	 et	 al.,	 2017),	 scale	 (Martin	 et	 al.,	 2013),	 and	 thematic	
resolution	(Marshall	et	al.,	2021).	Land	use	can	influence	the	distri-
bution	of	 species	 through	mechanisms	such	as	habitat	 fragmenta-
tion	(Püttker	et	al.,	2020),	agricultural	 land	expansion	(Dorrough	&	
Scroggie,	2008),	and	urbanization	 (Cordonnier	et	al.,	2019).	Global	
patterns	of	 land	use	are	often	correlated	with	climate	(Dale,	1997; 
Thuiller	et	al.,	2004).	However,	 land	use	and	climate	act	on	differ-
ent	scales	(Martin	et	al.,	2013;	Santos	et	al.,	2021)	and	climate	has	a	
stronger	effect	on	population	distribution	and	land	use	on	dispersal,	
population	viability,	and	reproductive	output	(Santos	et	al.,	2021).

Differences	in	the	environmental	requirements	of	threatened	and	
non-	threatened	 species	have	been	 found	 in	 several	 groups	of	 spe-
cies.	For	example,	threatened	plants	tend	to	require	a	more	restricted	
range	of	soil	pH	values	compared	to	the	LC	plants	(Gustafsson,	1994; 
Pärtel	 et	 al.,	 2004).	 Besides	 environmental	 requirements,	 non-	
threatened	and	threatened	species	tend	to	differ	 in	their	biological	
traits.	For	example,	threatened	seabirds	tend	to	be	larger	than	non-	
threatened	seabirds	(Gaston	&	Blackburn,	1995;	Richards	et	al.,	2021) 
and	 threatened	 seabirds	 were	 found	 to	 occupy	 a	 smaller	 habitat	
breadth	compared	to	non-	threatened	species	(Richards	et	al.,	2021). 
Red	Listed	bees	were	found	to	be	larger	than	non-	threatened	bees,	
and	 they	 visited	 more	 threatened	 food	 plants	 as	 a	 pollen	 source	
(Scheper	et	al.,	2014).	Threatened	species	tend	to	have	a	lower	spe-
cies	richness	of	parasites	compared	to	non-	threatened	species	in	pri-
mates	(Altizer	et	al.,	2007)	and	plants	(Gibson	et	al.,	2010).	Moreover,	
plants	with	a	higher	floral	complexity	are	more	likely	to	be	threatened	
than	plants	with	simpler	flowers	(Stefanaki	et	al.,	2015).

There	 is	a	 lack	of	knowledge	on	factors	determining	 the	distri-
bution	of	insects	and	even	though	SDMs	are	applied	to	a	wide	range	
of	 species,	 insects	 are	 an	 underrepresented	 group	 (Lobo,	 2016). 
Bees	in	the	Netherlands	are	a	suitable	group	of	organisms	to	study	
differences	 between	 threatened	 and	 non-	threatened	 species	 as	
there	 are	 over	 300	 bee	 species,	 of	 which	 181	 (55%)	 are	 listed	 as	
threatened	 and	 150	 as	 non-	threatened	 (Reemer,	 2018; Figure 1). 
The	Dutch	Red	 List	 is	 based	on	both	 the	 trend	 in	 the	distribution	
or	 number	 of	 reproductive	 individuals	 since	 1950	 and	 the	 actual	
distribution	 (Reemer,	 2018),	 while	 for	 the	 European	 Red	 List	 79%	
of	the	bee	species	do	not	have	sufficient	data	for	population	trends	
(Nieto	et	al.,	2014).	As	the	Netherlands	has	a	small	land	surface	area	
(33,647 km2;	CBS,	2022)	and	we	are	using	fine	resolution	spatial	data,	
we	are	expecting	to	find	a	high	contribution	of	land	use	as	opposed	
to	a	higher	contribution	of	climate	at	a	larger	scale.	Similar	to	the	rest	
of	Europe,	the	Netherlands	has	been	affected	by	agricultural	inten-
sification,	one	of	the	most	influential	drivers	of	biodiversity	decline	
in	 Europe	 (Henle	 et	 al.,	 2008).	 In	 the	 last	 century,	 there	 has	 been	
an	 increase	 in	 the	agricultural	 intensification,	 for	example,	massive	

F I G U R E  1 Andrena haemorrhoa	represents	a	common	species	
in	the	Netherlands	and	is	classified	as	Least	Concern	on	the	Dutch	
wild	bee	Red	List.
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application	of	fertilizers,	 in	the	Netherlands,	and	the	proportion	of	
semi-	natural	habitat	for	pollinators	has	decreased	to	only	one-	fifth	of	
its	original	area	in	the	Netherlands	since	1900	(Scheper	et	al.,	2014). 
Besides	 land	use	 and	 climate,	 soil	 characteristics	 are	 an	 important	
factor	 for	 many	 wild	 bees	 (reviewed	 in	 Antoine	 &	 Forrest,	 2021) 
and	around	250	of	the	bees	in	the	Netherlands	are	ground-	nesting	
(Peeters	et	al.,	2012).	Here	we	evaluate	whether	LC	and	RL	bees	dif-
fer	in	their	location	and	distribution	among	land	use,	climate,	and	soil	
categories.	Following	 this,	we	compare	 the	 response	of	LC	and	RL	
bees	to	specific	types	of	natural,	urban,	and	agricultural	land	uses.

