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Chapter 7

Determining travel fluxes in

epidemic areas

Daipeng Chen, Yuyi Xue, Yanni Xiao1

Abstract

Infectious disease attacks humans from time to time and threatens the lives of people

all around the world. An important strategy to prevent the spatial spread of infectious

disease is to restrict population mobility. As the epidemic threat is reduced, when the

travel restrictions can be lifted, and how to organize orderly travel movement become

critical. In this study, we define a novel diffusion distance derived from the estimated

mobility network. Based on such diffusion distance a simple model was proposed

to describe the spatiotemporal dynamics of infectious disease. Next we modeled the

mobility restrictions and the exiting strategy by extending this simple model with a

deterministic drift process of the population. We consequently develop a multi-source

data fusion method to determine the drift process of population in epidemic areas. By

solving two optimizations, we first select available subregions in epidemic areas, and

then provide solutions to initiate new travel flux between these subregions. To test

our method, we analyzed the multi-source data from mainland China and proposed a

scheme triggering new travel flux during the first wave of COVID-19 in the selected

29 cities in mainland China. The testing predictions in these selected cities show that

1This chapter is based on Chen et al. (2021) “Determining travel fluxes in epidemic areas”. PLoS
Computational Biology, 17(10), e1009473.
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7.1. Introduction

reopening the borders in accordance with our proposed travel flux reduces the risk of

a second outbreak of COVID-19 in these cities. This finding provides a methodology

for re-starting travel movement of population during the weakening spread stage of

the epidemic.

7.1 Introduction

In December 2019, the first COVID-19 case was reported in Wuhan, China [373]. The

coronavirus SARS-CoV-2 then quickly spread out nationally [374] and internationally

[375]. To prevent the spread of this novel virus, unprecedented measures such as travel

restriction, quarantine and isolation followed by contact tracing were introduced by

the Chinese government [376]. Most notably, strict travel restrictions were imposed

in Wuhan and nearby cities from 23 January 2020. Subsequently, the highest level

of alert and responses to the public health emergency were activated in mainland

China [376]. The restrictions on mobility were also imposed in many other countries

around the world to mitigate the spatial spread of SARS-CoV-2 [377]. Several studies

have evaluated the effect of travel restrictions on the spread of SARS-CoV-2 [378] and

have demonstrated that the lockdown imposed on Wuhan combined with measures to

control movements in and out of the city reduced the number of domestic [379] and

international [380] infections.

In epidemiology, the restriction on population movement into or out of a specific

area such as a community, a city or a country is called cordon sanitaire [381]. In

addition to the response to recent COVID-19 [382], cordons sanitaire had been estab-

lished to stop the spread of other infectious diseases such as the 2001 foot and mouth

disease epidemic in Britain [195], the 2003 SARS epidemic in China [196], the 2009

H1N1 flu epidemic in Mexico [20] and the 2014 Ebola epidemic in West Africa [197].

Reduced mobility between areas plays a potentially important role in decreasing the

spread of infectious disease [383, 384], but it also has a negative effect on social health

and economic development [385, 199]. Once infectious disease or diseases are under

control or successfully contained in some specific areas, the reopening of borders has

been put on the agenda. However, it is not clear how to balance the trade-offs be-

tween inter-regional mobility and the risk of potential new outbreaks. Determining

where and when mobility restrictions can be relaxed and designing a new orderly travel

movement fall within the scope of this study.

In the most extreme case, the cordon will not be lifted until the infectious disease

is extinguished [359], but it is not suitable for curbing a large-scale emergent epidemic
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Chapter 7. Determining travel fluxes in epidemic areas

[386], and hence many countries are seeking a balance between reopening and prevent-

ing the epidemic from rebounding. A number of studies have formulated mathematical

models with population mobility to investigate the effect of massive movements on the

spread of infectious disease [184, 387, 388, 389]. However, few studies have focused on

the trade-off between mobility restrictions and the spread of pathogen. Preparing for

a responsible lockdown exit strategy [390] has been extremely important not only for

the COVID-19 epidemic [391], but also for future pandemic outbreaks. Most model-

ing studies integrating mobility data and the spatial spread of infectious disease are

based on meta-population models [185]. Combining such model with mobility data,

Linka et al. [193] provided an exit strategy for the travel ban against COVID-19 in

Canada. In their study, they made reopening forecasts by updating the fraction by

which the baseline movement matrix was multiplied and running the model repeat-

edly. Once some acceptable simulations were obtained, the corresponding movement

matrixes were translated into suggestions to guide population mobility. Based on the

same model, Ruktanonchai et al. [192] assessed the impact of coordinated COVID-19

exit strategies across Europe. Similar to the work of Linka et al. [193], they ran their

model under different parameter sets and initial states and found that appropriate

coordinated exit strategies greatly improved the possibility of curbing the spread of

COVID-19 in Europe.

Although meta-population models have provided a rich and nuanced perspective

on predicting epidemic spread [392] and evaluating the effectiveness of interventions on

population mobility [393], they would become highly complex and difficult to compute

if more spatial heterogeneity was introduced [391]. Another limitation of the previous

studies comes from the methods that are based on adjusting parameters or updating

initial states of models. This approach generally only provides some suggestions on

the order [192] or degree [193] of reopening in some epidemic areas, and does not

provide relatively detailed information on where and when the mobility restrictions

can be relaxed, nor answer what kind of population movement pattern among various

areas is optimal. To address this challenge, Gösgens et al. [194] developed a method

to determine the optimal travel flux in epidemic areas. Given the time horizon and

regional division, Gösgens et al. [194] proposed an optimal function which is positively

related to population mobility rates between different regions and negatively related

to infection cases in each region. Maximizing this optimization function suggests

a mobility strategy in epidemic areas. However, their method is computationally

expensive because it involves repeatedly updating regional divisions and solving a

meta-population epidemiological model.
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7.2. Materials and Methods

To solve the difficulties induced by the meta-population model, by defining a dif-

fusion distance, we reduced the complex spatiotemporal spread of pathogen into a

simple wave mode, and consequently formulated a reaction diffusion equation to de-

scribe such spread. In this study, we further extended the reaction diffusion system to

a reaction diffusion-drift equation, where the drift term corresponds to a deterministic

travel flux. Instead of testing different movement patterns, here we develop a novel

multi-source data fusion method that can integrate the model with data to calculate

the optimal travel flux in epidemic areas. Unlike the work of Gösgens et al. [194],

our objective function and constraints give a convex optimization, which means that

the global optimum is available. As a case study, we test this method with data from

mainland China where a strict lockdown against COVID-19 was implemented in early

2020. We obtained the specific timings for reopening and determined the travel flux

between these cities that would allow them to reopen as well as keeping the epidemic

from rebounding.

7.2 Materials and Methods

7.2.1 Data

The migration indexes were collected from a website http://qianxi.baidu.com which

is an open big data platform including the daily immigration rate and emigration rate

of each city in Mainland China. These indices are obtained by dividing the number of

people moving out (in) from the current city by the total number of people moving out

(in) from all cities in Mainland China during the same period. Specifically, a greater

migration index in a city is associated with its more outbound (inbound) events by

rail, air and road traffic. We selected the cities with the top 25 immigration rate or

top 25 emigration rate as the objects of our case study. Although the migration index

quantifies the movement of a population, it does not track the movement directions

and trajectories of individuals. In other words, the migration index ranks the mobility

of population in different cities but does not provide a quantity for the population flow

from one city to another.

The population flow from one city to another is derived from other data indirectly.

Generally, the population flow from one region to another depends on many factors

[394] such as the local population size [395, 396], economic level [397] and geographic

distance between them [398]. In this study, the per capita Gross Domestic Product

(GDP) (corresponding to the local economic level) and the number in the resident
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Chapter 7. Determining travel fluxes in epidemic areas

population (the local population size) are obtained from the China Statistical Yearbook

2019 and are summarized in Table 7.1. The geographic distance between each pair of

cities was collected from the Baidu Maps (https://map.baidu.com). Based on these

data, we estimated the relative population flow between the selected cities with high

migration indices for further analysis.

