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Abstract
We exhibit a precise connection between Néron–Tate
heights on smooth curves and biextension heights of
limit mixed Hodge structures associated to smoothing
deformations of singular quotient curves. Our approach
suggests a newway to compute Beilinson–Bloch heights
in higher dimensions.
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1 INTRODUCTION

Let 𝑋0 be an odd-dimensional geometrically integral projective hypersurface of degree at least 3
defined over a number field. Assume that 𝑋0 contains a single nodal singularity. The first author
has recently made the following conjecture.

Conjecture. The following two real numbers coincide, up to an element of ℚ ⋅ log |ℚ×|:
(i) the Beilinson–Bloch height [2, 4, 19] of the difference of the twodifferent rulings on the exceptional

quadric of the blow-up of 𝑋0 in the node; and
(ii) the biextension height [11] of the limit mixed Hodge structure determined by any smoothing

deformation of 𝑋0.

The constraints on𝑋0 are to ensure that the difference of the two rulings is homologically trivial
[15, see proof of Theorem 2.1]. Recently, Beilinson announced a proof of this conjecture [3].
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HEIGHTS ON CURVES AND LIMITS OF HODGE STRUCTURES 341

We give a proof of this conjecture for curves and, in particular, give an explicit formula for the
difference inℚ ⋅ log |ℚ×|. Our approach suggests a newway of computing Beilinson–Bloch heights
in practice that avoids the usual elaborate integrals involved in the Archimedean contributions.

1.1 Deformations and heights

Let 𝐾 be a number field. Let 𝑋0 be a geometrically integral projective curve over 𝐾 containing a
single node. For curves, there is no need to assume that𝑋0 is a hypersurface. Our results generalize
to the case of multiple nodes; see Section 5.4.
We recall that any embedding 𝜎∶ 𝐾 ↪ ℂ together with a first-order smoothing deformation of

𝑋0 determines a limit mixed Hodge structure [14]. For simplicity, and without loss of generality,
we can start with a family of curves 𝜋∶ 𝑋 → 𝑆 where 𝑆 is a quasi-projective smooth curve over 𝐾
with a base point 0 ∈ 𝑆(𝐾), the fibers 𝑋𝑡 = 𝜋−1(𝑡) are smooth for generic 𝑡, 𝑋 is smooth, and we
have 𝑋0 = 𝜋−1(0). Then, each non-zero cotangent vector 𝜒 ∈ Ω𝑆,0 ≃ 𝐾 determines a limit mixed
Hodge structure 𝐿𝜒,𝜎 of biextension type.
The real mixed Hodge structure Re(𝐿𝜒,𝜎) obtained by forgetting the integral structure of 𝐿𝜒,𝜎

almost splits into its weight graded pieces. The obstruction space for the splitting of real biexten-
sions is canonically identified with the real numbers [11]. The height of the biextension 𝐿𝜒,𝜎 is this
obstruction:

ht(𝐿𝜒,𝜎) ∶= obst(Re(𝐿𝜒,𝜎)) ∈ ℝ. (1.1)

We define ht(𝐿𝜒) ∶=
∑
𝜎 ht(𝐿𝜒,𝜎), where the sum ranges over all embeddings of 𝐾 into ℂ.

Given 𝜆 ∈ 𝐾× the height corresponding to the product 𝜆 ⋅ 𝜒 ∈ Ω𝑆,0 satisfies

ht(𝐿𝜆⋅𝜒) = ht(𝐿𝜒) − log |Nm𝐾∕ℚ(𝜆)|, (1.2)

where Nm𝐾∕ℚ ∶ 𝐾 → ℚ is the norm map. Therefore, ht(𝐿𝜒) mod log |ℚ×| is independent of the
choice of 𝜒 and, in fact, of the deformation 𝑋∕𝑆, see for instance Theorem 3.1. This is the height
that is referred to in item (1) above.
Let 𝐶 be the normalization of 𝑋0 and let 𝑝, 𝑞 be the two points in the preimage of the node

