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ABSTRACT
We consider the problem of explicitly computing Beilinson–Bloch heights of homologically trivial cycles on
varieties defined over number fields. Recent results have established a congruence, up to the rational span
of logarithms of primes, between the height of certain limit mixed Hodge structures and certain Beilinson–
Bloch heights obtained from odd-dimensional hypersurfaces with a node. This congruence suggests a new
method to compute Beilinson–Bloch heights. Here we explain how to compute the relevant limit mixed Hodge
structures in practice, then apply our computational method to a nodal quartic curve and a nodal cubic
threefold. In both cases we explain the nature of the primes occurring in the congruence.
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1. Introduction

Let Y be a smooth projective variety of dimension n = 2p − 1 defined over a number field K. When Z is an algebraic cycle on Y of
codimension p with trivial class in homology, we have the Beilinson–Bloch height ht(Z) ∈ R associated to Z, at least under standard
assumptions [1, 3], see Definition 6.3.

When Y is a curve, i.e., n = 1, the cycle Z is a degree-zero divisor on Y . The height ht(Z) always exists and coincides with the
non-normalized Néron–Tate height [13, 23] of the point [Z] ∈ Jac(Y) determined by Z on the Jacobian of Y . The recent work [5] by
Van Bommel, Holmes and Müller gives an effective method for computing ht(Z) in this setting.

As far as we know, no general technique exists that is able to handle height computations in higher dimensions. In this article we
will consider a setting which, in light of recent results [2, 4], becomes accessible to computations. One goal of this article is to introduce
a computational technique to carry out the strategy (Section 3) and to demonstrate it on a three dimensional variety (Section 5).

1.1. A class of cycles obtained from nodal hypersurfaces

Let X0 ⊂ Pn+1 be a geometrically integral projective hypersurface of dimension n = 2p − 1 defined over a number field K and with
a single ordinary double point. We assume X0 has degree at least three to control its topology, see below.

Let Y denote the proper transform of X0 under the blow-up of Pn+1 at the node of X0, and let Q ⊂ Y be the exceptional quadric.
This quadric is smooth and even-dimensional; we let �1, �2 denote the two rulings of Q. The degree constraint on X0 forces that the
difference Z = �1 − �2 of the two rulings is a homologically trivial cycle of codimension p on Y , see, e.g., [24, Theorem 2.1].

In this article, we will consider the Beilinson–Bloch height ht(Z) of Z on Y . Note that this real number exists under standard
assumptions on Z and Y , and could be viewed as a canonical height attached to the singular variety X0. Recent work has related the
height ht(Z) to limiting periods associated to any smoothing deformation of X0 as we explain below.

1.2. Relation to limiting periods

Consider a flat family of projective hypersurfaces π : X → S, where X is smooth, S is a quasi-projective smooth curve over K with a
base point 0 ∈ S(K), the family is smooth over S \ {0}, and the central fiber π−1(0) is identified with our nodal hypersurface X0. We
call the family X/S a smoothing deformation of X0.

Let χ ∈ �S,0 � K be a non-zero cotangent vector. When σ : K ↪→ C is a complex embedding, we obtain an associated complex
deformation Xσ from X by extending scalars. The cotangent vector χ and the complex deformation Xσ together determine a limit
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mixed Hodge structure Lχ ,σ . It is a (twisted) biextension, as follows from Picard–Lefschetz theory, and it therefore has an associated
biextension height ht(Lχ ,σ ) in the sense of Hain [14]. We define ht(Lχ ) := ∑

σ ht(Lχ ,σ ), where the sum ranges over all complex
embeddings of K. It is not difficult to show that the equivalence class ht(Lχ ) mod log |Q×| is independent of the choice of χ and, in
fact, of the deformation X/S.

With these notations, the first named author has recently made the following conjecture.

Conjecture 1.1. The real numbers ht(Z) and ht(Lχ ) differ by an element of Q · log |Q×|.
Let us refer to the difference ht(Z)−ht(Lχ ) inQ·log |Q×| as the error term. Beilinson recently announced a proof of Conjecture 1.1,

see [2]. His approach does not appear to give an explicit description of the error term in Q · log |Q×|. The error term is required to
compute the height ht(Z) explicitly using the limiting periods. We have given an explicit formula for the error term in dimension
one [4], and a future work by the authors is aimed at describing the error term in all dimensions.

1.3. Aim of this paper

In this article, we will demonstrate how to compute a numerical approximation of the real number ht(Lχ ) appearing in Conjecture 1.1.
After discussing an example dealing with a nodal plane curve, the case when X0 is a nodal cubic threefold will be the focus of

this paper. In this setting, we prove that ht(Z) is equal to the Néron–Tate height of a divisor on an associated sextic space curve.
Combining this result with our method to compute ht(Lχ ) allows us to study the error term in Conjecture 1.1. In this case, we can
give a geometric explanation for the primes supporting the error term.

Our result that allows us to reduce the determination of ht(Z) to a height computation on a curve is as follows. Suppose that the
nodal cubic threefold X0 ⊂ P4 is such that the resolution Y of X0 has a proper regular model over the ring of integers of K. In this
case, the height ht(Z) exists unconditionally. The moduli of lines contained in X0 and passing through the node of X0 is a smooth
sextic curve C ⊂ P3. Let g denote the difference of the two trigonal pencils on C. We denote by ht(g) the non-normalized Néron–Tate
height of the class of g in the Jacobian of C.

Theorem (Theorem 5.1). With the set-up above, and in particular, assuming a regular model for our threefold, the Beilinson–Bloch
height ht(Z) and the non-normalized Néron–Tate height ht(g) coincide, i.e., ht(Z) = ht(g).

1.4. Overview of this paper

The limit mixed Hodge structures that appear in the context of this article are biextensions. We recall the relevant properties of
biextensions in Section 2. The method of computing the periods of a biextension limit mixed Hodge structure is given in Section 3.
We demonstrate our method of computing limit periods and our main theorem from [4] on quartic plane curves in Section 4. In
Section 5 we demonstrate our method on a nodal cubic threefold. We apply Theorem 5.1 to determine and study the error term
appearing in Conjecture 1.1 in an example. The proof of Theorem 5.1 appears in Section 6.

2. Computing heights of biextensions

In this section we briefly recall the notion of a biextension, and explain how to compute the height of a biextension in practice. For a
more detailed discussion we refer to [4] and [14].

For any integral mixed Hodge structure V we will write VZ ⊂ VR ⊂ VC for the underlying Z-lattice and real and complex vector
spaces. The Hodge filtration on V is denoted by F•V ⊂ VC and the weight filtration by W•V ⊂ VZ. Note that for biextensions we
work with a stronger Z-filtration instead of the usual Q-filtration.

Definition 2.1. Let H be a pure integral Hodge structure of weight −1. A biextension of H is an integral mixed Hodge structure B
together with an identification of the weight graded pieces GrW B with Z(1) ⊕ H ⊕ Z.

