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Abstract

We give an explicit description of the category of central extensions of a group scheme by
sheaf of Abelian groups. Based on this, we describe a framework for computing with central

xtensions of finite locally free commutative group schemes, torsors under such group schemes
nd groups of isomorphism classes of these objects.
2023 The Author. Published by Elsevier GmbH. This is an open access article under the CC BY

icense (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Let G be a finite locally free group scheme over a scheme S. We describe the category
f central extensions of G by a commutative fppf group scheme F affine over S, and

for G commutative also the category of G-torsors over S, in a way that is suitable for
explicit calculations.

Under certain computational assumptions (which are fulfilled, for example, if K is a
number field, S is the spectrum of the ring of Σ -integers in K with Σ a finite set of places
of K , and F is itself finite locally free or F = Gm), we give algorithms for computing

• the extension class group ExtS(G, F), i.e. the group of isomorphism classes of
central extensions of G by F ,
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nd for commutative G also

• the subgroup of ExtS(G, F) classifying commutative extensions, and
• the torsor class group H1(Sfppf , G), i.e. the group of isomorphism classes of

G-torsors over S.

hese algorithms ultimately reduce the problem to the computation of unit groups and
icard groups of certain finite locally free S-schemes.

Outline of the paper
In Section 2, we introduce some preliminary notions and define F-extension data on

group scheme G over a scheme S, where F is a sheaf of Abelian groups on Sfppf . In
ection 3, we show that central extensions of G by F are classified by F-extension data

on G (Theorem 3.2), and construct an exact sequence relating the group ExtS(G, F) to
various cohomology groups (Theorem 3.3). For G finite locally free and commutative,
we show in Section 4 how to use Gm-extension data on G to describe G∗-torsors over S,
making a theorem of Chase explicit. Finally, in Section 5, we show how the theory
developed in this paper leads to algorithms for computing the above objects in practice
for a finite locally free commutative group scheme over suitable base schemes, and we
describe a connection between our results and algorithms for computing Selmer groups
of elliptic curves.

2. Extension data on a group scheme

Let S be a scheme, and let G be a group scheme over S. We denote the group
peration, identity and inverse morphisms of G by m : G × G → G, e : S → G and
: G → G.

Let F be a sheaf of Abelian groups on Sfppf . We use multiplicative notation for F
ince important examples are the multiplicative group or the group of nth roots of unity
or some n ≥ 1.

For every S-scheme X , let TF (X ) be the category of F-torsors on X fppf . We write
T ⊗ T ′ for the contracted product of two F-torsors T and T ′, and T ∨ for the dual of an
F-torsor T .

.1. Some simplicial definitions

For all k ≥ 0, we write Gk for the k-fold fibre power of G over S. We number the
actors by {0, 1, . . . , k−1} and write pi : Gk

→ G for the projection on the i th coordinate.
The morphisms

p0, p1, m : G2
→ G

ive rise to a group homomorphism

d1
: F(G) −→ F(G2)

x ↦−→ (p∗

1 x)(m∗x)−1(p∗

0 x).
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The above morphisms also give rise to functors

p∗

0, p∗

1, m∗
: TF (G) −→ TF (G2)

and hence a functor

δ1
: TF (G) −→ TF (G2)

T ↦−→ p∗

1 T ⊗ (m∗T )∨ ⊗ p∗

0 T .

Similarly, we consider the morphisms

p0,1, p1,2, m0,1, m1,2 : G3
→ G2

defined by

p0,1 = idG × p0, p1,2 = p1 × idG, m0,1 = m × idG, m1,2 = idG × m.

These give rise to a group homomorphism

d2
: F(G2) −→ F(G3)

x ↦−→ (p∗

1,2x)(m∗

0,1x)−1(m∗

1,2x)(p∗

0,1x)−1.

The above morphisms also give rise to functors

p∗

0,1, p∗

1,2, m∗

0,1, m∗

1,2 : TF (G2) −→ TF (G3)

and hence a functor

δ2
: TF (G2) −→ TF (G3)

T ↦−→ p∗

1,2T ⊗ (m∗

0,1T )∨ ⊗ m1,2T ⊗ (p∗

0,1T )∨.

The morphisms d1 and d2 are part of the Hochschild complex

F(S)
d0

−→ F(G)
d1

−→ F(G2)
d2

−→ F(G3)
d3

−→ · · · , (2.1)

whose cohomology groups are the Hochschild cohomology groups of G with coefficients
in F .

For every F-torsor T on G, there is a canonical trivialisation

κT : FG3
∼

−→ δ2(δ1T ).

2.2. Extension data

The following definition forms the basis for our computational framework for group
scheme extensions.

