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MARCO STRENG

GENERATORS OF THE GROUP OF
MODULAR UNITS FOR Γ1(N)
OVER THE RATIONALS
GÉNÉRATEURS DU GROUPE DES UNITÉS
MODULAIRES POUR Γ1(N) SUR LES
RATIONNELS

Abstract. — We give two explicit sets of generators of the group of invertible regular
functions over Q on the modular curve Y 1(N).

The first set of generators is very surprising. It is essentially the set of defining equations of
Y 1(k) for k ⩽ N/2 when all these modular curves are simultaneously embedded into the affine
plane, and this proves a conjecture of Derickx and Van Hoeij [DvH14]. This set of generators
is an elliptic divisibility sequence in the sense that it satisfies the same recurrence relation as
the elliptic division polynomials.

The second set of generators is explicit in terms of classical analytic functions known as Siegel
functions. This is both a generalization and a converse of a result of Yang [Yan04, Yan09].

Résumé. — Nous donnons deux ensembles explicites de générateurs du groupe des fonctions
régulières inversibles à coefficients rationnels sur la courbe modulaire Y 1(N).

Le premier ensemble de générateurs est très surprenant. C’est essentiellement l’ensemble
des équations qui définissent Y 1(k) pour k ⩽ N/2 quand toutes ces courbes modulaires sont
plongées simultanément dans le plan affine, ce qui prouve une conjecture de Derickx et Van
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96 M. STRENG

Hoeij [DvH14]. Cet ensemble de générateurs est une suite de divisibilité elliptique dans le sens
où il satisfait la même relation de récurrence que les polynômes de division elliptiques.

Le second ensemble de générateurs est explicite en termes de fonctions analytiques classiques
appelées fonctions de Siegel. C’est à la fois une généralisation et une réciproque d’un résultat
de Yang [Yan04, Yan09].

1. Introduction

Let N ⩾ 1 be an integer. The modular curve Y 1(N) is a smooth, affine, geo-
metrically irreducible algebraic curve over Q, often also denoted by Y1(N). It has
the following property: For every field K of characteristic zero, if N ⩾ 4 or K is
algebraically closed, then we have

Y 1(N)(K) =
{(E,P ) : E is an elliptic curve over K and P ∈ E(K) has order N} / ∼= .

Here “=” denotes a functorial Galois-equivariant bijection, which we use to identify
the left and right hand side; and we write (E1, P1) ∼= (E2, P2) when there is an
isomorphism ϕ : E1 → E2 with ϕ(P1) = P2.

Our object of study is the group of modular units on Y 1(N), that is, the unit group
O(Y 1(N))∗ of the ring O(Y 1(N)) of regular functions over Q on Y 1(N). The curve
Y 1(N) has a smooth compactification X1(N), and the group O(Y 1(N))∗ equals the
group of meromorphic functions over Q on X1(N) with divisor supported on the set
X1(N) \ Y 1(N) of cusps.

The Tate normal form (Section 2.1) gives an embedding Y 1(N) ↪→ A2 for every
N ⩾ 4, with the point (B,C) ∈ A2 corresponding to the curve

(1.1) E : Y 2 + (1 − C)XY −BY = X3 −BX2 and point P = (0, 0).
Our first main result is as follows.

Theorem 1.1 (Conjecture 1 of Derickx and Van Hoeij [DvH14]). — For all
k ⩾ 4, let Fk ∈ Q[B,C] be the defining polynomial of Y 1(k) inside A2. Then for
all N ⩾ 4, the group O(Y 1(N))∗ is Q∗ times the free abelian group on B, D, F4,
F5, . . . , F⌊N/2⌋+1, where D ∈ Q[B,C] is the discriminant of (1.1).

The functions Fk are given in terms of a recurrence relation, which we recall in
Remark 2.9.

The theorem is interesting for a number of reasons. First of all, Derickx and Van
Hoeij [DvH14] already used the functions in the theorem in order to compute the
gonality of Y 1(N) for all positive integers N ⩽ 40 and to give an upper bound on the
gonality for N ⩽ 250. Our theorem helps explain why their method was successful.

Moreover, they found that the gonality is often achieved by functions from this
set of generators. In particular, these functions are “small” functions in some sense,
which we therefore hope are suitable for finding “small” models of modular curves
Y 1(N). Finding such small models directly in terms of another algebraic model has
the advantage that no approximate numerics (such as floating point numbers or
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Generators of the group of modular units for Γ1(N) over Q 97

truncated power series) are needed in producing these models, as would be the case
when using theta functions or Siegel functions directly or using modular forms.

Thirdly, as we will see in Section 2.1, the functions Fk are the primitive divisors
of an elliptic divisibility sequence (EDS) P1, P2, P3, . . . over the ring Q[B,C], which
is in a way the universal EDS as it comes from the Tate normal form. In line with
Ingram–Mahé–Silverman–Stange–Streng [IMS+12] and Naskręcki [Nas16], all but
finitely many terms Pk have a primitive divisor. In fact, we prove that all terms Pk

with k > 3 have a unique primitive divisor Fk.
Finally, an explicit basis of the unit group could be useful for computing cuspidal

divisor class groups similarly to [Yan09].
The proof proceeds by first linking the functions Pk to classical analytic Siegel

functions, and then observing how a proof of Kubert and Lang for Y (N) can be
much simplified and strengthened when applying it to Y 1(N). Our proof can be read
without knowing the proof of Kubert and Lang, and can be seen as an introduction
into their methods due to the disappearance of complications that arise in their
proof.

We prove the main theorem using modular forms over C. Let H ⊂ C be the
standard upper half plane, write H∗ = H ∪ P1(Q) ⊂ P1(C), and write

(1.2) Γ1(N) = {( a b
c d ) ∈ SL2(Z) : b ≡ 0, a ≡ d ≡ 1 mod N} .

Recall the natural complex analytic isomorphism
Γ1(N)\H −→ Y 1(N)(C)

τ 7−→ (C/Λτ , τ/N mod Λτ ),
(1.3)

where Λτ = τZ + Z. (If the reader is used to another parametrization, see Re-
marks 2.14 and 2.15 below.) The functions on X1(N) defined over Q correspond
exactly to the meromorphic functions on Γ1(N)\H∗ whose q-expansions at ∞ are
rational, that is, in Q((q1/N)) with qa = exp(2πiaτ).

The group O(Y 1(N))∗ therefore equals the group of meromorphic functions on
Γ1(N)\H∗ with rational q-expansion and divisor supported on P1(Q).