Remark 2.2. Some authors do not consider the identification as part of the data. In that case, a choice of generators for W−2B � Z(1)

and W0B/W−1B � Z is called an orientation for B.

Similarly, one has a notion of real biextensions in the category of real (as opposed to integral) Hodge structures. In [14] it is
shown that the set of isomorphism classes of real biextensions of H is canonically in bijection with the set R of real numbers. This
identification allows one to attach a real number ht(B) to any biextension B, by passing to the associated real biextension and taking
its image in R. The real number ht(B) is called the height of B in the sense of Hain.

We have shown in [4] that the height ht(B) can be computed in terms of a period matrix of B. We first recall how this notion is
defined.

Definition 2.3. Let B be a biextension on the pure integral Hodge structure H. Let γ 0, . . . , γ 2k+1 be a basis of BZ that respects the
weight filtration in the sense that
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• γ 0 = 2πi ∈ Z(1),
• γ 1, . . . , γ 2k mod W−2B is a basis for HZ,
• γ 2k+1 mod W−1B = 1 ∈ Z.

Next, let ω1, . . . , ωk+1 ∈ F0B be a basis that respects the weight filtration in the sense that

• ω1, . . . , ωk mod W−2B ⊗ C is a basis for F0H,
• ωk+1 mod W−1B ⊗ C = 1 ∈ F0Z.

For each i, write ωi = ∑
j aijγ j with uniquely determined aij ∈ C. The matrix PB = (

aij
)

is called a period matrix of the biextension
B (determined by the two chosen ordered bases).

Note that we can write a period matrix PB in block form as follows:

PB =

⎛
⎜⎜⎝ b PH 0

c a 1

⎞
⎟⎟⎠ , (1)

where PH ∈ Ck×2k, a ∈ C1×2k, b ∈ Ck×1, and c ∈ C. We observe that PH is a period matrix of the pure Hodge structure H. The
vectors a, b can be viewed as representing the extensions W0B/W−2B ∈ Ext1(Z, H) and W−1B ∈ Ext1(H,Z(1)).

Definition 2.4. Denote the real and imaginary parts of the matrix PH by Re PH and Im PH . The height of the period matrix PB is
given by the expression

ht(PB) = −2π

(
Im c − Im a ·

(
Im PH
Re PH

)−1
·
(

Im b
Re b

))
. (2)

We have the following result, see [4, Theorem 2.9].

Theorem 2.5. Let B be a biextension on the pure integral Hodge structure H. Let PB be a period matrix of B. Then we have an equality
ht(B) = ht(PB), where ht(B) denotes the height of B in the sense of Hain.

Theorem 2.5 allows to compute the height of a biextension in a straightforward manner once a period matrix is known.

2.1. Twisted biextensions

In geometrical contexts one often encounters Tate twists of biextensions.

Definition 2.6. An integral mixed Hodge structure V is called a k-twisted biextension if its Tate twist V(−k) is a biextension. The
height of V , notation ht(V), is defined to be the height in the sense of Definition 2.4 of the biextension V(−k).

Remark 2.7. The notion of a period matrix of a biextension naturally generalizes to the notion of a period matrix of a twisted
biextension. Let B be a biextension. When V = B(k) is a k-twisted biextension, and PV is a period matrix of V , then (2πi)kPV is a
period matrix of B.

3. Computing limit mixed Hodge structures of families of hypersurfaces

In [25], the third named author describes an algorithm for translating the periods of one smooth hypersurface to another. Starting
with the periods of the Fermat hypersurface, one can compute the periods of any other smooth hypersurface. Below, we describe an
adaptation of this method to compute the limit periods of an odd dimensional nodal hypersurface.

Although general limit mixed Hodge structures can be computed by the ideas presented here, the restriction to simple nodal
degenerations significantly simplifies the exposition. Therefore, we will stick to this simple case, which suits our intended applications.

3.1. The generic period matrix

Let n = 2p − 1 with p ∈ Z>0 an odd positive integer. We consider a family of n-dimensional hypersurfaces Xt = V(ft) ⊂ Pn+1,
smooth for t in a small open disk around 0 in C, and simply degenerating to a hypersurface X0 = V(f0) with a single ordinary double
point. Note that a simple degeneration is one where the total space is smooth, and hence, the central fiber appears with multiplicity 1.
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We will assume ft ∈ Q(t)[x0, . . . , xn+1]. In principle, the constraints on the base field can be relaxed. For example, in theory,
we can work with C instead of Q. However, computations require an effective subfield of C. Also, we could assume ft depends
on t algebraically rather than rationally without losing computability. These relaxations do not significantly impact the discussion
below.

Let μ1(t), . . . , μ2k+2(t) ∈ Hn(Xt ,C) be a basis, varying holomorphically in t, such that μ1(t), . . . , μk+1(t) are in FpHn(Xt ,Z). We
recall from [12] that we can represent each μi(t) as the residue of a meromorphic top form on Pn+1 \ Xt with polar locus Xt and with
the numerator depending polynomially on t.

Let γ0(t), . . . , γ2k+1(t) ∈ Hn(Xt ,Z) be a locally constant basis near a regular value t = t0 of the family Xt . Let P(t) =
(∫

γj(t) μi(t)
)

denote the period matrix of Xt with respect to these bases, and write Pij(t) for the (i, j)th entry of P(t).

3.2. The Gauss–Manin connection

Using Griffiths–Dwork reduction applied to the meromorphic form on Pn+1 \Xt used to represent μi(t), we can compute differential
operators Di ∈ Q(t)[ ∂

∂t ] for i = 1, . . . , k + 1 such that Di annihilates the ith row of P(t). We refer to [10, 12, 17, 20] for details; the
exact procedure we use in our implementation is explained in [25, Sections 2.4–2.5].

The next step is to compute the functions Pij(t) = ∫
γj(t) μi(t) from the Di. It turns out that it already suffices to determine the

value P(t0) at a regular point t0 ∈ Q, as all the derivatives of Pij(t) at t = t0 then easily follow by another set of Griffiths–Dwork
reduction operations [25, p. 3003]. Now the main result of [25] and the accompanying Magma [6] package PeriodSuite allow us
to compute such an initial value P(t0), which means approximating it to arbitrary precision with rigorous error bounds.

Each Di is a Picard–Fuchs differential equation [9]. It follows that one can find a basis of solutions to each Di at t = 0 where
each basis element is a polynomial in log(t) with Q[[t]] coefficients. The SageMath [26] package ore_algebra [18, 21] is able to
perform numerical holomorphic continuation by carrying a basis of solutions at t = t0 to t = 0 along a path on the complex plane
whose interior avoids the singularities of Di.