Definition 2.1. Let G be a group scheme over a scheme S, and let F be a sheaf of
Abelian groups on Sfppf . An F-extension datum on G is a pair (T, τ ) where T is an
F-torsor on G and

τ : F
∼

−→ δ1T
G2
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s an isomorphism of F-torsors on G2 such that the triangle

FG3
∼ →→

∼

κT
↘↘

δ2 FG2

∼ δ2τ

↓↓

δ2(δ1T )

(2.2)

ommutes. Given two F-extension data (T, τ ) and (T ′, τ ′) on G, an isomorphism from
T, τ ) to (T ′, τ ′) is an isomorphism

φ : T
∼

−→ T ′

f F-torsors on G such that the triangle

FG2
τ

∼
→→

∼

τ ′
↘↘

δ1T

δ1φ∼

↓↓

δ1T ′

(2.3)

ommutes. The groupoid of F-extension data on G, denoted by E(G, F), is the groupoid
n which the objects are the extension data for (G, F) and the isomorphisms are as above.

Note that the contracted product makes E(G, F) into a symmetric monoidal category.
he neutral object is (FG, τ0) where τ0 : FG2

∼
−→ δ1 FG is the canonical isomorphism. In

articular, we have an Abelian group of isomorphism classes of objects of E(G, F).

. Correspondence between extension data and group scheme
xtensions

.1. The extension datum defined by a group scheme extension

From now on, we assume that the sheaf F is representable, fppf and affine over S.
hen every F-torsor over an S-scheme X is representable, fppf and affine over X ; see

or example Oort [11, §17].

emark 3.1. The assumption that F (and hence every F-torsor) is representable, fppf
nd affine over S is made for convenience and can most likely be omitted.

Consider a central extension

1 −→ F
j

−→ E
q

−→ G −→ 1

f sheaves of groups on Sfppf . Then q makes E into an F-torsor over G, so E is
epresentable. Let m E : E ×S E → E and ιE : E → E be the multiplication and inverse
orphisms.
We have a commutative diagram

E ×S E
m E →→

q×q

↓↓

E

q

↓↓m →→
G ×S G G.
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There is a canonical morphism

E ×S E −→ p∗

0 E ⊗ p∗

1 E

f G2-schemes. It is straightforward to check that m E induces an F-equivariant morphism

νE : p∗

0 E ⊗ p∗

1 E −→ m∗E,

hich is automatically an isomorphism because both sides are F-torsors. We therefore
btain a trivialisation

τE : FG2
∼

−→ δ1 E .

y associativity of the group operation of E , we have a commutative diagram

E ×S E ×S E
m E ×id

→→

id×m E
↓↓

E ×S E

m E

↓↓

E ×S E m E
→→ E

lying over the corresponding diagram for G. The commutativity of this diagram is
equivalent to the statement that the isomorphisms

p∗

0 E ⊗ p∗

1 E ⊗ p∗

2 E
∼

−→ p∗

0,1(p∗

0 E ⊗ p∗

1 E) ⊗ p∗

2 E
p∗

0,1νE ⊗id
−−−−−→ p∗

0,1m∗E ⊗ p∗

2 E

∼
−→ m∗

0,1(p∗

0 E ⊗ p∗

1 E)
m∗

0,1νE
−−−−→ m∗

0,1m∗E

nd

p∗

0 E ⊗ p∗

1 E ⊗ p∗

2 E
∼

−→ p∗

0 E ⊗ p∗

1,2(p∗

0 E ⊗ p∗

1 E)
id⊗p∗

1,2νE
−−−−−→ p∗

0 E ⊗ p∗

1,2m∗E

∼
−→ m∗

1,2(p∗

0 E ⊗ p∗

1 E)
m∗

1,2νE
−−−−→ m∗

1,2m∗E

oincide with each other under the canonical identification of m∗

0,1m∗E and m∗

1,2m∗E
iven by the associativity of G. This is in turn equivalent to the commutativity of the
riangle (2.2) for T = E and τ = τE . We conclude that (E, τE ) is an F-extension datum
n G.

.2. The group scheme extension defined by an extension datum

Conversely, let (T, τ ) be an F-extension datum on G. As remarked above, T is
epresentable. Let q : T → G be the structure map. We will use τ to make T into a
roup scheme over S equipped with a homomorphism jτ : F → T such that T becomes
central extension of G by F . This extends the well-known construction of a central
xtension of an abstract group by an Abelian group from a 2-cocycle.
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The trivialisation τ induces an isomorphism ντ : p∗

0 T ⊗ p∗

1 T → m∗T of F-torsors on
G × G, and hence a morphism

mτ : T ×S T → T (3.1)

f S-schemes fitting in a commutative diagram

T ×S T
mτ →→

q×q

↓↓

T

q

↓↓

G ×S G m →→ G.