2  |  MATERIAL S AND METHODS

2.1  |  Abiotic data acquisition and processing

As	explanatory	 variables	 for	 the	 SDMs,	we	used	Dutch	national	
climate,	 land	 use,	 and	 soil	 data	 at	 a	 spatial	 resolution	 of	
100 m × 100 m.	For	all	modeled	species,	the	study	extent	included	
the	 land	 within	 the	 political	 boundary	 of	 the	 Netherlands,	
excluding	 the	 grid	 cells	 with	 complete	 cover	 of	 saltwater.	 We	
selected	uncorrelated	land	use	variables	from	various	sources	that	
can	be	classified	as	natural	(Inter	Provinciaal	Overleg,	2016),	urban	
(CBS,	 2012)	 and	 agricultural	 areas	 (Ministerie	 van	 Economische	
Zaken,	2015).	The	values	of	the	variables	are	the	percentage	cover	
of	the	respective	land	use	types	within	the	grid	cells.	We	calculated	
an	additional	variable,	the	summed	number	of	land	uses,	which	is	
the	sum	of	land	uses	categories	per	grid	cell.	As	climate	variables,	
we	 used	 daily	 temperature	 and	 rainfall	 data	 obtained	 from	 the	
Royal	 Netherlands	Meteorological	 Institute	 from	 2005	 to	 2014.	
We	 aggregated	 the	 climate	 data	 to	 bioclimatic	 variables	 (Fick	 &	
Hijmans,	2017)	that	represent	ecologically	relevant	variables	using	
the	dismo	package	version	1.3-	3	 (Hijmans	et	al.,	2017).	Of	these	
bioclimatic	variables,	we	selected	a	set	of	uncorrelated	variables	
that	 included	 annual	 mean	 temperature	 (bio	 1),	 temperature	
seasonality	(bio	4),	mean	daily	mean	air	temperatures	of	the	wettest	
quarter	(bio	8),	annual	precipitation	amount	(bio	12),	precipitation	
amount	of	the	driest	month	(bio	14),	and	precipitation	seasonality	
(bio	 15;	 Fick	 &	 Hijmans,	 2017).	 The	 Pearson's	 correlation	
coefficient	 was	 determined	 in	 the	 usdm	 package	 version	 1.1.18	
(Naimi	et	 al.,	 2014)	with	a	 threshold	at	0.7,	 commonly	used	as	a	
cut-	off	for	collinearity	(Dormann	et	al.,	2013).	We	used	data	from	
the	 Dutch	 soil	 map	 from	 2006	 (Grondsoortenkaart,	 2006) that 
included	the	main	soil	types	in	the	Netherlands:	sand,	peat,	 light	
clay,	heavy	clay,	light	zavel,	heavy	zavel,	loam,	and	moerig	op	zand	
(Silvis	&	Voskuilen,	2016)	described	in	Table S1.

2.2  |  Species data acquisition and cleaning

The	bee	observation	data	originated	from	the	European	Invertebrate	
Survey	Netherlands	(EIS,	2020).	The	data	includes	observations	from	

various	sources	in	the	period	from	2004	to	2019,	and	it	is	collected	
by	both	professionals	and	amateurs.	The	observations	were	filtered	
using	spatial	thinning	at	300 m	in	the	spThin	package	version	0.2.0	
(Aiello-	Lammens	et	al.,	2015).	Only	the	bee	species	with	at	least	15	
observations	were	modeled,	resulting	in	a	total	of	222	bee	species	
(Table S2),	 across	 the	Netherlands	 (Figure 2).	We	 used	 the	Dutch	
Red	List	(Reemer,	2018)	and	European	Red	List	(Nieto	et	al.,	2014) 
for	dividing	the	bees	into	non-	threatened	(LC)	and	threatened	(RL)	
bees	(Syfert	et	al.,	2014).

2.3  |  Model building and evaluation

Species	distribution	models	 represent	 tools	 that	can	numerically	
combine	 environmental	 data	 and	 species	 observations	 or	 abun-
dance	 (Elith	 &	 Leathwick,	 2009).	 MaxEnt	 is	 a	 machine	 learning	
algorithm	 for	 species	 distribution	 modeling	 that	 includes	 con-
trols	for	model	complexity	 (Phillips	et	al.,	2006).	 It	performs	sol-
idly	 among	 other	 presence-	only	 algorithms	 (Kaky	 et	 al.,	 2020; 
Lissovsky	 &	 Dudov,	 2021),	 especially	 when	 the	 sample	 size	 is	
smaller	 (Aguirre-	Gutiérrez	et	al.,	2013).	Additionally,	the	MaxEnt	
algorithm	is	more	efficient	in	handling	collinearity	among	predic-
tor	variables	(De	Marco	&	Nóbrega,	2018;	Feng	et	al.,	2019). For 
modeling	bee	distributions,	we	used	MaxEnt	version	3.4.1	(Phillips	
et	al.,	2006)	 in	R	 (R	Core	Team,	2020)	with	 the	packages:	dismo	
version	 1.3-	9	 (Hijmans	 et	 al.,	 2017)	 and	 ENMeval	 version	 2.0.4	
(Muscarella	 et	 al.,	 2014).	We	 ran	 a	 range	 of	 regularization	mul-
tiplier	 values	 and	 feature	 classes,	 including	 linear	 (L),	 quadratic	
(Q),	hinge	(H),	threshold	(T),	and	product	(P)	features,	which	rep-
resent	functions	of	the	predictor	variables	and	can	add	potential	
complexity	(Phillips	&	Dudík,	2008).	The	regularization	multiplier,	
which	controls	allowable	model	complexity,	ranged	from	1	to	15,	
where	 higher	 values	 increasingly	 penalize	 complexity	 (Phillips	 &	
Dudík,	 2008).	We	 tested	 the	 following	 combinations	 of	 feature	
types:	L,	L + Q,	H,	L + Q + H,	L + Q + H + P,	L + Q + H + P + T	(Data	S1). 
From	these	models,	the	model	with	the	lowest	AICc	(Burnham	&	
Anderson,	2002)	was	selected	per	individual	modeled	species	and	
ties	were	 broken	with	 lowest	 10%	 training	 omission	 rate.	Other	
evaluation	 measures	 that	 have	 been	 calculated,	 include	 the	 av-
erage	continuous	Boyce	 Index	 (Hirzel	et	al.,	2006)	and	Minimum	
Training	Presence	omission	rate	(Muscarella	et	al.,	2014),	the	area	
under	the	curve	(AUC)	of	the	receiver	operating	characteristic	for	
SDMs	of	 the	calibration	and	evaluation	dataset	 (Radosavljevic	&	
Anderson,	 2014)	 and	 they	 can	 be	 found	 in	 Data	 S2. The evalu-
ation	measures	were	calculated	based	on	 the	evaluation	dataset	
and	the	division	between	calibration	and	evaluation	data	was	done	
following	 the	procedure	of	a	 spatial	block	validation	 (Muscarella	
et	al.,	2014)	with	four	distinct	geographical	areas:	one	part	evalu-
ation	data	and	three	parts	calibration	data.	The	number	of	back-
ground	points	was	set	to	10,000	from	the	whole	study	region.	A	
summary	 of	 the	 models	 following	 the	 ODMAP	 protocol	 (Zurell	
et	al.,	2020)	can	be	found	in	Table S3.
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4 of 13  |     MOENS et al.