This gives us the power series expansion of the period matrix,

P(t) ∈ (C[[t]][log(t)])(k+1)×2(k+1). (3)

Our computations yield an approximation of the complex power series coefficients (with rigorous error bounds), and a truncation of
the power series to some finite power.

3.3. Computing the limit mixed Hodge structure

Recall that we are assuming a simple degeneration at t = 0 to a hypersurface with a single ordinary double point. Picard–Lefschetz
theory tells us that in fact P(t) = P0(t)+P1(t) log(t) with P0, P1 ∈ C[[t]]. The matrix P1(t) determines the monodromy around t = 0.
Although P1(0) is only known approximately, it is necessarily approximating a matrix with integer coefficients. Therefore rounding
its entries to the nearest integer gives us the matrix representation of the monodromy operator T in terms of the homology basis γi.
This computation is rigorous when the error of the entries is less than 0.5.

From P1(0) we immediately obtain the weight filtration of the limit mixed Hodge structure on Hn(Xt ,Z) by computing Wn−1 =
Im(T−1), Wn = Ker(T−1), Wn+1 = Hn(Xt ,Z). From this point onward, possibly upon changing the homology basis appropriately,
we assume that our γi(t)s actually respect the weight filtration. In our situation this means that P1(0) will have only a single corner
entry equal to ±1 and 0s everywhere else. We choose our basis so that the corner entry of P1(0) is −1. This choice of sign is a
consequence of the Picard–Lefschetz formula if one insists that γ 0 · γ 2k+1 = 1.

The matrix P0(0) will be the period matrix of the limit mixed Hodge structure at t = 0, with columns respecting the weight
filtration. Our limit mixed Hodge structure will be a (−p)-twisted biextension in the sense of Definition 2.6. The orientation of the
underlying biextension is not intrinsic, but we choose it to be compatible with P1(0).

It follows from the formula in Definition 2.4 that the height of a biextension is independent of a simultaneous change of signs in
the generators of a biextension. As the matrix P1(0) fixes generators for GrW

n−1 and GrW
n+1 up to a common sign change, we see that

the height of our limit mixed Hodge structure is well defined.
By Theorem 2.5 and Remark 2.7, computing the height of the period matrix (2πi)−pP0(0) gives us the height of the limit mixed

Hodge structure associated to the family Xt at t = 0.

Remark 3.1. A detailed account of the limit mixed Hodge structure in the case where Xt is a family of curves is given in [7, Chapter 1].

Remark 3.2. Note that we are only using one half of a basis for cohomology for our computations, namely μ1(t), . . . , μk+1(t).
The complex conjugate of this basis completes the basis. It is therefore no mystery that we can recover the 2(k + 1) × 2(k + 1)

integral monodromy operator T from the (k + 1) × 2(k + 1) integral matrix P1(0). In practice, it is often easier to observe that the
row space of P1(0) is identified with Wn−1, and Wn is the orthogonal space to Wn−1 with respect to the intersection product on
homology.
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4. Computing the height on nodal curves

Our main result in [4] is a formula expressing the Néron–Tate height of a divisor p − q on a curve C in terms of a limiting period
associated to a smoothing of the nodal curve C/(p ∼ q). In this section, we recall the precise statement and then apply the method
in Section 3 to compute heights on curves.

This exercise serves two purposes. First, we illustrate the general principle of how a refinement of Conjecture 1.1 can be used
to compute Beilinson–Bloch heights using limiting periods. Second, we do this in a setting where our calculation, and hence our
implementation of the limit period computation, can be verified by the methods of [5, 15, 22].

4.1. Limit periods and heights for curves

In this subsection, we recall the set-up and the main result of [4]. Let K be a number field. Let X0 be a geometrically integral projective
curve over K containing a single node. Let C be the normalization of X0 and let p, q be the two points in the preimage of the node of
X0 in C. After a quadratic base change, we may assume p, q are defined over K. We are interested in the height ht(Z) of the degree-zero
divisor Z = p − q on the curve C. We recall that ht(Z) equals the non-normalized Néron–Tate height of the class determined by the
divisor Z in the Jacobian of C.

Let OK be the ring of integers of K and let C be a proper regular model of C over OK . Let p, q denote the Zariski closures on C of
p, q ∈ C(K). Let S be a quasi-projective smooth curve over K with a base point 0 ∈ S(K) and let X → S be a smoothing deformation
of X0 over S.

The Kodaira–Spencer map yields an identification �S,0
∼→ �C,p ⊗ �C,q of K-vector spaces. The latter space carries an integral

structure coming from the regular model C, namely the OK-lattice �C/OK ,p ⊗OK �C/OK ,q ⊂ �C,p ⊗K �C,q. By transport of
structure we obtain an OK-lattice in �S,0 determined by C. This integral structure allows us to define a norm ‖χ‖ ∈ R≥0 for any
χ ∈ �S,0.

Let � be aQ-divisor on C supported only on the closed fibers of C overOK such that p−q+� is of degree zero on every component
of every fiber of C over OK . It is not hard to see using elementary intersection theory on the regular arithmetic surface C that such a
� always exists.

For any two Q-divisors D, E on C whose supports are disjoint over C we define

(D, E)fin :=
∑
p

ιp(D, E) log Nm(p), (4)

where the sum runs over all maximal ideals of OK , where ιp refers to the intersection multiplicity of the two divisors on C over p, and
where Nm(p) denotes the norm of p. The sum is indeed finite, and can be understood as the finite part of the Arakelov intersection
of D and E .

Theorem 4.1 (Main Theorem of [4]). Let χ ∈ �S,0 be a non-zero cotangent vector. Let ht(Lχ ) be the biextension height of the limit
mixed Hodge structure Lχ as defined in Section 1.2. There is an equality of real numbers

ht(Z) = ht(Lχ ) + log‖χ‖ + 2 (p · q)fin − (
(p − q) · �

)
fin , (5)

with ht(Z) the non-normalized Néron–Tate height of the divisor Z = p − q on the curve C.

We observe from (4) that indeed the error term ht(Z) − ht(Lχ ) lies in Q · log |Q×|. We also observe that Theorem 4.1 gives a
new method to compute Néron–Tate heights on curves. The aim of the remainder of this section is to present and discuss an explicit
example of such a computation.

4.2. Nodal plane quartics

For our example, we will consider a nodal plane quartic, that is, a nodal hypersurface X0 ⊂ P2 of degree 4. The method in Section 3
is applicable in this setting as well as Theorem 4.1. First, we set-up a deformation of X0 and then we briefly describe how to compute
the non-Archimedean terms in equation (5).