By the argument in Section 3.1, mT is an associative operation on T . Pulling back τ via
he morphism

(e, e) : S → G2

gives a trivialisation

τ (e, e) : F
∼

−→ e∗T (3.2)

and hence an F-equivariant closed immersion jτ : F → T fitting in a commutative
iagram

F
jτ →→

↓↓

T

q
↓↓

S e →→ G.

Next, pulling back τ via the morphisms

i0 = id × e : G → G2, i1 = e × id : G → G2

gives trivialisations

τ ( , e) : FG
∼

−→ p∗e∗T, τ (e, ) : FG
∼

−→ p∗e∗T

t is straightforward to check that pulling back the commutative triangle (2.2) by the
orphisms

id × e × e, e × e × id : G → G3

mplies that both τ ( , e) and τ (e, ) are equal to the pull-back of τ (e, e) via p. From
this it follows that the compositions

F ×S T
jτ ×id

−−−→ T ×S T
mτ

−→ T and T ×S F
id× jτ

−−−→ T ×S T
mτ

−→ T

agree with the maps given by the F-torsor structure on T ; in particular, jτ sends the
identity section of F to a two-sided identity section for mτ , and jτ is a homomorphism
of monoid schemes.

Finally, pulling back τ via the morphisms

(ι, id) : G → G2, (id, ι) : G → G2
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(id, ι)∗τ : FG
∼

−→ ι∗T ⊗ (p∗e∗T )∨ ⊗ T,

(ι, id)∗τ : FG
∼

−→ T ⊗ (p∗e∗T )∨ ⊗ ι∗T .

Via the isomorphism τ (e, e) from (3.2), we obtain isomorphisms

φ0, φ1 : T ∨ ∼
−→ ι∗T

of F-torsors on G. Composing these with the canonical isomorphism T
∼

−→ T ∨ of
G-schemes (not an isomorphism of F-torsors since it inverts the action of F) gives
somorphisms T

∼
−→ ι∗T over G, hence automorphisms T

∼
−→ T lying over the

automorphism ι of G. By construction, these are left inverse and right inverse operations
n T , and they are equal by the associativity of mτ . Thus we have equipped T with the

desired structure of central extension of G by F .

3.3. An equivalence of categories and an exact sequence

Theorem 3.2. Let G be a group scheme over a scheme S, and let F be a sheaf of
Abelian groups on G. Assume that F is representable, fppf and affine over S. Then there
is a canonical equivalence of categories between E(G, F) and the category of central
xtensions of G by F.

roof. By the arguments in Sections 3.1 and 3.2, the possible group scheme structures on
n F-torsor T on G correspond bijectively to the trivialisations τ : FG2

∼
−→ δ1T making

the triangle (2.2) commute. This gives a canonical bijection between central extensions
of G by F and objects of E(G, F).

Given extension data (T, τ ) and (T ′, τ ′), an isomorphism between the corresponding
extensions is an isomorphism T → T ′ of F-torsors on G that is compatible with the
group operations mτ and mτ ′ as well as the inclusions jτ : F → T and jτ ′ : F → T ′. The
first condition corresponds to the commutativity of the diagram (2.3), and the second
condition follows from the first by the definition of jτ and jτ ′ . □

Via the equivalence of Theorem 3.2, we will identify the group ExtS(G, F) of
isomorphism classes of central extensions of G by F with the group of isomorphism
classes of objects of E(G, F). Using this identification, we will embed ExtS(G, F) into
an exact sequence that will allow us to compute this group in various cases.

We first consider F-extension data (T, τ ) such that T is a trivial F-torsor. Given an
element u ∈ F(G2) with d2u = 1, one obtains an extension datum (F, τ ) such that τ

corresponds to multiplication by u under the canonical identification FG2
∼

−→ δ1 F . This
gives an injective homomorphism

H2
H(G, F) −→ ExtS(G, F)

whose image is the group of isomorphism classes of extension data (T, τ ) such that the
F-torsor T is trivial; see [13, exposé XVII, appendice I].

Next, we define K (G, F) to be the kernel of the map

d1
: H1(G , F) −→ H1(G2 , F)
fppf fppf
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nduced by the functor δ1. By our identification of ExtS(G, F) with the group of
somorphism classes of objects of E(G, F), there is a canonical group homomorphism

ExtS(G, F) −→ K (G, F)

ending the class of (T, τ ) to the class of T .
Furthermore, we construct a homomorphism

ξG,F : K (G, F) −→ H3
H(G, F) (3.3)

as follows. Let x be an element of K (G, F), represented by an F-torsor T on G such
hat δ1T is trivial. Choose a trivialisation

τ : FG2
∼

−→ δ1T .

e then define uτ to be the element of F(G3) such that the composition

FG3
∼

−→ δ2 FG2
δ2τ
−→ δ2(δ1T )

κ−1
T

−→ FG3

equals multiplication by uτ . Then we have d2u = 1, and we define ξG,F (x) to be the
class of uτ in H2

H(G, F). Since a different choice for T or τ changes uτ by an element
in the image of d2, the map ξG,F is a well-defined group homomorphism.