of 𝑋0 in 𝐶. For simplicity, assume that 𝑝, 𝑞 are defined over 𝐾. Let ht(𝑝 − 𝑞) ∈ ℝ⩾0 be the (non-
normalized) Néron–Tate height [10, 13] of the linear equivalence class [𝑝 − 𝑞] in the Jacobian
Jac(𝐶) of 𝐶.
Then the conjecture mentioned at the beginning specializes to the following congruence:

ht(𝑝 − 𝑞) ≡ ht(𝐿𝜒) mod ℚ ⋅ log |ℚ×|. (1.3)

Our main theorem is a precise equality in ℝ that implies the congruence in (1.3).

1.2 Statement of the main theorem

Let 𝐾 be the ring of integers of 𝐾 and let ∕𝐾 be a proper regular model of 𝐶. By passing to a
quadratic extension of 𝐾 if necessary, we assume that 𝑝, 𝑞 are defined over 𝐾. Let 𝑝, 𝑞 denote the
Zariski closures on  of 𝑝, 𝑞 ∈ 𝐶(𝐾).
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342 BLOCH et al.

The Kodaira–Spencer map gives a canonical identification Ω𝑆,0
∼
→ Ω𝐶,𝑝 ⊗ Ω𝐶,𝑞 of 𝐾-vector

spaces; see Section 3.1. The latter space admits an integral structure obtained from the regular
model , namely the 𝐾-lattice Ω∕𝐾,𝑝 ⊗𝐾 Ω∕𝐾,𝑞 ⊂ Ω𝐶,𝑝 ⊗𝐾 Ω𝐶,𝑞. By transport of structure
we obtain an𝐾-lattice inΩ𝑆,0 determined by . This integral structure allows us to define a norm‖𝜒‖ ∈ ℝ>0 for 𝜒 ∈ Ω𝑆,0, see (5.3).
LetΦ be aℚ-divisor on  supported only on the closed fibers of ∕𝐾 such that 𝑝 − 𝑞 + Φ is of

degree 0 on every component of every fiber of  over 𝐾 . Such a Φ always exists; see Section 4.1.
Finally, for any two divisors,  on whose supports are disjoint over𝐶wedenote by ( ⋅ )f in

the contribution from the finite places to the Arakelov intersection number of the divisors ,  ;
see (5.11).

Main Theorem. There is an equality of real numbers

ht(𝑝 − 𝑞) = ht(𝐿𝜒) + log ‖𝜒‖ + 2 (𝑝 ⋅ 𝑞)f in −
(
(𝑝 − 𝑞) ⋅ Φ

)
f in
, (1.4)

involving the Néron–Tate height ht(𝑝 − 𝑞) of the divisor 𝑝 − 𝑞 and the biextension height ht(𝐿𝜒)
of the limit mixed Hodge structure 𝐿𝜒 .

Note that the real numbers log ‖𝜒‖ and (𝑝 ⋅ 𝑞)f in lie in log |ℚ×|. However, the intersection num-
ber ((𝑝 − 𝑞) ⋅ Φ)f in lies only in ℚ ⋅ log |ℚ×|, since Φ is a ℚ-divisor. This explains the congruence
condition in (1.3).
We emphasize that the equality (1.4) suggests a newway of expressing Beilinson–Bloch heights,

not just for curves but in general. A generalization of our proof to higher dimensions is the subject
of current research by the authors.
In the companion paper [5], we describe how to numerically compute the

height of a limit mixed Hodge structure associated to any smoothing of a nodal
projective hypersurface of odd dimension, following the ideas in [16]. As an appli-
cation we numerically verify the conjecture stated above for various nodal cubic
threefolds.