4.2.1. Set-up and notation
Let f ∈ Z[x, y, z] be a primitive, homogeneous polynomial of degree four. Suppose that X0 = V(f ) ⊂ P2

Q
is geometrically irreducible

with a single node at the origin [0 : 0 : 1] with the two tangents at the origin defined over Q.
Take S = A1 with parameter t and consider the family of quartics X/S cut out by f + t · z4 for t ∈ A1. We note that the fibers Xt

are generically smooth and degenerate simply to the nodal curve X0 at the origin.
We write χ for the element dt|0 ∈ �S,0. We first calculate the height of the limit mixed Hodge structure Lχ determined by the

family Xt and our choice for χ following the method described in Section 3.
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4.2.2. The non-Archimedean terms
Besides the height of the limit mixed Hodge structure, there are three terms in equation (5) which are of non-Archimedean origin.
We will describe here how to compute these terms.

Let C denote the normalization of X0 with two designated points p, q over the node. As before, we write Z = p − q. The curve C
is a smooth genus two curve over Q.

With f defined over Z and primitive, we can consider the naive plane model X0 ⊂ P2
Z

of X0 defined by f . Blow-up the Zariski
closure in X0 of the node of X0 to get an arithmetic surface C′. The generic fiber of C′ is C. Let C be any proper regular model resolving
the singularities of C′.

Computing the term � on C is straightforward linear algebra once we have the intersection matrix of the components of all
singular fibers of C. The Magma package Regular models of arithmetic surfaces by Donnelly computes regular models of smooth
(weighted) plane curves over number fields; this includes the aforementioned intersection matrices as well as a method to determine
the components to which a given rational point of C specializes. The value of

(
(p − q) · �

)
fin can thus be computed.

For the term (p, q)fin, one could also use the general purpose code of [5, Section 2]. The integral structure on �C,p ⊗ �C,q can be
computed using the definition in a straightforward fashion, although it is cumbersome. Alternatively, both ‖χ‖ and (p, q)fin can be
worked out in our setting by computing formally locally around the node to simplify calculations.

4.2.3. An explicit quartic
We demonstrate the procedure above with a specific quartic X0 and the deforming family Xt :

(198x2 + 325xy + 75y2)z2 + (x2y + y3)z + x4 + tz4. (6)

Running the method of Section 3 on Xt , we found that the height ht(Lχ ) of the associated limit mixed Hodge structure Lχ equals

− 12.220335776489136661293609468838149530311651887679 . . . (7)

We note that the quadratic part of the equation for X0 and its discriminant factor as follows:

198x2 + 325xy + 75y2 = (11x + 15y)(18x + 5y), 
 = (5 · 43)2. (8)

By a local calculation on our regular model C we find that

log‖χ‖ = 4 log(5 · 43), 2 (p · q)fin = 2 log(5 · 43) . (9)

Finally the closed fibers of C are all irreducible so that we may take � = 0 (start with the naive model in P(1, 3, 1) attained by blow-up
and use Donnelly’s work). Theorem 4.1 implies that

ht(Z) = ht(Lχ ) + 6 log(5 · 43)

= 20.003492392276840127148001610594058520196773347220 . . .
(10)

Our calculations were performed using a combination of Magma [6] and SageMath [26]. The period calculations took a few
minutes with over 200 digits of precision.

4.2.4. Verifying the height computation
The normalization C of X0 can be given in P(1, 3, 1) by the equation

2X5Z − 4X4Z2 + X3Y + 7X3Z3 + X2YZ + 68X2Z4 + 179XZ5 + Y2 − 53Z6. (11)

The two points p, q ∈ C ⊂ P(1, 3, 1) that lie over the node of X0 are

(4 : −2055 : 15) , (13 : 2465 : −5). (12)

The Néron–Tate height ht(Z) of the divisor Z = p − q on C can alternatively be calculated based on (11) and (12) by the built-in
Magma package Computation of canonical heights using arithmetic intersection theory due to Müller with contributions by Holmes
and Stoll. We checked the outcome in (10) against the output of this built-in package. The results agree to numerical precision. The
computations here took a few seconds.

4.2.5. Remarks about performance
It is clear that for the calculation of Néron–Tate heights on genus two curves, the built-in Magma package is to be preferred for the
economy of time. Indeed, experimental genus 2 height computation within the framework of the Birch–Swinnerton-Dyer conjecture
dates back over two decades [11] and had time to mature.

We view our calculations with genus 2 curves merely as a proof of concept for computing heights via limit mixed Hodge structures.
The asymptotic computational complexity of period computation by deformation has not been fully analyzed, although comparative
performance for very high precision appears to be excellent [25, Section 5]. The method presented here—and, in particular, its
implementation—is only a few years old. We expect significant improvements in performance over the years.
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5. Computing the height on nodal threefolds

In this section we will consider Conjecture 1.1 in the setting of a nodal cubic threefold X0 ⊂ P4. Using the notation there, we would
like to study the “error term” ht(Z)−ht(Lχ ) for a smoothing deformation of X0. In particular, we would like to show with an example
that the primes supporting this error term have a simple geometric explanation, analogous to Theorem 4.1.

The difficult part is to compute the Beilinson–Bloch height ht(Z) on the proper transform Y of X0. However, we show that ht(Z)

is, in this case, equal to the Néron–Tate height of a natural point in the Jacobian of a curve C canonically associated to X0.

5.1. Dimensional reduction in the height computation

Working over a characteristic 0 field, let X0 ⊂ P4 be a cubic threefold with a single ordinary double point x ∈ X0. Blow-up x in P4

and let Y ⊂ Blx P4 be the proper transform of X0. Let Q ⊂ Y be the exceptional quadric of the blow-up and let �1, �2 ⊂ Q be two
lines from distinct rulings of Q. We will consider Z = �1 − �2 ∈ CH1(Y).

Let C ⊂ P3 � P(TxP4) be the space of lines passing through x and contained in X0. Then C is a smooth complete intersection
curve of degree (2, 3), hence a canonically embedded genus four curve. It is classical that Y � BlC P3 and Q ⊂ Y is the proper
transform of the unique quadric containing C. We refer to Section 6 for more details. Let gi be the intersection of �i with C and
consider g = g1 − g2. Note that g1 and g2 define the two trigonal pencils on C.

Suppose now that X0 and the two rulings of Q are defined over a number field K. Assume that the smooth variety Y has a proper
regular model over the ring of integers of K. We will denote by ht(g) the non-normalized Néron–Tate height of the distinguished
point g in the Jacobian of C.

Theorem 5.1. The Beilinson–Bloch height ht(Z) exists and equals ht(g).

The proof of this theorem is rather lengthy and we will postpone it to Section 6. Note that a height computation for a codimension
two cycle on a threefold is in general inaccessible whereas a Néron–Tate height computation on a curve is comparatively accessible
(but, in practice, not without limitations).

5.2. Setting up the deformation

We work with a nodal cubic threefold X0 ⊂ P4 defined over Q having a simple node at the origin [0 : 0 : 0 : 0 : 1] and given as the
zero locus of a primitive polynomial F ∈ Z[x, y, z, w, u].

