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a b s t r a c t

Replication of published results is crucial for ensuring the robustness and self-correction of

research, yet replications are scarce in many fields. Replicating researchers will therefore

often have to decide which of several relevant candidates to target for replication. Formal

strategies for efficient study selection have been proposed, but none have been explored

for practical feasibility e a prerequisite for validation. Here we move one step closer to

efficient replication study selection by exploring the feasibility of a particular selection

strategy that estimates replication value as a function of citation impact and sample size

(Isager, van 't Veer, & Lakens, 2021). We tested our strategy on a sample of fMRI studies in

social neuroscience. We first report our efforts to generate a representative candidate set of

replication targets. We then explore the feasibility and reliability of estimating replication

value for the targets in our set, resulting in a dataset of 1358 studies ranked on their value

of prioritising them for replication. In addition, we carefully examine possible measures,

test auxiliary assumptions, and identify boundary conditions of measuring value and

uncertainty. We end our report by discussing how future validation studies might be

designed. Our study demonstrates the importance of investigating how to implement

study selection strategies in practice. Our sample and study design can be extended to

explore the feasibility of other formal study selection strategies that have been proposed.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Close replication of original research results is essential to

increase our confidence that empirical findings are reliable

(LeBel, McCarthy, Earp, Elson, & Vanpaemel, 2018; Schmidt,

2009). When a study procedure is repeated in a new sample

with high similarity to the original (preferably by a novel

research team), spurious data patterns can be detected and

discarded. Close replication reduces research waste by pre-

venting researchers from building on seemingly promising

findings that are not true. Various formal strategies for finding

the studies that need replication the most have been devel-

oped in recent years (Field, Hoekstra, Bringmann, & Van

Ravenzwaaij, 2019; Isager et al., 2023; Matiasz et al., 2018). If

effective, such strategies have great potential to increase the

transparency and efficiency of replication study selection.

When criteria for study selection are made transparent, it

becomes easier to discuss which replication studies are most

important to fund, conduct, and publish. Additionally, formal

strategies allow researchers who agree on criteria to more

easily identify and coordinate replication of high-value

studies in their field. By increasing the efficiency of coordi-

nation and resource spending in replication research, formal

study selection strategies present a major step forward to-

wards the important goal of making replication part of

mainstream research practice.

This is especially important in human behavioral neuro-

science. Research in these fields are often vulnerable to

inflated false positive rates and overestimation of effect sizes

due to a combination of (1) low statistical power (Szucs &

Ioannidis, 2017), (2) substantial researcher degrees of

freedom that inflate the Type 1 error rate (Botvinik-Nezer

et al., 2020; Carp, 2012), and (3) incentives to publish statisti-

cally significant results (Button et al., 2013). Unsurprisingly,

rates of successful replications are low (Boekel et al., 2015). In

spite of this, close replications of original studies are not

common practice (Ashar et al., 2021; Huber, Potter, & Huszar,

2019; Poldrack et al., 2017). While the evidence cited deals

primarilywith cognitive neuroscience, we believe these issues

generalize to most areas of neuroscience that utilize imaging

techniques to study the neural correlates of human behavior.

At the same time, the cost of data collection in such research

is high (Poldrack et al., 2017). This leads to a conundrum. On

the one hand, high data collection costs make it all the more

important to conduct close replications and prevent costly

studies from being built on spurious findings. On the other

hand, high costs limit how often replication studies can be

conducted. With limited resources and many non-replicated

studies to choose from, researchers in social and cognitive

neuroscience should consider which studies in the published

literature would be the most important to replicate, so that

resources are directed towards replication can be spent

optimally.

However, no formal study selection strategies have been

tested for application in human behavioral neuroscience. To

be applicable, a strategymustmeet two basic conditions. First,

it must be feasible to apply the strategy in practice. That is, the

information needed to execute the strategy must be possible

to obtain given reasonable time and resource constraints.
Most formal study selection strategies are based on a combi-

nation of statistical, bibliometric, and substantive information

about the candidate studies, which is often not easy to access

(Federer et al., 2018; Furukawa, Barbui, Cipriani, Brambilla, &

Watanabe, 2006; Glasziou, Meats, Heneghan, & Shepperd,

2008; Sullivan & Feinn, 2012; e.g., Tay, Kramer, & Waltman,

2020). The feasibility of existing strategies for application in

any particular area of research is therefore uncertain. Second,

provided that the strategy is feasible to applywemust validate

that the strategy is actually helping us reach prespecified

research goals. All feasible selection strategies lead to some

prioritization of studies, but whether this prioritization has

any validity and practical utility is an empirical question.

In this article we explore how feasible it is to apply a

particular replication study selection strategy to fMRI research

in social neuroscience, hence no part of the study procedures

or analysis plan was preregistered prior to the study being

conducted. We focus on a strategy previously developed by

the first, second, and last author (Isager, van 't Veer, & Lakens,

2021). This main advantage of this strategy over potential al-

ternatives is that it is (in theory) easy to apply, because it only

requires information about the sample size and article cita-

tion count of each study that is considered for replication. It

should therefore also be possible to apply the strategy to large

bodies of research, such as all fMRI studies in social neuro-

science. However, the strategy has never been utilized in

practice, leaving many questions of practical application

open. The goal of this article is therefore to apply the strategy

proposed by Isager et al. (2021) in practice, to explore impor-

tant implementation questions and identify real-world chal-

lenges and limitations that are so often overlooked in

theoretical analyses.

We focus on fMRI research in social neuroscience because

replication studies in this field are both scarce and costly, and

because of all methods and areas within the neurosciences,

this is what the first and last author are the most familiar

with. In other words, the field of social fMRI was chosen

because we believed it would provide a sensible test context

for the study selection strategy. It is not our aim to study the

relative need for replication studies in social neuroscience

versus other areas of neuroscience. The goal is simply to

provide a case study for testing the feasibility of our selection

strategy within the realm of human behavioral neuroscience.

We reflect on the generalizability of our conclusions to other

research areas in the general discussion.

2. A four step approach to select studies for
replication

The concept replication value is defined in the formal decision

model for replication study selection proposed by Isager et al.

(2023) that has been developed to select which empirical

claims in the scientific literature to replicate. According to this

model, the goal of a replication effort is to maximize the ex-

pected utility of knowledge gained. Expected utility gain can be

approximated by the replication value of the target claim we

want to replicate. In this model replication value is a function

of the value (or importance) of having accurate knowledge

about the target claim, and our uncertainty about the truth

https://doi.org/10.1016/j.cortex.2023.10.012
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Fig. 1 e General study selection procedure in which the

RVCn indicator is implemented.
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status of the claim based on available evidence prior to

replicating. Research claims that are highly valuable or

important, and about whichwe are highly uncertain, will have

a high replication value, and should be prioritized for repli-

cation in order to maximize expected utility gain.