Theorem 3.3. There is an exact sequence

1 −→ H2
H(G, F) −→ ExtS(G, F) −→ K (G, F)

ξG,F
−−→ H3

H(G, F).

Proof. We define a sequence using the maps constructed above. Exactness at H2
H(G, F)

and ExtS(G, F) follows from the above arguments. It remains to show exactness at
K (G, F). Given an F-extension datum (T, τ ) on G, the element uτ equals 1 by the
commutativity of (2.2), so the class of T is in the kernel of ξG,F . Conversely, let
x ∈ K (G, F) be in the kernel of ξG,F . Choosing T and τ as in the construction of
ξG,F , the element uτ ∈ F(G3) is then in the image of d2, say uτ = d2 y with y ∈ F(G2).
Dividing τ by y, we obtain a trivialisation τ ′

: FG2
∼

−→ δ1T such that uτ ′ = 1, so the
diagram (2.2) for τ ′ commutes; therefore, (T, τ ′) is in E(G, F) and maps to x ∈ K (G, F).
t follows that the kernel of ξG,F equals the image of ExtS(G, F) in K (G, F). □

emark 3.4. It is well known that extensions of an abstract group Γ by a Γ -module
A are classified by the group H2(Γ , A) where Hi (Γ , ) is the i th derived functor of the
unctor of Γ -invariants. For a group scheme G over a scheme S, there is a functor of

G-invariants defined for a sheaf F of G-modules on S by H0(G, F) = FG(S), where FG

s the sheaf of G-invariants. There is a homomorphism ExtS(G, F) −→ H2(G, F), but
his is part of a long exact sequence and is in general not an isomorphism; see Demazure
nd Gabriel [8, III, §6, 3.1].

emark 3.5. Demazure and Gabriel constructed a spectral sequence involving certain
xt groups of presheaves [8, III, §6, 2.3], of which the exact sequence of low-degree

erms [8, III, §6, 2.5] agrees with the exact sequence of Theorem 3.3. To show that the

arious groups in the respective exact sequences agree, one can use results from [8, II, §3,
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1.3; III, §6, no 1–2]. Some of these are only stated for affine group schemes because of
the setting in which Demazure and Gabriel work, but can be generalised without difficulty
to arbitrary group schemes.

3.4. The subgroup of commutative extensions

Given a group scheme G over S, let σG : G2
→ G2 be the involution switching

he factors. We have an obvious notion of opposite group scheme Gop (replace the
multiplication morphism m : G2

→ G by m ◦ σG). Given a central extension

1 −→ F −→ E −→ G −→ 1

we obtain a corresponding extension

1 −→ F −→ Eop
−→ Gop

−→ 1.

Let (T, τ ) be an F-extension datum on G. There is a canonical isomorphism δ1
Gop T

∼
−→

σ ∗

G(δ1T ), where we write δ1
Gop for the functor δ1 associated with Gop. Let τ op

: FG2
∼

−→

δ1
Gop T be the isomorphism making the diagram

FG2
τop

→→

∼

↓↓

δ1
Gop T

∼

↓↓

σ ∗

G FG2
σ∗

Gτ
→→ σ ∗

G(δ1T )

commutative. If (T, τ ) defines the extension E of G, then (T, τ op) defines the extension
Eop of Gop.

Now suppose that G is commutative, so G = Gop. Then E is commutative if and only
if τ op

= τ . We use this to compute the subgroup Ext1S(G, F) of ExtS(G, F) classifying
ommutative extensions as follows. Given an extension datum (T, τ ), the composed
somorphism

FG2
τop

−→ δ1T
τ−1
−→ FG2

f F-torsors on G2 equals multiplication by some element Σ (T, τ ) ∈ F(G2). We have a
roup homomorphism

Σ : ExtS(G, F) −→ F(G2) (3.4)

ending the extension class defined by an extension datum (T, τ ) to the section Σ (T, τ ).
hen Ext1S(G, F) is the kernel of Σ .

.5. Some results on µn-extension data

Let n be a positive integer, and let µn be the group scheme of nth roots of unity. We
ow collect some results on µn-torsors and central extensions by µn that will be used in
ection 5.3.

The groupoid Tµn (X ) of µn-torsors over a scheme X is canonically equivalent to
he following groupoid. The objects are pairs (T, λ) where T is a G -torsor on X and
m
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: Gm,X
∼

−→ T ⊗n is an isomorphism of Gm-torsors. The isomorphisms from (T, λ) to
(T, λ′) are the isomorphisms α : T

∼
−→ T ′ of Gm-torsors satisfying α⊗n

◦ λ = λ′. The
canonical functor Tµn (X ) → TGm (X ) obtained from the inclusion µn → Gm is given by
sending (T, λ) to T .