Our second main result is as follows. For positive integers k ⩽ N/2, let Hk be the
Siegel function given by (see also (2.7))

(1.4) Hk(τ) = iq
1
2((k/N)2−k/N+ 1

6) (1 − qk/N
) ∞∏

n=1

(
1 − qn+k/N

) (
1 − qn−k/N

)
.

Theorem 1.2. — Let

S =


⌊N/2⌋∏
k=1

H
e(k)
k :

∀k e(k) ∈ Z,∑
k e(k) ∈ 12Z,∑

k k
2e(k) ∈ gcd(N, 2)NZ

 .
Then S is free abelian of rank ⌊N/2⌋ and satisfies O(Y 1(N))∗ = Q∗ · S.

Remark 1.3. — Kubert and Lang have results similar to Theorem 1.2 for the
curve Y (N) ([KL77, Theorems 1 and 2]; alternatively Theorems 1.1 and 1.2 in [KL81,
Chapter 4]). Indeed, the results of loc. cit. can be combined into an analogue of our
Theorem 1.2 for O(Y (N)C), but for most N their result is only ‘up to power of two
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98 M. STRENG

index’. For details, see Theorem 1.3 in [KL81, Chapter 4] and the text below it. See
also Kubert [Kub81].

Remark 1.4. — Theorem 1.2 gives both a strengthening and a converse of Yang
[Yan04, Corollary 3]. Indeed, loc. cit. gives the inclusion S ′ ⊂ Q(Y 1(N)) if S ′ ⊂ S
is defined by the additional hypotheses ∑k ke(k) ∈ 2Z and ∑k k

2e(k) ∈ 2NZ.
[Yan09, Theorems 1–5] give the analogue of Theorem 1.2 if one restricts to the

functions with divisors supported on cusps x
y

for gcd(x,N) = 1.
The dictionary between our functions and the functions of [Yan04, Yan09] is given

in Remark 2.15 below. And in fact, with the conventions of Remark 2.15 the functions
of [Yan09] are those with divisors supported on cusps x

Ny
for gcd(x,N) = 1.

1.1. Overview and methods

Our proof consists of two parts. The first part is Section 3, which relates the
functions of Theorems 1.1 and 1.2 via explicit expressions in both directions. We use
formulas and techniques from the theory of elliptic divisibility sequences to relate
division polynomials with the Weierstrass sigma function.

The second part is Section 4, in which we show that our functions indeed generate
the full group. As in Kubert-Lang [KL77], one of the key ideas is to use the fact
that every modular form with a rational q-expansion can be scaled to have an
integer q-expansion. Together with Gauss’ Lemma for power series with bounded
denominators, this will show that if gl is in our group for a modular function g, then
so is g itself. We show that this idea works even better in the case of Γ1(N) over Q
than in the case of [KL77], yielding results that are less general, but stronger, simpler
and more elegant than the results of [KL77]. A detailed overview of this part of the
proof is given at the beginning of Section 4.

Before we start the proof, Section 2 gives precise definitions of the functions
appearing in Theorems 1.1 and 1.2.

After the proof is finished, we give two results that we get for free from our methods.
In Section 5.1, we give generators of the ring O(Y 1(N)) instead of generators of the
unit group, and in Section 5.2, we express the generators of the unit group in terms
of theta functions.

2. The functions appearing in the main results

2.1. The Tate normal form

Let E be an elliptic curve over a field K and P ∈ E(K) a point of order > 3
(possibly non-torsion).

Lemma 2.1 (Tate normal form). — Every pair (E,P ) as above is isomorphic to
a unique pair of the form
(2.1) E : Y 2 + (1 − C)XY −BY = X3 −BX2, P = (0, 0)
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Generators of the group of modular units for Γ1(N) over Q 99

for B,C ∈ K with

D := B3 ·
(
C4 − 8BC2 − 3C3 + 16B2 − 20BC + 3C2 +B − C

)
̸= 0.

Conversely, for every pair B,C ∈ K with D ̸= 0, equation (2.1) gives a pair (E,P ).

Proof. — Given (E,P ), start with a general Weierstrass equation

(2.2) Y 2 + A1XY + A3Y = X3 + A2X
2 + A4X + A6.

As P does not have order 1, it is affine, and we translate P to (0, 0) yielding A6 = 0.
As P does not have order 2, we have A3 ≠ 0, and we add (A4/A3)X to Y to get
A4 = 0. As P does not have order 3, we get A2 ̸= 0, and we scale X and Y to get
A2 = A3. Then we define C = 1−A1 and B = −A2 = −A3. This uses up all freedom
for changing Weierstrass equations [Sil86, III.3.1(b)], so this form is uniquely defined.
The quantity D is the discriminant of E, which is non-zero.

Conversely, if D is non-zero, then (E,P ) defines an elliptic curve and a point on
it, where the point does not have order 1, 2 or 3. □

For any elliptic curve E given by a general Weierstrass equation y2 + a1xy+ a3y =
x3 + a2x

2 + a4x+ a6 and any k ∈ Z, the k-division polynomial ψk is given by

ψ0 = 0, ψ2 = 2y + a1x+ a3,

ψk = t ·
∏

Q ∈ (E[k]\E[2])/±
(x− x(Q)), where t =

{
k if 2 ∤ k,
k
2 · ψ2 if 2 | k.

For any point P on E, we have kP = 0 if and only if ψk(P ) = 0.
Let Pk ∈ Z[B,C] be the k-division polynomial ψk of the elliptic curve (2.1) eval-

uated in the point P = (0, 0). In particular, if k ⩾ 4 and (E,P ) corresponds to
(B,C) ∈ K2 with D ̸= 0, then P has order dividing k if and only if Pk(B,C) = 0.

Example 2.2. — For positive integers k, we compute the k-division polynomial
with the SageMath [SageMath14] command

E.division_polynomial(k, two_torsion_multiplicity=1)

and obtain the following list.

P1 = 1 P5 = −(C −B) ·B8

P2 = −B P6 = −B12 ·
(
C2 −B + C

)
P3 = −B3 P7 = B16 ·

(
C3 −B2 +BC

)
P4 = C ·B5 P8 = C ·B21 ·

(
BC2 − 2B2 + 3BC − C2

)
For k ⩾ 4, let Fk ∈ Q[B,C] be Pk with all factors in common with D and Pd for

d < k removed (well-defined up to Q∗). Following [DvH14], we let F3 = B ∈ Z[B,C]
and F2 = B4/D ∈ Q(B,C).
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Example 2.3. — The rational functions Fk are as follows.