Let U ⊂ P4 be the affine open chart where u is set to 1 and write

F|U = f2 + f3 (13)

with fd ∈ Z[x, y, z, w] homogeneous of degree d. The associated genus four curve C is the complete intersection C = V(f2, f3) ⊂ P3.
As a deformation of X0 we pick the family of hypersurfaces Xt = V(Ft) with

Ft := F + t · u3, t ∈ C. (14)

We note that the generic member of this family is smooth, and that the Xt degenerate simply into the threefold X0. Let χ = dt|0 as
usual.

Example 5.2. For an explicit example, we choose

f2 = xy − zw,
f3 = x2w + y2w − w3 + 5z3 + 2xy2.

Applying the method in Section 3 we find that the limit mixed Hodge structure Lχ associated to the family Xt at t = 0 has height:

ht(Lχ ) = 1.5338985286038602474748214314768611462429296785346 . . . (15)

It took about 2 hours to compute this number to 195 digits of rigorous precision on a CPU with 2,3 GHz Quad-Core Intel Core i7.

5.3. Computing the Néron–Tate height on the associated curve

We next address the Néron–Tate height on the genus four curve C. Let g1, g2 denote the two trigonal pencils on C and write g = g1−g2.
We choose four degree three divisors Di, Ei ∈ |gi|, i = 1, 2, so that the supports of the divisors D1, D2, E1, E2 are all disjoint.

Following [13] we have

ht(g) = 〈D1 − D2, E1 − E2〉NT, (16)
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where 〈·, ·〉NT denotes the classical Néron height pairing, and a canonical decomposition

〈D1 − D2, E1 − E2〉NT = 〈D1 − D2, E1 − E2〉∞ +
∑
p

〈D1 − D2, E1 − E2〉p (17)

of the Néron pairing as a sum of an Archimedean contribution 〈D1 − D2, E1 − E2〉∞ and non-Archimedean contributions 〈D1 −
D2, E1 − E2〉p indexed by the prime numbers. The sum over the prime numbers is finite, and evaluates as an element of Q · log |Q×|.
We do not define the non-Archimedean contributions here; they are defined in a way comparable to (4).

Example 5.3. We continue with our Example 5.2. Note that each of the degree three divisors Di, Ej on our genus four curve C is given
by a line on the quadric V(xy − zw) ⊂ P3. For the linear system g1, we will use lines of the form

An := V(nx − z, nw − y), n ∈ Z. (18)

For the linear system g2, we will use lines of the form

Bm := V(mx − w, mz − y), m ∈ Z. (19)

We set D1 := C · A−2, D2 := C · B−1, E1 := C · A2, and E2 := C · B0.

5.4. Prime support of the non-Archimedean terms

In principle, the non-Archimedean terms 〈D1 − D2, E1 − E2〉p can be computed in a straightforward manner using a local
regular model of C over Zp. However, available computer implementations for the determination of a regular model require a
smooth (weighted) plane curve over a global field as a starting point. Nevertheless, it is easy to determine the primes p for which
〈D1 − D2, E1 − E2〉p are possibly non-zero.

Let C ⊂ P3
Z

be the naive model of C obtained by taking the zero locus of f2, f3 after clearing denominators and common factors
over the integers. Then 〈D1 − D2, E1 − E2〉p can only be non-zero either if a Di intersects an Ej modulo p, or if the naive integral
model C of C is singular at p. The primes satisfying either of these conditions are easy to compute.

Example 5.4. Continuing with the set-up in Examples 5.2 and 5.3 we find that the divisors may only intersect over the primes 2, 5, 11
whereas the naive model C is singular only over 2, 5, 31949591.

5.5. Computing the Archimedean term

For the moment let C be any smooth projective connected complex curve of positive genus g. In [5, Proposition 3.1] one finds an
expression using theta functions on the Jacobian of C to evaluate Archimedean Néron pairings of the form 〈P1 − P2, E1 − E2〉∞,
where P1, P2 are points on C, and where E1, E2 are divisors of degree g, so that the supports of the divisors P1, P2 and E1, E2 are all
disjoint.

The formula in loc. cit. works as soon as both divisors E1, E2 are non-special. We will compute our pairings 〈D1 − D2, E1 − E2〉∞
by computing pairings 〈P1 − P2, Q1 − Q2〉∞ where P1, P2, Q1, Q2 are four distinct points and appealing to bilinearity. If we assume
that Q1, Q2 are not Weierstrass points of C, then the divisors gQ1, gQ2 are not special and hence we can use [5, Proposition 3.1] to
evaluate g〈P1 − P2, Q1 − Q2〉∞ = 〈P1 − P2, gQ1 − gQ2〉∞. Note that it is easy to avoid Weierstrass points if one is interested, as we
are, in divisors that can be moved in pencils.

Example 5.5. We continue with the choices in Examples 5.2 and 5.3. We used the small adjustment of [5, Proposition 3.1] described
above to compute

〈D1 − D2, E1 − E2〉∞ = −1.7802874760686653617706493582562792250288783953109 . . . (20)

It took 6 minutes to compute this number to approximately 200 digits of precision. We stress that this number depends very much
on the choice of our divisors and not just on g.

5.6. The error term

We will now consider an easily computable set of primes that we expect should contain the support of the error term ht(Z) − ht(Lχ )

in analogy to the case of curves. These are:

• The bad primes of the naive model of the resolution Y of X0. In the case of the nodal cubic threefold, we can take the bad primes
of the naive model C of the associated genus four curve C. In the case of curves, these would be the primes supporting the term(
(p − q) · �

)
fin in Theorem 4.1.
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• The bad primes of the singularity of X0, or equivalently, of the naive model of Q ⊂ Y . These primes are those that divide the
discriminant of the quadric f2 in equation (13). In the case of curves, these would be the primes supporting the term (p · q)fin in
Theorem 4.1.

• The bad primes of the infinitesimal deformation χ . Roughly speaking, these are the primes over which the family Xt does not
smooth out the singularity to first order. Over K, dt|0 cuts out the quadric Q in P3 = P(TxP4) and therefore can be identified
with a rational multiple of f2. We consider the primes supporting this multiple. In the case of curves, these would be the primes
supporting the norm ‖χ‖.

We would like to emphasize that the set of (potentially) bad primes can be found by straightforward computation.

Remark 5.6. The three collections of bad primes above are themselves not intrinsic to X0 or X/S. Rather, they are the result of the
equations, or of the naive integral models, that we are working with. Indeed, in the case of curves, all three of the non-Archimedean
terms, and the primes supporting them, can be changed by changing the regular model. Of course, the total non-Archimedean term
ht(Z) − ht(Lχ ) must remain independent of the regular model.

Example 5.7. We continue with our running example. We would like to verify numerically that the error term ht(Z) − ht(Lχ ) lies in
Q · log |Q×|, and, more precisely, that it is supported on the bad primes of our situation.

