
MATHEMATICS OF COMPUTATION
Volume 91, Number 334, March 2022, Pages 921–942
https://doi.org/10.1090/mcom/3678

Article electronically published on October 15, 2021

COMPUTING p-ADIC L-FUNCTIONS

OF TOTALLY REAL FIELDS

ALAN LAUDER AND JAN VONK

Abstract. We describe an algorithm for computing p-adic L-functions of
characters of totally real fields, using the Fourier expansions of diagonal re-
strictions of Hilbert modular forms.

1. Introduction

We describe an algorithm for computing p-adic L-functions of characters of to-
tally real fields. Such p-adic L-functions were constructed in the 1970’s indepen-
dently by Barsky and Cassou-Noguès [Bar78,CN79] based on the explicit formula
for zeta values of Shintani [Shi76] and by Serre and Deligne–Ribet [Ser73,DR80]
using Hilbert modular forms and an idea of Siegel [Sie68] going back to Hecke
[Hec24, Satz 3]. An algorithm for computing via the approach of Cassou-Noguès
was developed by Roblot1 [Rob15]. Our algorithm follows the approach of Serre
and Siegel, and its computational efficiency rests upon a method for computing
with p-adic spaces of modular forms developed in previous work by the authors.

The idea of our method is simple. In Serre’s approach, the value of the p-adic L-
function of a totally real field of degree d at a non-positive integer 1−k is interpreted
as the constant term of a classical modular form of weight dk obtained by diagonally
restricting a Hilbert Eisenstein series. For small values of k these constants can be
computed easily using an idea of Siegel that goes back to Hecke. To compute the
p-adic L-function at arbitrary points in its domain, to some finite p-adic precision,
we use a method for computing p-adically with modular forms in larger weight
developed in [Lau11,Von15]. We compute the required constant term in very large
weight indirectly, by finding sufficiently many of its higher Fourier coefficients and
using linear algebra to deduce the unknown constant term. Thus our approach is
an algorithmic incarnation of Serre’s approach to p-adic L-functions of totally real
fields [Ser73], obtaining p-adic congruences between the constant terms of modular
forms by studying their higher Fourier coefficients.

Our method is somewhat orthogonal to that of Roblot [Rob15] based on the
“explicit formula” of Shintani [Shi76] that underlies also the related algorithms in
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922 LAUDER AND VONK

[Das07, Sla07]. In spite of this, similarities arise in certain steps, as will be visible
in the selection of instructive examples we illustrate our method with below. Our
algorithmic contribution is as follows:

• In the general case, we take an approach similar to the one used by Cohen
[Coh76]. We replace the calculations in level one in loc. cit. by the methods
of [Lau11, Lau14] for computing p-adically with modular forms in large
weights, obtaining the p-adic L-series by interpolation (see Cartier–Roy
[CR73]) of p-adic approximations of classical L-values.

• In the real quadratic case, we present a far superior method that relies on
the reduction theory of binary quadratic forms. When p is inert, the p-adic
L-function has an exceptional zero, and the derivative is of great interest.
We present an algorithm to compute this quantity directly, using the recent
results of [DPV1] and the methods of [Lau11,Lau14].

The methods of [Lau11,Von15] were also used in the computation of p-adic L-
values attached to modular forms and their double and triple Rankin products
[Lau14]. The arithmetic invariants obtained in loc. cit. are of a very different
nature, but in spite of these apparent differences, the current application follows
exactly the same pattern, whereby the p-adic L-function is computed through its
interpretation as a “twisted” triple product; see [DPV1] for more details.

1.1. Definitions. Let us fix some notation for the rest of this paper. We let F
denote a totally real number field, with [F : ℚ] = d, and {σ1, . . . , σd} the set of its
d real embeddings. For any element α ∈ F , we frequently use the abbreviation

(1) αi := σi(α) ∈ ℝ.

The ring of integers of F is denoted by OF , and its different ideal by d. For any
ideal a � OF , the set of totally positive elements contained in a is denoted by a+.

Let m�OF be a modulus, and denote the set of integral ideals of F coprime to
m by IF,m. The narrow ray class group Cl+m is the quotient of IF,m by the relation

a ∼ b if and only if ab−1 = (α)

for some totally positive α such that vq(α− 1) ≥ vq(m) for all primes q dividing m.
In this article we will consider ray class characters

(2) ψ : Cl+m −→ ℚ
×

that are either totally odd or totally even. This means that for any α ∈ 1 + m we
have

(3)
ψ(α) = sgn(Nm(α)) if ψ is totally odd,
ψ(α) = 1 if ψ is totally even.

The L-series of ψ is defined for Re(s) > 1 by the absolutely convergent expression

(4) L(ψ, s) =
∑
a

ψ(a)Nm(a)−s,

where the first sum is over all non-zero ideals of OF . The L-series meromorphically
continues to all s ∈ ℂ, and is analytic outside s = 1. Let p be a prime number
such that (m, p) = 1, the p-adic L-function Lp(ψω, s) for s ∈ ℤp is defined by the
interpolation property

(5) Lp(ψω, n) = L(ψωn, n)
∏
p | (p)

(1− ψωn(p)Nm(p)−n)
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COMPUTING p-ADIC L-FUNCTIONS 923

for all integers n ≤ 0, where ω is the p-adic Teichmüller character. The function
Lp(ψω, s) defines an element of the field of fractions of the Iwasawa algebra ΛO;
see §2.2. The explicit computation of this p-adic L-function is the subject of the
rest of this article.

2. Diagonal restrictions of p-adic Eisenstein families

We now describe Hilbert Eisenstein series, their p-stabilisations, and their diago-
nal restrictions. These are central to our approach. A general algorithm, described
in §3.2, reduces the computation of Lp(ψω, s) to a computation of the elementary
higher Fourier coefficients of these diagonal restrictions.

2.1. Hilbert Eisenstein series. We begin by recalling some of the basic proper-
ties of Hilbert Eisenstein series attached to a character ψ of modulus m. Proofs
are omitted, and may be found in Katz [Kat78, Section III]; see also Dasgupta–
Darmon–Pollack [DDP11, Sections 2 and 3].

Suppose k ≥ 1 is an integer, and assume that the character ψ is totally odd if k
is odd, and totally even if k is even. Shimura [Shi78] defines the space

(6) Mk(m, ψ)

of Hilbert modular forms of (parallel) weight k, level m and character ψ. It consists
of tuples of holomorphic functions, which we will refer to as its components, on the
d-fold product of upper half-planes Hd, indexed by the narrow class group of F ,
satisfying certain conditions. Each form has in particular a component associated
to the class of d−1, which is a holomorphic function f : Hd → ℂ satisfying

(7) (c1z1 + d1)
−k · · · (cdzd + dd)

−kf

(
a1z1 + b1
c1z1 + d1

, . . . ,
adzd + bd
cdzd + dd

)
= ψf (a)f(z),

for all matrices

(8) γ =

(
a b
c d

)
∈ SL2(OF ) such that c ∈ m,

where z = (z1, . . . , zd) is the variable in Hd, and ψf is the finite part of ψ, defined
on any α coprime to m by ψf (α) = ψ((α)) if ψ is totally even, and ψf (α) =
sgn(Nm(α))ψ((α)) if ψ is totally odd. The transformation law (7) implies that
every Hilbert modular form has a component associated to the class of d−1 with
q-expansion indexed by the totally positive elements d−1