Isager et al. (2021), propose a quantitative method for

estimating replication value in which value is operationalized

as the average yearly citation impact of the article in which a

claim is reported, and in which uncertainty is operationalized

as the sample size used to investigate the claim. Replication

value is then operationalized as the indicator RVCn:

RVCn¼ value�uncertainty¼ wðCSÞ
Yþ1

� 1
ffiffiffi

n
p

where RVCn denotes a particular operationalization of repli-

cation value, C stands for citation impact, n stands for the total

number of participants included in the study, w(CS) stands for

the weighting function that should be applied to the citation

impact (such as removing self-citations or not), s denotes the

source the citation data is retrieved from, and Y stands for the

age of the article in years. The equation assumes that average

yearly citation impact is causally influenced by scientific

impact, and that scientific impact partly determines the value

of a claim. It also assumes that sample size partly determines

the standard error of estimates in a study, which in turn partly

determines the uncertainty about claims studied. Although

both the average citation per year and the sample size are

imperfect measures of value and uncertainty, our auxiliary

assumption is that they are sufficiently correlated with value

and uncertainty to generate a useful initial rank order of

replication value.

RVCn is embedded in a four-step procedure for replication

study selection based on RVCn (see Fig. 1). In the first step a set

of candidate studies is identified based on the research in-

terests and resource constraints of the replicating researcher.

As with every systematic review of the literature, the scope

needs to be broad enough to encompass all claims of interest

to the researchers, but narrow enough so that the review

process remains feasible. In the second step RVCn is calculated

for each study included in the set to create an initial estimate

of rank-order expected utility gain. In the third step a subset of

the studies with the highest RVCn is inspected in-depth by

reading the article. This step functions as an additional check

of the RVCn estimates, and has as the primary goal to evaluate

additional factors relevant to replication value (e.g., Field

et al., 2019; Heirene, 2021; KNAW, 2018). In this step re-

searchers can also evaluate the feasibility of a replication

study given the resources they have available, and the extent

to which a replication study will be able to reduce uncertainty

about the effect (Isager et al., 2023). Finally, in this step re-

searchers can check if the article is cited for its empirical

claim, and remove replication candidates if the article is cited

for other reasons (e.g., the use of a newmethod, or proposing a

new theoretical idea). In the fourth step the candidate deemed

most worthwhile to replicate is selected. Alternatively, if the

researcher thinks the subset of studies that has been inspec-

ted contains no candidate that is worth replicating or feasible

to replicate, step 3 and 4 can be repeated for a second subset of

studies. We recommend that researchers register their
literature search (e.g., using PROSPERO), as well as the repli-

cation value formula they will use, and specify as well as they

are able any selection criteria for themanual screening phase.

This should prevent concerns about the opportunistic use of

inclusion criteria to end upwith a desired set of studies with a

high replication value.

3. The current study e exploring the
feasibility of using RVCn for study selection in
social fMRI research

RVCn was developed to enable more efficient coordination of

replication efforts. However, it is not clear whether it is

feasible to use RVCn in practice for study selection in a research

area such as social fMRI research. Our exploration focuses on

the first two steps of the four-step procedure listed in Fig. 1.

We report the results of our attempt to implement these steps

in practice, including ourmethod for collecting a sample set of

replication candidates (step 1), and more importantly, our

method for collecting the citation impact and sample size data

necessary to calculate RVCn, the reliability of our methods for

generating accurate measures of citation counts and sample

sizes, and the distribution of RVCn for our set of candidates

(step 2). In supplementary materials we also summarize our

unsuccessful pilot efforts to collect additional quantitative

information related to the main finding for each candidate

https://doi.org/10.1016/j.cortex.2023.10.012
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studies in our set. Where a main finding could often be iden-

tified based on the abstract, it proved too difficult to identify

which statistical test was the basis of this main finding.

Finally, we also provide a brief qualitative evaluation of the

recommendations produced by RVCn to better understand

what sort of studies are being recommended, what the

boundary conditions of this study selection strategy are, and

to understand the factors one might want to evaluate when

implementing step 3 and 4. We report howwe determined our

sample size, all data exclusions (if any), all inclusion/exclu-

sion criteria, whether inclusion/exclusion criteria were

established prior to data analysis, all manipulations (there

were none), and all measures in the study. We conclude the

article by generating hypotheses for studies that could be

undertaken to test the validity of RVCn.

3.1. Step 1 e determining an initial set of candidate
studies

3.1.1. Eligibility criteria
To test the feasibility of calculating RVCn we first set out to

determine a suitable set of candidate articles. This step is

similar to any systematic literature review (e.g., a meta-

analysis). We restricted our search for studies to fMRI

research within social neuroscience between 2009 and 2019 at

the time this decision was made. Although there is no need to

restrict study selection to a specific time period, we reasoned

that researchers might be especially interested in conducting

replications of studies within a relatively recent time window

to prevent unproductive follow-up research (when the orig-

inal research is non-replicable) or stimulate follow-up

research (when the original research is replicable).

3.1.2. Search strategy
We used the Web of Science (WoS; www.webofknowledge.

com) database to construct our candidate dataset. WoS does

not have a predefined field category for social neuroscience.

To identify articles related to social neuroscience, we imple-

mented a two-pronged search strategy on 2019-02-21. We first

identified four journals in the WoS database as social neuro-

science journals (Social Cognitive and Affective Neuroscience;

Social Neuroscience; Behavioral Neuroscience; and Socio-

affective Neuroscience Psychology). Empirical articles pub-

lished in these journals were identified by submitting the

following search term to WoS:

(SO¼(social neuroscience OR social cognitive and affective

neuroscience OR behavioral neuroscience OR socioaffective

neuroscience psychology) AND PY¼(2019 OR 2009 OR 2018 OR

2017 OR 2016 OR 2015 OR 2014 OR 2013 OR 2012 OR 2011 OR

2010)) AND DOCUMENT TYPES: (Article) Timespan: 2009e2019.

Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI.

To identify social neuroscience articles in general topic

journals we searched the entire WoS database for articles

containing the keywords “social” and “fMRI” in all fields.

Empirical articles containing the relevant keyword informa-

tion were identified by submitting the following search term

to WoS:

ALL FIELDS: (fmri AND social) Refined by: DOCUMENT

TYPES: (ARTICLE) Timespan: 2009e2019. Indexes: SCI-

EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI.
3.1.3. Selection process
The two search strategies yielded overlapping results. After

removing duplicate records, the two search strategies yielded

7413 unique empirical articles in total (see Fig. 2). Basic bib-

liometric information about each article, including author-

provided keywords, were downloaded for all articles.

Authors PMI and AvtV reviewed the initial set of articles

and excluded articles they did not believe would be feasible to

replicate given their expertise and available resources, which

meant excluding animal model research, highly invasive

study designs, imagingmethods outside our area of expertise,

research on patient groups, and other keywords signaling the

study would require highly specific samples, procedures, or

technologies to perform. At this stage, exclusion criteria were

not predetermined, but were exploratorily derived through

inspecting keyword information in our initial candidate set.

