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Abstract The mitogen activated protein kinase (MAPK) fam-
ily, consisting of the extracellular signal regulated protein
kinase, c-Jun amino terminal MAPK and p38 subfamilies, is
conserved in evolution throughout the plant and animal king-
doms. These proteins have been implicated in diverse cellular
processes including cell growth, migration, proliferation, differ-
entiation, survival and development. Gene-targeting approaches
in mice, chickens, frogs and zebrafish revealed crucial roles of
MAPK in vertebrate development. Gene-disruption or -silencing
often lead to lethal effects, therefore the zebrafish ex utero devel-
opment provides an excellent in vivo model to study the function
of MAPK in early embryogenesis. In this review, we summarize
the current understanding of the MAPK family function in ver-
tebrate-development and place this into the perspective of possi-
bilities for future research.
� 2006 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction: The MAPK pathway

The mitogen activated protein kinase (MAPK) family is con-

served in evolution and is involved in diverse cellular processes

including cell growth, proliferation, differentiation, survival,

innate immunity and development [1–3].
Abbreviations: ASK1, apoptosis signal-regulating kinase 1; A-Raf1, V-
RAF murine sarcoma 3611 viral oncogene homolog 1; B-Raf, V-RAF
murine sarcoma viral oncogene homolog B1; BMK1, big MAP kinase
1; CLIC3, chloride intracellular channel 3; Cot, Cancer Osaka Thyroid
Oncogene (=Tpl-2); ERK, extracellular signal regulated protein kina-
se; JNK, c-Jun amino terminal MAPK; MEK, MAPK/ERK kinase;
MEKK, MEK kinase; MAPK, mitogen activated protein kinase; MK,
MAPK-activated protein kinases; MKK, MAPK kinase; MKKK,
MAPK kinase kinase; MLK2,3, mixed-lineage protein kinase 3; Mos,
V-MOS moloney murine sarcoma viral oncogene homolog; Myf5,
myogenic activator 5; POSH, plenty of SH3s; Raf1, V-RAF murine
leukemia viral oncogene homolog 1; SAPK, stress activated protein
kinase; Tpl-2, tumor progression locus 2; TAO1,2,3, thousand and one
amino acids; TAK1, TGFb activated kinase; v-src, avian Sarcoma
(Schmidt–Ruppin A-2) viral oncogene
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MAPKs transmit signals in the form of sequential phosphor-

ylation events. The phospho-relay system is composed of three

kinases: a MAPK kinase kinase (MAPKKK), a MAPK kinase

(MAPKK) and a MAPK. Phosphorylation of the MAPKs

occurs on a conserved dual-phosphorylation domain (Thr-Xxx-

Tyr) leads to activation of the protein (Fig. 1) and the subse-

quent formation of dimers which translocate into the nucleus

to activate downstream targets [1–3]. Three major subfamilies

of MAPK proteins have been defined: extracellular signal

regulated kinases (ERK), the c-Jun amino-terminal kinases

(JNK), and the p38 MAP kinases. The middle amino-acid

residue of the conserved Thr-Xxx-Tyr dual-phosphorylation

domain designates a MAPK protein to one of these

subfamilies. In general, the ERK subfamily (TEY) is mainly

activated by growth factors, p38 (TGY) by stress factors and

JNK (TPY) are activated by stress-, differentiation- and

growth-factors [4–6]. It should be stressed here that scaffold

proteins play an important role in the spatial–temporal organi-

zation of signaling complexes leading to activation of a specific

cascade [1,6,7].

To illustrate the evolutionary conservation of the

MAPK family, we constructed a phylogenetic tree of the

vertebrate MAPKs by the neighbor-joining method (Fig. 2)

[8]. This analysis was performed by multiple alignments with

the amino acid sequences of the different vertebrate MAPKs

from human, rat, mouse, Xenopus and zebrafish. As expected

from the evolutional point of view the different vertebrate

MAPKs cluster with their corresponding orthologs, which

are also indicated by their MAPK-family number (MAPK1–

15).