+ of the inverse different.
In this paper, we exclusively use the very special examples given by Hilbert Eisen-

stein series, whose basic properties are discussed in Katz [Kat78]. More precisely,
there exists a Hilbert modular eigenform

(9) Gk,ψ ∈ Mk(m, ψ)

whose component associated to the class of d−1 has q-expansion given by

(10) Gk,ψ(z) = L(ψ, 1− k) + 2d
∑

ν∈d
−1
+

⎛
⎝ ∑

a|(ν)d
ψ(a)Nm(a)k−1

⎞
⎠ qν ,

where we use the notation

(11) qν = exp (2πi(ν1z1 + ν2z2 + . . .+ νdzd))

with νi the image of ν under the i-th embedding σi : F ↪→ ℝ. In the case where
k = 1 and m = (1), the constant term of (10) must be modified, but since we

Licensed to University of Leiden. Prepared on Wed Jan  3 08:14:25 EST 2024 for download from IP 132.229.160.130.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



924 LAUDER AND VONK

will not need this case, we refer the interested reader to Dasgupta–Darmon–Pollack
[DDP11, Proposition 2.11].

2.2. p-Adic Eisenstein families. In the approach to p-adic L-series pioneered
by Serre, the necessary p-adic congruences between special values of the constant
coefficients of Eisenstein series are inherited from congruences between the higher
coefficients, which are of a more elementary nature. Just as the L-series needs to be
modified by taking out its Euler factors at p, we will need to modify all the higher
coefficients of the Eisenstein series.

First, let us fix some notation. Denote Δ for the torsion subgroup of ℤ×
p . It is

cyclic of order φ(𝕢), where 𝕢 = 4 if p = 2, and 𝕢 = p otherwise. Let Λ = ℤp�ℤ×
p �

be the Iwasawa algebra, and ω the p-adic Teichmüller character. Then we have
isomorphisms

(12)
ℤ×

p
∼−→ Δ× (1 + 𝕢ℤp), a �−→ (ω(a), 〈a〉),

Λ
∼−→ ℤp[Δ]�T �, 1 + 𝕢 �−→ 1 + T.

We define a Λ-adic Hilbert modular form of level m and character ψ to be an element
of the ring Frac(ΛO)⊗ΛO ΛO�q�, such that its specialisation at the ideal

(13) Ik =
(
1 + T − (1 + 𝕢)1−k

)
is the q-expansion at infinity of a form in Mk(m(p), ψω1−k), for k ∈ ℤ sufficiently
large. Here, O is the ring of integers in a finite extension of ℚp containing the
values of the character ψ, and ΛO � O�T �.

The prototypical example of a Λ-adic Hilbert modular form is the family of
Eisenstein series Gψ; see [DDP11, Proposition 3.2]. Its specialisation at Ik is the
ordinary p-stabilisation of the Eisenstein series Gk,ψ from §2.1, whose component
associated to the class of d−1 has q-expansion

(14) G
(p)
k,ψ(z) = Lp(ψω, 1− k) + 2d

∑
ν∈d

−1
+

⎛
⎜⎜⎝ ∑

a|(ν)d
(a,p)=1

ψ(a)〈Nm(a)〉k−1

⎞
⎟⎟⎠ qν .

2.3. Diagonal restrictions. Suppose that we are given a Hilbert modular form
in Mk(m, ψ) whose component associated to the class of d−1 is f : Hd → ℂ. Its
diagonal restriction is the restriction of f to the diagonally embedded copy of the
upper half plane in Hd. By the transformation property (7), this procedure yields
a one-variable (i.e. elliptic) modular form of weight dk. It is of level M , where M
is the positive generator of ℤ ∩m, and its character Ψ is obtained by restriction of
the finite part ψf of ψ:

(15) Ψ : (ℤ/Mℤ)× ↪→ (OF /m)×
ψf−−−−−−→ ℚ

×
.

When applied to the Eisenstein series G
(p)
k,ψ of level m(p) and nebentype ψω1−k

introduced in §2.2, we obtain a diagonal restriction of level Mp, and weight dk. Its
q-expansion is given by

(16) Δ
(p)
k,ψ(q) = Lp(ψω, 1− k) + 2d

∑
n≥1

⎛
⎜⎜⎜⎝

∑
ν∈d

−1
+

Tr(ν)=n

∑
a|(ν)d

(a,m(p))=1

ψ(a)〈Nm(a)〉k−1

⎞
⎟⎟⎟⎠ qn.
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COMPUTING p-ADIC L-FUNCTIONS 925

The n-th Fourier coefficient an of the diagonal restriction (16) may be written as

(17) an = 2d
∑

C∈Cl+m

ψ(C)
∑

(a,ν) ∈ 𝕀(n,C)m(p)

〈Nm(a)〉k−1,

where we define the index set by

(18) 𝕀(n, C)b :=

{
(a, ν) ∈ IF,m × d

−1
+ :

Tr(ν) = n, a | (ν)d
(a, b) = 1, [a] = C

}
.

An important feature of an is that the index set 𝕀(n, C) = 𝕀(n, C)m(p) in the sum
(17) is independent of k, and the dependence on k of the terms in the sum is of a
very elementary nature. In explicit computations, this makes it easy to efficiently
compute the higher Fourier coefficients an for a great multitude of different weights
k, once the sets 𝕀(n, C) have been computed.

3. Computing p-adic L-functions of totally real fields

We now present the general method to compute p-adic L-functions for totally
real fields.

3.1. The method of Klingen–Siegel. Following an idea of Hecke [Hec24, Satz
3], Klingen–Siegel [Kli62,Sie68] use diagonal restrictions to show the rationality of
special values L(ψ, 1−k), and to give explicit closed formulae for some small values
of k. For instance, they showed that

(19) ζF (−1) =
1

60

∑
b<

√
D

b≡D (mod 2)

σ1

(
D − b2

4

)

when F = ℚ(
√
D) is real quadratic. The key idea is to use the fact that the diagonal

restrictions of Hilbert Eisenstein series are elliptic modular forms. Computing a ℚ-
basis of q-expansions for the space of elliptic modular forms of the appropriate
weight and level, we can determine the diagonal restriction as a linear combination,
with rational coefficients, of the basis elements using only the higher coefficients.
The constant coefficient, necessarily a rational number, is then also determined.
This idea is perhaps best illustrated with an explicit example:

Example 3.1. Suppose F = ℚ(
√
89; then (5) = pp′ splits. We have that

(20) Cl+p � ℤ/4ℤ

so there is a unique quadratic character ψ of conductor p that is totally even. Then
5ℤ = ℤ∩ p, and the restriction of ψ to (ℤ/5ℤ)× is the character

(
5
·
)
. We compute

that the space

(21) M4

(
Γ1(5),

(
5

·

))
is 2-dimensional, and has a basis of the form

(22)

{
f1 = 1 − 14q2 − 52q3 + . . . ,
f2 = q + 7q2 + 26q3 + . . . .