We obtained the number of daily confirmed COVID-19 cases and the cumulative

number of confirmed cases between 23 January and 24 February from the National

Health Commission of the People’s Republic of China [399]. Although there will be

a time lag in reporting, it is believed that the number of confirmed cases reflect the

true epidemic situation in each city.

7.2.2 Mobility network

We show the distribution of the migration indexes of the selected cities in Fig 7.1A,

and rank these cities according to the mean value of the migration index. These se-

lected cities are mainly divided into labor-intensive export cities with large populations

(Chongqing, Zhoukou, Langfang, etc.) or cities with developed economies (Beijing,

Shanghai, Guangzhou, Shenzhen, etc.). Due to the Spring Festival, the emigration

rate in these cities does appear to be higher than the immigration rate, but the cities

ranked by two indices show a high degree of overlap (Fig 7.1A). Beijing and Guangzhou

with the highest emigration rate also had the highest immigration rate. Thus, despite

the effect of returning home during the Spring Festival, the population moving out of

and into a city still has a weak symmetry. To compensate for the lack of directionality

of the migration index, we estimate the direct population flow Wij from any subregion

Ωi to subregion Ωj (i ̸= j) with the gravity model [400]

Wij = G
Mσ1

i Mσ2
j

erij/r
, (7.1)

where G is a proportionality constant, Mi and Mj are the quantitative representation

of ‘mass’ (e.g., the mean of population size and GDP) of the regions Ωi and Ωj ,

respectively. The constant r is the characteristic length that governs the decay of

population flow with geographic distance rij . The parameters σ1 and σ2 tune the

dependence of population flow to the regional mass. The estimation of parameters is

derived from a global scale study by Balcan et al. [401].

To illustrate the reliability of our estimated results of population mobility, we

compared the estimated relative outflow from Wuhan to another 295 cities in China
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Figure 7.1: Mobility network among twenty-nine cities with the most active personnel
movements in Mainland China in early 2020. (A) The selected cities are ranked by the value
of the migration rate from 1 to 22 January. (B) The estimated relative outflow from Wuhan
to other cities versus the observed aggregate population outflow. (C) The mobility network
among these cities. The diameter of nodes indicates the size of the resident population in each
city, and the gray scale indicates the relative population flow between two cities. The base
layer of the map was created using public sources: https://data.humdata.org/dataset/

china-administrative-boundaries.

with the real aggregate population outflow (Fig 7.1B), where the real data come from

the work of Jia et al. [374]. The estimated relative outflow from Wuhan show a

significant correlation with the real data, and the correlation coefficient is 0.63 with

the p-value less than 10−30. It is worth noting that the existing data only focus on the

population outflow from Wuhan, which can neither form a complete mobility network

nor form cross-validation to train the gravity model. Here, we construct an undirected
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Chapter 7. Determining travel fluxes in epidemic areas

mobility network (MN) with the edges weighted through the symmetrization of the

estimated relative population flow (Eq. 7.1). That is,

Ai,j =
Wi,j +Wj,i

2
∑

i,j Wi,j
. (7.2)

We visualize the undirected mobility network in Fig 7.1C. The undirected weighted

network shows that there were high population flows (the darker edges in Fig 7.1C)

between the cities with larger population sizes (bigger red dots) and the eastern cities

with more developed economies in mainland China. This predicts that more SARS-

CoV-2 carriers came to these cities than to others weakly connected to Wuhan before

the strict lockdown, which implies that there would be more severe epidemics in these

strongly connected cities. Later statistical analysis on the geo-temporal spread of

COVID-19 in China [378, 399] fully support this conclusion. In short, it is believed

that using the estimated population flow to characterize the connectivity between

cities is as reliable as real data.

7.2.3 Diffusion distance

The complexity of human mobility, especially via air traffic and high-speed train, has

reconstructed cities around the world into a high-dimensional spatial structure, which

makes it increasingly difficult to model the spread of emerging infectious diseases. To

simplify the spatial transmission of infectious disease, we first introduce the Diffusion

maps theory [402].

Lemma 7.2.1 (Diffusion maps theory). Let A(x, y) be a kernel function in a measure

space (X,A, µ). The function A(x, y) satisfies A(x, y) = A(y, x) and A(x, y) ≥ 0.

Then there is a map Φ(x) from the space X to an Euclidean space Rk.

The kernel function A(x, y) is a symmetric, positivity-preserving kernel defined on

the space X. Particularly, A(x, y) would transform a mobility network (MN) into an

undirected graph with edge weight A(x, y) if X is a set of the nodes of the network.

The quantity P (x, y) = A(x, y)/
∑

y A(x, y) can be viewed as the probability for a

random walker on X to make a step from the vertex x to vertex y. Naturally, we get

the transition matrix P and the stationary distribution c of this Markov chain given

by c(x) =
∑

y A(x, y)/
∑

x,y A(x, y). Let P (l)(x, y) be the element of P l (the power of

matrix P ) given a scale parameter l. We then define the diffusion distance Dl(x, y)
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between any locations x and y in space X by

Dl(x, y) =

(∑
z

1

c(z)

(
P (l)(x, z)− P (l)(y, z)

)2) 1
2

, (7.3)

which P (l)(x, z) represents the probability of transition from x to z in l steps. For

a sufficiently large l, the diffusion map Φ(x) embeds the points {x ∈ X} into a low-

dimensional Euclidean space Rk in an approximately isometric manner [403, 402].

That is to say, the diffusion distance Dl(x, y) of any two points in X is approximately

equal to the Euclidean distance ∥Φ(x) − Φ(y)∥ between the points where they are

mapped in Rk.

Setting Ai,i = 1 ensures that the population flow, as defined by equation (7.2),

remains consistent with the kernel function required in Lemma 7.2.1. Therefore, we

can establish a diffusion distance between cities based on the population flow in a

mobility network. By deriving a diffusion distance from the mobility network (MN),

we replace the conventional geographic distance by this new metric and plot the dif-

fusion distances from Wuhan to other selected cities in Fig 7.2. The length of polar

paths connecting Wuhan to other cities in this pandemic invasion tree is the estimated

diffusion distance. Interestingly, in the perspective of diffusion distance, Guangzhou

is the closest city to Wuhan among the 29 cities, while Fuyang, which has the closest

geographical distance to Wuhan, has become the farthest. Moreover, it follows from

Fig 7.2A to 7.2D that the diffusion distance re-shapes the irregular and complicated

spatiotemporal spread patterns of COVID-19 in the conventional geographic perspec-

tive [378, 399] into a regular, wavelike solution (i.e., the epidemic first reaches the

regions closest to the initial outbreak city). Specifically, COVID-19 cases outside of

Hubei Province are first confirmed in Beijing and Shenzhen, and the diffusion distance

between Wuhan and them are also shorter than most other cities (Fig 7.2A). On 20

January 2020, confirmed cases were also reported in Shanghai and Huizhou. These

two cities are in the top 11 cities with the smallest diffusion distance from Wuhan

(Fig 7.2B). On 21 and 22 January 2020, COVID-19 cases were confirmed in the cities

with larger diffusion distance from Wuhan (Fig 7.2C and 7.2D). From this sequence

of panels, we find that the shorter the diffusion distance to Wuhan, the earlier the

confirmed cases appear, which implies that to a great extent, the diffusion distance

can reflect the order of disease spread from the epicenter to other cities. This provides

the evidence that our redefined diffusion distance reshapes the spatial spread of the

SARS-CoV-2 into a wave-like solution, which led us to connect the spread pattern
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of COVID-19 with the classical reaction diffusion system [404] in the perspective of

diffusion distance.
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Figure 7.2: Epidemic invasion trees rooted in Wuhan. The sequence (from 19 to 22
January 2020) of panels depicts the early spread of the SARS-CoV-2 infection in 29 cities.
The length of the polar path represents the diffusion distance from Wuhan to each city. The
cities with confirmed infected individuals are marked in red, and the prevalence is reflected
by the redness of the nodes.