The primes over which the naive integral model C of the curve C is singular are 2, 5, 31949591 as stated in Example 5.4. Next, there
are no bad primes coming from the singularity of X0 or the given infinitesimal deformation: the discriminant 
(xy − zw) equals 1
and the generator χ clearly has norm 1.

We know already that the difference

ht(Z) − 〈D1 − D2, E1 − E2〉∞ = ht(g) − 〈D1 − D2, E1 − E2〉∞ (21)

is just the non-Archimedean contribution to the Néron pairing 〈D1 − D2, E1 − E2〉NT. This difference is supported on the primes
2, 5, 11, 31949591 as explained in Example 5.4.

We expect therefore that the difference 〈D1 − D2, E1 − E2〉∞ − ht(Lχ ) is supported on the primes 2, 5, 11, 31949591. We observe
to within numerical precision (195 digits) that

〈D1 − D2, E1 − E2〉∞ − ht(Lχ ) = log(2) − log(5) − log(11), (22)

which verifies our expectation. We observe that not all potentially bad primes contribute to the difference.

6. Proof of Theorem 5.1

We start by recalling a few general results and techniques from Künnemann’s work [19].

6.1. Higher Picard varieties

The following is based on [19, Section 7]. Fix an algebraically closed field k and an integer d ∈ Z≥0. To each smooth projective
integral variety V over k of dimension d and each integer p with 0 ≤ p ≤ d there is associated a higher Picard variety Picp V .
This is an abelian variety, which comes together with an Abel–Jacobi mapping θp : Ap(V) → Picp(V)(k) which is universal for so-
called Picard homomorphisms from Ap(V) to groups B(k) where B is any abelian variety over k. Here Ap(V) denotes the group of
codimension-p cycles on V algebraically equivalent to zero, modulo rational equivalence.

For all smooth projective integral varieties V , W over k, with dim V = d, dim W = e, and all correspondences α ∈ CHe−p+q(W×k
V), we have induced homomorphisms Pic(α) : Picp(W) → Picq(V) of associated Picard varieties, enjoying natural compatibilities
with the Abel–Jacobi mappings.

Furthermore, we have natural isogenies λ
d+1−p
V : Picd+1−p(V) → Picp(V)∨ as well as uniquely determined positive integers kp

V
satisfying the following property: when α ∈ CHp+q(W ×k V) is a correspondence, we have an identity

[kp
V ] ◦ λ

q+1
W ◦ Pic(tα) = [ke−q

W ] ◦ Pic(α)∨ ◦ λ
d+1−p
V (23)

of homomorphisms from Picd+1−p(V) to Pice−q(W)∨, cf. [19, eq. 22]. When C is a smooth projective integral curve, we have k1
C = 1

and λ1
C coincides with minus the canonical principal polarization of Pic1 C.

6.2. Connection with the Néron–Tate pairing

The following is based on [19, Section 8]. Let K be a number field, and let K be an algebraic closure of K. When B is an abelian variety
over K, we denote by 〈·, ·〉B the classical Néron–Tate height pairing on B(K) × B∨(K) induced by the Poincaré bundle [23].

The height pairing in the sense of Beilinson and Bloch [1, 3] of cycles algebraically equivalent to zero can be calculated as a certain
Néron–Tate pairing, using appropriate higher Picard varieties and higher Abel–Jacobi mappings.
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Theorem 6.1. (=[19, Theorem 8.2]) Let VK be a smooth projective geometrically integral variety over the number field K of
dimension d. Let Z1 ∈ Ap(VK) and Z2 ∈ Ad+1−p(VK) be cycles algebraically equivalent to zero on VK . Assume that VK has a
proper regular model over the ring of integers of K. Then the Beilinson–Bloch pairing 〈Z1, Z2〉 between Z1, Z2 exists. Moreover, the
equality

〈Z1, Z2〉 = 1
kp

V
[K : Q]〈θp

V(Z1), λd+1−p
V ◦ θ

d+1−p
V (Z2)〉Picp(VK ) (24)

holds in R.

The following standard property of Néron–Tate height pairings will be used later.

Proposition 6.2. Let f : A → B be a homomorphism of abelian varieties over K. Let f ∨ : B∨ → A∨ be the associated dual morphism.
Then we have 〈f (α), β〉B = 〈α, f ∨(β)〉A for α ∈ A(K), β ∈ B∨(K).

Proof. This follows from the compatibility of the rigidified metrized line bundles (id, f ∨)∗PA and (f , id)∗PB on A × B∨, where PA
resp. PB are the rigidified and canonically metrized Poincaré bundles on A × A∨ resp. B × B∨. See [19, Equation 3].

Definition 6.3. When V has dimension n = 2p − 1 and Z is a homologically trivial codimension-p cycle on V , the Beilinson–Bloch
height ht(Z) is given as (−1)p〈Z, Z〉.

Beilinson’s “arithmetic standard conjectures of Hodge Index type”, see e.g. [19, Conjecture 5.2], predict that ht(Z) ≥ 0. This
explains the insertion of the sign (−1)p in front of the self-pairing in order to obtain the height.

6.3. Weil intermediate Jacobians

The following is based on [19, Sections 10 and 11]. Let V be a smooth projective complex variety. Let Jp(V) = H2p−1(V ,R)/

H2p−1(V ,Z) be the p-th Weil intermediate Jacobian of V . This is a complex abelian variety, receiving an Abel–Jacobi map
�p : CHp(X)0 → Jp(V), with CHp(X)0 the group of codimension-p cycles modulo rational equivalence on V that are homologically
trivial.

Let qp
V : H2p−1(V ,Z) × H2d−2p+1(V ,Z) → Z be the pairing given by Poincaré duality, and take its real linear extension to real-

valued cohomology. Then the pairing H2p−1(V ,R) × H2d−2p+1(V ,R) → C given by (α, β) �→ qp
V(iα, β) + iqp

V(α, β) is non-
degenerate and induces an isomorphism pd: Jp(V) → Jd+1−p(V)∨ of complex abelian varieties.

The following result is implicit in the proof of [19, Theorem 9.1].

Proposition 6.4. There is a natural morphism of abelian varieties jpV : Picp(V) → Jp(V) with kernel contained in the kp
V -torsion and

satisfying the following property. Let pd : Jp(V) → Jd+1−p(V)∨ be the isomorphism induced by Poincaré duality. Then λ
p
V and pd

are compatible in the sense that the equality λ
p
V = jd+1−p,∨

V ◦ pd ◦ jpV holds as maps from Picp(V) to Picd+1−p(V)∨.

6.4. Geometry of nodal cubic threefolds

We elaborate a bit more on the classical geometry of nodal cubic threefolds. For a more detailed discussion of the facts we mention
below we refer to the lecture notes [16, Section 5.1].