Given a group scheme G over a scheme S, a µn-extension datum on G therefore
consists of a µn-torsor (T, λ) on G and a trivialisation

τ : Gm,G
∼

−→ δ1T

of Gm-torsors such that the diagram

Gm,G2
τ⊗n
→→

∼

↓↓

(δ1T )⊗n

∼

↓↓

δ1Gm,G
δ1λ

→→ δ1(T ⊗n)

ommutes.

emma 3.6. There is a short exact sequence of Abelian groups

1 −→ G∗(S)/G∗(S)n
−→ ExtS(G, µn) −→ ExtS(G, Gm)[n] −→ 1,

nd similarly with ExtS replaced by Ext1S .

roof. We construct a sequence as follows. Representing µn-torsors as above, we
efine a map G∗(S) → ExtS(G, Gm) sending an element λ ∈ G∗(S) to the class
f ((Gm,G, λ̃), τ0), where the isomorphism λ̃ : Gm,G

∼
−→ G⊗n

m,G is multiplication by λ

viewing λ as an element of Gm(G) and identifying G⊗n
m,G with Gm,G) and τ0 is the canon-

cal isomorphism Gm,G2
∼

−→ δ1Gm,G . Furthermore, we define a map ExtS(G, µn) →

xtS(G, Gm) by sending ((T, λ), τ ) to (T, τ ). One now verifies that this gives the desired
hort exact sequence. □

emark 3.7. Short exact sequences analogous to those in Lemma 3.6 can be constructed
rom the long exact sequences obtained by applying suitable derived functors to the
ummer sequence

1 −→ µn −→ Gm
n

−→ Gm −→ 1

n Sfppf . An argument of Demazure and Gabriel [8, III, §6, 1.10] shows that these agree
ith the exact sequences from Lemma 3.6, at least up to a sign.

. From extension data to G∗-torsors

Let G be a finite locally free commutative group scheme over a scheme S, and let
G∗ denote its Cartier dual. By a theorem of Chase [4, Theorem 16.14], generalised by

hatz [15] and Waterhouse [16], there is a canonical isomorphism
1 ∗ ∼ 1
H (Sfppf , G ) −→ ExtS(G, Gm). (4.1)
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The explicit description of Ext1S(G, Gm) given in the previous section leads to the
following explicit description of G∗-torsors. For simplicity, we describe the case where
S is affine, say S = Spec R. Then G and G∗ are also affine, say

G = Spec B and G∗
= Spec B∨

here B is a finite locally free commutative and cocommutative Hopf algebra over R
and

B∨
= HomR-Mod(B, R)

is the Hopf algebra dual to B. We write µ : B → B ⊗R B for the comultiplication map.
Furthermore, Gm-torsors on G correspond to invertible B-modules, which are locally
trivial for the Zariski topology. In particular, we identify H1(G fppf , Gm) with the Picard
group Pic G of invertible B-modules.

Consider a Gm-extension datum (U, τ ) on G defining a commutative extension, where
B is now an invertible B-module and τ is a trivialisation (given by a generating section,
for example) of the invertible (B ⊗R B)-module

(U ⊗R B) ⊗
B⊗R B

(µ∗U )∨ ⊗
B⊗R B

(B ⊗R U ) ∼= (U ⊗R U ) ⊗
B⊗R B

(µ∗U )∨.

The morphism mτ from (3.1) corresponds to an R-algebra homomorphism

µτ : U → U ⊗R U

satisfying µτ (bu) = µ(b)µτ (u) for all b ∈ B and u ∈ U . Following Chase’s construction
in [4, proof of Theorem 16.14], we obtain the following description of the G∗-torsor
corresponding to (U, τ ). The finite locally free R-module

U∨
= HomR-Mod(U, R)

equipped with the R-bilinear map U∨
× U∨

→ U∨ obtained by dualising µτ is a
commutative R-algebra, and the R-linear map

α : U∨
−→ B∨

⊗R U∨ (4.2)

obtained by dualising the B-module structure on U defines a B∨ comodule structure
on U∨. The corresponding S-scheme X = Spec U∨ together with the morphism
Spec α : G∗

× X → X is then the desired G∗-torsor.

5. Computational aspects

We will now outline how the methods of this article can be used to do explicit
calculations with extensions and torsors under the assumption that we can represent and
compute with various more basic objects; see Assumption 5.1. In Section 5.5, we show
that these assumptions are fulfilled for finite locally free commutative group schemes
over a localised order in a product of number fields.