7.2.4 Reaction diffusion-drift equation

For an epidemic outbreak in the space X, we let p(t, x) denote the density of infectious

individuals who can move freely and contact others at location x ∈ X at time t. In

the perspective of diffusion distance (Eq. 7.3), the spatial spread of infectious disease

is approximated as a wave pattern (see Fig 7.2). A similar result is observed in the

context of effective distance [405]. Therefore, the evolution of density for infectious
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individuals can be modeled by a simple reaction-diffusion equation:

∂p(t, x)

∂t
= γ∆p(t, x) +R(t, x)p(t, x). (7.4)

Equation (7.4) states that, in each small region, the rate of change in the density

of infectious individuals (left-hand side) is balanced by the physical movements with

constant diffusion rate γ and the net reproduction of infectious individuals. Note

that the net growth rate R(t, x) is formulated as R(t, x) = Λ(t, x) − Γ(t, x) with the

incidence rate Λ(t, x) and removal rate Γ(t, x). The incidence rate is the average

number of adequate contacts with susceptibles of a typical virus carrier per unit time

[406], and is given by

Λ(t, x) = βC(t, x)
s(t, x)

n(t, x)
, (7.5)

where β is the transmission probability, C(t, x) is the average contact rate of one

person with other individuals, and depends heavily on the intensity of intervention

measures. s(t, x) and n(t, x) denote the density of susceptible individuals and the

total number of free-moving individuals, respectively.

Facing severe epidemics (e.g., COVID-19), countries around the world would adopt

measures such as entry-exit testing and regional lockdown to curb the spatial spread

of the pandemic [377]. From a mathematical point of view, this type of intervention

introduces a potential function U = −γ ln(p) to counteract diffusion and to maintain

a non-uniform density p(t, x) in space X. The mobility of infectious individuals is

restricted by these interventions since γ∆p + ∇.(p∇U) = 0. The research aim we

pursue in this study is to design a reasonable lockdown exit strategy. To achieve this

goal, we introduce another unknown potential function V to counteract the effect of

function U and obtain a new function F = U+V . Consequently, we get a new reaction

diffusion-drift equation [407, 408], which has the following form:

∂p

∂t
= γ∆p+∇.

(
p∇F

)
+Rp. (7.6)

The second term of the equation (7.6) represents the spatial movements of individuals

induced by the deterministic travel flux −∇F in X. Obviously, the equation (7.6)

describes the epidemic dynamics under complete lockdown if V = 0 (or, ∇V = 0),

and it would be equation (7.4) without any regional lockdown if V = γ ln(p). What

we want to do here is to find an optimal V to lift the strong lockdown without causing

a second outbreak in the epidemic area.
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7.2.5 Lockdown exit strategy

Lifting travel restrictions and restarting travel flux may cause an increase in the contact

rate C(t, x) in the selected subregions. We denote ϵ to quantify the variation in the

contact rate if a new travel flux is initiated. Thus, the net growth rate R(t, x) was

extended to be a behavior-related growth rate R(t, x, ϵ) = Λ(t, x, ϵ)− Γ(t, x) with

Λ(t, x, ϵ) = β
(
(1− ϵ)C(t, x) + ϵC(0, x)

) s(t, x)
n(t, x)

. (7.7)

Here C(0, x) represents the normal contact rate at location x. Therefore, the lifting

of travel restrictions has no effect on the net growth rate if ϵ = 0, and the behavior

of local individuals has completely returned back to normal if ϵ = 1. Although the

incidence rate Λ(t, x) also depends on interventions such as testing, contact tracing and

isolation [409], we only introduce an adjustment factor ϵ to summarize the variations

here without considering the details because the purpose of this study is to explore

the lockdown exit strategy.

A good lockdown exit strategy should first ensure that the relaxation of travel re-

strictions would not cause a second outbreak of epidemics during the weakening spread

stage. In other words, the changing rate in the density of infectious individuals ∂p/∂t

should not be positive after a new deterministic travel flux −∇V (t0, x) is initiated at

some time t0. It is summarized by a mathematical expression:

∇.
(
p(t, x)∇V (t0, x)

)
+R(t, x, ϵ)p(t, x) ≤ 0 (7.8)

for any time t ∈ [t0, t1), where t1 is the end time of this travel flux. Here, the diffusion

term is cancelled out by the vector field induced by potential function U .

I. Where and when

Considering the lockdown subregions {Ω1,Ω2, ...,Ωm} ⊂ X and assuming that the

growth rate R(t, x, ϵ) is homogeneous in each subregion Ωi(i = 1, 2, ...,m). We inte-

grated the inequality (7.8) on Ω =
⋃m

i=1 Ωi and obtained

m∑
i=1

∫
Ωi

∇.
(
p(t, x)∇V (t0, x)

)
dµ(x) +

m∑
i=1

R(t,Ωi, ϵ)I(t,Ωi) ≤ 0, (7.9)

where I(t,Ωi) =
∫
Ωi

p(t, x)dµ(x) is the number of infectious individuals in subregion

Ωi at time t. Without loss of generality, we assume that the lockdown exit strategy is
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only implemented among the candidate subregions {Ω1,Ω2, ...,Ωm}, which means that

the infectious individuals moving out from one candidate subregion must enter another

one, so the total divergence remains zero. Consequently,
∑m

i=1 R(t,Ωi, ϵ)I(t,Ωi) ≤ 0 is

a necessary condition for lifting the strict lockdown in Ω. According to Lemma 7.5.1 in

Supplementary information, the subregions {Ω1,Ω2, ...,Ωm} satisfying this necessary

condition can be selected to initiate some new travel fluxes. We introduce a logical

variable ξi here to indicate whether the lockdown exit strategy can be implemented in

the subregion Ωi and obtain the following zero-one programming,

max H1 =

m∑
i=1

ξi,

s.t.

m∑
i=1

R(t,Ωi, ϵ)I(t,Ωi)ξi ≤ 0,

ξi ∈ {0, 1}.

(7.10)

Where, ξi = 1 means that the subregion Ωi can be selected to initiate a new travel

flux at time t, and ξi = 0 means that the travel restrictions cannot be lifted at

this point in time. Maximizing the objective function H1 is to get more subregions

where the mobility restrictions could be lifted. We can look at such 0 − 1 integer

linear programming (7.10) from two perspectives. On the one hand, we can solve

programming (7.10) at any fixed time t0 to get the available subregions. On the other

hand, we can focus on the subregions to determine the available time.

II. How

Given the available subregions {Ω1,Ω2, ...,Ωm}, infectious density p(t, x) and growth

rate R(t, x, ϵ), we hope to determine the potential V (t0, x) by solving inequality (7.8).

This is a big challenge, we solve it here based on the approximation theory of diffusion

maps [403, 402], one important theory used in this chapter. Assuming that the indi-

viduals are homogeneous in each subregion, then {Ω1,Ω2, ...,Ωm} can be regarded as a

set of points sampled from the probability density function f(t0, x) = p(t0, x)/I(t0, X).