Note that if future replicators want to apply this step of

selecting a candidate set it can be done in a number of

different ways depending on their specific interest or exper-

tise. For our decision rationale for each excluded keyword, a

written record is made openly available on OSF (https://osf.io/

mtx72/). Our final set of candidates contained 2268 empirical

articles.

3.1.4. Exploration of sample representativeness
Once the final set of candidate records was determined, we

explored the available bibliographic information to ensure

that the sample indeed consisted of the field of studies using

fMRI in social neuroscience. The full dataset, including all

bibliometric variables and a variable codebook, are available

on OSF (https://osf.io/f7zdq/). The articles included in our

dataset were published in 329 unique journals, consistent

with our expectation that social neuroscience is a broad and

loosely connected discipline of researchers from many sub-

fields, who publish in a variety of specialty- and general-topic

journals. Table 1 displays the name and frequency of the 20

journals most frequently published in (70.99% of all articles in

the set were published in these 20 journals).

We used the statistical visualization software VOSviewer

(van Eck & Waltman, 2010) to extract commonly mentioned

terms from the titles and abstracts of all studies. Additional

analyses of keywords retrieved from the Centre for Science

and Technology Studies (CWTS, https://www.cwts.nl/) are

reported in supplementary material SM1. All data included in

the initial candidate set were subjected to analysis in VOS-

viewer (co-occurrence map with parameters set to binary

counting, minimum number of occurrences set to 15,

maximum number of keywords set to 200. Age-related and

generic terms were excluded. The list of excluded keywords

and map files to recreate the reported co-occurrence map can

be found on OSF: https://osf.io/f7zdq/). Fig. 3 displays the co-

occurrence map between commonly mentioned keywords in

our dataset.

The VOSviewer co-occurrence map corroborates that

themes commonly studied in social neuroscience frequently

co-occur in the titles and abstracts of articles in our data.

Further, the analysis shows that individual topics could be

organized into larger categories based on keyword co-

occurrence clusters [represented as keyword colors in Fig. 3;

van Eck and Waltman (2014)]. As expected from a set of

http://www.webofknowledge.com
http://www.webofknowledge.com
https://osf.io/mtx72/
https://osf.io/mtx72/
https://osf.io/f7zdq/
https://www.cwts.nl/
https://osf.io/f7zdq/
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Fig. 2 e Overview of candidate selection process and data points available for each respective analysis reported below.
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articles sampled from social neuroscience, these categories

center around themes such as face perception (purple cluster),

judgment and decision-making (green cluster), language (red

cluster), and social pain/ostracism/exclusion (blue cluster).
The default mode network (yellow cluster) also has clear ties

to social neuroscience research (Li, Mai, & Liu, 2014).

Converging lines of evidence suggest that our search

strategy and selection process was successful in curating a

https://doi.org/10.1016/j.cortex.2023.10.012
https://doi.org/10.1016/j.cortex.2023.10.012


Table 1 e Journals which the articles in our initial
candidate set were most frequently published in.

Journal Frequency

Social Cognitive and Affective Neuroscience 324

Neuroimage 236

Frontiers in Human Neuroscience 115

PLOS One 112

Human Brain Mapping 109

Social Neuroscience 109

Journal of Neuroscience 80

Journal of Cognitive Neuroscience 78

Neuropsychologia 77

Cerebral Cortex 63

Scientific Reports 63

Frontiers in Psychology 51

PNAS 34

Cognitive Affective & Behavioral Neuroscience 30

Cortex 25

Frontiers in Behavioral Neuroscience 23

Brain Research 22

Experimental Brain Research 22

Brain and Language 19

Developmental Cognitive Neuroscience 18

c o r t e x 1 7 1 ( 2 0 2 4 ) 3 3 0e3 4 6 335
dataset both representative of, and exclusive to our target

population of healthy human social fMRI research. Note that

our sampling and selection process was largely constructed to

overcome the problem that social fMRI is not a well-defined

bibliometric category. Determining an initial set of candi-

dates will likely be more straightforward when the field of

interest aligns more closely with a well-defined bibliometric

category (e.g., a WoS field category) or search terms related to

more narrowly defined researcher interest and/or expertise.
Fig. 3 e VOSviewer co-occurrence map of substantive keywords

dataset. Colors represent VOSviewer-defined clusters of closely

further details on clustering in VOSviewer. Online interactive v
We subsequently set out to quantitatively estimate the

replication value for each study in this set (see Fig. 1, step 2).

Following Isager et al. (2021) we chose RVCn as our operation-

alization of replication value (see equation under Section 2).

To quantify the replication value, researchers need to specify

what function w should be used to weigh the citations, which

type of citation impact C is used, as well as source S of that

citation impact, if multiple sources are available. In the sec-

tions below we explain how citation impact and sample size

data were collected in practice, and we explore the reliability

of the collected data.

3.2. Step 2 - calculating RV

3.2.1. Operationalizing value as citation impact
To explore the impact of choosing one specification over

another, we studied the reliability of citation impact estimates

across a range of impact types C, sources S, and functions w.

Although changes to these valueswill immediately impact the

absolute replication value that is calculated, we are mainly

interested in their impact on the relative ranking of studies in

terms of replication value. Two qualitatively different types of

citation impact Cwere collected; traditional academic citation

indexes and Altmetric attention scores. Altmetric attention

scores were collected using the rAltmetric package in R [Ram

(2017); download date: 2020-10-30]. Altmetric attention

scores are a weighted count of news- and social-media

attention an article has received. For traditional citation

impact, we collected data from multiple sources, including

WoS (collected 2020-11-07 using the WoS web interface),

Crossref [collected 2020-10-30 using the rCrossref package in

R; Chamberlain, Zhu, Jahn, Boettiger, & Ram (2020)], Scopus

[collected 2020-10-30 using the rScopus package in R;
retrieved from the title and abstract of articles in our

related keywords. See van Eck and Waltman (2014) for

ersion of the figure: https://bit.ly/3yDPMup.

https://bit.ly/3yDPMup
https://doi.org/10.1016/j.cortex.2023.10.012
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Muschelli (2019)], CWTS (collected 2020-10-28 from the CWTS

database by author TvL), and scite™ (www.scite.ai; obtained

2021-08-23 by scite™ staff on request). WoS, Crossref, Scopus

and scite™ citation counts are all unweighted raw counts of

incoming citations of an article. CWTS citation counts consist

only of incoming citations that are not self-citations. We also

collected field- and age-normalized citation counts from the

CWTS database. This normalization process corrects for dif-

ferences between subfields in how often papers are cited on

average, with the aim to treat publications from different

fields equally (for details about the normalization procedure,

and a discussion of the use of arithmetic averages in skewed

distributions, see Waltman, van Eck, van Leeuwen, Visser, &

van Raan, 2011). The score represents how many more times

the article is cited relative to the average citation count of an

article in its field from the same year. Thus, our data con-

tained three different functions w of traditional citation

impact (raw count, self-citations subtracted, and field/age-

normalized). Publication year data Y was collected from the

WoS database.

