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Chapter 1

Introduction

Complex diseases and infectious diseases have consistently been significant issues

threatening human survival and development. Understanding the mechanisms be-

hind disease occurrence and predicting developmental trends from observational and

experimental data are crucial research objectives in disease prevention and treatment.

Statistical data analysis methods can quantitatively describe key information within

datasets, thereby enhancing our comprehension of disease occurrence and develop-

ment. Mathematical models, especially dynamic models derived from quantifying the

disease occurrence process, can delve into the mechanisms of complex disease pro-

gression and infectious disease spread, predicting future disease states. Consequently,

combining data with dynamic models can make full use of the information in the data

to assist modeling, thereby improving the general applicability of dynamic modeling

to diseases.

1.1 Background

Complex diseases significantly diminish the living quality of a patient and impose a

substantial burden on the family of patients. Cardiovascular and cerebrovascular dis-

eases alone account for over 10 million deaths annually, ranking as the leading global

causes of death [1, 2, 3]. The incidence of deaths caused by malignant tumors is

steadily increasing worldwide [4], with cancer-related deaths in the United States sur-

passing 600,000 in 2023 [5]. Cells, the fundamental biological units constituting all

life, orchestrate crucial biological processes such as growth, development, metabolism,

immunity, and the proliferation of living organisms [6]. In broad terms, complex dis-
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eases arise because some cells in the patients are unable to perform normal biological

functions [7]. Placing the cell at the center and exploring the cell-cell signaling mech-

anism, from gene dynamics to the collective behavior of cells, could yield new insights

into the treatment of complex diseases.

Infectious disease is another major issue that threatens human health and social

development. As of 2023, infectious disease epidemics, claiming more than 1 million

lives, have occurred at least 17 times in human history [8]. The ongoing AIDS pan-

demic has resulted in more than 36.5 million deaths [9]. In many developed countries,

the cost of preventing and treating infectious diseases exceeds 100 billion dollars annu-

ally [10]. The global COVID-19 epidemic, in recent years, has not only claimed over 10

million lives [11] but has also led to staggering economic expenditures and increased

unemployment [12, 13]. Confronting the threats posed by infectious diseases, it is

particularly crucial to explore their causes, reveal patterns of spread, and evaluate the

effectiveness of intervention measures.

There has been a long history of using mathematical models to investigate key

problems in infectious disease transmission [14] and cell-cell signaling [15]. As early as

the 18th century, Bernoulli proposed a mathematical model to describe the spread of

smallpox [16]. In 1927, Kermack and McKendrick proposed the famous SIR infectious

disease model [17]. Since then, various types of infectious disease models have emerged

[18, 19, 20]. In recent years, these basic infectious disease models have been developed

into more realistic dynamic models [21, 22, 23]. The first type of extension consid-

ers pathogen dynamics within infected individuals, developing models that include

pathogen evolution [24], age structure [25] and multi-scale dynamics [26]. The second

type of expansion mainly considers macro-level influencing factors, such as contact

patterns [27], population movement [28], environmental conditions [29] and various

intervention measures against infectious diseases [30, 31]. Mathematical analysis of

infectious disease models can provide sufficient conditions for disease extinction in a

population [32, 33], which provide reference opinions and scientific guidance for disease

prevention and control.

Exploring the cell-cell signaling mechanism from genes to the collective behavior

of cells involves multiple biological scales, and dynamic models play a pivotal role at

each scale. At the smallest length scales, dynamic models are employed to characterize

gene transcription oscillation [34], switching dynamics [35], and nonlinearity [36]. On

the cellular scale, dynamic models [37, 38] have been instrumental in exploring the

determinants of cell shape [37], cell motility [39], and environment-dependent cell spe-

cialization [40]. Moving to tissue scales, dynamic models [41, 42] are also employed to
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Chapter 1. Introduction

address inquiries in angiogenesis [43] and embryonic development [44]. On population

scales, dynamic models are applied to study the collective behavior of animals [45]

and the superspreading of pathogens [46]. Equally important, prospective prediction

of biological consequences can expand our understanding to biological systems and

guide our decisions in application areas [47, 28]. Equally important, the prospective

prediction of biological consequences can enhance our understanding of biological sys-

tems and guide decision-making in application areas [47, 28]. For instance, Bentley

et al. [41], based on model simulations, predicted that the level of protein Dll4 in

endothelial cells would fluctuate under the stimulation of high concentrations of vas-

cular endothelial growth factor (VEGF) in the extracellular matrix, limiting vascular

branching. Later, they confirmed their predictions experimentally [48].

Compared with biostatistics [49] and bioinformatics [50], the contribution of dy-

namic models to life science mainly shows advantages in two aspects: (1) deciphering

the mechanisms and rules that govern some biological phenomena; (2) prospectively

predicting various biological consequences by mimicking the experimental conditions

that are currently not easy to meet in reality. Traditionally, limited by the availability

of data, dynamic modeling for biological systems has heavily relied on mechanistic

assumption [51], that is, a conjectured approximation of the systems in the real world.

The small amount of data available is mainly used to estimate the parameters in dy-

namic models [52] rather than to infer the mechanisms of biological processes involved

in a biological system. Although such modeling provides us with a new view to under-

stand the specific biological phenomena, it is common that multiple models based on

different assumptions have the ability to explain the same phenomenon [53, 54, 55].