The algorithms described below have been implemented as part of the author’s
software package [2] for computing with finite group schemes in SageMath [12].
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.1. Presentations of finitely generated Abelian groups

We briefly describe the tools that we will use for computing with finitely generated
belian groups; see Cohen [6, §4.1] for details.
Let A be a finitely generated Abelian group. We assume that we have a way

of computationally representing elements of A and performing the multiplication and
nversion in A. (We allow for the possibility that an element of A has several different

computational representations.) By a presentation of A we mean non-negative integers
and k, integers d1, . . . , dk ≥ 2 with d1 | d2 | · · · | dk together with mutually inverse

roup isomorphisms

expA : B
∼

−→ A, logA : A
∼

−→ B

iven by algorithms, where B = Zr
⊕

⨁k
i=1 Z/di Z. We view logA as a discrete logarithm

function for A. By an algorithm for finding linear relations in A we mean an algorithm
that given a1, . . . , an ∈ A outputs the kernel of the group homomorphism Zn

→ A
sending the i th standard basis element to ai . Note that having a presentation for A is
equivalent to having a finite set of generators for A together with an algorithm for finding
linear relations in A. Furthermore, if we can find linear relations, then we can compare
elements: two elements a, a′

∈ A are equal if and only if the homomorphism Z → A
sending 1 to a′a−1 is trivial.

Let f : A → A′ be a homomorphism of finitely generated Abelian groups as above.
Assume that we can evaluate f using the given computational representation of elements
of A and A′. If we have presentations of A and A′, we can compute a matrix for f with
respect to these presentations using expA and logA′ . From such a matrix, we can compute
presentations for the kernel and cokernel of f . Note that to compute a presentation for the
kernel of f , we do not need a presentation for A′; it suffices to have a presentation for A
and an algorithm for finding linear relations in A′. Similarly, to compute a presentation
for the cokernel of F , it suffices to have a presentation for A′ and a finite set of generators
of A.

5.2. Computing extension class groups

Let G be a group scheme over a scheme S, and let F be a sheaf of Abelian groups
on S that is representable, fppf and affine over S.

Assumption 5.1. We make the following computational assumptions about the group
scheme G and the sheaf F :

• The groups F(G i ) (for i ∈ {1, 2, 3}) and H1(G i
fppf , F) (for i ∈ {1, 2}) are finitely

generated.
• We have computational representations for elements of F(G), F(G2) and F(G3),

and we can perform multiplication and inversion in these groups.
• We have a finite set of generators for F(G), a presentation of F(G2) and an

algorithm for finding linear relations in F(G3).
• We have computational representations for F-torsors on G, G2 and G3, and for

isomorphisms between such torsors.
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• Given two F-torsors T, T ′, we can compute T ⊗ T ′, and given trivialisations of T
and T ′, we can compute the resulting trivialisation of T ⊗ T ′; similarly for dual
torsors.

• Given an F-torsor T on G2 that is known to be trivial, we can find a trivialisation
FG2

∼
−→ T .

• Given an F-torsor T on G3 and an F-torsor automorphism f : T
∼

−→ T , we can
find the unique element u f ∈ F(G3) such that f equals multiplication by u f .

• We have a presentation for H1(G fppf , F), and we can find linear relations in
H1(G2

fppf , F), using the given computational representation of F-torsors to represent
elements of these groups.

• We have algorithms for computing the various group homomorphisms and functors
defined in Section 2.1.

We use these assumptions and the exact sequence from Theorem 3.3 to compute a
presentation for ExtS(G, F) as follows:

• Compute a presentation for H2
H(G, F) as the second cohomology group of the

complex (2.1).
• Compute a matrix for the homomorphism d1

: H1(G fppf , F) −→ H1(G2
fppf , F).

• Compute a presentation for the group K (G, F) = ker d1.
• Compute a matrix for the homomorphism ξG,F from (3.3).
• Use Cohen’s algorithm for computing a presentation for the second term in a left

four-term exact sequence [6, §4.1.7] to compute a presentation for ExtS(G, F).

n the last step, we use the description of the map H2
H(G, F) −→ ExtS(G, F) given

n Section 3.3 to map elements of H2
H(G, F) to F-extension data, and we use the

onstruction in Theorem 3.3 to lift elements of the kernel of ξG,F to F-extension data.
We note that after computing ExtS(G, F), we can also compute the homomor-

hism (3.4) and its kernel, which is the group Ext1S(G, F) of isomorphism classes of
ommutative extensions of G by F .

emark 5.2. For each n ∈ Z, let [n] : G → G denote the multiplication-by-n map.
he kernel K (G, F) of d1

: H1(G fppf , F) −→ H1(G2
fppf , F) is contained in the subgroup

1(G fppf , F)(1) of isomorphism classes of torsors T such that for all n ∈ Z the torsors
n]∗T and T ⊗n are isomorphic. In practice, it may be useful to compute H1(G fppf , F)(1)

rst and then to compute K (G, F) as the kernel of the restriction of d1 to H1(G fppf , F)(1).
n analogous remark in the context of Galois modules annihilated by a prime number p
as made by Schaefer and Stoll [14, Corollary 5.3], who used this in their algorithm for

omputing p-Selmer groups of elliptic curves.