3.2.2. Operationalizing uncertainty as sample size
Following the rationale of Isager et al. (2021) we operational-

ized the uncertainty about a claim before replication in terms

of the standard error of effects supporting the claim. The

standard error can be computed based on the standard devi-

ation and the sample size, which is a combination of the

number of participants and the number of observations per

participant. We originally aimed to collect multiple sources of

information that are relevant to quantifying the uncertainty

such as information about the statistical test and the test re-

sults (e.g., the standard deviation of the dependent variable),

the experimental design (e.g., the number of trials), the

number of existing replications, etc., as such information can

be used to compute and evaluate alternative operationaliza-

tions of replication value. This information would allow us to

compare estimates from the RVCn indicator with other pro-

posed indicators of replication value (e.g., Field et al., 2019,

which requires information about bayes factors). We per-

formed two pilot studies to 1) identify additional information

that could be coded to quantify uncertainty, and 2) examine if

this information could be efficiently coded (see supplemen-

tary materials SM2 and SM3, respectively). From these pilot

studies we concluded that it was possible to identify the main

claim in a paper (which was often feasible based on the ab-

stract), but that it was not feasible to identify the results of the

statistical test that provided empirical support for the main

claim. It was often not possible to identify which of many

statistical tests authors reported were the basis of the main

claim. The main reason for this difficulty was the fact that the

verbally stated hypotheses were often too ambiguously con-

nected to the reported statistical tests, making it difficult to

identify which statistical results would corroborate or falsify

the main claim of the paper. This problem is frequently

experienced when coding claims and the corresponding tests

from the scientific literature (Edelsbrunner& Thurn, 2020; e.g.,

Scheel, 2022). Furthermore, statistical results were often not

reported in sufficient detail to extract information (e.g., about

the standard deviation of the measure). We concluded that it

would not be feasible to collect additional information related
to the uncertainty of the claim on a large scale from the social

fMRI literature. In the end, the number of participants was the

only operationalization of uncertainty we were able to move

forward with in this study. This is an approximation of un-

certainty that ignores variation in standard deviations, and

the number of trials in a study. In addition, we did not identify

replication studies of the studies in our candidate set. It is

reasonable to assume that some studies in our set have been

replicated. Replication studies should normally reduce our

uncertainty about a claim, and methods for incorporating

replication information in the RVCn estimate have been

developed (Isager et al., 2021, Supplementary material 1).

However, because original and replication studies are not

systematically connected in the bibliometric record, and

because we believe replication studies to be quite rare within

social fMRI research anyway, we elected not to code such in-

formation in this study.

3.2.3. Collecting and inspecting the reliability of RVCn input
3.2.3.1. RELIABILITY OF CITATION IMPACT ACROSS SOURCES. To better

understand the relationship between different variables

related to the citation impact C across sources S, we explored

the strength of the association between a variety of citation

metrics (Table 2).

All metrics were retrieved within a time span of two weeks

to prevent differences due to a time-lag. Fig. 4 displays the

distributions of all citation metrics. All metrics are heavily

right skewed. The distributions of raw citation counts are

highly overlapping across sources (Fig. 4A). CWTS citation

counts aremore heavily skewed towards zero than raw counts

from other metrics, likely due to the fact that CWTS subtracts

self-citations from the total citation count.

To examine how strongly WoS, Crossref, Scopus, CWTS,

and scite™ were correlated measures of the same underlying

construct - the raw academic citation impact of an articleewe

subjected the citation data from these sources to an intraclass

correlation analysis [model ¼ two-way fixed effects, type ¼
single rater, definition ¼ consistency; Koo and Li (2016)] using

the ICC function in the R package psych [Revelle (2021); ICC3

output reported]. Because all citation metrics have a skewed

distribution, and becausewe are primarily concernedwith the

rank-ordering of studies we retrieved citation metrics for

(Isager et al., 2021) Spearman's rho correlation was used to

assess the strength of association.

Fig. 5 displays the rank-order correlations between various

citation metrics. The correlation between raw citation counts

from any two sources was very high (always >.94). The inter-

rater reliability between these metrics was similarly high, ICC

¼ .97, CI 95% [.96, .97]. When self-citations are subtracted, as is

done in the CWTS citation counts, correlations are only

slightly lower compared to intercorrelations between the

other sources, suggesting that self-citations will not have a

large impact on the computation of a replication value.

As expected based on the prior literature (Costas, Zahedi,&

Wouters, 2015) the correlations between Altmetric scores and

all other metrics were consistently low. The correlation be-

tween normalized and non-normalized citation counts was

consistently high across sources, though substantially lower

than the inter-correlation between different raw citation

counts. As will be discussed in more detail below, this

http://www.scite.ai
https://doi.org/10.1016/j.cortex.2023.10.012
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Table 2 e Frequency of various citation metrics available for our data. Web of Science citation counts were originally
available for all articles, but some could not be retrieved when the citation count data was updated in 2020.

Citation metric Description N

WoS Web of Science Core Collection Times Cited Count 2105

Crossref Crossref citation counts 2253

Scopus Scopus citation counts 2238

CWTS CWTS citation counts e excluding self-citations 2220

CWTS normalized Total Field-Normalized Citation Score. CWTS citation impact of article

relative to the primary field to which the article belongs.

2220

scite The total scite citation count from publication until year 2020. 2091

Altmetric Altmetric score 1874

Total Number of articles for which all citation metrics were available 1590

Fig. 4 e Density distribution of citation metrics up to 200

citations. A) The distribution of raw citation counts from

Web of Science (black), Crossref (red), Scopus (blue) and

CWTS (orange). B) The distribution of CWTS citation impact

up to a score of 10, normalized by research field/cluster. C)

The distribution of Altmetric attention scores up to 100.

Fig. 5 e Matrix of bi-variate correlations between the

citation metrics available for the articles in our dataset.
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suggests that it matters little for RVCn estimates which source

S is used, but it does matter whether one chooses raw or field-

normalized citation count as the operationalization of wðCÞ,
and it would matter substantially whether one chooses to use

traditional citation count or news/social-media impact as the

operationalization of C. The reliability of Altmetric attention

scores as estimates of news/social-media impact remains

unclear, as we had no other metrics for this kind of impact to

compare against. We will examine the consequences of using

Altmetric scores or field-normalized citation counts on the

computation of replication value scores below.