Currently, based on phosphorylation consensus, sequence

identity, signaling profile and functions, six different MAPK

cascades have been identified in mammals: ERK1/2, ERK3/

4, ERK5, ERK7/8, JNK1/2/3, and p38-isoforms a/b/

c(ERK6)/d [1–3] (Fig. 3). The best studied ERK1 and ERK2

are activated by the upstream MAPKKs MEK1 and MEK2,

while MEK1-2 are in turn activated by their upstream MAP-

KKKs or Raf protein kinases. Interestingly, ERK3 is a ubi-

quitously active MAPK and its activity is regulated by

protein stability. The mechanisms of regulation for ERK4

are still largely unclear. In addition, ERK5 is exclusively acti-

vated by MEK5, which can be phosphorylated by the MAP-

KKKs MEKK2 and MEKK3. ERK7 is similar to ERK3 in

that it is constitutively activated, presumably by the C-termi-

nus of the protein. ERK7 activity is not regulated by extracel-

lular stimuli. Despite intensive efforts, the activators for ERK8

are yet unknown, although ERK8 is shown to be activated

after long stimulations with serum and in cells expressing the

oncogene v-src, suggesting that ERK8 is involved in long term
blished by Elsevier B.V. All rights reserved.
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Fig. 1. The mitogen activated protein kinase module. The MAPK
module consists of three kinases: a MAPKKK, a MAPKK and a
MAPK. Different MAPK cascades can be activated by various signals.
Upon activation the upstream kinase activates the downstream kinase
by phosphorylation and leads to a response.
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signaling. Similar to ERKs, the p38-MAPK module includes a

range of MAPKKKs such as MEKK1-4, MLK2-3, apoptosis

signal-regulating kinase 1 (ASK1) and TGFb activated kinase

(TAK1). These activate the MAPKKs MEK3 and MEK6,

resulting in the activation of the p38 a, b, c, d isoforms. The

JNK MAPKs are activated by the MAPKKs MEK4 and 7,

which are in turn activated by the MAPKKKs MEKK1-4,

MLK2-3, TAO1-2, TAK1 and ASK1-2 [2,6,9,10]. Details of

the molecular mechanisms governing the developmental func-

tions of different MAPK-cascades in vertebrate models are

beginning to emerge and will be discussed in the following sec-

tions (Figs. 2 and 3).
ns) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative
2. ERK1/2

ERK1 (MAPK3, p44MAPK) was the first identified MAPK

[11]. Until now, homologs for erk1 have been reported for

human, mouse, rat and zebrafish genomes. ERK1 and ERK2

are the most intensively studied MAPKs in developmental

processes. Detailed immuno-histochemical analysis revealed

localized spatio-temporal patterns of ERK1/2 phosphorylation

during mouse [12], chicken and zebrafish development, with

FGF as most predominant activator during development.

Erk1�/� mice are viable, fertile and of normal size [13]. The

proliferation and maturation of the thymocytes is affected,

despite expression of ERK2. Mice lacking ERK1 also manifest

abnormal signaling responses, which are linked to an upregu-

lation of ERK2 activity in the brain. ERK1 has a critical reg-

ulatory role in brain long-term adaptive changes underlying
striatum-dependent behavioral plasticity and drug addiction

[14]. Furthermore, ERK1 is an important modulator of synap-

tic plasticity. The existence of the distinct scaffold MP1 for

ERK1-MEK1 indicates specific functions and location for

MEK1/ERK1 complex [15]. The MP1 scaffold was initially

identified by its capability to bind to the proline-rich region

of MEK1 and to be involved in the activation of ERK1, but

not ERK2 signaling [1,15].

ERK2 (MAPK1, p42MAPK) is found in human, mouse,

rat, frog, chicken and zebrafish genomes. Importantly, mouse

embryos lacking exon 2 of the erk2 gene die in utero before

embryonic day (E) 8.5 due to a defect in trophoblast develop-

ment [16]. Erk2-deficient mice fail to form the ectoplacental

cone and the extra-embryonic ectoderm, which gives rise to

mature trophoblasts in the fetus. In addition Erk2�/� em-

bryos also fail to form mesoderm, based on histological criteria

at E6.5 and E7.5 [17,18]. Significantly, ERK1 is incapable of

compensating for ERK2 function in erk2�/� mice, suggesting

that the observed effect is ERK2 specific and cannot be rescued

by ERK1.