Denote the kernel function

Kδ(Ωi,Ωj) =
1

(π/δ)k/2
e−δD2

l (Ωi,Ωi), (7.11)

where Dl(Ωi,Ωi) is the diffusion distance (7.3) between Ωi and Ωj , k is the dimension

of the embedding space Rk corresponding to the diffusion maps [403], and δ is a
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parameter adjusting the kernel width. Based on this kernel, we construct a graph

Laplacian Lδ,m through the following procedure. Set

Kδ,m(Ωi,Ωj) =
Kδ(Ωi,Ωj)√(∑m

i=1 Kδ(Ωi,Ωj)
)(∑m

j=1 Kδ(Ωi,Ωj)
) ,

Qδ,m(Ωi,Ωj) =
Kδ,m(Ωi,Ωj)∑m
j=1 Kδ,m(Ωi,Ωj)

,

then the graph Laplacian Lδ,m = 4δ(Qδ,m −Em) converges to a Kolmogorov operator

L (Lemma 7.5.1 in Supplementary information). That is

lim
m→∞

Lδ,m = L = ∇(ln p) · ∇+∆, (7.12)

where Em is an identity matrix with dimension m × m. For the Gaussian kernel,

the bandwidth
√
1/δ is usually set as the median value of the distances between

all samples. Similar to the vector V (m) = [V (t0,Ω1), V (t0,Ω2), ..., V (t0,Ωm)]T , we

let R(m) and p(m) denote the restriction of functions R(t0, x, ϵ) and p(t0, x) to the

candidate subregions, and then construct the following inequality

diag
(
Lδ,mV (m) +R(m)

)
p(m) ≤ 0(m), (7.13)

where diag(⃗a) denotes the diagonal matrix generated by vector a⃗, and 0(m) is a zero

vector with dimension m. Comparing inequality (7.13) and inequality (7.8), the con-

vergence of the graph Laplacian Lδ,m (Eq. 7.12) implies that any solution V (m) of

inequality (7.13) is a good approximation to the potential V we want to determine,

and the error would be very small if the sample size m is large enough.

We have already mentioned that V = 0 means that there is a complete lockdown in

the epidemic area X, and V = γ ln(p) means that there is no restriction (see Eq. 7.6).

Our lockdown exit strategy here is to lift travel restrictions as much as possible without

worsening the epidemic. Therefore, we give the following optimization to estimate

V (m)

min H2 = ∥V (m) − γ ln(I(m))∥2,

s.t. Lδ,mV (m) +R(m) ≤ 0(m).
(7.14)

Where I(m) = [I(t0,Ω1), I(t0,Ω2), ..., I(t0,Ωm)]T , and the constraint of optimization

(7.14) is derived from the inequality (7.13) because p(m) is positive in epidemic area.
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Note that we use the number I of infectious individuals instead of density p in the cost

function H2 because the latter is difficult to quantify in actual data, and the degree

of real lockdown is usually adjusted by the size of the number of regional infectious

individuals rather than their density. Without loss of generality, we assume that the

calculation result yields V (t0,Ωi) ≥ V (t0,Ωj) for i < j because we can always achieve

it by adjusting the order of the subregions. The drift process in model (7.6) is the

movement of individuals from the region with high potential to nearby regions with

low potential, which inspires us to define a net flow matrix J among the distinct

subregions with

Ji,j = max
{
θi,j
(
V (t0,Ωj)− V (t0,Ωi)

)
/Dl(Ωi,Ωi), 0

}
, (7.15)

where the parameter θi,j ≥ 0 adjusts the net population outflow from subregion Ωj

to other Ωi. Consequently, this movement strategy yields a patch model of infectious

disease transmission.

dI(t,Ωi)

dt
=

m∑
j=1

(
Ji,jI(t,Ωj)− Jj,iI(t,Ωi)

)
+R(t,Ωi, ϵ)I(t,Ωi) (7.16)

with i = 1, ...,m and t ∈ [t0, t1). Similar to water flow, the net movement of population

represented by the matrix J always moves from subregions with higher potential to

subregions with lower potential. For the parameter θi,j in Eq. (7.15), we develop a

source-sink method (Supplementary Text 7.5.3) to determine it. We further extend

the one-way movement matrix J to a non-negative matrix B presenting a two-way

movements through a population balance equation with random noise

Bi,j = (Bj,i − Jj,i)
I(t,Ωi)

I(t,Ωj)
+ (1 + ξ)Ji,j , (7.17)

where the random noise ξ breaks the expected balance in movements. Note that the

factor ξ = 0 means an optimal two-way mobility represented by matrix B . In this

scenario, population mobility quantified by the movement matrix B is the same as

that quantified by matrix J .

7.3 Results

As a verification and test of the method, we apply it to the context of the COVID-19

epidemic with strict control in Mainland China from the end of 2019 to the early part
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of 2020. More details about calculation and simulation can be found in Supplemen-

tary information 7.5. The code is available at: https://github.com/DaipengChen/

Travel-fluxes-in-epidemic-areas.

7.3.1 Net growth rate

Based on this novel notion of distance, we model the complex spatiotemporal spread

patterns of COVID-19 by a simple reaction-diffusion equation (Eq. 7.4) where the

diffusion rate γ and net growth rate R can be estimated from real data of infections.

In the early stage of COVID-19 spread, the spatial movements of infected individuals

were mainly from the initial outbreak city Ω0 to others. Assuming that the infec-

tious individuals and net growth rate are homogeneous in each city Ωi, we get the

following ordinary differential equation for the dynamics of the COVID-19 (details in

Supplementary information 7.5):

dI(t,Ωi)

dt
= γi(t)I(t,Ω0) +R(t,Ωi)I(t,Ωi), (7.18)

where γi(t) is the degree of movement from the initial outbreak city Ω0 to other

cities Ωi and assuming that the movement rate γi(t) was constant γi (particularly,

γ0 ∝ −γ) before lockdown and was 0 during the period of lockdown. In China,

the travel ban and the first level response to major public health emergencies were

initiated on 23 January 2020 [380]. These measures definitely prevented the movement

of population and reduced the contact rate between people. Therefore, we assume that

the incidence rate Λ(t,Ωi) (Eq. 7.5) contains an activation function h(t) = 1/(1+et−t0)

[410] adjusting the contact rate, where t0 is the critical time point of 23 January 2020.

Furthermore, we can simplify the incidence rate (Eq. 7.5) to βC(t, x) since s(t, x) was

very close to n(t, x) in the early stages of COVID-19 in China. Consequently, during

our research period, the regional net growth rate can be approximated by

R(t,Ωi) = Λ(Ωi)h(t)− Γ(Ωi), (7.19)

where Λ(Ωi) is the maximal incidence, Γ(Ωi) is the removal rate.

Due to reporting delays and infection detection durations, we assume that the daily

number of reported new cases Î(t,Ωi) is proportional to the numbers I(t − τi,Ωi) of

infectious individuals at τi days ago, and the reporting time-delay τi is region specific.

Therefore, a dynamic system for the daily number of reported new cases is derived
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from model (7.18) and is given by

dÎ(t,Ωi)

dt
= γi(t− τi)Î(t− τi + τ0,Ω0) +R(t− τi,Ωi)Î(t,Ωi). (7.20)

To this end, we initially estimated the unknown parameters in each city Ωi [411], and

then the regional growth rate can be approximated by formula (Eq. 7.19) using the

estimated parameters. Specifically, we initially fit the model (Eq. 7.20) to the daily

number of reported new cases in city Ω0 and obtain the estimates for parameters (i.e.,

γ0, τ0, Λ(Ω0), Γ(Ω0)) associated with this city. Secondly, once we have estimates for

all parameters about the initial outbreak city Ω0, we then apply the same procedure

to estimate the relevant parameters (γi, τi, Λ(Ωi), Γ(Ωi)) for each city Ωi by fitting

model (7.20) to the daily reported new cases in city Ωi (see Table 7.2 for results).

Fig 7.3A-C displays the fitted results of the daily number of reported new cases and

the estimated net growth rate in three cities (Wuhan, Chongqing and Wenzhou) with

the largest peak of confirmed cases in all 29 cities.