.3. Computing torsor class groups

Let G be a finite locally free and commutative group scheme over a scheme S. We
ow consider the problem of computing the group H1(Sfppf , G∗) of isomorphism classes
f G∗-torsors. In light of the isomorphism (4.1) between this group and Ext1S(G, Gm),

∗
t is natural to represent a G -torsor over S by the corresponding Gm-extension datum
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o
n G, and to view the actual G∗-torsor (the S-scheme with G∗-action) as a “secondary”
object to be computed from the Gm-extension datum.

For simplicity, as in Section 4, we assume S = Spec R, G = Spec B and
G∗

= Spec B∨ with R a commutative ring and B a finite locally free commutative
cocommutative Hopf algebra over R. A Gm-extension datum on G is therefore of the
form (U, τ ) where U is an invertible B-module. Using the description in Section 4, the
R-algebra structure on U∨ and the comultiplication map (4.2) can be extracted from
(U, τ ) using linear algebra over R.

Remark 5.3. This representation of G∗-torsors fits very naturally into the author’s
framework of dual pair of algebras for computing with finite group schemes [1]. In this
setting, neither the comultiplication map µ nor the comodule map α needs to be written
down explicitly. This allows efficient computation with G∗-torsors once H1(Sfppf , G∗) has
been computed using one of the methods described below.

We now sketch two algorithms: one for computing H1(Sfppf , G∗), and another for
computing H1(Sfppf , G∗)[n] for a given positive integer n. We assume that S and G
are such that our computational Assumption 5.1 holds for the sheaf Gm (for the first
algorithm) and for the sheaf µn (for the second algorithm). For suitable rings R, namely
localised orders, this will be justified in Section 5.5.

Computing torsor class groups from Gm-extensions
The first method proceeds directly via the identification (4.1) of H1(Sfppf , G∗) with

Ext1S(G, Gm), and is conceptually more straightforward than the method described below.
The algorithm is simply to compute a presentation for Ext1S(G, Gm) using the algorithm
from Section 5.2, and then to compute, for each extension datum (U, τ ) in some finite
generating set, the resulting R-algebra structure on U∨ and the comodule map α : U∨

−→

B∨
⊗R U∨.

Computing torsor class groups from µn-extensions
In the second method, we replace Gm by µn , where n is a positive integer; this leads

to an algorithm for computing the n-torsion subgroup of Ext1S(G, Gm) and hence of
H1(Sfppf , G∗). The case where n is (a divisor of) the exponent of G is the most interesting
in practice, but we do not need this assumption.

In this approach, we first compute Ext1S(G, µn) using the algorithm from Section 5.2,
and compute Ext1S(G, Gm)[n] as the cokernel of the map G∗(S) → Ext1S(G, µn) from
Lemma 3.6. We then proceed as in the first method, using the isomorphism (4.1) to
identify Ext1S(G, Gm)[n] with H1(Sfppf , G∗)[n].

5.4. Comparison to algorithms for computing Selmer groups

Part of the motivation behind the present work was to understand the geometry behind
existing algorithms for computing Selmer groups. We sketch briefly how these algorithms
can be interpreted in the framework described in this paper.

Let E be an elliptic curve over a number field K . A standard way of determining

the Mordell–Weil group E(K ) starts by computing the n-Selmer group Seln(E) inside
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the Galois cohomology group H1(K , E[n]) for some n ≥ 2 (or more generally the
elmer group associated with an isogeny). Algorithms for computing these Selmer groups
ere given by Schaefer and Stoll [14] (for n prime) and by Cremona, Fisher, O’Neil,
imon and Stoll [7], among others. These algorithms are based on mapping Seln(E) to a

subgroup of the Galois cohomology group H1(R, µn) ∼= R×/(R×)n for a certain étale K -
algebra R. This in turn uses the embedding of E[n] into the Galois module of functions
E[n] → µn defined by the Weil pairing; see [14, §3] and [7, §3]. In [7, §1.5] it was
noted that the group H1(K , E[n]) classifying E[n]-torsors also classifies commutative
xtensions of E[n] by Gm. This point of view was used in [7, §3] to identify Seln(E) as

a subquotient of (R ⊗K R)×.
In this paper, we consider group schemes over more general base schemes and use

ppf cohomology instead of Galois cohomology together with local conditions. The link
etween the two approaches is that Selmer groups of Abelian varieties can be interpreted
s fppf cohomology groups, as shown by Česnavičius [3, §4]. Computing the n-Selmer
roup of an elliptic curve over a number field K can therefore be viewed as computing
1(Sfppf , E[n]), with S the spectrum of the ring of Σ -integers in K for a finite set Σ of
laces of K , followed by computing a subgroup defined by local conditions at the places
n Σ .