Consequently, facing a zoo of mathematical models without support from data, it is

difficult to derive general rules governing the biological processes. Furthermore, over-

fitting of mathematical models to data also reduces the dependability of prospective

predictions of some biological consequences based on the mathematical model [56]. To

address these concerns about dynamic modeling, measuring and collecting data from

different aspects of related systems is necessary, which could falsify or confirm the

proposed dynamic models [57].

With the development of data measurement and collection techniques in recent

years, multi-source data related to one biological process have become available [58].

During angiogenesis, for example, the strength of intercellular Notch signaling [59]

and intracellular VEGF receptors (VEGFRs) signaling [60], the dynamics of actin

polarization [61], as well as the quantification of Notch-related cell motility [62] and

Notch-controlled cell rearrangement [63] can all be obtained in experiments. Similar
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examples also appear in epidemiology. During an infectious disease outbreak, in addi-

tion to the cases of infected individuals, viral dynamics within the host [26], contact

pattern between host [27], traffic flux [28] and meteorological data [29, 64] are also

available. These data, originating from different scales and sources, on the one hand

provide us with opportunities to improve modeling by reducing the unreality and un-

certainty of mechanistic assumptions, but on the other hand pose challenges for us in

terms of information integration.

The transmission of infectious pathogens in a population could also induce complex

diseases in infected individuals, for example, human papillomavirus (HPV)-associated

cancer [65]. Furthermore, the development of human immunodeficiency virus (HIV)

within host [66] and the transmission of HIV between host [9] has characteristics of

both a complex disease and an infectious disease. Thus, there is a potential link be-

tween cell-cell signaling, closely related to complex disease, and the spread of infectious

disease. In this thesis we study two application areas separately, where the interplay

between multi-source data analysis and dynamic modeling yields novel perspectives for

understanding cell-cell signaling and infectious disease spreading, which could provide

insights for designing novel interventions against complex disease development and

infectious disease transmission. In the next section we introduce the biological state

of the art and modeling studies for the first application area which is about Notch

signaling that is a central cell-cell signaling in Metazoa development. Next we present

previous modeling studies for the second application area which is about the spread

and control of infectious disease.

1.2 Modeling cell-cell signaling

All tissue development and replenishment relies upon the differentiation of progenitor

cells into more specialized cells [7]. Cell-cell signaling, especially the Notch signaling

system is one of the main engines driving this process [67]. Notch signaling was the

first cell receptor signal transduction pathway to be discovered, more than a century

ago [68], and decades of research since then have established that it is a central reg-

ulator of cell fate that underpins normal embryo maturation and tissue homeostasis,

from controlling the fine-grain patterning of insect wings to orchestrating human or-

gan development [69]. An example related to this is that Notch signaling pathway

together with vascular growth factor receptors (VEGFRs) signaling pathway controls

the specialization of endothelial cells during blood vessels growth [70]. Endothelial

cells specialize into either endothelial tip cells or endothelial stalk cells [71]. Tip cells
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with high motility play a leading role guiding cell movement to form new vascular

branches and stalk cells with high proliferation rates develop the new branches. In

Part I of this thesis, by integrating experimental data at both the cellular level and

tissue level, we develop dynamic models for Notch signaling and VEGFRs signaling

with a particular focus on cell specialization and tissue development.

1.2.1 Notch signaling

Notch and Notch ligands are transmembrane protein families found in metazoan

species [72]. The basic paradigm of Notch signaling is that Notch ligand expressed in

one cell binds to and trans-activates Notch receptor in neighboring cells. The activated

Notch receptor releases Notch intracellular domain (NICD) which would trans-locate

to the cell nucleus to up-regulate or down-regulate the expression of many genes in-

cluding Notch and its ligands (Fig 1.1). This process is called trans-actication of the

Notch receptor [72]. In addition to the trans-activation mediated by Notch ligand from

neighboring cells, Notch activity can be inhibited by the ligands expressed in the same

cell, which is called cis-inhibition of the Notch receptor [73]. Based on this simple

paradigm of Notch signaling (Fig 1.1), Collier et al. [74] proposed the first dynamic

model, a set of ordinary differential equations, to investigate Notch signaling in the

Ligand

Notch
binding cleavage

NICD

Figure 1.1: The basic paradigm of Notch signaling. Binding of Notch ligand from one cell
to Notch in a neighboring cell results in the cleavage of Notch intracellular domain (NICD)
which regulates genes expression in the nucleus.
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context of multicellular pattern formation. In any cell, they focused on the amounts

of Notch ligand and Notch signal (e.g., free NICD). Mathematically,

dL

dt
= F (Sn)− βL,

dSn

dt
= G(Lext)− βSSn.

(1.1)

Here the production rate of Notch ligand (L) is negatively (F ′(Sn) < 0) regulated

by the Notch signal (Sn) in the same cell. The intracellular Notch signal (Sn) is

triggered (G′(Lext) > 0) by trans ligands (Lext) from neighboring cells. Parameters

β and βS quantify the first-order degradation rate of Notch ligand and Notch signal

(e.g., free NICD) in the cell. This model recapitulates key aspects of multi-cellular

patterning in the vertebrate nervous system [34] and other tissues [75, 76, 77]. Because

the cis-inhibition of Notch activity is not considered in this model, the model can not

explain experimental observations related to cis-inhibition [78]. For example, it can not

recapitulate Notch ligands Delta/Serrate-mediated cis-inhibition of Notch signaling in

Drosophila wing vein patterning [79, 80].