On the other hand, we compute that the diagonal restriction of Gk,ψ for k = 2 is

(23) Δ2,ψ = L(ψ,−1) + 24q − 168q2 − 624q3 + . . .
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926 LAUDER AND VONK

which, by inspection of the coefficients of q and q2, must be equal to the linear
combination 24f1+24f2 of the basis elements above. It follows that L(ψ,−1) = 24.

3.2. An algorithm to compute p-adic L-functions. To compute the p-adic L-
series Lp(ψω

r, T ) for general totally real fields, we elaborate on the above idea of
Siegel to find its value at sufficiently many weights k and then use finite differences
for interpolation. We now outline the main algorithm, and in the next section we
discuss some efficient methods for carrying out the various steps.

Remark 3.2. For simplicity, we will assume that Lp(ψω
r, T ) is an element of O�T �,

which is automatic whenever the field cut out by ψωr is not contained in the
cyclotomic ℤp-extension of F . If this fails,2 some poles of an elementary nature
may be present, and one needs to suitably modify the statements below. Since this
modification is entirely straightforward, and would only cloud the explanation of
the algorithm, we thought it appropriate to exclude this case from the discussion.
See Example 4.7, where ψωr = 1.

We use finite differences to interpolate special values at integer weights, to com-
pute the p-adic L-series

Lp(ψω
r, s), r ∈ ℤ

as a power series in O�s�/(pm) for any p-adic precision m, with respect to the
variable s = 1 − k in ℤp. We obtain a power series for every residue class of
r modulo (p− 1), and the interpolation only involves integers k in a fixed residue
class modulo (p−1). For a discussion of this interpolation, see Cartier–Roy [CR73].
Since Lp(ψω

r, T ) belongs toO�T � and T = (1+q)s−1, the series Lp(ψω
r, s) mod pm

is in fact a polynomial of degree at most δm, where δm is the smallest integer such
that

(24)
(p �= 2) i− vp(i!) ≥ m for all i ≥ δm + 1,
(p = 2) 2i− vp(i!) ≥ m for all i ≥ δm + 1,

see Serre [Ser73, Théorème 13]. (Note that δm ≤ p−1
p−2m when p �= 2, and δm ≤ m

when p = 2.) Thus it will be sufficient to evaluate this polynomial at δm +1 points
and use interpolation. For each fixed 2 ≤ k0 ≤ p, we shall choose interpolation
points

(25)
(p �= 2) kj := k0 + j(p− 1) for 0 ≤ j ≤ δm,
(p = 2) kj := k0 + 2j for 0 ≤ j ≤ δm,

as this will give us smallest possible interpolating weights d(k0 + j(p− 1)) (respec-
tively d(k0 + 2j)).

Algorithm 3.3. Our input is:

• k0 - an integer in {2, . . . , p},
• ψ - a character of F of modulus m, with the same parity as k0,
• p - an odd prime number,
• m - a natural number.

2This can happen when ψωr is of type W, in the terminology of Greenberg; see [Wil90].
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COMPUTING p-ADIC L-FUNCTIONS 927

The following algorithm computes the power series Lp(ψω
k0 , s) as an element of

the ring O�s�/(pm).

(1) Let M,Ψ be as in (15), and define kj as in (25) for all 0 ≤ j ≤ δm with
δm as in (24). Let S be the Sturm bound for the space of classical modular
forms of weight dkδm and level Γ1(M). Compute a ℤ-basis up to precision
(mod pδm+1, qS) for each of the classical spaces of modular forms

Mdkj
(Γ1(M)), 0 ≤ j ≤ δm.

(2) For all 1 ≤ n ≤ S − 1, compute the index sets

Xn =
⋃

C∈Cl+m

𝕀(n, C)m,

where 𝕀(n, C)m was defined in (18).
(3) For every kj compute to precision pδm+1 the q-series

Δ≥1
j (q) := 2d

S−1∑
n=1

⎛
⎝ ∑

(a,ν)∈Xn

ψ(a)Nm(a)kj−1

⎞
⎠ qn.

(4) For every kj find the unique Lj ∈ ℤp/(p
m) such that Lj +Δ≥1

j (q) is a lin-

ear combination of the basis elements of Mdkj
(Γ1(M)) modulo (pδm+1, qS).

Then compute

L
(p)
j = Lj ×

∏
p|(p)

(1− ψ(p)Nm(p)kj−1).

(5) Interpolate the δm + 1 values L
(p)
j , and output the resulting polynomial

Lp(ψω
k0 , s) ∈ O[s] mod pm.

Remark 3.4. There will be a precision loss of ordp(δm!) during the interpolation in
Step (5), and one observes by the minimality of δm that δm+1 = m+ordp((δm+1)!)
and so it is sufficient to taking working precision

m+ ordp(δm!) ≤ m+ ordp((δm + 1)!) = δm + 1

in the earlier steps. Furthermore, it is possible there may be some precision loss
during the linear algebra in Step (4), but this seems difficult to quantify in a useful
way a priori and did not occur in examples we computed. Such additional loss
would be detected during the computation by any computer algebra system that
can work with p-adic numbers, and can be clearly indicated alongside the output.

For p = 2 the algorithm works as stated, except that there is a more dramatic
precision loss in the interpolation step. In the examples for p = 2 that appear
below, we used exact arithmetic instead.

3.3. An explicit example. We now illustrate this algorithm on a somewhat ar-
bitrary choice of cubic field F , for the 7-adic L-function of a certain quadratic
character of F . Letting a ∈ ℝ satisfy the equation

(26) a3 − 3a− 1 = 0,

we find F = ℚ(a) is a totally real cubic extension of ℚ. We compute that its ring
of integers is OF = ℤ[a], and its different ideal is d = (3a2 − 3), such that every
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928 LAUDER AND VONK

element of d−1 is of the form

(27) ν =
x+ ya+ za2

3a2 − 3
,

for some triple of integers x, y, z. We compute that Tr(ν) = z, and by calculating
all the real embeddings to sufficient accuracy, of which we only include a few digits
here for the purpose of readability, it follows that the elements of d−1

+ of trace n ≥ 1
are those with z = n and x, y satisfying the conditions

(28)

⎧⎨
⎩

(0.1316 . . .)x + (0.2474 . . .)y > −n(0.4650 . . .),
(−0.3791 . . .)x + (0.1316 . . .)y > −n(0.0457 . . .),
(0.2474 . . .)x + (−0.3791 . . .)y > n(0.5807 . . .).

For any fixed n ≥ 1, there are a finite number of solutions in x, y ∈ ℤ that may
easily be computed by a box search for the smallest box containing the triangle in
the (x, y)-plane determined by the inequalities displayed in the system (28).

Since Cl(5) � ℤ/2ℤ, there is a unique non-trivial totally even character ψ of

modulus m = (5). We shall compute the p-adic L-series Lp(ψω
2, s) for p = 7

using an interpolation corresponding to integer weights k in the residue disk k ≡ 2
(mod p− 1). Here we note that the prime 7 is inert in K. We take m := 22 which
gives the precision bound δm = 24.