Despite effort, in frog and chicken no erk1 gene has been

found until now. However, the ERK1 protein has been de-

tected by Western-blot analysis in chicken, where p-ERK1/2

expression was observed in motor axons, but not in sensory

axons. In a follow up study Kato and co-workers have also

demonstrated specific activation of ERK1/2 in growing motor

axons suggesting that p-ERK1/2 may be involved in outgrowth

and/or guidance of this subset of axons [19]. In contrast, mod-

ulation of ERK2 activity affects mesoderm differentiation in

Xenopus embryos, whereas inhibition of the ERK2 activation

prevents animal caps to differentiate into mesoderm tissues

[20]. Elevated ERK activation is also detected by immuno-

histochemistry during segmentation in mouse, chicken and

zebrafish [21].

In zebrafish, the presence of the ERK-MAPK cascade was

first shown by Western-blot analysis, where insulin-like growth

factors (IGFs) stimulates zebrafish cell proliferation by activat-

ing MAPK and PI3-kinase signaling pathways [22]. Subse-

quently it was shown that chitin oligosaccharides, activate

ERK1 and ERK2 in zebrafish cells, via the Ras-Raf-MEK

module [23]. The developmental roles of ERK1 and ERK2

in zebrafish development have mostly concentrated on the

functions of the FGF/MAPK pathway, which also contains

the inhibitors Sef [24,25], Sprouty2/4 and the MAPK phospha-

tases MKP1 and MKP3 [26]. Overactivation of the Fgf/ERK-

pathway leads to dorsalized embryos by inhibiting expression

of bmp genes [27]. Overexpression of ERK-MAPK phospha-

tase MKP3 or injection of a high dose of mRNA of the inhib-

itor Sef also results in an opposite ventralization [24,28]. This

implies that manipulation of ERK-MAPK activation affects

zebrafish development. It can therefore be suggested that

ERK1/2 in zebrafish are regulated via canonical pathways,

but precise regulation and distinguished developmental func-

tion for ERK1 and ERK2 remain to be defined. Recently, a

developmental role for ERK1 in axial mesoderm formation

was demonstrated and the absence of active ERK2 in the blas-

tula-margin blocked the initiation of epiboly cell migration,

disturbed the microtubule organization and led to an arrest

of embryogenesis, preventing further differentiation of epiblast

and hypoblast (unpublished data). Similarly to mice also in

zebrafish ERK1 is not able to rescue developmental pheno-

types caused by ERK2 knock-down.
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Fig. 2. Phylogenetic tree of the vertebrate MAPKs. The phylogenetic tree was constructed by the neighbor-joining method of the amino acid
sequences of the different vertebrate MAPKs using Clustal W, available at the web server of the DNA Data Bank of Japan (DDBJ, http://
hypernig.nig.ac.jp). Clustal W analysis was done using default settings, without Kimura’s correction. Bootstrap sampling was reiterated 10000 times.
For the matrix table ‘blosum’ was used. The gap extension penalty was set at 0.2 and the gap distance was set at 8. Trees were printed using the
program Treeview (http://taxonomy.zoology.gla.ac.uk/rod/treeview.html). The phylogenetic tree illustrates the evolutionary conservation of the
MAPK family members in human (h), rat (r), mouse (m), Xenopus laevis (x) and zebrafish (z). The different MAPKs cluster together and are indicated
by their MAPK-family number (MAPK1–15). Black text = previously annotated and shown to be expressed; gray text = translation of genomic
prediction. The predicted sequences were found in the following versions of the genomes of the Sanger Ensembl: Rattus norvegicus = v38,
Xenopus = v38; zebrafish = Zv6.
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3. ERK3/4

Interestingly, ERK3 and ERK4 are the only ERK-MAPKs

that lack the characteristic TEY activation motif, but display a

SEG activation domain (Fig. 3). Only the serine residue in this

SEG-motif can be phosphorylated. ERK3 has a characteristic

400 amino acid C-terminus, which is partly homologous to

ERK4 (170 amino acids). The stimulants for ERK3 and

ERK4 have not been identified, so far.