More recent models have helped solved some of these problems, Sprinzak et al. [81]

found that the mechanism of Notch receptor cis-inhibition [82] is because of the mutual

inactivation of Notch and its ligands in the same cell. By taking the cis-inhibition of

Notch receptor into account, they proposed a new mathematical model including both

trans-activation (kt) and cis-inhibition (kci) of Notch receptor in the same cell. The

model is described mathematically as,

dL

dt
= bL − βL− ktNextL− kciNL,

dN

dt
= bN − βN − ktLextN − kciLN,

dSn

dt
= ktLextN − βSSn,

(1.2)

where bL and bN are the production rates of Notch ligand (L) and Notch (N) in the cell.

Trans ligand (Lext) from neighboring cells mediates tans-activation of Notch, which

generates a Notch signal (Sn). Similarly, Notch ligand can also bind to the Notch

(Next) from other cells in trans. Notch ligand and Notch receptor mutually inactivate

each other in the same cell (kciNL). Parameters β and βS quantify the degradation

of proteins in the cell. This model recapitulates the properties of Notch receptor cis-

interactions [81] and the sharp boundary of Drosophila wing vein patterning [79, 80].
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Chapter 1. Introduction

If including a feedback loop from Notch signal to the production rate of Notch ligand

and Notch receptor, this model would also recapitulate the patterning of other tissues

[83].

Cis-activation, where Notch ligand activates Notch receptor in the same cell, has

recently been reported [84, 85]. However, the strength of this autonomous Notch

signaling in cells is very low compared to the signaling resulted from ligand-mediated

trans-activation of Notch receptor [85]. Therefore, the cis-interactions between Notch

and Notch ligand typically lead to inhibition of Notch receptor in the same cell [78, 86].

Consequently, the canonical Notch signaling in cells is largely governed by a balance

between trans-activation and cis-inhibition of Notch receptor [73], and the Sprinzak

model (1.2) has served as a foundation for subsequent modeling extensions in other

Notch-related biological processes [87, 42, 88].

Because of the mutual inactivation of Notch and its ligand in the same cell, one

prediction of the Sprinzak model (1.2) is that a cell is either in a ligand-dominated

sending state or a receptor-dominated receiving state, depending on the relative pro-

duction rates of Notch receptor and its ligand in the same cell [81]. However, this

mutually exclusive behaviour of Notch ligand and Notch receptor in cells is not consis-

tent with the observations in Notch-controlled dorsal/ventral boundary patterning in

the wing disc of Drosophila where the levels of both Notch ligand and receptor are high

in ventral cells [89, 90, 91, 92]. In Chapter 2 of this thesis, we experimentally show

that Notch ligands self-associate through homo-dimerization or homo-oligomerization,

which is a previously unreported process in Notch signaling. Through a combination

of experimentation and dynamic modeling, we have broken new ground by refining

the Sprinzak model (1.2) and propose a new model where Notch signaling in a cell is

due to ligand monomer-mediated Notch trans-activation, dampened by ligand dimer-

mediated cis-inhibition of Notch receptor. The new model recapitulates our data as

well as published data related to Notch signaling, including the dorsal/ventral bound-

ary patterning in the wing disc of Drosophila [47].

1.2.2 Notch-related cell fate decision

The large variety of cell types in a multi-cellular organism are formed through a

series of cell fate decisions [93]. These are driven by chemical and mechanical signals

within and between cells [94, 95]. Delta-Notch signaling-mediated lateral inhibition

between adjacent cells is an important mechanism for breaking symmetry and creating

diversity in a population of homogeneous cells [96, 67, 97]. The regulatory mechanism
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Ligand

Notch

A. Lateral inhibition B. Lateral induction

Figure 1.2: Schematic illustration of the regulatory mechanisms of Notch signaling-
mediated lateral inhibition and lateral induction between adjacent cells. (A) Notch signaling
down-regulates ligands expression in the same cell. (B) Notch signaling up-regulates ligands
expression in the same cell.

of Notch-controlled lateral inhibition between cells is that the binding of Notch ligand

in one cell to Notch receptor in a neighboring cell triggers Notch signaling which down-

regulates the expression of Notch ligand in the receiver (Fig 1.2A). Therefore, a cell

with high levels of Notch ligand would prevent neighboring cells from adopting the

same cell fate by triggering Notch signaling in its neighbors [74]. Consequently, lateral

inhibition generates a ‘salt-and-pepper’ pattern in a population of adjacent cells. For

example, this phenomenon has been observed in the development of Caenorhabditis

elegans vulva and uterine [98], the formation of Drosophila epidermal sensory bristles

[99, 100], and the pigmentation pattern of zebrafish [101]. Based on the regulatory

mechanism of Notch signaling-mediated lateral inhibition between adjacent cells (see

Fig 1.2A), Sprinzak et al. [83] and Boareto et al. [87] extended the model (1.2) to

model (1.3):

dL

dt
= bLH(Sn; θL, λL, lL)− βL− ktNextL− kciNL,

dN

dt
= bNH(Sn; θN , λN , lN )− βN − ktLextN − kciLN,

dSn

dt
= ktLextN − βSSn.

(1.3)

Here the shifted Hill function H(X; θ, λ, l) = (λX l + θl)/(X l + θl) represents positive

regulation (λ > 1) or negative regulation (λ < 1) mediated by protein X to the

production of other proteins (e.g., the regulations in Fig 1.2). To represent the Notch

signaling-mediated regulation pathway in Fig 1.2A mathematically, there is λL < 1

in model (1.3). Parameters θ, λ and l control the shape of this Hill function. In
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the absence of cis-inhibition of Notch receptor (kci = 0), the mathematical model

(1.3) would be a special case of the mathematical model (1.1) for tissue patterning

if we assumed that the level of Notch receptor in cell is at a quasi-steady state (i.e.,

dN/dt = 0). Compared to the mathematical model (1.1), Sprinzak et al. [83] find

that the model (1.3) with mutual inactivation of Notch and its ligand is more robust

for facilitating developmental patterning.