First we compute, for all kj = 2 + j(p − 1) and 0 ≤ j ≤ 24, bases for all the
classical spaces

M3kj
(Γ0(5),Ψ)

consisting of q-expansions modulo (725, q221). Here Ψ is the quadratic character
of conductor 5. We used methods developed originally in [Lau11,Lau14]. It takes
5 seconds (computing these bases with exact coefficients using built-in Magma

functions would take far longer).
Next, using the description of the set d−1

+ above, we find the diagonal restrictions
in weights kj for 0 ≤ j ≤ 24, respectively. We compute each series modulo q221

with exact rational coefficients (in time around 20 hours) and find

(29)

Δ0 = L0 + 8q + 184q2 − 3472q3 + 8664q4 + 2312q5 + . . . ,

Δ1 = L1 − 17464q + 48344125048q2 + 77708960940464q3 + . . . ,

Δ2 = L2 − 12754552q + 7783511850531843064q2 + . . . ,

Δ3 = L3 − 9298091704q + 1381740600368360259550697848q2 + . . . ,

Δ4 = L4 − 6778308875512q + 258172610009896962270950108546602744q2 + . . .

...
...

Now with some linear algebra and in around 3 seconds we determine the unknown
constant terms Lj modulo 725.

(30)

L0 = −584/5 mod725,
L1 = 644239567957910044930 mod725,
L2 = 225053170195735060254 mod725,
L3 = 1230313269957772629193 mod725,
L4 = 645623798735766423256 mod725

...
...

Interpolating via finite differences, we recover the p-adic L-series, in 0.01 seconds.
The (small) loss of precision is kept track of by Magma, and is different for different

Licensed to University of Leiden. Prepared on Wed Jan  3 08:14:25 EST 2024 for download from IP 132.229.160.130.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COMPUTING p-ADIC L-FUNCTIONS 929

coefficients. One obtains a polynomial L7(ψω
2, s) in s correct modulo 722 and of

degree 24, or alternatively

L7(ψω
2, T ) = a0 + a1T + a2T

2 + . . .

in the variable T = (1 + p)s − 1, where we find that the coefficients are

n an n an n an

0 640518113818292324494 + O(725) 8 577517728950 + O(715) 16 −6305 · 7 + O(76)
1 3887031393600245265 + O(723) 9 11864601963 + O(713) 17 −6919 + O(75)
2 50242117330833221 + O(721) 10 3960164051 + O(712) 18 −901 + O(74)
3 −5393000767479996 + O(719) 11 726383669 + O(711) 19 108 + O(73)
4 (27444039407382 + O(718) 12 94492019 + O(710) 20 −73 + O(73)
5 12031218045488 + O(717) 13 −1830411 · 7 + O(79) 21 1 + O(7)
6 −10194883759927 + O(716) 14 1262600 + O(79)
7 −2363998044292 + O(715) 15 −385206 + O(77)

Note that this shows in particular that the λ-invariant and the μ-invariant are both
zero.

It is evident that all the time in this computation is taken up in computing the
higher Fourier coefficients of the modular forms, for which in our cubic example
we are using the crudest approach. We solve this algorithmic problem though for
quadratic fields in the next section.

3.4. Comments on implementation. We now take a more detailed look at the
most important steps of the algorithm of the previous section, and their implemen-
tation and performance.

a. Bases in high weights. An important step is to compute bases for the classical
spaces

(31) Mj := Md(k0+j(p−1))(Γ1(M)) mod (pδm+1, qs).

The practical problem of computing bases for the classical spaces Mj in step (1)
has been addressed by the first author [Lau11]; a very similar problem arises when
one computes with overconvergent modular forms.

In level 1, corresponding to the case of trivial conductor, it is extremely fast in
practice due to the existence of the Miller basis [Ste07, Lemma 2.20]. In higher
level an elaborate but fast method has been developed and improved over several
years, originally for use in the computations underlying [DLR]. We shall not discuss
it here except to say it involves computing bases in low weight via modular symbols
and multiplication of forms. To give a sense of how this part of the algorithm scales,
undertaking this step in the cubic example above with working precision increased
from 725 to 750 pushes the time up from 5 seconds to around 40 seconds. With
precision 775 it is around 200 seconds. The latter computation involves finding
bases for 75 different spaces of modular forms of weight up to 1338 working modulo
775 and q671.

Remark 3.5. A more direct computation of the quantities L
(p)
j would take place in

level Mp, but it is more efficient to work in level M and compute instead Lj . This
way, the classical spaces of forms that need computing have dimensions that are
smaller by a factor of roughly (p+ 1).

As seen from the cubic example treated in §3.3, finding the higher Fourier coef-
ficients takes the bulk of the running time in practice in this, most general, version
of the algorithm. The total running time in the cubic example was in the order of
20 hours, of which all but a few seconds were spent on this step.
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930 LAUDER AND VONK

b. The inverse different. Step (2) requires us to find an explicit description of
the elements ν ∈ d

−1
+ of trace n, for 1 ≤ n ≤ s− 1. To do this, one first computes a

ℤ-basis of the ring of integers OK and its dual basis for d−1. Then one computes
the finite set of elements determined by the condition Tr(ν) = n and the system of
inequalities obtained from the total positivity conditions, by a simple enumeration
just as we did in §3.3. This becomes laborious as [F : ℚ] grows, since

|{ν ∈ d
−1
+ : Tr(ν) = n}| ∼ n[F :ℚ]−1,

where the implicit constant depends on the ‘shape’ of the number field F . Finally,
for step (3) we compute Nm(I) and ψ(I) for the ideal divisors of all the ideals
(ν)d using well-established methods. Once this is computed, simple linear algebra
determines the constants Lj for all required j in negligible time.

Regarding the complexity, it is difficult to give an overall estimate on this be-
cause our algorithm relies in part on methods for computing bases of spaces of
modular forms (in low weight) using modular symbols. The complexity of such al-
gorithms does not appear to have been documented in the literature, though they
are polynomial-time in input parameters such as the level and q-adic precision re-
quired. Our algorithm is certainly though polynomial-time in both the prime p and
precision m, as well as the absolute value of the discriminant of the field and norm
of the conductor, and exponential in the field degree.

Remark 3.6. The reader may wonder how this general version of the algorithm
compares to the work of Roblot [Rob15]. We make a few comments in the following
cases:

• [F : ℚ] = 2: The algorithm of [Rob15] is illustrated with one example in

[Rob15, § 6] for F = ℚ(
√
5) where the computation of a 7-adic L-function

to precision O(712) is reported to take about 35 minutes. Using the most
general algorithm in §3.2, not making any of the simplifications for the
quadratic case discussed in §4, we obtain the similar running time of 31
minutes.

However, we give a much more efficient approach in the quadratic case
in §4, for arbitrary ring class characters, using reduction theory for binary
quadratic forms to efficiently perform step (2). An additional significant
advantage is provided by the fact that we can compute directly the sets
𝕀(n, C) for every class C separately, and not just their union Xn. This then
further eliminates the need to evaluate the character ψ on every element of
Xn separately in step (3), causing additional savings in running time. To
illustrate the scope of the improvement, consider the example

F = ℚ(
√
401)

which has class group ClF = ℤ/5ℤ. Computing the 13-adic L-functions to
precision O(1345) for all the characters of ClF , we obtained the following
timings for the Fourier coefficients of the diagonal restrictions, which is
the bottleneck of our algorithm: 7748.25 seconds with the general degree
algorithm of §3.2, versus 9.35 seconds with the real quadratic methods
of §4.