The estimated net growth rate R(t,Ωi) shows a visible decline in these three cities

after 20 January 2020 (Fig 7.3A-C), which coincides with fact that on 20 January

2020 confirmation of human-to-human transmission of SARS-CoV-2 was announced

and COVID-19 was incorporated as a notifiable disease in the Infectious Disease Law

and Health and Quarantine Law in China [412]. The net growth rate of these three

cities was reduced to zero on about 23 January 2020 (Fig 7.3A-C), which indicated

that the lockdown of Wuhan and the first-level emergency response in other cities

greatly reduced the exposure rate and resulted in a balance between the incidence

rate and the removal rate of infected individuals (mainly caused by medical isolation

and deaths) in the free moving population. After 23 January, the estimated net growth

rate in the three cities decreased to negative values (Fig 7.3A-C), indicating that the

epidemic curve of new infections in these cities should peak around 23 January 2020,

which coincides with the results that the epidemic curve of illness onset peaked around

26 January in China [399] and the median incubation period of Chinese COVID-19

patients was 3 days [413].

It is worth noting that due to the incubation period of COVID-19 [414, 413] and

the delays between diagnosis and case reports, there exists a lag between the time

when the net growth rate R(t,Ωi) reaches zero and the time when the daily number

of reported new cases peaks. From Fig 7.3A-C, we find that these delays are region

specific. Our estimated reporting time delays in all 29 cities are plotted in Fig 7.3D,

which illustrates that the delays varied between different cities. This is in agreement

186



Chapter 7. Determining travel fluxes in epidemic areas

with a population-level observational study [415] which showed that there were large

differences between Wuhan and other cities in China in terms of reporting time delay.

On average, except for Wuhan with a reporting lag of 19 days, the reporting time

delays in other cities were less than 15 days, and the numbers of infected individuals

in most cities were diagnosed within 10 days.
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Figure 7.3: The net growth rates and reporting time delays. (A-C) The fitted results
and the estimated net growth rates (black curves) in three cities with the highest peaks of
prevalence in the selected 29 cities. The solid blue dots are real data and one outlier in Wuhan
is not shown in the figure. There were different lags between the estimated net growth rates
and the numbers of reported cases in each city. (D) The estimated reporting time delays in
all 29 cities. These reporting time delays are region specific.

7.3.2 Where can be unlocked?

To investigate where and when the lockdown exit strategy can be implemented among

the selected 29 cities, we solved the optimization problem (Eq. 7.10) with various
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adjustment factors ϵ and plotted Fig 7.4 to visualize our calculation results. Note that

the adjustment factor ϵ quantifies the changes of contact rate after lifting the travel

restrictions (Eq. 7.7), and the larger the value of ϵ the higher the contact rate.

Fig 7.4 shows that the travel restrictions could not be lifted during the whole study

period in all 29 cities if ϵ was not less than 0.54. This implies that if the incidence rate

Λ(t,Ωi) cannot be maintained at a low level through interventions such as keeping

social distancing and maintaining bans on large gatherings, travel restrictions cannot

be lifted until the number of infected individuals falls below the local invasion threshold

[405]. If the change of contact rate caused by lifting of travel restrictions is relatively

small, for example ϵ = 0.47 (Fig 7.4), our calculation results predict that except for

densely populated cities such as Chengdu, Chongqing and Guangzhou, the strict travel

restrictions in the other 25 cities could be lifted after 26 January. In particular, for

an extremely small value of ϵ (for example ϵ = 0.1 in Fig 7.4), travel restrictions in

most cities only need to last one day, and it is not necessary to impose strict travel

restrictions on the cities such as Langfang, Suzhou, Ningbo, Beijing, Hefei, Wuxi and

A
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Figure 7.4: Where and when the lockdown exit strategy can be implemented. With
different contact rates, a city is marked green if new travel fluxes can be initiated at that
time. The values of ϵ quantify the adjustment factor for the contact rate. The larger the
value of ϵ the higher the contact rate.
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Guiyang. That is to say, the strict travel restrictions can be lifted early or even be

unnecessary in more cities if other mild interventions such as keeping social distance,

wearing masks and improving hygiene can maintain the contact rate at a lower level. It

is worth noting that the lifting of travel restrictions we are discussing here only implies

that there is a non-zero movement of the population between the selected cities, not

that the individuals can travel freely.

7.3.3 The level of new traffic flow

Although we have determined that where and when the lockdown exit strategy can

be implemented by solving the optimization problem (Eq. 7.10), the details on how

to start a new travel movement has not been provided yet. In order to obtain the

level of optimal traffic flow from one city to another, we first calculate the potential

V (t0,Ωi) for each selected city Ωi at available time t0 by solving the optimization

problem (Eq. 7.14). Here we calculate potentials for the selected cities on 6 February

(two weeks after the lockdown of Wuhan) with different adjustment factors. From

the optimization (7.14), we know that the potential of each city is related to the

growth rates and the numbers of infectious individuals in all selected cities, as well

as the diffusion distance among them. In Fig 7.5A, we plot the estimated potential

versus the growth rate, the logarithmic number of cases, and the average diffusion

distance to other cities. Each of these dots represents a city. We can clearly see that,

with an adjustment factor ϵ = 0.39, the cities with larger growth rates and more

COVID-19 cases tend to have higher potential, but the estimated potential does not

show a clear correlation with diffusion distance. We further investigate the correlation

between estimated potential and these three factors under different contact rates.

From Fig 7.5B, we find that the estimated potential is positively correlated with the

number of COVID-19 cases when the contact rate is relatively low and is positively

correlated with the growth rate of COVID-19 cases when the contact rate is high. This

result predicts that when the contact rate is kept at a relatively low level, the outward

movement of population from regions with a large number of cases can help control

the overall epidemic. And when the contact rate level is high, the outward movement

of population from regions with high growth rate of COVID-19 cases helps to control

the epidemic.

Once we have calculated the potential for each selected city, we define a net flow

matrix J (Eq. 7.15) and then approximate the reaction diffusion-drift process (Eq. 7.6)

into a patch model (7.16). Fig 7.4 shows that the estimated net movement matrix
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Figure 7.5: Estimated potential and flow matrices for the selected cities on February 6,
2020. (A) The estimated potential versus growth rate, COVID-19 cases and diffusion distance.
(B) The correlation between estimated potential and other three factors (i.e., growth rate,
COVID-19 cases and diffusion distance) which share the same color used in Fig A. (C)
The reconstructed net flow matrix, and the relationship between outflow and potential and
diffusion distance, respectively. The value in each cell (i, j) of the net flow matrix represents
the movement rate from city j to city i, where i is the row label and j is the column label.
(D) The relative flow matrix where the value in cell (i, j) is logarithmic travel flow from city
j to city i under the condition that the travel flow from city i to city j is 1. The cities are
ranked by numbers of COVID-19 cases.

between Langfang, Suzhou, Beijing, Changsha, Wuxi and Ningbo on 6 February 2020

when ϵ = 0.5. Generally, a city with a higher potential also has more outflows (bottom

left corner in Fig 7.5C), for example, Langfang compared with Ningbo. Although the

potential does not show a significant correlation with the diffusion distance, it seems

that the outflow population from one city is more likely to reach the closer city (bottom

right corner in Fig 7.5C). Note that the net flow matrix is a lower triangular matrix

which means that it only quantifies a one-way net flow of population from the place
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with high potential to another one with low potential, and cannot reflect the two-way

flow of population between the two cities in the actual situation. Here we give a two-

way travel strategy through the balance equation (Eq. 7.17) without noise, which shows

that the relative movement rate Bi,j from city Ωj to city Ωi can be determined as long

as the opposite movement Bj,i is given. This provides a quantitative reference for the

travel flux, that is, the direct travel flow from one city to another (or vice versa) can

be limited to meet the balance equation, which reduces the risk of secondary outbreak

of COVID-19 in these cities.