2.4  |  Statistical analyses

Differences	in	the	extent	of	occurrence,	location,	and	percentage	
of	natural	land	cover	(sum	of	the	percentage	cover	of	individual	nat-
ural	land	use	variables)	between	LC	and	RL	were	compared	using	a	
Wilcoxon	signed-	rank	test	(Hollander	et	al.,	2013).	Additionally,	we	

wanted	 to	 see	whether	 RL	 species	were	 found	 in	more	 extreme	
climate	 conditions	 compared	 to	 LC	 species.	We	 tested	 this	 by	 (i)	
first	calculating	the	mean	value	of	each	bioclimatic	variable	across	
the	observation	range	of	each	modeled	species,	 (ii)	 for	each	spe-
cies	we	then	calculated	how	many	standard	deviations	this	average	
was	away	from	the	average	value	of	that	variable	across	the	whole	

F I G U R E  2 The	spatial	distribution	
of	observation	data	for	Red	List	and	
Least	Concern	wild	bee	species	in	the	
Netherlands	(a)	and	their	difference	in	
spatial	distribution	on	the	longitudinal	(b)	
and	latitudinal	(c)	axis.	(b,	c)	The	distance	
in	kilometers	between	the	average	
longitude	and	latitude	orientation	of	
the	modeled	species	and	the	average	
longitude	and	latitude	values	of	all	
observations.
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study	extent,	and	(iii)	finally,	we	statistically	tested	whether	there	
was	a	significant	difference	between	the	mean	number	of	stand-
ard	 deviations	 for	 LC	 and	RL	 species	 using	 a	Kruskal–	Wallis	 test	
(Kruskal	&	Wallis,	1952)	with	a	post-	hoc	Dunn's	test	(Dunn,	1964).

Permutation	importance	is	a	measure	of	variable	importance	in	
the	SDMs,	and	it	 is	calculated	by	randomizing	the	values	of	a	vari-
able	for	presence	and	background	samples	while	keeping	the	other	
variables	 constant	 (Jarnevich	 et	 al.,	2016;	 Kalle	 et	 al.,	2013). It is 
expressed	 as	 the	 change	 in	 training	 AUC	 of	 the	 final	 model	 con-
verted	to	percentages	 (Kalle	et	al.,	2013).	Differences	 in	permuta-
tion	 importance	 from	 the	 SDMs	of	 the	 land	 use,	 climate,	 and	 soil	
variables,	summed	per	category,	were	compared	between	the	best	
performing	models	of	the	LC	and	RL	bees	with	base	R	and	the	FSA	
package	version	0.9.4	(Ogle	et	al.,	2023),	using	a	Kruskal–	Wallis	test	
(Kruskal	&	Wallis,	1952)	with	a	post-	hoc	Dunn's	test	 (Dunn,	1964). 
We	adjusted	the	p-	values	for	multiple	comparisons	with	the	Holm	
method	(Holm,	1979).	Using	a	linear	regression	and	a	nonparamet-
ric	rank-	based	regression	model	 in	the	Rfit	package	version	0.24.2	
(Kloke	 &	McKean,	2012),	 we	 calculated	 the	 relation	 between	 the	
variable	importance	of	land	use,	climate,	and	soil	and	the	RL	status	
and	extent	of	occurrence.	The	overall	significance	of	the	linear	mod-
els	has	the	null-	hypothesis	that	all	of	the	coefficients	are	zero,	and	
this was tested with the F-	statistic	in	base	R	(James	et	al.,	2013). The 
best	performing	regression	model	was	selected	based	on	the	lowest	
AICc	values.	The	extent	of	occurrence	is	an	often	used	measure	in	
RL	assessments	(Syfert	et	al.,	2014).	It	is	the	area	that	includes	the	
outermost	locations	or	inferred	locations	(Syfert	et	al.,	2014)	and	it	
was	calculated	using	the	sf	package	version	1.0.9	(Pebesma,	2018).