Let K be a field of characteristic zero. Let X0 ⊂ P4 be a cubic threefold with a single ordinary double point x. Let Y denote the
proper transform of X0 under the blow-up of P4 at x, let Q ⊂ Y denote the exceptional quadric, let �1, �2 denote two lines from
distinct rulings of Q, and set Z = �1 − �2. Let C ⊂ P3 be the moduli of lines that pass through x ∈ P4 and are contained in X0.
Then C is a canonically embedded genus four curve.

We have a canonical identification Y � BlC P3 obtained from projecting X0 from its node. Let p : Y → P3 be the resulting
projection map, let E = p−1C ⊂ Y be the exceptional divisor of p, and let j : E → Y be the inclusion map.

The operation j∗ ◦ p∗ gives an isomorphism A1(C) � A2(Y) of groups of cycles algebraically equivalent to zero modulo rational
equivalence. We have C � E ∩ Q. The two rulings �1, �2 of Q induce by restriction to C the two canonical trigonal pencils on C
which we call g1 resp. g2. The difference g = g1 − g2 gives a non-trivial element in A1(C).

Proposition 6.5. The isomorphism j∗ ◦ p∗ : A1(C) � A2(Y) described above sends the class of g into the class of Z. In particular, the
cycle Z is algebraically equivalent to zero.

When K is a subfield of C the operation j∗ ◦ p∗ also induces an isomorphism H1(C,Z) � H3(Y ,Z). This isomorphism carries the
intersection pairing q1

C on H1(C,Z) into minus the intersection pairing q2
Y on H3(Y ,Z). This result may be rephrased as saying that

the operation j∗ ◦ p∗ induces a Hodge isometry H1(C,Z) � H3(Y ,Z(1)). We deduce the following proposition.
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Proposition 6.6. (a) The operation j∗ ◦ p∗ gives an isomorphism J1(C) � J2(Y) of Weil intermediate Jacobians. (b) Via this
isomorphism and its dual, the isomorphism induced by Poincaré duality J1(C) � J1(C)∨ is identified with minus the isomorphism
induced by Poincaré duality J2(Y) � J2(Y)∨.

6.5. The Picard variety of the proper transform

We continue with the notation of the previous section, but taking K to be a number field from now on. Note that we may view
j∗ ◦ p∗ as a correspondence α ∈ CH2(C × Y). By applying the formalism as elaborated in Section 6.2 we obtain from this an
isomorphism of Picard varieties Pic(α) : Pic1(C) � Pic2(Y) compatible with the Abel–Jacobi mappings θ1

C : A1(C) → Pic1(C) and
θ2

Y : A2(Y) → Pic2(Y) and the isomorphism A1(C) � A2(Y).

Lemma 6.7. We have an identity Pic(α)(θ1
C(g)) = θ2

Y(Z) of elements of Pic2(Y).

Proof. This follows directly from Proposition 6.5 and the compatibility of the maps discussed above.

Lemma 6.8. Under the isomorphism Pic(α) : Pic1(C) � Pic2(Y) and its dual, the isomorphism λ2
Y is identified with mult(−1) ◦λ1

C.
In particular λ2

Y is a principal polarization of Pic2(Y).

Proof. Let σ : K ↪→ C be a complex embedding of K. Let J1(Cσ ) and J2(Yσ ) denote the first resp. second Weil intermediate Jacobian
associated to Cσ resp. Yσ . Each of the Abel–Jacobi mappings A1(Cσ ) → Pic1(Cσ ), A1(Cσ ) → J1(Cσ ), A2(Yσ ) → Pic2(Yσ )

and A2(Yσ ) → J2(Yσ ) is an isomorphism, and the maps j1Cσ
: Pic1(Cσ ) → J1(Cσ ) and j2Yσ

: Pic2(Yσ ) → J2(Yσ ) are the unique
isomorphisms compatible with these Abel–Jacobi isomorphisms.

Let pdC,σ : J1(Cσ ) � J1(Cσ )∨ be the isomorphism induced by Poincaré duality. By Proposition 6.4 we have that under the
isomorphism j1Cσ

: Pic1(Cσ ) � J1(Cσ ) and its dual, the isomorphism λ1
C,σ : Pic1(Cσ ) � Pic1(Cσ )∨ is identified with pdCσ

. Similarly,
under the isomorphism j2Yσ

: Pic2(Yσ ) � J2(Yσ ) and its dual, the isomorphism λ2
Y ,σ : Pic2(Yσ ) � Pic2(Yσ )∨ is identified with the

isomorphism pdY ,σ : J2(Yσ ) � J2(Yσ )∨ induced by Poincaré duality.
By Proposition 6.6(a) the operation j∗ ◦ p∗ gives rise to an isomorphism J1(Cσ ) � J2(Yσ ). This isomorphism is compatible with

the isomorphisms j1Cσ
: Pic1(Cσ ) � J1(Cσ ) and j2Yσ

: Pic2(Yσ ) � J2(Yσ ) and Pic(α) : Pic1(C) � Pic2(Y). By Proposition 6.6(b) we
have that via the isomorphism J1(Cσ ) � J2(Yσ ) and its dual, the isomorphism pdC,σ is identified with mult(−1) ◦ pdY ,σ .

The lemma follows upon combining these observations.

Lemma 6.9. We have k2
Y = 1.

Proof. From equation (23) we may deduce the identity
[k1

C] ◦ λ2
Y ◦ Pic(α) = [k2

Y ] ◦ Pic(tα)∨ ◦ λ1
C (25)

of homomorphisms from Pic1(C) to Pic2(Y)∨. Each of the homomorphisms Pic(α), Pic(tα)∨ and λ1
C is an isomorphism. By

Lemma 6.8 we have that λ2
Y is an isomorphism. We have noted above that k1

C = 1. As our Picard varieties are positive dimensional
and k2

Y is a positive integer we conclude that k2
Y = 1 as well.

6.6. Finishing the proof

We have now all ingredients available to finish the proof of Theorem 5.1.

Proof of Theorem 5.1. We compute
ht(Z) = 〈Z, Z〉 by Definition 6.3

= [K : Q]〈θ2
Y(Z), λ2

Y ◦ θ2
Y(Z)〉Pic2(YK ) by Theorem 6.1

= [K : Q]〈Pic(α)(θ1
C(g)), λ2

Y ◦ Pic(α)(θ1
C(g))〉Pic2(YK ) by Lemma 6.7

= [K : Q]〈θ1
C(g), Pic(α)∨ ◦ λ2

Y ◦ Pic(α)(θ1
C(g))〉Pic1(CK ) by Proposition 6.2

= −[K : Q]〈θ1
C(g), λ1

C(θ1
C(g))〉Pic1(CK ) by Lemma 6.8

= −[K : Q] 1
k2

Y
〈θ1

C(g), λ1
C(θ1

C(g))〉Pic1(CK ) by Lemma 6.9

= −〈g, g〉 by Theorem 6.1
= ht(g) by Definition 6.3

This completes the proof of Theorem 5.1.
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Remark 6.10. Ceresa and Collino have shown in [8] that when X0 ⊂ P4 is a general threefold of degree at least 5, having a single
ordinary node, the cycle Z is not algebraically trivial. This indicates that in general there might be no direct connection available that
links ht(Z) with a certain Néron–Tate height pairing. Although the strategy implicit in Conjecture 1.1 will continue to hold, we no
longer have the means to check the result.