In addition to vulva development in C. elegans [98] and epidermal sensory bristle

formation in Drosophila [99, 100], lateral inhibition also works in vertebrate blood

vessel development [41, 102, 103, 104]. The lateral inhibition is driven by intracellu-

lar vascular growth factor (VEGF) signaling and intercellular Delta-like (Dll)4-Notch

signaling in endothelial cells, which occurs in two steps: (1) the binding of VEGF to

vascular growth factor receptor 2 (VEGFR2) generates VEGFR2 signal which results

in the up-regulation of Dll4 in one cell; (2) Dll4-transactivated Notch activity leads to

the down-regulation of VEGFR2 in the neighboring cells (see Fig 1.3). Consequently,

stimulated by pro-angiogenic cues such as VEGFs, some endothelial cells will specialize

into tip cells to lead the collective motility of neighboring stalk cells that develop the

branches of blood vessels (see Fig 1.3; [105]), which is called sprouting angiogenesis.

At the early stage of sprouting angiogenesis, the VEGF-Dll4-Notch lateral inhibition

VEGF

VEGFR2
Dll4

VEGFR2

D
ll4

VEGF

N
o

tc
h

VEGFR2

NICD

Notch

Sprouting angiogenesis

pro-angiogenic cues

Figure 1.3: Schematic illustration of sprouting angiogensis and the regulatory mechanisms
of tip endothelial cell selection. Intracellular VEGF signaling and intercellular Dll4-Notch
signaling drives the lateral inhibition between adjacent endothelial cells. In particular, the
binding of external VEGF to VEGFR2 in tip cell leads to the up-regulation of Dll4 which
triggers Notch signaling in the neighboring cell. Notch signaling down-regulates the expression
of VEGFR2 in the same cell.
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generates an alternating pattern of cell fates, a ‘salt-and-pepper’ pattern, along the

front of blood vessels, which has been observed in mice [41], zebrafish [106] and in

vitro [48]. The extent to which the endothelial cells behave as tip cells depends on the

level of intracellular VEGFR2 signaling [59, 106] that is generated by the binding of

VEGF to the VEGFR2. According to this regulatory mechanism for tip cell selection

in sprouting angiogenesis, Stepanova et al. [107] refined the model (1.3) by considering

the VEGF-Dll4-Notch signaling:

dD

dt
= bDH(Sv; θD, λD, lD)− βD − ktNextD − kciND,

dN

dt
= bNH(Sn; θN , λN , lN )− βN − ktDextN − kciDN,

dSn

dt
= ktDextN − βSSn,

dR

dt
= bRH(Sn; θR, λR, lR)− βR− kvVextR,

dSv

dt
= kvVextR− βSSv,

(1.4)

where the binding of external VEGF (Vext) to VEGFR2 (R) generates intracellular

VEGF signal (Sv) that leads to the up-regulation (λD > 1) of Dll4 (D). Moreover,

the binding of Notch ligand Dll4 (Dext) from neighboring cell to Notch receptor (N)

generates Notch signal (Sn) that leads to the down-regulation (λR < 1) of VEGFR2

in the receiving cell. Based on the same theoretical understanding of tip endothelial

cell selection in sprouting angiogenesis (Fig 1.3), Bentley et al. [41] developed an

agent-based model to investigate tip cell selection in angiogenesis. All of these models

recapitulate the ‘salt-and-pepper’ pattern generated by tip and stalk endothelial cells.

The mathematical model (1.4) can be reduced to model (1.3) using the quasi-steady

state assumption (i.e., dR/dt = 0; dSv/dt = 0).

In contrast to lateral inhibition, Notch signaling also mediates lateral induction

where adjacent cells tend to adopt the same cell fate. For example, the development

of vascular smooth muscle cells on arteries [108] and the specification of the sensory

progenitor cells during Drosophila inner ear development [109]. Notch-associated lat-

eral induction occurs because Notch and its ligands form a positive feedback loop

between adjacent cells (see Fig 1.2B). Mathematical models have been proposed to

investigate the effects of lateral induction mediated by intercellular Notch signaling on

cell fate in tissue development [87, 42].

Dll4-Notch signaling has long been thought to mediate a lateral inhibition be-

tween endothelial cells (Fig 1.3), which has been discussed in previous theoretical
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research [41, 42, 107]. This theoretical understanding is supported by a ‘salt-and-

pepper’ pattern of tip and stalk cells phenotype along the sprouting branch of blood

vessels [102, 106]. However, experimental data show that increasing cell-cell contact

results in both higher Notch signaling and Dll4 expression [43], while inhibition of

Notch signaling suppresses the expression of Dll4 in endothelial cells [43, 62, 48, 110].

These data suggest that intracellular Notch signal may also lead to the upregulation

of Dll4 in endothelial cells, which drives a lateral induction between adjacent cells (see

Fig 1.2B). Therefore, the intracellular Notch signal (Sn) in endothelial cells could be a

paradoxical component [111], that simultaneously has two opposite effects on the same

target, Dll4. How this paradoxical component regulates endothelial cell fate during

vascular growth is still not fully understood. In Chapter 3 of this thesis, we have

refined the Stepanova model (1.4) by including the positive effects of Notch activity

on Dll4 expression and investigate the biological consequence of this paradoxical effect

in endothelial cell fate during sprouting angiogenesis.