The	relationship	between	habitat	suitability	of	the	best	perform-
ing	 model	 and	 each	 environmental	 variable	 was	 calculated	 using	
the	response	function	in	the	dismo	package	version	1.3-	9	(Hijmans	
et	 al.,	 2017),	 resulting	 in	marginal	 response	 curves	with	 the	other	
variables	at	their	median	value.	The	response	of	the	species	to	each	
environmental	variable	was	deemed	positive	or	negative	when	the	
correlation	coefficient	(Spearman's)	between	the	habitat	suitability	
and	the	individual	environmental	variable	in	the	marginal	response	
curves	was	higher	than	.7,	similar	to	(Marshall	et	al.,	2021).	If	the	vari-
able	was	not	included	in	the	best	performing	SDM	or	when	the	habi-
tat	suitability	and	the	individual	environmental	variable	did	not	show	
a	correlation	coefficient	(Spearman's)	higher	than	.7,	we	considered	
the	 relation	 between	 the	 two	 as	 no	 response.	 The	 differences	 in	
responses	 of	 modeled	 species	 to	 variables	 were	 assessed	 with	 a	
Cochran–	Mantel–	Haenszel	 test	 (CMH;	 Cochran,	 1954),	 using	 the	
post-	hoc	test	with	the	Fisher's	exact	test	(Freeman	&	Halton,	1951),	
in	the	Rcompanion	package	version	2.4.1	(Mangiafico,	2021).

3  |  RESULTS

3.1  |  Differences in the observation data

The	extent	of	occurrence,	location,	percentage	of	natural	land	cover,	
and	the	values	of	the	climate	variables	for	the	observations	differed	

between	LC	and	RL	species.	The	LC	wild	bees	differed	significantly	
in	their	extent	of	occurrence	from	the	RL	bees	(W = 10,135;	p < .001),	
having	an	average	of	40,468	 (±993.42)	 km2	 compared	 to	an	aver-
age	of	25,675	(±1278.21)	km2.	The	location	of	the	LC	bees'	observa-
tions,	averaged	per	species,	were	on	average	3.38 km	more	toward	
the	West	of	the	Netherlands	(W = 5010;	p = .018)	than	the	RL	spe-
cies	and	12.07 km	more	to	the	North	(W = 7422,	p = .0074;	Figure 2). 
Additionally,	LC	species	were	observed	in	areas	with	a	lower	percent-
age	cover	of	natural	areas	(42.71% ± 1.31%)	compared	to	the	RL	spe-
cies	(47.92% ± 1.90%)	and	this	difference	was	significant	(W = 5076,	
p-	value = .026).	The	observations	of	the	LC	species	were	closer	to	the	
mean	of	possible	climatic	values	in	the	Netherlands	compared	to	the	
RL	 species	 for	 bioclim	1	 (Kruskal–	Wallis	 chi-	squared	 [χ2] = 114.44;	
p = .0035),	bioclim	4	(W = 3058;	p < .001),	bioclim	8	(p < .001),	bioclim	
12 (p < .001),	and	bioclim	15	(p < .001;	Figure 3).

3.2  |  Differences in the species distribution models

The	117	LC	species	and	105	RL	species	differed	in	the	summed	per-
mutation	 importance	of	 land	use,	climate,	and	soil,	and	the	extent	
of	occurrence	of	the	modeled	species	showed	a	strong	correlation	
with	the	summed	permutation	importance.	We	found	that	land	use	
variable	 importance	was	 significantly	more	 important	 for	 LC	bees	
compared	 to	 RL	 bees	 using	 the	 summed	 permutation	 importance	
(59.71% ± 2.00%	and	48.54% ± 2.58%,	 respectively;	Kruskal–	Wallis	
chi-	squared	[χ2] = 235;	post-	hoc	Dunn's	test	p = .016)	(Figure 4a). The 
summed	 permutation	 importance	 of	 climate	was	 significantly	 less	
important	for	the	LC	species	than	for	the	RL	species	(23.94% ± 1.68%	
and	32.85% ± 2.46%,	respectively;	χ2 = 235;	p = .048).	The	variable	im-
portance	of	soil	variables	did	not	differ	significantly	between	LC	and	
RL	 species	 (16.35% ± 1.26%	 and	 17.65% ± 1.56%;	 χ2 = 235;	p = .83).	
We	ran	parametric	and	nonparametric	models	 for	 the	variable	 im-
portance	of	land	use	climate	and	soil,	since	not	all	residuals	had	a	nor-
mal	distribution.	The	extent	of	occurrence	was	part	of	the	regression	
model	as	an	explanatory	variable	and	the	p-	values	for	parametric	(p) 
and	nonparametric	 (pnp)	were	 calculated.	 The	 best	 performing	 re-
gression	model	for	the	land	use	variable	importance,	included	a	posi-
tive	correlation	of	the	extent	of	occurrence	(β1; p < .001/pnp < .001)	
and	the	RL	status	(β2; p = .033/pnp = .037),	and	the	model	was	signifi-
cant	(p < .001/pnp < .001;	R

2 = .38/Rnp
2 = .34;	Figure 4b; Table S4). For 

the	climate	models	the	best	performing	model	also	resulted	in	the	
formula	with	 a	 positive	 correlation	with	 the	 extent	 of	 occurrence	
(β1; p < .001/pnp < .001)	 and	 RL	 status	 (β2; p = .038/pnp = .004),	 and	
the	 model	 was	 significant	 (p < .001/pnp < .001;	 R2 = .33/Rnp

2 = .29;	
Table S5).	The	best	performing	model	for	the	variable	importance	of	
soil	was	the	model	with	only	a	positive	correlation	with	the	extent	of	
occurrence,	but	this	model	was	not	significant	(p = .059/pnp = .039).