3.2.3.2. ACCURACY AND UNBIASEDNESS OF AVERAGE YEARLY CITATION

COUNT. The ideal citationmetric of RVCn is the number of future

citations an article will receive (Isager et al., 2021). Total cita-

tion count is not a useful estimator of future citation impact

because citations accumulate over time. As an article gets

older it will tend to get a higher total citation count. This could

mean that a 50 year old article cited once per year has the

same total citations as an article published last year that has

been cited 50 times, even though we should expect the latter

to have much more impact on the field in the future. To pre-

vent age from impacting the replication value of articles, RVCn

uses the average yearly citation count instead of the total

count as an operational measure of value.

To examine how well average yearly citation count pre-

dicts future citation count we obtained the yearly citation rate

for each year separately from scite™, including the citation

counts for 2020. Then, with the average yearly citation count

of each article from all years until 2019, we predicted the

citation rate of each article in our data for year 2020 (the last

complete year in the data from scite™). To examine whether

average yearly citation count is a sufficient approach to cor-

rect for the effect of age on citation counts we examined the

correlation between age and average yearly citation count. In

addition, we explored the relationship between age-averaged

citation count and age/field-normalized CWTS citation count,

which are age-adjusted using the superior method of

normalizing the citation count against all articles from the

same year. If age-averaging is an effective method for age

adjustment, age-averaged citation count should correlate

more stronglywith CWTSnormalized scores than raw citation

count. Finally, we also examined the effect of age-averaging

on Altmetric attention scores. Our goal in examining the

relationship between these variables is to gain a better

https://doi.org/10.1016/j.cortex.2023.10.012
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understanding of which data should be used to quantify the

value of a published study.

We focus on scite™ citation count data in these analyses

since it was the only source from which we could obtain data

on yearly citation rate. However, the reported pattern of re-

sults is highly similar regardless of which citation source is

used (see supplementary material SM4).

3.2.3.2.1. PREDICTIVE ACCURACY. Fig. 6A displays the scite™

citation rate trajectory for all articles in our data. Fig. 6B dis-

plays the same trajectories on a logþ1 scale with box plots

summarizing the distribution for each year since publication,

which gives a better sense of the overall trend. On average,

most articles seem to be cited at an increasing rate for about

the first two years since publication. Then the citation rate

stabilizes, possibly increasing slightly around year ten. Given

this general trend, our auxiliary assumption that average

yearly citation count is on average a useful predictor of future

citation impact is supported. Including citations from the two

first years seems to lead to an underestimation of the citation

rate in later years, but this might not directly affect any rank-

order of citation counts.

Fig. 6C displays the accuracy of average yearly citation

count (using data until 2019) to predict the “future” citation

count in 2020. Predictive accuracy is quite good, but far from

perfect, r¼ .75, CI 95%[.72, .77]. As noted above, average yearly

citation count consistently underestimates how many cita-

tions are obtained in 2020. The two first years since publica-

tion are included in the average yearly citation count, which

tends to drag down the average. Also as expected, underesti-

mation of citations in 2020 seem to be particularly severe for

more recently published articles (more yellow dots above the
Fig. 6 e A) Citation trajectories for all articles in the dataset. B)

year. C) Citations obtained in 2020 predicted by the average yea

2019.
line). The younger the article, the more its average yearly

citation count is influenced by the relatively lower number of

yearly citations in the two first years since publication.

Because total citation counts obtained from scite™ were

highly correlatedwith total citation count obtained fromother

sources, we believe the results reported here likely generalize

to citations from WoS, Crossref, Scopus, and CWTS. The re-

sults suggest that the predictive accuracy of RVCn could be

improved by excluding citations from the first two years since

publication. Alternatively, accuracy could be improved

through more accurate modeling of each article's citation

trend. Such improvements require data on citations per year,

which is not easily accessible to most researchers [the infor-

mation was provided to us by scite™ (www.scite.ai)].

3.2.3.2.2. PREDICTIVE UNBIASEDNESS. Article age was very

weakly correlated with the number of scite™ citations an

article received from january to december of the year 2020, r¼
.07, CI 95%[.02, .11], suggesting article age is not a determinant

of future citation impact and can safely be corrected for. To

examine how well age-averaging corrects citation estimates

for age, we computed pairwise spearman correlations be-

tween publication age, scite™ citation count, Altmetric scores,

scite™ citation count divided by years since publication, Alt-

metric scores divided by years since publication, and CWTS

normalized citation count.

Fig. 7 displays the correlation coefficients between all

variables of interest. Not surprisingly, there was a strong

correlation between age and raw scite™ citation count, r¼ .54,

CI 95%[.51, .57]. The correlation between citations and age

dropped substantially when citation count was divided by

years since publication. However, a small residual correlation
Log citation trajectories, with box plot summaries for each

rly citation count from the articles publication year until

http://www.scite.ai
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Fig. 7 e Matrix of bi-variate correlations between age and

citation indices.
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between average yearly citation rate and publication age re-

mains, r¼ .12, CI 95%[.07, .16]. This suggests that dividing total

citation count by the number of years since publication is an

imperfect age adjustment method, but the correction sub-

stantially reduces the correlation between age and citation

count, and is therefore a substantially better measure than

total citation counts. Averaging over age works best if citation

time accumulates at a constant rate, but this rate is quite

variable for most articles (Fig. 6A). Encouragingly, however,

averaging citation count by age does increase the correlation

between citation count and CWTS normalized scores, whose

method of age correction is superior as it corrects for the

average number of citations of all publications published in

the same field and in the same year. Interestingly, even CWTS

scores are weakly positively correlated with age, suggesting

that perfectly adjusting for article age is challenging. In

summary, taking the average yearly citation count seems to

be an imperfect but efficient method for age adjustment in

traditional citation metrics.

3.2.3.3. CODING NUMBER OF PARTICIPANTS. The number of partici-

pants for each study in our dataset was coded manually.

Manually coding the number of participants for all studies in

the full set of 2268 candidate articles was assumed to be costly

and time consuming from the outset. In practice, we expect

most researchers to havemore narrow inclusion criteriawhen

computing the replication value for a set of replication targets.

For feasibility reasons, we aimed at coding 1000 articles at

random from the full set of 2268 articles and began the process

of splitting these into individual studies for coding the number

of participants. While coding, it became clear that many

studies did not meet our inclusion criteria. To ensure we

would end up with at least 1000 articles we oversampled with

an additional 500 articles drawn at random from the full set.

The exact code used to draw the sample is available on OSF

(https://osf.io/rxukq/). After removing articles that matched

our initial exclusion criteria (e.g., single non-fMRI studies from

multi-study articles, such as De Vries, Fennis, Bijmolt, Ter

Horst, & Marsman, 2018, study 4) the number of participants

was coded for each fMRI study in the article.
Coding was performed by a team of three undergraduate

research assistants. For each article we identified the number

of studies reported in the article. For each study we recorded

the number of participants who contributed any fMRI data to

analyses reported in the study (even if their data were

excluded from some analyses). For further details about how

coders were instructed to proceed with coding the number of

participants, see the supplementary coding instructions

(https://osf.io/j3pxf/).