In vertebrates, the Notch pathway is composed of up to four distinct receptor

types (Notch1-4) and five different membrane-bound ligands: Jag1, Jag2, Dll1, Dll3

and Dll4 [112]. It has been established that different ligands can elicit unique cell

fates [113, 114, 115]. For example, Jag1 stimulates blood vessel production whereas

Dll4 limits this process [43]. In order to decipher the rules of the opposite effect of

Dll4 and Jag1 on blood vessel growth, Boareto et al. [42] hypothesized that Notch

signals in endothelial cells result in the up-regulation of Jag1 expression. Based on this

regulatory mechanism, Boareto et al. [42] extended dynamic model (1.4) by adding

Jag1 dynamics:

dD

dt
= bDH(Sv; θD, λD, lD)− βD − ktNextD − kciND,

dJ

dt
= bJH(Sn; θJ , λJ , lJ)− βJ − ktNextJ − kciNJ,

dN

dt
= bNH(Sn; θN , λN , lN )− βN − kt(Dext + Jext)N − kci(D + J)N,

dSn

dt
= kt(Dext + Jext)N − βSSn,

dR

dt
= bRH(Sn; θR, λR, lR)− βR− kvVextR,

dSv

dt
= kvVextR− βSSv,

(1.5)

where the intracellular Notch signal (Sn) mediated by Dll4 (Dext) and Jag1 (Jext) from

neighboring cells leads to the up-regulation (λJ > 1) of Jag1 (J) and down-regulation
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1.2. Modeling cell-cell signaling

(λR < 1) of VEGFR2 (R). Other behaviors of Jag1 are assumed to be similar to those

of Dll4. In this model, the intercellular Dll4-Notch signaling drives a lateral inhibition

between adjacent cells, but the intercellular Jag1-Notch signaling mediates a lateral

induction. Consequently, Boareto et al. recapitulate the ‘salt-and-pepper’ pattern

of tip and stalk cell fates in a line of interacting cells [41, 106, 48] by increasing

the production rate of Dll4 [42]. Increasing the production rate of Jag1, they find

that the ‘salt-and-pepper’ pattern of cell phenotypes was destabilized and there is a

hybrid tip/stalk phenotype defined by an intermediate state between tip and stalk cell

fates [42]. Although the intermediate cell state has been observed in other biological

processes such as epithelial-mesenchymal transition and hematopoietic progenitor cells

differentiation [116], to date, a hybrid tip/stalk phenotype of endothelial cells has not

been identified experimentally. Moreover, how the Jag1-induced hybrid phenotype of

endothelial cell [42] is linked to the excessive sprouting promoted by Jag1 in cells [43],

i.e., the collective behavior of hybrid endothelial cells, is elusive.

In Chapter 4 of this thesis, through a combination of experimentation and math-

ematical modeling, we have refined the mathematical model (1.5) by considering the

hetero-dimerization of Dll4 and Jag1 in endothelial cells, which is an extension of our

work in Chapter 3. The hetero-dimerization of Dll4 and Jag1 is also confirmed ex-

perimentally in Chapter 2 of this thesis. In contrast to a hybrid cell phenotype, we

predict that endothelial cells tend to adopt a tip cell fate when the level of Jag1 is

high in cells, which is consistent with the event that Jag1 expressed in endothelial cell

stimulates tip cell selection and vascular sprouting in angiogenesis.

1.2.3 Multicellular network formation

The specialization of endothelial cells into endothelial tip cell or endothelial stalk cell

contributes to vascular growth in vertebrates [117, 118, 119] through coordinating

sprouting angiogenesis that is the process of forming a new vascular branch from the

existing blood vessels [120, 121, 104]. Complementary to angiogenesis, forming the

vascular networks de novo from dispersed endothelial progenitor cells is called vascu-

logenesis [104], which can be observed in the development of early embryo [122] and

retinal vasculature [123]. Vasculogenesis is easier to mimic in vitro than angiogenesis,

and a commonly used in vitro model is the culturing of dispersed endothelial cells

on the top of Matrigel which is a popular matrix for vasculogenesis assays [124, 125].

Where, the dispersed endothelial cells would autonomously form a vascular-like net-

work structure [126, 124, 125].
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Chapter 1. Introduction

Alongside experimental studies about vasculogenesis, researchers also benefit from

mathematical modeling to decipher the mechanisms of this process. So far, the mathe-

matical models for vascular patterning can be mainly categorized in continuous models

[127, 124, 128], single-particle models [129, 130] and multi-particle models [53, 54, 131].

The continuous models based on differential equations partially account for the spatial

dynamics of endothelial cells density [124], but fail to recapitulate the morphodynam-

ics of individual cells during collective motility of endothelial cells. The single-particle

model represents cells as individual particles and recapitulates the collective motility

and interactions of endothelial cells based on a Lagrangian equation [129], but does not

consider the dynamics of cell shape [53, 132]. The cells in the multi-particle model such

as Cellular Potts model [133] have more complex structures that can mimic cell shape

changes during vascular patterning [53, 54, 131]. Nevertheless, the current mathemat-

ical models are still deficient in two ways when quantifying the vasculogenesis. One is

that the model only recapitulates the vessel-like pattern and does not account for the

dynamics in cell morphology [132]. The second is that some recently discovered results

about cell-cell signaling [47] is not included. On the one hand, cell-cell signaling affects

cell motility [62]. On the other hand, cell motility affects cell-cell signaling because

the neighbors of any cell could change during vasculogenesis. To recapitulate the ex-

perimental data at different biological scales, we have integrated our dynamic models

for endothelial cells fate decision into the Cellular Potts model and have investigated

the effects of cell-cell signaling on vasculogenesis in Chapter 5 of this thesis.