When	 the	 individual	 variables	 were	 compared,	 the	 LC	 wild	
bees	 had	 a	 significantly	 higher	 permutation	 importance	 (Kruskal–	
Wallis	 chi-	squared	 [χ2] = 1233.3)	 than	 the	 RL	 species	 for	 number	
of	land	uses	(p = .0016),	crop	(p = .0038),	freshwater	(p < .001),	salt-
water (p < .001),	 heather	 (p < .001),	 production	 forest	 (p = .0096),	
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6 of 13  |     MOENS et al.

semi-	natural	 forest	 (p = .0033),	 semi-	natural	 grassland	 (p < .001),	
and	 urban	 green	 (p = .031),	while	 the	 LC	 species	 had	 a	 lower	 per-
mutation	importance	for	pasture	(p < .001).	Crop	and	pasture	were	
the	 variables	 with	 the	 average	 highest	 permutation	 importance	
(12.80 ± 0.71;	11.44 ± 0.79,	respectively;	Figure 5b).

The	LC	wild	bees	had	a	significantly	higher	permutation	impor-
tance	than	RL	wild	bees	for	bioclim	12	(2.12 ± 0.27	and	1.58 ± 0.36;	
χ2 = 121.39;	 p = .0019),	 bioclim	 14	 (2.12 ± 0.27	 and	 1.58 ± 0.36;	
χ2 = 121.39;	p = .0019)	 and	bioclim	15	 (2.12 ± 0.27	and	1.58 ± 0.36;	
Kruskal–	Wallis	chi-	squared	[χ2] = 121.39;	p = .0019;	Figure 6b).

Comparing	 the	 individual	 soil	 variables,	 the	 LC	 species	 had	 a	
significantly	 higher	 permutation	 importance	 (χ2 = 275.56)	 for	 light	
clay (p = .011),	 light	zavel	 (p = .0047)	and	 loam	(p < .001),	and	 lower	
for	 peat	 (p < .001).	 For	 all	 wild	 bees,	 sand	 (7.82 ± 0.91)	 and	 peat	
(3.73 ± 0.33)	 had	 a	 higher	 permutation	 importance	 than	 the	 other	
variables	(Figure S1B).

3.3  |  Response toward land use, climate, and soil

The	LC	and	RL	bees	showed	almost	exclusively	negative	responses	
or	no	response	to	cropland	and	pasture	and	this	effect	was	espe-
cially	strong	for	species	with	larger	extent	of	occurrence	(Figure 5a; 
Figure S2A).	For	the	majority	of	land	use,	climate,	and	soil	variables	
LC	 species	 more	 often	 showed	 a	 positive	 or	 negative	 response	
compared	to	RL	species	for	most	land	use	variables	(Appendix	S1). 
When	the	ratio	between	positive	response	and	negative	response	
was	 compared	 between	 LC	 and	 RL	 species	 (χ2 = 24.27;	 p < .001),	

LC	species	showed	more	often	a	positive	response	to	urban	green	
(p < .001).

In	general,	LC	species	had	significantly	more	often	positive	re-
sponses	to	multiple	natural	land	use	variables	compared	to	RL	spe-
cies	(Kruskal–	Wallis	chi-	squared	[χ2] = 254.74;	p < .001;	Figure S3).

Comparing	 the	 positive	 and	 negative	 ratio	 for	 LC	 and	 RL	
species	 in	 their	 response	 toward	 climate	 variables,	 LC	 species	
showed	more	often	a	positive	response,	as	opposed	to	a	negative	
response,	 (χ2 = 0.14;	 p < .001)	 for	 bioclim	 12	 (p < .001)	 and	more	
often	a	negative	response	for	bioclim	4	 (p = .049)	and	bioclim	15	
(p = .029;	Figure 6a).	All	wild	bee	species	had	consistently	positive	
responses	 to	mean	 annual	 air	 temperature	 (bioclim	 1),	 tempera-
ture	seasonality	(bioclim	4),	and	precipitation	amount	of	the	driest	
month	 (bioclim	 14),	 also	 across	 different	 extent	 of	 occurrences	
(Figure S2B).	The	bees	had	mainly	negative	responses	to	precipita-
tion	seasonality	(bioclim	15).

For	 the	 soil	 variables,	 the	 ratio	between	positive	and	negative	
response	was	not	significantly	different	between	LC	and	RL	species.	
The	majority	of	the	modeled	species	showed	a	positive	response	to-
ward	peat,	light	clay,	and	heavy	clay,	while	both	negative	and	positive	
responses	were	found	for	sand,	light	zavel,	and	loam	(Figure S1A).

3.4  |  Difference between European and Dutch 
red list

All	222	modeled	 species	had	a	Dutch	Red	List	 status,	but	19.37%	
did	not	have	a	European	Red	List	 status	and	were	 labeled	as	data	

F I G U R E  3 The	graph	shows	the	
deviation,	expressed	as	the	standard	
deviation	from	the	average	of	the	
bioclimatic	variable	in	the	Netherlands	for	
Least	Concern	species	(blue)	and	Red	List	
species	(red).	The	average	of	the	values	
per	species	are	based	on	the	location	of	
the	observation	data	from	the	European	
Invertebrate	Survey	Netherlands	
(EIS,	2020).	Significance	values	indicate	
the p-	value	of	the	post-	hoc	Dunn's	test	
(Dunn,	1964)	after	a	Kruskal–	Wallis	test	
(Kruskal	&	Wallis,	1952).
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    |  7 of 13MOENS et al.