The 1500 articles contained 1681 individual studies, of

which 323 matched our exclusion criteria. The final dataset

contained 1358 individual studies from 1283 unique articles.

Coding time was a few minutes when the number of partici-

pants and exclusion criteria were clearly summarized in

either the study abstract or the “participants” subsection of

the methods section, but could take longer if reporting was

less structured. In order to ensure that the number of partic-

ipants was reliably coded, a subset of 250 studies, randomly

selected from the larger set of 1358, were double-coded by

independent coders and subjected to an inter-rater reliability

analysis. Two additional coders (one additional undergradu-

ate student, the undergraduate coder, and the first author, the

PhD coder) re-coded the number of participants for each study

in this subset. While coding, all coders were blind to the

number of participants provided by other coders. To study

inter-rater reliability, we subsequently calculated the per-

centage agreement between each of the coders, and we

calculated the intraclass correlation coefficient between

coders (model ¼ one-way fixed effects, type ¼ single rater,

definition ¼ absolute agreement) using ICC function in the R

package psych (ICC3 output reported). Overall, therewas a high

but imperfect agreement between the three coders (percent-

age exact agreement ¼ .77). The intraclass correlation coeffi-

cient between raters was high, ICC ¼ .82, CI 95%[.79, .86]. Fig. 8

displays the variation in sample size between the coders,

plotted on log scale.

Coders disagreed in 57 cases. All disagreements between

coders were resolved by the PhD coder after inspecting com-

ments by the other coders. In addition to the cases of dis-

agreements identified in the data used for inter-rater

reliability analysis, one additional sample size coding error in

the full set of 1358 studies was detected and corrected at a

later time during the analyses. Fig. 9 displays the distribution

of sample size in our data after resolving coder disagreements

(mode ¼ 20, median ¼ 24, frequency of n <¼10 ¼ 37, 11e20 ¼
479, 21e30¼ 365, 31e40¼ 184, 41e50¼ 97, 51e60¼ 60, 61e70¼
27, 71e80 ¼ 25, 81e90 ¼ 10, 91e100 ¼ 10, n > 100 ¼ 64).

3.2.4. Calculating and comparing alternative
operationalizations of RVCn

Having established that sufficiently accurate citation counts

and the number of participants can be collected, we pro-

ceeded with the calculation of RVCn. Because replicating re-

searchers may end up relying on any of several citation

metrics to estimate value, we decided to compare the results

of several alternative operationalizations of replication value;

one indicator measured value via the WoS citation count of

the articles (RVWoS), one via the Scopus citation count

(RVScopus), one via the field-normalized citation counts (RVtncs),

one via the RVscite and one indicator measured value via

https://osf.io/rxukq/
https://osf.io/j3pxf/
https://doi.org/10.1016/j.cortex.2023.10.012
https://doi.org/10.1016/j.cortex.2023.10.012


Fig. 8 e Variation in sample size between coders. Sample size is plotted on log scale. The original sample size coded is

represented on the x-axis. Double-coded sample size values are represented on the y-axis. Blue circles represent values

from the PhD-student coder. Brown triangles represent values from the undergraduate student coder.

Fig. 9 e Distribution of sample sizes in the dataset. For visualization purposes, the x-axis limit is set to n ¼ 200.
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Altmetric score of the articles (RVAlt). All indicators used

sample size as a measure of uncertainty.

RVWoS was based on the equations derived by Isager et al.

(2021), and calculated in the following way:

RVWos ¼CWos

Yþ1
� 1

ffiffiffi

n
p

where CWoS denotes the WoS citation count of the article a

study is reported in, Y denotes the article age in years, and n

denotes the sample size of the study after exclusion. The three

measures using Scopus, scite™, and cluster-normalized cita-

tion scores were computed in the same way as RVWos.

RVAlt was calculated in the following way:

RVAlt ¼CAlt � 1
ffiffiffi

n
p

where CAlt denotes the Altmetric attention score of the article,

and n denotes the sample size of the study after exclusion.

Because the analyses above revealed that Altmetric attention

scores are not strongly correlated with article age in our data,

we did not average CAlt over publication year in this replication

value indicator. Many articles are not mentioned in any

sources that are tracked by Altmetric, and therefore have a

score of 0. In our dataset CAlt could only be calculated for 1156

of 1358 studies.

Importantly, we calculated all replication values under the

assumption that no study in our candidate set is a replication

of another study in the set, implying that no studies should be

combined in the estimate of n. Because lack of replication
Fig. 10 e Scatter plot visualizing the relationship between RVWoS

indicators are visualized as bars on the x-axis. Distribution of t

axis. Blue bars (and dots) represent the 10 highest scores on the

scores. Purple dots represent scores that are among the 10 high

the highest RVWoS scores are not included in the scatter plot with

missing Altmetric attention scores.
research in fMRI research (Poldrack et al., 2017) implies that

only very few articles in our dataset would be replications of

one another, we found it acceptable to proceed with calcula-

tion under the assumption that there were no replications in

the data. Where direct replication studies have been per-

formed, it would have been more appropriate to combine the

sample size from the original study and it's replications (Isager
et al., 2021, supplementary material 1). However, there are no

databases that store information about direct replication in

social neuroscience. Whenever researchers compute the

replication value for a more specific population, information

about direct replications might be more readily available, or it

can be manually searched and coded in step 3.

The distribution of replication value from all indicators

was visually inspected, and estimates from indicators were

correlated to study their similarity. Spearman's rho was used

since the rank-order correlation between different indicators

is of primary interest. 95% bootstrap confidence intervalswere

calculated for the correlation estimate using the spearman.ci

function of the RVAideMemoire package in R (Herv�e, 2021).

Fig. 10 displays the distribution of RVWoS, RVAlt, RVScopus,

RVtncs (field-normalized citation scores), RVscite, and their as-

sociations with RVWoS. Overall, all distributions are highly

skewed with most scores distributed around low values,

which is expected given that the number of participants,

citation counts, and Altmetric attention scores are all highly

skewed as well (see Figs. 4 and 9). Overall rank-order corre-

lations were high for different citation sources (WoS, Scopus,

scite), lower for field-normalized citation counts, and low for
and RVScopus, RVtncs, RVscite, and RVAlt. Distribution of RVWoS

he other replication values are visualized as bars on the y-

y-axis. Red bars (and dots) represent the 10 highest RVWoS

est scores on both estimators. Two of the ten studies with

the RVAlt scores, as the RVAlt could not be computed due to
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Altmetric scores (see Fig. 11). As a consequence, only two

studies (Kassam, Markey, Cherkassky, Loewenstein, & Just,

2013; Tamir & Mitchell, 2012) were ranked among the top ten

in both WoS and Altmetric rank-orderings (purple-colored

points in Fig. 10). The same was true for field-normalized

citation scores, where the overlap between top-ranked

studies using WoS citation scores and field-normalized cita-

tion scores was very low (despite the relatively high correla-

tions between the two measures). Traditional citation impact

and altmetric attention scores are generally thought to mea-

sure different aspects of impact and are known to be weakly

associated. It is clear field-normalized citation scores also

measure impact in a substantially different manner than raw

citation counts. The overlap between citation counts from

different sources such as scite™ or Scopus does not lead to

substantially different selections, even though even there

some variation in the last one or two studies included when

selecting the X highest ranked studies (e.g., the 9th and 10th

study included in a Top 10) should be expected to vary.