ERK3 (MAPK6, p97MAPK) has been reported for human,

mouse, rat, zebrafish and gene-predictions were also found in

the frog and chicken genomes (Fig. 2). ERK3 seems to be

mainly regulated by its protein stability and auto-phosphoryl-

ation. Human ERK3 interacts with MAPK-activated protein

5 (MK5 or PRAK) and spatio-temporal expression of ERK3

and MK5 suggest co-expression of both kinases [29]. In mice,

deletion of mk5 leads to strong reduction of ERK3 protein lev-

els and is lethal around E11, the time-point where expression

levels of erk3 are maximal in wildtype mouse embryos

[29,30]. This suggests an universal role of this MK5-ERK3
module in development. Erk3�/� mice have been made,

although their phenotypes are not described in literature yet

(Turgeon B and Meloche S, manuscript in preparation) [29].

ERK4 (MAPK4, ERK3-related, ERK3-beta, p93MAPK),

closely related to ERK3 [31], was first identified in human

[32], and subsequently described for mouse, rat, and zebrafish.

A predicted ORF was also found in the chicken (Fig. 2). Its

spatio-temporal expression-pattern is predominantly localized

in the brain during zebrafish development [33]. However, a

developmental function of this MAPK remains to be deter-

mined.
4. ERK5 (MAPK7, BMK1)

ERK5, also referred to as big MAP kinase 1 (BMK1), is

found in human, mouse, rat, frog and zebrafish. Activation

of ERK5 is mediated by MEK5. The ERK5 pathway is acti-

vated by oxidative stress, hyper-osmolarity and growth factors

[34]. ERK5 has a unique carboxy-terminal domain, which
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Fig. 3. The mitogen activated protein kinase module and the developmental functions of the MAPK proteins. MAPK-modules can be activated by
various stimuli: mitogens (growth factors, cytokines), differentiation and stress factors (UV, osmolarity). The MAPK module consists of a
MAPKKK, a MAPKK and a MAPK. Two MAPKs (ERK3 and ERK7) are not activated by an upstream MAPKK, but are constitutive active and
are regulated by protein stability (indicated by an asterisk �). The MAPKs are subdivided into their corresponding subfamily, based on their dual
phosphorylation domain (dP-consensus). The functions, obtained by gene-targeting or -silencing studies, but also immuno-histochemistry, are
described for each MAPK. The lethality-index indicates if gene-disruption in mice resulted in a lethal developmental phenotype and at what day of
development (� = lethal, No = not lethal, ND = not determined). For erk3�/� mouse the results are not published yet. The indicated lethality shown
for ERK3 (in white) is for MK5�/� mice, a direct target of ERK3.
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interacts with the transcription factor myocyte enhancer factor

2 (MEF2).

Genetic studies with ERK5- or MEK5-deficient mice re-

vealed that the MEK5–ERK5 pathway is essential for blood

vessel development and cardiovascular development [35–40].

Mice that lack erk5 or mek5 die around E.10 due to defects

in placental development, angiogenesis and cardiovascular

development. Studies with conditional knockout, using the

inducible promoter Mx1 to direct Cre expression, revealed that

ablation of ERK5 in adult mice was lethal within 2–4 weeks

after induction of the Cre recombinase [41]. Histological and

in vitro analysis revealed that endothelial cells lost their integ-

rity, became round and eventually apoptotic. The loss of these

functional endothelial cells resulted in abnormally leaky blood

vessels and hemorrhages in multiple organs. These findings

indicate that survival of endothelial cells is MEK5 and

ERK5 dependent, and that the cardiovascular defects observed

in erk5�/� and mek5�/� embryos are due to the loss of endo-

thelial cells [41].