F2 = B ·
(
C4 − 8BC2 − 3C3 + 16B2 − 20BC + 3C2 +B − C

)−1

F3 = B

F4 = C

F5 = C −B

F6 = C2 −B + C

F7 = C3 −B2 +BC

F8 = BC2 − 2B2 + 3BC − C2

For N ⩾ 4, the point P = (0, 0) on E is of order N if and only if FN = 0. In
particular, we get the following known model of Y 1(N).

Proposition 2.4. — Given N ⩾ 4, let R = Q[B,C,D−1] ⊂ Q(B,C) and let
Y = Spec(R/FN) ⊂ Spec(R) ⊂ A2. In other words, let Y be the curve over Q in
the affine B,C-plane given by

Y : FN = 0, D ̸= 0.
Then for all fields K of characteristic 0, we have Y 1(N)(K) = Y (K). □

In fact, with a more careful analysis of the Tate normal form and division polyno-
mials, one would get the following much stronger result, which we do not need for
our main results, but which we give for completeness.

Proposition 2.5 (Jin [Jin13, Corollary 45]). — Let R′ = Z[B,C,D−1, 1/N ] ⊂ R.
The scheme Spec(R′/FN) represents the “naive” Γ1(N) moduli problem of [Jin13]
over Z[1/N ].

For every k ⩾ 2, the element Fk ∈ Q[B,C] now coincides with Fk of Derickx and
Van Hoeij [DvH14]. It is irreducible in Q[B,C] for k ⩾ 4 because the curve Y 1(k)C
is irreducible.

By taking B, C, D, Fk and Pk modulo FN , we get modular functions b, c, d, fk

and pk on Y 1(N) for all k,N ∈ Z with k ⩾ 2, N ⩾ 4, and N ∤ k. Derickx and Van
Hoeij show ([DvH14, Section 2]) that they are modular units, that is, functions with
divisors supported at the cusps. Let O(Y 1(N))∗ ⊂ Q(X1(N))∗ be the group of all
modular units. Our main result is the following.

Theorem 2.6 (Rephrasing of Theorem 1.1 above, [DvH14, Conjecture 1]). —
The group O(Y 1(N))∗/Q∗ is the free abelian group on f2, f3, f4, . . . , f⌊N/2⌋+1.

The first, small step of the proof is to rewrite the theorem in terms of pk using the
following lemma.

Lemma 2.7. — For all k ⩾ 3, we have
⟨F2, F3, . . . , Fk⟩ · Q∗ = ⟨B,D, P4, P5, . . . , Pk⟩ · Q∗.

Proof. — Let Lk be the left hand side and Rk the right. We prove by induction
on k that we have Lk = Rk and that all irreducible factors of both D and Pd for
d ⩽ k are elements of Lk.
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For k = 3, we have F3 = B and F2 = B4/D by definition, hence also D = F 4
3 /F2 .

As B and D/B3 = F−1
2 F3 are irreducible, the induction hypothesis follows for k = 3.

Suppose now that the induction hypothesis holds for k = n− 1. By definition Fn

is Pn except for factors in common with D and Pd for d < k, but by the induction
hypothesis all such factors are in Ln−1 = Rn−1. In particular, we get Ln = Rn. The
polynomial Fn is irreducible as mentioned below Proposition 2.5, hence the induction
hypothesis also holds for k = n. □

By Lemma 2.7, we find that Theorem 2.6 is equivalent to the following.

Theorem 2.8. — The group O(Y 1(N))∗/Q∗ is the free abelian group on b, d, p4,
p5, . . . , p⌊N/2⌋+1.

Remark 2.9. — The division polynomials ψk, and hence the polynomials Pk and
the functions pk, satisfy the following recurrence relation. For all m,n, k ∈ Z, we
have

ψm+nψm−nψ
2
k = ψm+kψm−kψ

2
n − ψn+kψn−kψ

2
m.

Taking (k,m, n) = (1, l + 1, l) or (1, l + 1, l − 1), we get
ψ2l+1 = ψl+2ψ

3
l − ψ3

l+1ψl−1,

ψ2l = ψ−1
2 ψl

(
ψl+2ψ

2
l−1 − ψl−2ψ

2
l+1

)
,

which gives pk for all k ⩾ 5 starting from the initial terms p1, p2, p3, p4 of Example 2.2.

Example 2.10. — The curve X1(5) is defined by 0 = F5 = C − B, that is, by
B = C. We compute

p1 = 1 p6 = −c14

p2 = −c p7 = c19

p3 = −c3 p8 = c25

p4 = c6 p9 = −c32

p5 = 0 p10 = 0
d = c5 · (c2 − 11c− 1),

which, except for p5 and p10, all lie in the group generated by b = c and d.

Example 2.11. — The curve X1(6) is defined by 0 = F6 = C2 − B + C, that is,
by B = C(C + 1). We compute

p1 = 1 p6 = 0
p2 = −c · (c+ 1) p7 = −c20 · (c+ 1)16

p3 = −c3 · (c+ 1)3 p8 = −c26 · (c+ 1)21

p4 = c6 · (c+ 1)5 p9 = c33 · (c+ 1)27

p5 = c10 · (c+ 1)8 p10 = c41 · (c+ 1)33

d = c6 · (c+ 1)3 · (9c+ 1),
which indeed all, except for p6, lie in the group generated by b = c(c+ 1), d and p4.
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2.2. Siegel functions

This section defines the Siegel functions of Theorem 1.2 and recalls their transforma-
tion properties and q-expansions. Our main reference for this section is Fricke [Fri11].
We start by recalling the well-known Weierstrass sigma function and Dedekind eta
function.

2.2.1. Lattices, sigma and eta

By a lattice, we will always mean a discrete subgroup Λ ⊂ C of rank 2. For example,
for τ ∈ H, we have a lattice Λτ = τZ + Z. For ω1, ω2 ∈ C with τ = ω1/ω2 ∈ H, we
have a lattice ω1Z + ω2Z = ω2Λτ .