To conclude, quantitative recommendations for which

studies to replicate will vary substantially based on whether

traditional, field-normalized, or altmetric citation impact is

used to estimate replication value, because these impact

metricsmeasure non-overlapping aspects of scientific impact.

Different stakeholders may prefer either operationalization,

depending on what aspects of impact they findmost relevant.

Altmetric attention scores are only weakly correlated with

traditional citation counts, which has a substantial impact on

RVCn estimates.

3.3. Step 3 e In depth review of recommended
candidates

The next step when selecting a replication target is an in-

depth inspection of studies with a high replication value. For

our exploratory purposes, we expect such an in-depth review

to reveal certain boundary conditions of when the number of
Fig. 11 e Matrix of bi-variate correlations between

replication value indices computed based on different

operationalizations of value through citations or

Altmetrics.
participants and/or the citation count do not accurately reflect

the value and impact of a study. We subjected the 10 studies

with the highest and lowest replication value on either RVWoS

or RVAlt to an in-depth inspection. In addition, we included the

10 lowest non-zero estimates from the RVWoS distribution,

because RVWoS scores of 0 often simply reflect a paper too

young to have picked up citations yet. In total, 44 unique

studies were included in our face validity review (6 studies

were among the highest or lowest scores for both indicators).

We wanted to see whether quantitative replication value

estimates would conform to our own intuitions about repli-

cation value, and identify factors that would lead to a high

replication value using a formula-based approach, without

actually warranting a replication. Such boundary conditions

are likely present in other sets of replication targets as well,

and identifying such factors will help researchers during the

in-depth inspection in step 3. For example, an article may be

highly cited for reasons other than the empirical studies it

reports, which would lead to a highly cited paper while the

study in the article is not worth replicating. As such, the goal is

to identify potential issues with validity, reliability and mea-

surement error that future validation studies of RVCn may

want to follow up on.

Authors PMI and AvtV read the title and abstracts of all

studies included in the review, consulted the article text

intermittently for clarifications, and reviewed quantitative

information related to the replication value estimates of these

studies (i.e., reviewers were not blinded to a record's rank

position). Both reviewers first made notes for each study in

private, focusing on their intuitive validity judgment of the

replication value estimate and on potential sources of error

and bias. Notes were then discussed by PMI, AvtV, and DL in

two meetings to distill the most central outcomes of the re-

view effort. The full set of notes is available on OSF for author

PMI (https://osf.io/vwpqs/) and AvtV (https://osf.io/953rh/).

3.4. Central outcomes of the review process

The in-depth review yielded several insights. A detailed in-

spection of quantitative replication value estimates is

important for quality control. In two studies, coders had

erroneously coded an incorrect number of participants (due to

a transcription error, and overlooking data exclusions). Eight

articles turned out not to be connected to social neuroscience,

and one study did not utilize fMRI for imaging. Finally, in one

case we had incorrectly labeled a single two-session repeated

measures study as two separate studies. Together, these

studies make up one quarter of the entire sample selected for

review. This clearly indicates that, in this particular context,

RVCn is a noisy measure of replication value, and finding the

studies most in need of replication is highly dependent on the

third step of the procedure.

There was not always an intuitive correspondence between

the RVCn rank order and our intuitions about the replication

value of the claims purely based on the title and information in

the abstract. One reason for this lack of correspondence may

have been that reviewerswere not blind to the replication value

ranking, and had access to the citation count and number of

participants, which were so salient they were difficult to not

take into account. Another reason was that without other
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explicit criteria to determine the value of a replication study,

there was substantial subjectivity in the value of each study as

judged by both reviewers. This is not unexpected, as peer

evaluations of the value of a study are variable, and not strongly

related to eventual citation scores (Gottfredson, 1978). A final

reason for the lowperceived correspondence between indicator

estimates and reviewer intuitions were a number of boundary

conditions where the RVCn estimates did not accurately reflect

the value and uncertainty of the studies.

The first boundary condition was that many studies used

within-subject designs,where thenumber of participants does

not fully capture the uncertainty, as it ignores the number of

measurements per participant. The use of within-subject de-

signsseemedtobecommonamongthehighest rankedstudies,

as such designs require less participants for high statistical

power, and therefore get a higher replication value when un-

certainty is based only on the number of participants. This is

clearly an important limitation, especiallywhen thenumber of

trials in each study varies substantially between studies (as

was the case in the set of studies we examined). In future ap-

plications of RVCn-based study selection we therefore recom-

mendthatuncertainty isquantifiedduringstep2basedonboth

the number of participants, and the number of observations

per participant. If this is unfeasible (which is likely given how

unsystematically this information is reported in the literature),

the number of observations should be taken into account

duringstep3 (seesupplementarymaterial 2 in Isageretal., 2021

for technical details on such a correction method). Alterna-

tively, selecting a narrower set of candidates with homoge-

neous study designs in step 1 will alleviate this limitation.

Another boundary condition concerned a study that already

had been replicated in the literature. Although rare, when

replication studies already exist, the replication value should

be computed based on the uncertainty remaining after all

replication studies (Isager et al., 2021).

Other boundary conditions concerned the reason why an

article was highly cited. One article containing both a litera-

ture review and an empirical study seemed to be cited pri-

marily due to the literature review (Dimoka, Pavlou, & Davis,

2011). Another study on human navigation appeared to

receive a large Altmetric score primarily due to speculative

news reports claiming that GPS use can “turn the brain off” e

even though this conclusion did not follow from the study

(Javadi et al., 2017). A replication of the study results would do

little to avert such speculations, since the speculations are not

grounded in the actual study results. The boundary conditions

identified so far seem general enough to incorporate in the in-

depth review process of replication targets by default. Future

research should give us a better understanding of which

additional factors to consider during in-depth review of

replication candidates (e.g., Pittelkow et al., 2023).
4. General discussion

The overall aim of this exploratory study was to test the

feasibility of implementing the four-step replication study

selection procedure based on RVCn proposed by Isager et al.

(2021) in a large body of social fMRI research. The current

exploratory report shows the importance of testing the
feasibility of proposed selection strategies, as well as carefully

examining possible measures, auxiliary assumptions, and

boundary conditions. We show it is possible to calculate RVCn

for a large candidate set of studies identified based on biblio-

metric information. We were able to reliably code the total

number of participants and retrieve citation count data for

each study in order to calculate RVCn (step 2 in Fig. 1). However,

we were only able to code uncertainty coarsely with ‘number

of participants in study’, omitting the number of trials per

participant, which also determines the standard error of the

estimate (Westfall, Kenny, & Judd, 2014).