1.3 Modeling infectious disease spreading

In Part II of this thesis we shift our topic from modeling cell-cell signaling to modeling

infectious disease spreading. Early dynamic models of infectious disease were relatively

simple, usually assuming a closed population and constant biological infectiousness of

pathogens. The population is assigned to compartments with different labels repre-

senting the disease state (Fig 1.4). According to the development of infectious disease,

there are different diagrams of modeling. One of the simplest models is the classic SIR

(susceptible-infectious-recovered) model (Fig 1.4A; [17]), in which susceptible individ-

uals were infected and then recovered with immunity. For some infections without

long-lasting immunity or with a latency period, there are basic SIS model (Fig 1.4B)

and SEIR (or SEIS) model (Fig 1.4C). Over the past decades, these basic models have

been extended to varying degrees by taking into account different factors [21, 22, 23]

such as pathogen dynamics [26], age structure [25], contact pattern [27], population
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1.3. Modeling infectious disease spreading

mobility [28], meteorological condition [29] and even various interventions [134, 30, 31]

against infectious disease.

Susceptible (𝑺) Infectious (𝑰) Recovered (𝑹)
𝜌𝑆𝐼/(𝑆 + 𝐼 + 𝑅) 𝛾𝐼

Susceptible (𝑺) Infectious (𝑰)

𝜌𝑆𝐼/(𝑆 + 𝐼)

Susceptible (𝑺) Exposed (𝑬) Infectious (𝑰)
𝜌𝑆𝐼/𝑁 𝜎𝐼

𝛾𝐼

A.

B.

C.

Figure 1.4: Diagram of the basic compartmental models in epidemiology. The transition
rates from one compartment to another follow the law of mass action. (A) The SIR model
consists of three compartments: the number of susceptible individuals, infectious individuals
and recovered individuals, respectively. (B) The SIS model for some infections without long-
lasting immunity. (C) An exposed compartment for the infections with a latency period.

In recent years, an increasing amount of data related to these factors has become

available, which is helpful for characterizing the disease spreading in a population

[46]. Generally, the data related to infectious disease can be categorised into epidemic

related data such as the numbers of confirmed cases and deaths [26, 29] and behavior

related data such as contact matrix [27] and movement matrix [28]. In Part II of this

thesis we will model the transmission of an infectious disease based on the information

from multi-source data related to infectious disease by considering two applications.

In Chapter 6 we investigated the effect of air pollution on respiratory infection, and

answered whether and how air pollution and interventions against air pollution in

developing countries affect the dynamics of air quality and respiratory infection. In

Chapter 7 we focused on the trade-off between mobility restriction and transmission

of infectious disease, and discussed when and to what extent the mobility restrictions

against severe epidemic outbreaks could be lifted.
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1.3.1 Air pollution and respiratory infection

Understanding the driving force of infectious disease spreading is critical to design

effective interventions curbing the threat of infectious disease transmission to pub-

lic health around the world [135]. In tracking driving factors of infectious disease

spreading, investigating the relationship between environmental changes and infec-

tious disease transmission is one of the most important topics [136, 137, 138, 139].

Previous works have established that monsoon rains and temperature affect the epi-

demiology of cholera [140] and the life cycles of vectors such as mosquitoes, and the

parasites that they transmit, so they are important environmental drivers of malaria

[141], dengue [142] and Ross River fever [143]. Moreover, regional temperature and

humidity are related to influenza transmissibility [144, 145]. Air pollution is also an

environmental threat to human health. For example, air pollution leads to 3.3 million

premature deaths globally each year [146] and has a substantial role in many non-

communicable diseases [147] including cancer [148], stroke [3], cardiovascular disease

[1, 2] and Alzheimer’s disease [149, 150]. Furthermore, available evidence suggests

that air pollution can prevent the beneficial cardiopulmonary effects of walking in

people with heart or chronic lung disease [151, 152] and results in poor lung function

in children [153, 154].

In recent times, there is an increasing recognition that poorer air quality partic-

ularly in developing countries is synchronized with a higher incidence of respiratory

infection [155]. For instance, air pollution is associated with an increased risk of

tuberculosis [156, 157], influenza [158, 159, 160], influenza-like illness [161, 29] and

COVID-19 [162, 163]. Different from the environmental factors like temperature and

precipitation that are difficult to be artificially controlled, air quality in a local area is

mainly determined by the persistent emission and removal of air pollutants [164] which

can be changed by human activity. For example, using more green energy instead of

fossil fuels. Therefore, based on the conclusion that there is an association between

air pollution and respiratory diseases, the government should formulate regulatory

policies to reduce the levels of air pollutants and remind people to take preventive

and control measures to reduce the incidence of respiratory infection. However, the

studies of associations between air pollution and respiratory infection have two flaws.

First, the correlation does not imply a causation [165]. Second, correlation research

alone can not quantify how interventions taken by governments or individuals affect

the transmission of respiratory infection. Related to this, in Chapter 6 of this thesis

we first established a causal relationship between air pollution and the incidence risk
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of influenza-like illness based on real world data, and then proposed a mathematical

model linking air pollution and respiratory infection.