We define the Weierstrass sigma function by ([Fri11, (1) on p. 258])

σ(z,Λ) = z
∏

w ∈ Λ
ω ̸=0

(
1 − z

w

)
exp

(
z

w
+ 1

2

(
z

w

)2
)

for all z ∈ C and all lattices Λ ⊂ C. We also define σ(z, τ) = σ(z,Λτ ).
Let ζ(z,Λ) =

d
dz

σ(z,Λ)
σ(z,Λ) be the logarithmic derivative of σ ([Fri11, (6) on p. 209]). It

is quasi-periodic in the sense that we have
ζ(z + ωi,Λ) = ζ(z,Λ) + ηi,

for some η1, η2 ∈ C, which we call the basic quasi periods associated to ω1, ω2 [Fri11,
(4) on p. 196]. They satisfy the Legendre relation ω1η2 − ω2η1 = 2πi ([Fri11, (6) on
p. 160]).

Let η (not to be confused with η1 and η2) be the Dedekind eta function

η(τ) = q1/24
∞∏

n=1
(1 − qn) where q = exp(2πiτ) .

2.2.2. Klein forms and Siegel functions

For a = (a1, a2) ∈ Q2 \ Z2, we define the Klein form ta as a function of R-linearly
independent pairs ω1, ω2 ∈ C by

ta(ω1, ω2) = exp
(
−1

2 (a1η1 + a2η2) (a1ω1 + a2ω2)
)
σ (a1ω1 + a2ω2, ω1Z + ω2Z) .

There are many variants of the notation for Klein forms in the literature. Our Klein
form ta equals −σgh in the notation of [Fri11, (6) on p. 451] where (g/N, h/N) = a.

Define for a = (a1, a2) ∈ Q2 \ Z2 the function ta : H → C by
(2.3) ta(τ) = ω−1

2 ta(ω1, ω2),
for any ω1, ω2 ∈ C with ω1/ω2 = τ . Indeed, by [Fri11, (7) on p. 452], this depends only
on a and τ , not on ω1 and ω2. Our ta(τ) is exactly ta( τ

1 ) of Kubert and Lang [KL81,
§ 2.1, p. 27].

Define the Siegel function
ha = 2πη2ta,

which is −i times the function ga of Kubert and Lang [KL81, § 2.1, p. 29].
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Remark 2.12. — Our Klein forms and Siegel functions are the same as those
in Kubert and Lang [KL75, KL77] up to multiplication by a constant and taking
fractional powers. Kubert and Lang do not have the factor 1

2 in the exponent in the
definition of ta(ω1, ω2) ([KL75, p. 176]), but this is either due to a typo in [KL75] or
due to different scaling conventions on e.g. ωi and/or ηi. Indeed, the definition as we
have given it satisfies [KL75, K2 on p. 177], and it would not have done so without
the factor 1

2 .
The notation of Kubert and Lang varies a bit from paper to paper. For details of

the relations between the functions, see the following equalities, where a superscript
II refers to [KL75] and IV to [KL77]. Moreover, in the case of II, a positive integer N
is understood to be fixed and we have a = (r/N, s/N). Up to constant factors, we
have

ta = tIIr,s = tIVa ,

ha =
(
gII

r,s

)1/(12N)
= hIV

a =

gIV
a if 2a ̸∈ Z2,

(gIV
a )2 if 2a ∈ Z2.

Lemma 2.13. — The Siegel functions ha have the following expansions and trans-
formation properties for all a = (a1, a2) ∈ Q2 \ Z.

(1) Write qa = exp(2πia2) · qa1 = exp(2πi(a1τ + a2)). If 0 ⩽ a1 ⩽ 1
2 , then we have

(2.4) ha = c(a)q
1
2(a2

1−a1+ 1
6) (1 − qa)

∞∏
n=1

(1 − qnqa)
(
1 − qnq−a

)
,

where c(a) = i exp(πia2(a1 − 1)) is a constant.
(2) h−a = −ha.
(3) h(a1+n1,a2+n2) = (−1)n1n2+n1+n2e−πi(n1a2−n2a1)h(a1,a2) for all (n1, n2) ∈ Z2.
(4) h(a1+1,0) = −h(a1,0).
(5) ha up to multiplication by roots of unity depends only on the class of a in

(Q2/Z2)/{±1}.
(6) For all

M =
(
α β
γ δ

)
∈ SL2(Z),

we have
(2.5) ha(Mτ) = ϵ(M)haM(τ),

where ϵ(M) ∈ C∗ is such that for all τ ∈ H,
(2.6) η(Mτ)2 = ϵ(M)(γτ + δ)η(τ)2.

(7) The function ϵ from (2.6) satisfies ϵ(M)12 = 1 and

ϵ

((
1 0
1 1

))
= exp(2πi/12)−1.

Proof. — The expansion in (1) is Fricke [Fri11, (7) on p. 452], but note that our q
is the square of the q of Fricke. Equivalently, the expansion is −i times Kubert and
Lang’s ([KL75, K5 on p. 178] or equivalently [KL81, K4 on p. 29]).
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The identity h−a = −ha of (2) follows from the anti-symmetry of σ as a function
of z.

The identity of (3) is Fricke [Fri11, (4) on p. 451]. Identity (4) is a special case
of (3).

Observation (5) follows immediately from (2) and (3).
As η24 has level 1, if we let ϵ(M, τ) = η(Mτ)2/((γτ + δ)η(τ)2), then we get

ϵ(M, τ)12 = 1, hence ϵ(M, τ) is independent of τ , call it ϵ(M). A numerical evaluation
yields the example value of (7), so it remains to prove equality (2.5) in (6).

First, [Fri11, (3) on p. 451] (equivalently [KL75, K1 on p. 177]) gives

ta

(
M
(
ω1

ω2

))
= taM

((
ω1

ω2

))
.

In terms of τ = ω1/ω2, this reads (by (2.3))

(γω1 + δω2)ta(Mτ) = ω2taM(τ).

Now multiply this equality by 2π and (2.6) to get

(γω1 + δω2)ha(Mτ) = (γτ + δ)ω2ϵ(M)haM(τ),

which proves (2.5). □

We use the shorthand notation

(2.7) Hk = h(k/N,0),

which by Lemma 2.13(1) is the same as (1.4).

2.3. Remarks on the difference between Γ1 and Γ1

The curve that we denote by Y 1(N) is often denoted Y1(N), mostly by authors
who prefer to use the group Γ1(N) instead, which is defined as in (1.2) with c ≡ 0
instead of b ≡ 0. We now give two remarks for how to adapt Theorem 1.2 to that
situation. We will not use these remarks in the rest of this article.

Remark 2.14. — There is a complex analytic isomorphism
Γ1(N)\H −→ Y 1(N)(C)

τ 7−→ (C/Λτ , 1/N mod Λτ ) .
(2.8)

The field of functions on X1(N) defined over Q with that choice of parametrization
is the field of meromorphic functions on Γ1(N)\H∗ whose expansion at the cusp 0
is rational, that is, the functions in Q((exp(−2πiτ−1))).