Traditional citation count metrics were highly rank-order

correlated, meaning there is little difference in which source

S is used in the calculation of RVCn. Field-normalized citation

counts provide a somewhat different measure of citation

impact, and lead to less overlap in the final rank-order than

non-normalized citation scores, especially in an interdisci-

plinary research topic such as social neuroscience, where

publications appear across scientific fields, which leads to

different articles being normalized against different citation

cluster averages. Altmetric attention scores are weakly

correlated with traditional citation impact, and represent a

qualitatively different approach to measuring value. Which-

ever measure is preferred, both Altmetric scores and tradi-

tional citation counts could easily be extracted using free and

open source applications (Chamberlain et al., 2020; e.g., Ram,

2017), where field-normalized citation counts or citation

counts per year are not publicly available.

Finally, in-depth review of the highest ranking indicator

estimates from step 2 appears to be an important method of

quality control before a candidate is selected for replication.

This review revealed important boundary conditions of using

citation counts and the total number of participants as mea-

sures of value and uncertainty. Auxiliary hypotheses that we

explored, such that past citation counts predict future citation

counts, that the source of the citation counts do not sub-

stantially affect citation rank-order, and that we can control

for the age of the article, were all supported.

Overall, however, we do not think our implementation of

RVCn in the social fMRI literaturewas successful. Modifications

to either the selection procedure or scope are needed for

future application in this research area. While it was feasible

to reliably code sample size and citation count for over one

thousand studies, several challenges hindered efficient

implementation. First, the topic boundaries of a research area

like “social fMRI research” are fuzzy. Social neuroscience

clearly does not include volcanology studies, but it is not

trivial (and perhaps not even possible) to define the borders

between social neuroscience and related neuroscientific dis-

ciplines. This made it very difficult to execute step 1 of the

strategy, and in spite of our best efforts to develop reliable

inclusion and exclusion procedures, in every review step we

discovered a substantial number of studies that should not

have been included given our exclusion criteria. Second, it is

difficult to say whether “number of participants” is a mean-

ingful indicator of general uncertainty in a candidate set that

contains such a wide range of study designs. While it is

possible to correct for study design in theory (Isager et al.,

2021), this is not possible in practice for such a large set of

studies with widely varying within-subject structures. This

https://doi.org/10.1016/j.cortex.2023.10.012
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reduces the usefulness of step 2, which is the very core of the

RVCn strategy. Third, we believe that, in step 3, more expertise

with the study topics under reviewmay be required in order to

provide adequate face validation of the candidates ranked

highly in step 2. In this study, wewanted a large candidate set,

as a primary aimwas to test the feasibility of applying step 2 to

a large set of studies. However, future researchers aiming to

use these or similar steps in selecting a candidate for repli-

cation may already start with a more narrow candidate set in

step 1, based on their research interest and expertise.

Whether these challenges generalize to application of RVCn

in other disciplines is an open question which will need to be

empirically examined. The use of RVCn might be more

straightforward in more homogenous literatures, especially if

these mainly rely on between-participant designs. It may also

be more feasible to adapt or modify RVCn to account for vari-

ations in study design (Isager et al., 2021, supplementary

material 2) in fields where such information is easier to curate

from the articles.

The current report provides insights into how RVCn can be

applied in practice, and how its feasibility can be evaluated.

However, it doesn't yet provide insight into the validity of RVCn

as a measure of replication value. Future research could

attempt to provide criterion validation of RVCn by investigating

whether RVCn is associated with other operational measures

that are hypothesized to predict expected utility gain. For

example, we would expect RVCn to predict which studies are

chosen for replication in practice under the assumption that

both RVCn and the selection criteria used by researchers who

perform replication studies are caused by the expected utility

of the replication effort (Isager et al., 2021). It might also be

possible to validate RVCn by examining the extent to which

RVCn predicts subjective estimates of the relative replication

value of a set of studies. Future studies could also aim to in-

crease the understanding of which factors researchers usually

consider when selecting a study for replication. Recently,

Pittelkow et al. (2023) identified a number of criteria such as

interest, doubt, impact, methodology, and feasibility. How

feasible it is to include such factors in a formal study selection

strategy remains an open question.

We end this article with some recommendations for re-

searchers looking to apply replication study selection strate-

gies. For researchers specifically interested in using RVCn to

identify important-to-replicate fMRI studies in social neuro-

science, our study provides some important insights. First,

focusing on a relatively well-defined subject within social

neuroscience literature, rather than all studies in the disci-

pline, seemswise. For a recent successful implementation, see

Zaragoza-Jimenez et al. (2023). Although this will restrict how

broadly one can search for replication candidates, it will likely

make it much easier to curate a candidate set of studies that

includes only studies relevant to one's interests and expertise.

Second, sincewithin-subject designs are very common in fMRI

studies, the RVCn uncertainty estimate should ideally be based

on the standard deviation in this field. If one elects to use

sample size, it should be corrected for the design used (Isager

et al., 2021, supplement 2). Be aware, however, that by using

the standard deviation to estimate uncertainty one is forced to

identify the effect of interest for each study in the candidate

set, which will add additional work to the procedure. Taken
together, while RVCn itself can reliably and efficiently be

computed for hundreds of studies, the general selection pro-

cedure (Fig. 1) seems more suited to a smaller, more homoge-

nous set of studies than what we aimed for in this study.

It may of course also be valuable to study whether other

potential selection strategies would work better than RVCn in

social fMRI research. We encourage interested researchers to

conduct additional feasibility studies for other proposed

strategies.

Finally, some general recommendations can be given to

facilitate more efficient replication research in any discipline.

First, it is important to conduct feasibility studies of a range of

study selection strategies in more disciplines. As our study

demonstrates, it is not enough to show that a study selection

strategy works in theory or in toy examples. If we want

replication study selection to be more strategic and efficient,

replicating researchers will need clear guidelines for how to

implement and adapt strategies in practice. Feasibility studies

are needed to develop such practical guidelines. Second, this

work again highlights the need to standardize the reporting of

study design and statistical uncertainty as much as possible.

The task of evaluating the uncertainty in scientific claims

becomes easier if researchers adhered to reporting standards,

and when the relationship between statistical tests and sci-

entific claims are more clearly specified in the article

(Appelbaum et al., 2018; Lakens & DeBruine, 2021). Third, in

any replication study, we recommend explicitly stating why

the original study was selected for replication (e.g., Pittelkow

et al., 2023). By exploring and documenting the wealth of in-

formation relevant to replication study selection, we can in-

crease the ability of researchers to make well-informed

decisions about which original research would be the most

important to replicate.
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