deficient	(DD),	indicating	missing	distribution	or	abundance	informa-
tion	for	large	parts	of	their	European	range	(Nieto	et	al.,	2014). The 
Red	List	status	of	species	occurring	on	both	lists	was	as	follows:	93	
species	with	a	LC	status	on	both	 lists,	13	species	with	a	RL	status	
on	both	lists,	67	species	with	a	RL	status	in	the	Netherlands	and	LC	
status	in	Europe,	and	6	species	with	a	LC	status	in	the	Netherlands	
and	a	RL	status	in	Europe.	When	we	performed	the	analyses	using	
the	conservation	status	of	the	European	Red	List	we	found	the	same	
trend	as	 for	 the	Dutch	Red	List	with	 a	higher	permutation	 impor-
tance	 of	 land	 use	 for	 the	 LC	 species	 compared	 to	 the	 RL	 species	
(59.05% ± 1.82%	and	38.30% ± 4.64%)	and	a	lower	permutation	im-
portance	of	climate	(25.37% ± 1.65%	and	40.41% ± 5.91%).	However,	
with	the	limited	number	of	RL	species	on	the	European	Red	List	(19)	
these	differences	were	not	significant.	The	DD	species	were	more	
similar	 to	 the	 RL	 species:	 44.38% ± 4.08%	 summed	 permutation	

importance	of	land	use	and	33.11% ± 3.53%	contribution	of	climate.	
The	land	use	summed	permutation	importance	was	significantly	dif-
ferent	(Kruskal–	Wallis	chi-	squared	[χ2] = 244.9;	p < .001)	from	the	LC	
species (p = .029).	Differences	 in	 the	extent	of	occurrence	showed	
a	similar	trend,	when	the	European	Red	List	was	used,	and	the	DD	
species	had	a	similar	average	to	the	RL	species.	The	extent	of	occur-
rence	was	different	(χ2 = 55.09;	p < .001)	between	LC	and	RL	species	
(p = .0033)	and	LC	and	DD	species	(p = .035).

4  |  DISCUSSION

Through	an	analysis	of	variable	contribution	of	climate,	land	use,	and	
soil,	we	have	presented	differences	in	the	factors	driving	the	distri-
bution	of	not-	threatened	(LC)	and	threatened	(RL)	wild	bee	species	

F I G U R E  4 Difference	in	variable	
contribution	of	land	use,	climate,	and	
soil	to	the	distribution	of	Least	Concern	
(LC)	and	Red	List	(RL)	Dutch	bees	
expressed	as	the	summed	permutation	
importance	(a)	and	the	relation	between	
the	summed	permutation	importance,	
RL	status	and	the	extent	of	occurrence	
of	the	species	(b).	The	R2 is calculated 
from	a	linear	regression	model,	using	the	
extent	of	occurrence	and	the	RL	status	as	
explanatory	variables.
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8 of 13  |     MOENS et al.

in	the	Netherlands.	Our	results	demonstrate	that	climatic	variables	
exerted	a	greater	influence	on	the	models	of	RL	species,	while	land	
use	 variables	 were	 more	 important	 for	 the	 LC	 species,	 although	
this	pattern	varied	based	on	how	widely	distributed	a	species	was.	
Interestingly,	this	greater	importance	of	climate	for	RL	species	was	
associated	with	distributions	that	reflect	the	climate	extremes	of	the	
Netherlands.	Global	climate	change	may	result	in	a	higher	mortality	
of	species	that	are	not	able	to	acclimate	fast	enough	to	new	climatic	
conditions	or	a	disruption	of	ecological	interactions	due	to	a	differ-
ence	in	the	capability	of	thermal	acclimation	between	species	(Rohr	
et	 al.,	 2018).	 In	 the	case	of	 insects,	 climate	can	particularly	 affect	
those	 insects	 that	 are	 limited	 by	 their	 climatic	 envelope	 through	
mechanisms	such	as	the	induction	of	torpor	or	aestivation	or	distur-
bance	of	the	diapause	(Sands,	2018).

A	 potential	 threat	 to	 pollinating	 insects	 is	 a	 decrease	 in	 syn-
chrony	 between	 the	 bee	 and	 the	 pollinated	 flower	 phenology	
(Hegland	et	al.,	2009;	Pyke	et	al.,	2016). This suggests that special-
ist	species,	with	a	limited	climate	envelope,	would	be	particularly	at	
risk	in	climatic	change	scenarios	and	it	has	been	observed	in	other	
species	 that	 specialists	are	declining	and	slowly	being	 replaced	by	
generalist	species	 (Clavel	et	al.,	2011).	Due	to	the	 limited	range	of	

these	species,	they	occupy	a	subset	of	the	Dutch	climate	and	will	be	
more	vulnerable	to	changes	in	any	direction.	Moreover,	an	import-
ant	factor	in	the	decline	of	bees	is	their	host	pollen	plant	(Scheper	
et	al.,	2014).	The	difference	in	climate	contribution	between	RL	and	
LC	species	may	also	originate	from	populations	 living	at	the	upper	
or	 lower	 limits	 of	 their	 potential	 environmental	 niche.	 Other	 re-
search	has	shown	that	endangered	plants	 tend	to	 live	 in	 the	envi-
ronmental	 extremes,	 such	 as	 very	moist	 or	 dry	 areas	 (Boulangeat	
et	al.,	2012;	Van	Bodegom	et	al.,	2014)	and	we	found	a	similar	trend	
for	bees.	Several	RL	bee	species	are	found	only	in	the	South	of	the	
Netherlands	as	climatic	conditions	are	more	suitable	there	(Peeters	
et	al.,	2012).	The	European	Red	List	assessment	is	not	restrained	by	
the	 smaller	geographic	 region	of	 the	Netherlands.	Using	 the	cate-
gories	of	the	European	Red	List,	we	still	found	a	higher	contribution	
of	climate	for	the	RL	species	and	a	higher	contribution	of	land	use	
for	the	LC	species.	These	results	support	that	RL	species	are	more	
affected	by	climate,	even	when	potential	niche	truncation	due	to	re-
stricting	the	focal	extent	to	political	boundaries,	is	considered.