The isomorphism Γ1(N)\H → Γ1(N)\H obtained by composing the two paramet-
rizations (2.8) and (1.3) is given by(

0 1
−1 0

)
: τ 7→ −τ−1.

In particular, if one uses the parametrization (2.8), then in Theorem 1.2 one should
replace Hk(τ) by Hk(−1/τ).

ANNALES HENRI LEBESGUE



Generators of the group of modular units for Γ1(N) over Q 105

Remark 2.15. — There is another complex analytic isomorphism, given by

Γ1(N)\H −→ Y 1(N)(C)
τ 7−→ (C/ΛNτ , τ mod ΛNτ ) .

(2.9)

The field of functions on X1(N) defined over Q with that choice of parametrization
is the field of meromorphic functions on Γ1(N)\H∗ whose expansion at the cusp ∞
is rational, that is, the function is in Q((exp(2πiτ))).

The isomorphism Γ1(N)\H → Γ1(N)\H obtained by composing the two paramet-
rizations (2.9) and (1.3) is given by

( N 0
0 1 ) : τ 7→ Nτ.

In particular, if one uses the parametrization (2.8), then in Theorem 1.2 one should
replace Hk(τ) by Hk(Nτ), which is denoted by iEk(τ) in [Yan04, Yan09].

From now on, we only use the parametrization (1.3), and will not use Remark 2.14
or 2.15.

3. Relating the functions

We now give the first part of the proof of the main theorems: relating the groups
given by the sets of generators of the theorems. We start by expressing the functions
Pk and pk of Section 2.1 in terms of the Weierstrass σ-function.

3.1. The Weierstrass sigma function

To any lattice Λ ⊂ C of rank two and any z ∈ C, we associate an elliptic curve E
with E(C) = C/Λ and a point P = (z mod Λ).

The curve E has a classical Weierstrass equation

(3.1) W : y2 = 4x3 − g2(Λ)x− g3(Λ),

where g2(Λ) = 60∑ω ∈ Λ\{0} ω
−4 and g3(Λ) = 140∑ω ∈ Λ\{0} ω

−6. We let ∆ = ∆(Λ) =
16(g2(Λ)3 − 27g3(Λ)2) be the discriminant of the right hand side of (3.1).

After putting the pair (E,P ) in Tate normal form, we get B and C as functions in
z and Λ. In particular, we get expressions for Pk in terms of z and Λ. The following
result gives these expressions.

Proposition 3.1. — For any positive integer k, let

Φk = σ(kz,Λ)
σ(z,Λ)k2 and U = Φ3

Φ3
2
.

Then we have
Pk = Uk2−1Φk and D = U12∆.
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Proof. — Let ℘(z,Λ) be the Weierstrass ℘-function and ℘′ = d
dz
℘. Then for any

v ∈ C, we get a point (x, y) = (℘(v,Λ), ℘′(v,Λ)) on (3.1).
We put the classical Weierstrass equation W in Tate normal form relative to the

point P = (x0, y0) = (℘(z, τ), ℘′(z, τ)). The transformation is of the form X =
u2(x+ t), Y = 1

2u
3(y+ rx+ s) with u, r, s, t functions of z and τ , where X and Y are

the coordinate functions for the Tate normal form and x and y are the coordinate
functions for the classical Weierstrass equation.

First, we compute the discriminant D of the Tate normal form. Completing the
square to get an equation of the form Y ′2 = X3 + · · · does not affect the discriminant
or the X-coordinates of the two-torsion points. Note that the discriminant of a
Weierstrass equation (Y ′)2 = X3 + · · · is 16 times the discriminant of the right hand
side. Let Q1, Q2, Q3 be the points of order 2 on E. Then

D = 16 · (X(Q1) −X(Q2))2 · (X(Q2) −X(Q3))2 · (X(Q3) −X(Q1))2

= 16u12 · (x(Q1) − x(Q2))2 · (x(Q2) − x(Q3))2 · (x(Q3) − x(Q1))2

= u12∆.

Similarly, we have

(3.2) Pk = k
√ ∏

Q ∈ E[k]\{0}
(X −X(Q)) = u(k2−1)k

√ ∏
Q ∈ E[k]\{0}

(x− x(Q)),

where the square roots are is chosen to be monic polynomials times 1 or times
Y + 1

2a1X + 1
2a3.

We use the classical identity

(3.3) (−1)k+1 k
√ ∏

Q ∈ E[k]\{0}
(x− x(Q)) = σ(kz,Λ)

σ(z,Λ)k2 .

For a proof, see De Looij [dL10, Theorem 2.7]. The factor (−1)k+1 does not appear
in [dL10], but our choice of square root differs from the choice in loc. cit. by exactly
that factor. The proof in [dL10] works by fixing the lattice Λ and showing that both
sides are elliptic functions for that lattice with the same divisor and with equal
leading terms in their power series.

Combining (3.2) and (3.3), we get

(3.4) Pk = (−u)k2−1 σ(kz,Λ)
σ(z,Λ)k2 = (−u)k2−1Φk,

so it suffices to prove −u = U .
Proving −u = U could be done by a lengthy computation of the Tate normal form

from W . Instead, simply note

1 = B3

B3 = P3

P 3
2

= (−u)32−1

(−u)3(22−1)
Φ3

Φ3
2

= (−u)−1U,

which finishes the proof. □

Next, we specialize to Λ = Λτ and z = τ/N consistently with the identification
Γ1(N)\H → Y 1(N)(C) of (1.3).
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Corollary 3.2. — For any integer N ⩾ 4 and any positive integer k with N ∤ k,
let

ϕk =
σ
(

kτ
N
, τ
)

σ
(

τ
N
, τ
)k2 and u = ϕ3

ϕ3
2
.

Then the following identities of meromorphic functions hold on X1(N):

pk = uk2−1ϕk and d =
(
2πη2u

)12
.

Proof. — Take Λ = Λτ and z = τ/N in Proposition 3.1, and use the well known
equality ∆(Λτ ) = (2πη(τ)2)12 (see [Fri11, (6) on p. 313]). □

3.2. The functions pk in terms of the functions Hk

Now that we have expressed the functions pk in terms of Weierstrass σ-functions,
we use these expressions to express the pk in terms of Siegel functions. Recall the
functions Hk from (2.7).