• [F : ℚ] > 2: In this case we could not compare our method to that of
Roblot. It is stated in [Rob15, § 1] that the computation of Shintani cone
decompositions [Rob15, § 5.4] is at present not practical in general degree,
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COMPUTING p-ADIC L-FUNCTIONS 931

and no examples are given. A non-constructive proof of the existence of cone
decompositions was given by Cassou-Noguès [CN79, Lemma 1], but recently
Diaz y Diaz and Friedman [DDF14] and Charollois–Dasgupta–Greenberg
[CDG15] explicitly constructed signed Shintani cones. It would be very
interesting to use these ideas to implement a practical algorithm using
the methods of [Rob15], and compare its performance to our algorithm in
explicit examples.

4. Real quadratic fields: Ideals and RM points

We now suppose that F is a real quadratic field, and show how we can improve
the efficiency of the computations in steps (2) and (3) of Algorithm 3.3 in §3.2. The
higher Fourier coefficients (17) will be computed in terms of a certain set of ‘RM
points’ that may be computed efficiently via reduction theory of binary quadratic
forms. To this end, we extend some results that are contained in an article of the
second named author with Henri Darmon and Alice Pozzi [DPV1].

Notation. Henceforth, F is a real quadratic field, and

(32) ψ : Cl+D −→ ℂ×
p

is a ring class character of discriminant D > 0. The conductor f > 0 is defined by
writing D = f2D0 where D0 is a fundamental discriminant. If C is a class in Cl+D,
we denote as before

(33) 𝕀(n, C)f :=

{
(a, ν) ∈ IF,(f) × d

−1
+ :

Tr(ν) = n, a | (ν)d
(a, (f)) = 1, [a] = C

}
.

4.1. The higher coefficients of diagonal restrictions. We begin by putting
the index set 𝕀(n, C)f in bijection with a certain set of ‘RM points’ endowed with
additional data. We say τ ∈ ℂ is a RM point if it satisfies a primitive quadratic
equation

(34) aτ2 + bτ + c = 0, a, b, c ∈ ℤ, b2 − 4ac = D

with positive non-square discriminant D > 0. An RM point τ of discriminant D
determines the integers a, b, c uniquely if we demand in addition that

(35) τ =
−b+

√
D

2a
,

i.e. τ is the stable3 root of the quadratic equation. We write a(τ ) for the uniquely
determined integer a. Every RM point τ has a unique algebraic conjugate, which
we denote by τ ′. Finally, if C ∈ Cl+D is an ideal class, then it is represented by the
fractional ideal (1, τ ) coprime to the conductor f , for some RM point τ . In this
case, we write [τ ] = C.

Choose two sets of representatives Mn ⊇ Nn such that

{A ∈ Mat2×2(ℤ) : det(A) = n} =
⊔

γn∈Mn

SL2(ℤ) · γn(36)

=
⊔

δn∈Nn

SL2(ℤ) · δn · StabSL2(ℤ)(τ ).(37)

3This terminology is explained by the fact that the quadratic equation has a distinguished
generator for its stabiliser in SL2(ℤ), which is usually called its automorph, for which τ is a stable
fixed point.
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932 LAUDER AND VONK

For instance, it is classical that we may choose the following set Mn

(38) Mn =

{(
n/d j
0 d

)
: d|n, (d, n/d) = 1, 0 ≤ j ≤ d− 1

}
.

Now define the set of ‘augmented’ RM points of discriminant n2D by

(39) ℝ𝕄(n, τ )f :=

{
(w, δn) :

δn ∈ Nn, w ∈ SL2(ℤ)δnτ
w > 0 > w′, (a(w), f) = 1

}
.

Lemma 4.1 appears in [DPV1] in the case f = 1, but is easily extended to general,
not necessarily fundamental, discriminants D by the same argument.

Lemma 4.1. Suppose that [τ ] = C; then there exists a bijection

𝕀(n, C)f −→ ℝ𝕄(n, τ )f

such that if (a, ν) corresponds to (w, δn), then Nm(a) = a(w).

Proof. Let A,B and C = (B2 − D)/4A be integers with no common divisor such
that

(40) τ =
−B +

√
D

2A

and define the integral ideal I = (A,Aτ ), whose class in Cl+D is equal to C. Suppose
that (a, ν) ∈ 𝕀(n, C)f ; then ab = (ν)d for some integral ideal b � OF . Define the
RM point w by

(41) w =
−b+ n

√
D

2a
,

where the integers a, b, c are defined by

(42)

⎧⎨
⎩

a = Nm(a),

ν = (−b+ n
√
D)/2

√
D,

c = −Nm(b).

Then we see that w > 0 > w′ and a = a(w) is coprime to f . Note also that
b2 − 4ac = n2D. Consider the ideal Nm(a)a−1I. It represents the trivial class in
Cl+D, and is hence generated by an element λ in ℤ + fOF that is totally positive.
Now define the lattice

(43) Λ = ℤλ+ ℤwλ

which is well defined up to multiplication by a totally positive unit in O×
F ∩

(ℤ + fOF ), i.e. a unit that is congruent to an integer modulo f . We claim that Λ
is a lattice in I of index n. Clearly, λ ∈ I. We also have wλ ∈ I since

(wλ) = (ν
√
D/Nm(a))(Nm(a)/a)I

= bI.

The quadratic form Nm(λx− λwy)/Nm(I) is equal to ax2 + bxy + cy2, and hence
the containment Λ ⊆ I must be of index n. Therefore

(44)

(
λw
λ

)
= N

(
Aτ
A

)
, detN = n,

and hence there is a unique δn ∈ Nn such that

(45) N ∈ SL2(ℤ) · δn · StabSL2(ℤ)(τ ).
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COMPUTING p-ADIC L-FUNCTIONS 933

Note δn is well-defined: If we multiply λ by a unit in O×
F ∩ (ℤ + fOF ) that is

totally positive, then N gets multiplied on the right by an element of StabSL2(ℤ)(τ ).
The coset representative δn is hence independent of this choice. It is clear that
(w, δn) ∈ ℝ𝕄(n, τ ).

We now construct an inverse for the map (a, ν) �→ (w, δn). Let ax
2+bxy+cy2 be

the unique quadratic form of discriminant n2D whose stable root is w, and define
the element ν = (−b+ n

√
D)/2

√
D ∈ d

−1
+ . Write w = γδnτ , and define λ by

(46)

(
λw
λ

)
= γδn

(
Aτ
A

)
.

Note γδn is only well-defined up to left multiplication by elements in StabSL2(ℤ)(w),
and up to right multiplication by elements in StabSL2(ℤ)(τ ), which makes λ well-
defined up to totally positive units congruent to an integer modulo f . This makes
the integral ideals

(47) a = Nm(λI−1)/(λI−1), b = (λw)I−1

well-defined, and we check easily that ab = (ν)d and a is coprime to the conductor
f . It is easily checked that this defines an inverse to the map defined above. �

4.2. Reduction theory of binary quadratic forms. Now that we have estab-
lished in Lemma 4.1 a bijection between the index set 𝕀(n, C)f appearing in the
expression for the diagonal restrictions of Hilbert Eisenstein series, and an explicit
set of ‘augmented’ RM points ℝ𝕄(n, τ )f , it remains to compute the latter. This
will be done using classical reduction theory of binary quadratic forms, as we now
describe.