The	higher	contribution	of	land	use	variables	in	the	models	of	the	
LC	species	and	more	widespread	distribution	suggests	that	the	dis-
tribution	of	LC	species	is	mainly	affected	by	land	use	variables	that	

F I G U R E  5 The	response	to	different	
land	use	variables	in	the	species	
distribution	models	of	Least	Concern	and	
Red	List	wild	bees	(a)	and	the	permutation	
importance	with	the	standard	error	(b).	
The	bars	represent	the	percentage	of	
species	that	showed	a	negative	correlation	
(dark	orange),	a	positive	correlation	(light	
orange),	or	no	significant	correlation	
(neutral)	with	the	land	use	variable.	For	
every	land	use	category,	the	left	stacked	
bars	represent	the	Least	Concern	species,	
and	the	right	stacked	bars	represent	the	
Red List species.
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    |  9 of 13MOENS et al.

vary	on	a	small	scale	in	contrast	to	climate	variables	that	are	known	
to	act	on	a	broader	scale	(Santos	et	al.,	2021).	After	accounting	for	
the	effect	of	the	extent	of	occurrence	on	land	use	variables,	the	trend	
was	the	opposite,	and	the	RL	species	had	a	higher	importance	of	land	
use	to	their	models.	These	results	could	indicate	a	higher	negative	
effect	of	land	use	categories,	such	as	pasture	and	crops.	Surprisingly,	
we	found	no	negative	responses	to	the	number	of	land	use	classes,	
although	the	RL	species	had	fewer	positive	responses.	Although	the	
number	of	land	uses	per	grid	cells	has	its	limitations,	for	example,	it	
does	not	take	into	account	the	proportion	of	each	land	use	category	
similar	to	Oehri	et	al.	(2020),	 it	can	give	an	indication	of	landscape	
heterogeneity.	 A	 more	 heterogeneous	 landscape	 could	 provide	
nesting	opportunities	and/or	suitable	habitats	 for	more	species	of	
pollinators	than	homogeneous	 landscapes	 (Andersson	et	al.,	2014; 
Bennett	&	Lovell,	2019).	In	general,	an	increase	in	land	uses	can	have	
positive	effects	such	as	landscape	complementation,	habitat	diver-
sity,	and	spreading	of	risk	 (Fahrig	et	al.,	2019).	However,	very	high	
numbers	 of	 land	 uses	 in	 a	 landscape	 could	 indicate	 a	 fragmented	

landscape,	with	a	lack	of	refuge	for	the	pollinators	in	homogeneous	
landscapes	with	only	agriculture	or	urban	area	(Jauker	et	al.,	2009; 
Kleijn	et	al.,	2011).	The	less	positive	responses	to	the	number	of	land	
uses	by	the	RL	species	could	indicate	a	higher	sensitivity	to	habitat	
fragmentation.

Our	study,	consistent	with	research	on	bumblebees	 in	Belgium	
(Marshall	 et	 al.,	 2021)	 revealed	 mixed	 responses	 of	 wild	 bees	 to	
urban	habitats.	The	higher	number	of	positive	 responses	 to	urban	
habitats	 for	 LC	 species,	 compared	 to	 RL	 species	may	 reflect	 spe-
cific	 traits	 that	 are	 conducive	 to	 city	 dwelling.	 Previous	 studies	
have	suggested	that	urban	areas	tend	to	host	smaller	bees	that	are	
cavity-	nesting	and	have	later	activity	periods	and	eusocial	behavior	
(Banaszak-	Cibicka	&	Żmihorski,	2012;	Buchholz	&	Egerer,	2020).	In	
contrast,	bees	showed	no	positive	response	to	crops	and	pastures,	
which	constitute	a	sizable	portion	of	the	Dutch	landscape.	Studies	
have	found	more	often	a	lower	species	richness	in	agricultural	areas	
compared	 to	 urban	 and	 natural	 areas	 (reviewed	 in	 Prendergast	
et	al.,	2022).	The	exclusively	negative	responses	to	crops	and	pas-
ture	 in	 this	 study	 could	 be	 due	 to	 the	 intensively	 managed	 agri-
culture	in	the	Netherlands	(Scheper	et	al.,	2014)	and	the	exclusion	
of	 landscape	 elements,	 which	 can	 provide	 essential	 nesting	 and	
floral	 resources	 for	 pollinators	 (Garibaldi	 et	 al.,	 2014;	 Timberlake	
et	al.,	2019).	Notably,	RL	were	observed	more	often	in	natural	areas	
than	LC	bees,	but	they	also	demonstrated	a	greater	selectivity	to-
ward	certain	natural	land	use	types.	The	increased	natural	land	use	
selectivity	 for	RL	bees	 is	 supported	by	 the	 lower	average	number	
of	favorable	natural	 land	use	types	that	they	responded	positively	
toward.	 These	 results	 support	 earlier	 reports	 suggesting	 that	 the	
niche	of	RL	 species	 is	 narrower	 than	 that	of	 LC	 species	 (Pandolfo	
et	al.,	2016;	Pärtel	et	al.,	2004;	Richards	et	al.,	2021).	The	more	spe-
cific	natural	 land	use	requirements	 for	 the	RL	species	would	be	 in	
line	with	a	study	on	plant	species	 in	the	Netherlands	that	found	a	
preference	of	RL	species	toward	locations	with	a	higher	natural	land	
cover	(Pan	et	al.,	2021).	New	conservation	strategies	have	emerged,	
and	these	strategies	focus	more	on	the	RL	species	and	their	habitats	
(Volis,	2019)	and	propose	to	examine	the	physiological	and	ecolog-
ical	needs	of	the	RL	species	and	identify	locations	for	assisted	col-
onization	 (Tomlinson	et	al.,	2022).	Our	 findings	highlight	 the	need	
to	preserve	specific	natural	 land	uses,	to	safeguard	the	survival	of	
threatened	RL	species.	These	results	underscore	the	importance	of	
incorporating	such	habitats	 into	existing	protected	areas	and	con-
servation	 strategies,	 with	 a	 species-	specific	 approach	 (Ghisbain	
et	 al.,	2020).	Our	 analyses	 show	 that	 nearly	 all	 the	modeled	bees	
exhibited	a	negative	 response	 to	agricultural	areas,	 indicating	 that	
improvements	to	agriculture	may	offer	some	relief	to	LC	bees,	but	
are	unlikely	to	benefit	RL	species.	Even	though	landscape	elements	
can	provide	a	habitat	even	for	threatened	bees	(Marja	et	al.,	2018),	it	
is	unlikely	that	small	strips	of	farmland	can	replace	the	vast	expanses	
of	 flower-	rich	hay	meadows	and	other	extensive	agricultural	habi-
tats	that	once	dominated	the	landscape.