Lemma 3.3. — Let
t = H2

1H3

H3
2
.

Then for all integers N ⩾ 4 and k ∈ Z \NZ we have

pk = tk
2−1Hk

H1
and d = (tH1)12.

Proof. — In the notation of Corollary 3.2, we have

ϕk = σ(kτ/N, τ)
σ(τ/N, τ)k2 = t(k/N,0)

tk
2

(1/N,0)
= Hk

Hk2
1

(
2πη2

)k2−1

= Hk

H1

(
H1

2πη2

)1−k2

,

u = ϕ3ϕ
−3
2 = t ·

(
H1

2πη2

)
,

pk = uk2−1ϕk = tk
2−1Hk

H1
,

d =
(
2πη2u

)12
= (tH1)12,

so the result follows. □

Let m = ⌊N/2⌋. Next, we express pm+1 in terms of Hk with 1 ⩽ k ⩽ m using the
periodicity and symmetry of Hk in k.

Lemma 3.4. — Let t be as in Lemma 3.3, let m = ⌊N/2⌋, and let v = tgcd(2,N)N .
Then we have

pm+1 =

vpm, if N is odd,
vpm−1, if N is even.
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Moreover, each of d, p2, p4, p5, p6, . . . , pm+1 (including −b = p2) is of the form

f =
m∏

k=1
H

e(k)
k ,

where for every k ∈ {1, 2, . . . , m} we have e(k) ∈ Z, and where we have

(3.5)
m∑

k=1
e(k) ∈ 12Z and

m∑
k=1

k2e(k) ∈ Ngcd(N, 2)Z.

Proof. — Suppose first that N is odd, so N = 2m+ 1. Lemma 3.3 gives

pm+1 = t(m+1)2−1Hm+1/H1

and by Lemma 2.13 (parts (2) and (4)), we have Hm+1 = −H−(m+1) = Hm, hence

pm+1 = t2m+1tm
2−1Hm/H1 = vpm.

If N is even, then N = 2m and t(m+1)2−1 = t4mt(m−1)2−1, so the same calculation
gives pm+1 = vpm−1.

A straightforward calculation verifies (3.5) for each expression in Lemma 3.3 or 3.4.
Indeed, the value of (∑k e(k),∑k k

2e(k)) ∈ Z2 is(
1, n2

)
for Hn for all n ∈ Z with N ∤ n,

(0,−1) for t,
(12, 0) for d,
(0, 0) for pn with 1 ⩽ n ⩽ m (Lemma 3.3),

(0,−gcd(N, 2)N) for v and hence for pm+1 (Lemma 3.4). □

3.3. The functions Hk in terms of pk

Now that we have expressions of pk in terms of Hk, it is a matter of solving a
system of linear equations to obtain the reverse expressions. These expressions are
given in the following result.

Proposition 3.5. — Let m = ⌊N/2⌋. Given e ∈ Zm satisfying (3.5) and given

f =
m∏

k=1
H

e(k)
k ,

let α = 1
12
∑

k e(k) and β = (Ngcd(2, N))−1∑
k k

2e(k). Then we have

(3.6) f = dα
(
pN−m−1p

−1
m+1

)β
m∏

k=1
p

e(k)
k ,

where p1 = 1, p2 = −b, p3 = −b3, and N −m− 1 ∈ {m− 1,m}, so

f ∈ ⟨−b, d, p4, p5, . . . , pm+1⟩ ⊂ O
(
Y 1(N)

)∗
.
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Proof. — Note that Lemma 3.3 gives
m∏

k=1
p

e(k)
k = t

∑
k

k2e(k)2(tH1)−
∑

e(k)
m∏

k=1
H

e(k)
k = vβd−α

m∏
k=1

H
e(k)
k .

As Lemma 3.4 gives v = pm+1p
−1
N−m−1, this proves (3.6). The formulas for p1, p2 and

p3 are in Example 2.2. □

The following result sums up in how far we have now proven the main theorems.

Proposition 3.6. — Let S be the group of functions of the form ∏m
k=1 H

e(k)
k satis-

fying (3.5). If S has rank m and Q∗ ·S contains O(Y 1(N))∗, then all of Theorems 1.1,
1.2, 2.6 and 2.8 hold.

Proof. — Let T = ⟨−b, d, p4, p5, . . . , pm+1⟩ ⊂ O(Y 1(N))∗. Lemma 3.3 and Propo-
sition 3.5 show S = T , hence also Q∗ · S ⊂ O(Y 1(N))∗.

The leading coefficients of the q-expansions of the functions Hk(τ) are all i by (1.4),
hence the leading coefficients of q-expansions of the elements of S are all 1, so
S ∩ Q∗ = 1. In particular, the rank of (Q∗ · S)/Q∗ equals the rank of S.

Under the assumption that this rank is m and that Q∗ · S contains O(Y 1(N))∗,
we get exactly Theorems 1.2 and 2.8.

By Lemma 2.7, Theorem 2.8 implies Theorems 1.1 and 2.6. □

4. q-expansions and Gauss’ Lemma

Recall that S is the group of functions of the form ∏m
k=1 H

e(k)
k satisfying (3.5),

where m = ⌊N/2⌋. As stated in Proposition 3.6, it now suffices to prove that S has
rank m and O(Y 1(N))∗ ⊂ Q∗ · S.

Section 4.1 uses q-expansions to show that the Siegel functions Hk for k =
1, 2, . . . , m are multiplicatively independent. The group they generate then has
the correct rank.

Section 4.2 combines this with Gauss’ Lemma for power series to show that
O(Y 1(N))∗ is contained in Q∗ · ⟨H1, H2, . . . , Hm−2, Hm−1, H

1/2
m ⟩.

Section 4.3 then uses explicit SL2-actions to find restrictions on the exponent
vectors, finishing the proof of O(Y 1(N))∗ ⊂ Q∗ · S.

4.1. The rank

Proposition 4.1. — The functions Hk for k = 1, 2, . . . , m are multiplicatively
independent modulo C∗. In other words, if

m∏
k=1

H
e(k)
k ∈ C∗

with e ∈ Zk, then e = 0.
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Proof. — We prove the result using q-expansions. Following [KL77], we define the
reduced form f ∗ of a non-zero Laurent series f to be f divided by its lowest-degree
term, so f ∗ = 1 + higher order terms.

From (1.4), we have for 0 < k ⩽ N/2:

H∗
k =

(
1 − qk/N

) ∞∏
n=1

(
1 − qn+k/N

) (
1 − qn−k/N

)

=

1 − qk/N +O
(
q1−k/N

)
if 0 < k < N/2, and

1 − 2q1/2 +O
(
q3/2

)
if k = N/2.