In Xenopus knockdown of ERK5 by antisense morpholino

injection inhibits neural differentiation and leads to growth

retardation in the head and eventually to reduced head struc-

tures [36]. In this system the activation of the MEK5–ERK5

pathway is necessary for neural differentiation in early embry-

onic development. It is likely that the observed inhibition of
neural differentiation may be one of the reasons for growth

retardation in the head region.

Controversially, studies with conditional brain specific

knockout mice, with Cre-expression controlled by the neuron

specific synapsin I or nestin promoters revealed that these mice

develop normally [37]. This might be due to species differential

functions for ERK5, the use of an inappropriate promoter in

the mouse model, or that a more global effect is responsible

for the observed phenotypes in the brain after ERK5 knock-

down in the Xenopus. Furthermore, expression of erk5 is also

mainly localized in the zebrafish brain and possibly a follow-up

study in zebrafish will clarify developmental functions of

ERK5 [33].
5. ERK7, ERK8 (MAPK15)

ERK7 (MAPK15) is found in rat, mouse and zebrafish and

recently the Dictyostelium erkB (ERK2) has been characterized

as an erk7-ortholog [42,43]. Genome-based analyses revealed

that human erk8 and rodent erk7 are orthologs [44]. Further-

more, gene-predictions for erk7 were found within the chicken

and Xenopus genomes.

Like ERK3 and ERK5, the size of ERK7 and ERK8 is sig-

nificantly larger than ERK1 and ERK2. Presumably, ERK7 is
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6. JNK1,2,3 (MAPK9,10,11; SAPKc,a,b)

Activated JNKs phosphorylate the N-terminus of the c-Jun

protein and increases activity and stability of c-jun as a tran-

scription factor [45,46]. Both JNK activation and c-Jun phos-

phorylation regulate cell growth, whereas sustained JNK and

c-Jun activation following stress induces cell apoptosis, indi-

cating that the role of JNK in cell survival and death is com-

plex [47]. Mouse jnk1 and jnk2 are expressed ubiquitously

during development, whereas jnk3 is primarily expressed in

the brain and to a lesser extent in the heart and testis. Mice

lacking individual members of the jnk family are viable

[48,49]. The Jnk1�/� knockout mice exhibited an affected

T helper type-2 response, while T-cells from jnk2�/� mice

showed impaired T helper type-1 differentiation. Both knock-

outs demonstrated defects in T cells activation and apoptosis

of thymocytes [50]. Mice lacking both of the ubiquitously ex-

pressed jnk isoforms (jnk1 and jnk2) die during mid-gastrula-

tion (around E.7) with neural tube closure and brain defects

[51]. Recently, it was shown that mice with a single allele of

jnk2 (jnk1�/� jnk2�/+), can survive to birth, but fail to close

the optic fissure (retinal coloboma), a morphogenetic process

that resembles dorsal and thorax closure in Drosophila by reg-

ulating BMP expression [52]. Localization of p-JNK in the

spinal cord changes dramatically from cell-axons to the cell

nuclei during development in the chicken, suggesting physio-

logical functions of JNK during neuronal development [51].

In Xenopus oocytes initially two JNK isoforms, p40 JNK

and p49 JNK, were shown [53], but until now only one jnk-

gene (jnk1) is cloned in Xenopus. The ensemble genome project

of Xenopus tropicalis does predict a jnk3-gene. JNK activity

increases abruptly just prior to germinal vesicle breakdown

and is shown to be involved in the non-canonical Wnt pathway

to regulate Xenopus convergence and extension cell-move-

ments [54]. Furthermore, the active JNK signaling complex

formed by the scaffold protein POSH (Plenty of SH3s) and

the JNK-module is essential for the expression of anterior neu-

ral genes and apoptosis in Xenopus anterior development [55].