Following Gauß, we say that the indefinite binary quadratic form F = 〈a, b, c〉
of discriminant Δ > 0 is reduced if

(48) 0 <
√
Δ− b < 2|a| <

√
Δ+ b.

This condition is equivalent to the following condition on the roots λ− < λ+:

(49)

{
λ+ ∈ (0, 1) λ− ∈ (−∞,−1) if a > 0,
λ+ ∈ (1,∞) λ− ∈ (−1, 0) if a < 0.

In general, there are multiple reduced forms in an SL2(ℤ)-orbit, though there is
clearly a finite number of them. For instance, the two forms of discriminant Δ =
2021 given by

(50) 〈5, 41,−17〉 and 〈19, 11,−25〉

are SL2(ℤ)-equivalent, and are both reduced. There are very efficient algorithms
to enumerate all reduced forms in an SL2(ℤ)-orbit; see for instance Buchmann–
Vollmer [BV07].

As is clear from the description (49), any element w ∈ SL2(ℤ)δnτ that satisfies
w > 0 > w′ is the stable root of an indefinite quadratic form that is a simple
translate of a reduced form. Using algorithms for the reduction theory of indefinite
binary quadratic forms, we obtain the following algorithm to compute the sets
ℝ𝕄(n, τ ):

(1) Compute the set Mn, defined in (38), and for each γn ∈ Mn do the following
steps.
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934 LAUDER AND VONK

(2) For any of the γ′
n ∈ Mn already considered in step (1), test whether

γ′
n · StabSL2(ℤ)(τ ) · γ−1

n ⊂ SL2(ℤ).

If this inclusion holds for some γ′
n, do nothing. If it does not hold for any

γ′
n, let F be the form of discriminant n2D whose stable root is γnτ , and do

the following steps.
(3) Run the reduction algorithm outlined in Buchmann–Vollmer [BV07, § 6.4]

on the quadratic form F . Specifically, compute the integer s defined in loc.
cit. and enumerate for 1 ≤ i ≤ s the quadratic forms

〈a+ ib+ i2c, b+ 2ic, c〉 if a > 0,
〈c, −b+ 2ic, a− ib+ i2c〉 if a < 0.

Redefine F to be the (necessarily reduced) last quadratic form in this se-
quence, and repeat this step until the same reduced form is obtained a
second time. Remove the quadratic forms in this list whose first coefficient
is not coprime with f .

The set ℝ𝕄(n, τ )f is given by the pairs (w, γn) where γn ∈ Mn, and

w = (−b+
√
D)/2a

is the stable root of a binary quadratic form 〈a, b, c〉 obtained from γn in the last
step.

Remark 4.2. For our application to p-adic L-functions, one needs to compute
ℝ𝕄(n, τ )f for all n up to some (Sturm) bound. This allows for an additional
speed-up in our implementation. The set ℝ𝕄(n, τ )f may also be computed using
double coset representatives in Md instead of Mn, where d is the smallest divisor of
n that is coprime to n/d. For any SL2(ℤ)-orbit of elements in ℝ𝕄(n/d, τ ), which
was already computed in the process of determining the (n/d)-th Fourier coefficient,
we apply the same algorithm using the coset representatives Md. This produces
the same essential calculations, but eliminates some amount of iterations of step
(2) that do not result in step (3). This variant causes a significant speed-up in
practice.

4.3. Examples. We now illustrate the above methods with some instructive ex-
amples.

Example 4.3. As a warm-up, let us first use the above results to compute classical
L-values, omitting for now their p-adic interpolation (see Examples 4.6 and 4.7).
Let D = 192; then we have f = 4 and the associated fundamental discriminant is
D0 = 12. Set F = ℚ(

√
12). We have

(51) Cl+192 � ℤ/2ℤ × ℤ/2ℤ,

and the space of totally even functions on the class group is spanned by the two
functions

(52)
ψ1 = 1[OF ] + 1[d]

ψ2 = 1[a] + 1[ad] where a = (−3, (12 +
√
192)/2)

that take values in ℚ. Using the above algorithm, we compute the first 200 higher
Fourier coefficients of the series G2,ψi

restricted to the diagonal. This took under
4 seconds for each series. As in the previous section, we compute a basis for the
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COMPUTING p-ADIC L-FUNCTIONS 935

space of forms of level 4 and weight 4, whence we get after a trivial computation
the exact special L-values

(53)
L(ψ1,−1) = 35/12,
L(ψ2,−1) = −37/12.

Example 4.4. For a more interesting example, let us take D = 112 · 13; then we
have f = 11 and the ring class group of this conductor is isomorphic to

(54) Cl+1573 � ℤ/6ℤ.

The space of totally even functions on this ring class group is spanned by:

(55)

ψ1 = 1[OF ] + 1[d]

ψ2 = 1[a] + 1[ad] where a = (17, (−31 + 11
√
13)/2).

ψ3 = 1[a−1] + 1[a−1d]

Using the above algorithm, we compute enough higher Fourier coefficients of the
series G4,ψi

restricted to the diagonal to determine that

(56)
L(ψ1,−3) = 17291314/3,
L(ψ2,−3) = −9930038/3,
L(ψ3,−3) = −9930038/3.

From this computation, we can deduce the special values of any totally even
character. For instance, there is a unique such cubic character ψ whose value on a

is ζ3. We find that

L(ψ,−3) = 17291314/3 + ζ3(−9930038/3) + ζ23 (−9930038/3)

= 9073784.

This entire computation took less than a second, gives the exact L-value, and is
provably correct.

Example 4.5. We now combine the above ideas with the algorithms for efficiently
computing p-adic bases for classical spaces of modular forms to present a first
example of a p-adic L-series. Consider F = ℚ(

√
2) and let ψ be the (ramified)

character associated to the quadratic extension ℚ(ζ8)/F . Then we compute

L5(ψω, s) ≡ − 2 · 59 s11 − 8 · 58 s10 + 4 · 58 s9 + 9 · 58 s8

− 18 · 56 s7 − 694 · 55 s6 − 844 · 54 s5 + 1387 · 55 s4

− 7624 · 53 s3 + 136147 · 52 s2 + 232969 · 5 s,
L7(ψω, s) ≡ 2 · 79 s10 − 17 · 78 s9 + 114 · 77 s8

+ 618 · 76 s7 + 75 · 76 s6 − 256 · 76 s5 + 5365 · 74 s4

+ 161750 · 73 s3 − 1083083 · 72 s2 − 12676806 · 7 s − 2.