As a special case, we let the travel flow Bj,i from city Ωi to city Ωj be 1, and

then calculate the relative travel flow Bi,j from city Ωj to city Ωi according to the

balance equation (Eq. 7.17). We plot the calculated results in Fig 7.5D where the

order of cities is ranked according to the number of COVID-19 cases. The value in

each cell (i, j) of this heatmap is log10(Bi,j |Bj,i = 1) which is the relative travel flow

from city Ωj to city Ωi after a logarithmic operation. The values in the triangular

area above the antidiagonal of the heatmap are positive, while the values below the

antidiagonal are negative, and the cells far away from the diagonal are associated with

larger absolute values. This indicates that the travel flow from a city with a severe

epidemic to a city with a mild epidemic should be smaller than the travel flow in the

opposite direction, and the difference between two opposite travel flows increases as the

numbers of COVID-19 cases in two cities have a larger difference. Consequently, the

relative travel flow from Wuhan to other cities should be much less than the relative

travel flow in the opposite direction during our research period. This conclusion is a

result of our estimation and is obtained for a specific date, 6 February 2020. Note that

our method can calculate the optimal population flows between selected cities at any

specific time t0 as long as this time meets the restrictions of the zero-one programming

(Eq. 7.10).

7.3.4 Testing predictions

To test our lockdown exit strategy, we ran the patch model (7.16) with some movement

matrices. As a baseline, we first sample from the estimated movement rates (Table 7.2)

to form a basic movement matrix. Once the basic movement matrix is obtained, we

replace the matrix J in the patch model (7.16) with it and run model (7.16) to obtain

the predictions of the daily number of reported COVID-19 cases. In Fig 7.6A, we plot

the simulations of COVID-19 cases in Guangzhou, where the involved movement is the

basic movements matrix. With this movements pattern close to the real situation, the
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epidemic in Guangzhou begins to rebound when the adjustment factor ϵ for the contact

rate exceeds 0.35 (Fig 7.6A). On the one hand, it shows that unrestricted movements

of the population are likely to cause a second COVID-19 epidemic in Guangzhou. On

the other hand, it also reveals that the growth rate plays a core role in the development

of the epidemic, and that prevention of the epidemic can also be achieved by reducing

the effective contact rate instead of imposing a strict travel ban.
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Figure 7.6: Testing predictions of the number of daily cases reported in Guangzhou under
our lockdown exit strategy. (A) The baseline movements induce a secondary outbreak of
COVID-19 in Guangzhou easily. (B) The travel pattern we present does not cause a secondary
outbreak. (C-D) The simulations based on our travel pattern with positive and negative noise,
respectively.

To compare our proposed travel pattern with the baseline movements, we simulate

the patch model (7.16) with movement matrix B (Eq. 7.17). In Fig 7.6B, we set

the interference term ξ in the balance equation (Eq. 7.17) to be 0, and then simulate
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the time series of the daily number of reported COVID-19 cases with some acceptable

variations in the contact rate. In the first part of our lockdown exit strategy, we already

know that this strategy cannot be implemented in Guangzhou if the adjustment factor

ϵ is not less than 0.47 (Fig 7.4). We test the acceptable situations and find that the

risk of a secondary outbreak of COVID-19 in Guangzhou is greatly reduced according

to our calculated movements (Fig 7.6B). The calculated optimal movements always

satisfy a noise-free balance equation (Eq. 7.17) which actually requires the difference

between the two-way movements of the population between two cities to be equivalent

to the net flow. We further explore what will happen if the balance is broken by some

random noise. Here we first consider low noise randomly sampled from the intervals

(0, 1) or (−1, 0) as the value of ξ. In Fig 7.6C and 7.6D, we show the simulations

with ξ > 0 (we call this positive noise) and ξ < 0 (negative noise), respectively. It

seems that the positive noise contributes to the extinction of the COVID-19 epidemic

in Guangzhou, while the negative noise increases the risk of the second outbreak.

This further supports our idea about the lockdown exit strategy, that the population

should move from the cities with higher potential to low-potential cities, because the

movement matrix B with positive noise enhances the effect of the net flow matrix J

while negative noise is resisting this pattern.

In order to further verify the effectiveness of the travel scheme that we have de-

signed, we simulate the estimated time series of the daily number of reported new

cases for all selected cities in our proposed travel pattern and the baseline travel pat-

tern (Supplementary Fig S7.1). Similar to the simulations in Guangzhou, different

travel patterns hardly affect the transmission of COVID-19 in all cities if the value of

ϵ is relatively small, while with ϵ increasing, our proposed travel scheme has notable

advantages in preventing the second outbreak of disease in the selected cities. These

findings suggest that it is essential for traffic resumption to coincide with reducing

the contact rate by wearing masks and maintaining social distancing. Moreover, our

designed travel flux pattern will provide a flow scheme to avoid inducing the second

outbreak even if the contact rate cannot reach the relatively low level. The simula-

tions in Guangzhou (Fig 7.6C) show that a moderate increase in the movements flow

toward the cities with low potential is beneficial to the prevention and control of the

epidemic. However, the Supplementary Fig S7.2 shows that if the positive noise is too

strong, the movements still increase the number of COVID-19 cases in many cities.
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7.4 Discussion

With the improvement of the epidemic situation, the prevention and control strate-

gies (lockdown, social distancing and others) in epidemic areas have been adjusted

accordingly. In order to avoid the second outbreak of the epidemic, when, where and

at what level individuals can flow normally are the critical problems that need to be

decided. In this study, we redefined a measure of diffusion distance derived from the

underlying mobility network instead of geographic distance and embedded it to a re-

action diffusion equation to describe the spread of infectious disease in the population

without interventions. We further extend the reaction diffusion model to a reaction

diffusion-drift model with diffusion process and drift process of the population. On

the basis of the extended spatiotemporal spread model, we developed a novel method

to explore when and where and to what level travel flux can be triggered during the

late stage of an epidemic using the divergence theorem and diffusion map theory, and

under this designed movement pattern among various sub-regions the risk of a second

outbreak is reduced.

In the case study, the data on a migration index from 1 to 22 January 2020 gave

the top 25 cities with the highest emigration or immigration rates in mainland China.

The mobility network among them is reconstructed from the population size and per

capita GDP of each city using a gravity model [400]. We consequently integrated

the multi-source data to our method and retrospectively determined the movement

matrix of the population among the selected cities at the “correct” time. Specifically,

the estimated growth rate and the number of infected individuals determine where

and when the lockdown exit strategy can be implemented. The obtained travel flux of

populations among the selected cities is actually the net flow of the population moved

from a city with high potential to others with low potential. Finally, we test our travel

scheme in the selected cities and find that initiating a new traffic flux among these

cities according to our designed travel scheme does not cause a second outbreak of

COVID-19 in these cities.

It is worth noting that the case study in this research is geographically specific,

since the data for mainland China used here are more complete and regular than those

for other countries, but we hope that the approaches we have developed are applicable

more generally. Preparing for a responsible lockdown exit strategy [390] has been

extremely important not only for the COVID-19 epidemic [391], but also for future

pandemic outbreaks. Our method provides a possible reasonable travel flux scheme

under which individuals movements cannot induce the second outbreak. There are
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still some features and issues about our method to be discussed.

Note that the growth rate of the epidemic and the mobility network of the popu-

lation are actually input variables in our method, and the estimates of them are part

of the preparatory work. The estimation of the growth rate is not limited to a specific

method. In the initial outbreak stages where almost all of the population are suscepti-

ble (i.e., S(t)/N(t) ≈ 1), we simplified the incidence (Eq. 7.5) and then fitted the time

series of the number of infected individuals using our model to obtain the estimates.

For a general community where this simplification is not applicable, the growth rate

can also be estimated from epidemic data using the back-tracking method [406].

Lacking available data, we reconstructed the mobility network using a gravity

model [400], which takes into account that the links between cities are positively

related to their economic activities [198] and population densities [395, 396], but neg-

atively related to the geographic distance [398]. The gravity model provides a feasible

approach to estimate the mobility among major cities in mainland China. It is inter-

esting to note that the closer the economic links, the more the high speed trains and

flights [416], which has broken the limits of physical distance on mobility. However, it

may be better to use real mobility data when the data are available.