Previous studies have modeled population development coupling with environment

pollution to investigate the effects of environment pollution on population dynamics

[166, 167]. Inspired by this, the dynamic models for infectious disease coupling air

pollution can describe the dynamic change of outdoor air pollutants and their impact

on the transmission of respiratory disease, and can predict the effects of interventions

against air pollution on respiratory disease transmission. In China, the degree of

air pollution is quantified using an air quality index (AQI), and high value of AQI

means poor air condition outside [168]. By considering the emission and removal of

air pollutants, Tang et al. [29] proposed a simple ordinary differential equation (ODE)

model for AQI dynamics (F (t)) in China:

dF

dt
= c(t)− µ(t)F (t), (1.6)

where the emission rate of air pollutant is a periodic function c(t) and the clearance

rate is given by another periodic function µ(t) = µ0 + µ1 cos(ωt+ ϕ). They assumed

an AQI-dependent incidence χ(t) of respiratory infection and then integrated AQI

dynamics into a compartment model extended from the classic SEIS model (Fig 1.4C)

with constant population (N). That is,

dS

dt
= −χ(t) + γsIs + γaIa,

dE

dt
= χ(t)− σE,

dIs
dt

= δσE − γsIs,

dIa
dt

= (1− δ)σE − γaIa.

(1.7)

Here the susceptible individuals (S) are infected by infectious individuals (I) and

enter the exposed period (E), and then become infectious individuals who recover at

a constant rate. The AQI-dependent incidence rate χ(t) is given by

χ(t) = ρF (t)
(
1− bF (t)

K + F (t)

)Is + θIa
N

S,

which assumes that the incidence of respiratory infection is related to air quality F (t)

and individuals behaviour change such as wearing masks and reducing outdoor activ-
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ities, quantified by 1− bF (t)/(K +F (t)). Here the infectious individuals are classified

into symptomatic (Is) and asymptomatic (Ia), and the latter has lower infection force

than the symptomatic (0 < θ < 1). For some diseases, recovered individuals are

immune to the corresponding pathogens, which can be represented by extending the

model (1.7) to include a new compartment for immune individuals [17]. For more

epidemic models in air-polluted environment, He et al. [169, 170, 171] modeled the

effects of stochastic factors and random diffusion of air pollutants on the dynamics

of influenza-like illness; Shi et al. [172] modeled the direct and indirect effects of air

pollution on respiratory infection; and Song et al. [173] modeled the spatial–temporal

effects of air pollution on the influenza transmission.

By analyzing the dynamics of the model (1.7), Tang et al. evaluated the effects

of reducing emission of air pollutants on the prevalence of respiratory infection and

suggested persistent control of pollutant emission in China. However, the real inter-

vention such as driving restrictions is state-dependent, which means that control of

pollutant emission is triggered only if AQI is bigger than a threshold Fc. Therefore,

the model (1.6) for AQI dynamics should be extended to:

dF

dt
= (1− ϵη)c(t)− µ(t)F (t), (1.8)

with

ϵ =

{
0, F − Fc < 0,

1, F − Fc > 0.

Here η (0 ≤ η ≤ 1) quantifies the strength of control to air pollutants emission.

Model (1.8) is a Filippov system. Although the mathematical methods for ana-

lyzing autonomous planar Filippov systems have been established [174], analyzing

non-autonomous Filippov systems remains challenging. And the effects of this AQI-

dependent control on the dynamics of respiratory infection is unclear. In chapter 6

of this thesis, we performed theoretical analysis to system (1.8) and then integrated

the dynamics of AQI into a epidemic model based on the results of casual analysis

between air pollution and respiratory infection. Finally, we investigated the effects

of this intervention against air pollution on respiratory infections by analyzing the

AQI-embedded epidemic model of respiratory infection.
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1.3.2 Mobility restrictions versus disease spreading

The epidemic data of infectious diseases have shown that the number of infected

individuals in a local area will increase exponentially in a short period of time when one

infectious individual is introduced and there are no interventions [46]. This exponential

growth pattern of the epidemic will follow from one region to another when there

is a regional movement of population [175, 176, 177, 178, 179]. Consequently, the

population mobility has a strong impact on the persistence and extinction of disease

[180, 181]. The mathematical models describing the spatial mobility of a population

in epidemic areas can be categorized into spatially continuous model like reaction-

diffusion model [182, 183] and spatially discrete model like meta-population model

[184, 185]. The mobility of population in reaction-diffusion models is quantified by an

isotropic diffusion coefficient of individuals [186, 187, 188, 189]. The meta-population

model is more general in describing the heterogeneity of the population [185, 190].

For modeling spatial heterogeneity in a population, the meta-population model is also

called patch model [191], where the population is divided into n patches, and there are

two matrices representing the migration of susceptible individuals (S) and infectious

individuals (I) between these patches. For example, there is an SIS model in each

patch i (i = 1, ..., n):

dSi

dt
=

n∑
j=1

(Di,jSj −Dj,iSi)− ρi
SiIi

Si + Ii
+ γiIi,

dIi
dt

=

n∑
j=1

(Li,jIj − Lj,iIi) + ρi
SiIi

Si + Ii
− γiIi,

(1.9)

where Di,j represents the rate at which susceptible individuals migrate from patch

j to patch i, and Li,j represents the migration rate of infectious individuals. There

would be different patch models [192, 193, 194] by extending other basic models such

as SIR model or SEIR model (see Fig 1.4).

For infectious disease without effective treatments, to keep national health systems

from becoming overburdened and to reduce infection pressure for people with a high

risk of severe outcomes, mobility restrictions such as quarantine and lockdown have

been used many times in the prevention and control of outbreaks [20, 195, 196, 197].