In zebrafish also only one jnk-gene is described, which is

expressed throughout development and shows distinct tempo-

ral and spatial expression patterns [33], but the latest release of

the zebrafish genome (Zv6) predicts a second jnk gene (Fig. 2).
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7. p38a,b,c,d (MAPK14,11,12,13)

The p38 family includes p38a (MAPK14, SAPK2a, CSBP),

p38b (MAPK11, SAPK2b), p38c (MAPK12, ERK6, SAPK3)

and p38d (MAPK12, SAPK4). Both p38a and p38b are widely

expressed isoforms that are involved in regulation of cell pro-

liferation, differentiation, development, and response to stress.

The p38a knockout mice are lethal due to defects in placental

angiogenesis [56,57]. In some genetic backgrounds, p38a dele-

tion results in a decrease of erythropoietin (Epo) production,

leading to anemia [58].

In Xenopus, the p38 MAPK signaling pathway is essential

for skeletal muscle differentiation in tissue culture models.
Knockdown of p38 MAPK causes distinct defects in myogen-

esis in Xenopus laevis, showing that p38 MAPK is involved in

myogenesis during early development [59]. The zebrafish p38a
otholog, p38a (MAPK14a), is asymmetrically activated on one

side of the blastodisc during the early cleavage period in zebra-

fish embryos. The use of a dominant negative form of p38a

revealed that asymmetric p38a activation is required for

symmetric and synchronous cleavage, and may be regulated

by the same machinery that controls the initiation of dorsaliza-

tion signals [60].

By screening with the rat erk3 gene, an erk6-clone was iso-

lated from a human skeletal muscle cDNA library, that

appeared to function as a signal transducer during differentia-

tion of myoblasts to myotubes [61]. Later it was found that

SAPK3 was identical to ERK6 [62,63]. Based on the phos-

phorylation domains and function, ERK6 is now classified

as p38c MAPK.

Mouse lacking p38b, p38c or p38d survive normally and do

not show any obvious phenotypes [9,64,65]. Also the p38c and

p38d double knockout mice was viable and fertile and had no

obvious health problems [65]. Despite the suggested role for

p38 MAPKs in inflammatory responses, these knockout mice

do not show pathological changes, indicating dispensable

physiological functions for p38b, p38c and p38d.

In frog, overexpression of a constitutively active mutant of

the p38 activator MKK6 accelerates progesterone-induced

maturation of Xenopus oocytes and was therefore suggested

to be involved in the meiotic maturation. Phosphorylation of

Cdc25C by p38c/SAPK3 is important for the meiotic G2/M

progression of Xenopus oocytes [66].

Information has been particularly limited regarding the

functional role of p38d (SAPK4). Eckert and coworkers de-

scribe p38d as a regulator of surface epithelia differentiation

and apoptosis [67]. Until now p38d is found to be expressed

in human, mouse and rat, but is not yet found in other verte-

brates. However, a genome search in zebrafish (Zv6) and Xeno-

pus (v38) does predict a possible p38d-gene.
8. Conclusions and perspectives

There is an increased understanding about the different

MAPK pathways and their crucial roles in vertebrate develop-

ment. One of the striking observations is that some MAPKs

(ERK3 and ERK7) are not regulated by the dogmatic MAPK

module, but by protein stability. A major unresolved question

is why such a variety of MAPKs is needed. Gene-disruption

and -silencing experiments already showed central roles for

most of these proteins. These approaches often resulted in

early lethal effects, but also revealed redundancy (Fig. 3).

The occurrence of redundancy can be addressed and overcome

by targeting multiple genes at the same time. Also further con-

ditional and tissue specific gene-targeting experiments will help

to understand the functions of the different MAPKs. The use

of different vertebrate model organisms and their specific ben-

eficial characteristics will be helpful to achieve this goal. The

recent characterization of the zebrafish mapk gene-family [33]

and its advantage to study early embryogenesis ex utero pro-

vides an excellent system for further investigation of the func-

tions of MAPKs in early development in vivo. The

transparency of zebrafish embryos is of particular advantage

to explore the link of MAPKs to cell migration processes. This
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in developmental cell migration, additive to the well estab-

lished proliferation and differentiation functions.
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