The computations were done modulo 510 and 710 respectively, and took less than
a second. Note that the valuations of the coefficients are very close to the predicted
estimates in (24). Finally, we note that L5(ψω, 0) = 0 up to the computed precision,

as should be the case since 5 is inert in ℚ(
√
2) and therefore the L-function has an

exceptional zero at s = 0. On the other hand, 7 splits into two ideals p1, p2 that
are not in the kernel of ψ (since 7 does not split completely in ℚ(ζ8)/ℚ), and the
value at s = 0 is equal (up to the computed precision) to

−(1− ψ(p1))(1− ψ(p2))L(ψ, 0) = −2.
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936 LAUDER AND VONK

Example 4.6. This setting will be revisited in Example 5.4. Let us take D = 321,
and F = ℚ(

√
321). We have

(57) Cl+321 � ℤ/6ℤ,

and the space of odd functions on the class group is spanned by the three functions

(58)

ψ1 = 1[OF ] − 1[d],

ψ2 = 1[a] − 1[ad] where a = (4, (−15 +
√
321)/2),

ψ3 = 1[b] − 1[bd] where b = (2, (−15 +
√
321)/2)

that take values in ℚ. Let p = 7, which is inert in F . Using the method of this
section we can compute that

(59)
L7(ψ1ω, T ) ≡ (3 +O(72))T 3 −(10 +O(73))T 2 +(913 +O(74))T,
L7(ψ2ω, T ) ≡ (1 +O(72))T 3 +(211 +O(73))T 2 +(340 · 7 +O(74))T,
L7(ψ3ω, T ) ≡ −(1 +O(72))T 3 −(211 +O(73))T 2 −(340 · 7 +O(74))T.

This took a fraction of a second. In fact, with working precision 760 one computes
each of the series L7(ψjω, s) mod p51 in around 32 seconds (the precision loss during
interpolation here is 9, as expected). The resulting series would be too long to
reproduce here, but we note that it exhibits L7(ψ1ω, 0) = 0 as it should due to the
presence of an exceptional zero corresponding to k = 1, and it allows us to recover
the derivative L′

7(ψ1ω, 0) modulo 751 (the derivative here is with respect to s). As
we explain in the next section, and will see in Example 5.4, this derivative may also
be computed directly in about 4 seconds, and is the logarithm of a p-unit in the
Hilbert class field of F by the main result of [DDP11]. Note though this approach
to computing the derivative is inferior to that based upon overconvergent forms
below: it is slower and suffers from a precision loss during interpolation.

Finally, we note that the method is also practicable for larger primes, e.g. taking
p = 101 and m = 15 the computation of L101(ψ1ω, T ) runs in 411 seconds, with all
but 3 seconds taken up computing higher Fourier coefficients.

Example 4.7. We now compute some Iwasawa invariants for D = 141 = 3 · 47
and a variety of small primes p. Let ψ be the genus character of F = ℚ(

√
141)

corresponding to the biquadratic extension L = ℚ(
√
−3,

√
−47). Then we compute

the series

Lp(ψω, T ) = pμP (T )U(T )

for all primes p ≤ 229, where U(T ) ∈ ℤp�T � is a unit, and P (T ) is a distinguished
polynomial, i.e.

P (T ) ≡ T deg(P ) (mod p).
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We call λ = deg(P ). We observe that μ = 0 in each case,4 which, since L/ℚ
is abelian, is implied by the main result of Ferrero–Washington [FW79]. The λ-
invariants on the other hand exhibit more interesting behaviour, tabulated here:

p
(

D
p

)
λ p

(
D
p

)
λ p

(
D
p

)
λ p

(
D
p

)
λ p

(
D
p

)
λ

2 −1 3 31 −1 1 73 −1 1 127 −1 1 179 1 0
3 0 2 37 1 2 79 1 2 131 −1 1 181 −1 2
5 1 1 41 1 0 83 −1 1 137 1 0 191 −1 1
7 1 2 43 −1 1 89 −1 1 139 −1 1 193 −1 1

11 1 0 47 0 0 97 1 2 149 −1 1 197 −1 1
13 −1 2 53 −1 1 101 −1 1 151 −1 1 199 −1 1
17 −1 2 59 −1 1 103 1 2 157 1 3 211 −1 1
19 −1 1 61 1 2 107 1 0 163 −1 1 223 −1 1
23 1 0 67 −1 1 109 −1 1 167 1 0 227 1 0
29 1 0 71 −1 1 113 1 0 173 −1 1 229 −1 1

At first sight, the number of non-zero values of λ may seem striking, but the bulk
of them is explained by exceptional zeroes. More precisely, we have the following
possibilities for the splitting behaviour of p in F :

• p is inert in F : In this case, the Euler factor

(1− ψ(p)Nm(p)k−1)

vanishes to order one at k=1, and therefore the p-adic L-function Lp(ψω, T )
must vanish to order at least one at T = 0, forcing λ ≥ 1. In the above
table, this accounts for all the zeroes, except when p = 2, 13, 17, 181.

• p is split in F : Suppose that (p) = pp′; then p is necessarily principal. If
it is generated by a totally positive element, then ψ(p) = ψ(p′) = 1, so the
p-adic L-function Lp(ψω, T ) has an exceptional zero of order at least two
at T = 0. In the above table, this again accounts for all the zeroes of the
p-adic L-function, except when p = 5, 157.

In those cases, we investigate the zeroes of Lp(ψω, T ):
– p = 5: We find that the p-adic L-function has a simple root at

T ≡ 1992099 · 5 (mod 510).

Note that this is consistent with the fact that Cl(L) � ℤ/5ℤ, since
the 5-divisibility of the class number is equivalent to the existence of
a zero in this case.

– p = 157: In this case the distinguished polynomial is P (T ) = T 2(T−a)
where we computed the value of a to be

a = 71 · 157 + 99 · 1572 + 8 · 1573 + 115 · 1574 + . . . ,

so the p-adic L-function has a unique root besides its double excep-
tional zero at T = 0, causing the p-part of the class group to grow
linearly with slope 3 in the cyclotomic tower over L. Note that un-
like the previous case, this does not imply the divisibility of the class
number of L by 157 due to the exceptional zero.

4Note that when p = 2, the L-series always belongs to 4ℤ2�T � and is hence of valuation at
least 2 = d. In this case, the statement μ = 0 means that we observed coefficients whose valuation
was exactly 2.
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• p is ramified in F : This is only true for p = 3, 47. The 47-adic L-series has
no zeroes. When p = 3, the character ψ cuts out the extension F (

√
−3), so

in fact ψω is trivial. We omitted this case in the above description of the
algorithm for simplicity, and now show how to treat it. The series L3(1, s)
has a simple pole at s = 1, so we may write

L3(1, T ) = F (T )/(T − 3),

where F (T ) is an element of the Iwasawa algebra that we compute to be

F (T ) = −539 · 32T + 3929T 2 − 4910T 3 + . . . (mod 310).

This power series has (λ, μ) = (2, 0). We note that L3(1, T ) has a simple
zero at T = 0. This is an exceptional zero caused by the fact that the
unique prime above 3 is generated by a totally positive element.

Remark 4.8. If we reverse the above example by fixing a prime and varying ψ
over (say) all odd quadratic characters of F , the statistics of the λ-invariant are
expected to resemble those of p-adic random matrices. For more on this theme, see
Ellenberg–Jain–Venkatesh [EJV11].

5. Real quadratic fields: Overconvergence and derivatives

Algorithm 3.3 in §3.2 can also be recast in terms of overconvergent modular
forms. Since the underlying computations that need to be performed are nearly
identical to those outlined above in the language of classical modular forms, there
seems little advantage in doing so.

However, when the p-adic L-function has an exceptional zero at k = 1, its first
derivative at k = 1 may be computed directly in a way that uses in an essential
manner overconvergent modular forms, following recent results of the second author
with Henri Darmon and Alice Pozzi [DPV1]. The value of this first derivative in the
presence of an exceptional zero is of great interest, and equals the p-adic logarithm
of the norm of a Gross–Stark unit; see for instance [DDP11].