There are three free parameters involved in our method, the transfer step size l

in the diffusion distance (Eq. 7.3), the dimension k of the embedding space in the

Gaussian kernel (Eq. 7.11) and the diffusion rate γ in the optimization (Eq. 7.14).

In the case study, we chose l = 25, k = 2 and γ = 0.03 which is the estimated −γ0

(Table 7.2). We evaluated the variations of these parameters in a relatively large

parameter space and found that the changes have little effect on our lockdown exit

strategy. Specifically, the change of parameters k and γ almost has no effect on the

estimated potential (Supplementary Fig S7.3A-B). Although the variation of l affects

the value of the estimated potential in each city, the order of estimates has not changed

(Supplementary Fig S7.3C). Cities with higher potential always have higher estimated

potential, and the simulations of numbers of COVID-19 cases only rise slightly even

under extremely large value of l (Supplementary Fig S7.3D).

7.5 Supporting information

In this section we present some supporting material, which can be accessed through

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.

1009473.
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7.5.1 Data preparation for gravity model

The gravity model that quantifies the population flow between any two cities is inspired

by Newton’s law of gravity. The resident population and GDP per capita in each city

can be regarded as the “mass” of each city. The demographic data used in this study

are listed in following table.

Table 7.1: The resident population and GDP per capita in selected cities. Note: GDP
(CNY), population (ten thousand). Source: Statistical Yearbook of China 2019.

City Wuhan Beijing Chengdu Dongguan Foshan Fuyang

GDP/capita 135136 140211 94782 98939 127691 21589
Population 1108.1 2154.2 1633 839.22 790.57 820.7

City Hefei Huizhou Jinan Kunming Langfang Nanjing

GDP/capita 97470 85418 106302 76387 64906 152886
Population 808.7 483 746.04 685 483.66 843.62

City Shenzhen Suzhou Tianjin Wenzhou Wuxi Xi’an

GDP/capita 189568 173765 120710 72657 174270 85114
Population 1302.66 1072.17 1559.6 925 657.45 1000.37

City Chongqing Zhoukou Hangzhou Shanghai Zhongshan Guiyang

GDP/capita 65933 30817 140180 134982 110585 78449
Population 3101.79 867.78 980.6 2423.78 331 488.19

City Ningbo Zhengzhou Guangzhou Nanning Changsha

GDP/capita 132603 101349 155491 60626 134933
Population 820.2 1013.6 1490.44 725.41 815.47

Before applying the gravity model in main text, we first adjust the data to the

same order of magnitude. Here we reduce the value of GDP by 100 times, and then

use the mean of it and population size as the “mass” of each city. That is

Mi =
1

2
(GDPi/100 + Populationi), (S.1)

where GDPi and Populationi are the GDP per capita and resident population in city

Ωi, respectively.
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7.5.2 The ODE models for parameter estimation

Assume that the infected individuals and net growth rate are homogeneous in each

city Ωi, we integrate the original model (7.4) on the initial outbreak city Ω0, and get

dI(t,Ω0)

dt
= γ

∫
Ω0

∆p(t, x)dx+R(t,Ω0)I(t,Ω0). (S.2)

The divergence theorem derives∫
Ω0

∆p(t, x)dx =

∫
∂Ω0

∇p(t, x) · dS(x). (S.3)

With a Dirac vector function δ(x) on the boundary ∂Ω0, the gradient of p(t, x) on the

discontinuous boundary ∂Ω0 is

∇p(t, x) = δ(x)(p(t,Ωoutside
0 )− p(t,Ωinside

0 )). (S.4)

In the early stages of the COVID-19 outbreak in China, the epidemic in Wuhan is far

worse than other cities. Thus, we approximate the gradient as

∇p(t, x) = −δ(x)I(t,Ω0)/|Ω0|. (S.5)

Consequently,∫
Ω0

∆p(t, x)dx = −
∫
∂Ω0

δ(x) · dS(x)
|Ω0|

I(t,Ω0) = −|∂Ω0|
|Ω0|

I(t,Ω0). (S.6)

Therefore, we get a ODE model for the epidemic in the city Ω0

dI(t,Ω0)

dt
= γ0I(t,Ω0) +R(t,Ω0)I(t,Ω0), (S.7)

where γ0 = −γ|∂Ω0|/|Ω0| is the total outflow rate from the initial outbreak city Ω0.

Before the lockdown in Wuhan, the infected individuals mainly spread from Wuhan

to other cities. We generalize the ODE model for city Ω0 to a general form for each

city Ωi, yields

dI(t,Ωi)

dt
= γiI(t,Ω0) +R(t,Ωi)I(t,Ωi), (S.8)

where γi is the movement rate of population form the initial outbreak city Ω0 to
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another city Ωi. The parameters of model (S.8) are summarized in Table 7.2.

Table 7.2: The Estimated epidemiological parameters of each city are listed in this table.

City(Ωi)
Parameter

Λ(Ωi) Γ(Ωi) τ(Ωi) γ(Ωi)

Wuhan 0.482 0.238 19.50 −3.0 ∗ 10−2

Beijing 0.370 0.182 9.732 7.868 ∗ 10−5

Chengdu 0.492 0.142 4.693 2.028 ∗ 10−4

Dongguan 0.455 0.180 11.461 6.241 ∗ 10−5

Foshan 0.516 0.154 5.718 6.664 ∗ 10−5

Fuyang 0.507 0.189 9.423 4.226 ∗ 10−5

Guangzhou 0.510 0.161 7.045 2.581 ∗ 10−4

Guiyang 0.513 0.205 12.762 1.860 ∗ 10−5

Hangzhou 0.477 0.167 5.483 2.012 ∗ 10−5

Hefei 0.459 0.208 10.59 3.997 ∗ 10−5

Huizhou 0.517 0.181 8.546 2.434 ∗ 10−5

Jinan 0.522 0.208 7.756 3.538 ∗ 10−5

Kunming 0.500 0.155 4.556 1.079 ∗ 10−4

Langfang 0.471 0.197 7.650 4.388 ∗ 10−4

Nanjing 0.500 0.204 9.636 3.443 ∗ 10−4

Nanning 0.478 0.206 10.219 3.551 ∗ 10−5

Ningbo 0.434 0.228 9.725 2.103 ∗ 10−4

Shanghai 0.407 0.170 7.561 9.118 ∗ 10−5

Shenzhen 0.481 0.200 8.264 6.091 ∗ 10−4

Suzhou 0.451 0.207 8.510 9.565 ∗ 10−5

Tianjin 0.503 0.196 10.768 2.081 ∗ 10−5

Wenzhou 0.515 0.199 7.156 1.00 ∗ 10−3

Wuxi 0.470 0.234 11.847 2.750 ∗ 10−5

Xi’an 0.475 0.191 9.407 5.005 ∗ 10−5

Changsha 0.395 0.195 9.079 2.469 ∗ 10−4

Zhengzhou 0.469 0.176 7.868 6.269 ∗ 10−5

Zhongshan 0.494 0.198 9.983 3.465 ∗ 10−5

Chongqing 0.387 0.120 6.304 1.725 ∗ 10−5

Zhoukou 0.535 0.143 4.327 2.036 ∗ 10−4

7.5.3 Source-sink method

Based on the behavior-related growth rate R(t0,Ωi, ϵ), we distinguish the subregions

into source subregion with R(t0,Ωi, ϵ) > 0 and sink subregion with R(t0,Ωi, ϵ) < 0.

After getting the estimated potential V (Ω1) > V (Ω2) > ... > V (Ωm), we first give a

basic matrix J̃ with the element

J̃i,j = max
{(

V (Ωj)− V (Ωi)
)
/D(Ωi,Ωj), 0

}
, (S.9)

where D(Ωi,Ωj) is the diffusion distance between Ωi and Ωj . And then, we test the

patch model (7.16) using this matrix J̃ as a mobility matrix. For every i = 1, ...,m,
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we calculate the right term of patch model (7.16). For

m∑
j=1

(
J̃i,jI(t0,Ωj)− J̃j,iI(t0,Ωi)

)
+R(t0,Ωi, ϵ)I(t0,Ωi) > threshold, (S.10)

we orderly set J̄i,j = 0 (j = 1, ...,m) if Ωj is a sink subregion until the left term of

the inequality (S.10) is non-positive or all sink subregions have been traversed, and

J̄i,j = J̃i,j otherwise. In this way, we reduce the risk of a short-term outbreak of

the epidemic in subregion Ωi due to the population flow from the sink subregion Ωj .