Although mobility restrictions effectively reduce the spatial spread of infectious dis-

ease, they have negative effects on social health and economic development [198, 199].

This has begged a question: is there an optimal strategy for lifting mobility restrictions

in epidemic areas?
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By analyzing a two-patch model (i.e., n = 2 in Eq. 1.9), Wang and Mulone

[191] have found that the dispersal rates of susceptible individuals has no effect on

the persistence and extinction of the disease. Furthermore, if a disease spreads or

becomes extinct in each patch when the patches are isolated, the disease in connected

patches would have the same consequences. Particularly interesting, if the dispersal

rates of infectious individuals are suitably chosen, the disease can disappear in all

patches even if it spreads in one of two patches when they are isolated. However, how

the dispersal rates of individuals can be determined is unclear. Related to this, can

we give a sufficient condition for the existence of a migration matrix L = {Li,j} for

mathematical model (1.9) such that the disease disappears in all patches, and find a

way to determine the matrix? The solution to the current problem gives a strategy to

lift the motility restrictions in epidemic areas.

To investigate the trade-off between lifting mobility restrictions and controlling in-

fectious disease spreading, previous studies mainly focused on various ‘what if’ ques-

tion [192, 193, 194]. For instance, what would be the peak time, peak value and final

size of infection if 50% of migration of infectious individuals was blocked at a specific

moment? They first assumed a specific migration matrix in model (1.9) and then ran

this model to investigate the dependence of epidemic development on population mo-

bility and to assess the effectiveness of a certain mobility in curbing disease spreading.

Although these studies provide some perspectives for disease prevention and control,

the results based on testing predictions do not suggest an optimal strategy for lifting

the mobility restrictions in epidemic areas. In Chapter 7 of this thesis, we have de-

veloped a novel method which can be used to estimate the travel fluxes L = {Li,j} in

epidemic areas through integrating multi-source real data.

1.4 Outline of the thesis

With the final aim of providing new insights into the treatment and control of complex

disease and infectious disease, we investigate cell-cell signaling and infectious disease

spreading in this thesis. In Part I we focus on uncovering the molecular mechanisms

of Notch signaling from experimental data and dynamic modeling. By performing

numerical simulations under different scenarios and comparing with data, we have

verified our models with extensive experimental data.

In Chapter 2, we explore the molecular mechanisms of Notch receptor cis-inhibition,

trans-activation and recently reported cis-activation. Our biochemical data confirm

an previously unreported self-oligomerization of Notch ligands in the cell. To under-
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stand the biological consequence of Notch ligands oligomerization, we have proposed

a new model of Notch signaling, where the ligand monomer mediates Notch recep-

tor trans-activation dampened by ligand dimer-mediated cis-inhibition of Notch. The

applicability and dependability of our model is supported by our data and published

data about Notch signaling and Notch-related tissue patterning.

In Chapter 3, we aim to understand the mechanisms of reported complex observa-

tions about endothelial cells behaviour in angiogenesis. Experimental data have shown

that Notch activity contains a paradoxical component that has both negative [102] and

positive [43, 62, 48, 110] effects on Dll4 expression in endothelial cells. Consequently,

we develop a new dynamic model where the opposing effects of Notch activity on Dll4

expression is state-dependent. We have validated our model by recapitulating multi-

source data related to endothelial cells in angiogenesis, which is difficult to explain

using previous models.

In Chapter 4, we dive a little deeper into Notch signaling-related tip endothelial

cells specialization in angiogensis. Here the research goal is to decipher the molec-

ular mechanisms by which Notch ligand Jag1 stimulates sprouting angiogensis while

Notch ligand Dll4 limits this process. Through a combination of experimentation and

dynamic modeling, we favor a mechanism where Dll4-Jag1 heterodimerization and

asymmetric affinity of Notch for the Notch ligands Dll4 and Jag1 yield the observed

phenomena in angiogensis.

In Chapter 5, we have developed a multi-scale dynamic model of vasculogenesis by

integrating an ordinary differential equation (ODE) model for cell-cell signaling into

the Cellular Potts model (CPM) for cell motility. Based on the experimental data,

cell-cell signaling affects cell behavior by mediating cell polarization. This model

reproduces the vascular patterning, which is consistent with previous models. Better

than previous models, we recapitulate the morphological dynamics of endothelial cells

and the effects of Notch signaling on vasculogenesis.

In Part II of this thesis we shift our topic from modeling cell-cell signaling to mod-

eling infectious disease spreading with the aim of disease prevention and control. Here

we focus on making prospective predictions and investigating the necessary conditions

for infectious disease extinction.

In Chapter 6, we first obtain a causal relationship between air pollution and res-

piratory infection using published data. Based on this, we develop a compartment

model for respiratory infection where the transmission rate of disease is an increasing

function of air quality index whose dynamics follow a Filippov system describing the

state-dependant interventions against air pollutants emission. Theoretical analysis of
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these models predicts that the interventions against air pollution could reduce the

basic reproduction number of respiratory infection.

In Chapter 7, we explore the trade-off between lifting mobility restrictions and

controlling infectious disease spreading with the aim of designing a migration matrix

allowing the movement of individuals between different regions in an epidemic area.

To this end, we first give a theoretical condition for the existence of a migration

matrix between different regions and then develop a novel method to estimate the

migration matrix. We have tested our method by retrospectively investigating the

travel restrictions against COVID-19 in China.

Finally, in Chapter 8, we discuss the results of this thesis and propose ideas for

future work.
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