Remark 5.1. We note here that a computational approach to the computation of
the Gross–Stark unit was developed for real quadratic fields by Dasgupta [Das07]
and for cubic fields by Slavov [Sla07] based on the Shintani cone refinements of
[Das08]. They are closely related to the definition of the p-adic L-functions by
Barsky and Cassou-Noguès, but yield a refinement of it that recovers the Gross–
Stark unit (without the norm). It is also possible to obtain a similar refinement in
the spirit of Serre and Deligne–Ribet by replacing the p-adic family of Eisenstein
series in weight

(1 + ε, 1 + ε)

below by a cuspidal family of Hilbert modular forms of anti-parallel weight

(1 + ε, 1− ε)

and restricting it to the diagonal. This is the subject of the forthcoming paper
[DPV2].

Notation. As before, F is a real quadratic field, and

(60) ψ : Cl+D −→ ℂ×
p

is an odd ring class character of discriminant D (not necessarily fundamental),
which means that ψ(d) = −1, where d is the different of F . We also choose p � D
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to be a prime that is inert in F . The vanishing of the Euler factor at p implies that
we have an exceptional zero, i.e.

(61) Lp(ψω, 0) = 0.

In this section, we describe a direct way to compute the quantity L′
p(ψω, 0) in

this situation.

5.1. Overconvergent p-adic modular forms. We now briefly recall the salient
points of the algorithms for computing with overconvergent modular forms, as
developed in [Lau11].

Let N ≥ 5 and p � N be a prime. We let X/ℤp be the moduli space of generalised
elliptic curves with Γ1(N)-level structure, and ω the modular line bundle on X . The
Hasse invariant A is the unique global section of 𝔽p ⊗ ω⊗p−1 with q-expansion 1.
There is a reduction map

(62) red : X (ℂp) −→ Xs(𝔽p),

where Xs is the special fibre of X over 𝔽p, such that the inverse image red−1(x) of a
closed point is isomorphic to a rigid analytic open disk. The vanishing locus of the
Hasse invariant is precisely the supersingular locus of Xs, which consists of a finite
set of closed points. Therefore, any lift of the Hasse invariant is invertible on the
ordinary locus Xord, which is the affinoid whose ℂp-points correspond to elliptic
curves with ordinary reduction. The ordinary locus Xord is the complement of a
finite number of rigid analytic open disks.

Let r ∈ ℂp such that 0 ≤ vp(r) ≤ 1, and define Xord ⊂ Xr ⊂ Xrig by

(63) Xr(ℂp) := {x ∈ X(ℂp) : vp(Ãx) ≤ vp(r)},

where Ãx is a local lift of the Hasse invariant A at x. Note we do not require a
global lift of the Hasse invariant to exist, which may fail in general when p ≤ 3.
Katz [Kat73] defines the space of r-overconvergent modular forms of integer weight
k on Γ1(N) to be

(64) M†
k(r) := H0(Xr, ω

⊗k).

Now let n be the smallest power of p such that the n-th power of the Hasse in-
variant An lifts to a level 1 Eisenstein series E of weight kE = n(p−1). Throughout
this section, we assume nvp(r) ≤ 1. Our notation is summarised in the following
table:

p 2 3 ≥ 5

E E4 E6 Ep−1

n 4 3 1

The p-adic Banach space M†
k(r) has a basis of Katz expansions of the form

(65)
{
rni

ai,j
Ei

}
i,j

,

where the ai,j are classical modular forms; see [Kat73]. This allows for an efficient
explicit computation of spaces of overconvergent modular forms, as described in
[Lau11,Von15].
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5.2. Derivatives of families of overconvergent modular forms. Since p is
inert in F , we have an exceptional zero Lp(ψ, 0) = 0. In light of the techniques in
this paper, this may be interpreted as saying that the diagonal restriction of the
Eisenstein series G1,ψ has vanishing constant term at the cusp ∞. Theorem 5.2,
proved in Darmon–Pozzi–Vonk [DPV1], states that also its higher Fourier coeffi-
cients vanish.

Theorem 5.2. Suppose that p � D is inert in the real quadratic field F . The
diagonal restriction G1,ψ of the Hilbert Eisenstein series vanishes identically.

The result in loc. cit. is stated only for unramified characters, corresponding to
the case where D is a fundamental discriminant, but the proof remains valid for
ramified characters.

When the p-adic family of Hilbert Eisenstein seriesGk,ψ restricted to the diagonal
vanishes identically at k = 1, it becomes natural to consider its first derivative with
respect to the weight variable k. The q-expansion of this first derivative is given by

(66) H(q) = L′
p(ψω, 0) + 4

∑
n≥1

⎛
⎝ ∑

C∈Cl+m

ψ(C)
∑

(a,ν) ∈ 𝕀(n,C)
ψ(a) logp (Nm(a))

⎞
⎠ qn.

Note that we are now in a situation very similar to that of the main algorithm
above: The constant term L′

p(ψω, 0) is the quantity we wish to compute, and the
higher coefficients may be computed very efficiently using the methods from §4. The
crucial difference is that the form H(q) is not a classical modular form. Lemma 5.3
can be found in [DPV1]:

Lemma 5.3. The series H(q) is the q-expansion of an element in M†
2 (r), for every

r < p/(p+ 1).

This leads to a direct algorithm for computing the value L′
p(ψω, 0) that is very

similar to the one in §3.2. Indeed, the explicit basis (65) for the spaces M†
2 (r) may

be computed efficiently using the algorithms in [Lau11], so we can determine the
constant term of H(q) from the higher coefficients as before.

Example 5.4. Let us consider the setting of Example 4.6, and resume the notation
introduced there. Let us take p = 7, which is inert in F . In this case, there is an
exceptional zero, and the diagonal restriction of the Eisenstein family vanishes at
k = 1 for any odd character. We compute G′

1,ψi
for i = 1, 2, 3 and find that

L′
7(ψ1ω, 0)= 6477196952606172569528507807016822842117113120451 · 7 (mod 760),

L′
7(ψ2ω, 0)= 2400060771017313457866042007390913798673505846408 · 72 (mod 760),

L′
7(ψ3ω, 0)=− 2400060771017313457866042007390913798673505846408 · 72 (mod 760).

The first quantity is equal, up to the computed precision, to log7(u), where u
satisfies the equation

(67) 716u6−20976·78u5−270624·74u4+526859689u3−270624u2−20976u+74 = 0

and therefore u is a 7-unit in the narrow Hilbert class field H of ℚ(
√
321). This

is consistent with the main result of Dasgupta–Darmon–Pollack [DDP11], which
predicts the existence of u in ℚ ⊗ OH [1/7]×. In this case, the Brumer–Stark con-
jecture, now largely proved by Dasgupta–Kakde [DK], predicts that u is in fact in
OH [1/7]× as we observe. The computations took 13 seconds in total.
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des séries de Dirichlet (French), Modular functions of one variable, III (Proc. Internat.
Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1973, pp. 269–349.
Lecture Notes in Math., Vol. 350. MR0330113

[CN79] Pierrette Cassou-Noguès, Valeurs aux entiers négatifs des fonctions zêta et fonc-
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