(4.1)

Suppose that we have ∏m
k=1 H

e(k)
k ∈ C∗ for some 0 ̸= e ∈ Zm. Let k0 be the smallest

positive integer with e(k0) ̸= 0. Then (4.1) gives

(4.2) 1 =
m∏

k=k0

(H∗
k)e(k) =

1 − e(k0)qk0/N +O
(
q(k0+1)/N

)
if 2k0 ̸= N , and,

1 − 2e(k0)qk0/N +O
(
q(k0+1)/N

)
if 2k0 = N .

We get e(k0) = 0, contradiction. □

Corollary 4.2. — Let S be the group of functions ∏He(k)
k satisfying (3.5).

Then the image of S in O(Y 1(N))∗/Q∗ has finite index.

Proof. — Proposition 4.1 shows that S has rank m. We have

rk
(
O
(
Y 1(N)

)∗
/Q∗

)
⩽ #

({
cusps of X1(N)

}/
Gal(Q/Q)

)
− 1.

As the right hand side is m by [DvH14, Definition 1 in §2], this proves the result. □

We recover the following consequence of the Manin-Drinfeld theorem [Man72,
Dri73], which states that the cuspidal parts of modular Jacobians are torsion.

Corollary 4.3. — The group
Div0,cusp (X1(N))
O (Y 1(N))∗ /Q∗

of cuspidal divisor classes of X1(N) is finite.

Proof. — As seen in the proof of Corollary 4.2, the two groups in the quotient
both have rank m. □

4.2. Roots of power series

In Corollary 4.2, we have shown that every f ∈ O(Y 1(N))∗ can be expressed as a
product of powers c∏m

k=1 H
e(k)
k with e ∈ Qm, c ∈ C∗ and m = ⌊N/2⌋. The current

section is devoted to proving that the exponent e(k) is an integer for k ̸= N/2. The
key idea, taken from Kubert and Lang [KL77] is to combine Gauss’ lemma for power
series with the fact that q-expansions of modular forms have bounded denominators.

We call a power series f ∈ Z[[x]] primitive if the ideal generated by its coefficients
is (1). We then have the following variant of Gauss’ lemma.
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Lemma 4.4. — Let f, g ∈ Z[[x]] be primitive power series. Then fg ∈ Z[[x]] is
also primitive.

Proof. — Given any prime number p, take the lowest-order terms of (f mod p)
and (g mod p) (which exist by primitivity). Their product is a non-zero term of
(fg mod p), so p ∤ fg. □

We say that a Laurent series f ∈ Q((x)) has bounded denominators if there is a
non-zero d ∈ Z such that df ∈ Z((x)).

Corollary 4.5. — Let f, g ∈ Q[[x]] be power series with bounded denominators
and constant term 1. If fg is in Z[[x]], then f, g ∈ Z[[x]].

Proof. — Take a, b ∈ Z such that af and bg are primitive in Z[[x]]. Then (ab)(fg)
is primitive by Lemma 4.4, hence a, b ∈ {±1}. □

Proposition 4.6 (Special case of Kubert and Lang [KL77, Lemma 3.1]). — Let
f be a modular unit with rational q-expansion, that is, in Q((q1/M)) for some M .
Then the q-expansion has bounded denominators.

Proof. — See [KL77, Lemma 3.1] for the proof, of which we give a sketch here.
After multiplying by a suitable power of η24, the function becomes a cusp form. The
vector space of cusp forms of given weight is generated by forms with integer Fourier
expansions, hence the result follows. □

For a formal power series f with constant coefficient 1 and for a, b ∈ Z \ {0},
we define fa/b to be the unique bth root of fa with constant coefficient 1. For a
holomorphic, non-vanishing function f on H, we denote by fa/b any holomorphic
bth root of fa.

Proposition 4.7. — Let f be a modular function of any level and suppose that
we have

f = c
m∏

k=1
H

e(k)
k

with e ∈ Qm, c ∈ C∗ and m = ⌊N/2⌋. Then for all k we have e(k) ∈ Z if 2k ̸= N
and e(k) ∈ 1

2Z if 2k = N .

Proof. — Taking reduced forms (as defined in the proof of Proposition 4.1) on
both sides, we get

(f ∗)n =
m∏

k=1
(H∗

k)n·e(k)

for some n with ne ∈ Zm. The right hand side has integer coefficients, so by Propo-
sition 4.6 and Corollary 4.5, we find that f ∗ has integer coefficients.

We prove the result by induction on k. Suppose it is true for all k < k0. We have

f ∗ ·
k0−1∏
k=1

(H∗
k)−e(k) =

m∏
k=k0

(H∗
k)e(k) ,

and the left hand side has integer coefficients. By (4.2), the right hand side has a
coefficient −e(k0) if 2k0 ̸= N and −2e(k0) if 2k0 = N , hence the result follows. □
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4.3. Using the action

Next, we use the action of SL2. Recall m = ⌊N/2⌋.

Theorem 4.8. — Let f ∈ O(Y 1(N))∗. Then f = c
∏m

k=1 H
e(k)
k , where c ∈ Q∗ and

e ∈ Zm are uniquely determined by f . Moreover, the vector e satisfies (3.5) that is,
it satisfies ∑

k

e(k) ∈ 12Z and
∑

k

k2e(k) ∈ Ngcd(N, 2)Z.

Proof. — By Corollary 4.2, we find that f can be written as c∏He(k)
k with e(k) ∈ Q.

Here e is uniquely determined by Proposition 4.1. Moreover, the numbers e(1), e(2),
. . . , e(m− 1) are in Z by Proposition 4.7. Next, we prove (3.5), which also implies
e(m) ∈ Z.

Consider the matrix
M =

(
1 0
1 1

)
∈ Γ1(N).

Then we have f(Mτ) = f(τ), so we inspect the action of M on the functions Hk.
Parts (6) and (7) of Lemma 2.13 give Hk(Mτ) = exp(2πi/12)−1Hk(τ) for this
matrix M . In particular, we get ∑k e(k) ∈ 12Z.

Next, consider the matrix

M =
(

1 N
0 1

)
∈ Γ1(N).