Of the two methods given in Section 5.3 for computing H1(Sfppf , G∗) (note that if G is
he n-torsion of an elliptic curve, then we can identify G with G∗ via the Weil pairing),
he second method is closest to the algorithms of [7,14]. This second method also has
ertain (potential) practical advantages over the first:

(1) Computing presentations for the groups µn(G i ) is easier than for Gm(G i ), because
one only needs to know the nth roots of unity rather than the full unit groups of
the algebras in question. The same holds for finding linear relations in H3

H(G, µn)
as opposed to H3

H(G, Gm).
(2) At least in certain cases, it may be easier to compute the subgroup K (G, µn) of

H1(G fppf , µn) than to compute the subgroup K (G, Gm) of H1(G fppf , Gm). In the
case where p is an odd prime number and E is an elliptic curve over a number
field K , Schaefer and Stoll [14, §5] showed that the Galois cohomology group
H1(K , E[p]) and the p-Selmer group of E can be computed as certain subgroups
of the kernel of a homomorphism A×/(A×)p

→ B×/(B×)p, where A and B are
K -algebras of degree p2

− 1. Translating this to our setting, and taking n to be an
odd prime number p and G to be a group scheme over S annihilated by p, we may
wonder if K (G, µp) can similarly be computed as the kernel of a homomorphism
H1(G fppf , µp)(1)

−→ H1(X fppf , µp) (see Remark 5.2 for the definition of the left-
hand side) for a suitable finite locally free S-scheme X of substantially smaller
degree than that of G2.

.5. Results over localised orders

We conclude by showing how the algorithms from this paper can be implemented
oncretely for suitable base schemes, based on the computation of unit groups and Picard
roups of (localisations of) orders in number fields.
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efinition 5.4. A (reduced) order is a reduced commutative ring that is free of finite
rank as a Z-module.

An order is in particular Noetherian and one-dimensional, but not necessarily regular,
and is of finite index in a product of maximal orders of number fields.

Definition 5.5. A localised order is a ring of the form RΣ , where R is an order, Σ is
finite set of maximal ideals of R, and RΣ is the coordinate ring of the complement of

Σ in Spec R.

Example 5.6. Let K be a number field, and let Σ be a finite set of places of K . Then
the ring ZK ,Σ of Σ -integers in K is a localised order.

Let R be a localised order, and let G be a finite locally free group scheme over
S = Spec R. Then each G i is the spectrum of a finite locally free R-algebra Bi .
Furthermore, G i is generically étale over S, so Bi is again a localised order.

There are algorithms for computing presentations of unit groups and Picard groups of
orders; see Cohen [5, §6.5] for maximal orders in number fields, Klüners and Pauli [9]
or general orders in number fields and Marseglia [10, Remark 3.8] for arbitrary orders.
hese algorithms can be extended to localised orders as in [6, §7.4]. If R′ is a localised

order, we represent Gm-torsors (or invertible sheaves) on Spec R′ by invertible fractional
ideals of R′.

Similarly, if R′ is a localised order and n is a positive integer, then as in Section 3.5 we
represent µn-torsors over S′

= Spec R′ by pairs (J, x) where J is an invertible fractional
ideal of R′ and x is a generator of J n . By the long exact cohomology sequence obtained
from the Kummer sequence, the group H1(S′

fppf , µn) of isomorphism classes of µn-torsors
fits in a short exact sequence

1 −→ R′×/(R′×)n
−→ H1(S′

fppf , µn) −→ (Pic R′)[n] −→ 1,

hich we can use to compute a presentation of H1(S′

fppf , µn).
The above implies that if R is a localised order and G is a finite locally free group

cheme over S = Spec R, then our computational Assumption 5.1 is fulfilled both for the
heaf Gm and for the sheaf µn . We can therefore apply the method from Section 5.2 and
oth methods from Section 5.3 to compute presentations for the groups ExtS(G, Gm),
xt1S(G, Gm) and H1(Sfppf , G∗) (in the case of the second method, for the n-torsion of

hese groups).
Finally, we consider two finite locally free commutative group schemes G and F

ver S. Then we can compute ExtS(G, F) using the following “bootstrap” argument. We
an compute presentations for the finite Abelian groups F(G i ) for i ∈ {1, 2, 3}; this
omes down to computing homomorphisms between subrings of products of number
elds. Furthermore, we can compute H1(G i

fppf , F) for i = 1 and i = 2 as described
bove (with (G i , F∗) in place of (S, G)) because the G i are again spectra of localised
rders. Finally, using the representation of F-torsors as Gm-extension data allows us to
erform the remaining tasks in Assumption 5.1. Therefore our computational assumptions
re fulfilled for the group scheme G over S and the sheaf F , and we can use the algorithm

rom Section 5.2 to compute the group ExtS(G, F).
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