To further reduce the rebound probability of infectious diseases, we traverse source

subregions and repeat the above process. Larger threshold in (S.10) means higher

population flow following the gradient of potential V . We set threshold = 0.1 in our

study.

With the updated matrix J̄ = {J̄i,j}, we calculate the right term of patch model

(7.16) again. For every i = 1, ...,m, if

m∑
j=1

(
J̄i,jI(t0,Ωj)− J̄j,iI(t0,Ωi)

)
+R(t0,Ωi, ϵ)I(t0,Ωi) < 0, (S.11)

we denote

ϑi =

∑m
j=1 J̄j,iI(t0,Ωi)−R(t0,Ωi, ϵ)I(t0,Ωi)∑m

j=1 J̄i,jI(t0,Ωj) + eps
, (S.12)

where eps > 0 is small enough to ensure that the denominator is not zero. And then,

we update

Ji,j = min{ϑiJ̄i,j , J̃i,j}. (S.13)

In this process, we promote the movement of population to subregions with low poten-

tial, while ensuring that the elements of the mobility matrix do not exceed the basic

matrix to avoid population gathering in specific areas.

7.5.4 Theory Supplement

Here, we list the theoretical results used to determine the available subregions for

reopening and travel fluxes in these epidemic areas. Lemma 7.5.2 refers to the work

of Coifman and Lafon [402].

Lemma 7.5.1. For any continuous (piecewise continuous) function g(x) in the mea-

sure space (X,A, µ) with
∫
Ω
g(x)dµ(x) ≤ 0, there is a integrable function h(x) with∫

Ω
h(x)dµ(x) = 0, such that g(x) + h(x) ≤ 0 for any x ∈ Ω ⊂ X.
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Proof. We decompose the function g(x) by

g(x) = g+(x) + g−(x)

with g+(x) ≥ 0 and g−(x) ≤ 0.

Let

A =

∫
Ω

g+(x)dµ(x), B =

∫
Ω

g−(x)dµ(x).

If B = 0 (i.e., g−(x) = 0), then g(x) = 0. We take h(x) = 0.

If B < 0, then A
B + 1 ≥ 0. We take h(x) = A

B g−(x)− g+(x).

Lemma 7.5.2. Assume that the data set {x1, x2, ..., xm} are obtained from a prob-

ability density f(x) supported on manifold Ω ⊂ Rk. Given a rotation-invariant kernel

kδ(x, y) =
(

δ
π

)k/2
e−δ∥x−y∥2

on the manifold Ω ⊂ Rk. Set bδ(xi) =
∑m

j=1 kδ(xi, xj),

kα,δ(xi, xj) =
kδ(xi,xj)

bαδ (xi)bαδ (xj)
, dα,δ(xi) =

∑m
j=1 kα,δ(xi, xj), and Pα,δ(xi, yj) =

kα,δ(xi,xj)
dα,δ(xi)

is the transition kernel of matrix Pm, then the matrix Lδ,m = 4δ(Pm−E) converges to

a Kolmogorov operator Lα, i.e., limδ,m→∞ Lδ,mϕ = Lαϕ = 2(1−α)∇(ln f) · ∇ϕ+∆ϕ

for any smooth function ϕ ∈ C2(Ω).

Proof. When the sample size m are large enough, the law of large numbers yeilds

bδ(x) = lim
m→∞

m∑
j=1

kδ(x, xj) =

∫
Ω

kδ(x, y)f(y)dy.

Using the Taylor expansion of f(y), we have

bδ(x)− f(x) =

∫
Ω

kδ(x, y)
(
(y − x)∇f +

1

2
(y − x)H(y − x)T +O(∥y − x∥3)

)
dy,

where ∇f = ( ∂f
∂x1

, ∂f
∂x2

, ..., ∂f
∂xk

)T is the gradient of f and H is the corresponding

Hessian.

First, for i ̸= j,∫
Ω

kδ(x, y)(y − x)idy = 0,

∫
Ω

kδ(x, y)(y − x)i(y − x)jdy = 0. (S.14)

Second, for i = j,∫
Ω

kδ(x, y)(y − x)2i dy =
( δ
π

)k/2 ∫
Ω

(y − x)2i e
−δ∥x−y∥2

dy =
1

2δ
. (S.15)
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Further, we have∫
Ω

kδ(x, y)∥y − x∥3dy =
( δ
π

)k/2 ∫
Ω

∥y − x∥3e−δ∥x−y∥2

dy = O(δ−
3
2 ). (S.16)

These equations (S.14-S.16) immediately imply that

bδ(x) =

∫
Ω

kδ(x, y)f(y)dy = f(x) +
1

4δ

k∑
i=1

∂2f(x)

∂2xi
+ o(

1

δ
)

= f(x) +
1

4δ
∆f(x) + o(

1

δ
).

(S.17)

Similarly, we can calculate dα,δ(x) by

dα,δ(x) = lim
m→∞

m∑
j=1

kα,δ(xi, xj) =

∫
Ω

kα,δ(x, y)f(y)dy

=
1

bαδ (x)f
1−α(x)

[
1 +

1

4δ

(
∆(f1−α(x))

f1−α(x)
− α

∆f(x)

f(x)

)
+ o(

1

δ
)

]
.

(S.18)

Consequently, the shift operator Pα,δ, which is the limitation of the transition matrix

Pm for infinite samples, has the asymptotic expansion as

Pα,δϕ(x) =
1

dα,δ(x)

∫
Ω

kα,δ(x, y)ϕ(y)f(y)dy

= ϕ(x) +
1

4δ

[
∆(ϕ(x)f1−α(x))

f1−α(x)
− ϕ(x)

∆f1−α(x)

f1−α(x)

]
+ o(

1

δ
)

since

kα,δ(x, y)ϕ(y)f(y)dy

=
1

bαδ (x)f
1−α(x)

[
ϕ(x) +

1

4δ

(
∆(ϕ(x)f1−α(x))

f1−α(x)
− αϕ(x)

∆f(x)

f(x)

)
+ o(

1

δ
)

]
.

Therefore, we have the infinitesimal generator Lα of the diffusion as

Lαϕ = lim
δ→∞

4δ(Pα,δ − E)ϕ =
∆(ϕf1−α)

f1−α
− ∆(f1−α)

f1−α
ϕ = 2(1− α)∇(ln f) · ∇ϕ+∆ϕ.
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Supplementary Fig 7.1: Predictions of reported numbers of daily cases in all
cities. The sub-figures in the left column are the simulations in our movement pattern. The
sub-pictures in the right column are the simulations in the baseline movement pattern. The
simulations in Wuhan are not shown in the graphics window.
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Chapter 7. Determining travel fluxes in epidemic areas
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Supplementary Fig 7.2: Predictions of reported daily cases in all cities. The
impact of variations in noise and contact rates on our lockdown exit strategy. The simulations
in Wuhan are not shown in the graphics window.
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7.5. Supporting information
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Supplementary Fig 7.3: The sensitivity of the estimated potential to three free
parameters. A-C: The estimated potential function and the variation of potential with
changes in the parameters. The variation is the distance between two potential functions
with adjacent parameter values. For instance, the variation at k = 5 is the distance between
the potential function with k = 5 and the potential function with k = 6. Little variation
means that the parameter change has little effect on the calculation of the potential function.
D: Simulations of reported numbers of daily cases in all cities. The adjustment factor ϵ = 0.45
and the potential are minimum-centered.
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