Even	 though	 researchers	 have	 proposed	 that	models	 can	 pro-
vide	 valuable	 information	 for	 the	 Red	 List	 assessments,	 it	 has	
rarely	 been	 implemented	 (reviewed	 in	 Cazalis	 et	 al.,	 2022). This 

F I G U R E  6 The	response	to	annual	mean	temperature	(bio	1),	
temperature	seasonality	(bio	4),	mean	daily	mean	air	temperatures	
of	the	wettest	quarter	(bio	8),	annual	precipitation	amount	(bio	12),	
precipitation	amount	of	the	driest	month	(bio	14)	and	precipitation	
seasonality	(bio	15)	in	the	species	distribution	models	of	Least	
Concern	and	Red	List	Dutch	wild	bees	(a)	and	the	permutation	
importance	with	the	standard	error	(b).	The	bars	represent	the	
percentage	of	species	that	showed	a	negative	correlation	(dark	
orange),	or	a	positive	correlation	(light	orange)	or	no	significant	
correlation	(neutral)	with	the	bioclimatic	variable.
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knowledge-	implementation	gap	remains	and	efforts	could	be	made	
to	 improve	 collaboration	 between	 Red	 List	 practitioners	 and	 aca-
demic	 researchers	 (Cazalis	 et	 al.,	2022).	Achieving	 such	collabora-
tion,	could	allow	models,	such	as	the	models	used	in	this	study,	to	
significantly	contribute	to	the	Red	List	assessments.	A	recent	study	
applied	a	machine-	learning	technique	to	the	data	deficient	species	
of	 the	Red	List	and	 results	 suggested	 that	 these	species	are	more	
threatened	 than	 the	 data	 sufficient	 species	 (Borgelt	 et	 al.,	2022). 
Our	study	supports	that	the	wild	bees	 listed	as	threatened	on	the	
European	Red	List	were	more	similar	to	the	Data	deficient	species	
than	the	non-	threatened	bees	in	their	response	to	land	use	and	cli-
mate	and	their	extent	of	occurrence.

The	discrepancies	in	the	importance	of	land	use	and	climate	on	
the	distribution	of	LC	and	RL	species	highlight	the	need	for	further	
investigation	into	the	underlying	mechanisms	behind	this	difference.	
Such	 research	 can	 enhance	 our	 understanding	 of	 species-	specific	
factors	 that	 increase	 the	 risk	 of	 becoming	 threatened.	Moreover,	
identifying	how	climate	and	land	use	interact	and	impact	population	
dynamics	(Schulte	To	Bühne	et	al.,	2021)	is	crucial	for	predicting	the	
future	distribution	of	LC	and	RL	species,	which	are	likely	to	respond	
differently	to	future	change	(Marshall	et	al.,	2018).

5  |  CONCLUSIONS

In	 this	 study	 we	 compared	 the	 contribution	 of	 land	 use,	 climate	
and	 soil	 to	 the	 species	 distribution	 models	 of	 wild	 bees	 in	 the	
Netherlands.	 Non-	threatened	 (LC)	 bees	 had	 a	 higher	 variable	
importance	of	the	land	use	variables	to	their	models,	as	opposed	to	
the	climate	variables	for	the	threatened	(RL)	bees.	The	threatened	
bees	 had	 a	 smaller	 extent	 of	 occurrence	 and	occupied	 areas	with	
more	extreme	climatic	conditions.	Additionally,	the	LC	and	RL	bees	
differed	in	their	responses	toward	urban	green	and	selectivity	toward	
natural	land	uses,	and	climate	variables,	such	as	annual	precipitation,	
annual	mean	temperature,	and	precipitation	seasonality.	Crops	and	
pastures	 were	 the	 main	 contributing	 land	 use	 variables	 having	 a	
negative	correlation	with	the	distribution	of	nearly	all	bee	species.	
Surprisingly,	bees	 showed	a	positive	 response	 toward	 the	number	
of	land	uses,	although	the	number	of	RL	bees	that	showed	a	positive	
response,	was	lower.	This	supports	the	benefit	of	a	diverse	landscape	
for	wild	bees	or	could	be	a	 result	of	 the	detrimental	effect	of	 the	
omnipresent	 agricultural	 area	 in	 the	 Netherlands.	 The	 knowledge	
from	 this	 study	 supports	 the	 implementation	 of	 appropriate,	
species-	specific	conservation	measures,	 including	the	preservation	
of	 natural	 areas,	 and	 the	 improvement	 of	 land	 use	 practices	 in	
agricultural	and	urban	areas,	which	may	help	mitigate	the	negative	
impacts	of	future	global	change	on	species'	distributions.
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