Again we have f(Mτ) = f(τ), that is, f(τ + N) = f(τ), which shows that the
q-expansion of f is in C((q1/N)). In the product expansion (2.4), we consider the
leading term −iq 1

2 (a2
1−a1+ 1

6 ) (with a1 = k/N) of Hk. As the leading term of f is a
constant times a power of q1/N , we get

1
12N2

m∑
k=1

e(k)
(
6k2 − 6kN +N2

)
∈ 1
N

Z.

As we already have ∑ e(k) ∈ 12Z, we get
m∑

k=1
e(k)

(
k2 − kN

)
∈ 2NZ ⊂ NZ,

hence in particular ∑ e(k)k2 ∈ NZ. If N is odd, then this finishes the proof of (3.5).
If N is even, then we get

(1 −N)
m∑

k=1
e(k)k2 =

m∑
k=1

e(k)
(
k2 − k2N

)

≡
m∑

k=1
e(k)

(
k2 − kN

)
≡ 0 mod 2NZ,

and since N − 1 is coprime to 2N , this proves (3.5) and hence e(m) ∈ Z.
It remains to prove c ∈ Q∗. Let g = f/c, which is in O(Y 1(N))∗ by Proposition 3.5.

Then c = f/g is a constant in O(Y 1(N))∗, hence is in Q∗. □
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Proof of the main theorems. — Proposition 3.6 states exactly that Theorem 4.8
and the rank statement in Proposition 4.1 imply Theorems 1.1, 1.2, 2.6 and 2.8. □

Remark 4.9. — Results similar to Theorem 4.8, but assuming integral exponents
e(k) and working with Γ(N), are already known. These results are insufficient for
proving our main results as they assume that e(k) is integral.

In the special case where N is coprime to 6, they can be used to an alternative proof
of our Theorem 4.8 as follows. If N is odd, then Proposition 4.7 gives e ∈ Zm. For
e ∈ Zm, Kubert and Lang [KL81, Theorem 5.2 and 5.3 on pp. 76–78 in Chapter 3] give
conditions on e for f to be modular of level Γ(N). The conditions are complicated,
but if N is coprime to 6, then the conditions give exactly (3.5), which reproves
Theorem 4.8 in that case.

5. Bonus section

There are two results that we get almost for free after all the work that was done
towards the main theorem. We give them here.

5.1. Ring generators

In this section, we give complex analytic functions that generate the ring O(Y 1(N))
itself, instead of its unit group.

Theorem 5.1. — The ring O(Y 1(N)) is generated as a Q-algebra by the three
functions

b = −t3H2

H1
, c = −H4H

4
1H

−5
2 , d−1 = (tH1)−12,

where

t = H2
1H3

H3
2
.

Proof. — By Proposition 2.5, we have O(Y 1(N)) = Q[b, c, d−1]. We have b = −p2
and c = p4/b

5 by Example 2.2. Lemma 3.3 gives the formulas in terms of Siegel
functions. □

Theorem 5.1 is comparable to the main result of Koo and Yoon [KY17]. Indeed,
both give a set of complex analytic functions that generate the Q-algebra O(Y 1(N)),
and through the isomorphism of Remark 2.15 also the Q-algebra of holomorphic
modular functions on Γ1(N)\H with rational Q-expansion. The methods are however
completely different.

As for the results themselves, they are different as well. First of all, the main result
of [KY17] (that is, Theorems 4.5 and 5.2 and Corollary 5.3 of loc. cit.) are for N = 2,
N = 3 and all N divisible by 4, 5, 6, 7 or 9, while our result is for all N ⩾ 4. Second,
we give a uniform formula with three generators, while [KY17] has a few different
cases, each with 2 to 6 generators.
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5.2. Expressions in terms of the Jacobi theta function

In this section, we express the functions pk in terms of the Jacobi theta function.
This has two applications. First of all, this theta function can be numerically eval-
uated efficiently, as in Labrande [Lab18]. Second, it has a natural generalization to
the moduli space of higher-dimensional abelian varieties (Riemann theta functions),
potentially opening our results to future higher-dimensional generalisations.

For c, d ∈ R, the theta function θ[c, d] with characteristic (c, d) is the function in
z ∈ C and τ ∈ H defined by

θ[c, d](z, τ) =
∑

n ∈ Z
exp

(
πi(n+ c)2τ + 2πi(n+ c)(z + d)

)
= eπic2τ+2πic(z+d) · θ[0, 0](z + cτ + d, τ).

We will use a special case, known as the Jacobi theta function θ1 = θ[1
2 ,

1
2 ] =

θ[−1
2 ,−

1
2 ], that is,

θ1(z, τ) = i
∑

n ∈ Z
(−1)nq

1
2(n− 1

2)2

eπi(2n−1)z.

Proposition 5.2. — Consider the functions Tk given by

Tk = θ1

(
kτ

N
, τ

)
.

Then we have for all integers k

pk =
(
T 2

1 T3
T 3

2

)k2−1
Tk

T1
and d =

(
T 3

1 T3
T 3

2 η

)12

.

Proof. — Let θ′
1(z, τ) = d

dz
θ1(z, τ). Let Λ = 2ω1Z + 2ω3Z with τ = ω3/ω1 ∈ H.

Then (6.22) in Theorem 6.5 on page 199 of [Mar67] states (note that our q is the
square of the q in loc. cit.)

σ(z,Λ) = 2ω1
θ1(z/(2ω1), τ)

θ′
1(0, τ) exp

(
η1z

2/(2ω1)
)
.

We choose ω1 = 1
2 and ω3 = 1

2τ to get σ(z, τ) = c1 exp(c2z
2)θ1(z, τ), where c1 =

θ′
1(0, τ)−1 and c2 = η1 are functions of τ independent of z. We apply this to the

formulas in Corollary 3.2 and get

ϕk :=
σ
(

kτ
N
, τ
)

σ
(

τ
N
, τ
)k2 = c1−k2

1
Tk

T k2
1
,

u := ϕ3

ϕ3
2

= c1
T 3

1 T3
T 3

2
,

pk = uk2−1ϕk =
(
u

c1

)k2−1 Tk

T k2
1

=
(
T 2

1 T3
T 3

2

)k2−1
Tk

T1
,

d = (2πη2u)12.
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This proves the formula for pk. To prove the formula for d, it suffices to prove
2πη2u = ±u/(c1η), or in other words, 2πη3 = ±θ′

1(0, τ). But that is exactly the
formula for θ′

1(0, τ) in the middle of page 210 of Markushevich [Mar67] together with
(6.52) on page 211 of loc. cit. (In fact, reading further in [Mar67], we get that the
sign is +, but we do not need this.) □
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