Acknowledgments

We thank Vasily Golyshev, Matt Kerr, Greg Pearlstein, Matthias Schütt, Duco van Straten, and the anonymous referees for helpful remarks. We thank Raymond
van Bommel, David Holmes and Steffen Müller for sharing with us their code related to [5] and for helpful discussions. We also acknowledge the use of
Magma [6] and SageMath [26] for facilitating experimentation. The third author gratefully acknowledges support from MPIM Bonn.

References

[1] Beilinson, A. (1987). Height pairing between algebraic cycles. In: Current Trends in Arithmetical Algebraic Geometry (Arcata, CA, 1985), vol. 67 of
Contemporary Mathematics. Providence, RI: American Mathematical Society, pp. 1–24.

[2] Beilinson, A. (2023). Height pairing and nearby cycles. Preprint available at arXiv:2301.02630.
[3] Bloch, S. (1984). Height pairings for algebraic cycles. J. Pure Appl. Algebra 34(2–3): 119–145.
[4] Bloch, S., de Jong, R., Sertöz, E. C. (2022). Heights on curves and limits of Hodge structures. Preprint available at arXiv:2206.01220.
[5] Bommel, R. v., Holmes, D., Müller, J. S. (2020). Explicit arithmetic intersection theory and computation of Néron-Tate heights. Math. Comput. 89(321):

395–410.
[6] Bosma, W., Cannon, J., Playoust, C. (1993). The Magma algebra system. I. The user language. J. Symb. Comput. 24(3–4): 235–265. Computational

algebra and number theory (London, 1993).
[7] Carlson, J., Müller-Stach, S., Peters, C. (2017). Period Mappings and Period Domains. Cambridge: Cambridge University Press.
[8] Ceresa, G., Collino, A. (1983). Some remarks on algebraic equivalence of cycles. Pac. J. Math. 105(2): 285–290.
[9] Deligne, P. (1970). Équations différentielles à points singuliers réguliers. Lecture Notes in Mathematics, Vol. 163. Berlin-New York: Springer-Verlag.

[10] Dwork, B. (1962). On the zeta function of a hypersurface. Publications Mathématiques de l’IHÉS 12: 5–68.
[11] Flynn, E. V., Leprévost, F., Schaefer, E. F., Stein, W. A., Stoll, M., Wetherell, J. L. (2001). Empirical evidence for the Birch and Swinnerton-Dyer conjectures

for modular Jacobians of genus 2 curves. Math. Comp. 70(236): 1675–1697.
[12] Griffiths, P. A. (1969). On the periods of certain rational integrals. I. Ann. Math. (2) 90: 460–495.
[13] Gross, B. H. (1986). Local heights on curves. In: Arithmetic Geometry (Storrs, Conn., 1984). New York: Springer, pp. 327–339.
[14] Hain, R. (1990). Biextensions and heights associated to curves of odd genus. Duke Math. J. 61(3): 12.
[15] Holmes, D. (2012). Computing Néron-Tate heights of points on hyperelliptic Jacobians. J. Number Theory 132(6): 1295–1305.
[16] Huybrechts, D. (2022). The geometry of cubic hypersurfaces. Cambridge University Press. Notes available at https://www.math.uni-bonn.de/

people/huybrech/.
[17] Katz, N. M., Oda, T. (1968). On the differentiation of de Rham cohomology classes with respect to parameters. Kyoto J. Math. 8(2): 199–213.
[18] Kauers, M., Jaroschek, M., Johansson, F. (2015). Ore polynomials in Sage. In: Computer Algebra and Polynomials, volume 8942 of Lecture Notes in

Computer Science. Cham: Springer, pp. 105–125.
[19] Künnemann, K. (1999). Higher Picard varieties and the height pairing. Amer. J. Math. 118(4): 781–797.
[20] Lairez, P. (2016). Computing periods of rational integrals. Math. Comput. 85(300): 1719–1752.
[21] Mezzarobba, M. (2016). Rigorous multiple-precision evaluation of D-finite functions in SageMath. Preprint available at arXiv:1607.01967.
[22] Müller, J. S. (2014). Computing canonical heights using arithmetic intersection theory. Math. Comp. 83(285): 311–336.
[23] Néron, A. (1965). Quasi-fonctions et hauteurs sur les variétés abéliennes. Ann. Math. (2) 82: 249–331.
[24] Schoen, C. (1985). Algebraic cycles on certain desingularized nodal hypersurfaces. Math. Ann. 270(1): 17–27.
[25] Sertöz, E. C. (2019). Computing periods of hypersurfaces. Math. Comput. 88(320): 2987–3022.
[26] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.2), 2020. https://www.sagemath.org.

http://arxiv.org/abs/2301.02630
http://arxiv.org/abs/2206.01220
https://www.math.uni-bonn.de/people/huybrech/
https://www.math.uni-bonn.de/people/huybrech/
http://arxiv.org/abs/1607.01967

	Abstract
	1.  Introduction
	1.1.  A class of cycles obtained from nodal hypersurfaces
	1.2.  Relation to limiting periods
	1.3.  Aim of this paper
	1.4.  Overview of this paper

	2.  Computing heights of biextensions
	2.1.  Twisted biextensions

	3.  Computing limit mixed Hodge structures of families of hypersurfaces
	3.1.  The generic period matrix
	3.2.  The Gauss–Manin connection
	3.3.  Computing the limit mixed Hodge structure

	4.  Computing the height on nodal curves
	4.1.  Limit periods and heights for curves
	4.2.  Nodal plane quartics
	4.2.1.  Set-up and notation
	4.2.2.  The non-Archimedean terms
	4.2.3.  An explicit quartic
	4.2.4.  Verifying the height computation
	4.2.5.  Remarks about performance


	5.  Computing the height on nodal threefolds
	5.1.  Dimensional reduction in the height computation
	5.2.  Setting up the deformation
	5.3.  Computing the Néron–Tate height on the associated curve
	5.4.  Prime support of the non-Archimedean terms
	5.5.  Computing the Archimedean term
	5.6.  The error term

	6.  Proof of [thm:threefoldtocurve]Theorem 5.1
	6.1.  Higher Picard varieties
	6.2.  Connection with the Néron–Tate pairing
	6.3.  Weil intermediate Jacobians
	6.4.  Geometry of nodal cubic threefolds
	6.5.  The Picard variety of the proper transform
	6.6.  Finishing the proof

	Acknowledgments
	References