1.3 Overview of the paper

In Section 2,we give an explicit formula to compute the height of a biextension from itsmixed peri-
ods (Theorem 2.9). This section includes an overview of biextensions and their heights, following
Hain [11].
In Section 3, we express the biextension height of the limit mixed Hodge structure 𝐿𝜒 as a

regularized limit period integral on the normalization 𝐶 of 𝑋0 (Theorem 3.1).
In Section 4, we recall Néron’s local pairings, define regularized local Néron pairings, and prove

a local-to-global formula for regularized Néron pairings (Proposition 4.8).
In Section 5 we realize the height of the limit mixed Hodge structure 𝐿𝜒 as a regularized

Archimedean Néron pairing evaluated at the divisor 𝑝 − 𝑞 (Theorem 5.1). We then explicitly
compute the regularized non-Archimedean pairing for the divisor 𝑝 − 𝑞 (Theorem 5.2). Our local-
to-global formula for regularized pairings completes the proof of the main theorem.We finish the
paper by indicating how the result generalizes to the case of multiple nodes.
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HEIGHTS ON CURVES AND LIMITS OF HODGE STRUCTURES 343

2 BIEXTENSIONS, PERIODMATRICES ANDHEIGHTS

The goal of this section is to express the height of a biextension in a way amenable to calculation.
More precisely, we give an explicit formula for the height of a biextension in terms of a period
matrix of the biextension; see Theorem 2.9.
We start this section by recalling the notion of biextensions and their heights. Then we describe

the period matrix of a biextension. Then we state and prove our formula for the height of a
biextension. We finish this section with a brief discussion of twisted biextensions.
Throughout this section, 𝐻 denotes a pure integral Hodge structure of weight −1. Very little

would be lost for our purposes if one were to take 𝐻 = H1(𝐶, ℤ(1)) for a smooth proper curve 𝐶.
A polarization on𝐻 is not needed to define or compute the height.

2.1 Biextensions and their heights

We follow Hain’s article [11] closely. For any integral mixed Hodge structure 𝑉 we will write
𝑉ℤ ⊂ 𝑉ℝ ⊂ 𝑉ℂ for the underlying ℤ-lattice and rational, real, and complex vector spaces. The
Hodge filtration on 𝑉 is denoted by 𝐹∙𝑉 ⊂ 𝑉ℂ and the (integral) weight filtration by𝑊∙𝑉 ⊂ 𝑉ℤ.
In general, the weight filtration must be defined on 𝑉ℚ in order to construct an abelian category.
However, to simplify notation for our particular case we will work with weight filtrations defined
on 𝑉ℤ.

Definition 2.1. A biextension of 𝐻 is an integral mixed Hodge structure 𝐵 together with an
identification of the weight graded pieces with ℤ(1) ⊕ 𝐻 ⊕ ℤ, that is,

Gr𝑊 𝐵 = ℤ(1) ⊕ 𝐻 ⊕ ℤ. (2.1)

Following [11], we call 𝐻̂ ∶= Hom(𝐻,ℤ(1)) the dual of𝐻. The dual of 𝐻̂ is canonically isomor-
phic to𝐻. If 𝐵 is a biextension of𝐻 then𝑊−1𝐵 is an extension of𝐻 by ℤ(1), while 𝐵∕𝑊−2𝐵 is an
extension of ℤ by𝐻.

Definition 2.2. The Jacobian 𝐽𝐻 of𝐻 is the complex torus defined by

𝐽𝐻 ∶= 𝐻ℂ∕
(
𝐹0𝐻 + 𝐻ℤ

)
. (2.2)

The Jacobian of 𝐻 parametrizes extensions 0 → 𝐻 → 𝐸 → ℤ → 0, that is we have a canonical
identification

𝐽𝐻 = Ext1MHS(ℤ,𝐻). (2.3)

There is a natural isomorphism between the torus 𝐽𝐻̂ and Ext1
MHS

(𝐻, ℤ(1)), as we can see by
applying Hom(∙, ℤ(1)) to elements of 𝐽𝐻̂ = Ext1

MHS
(ℤ, 𝐻̂).

We see that a biextension 𝐵 of 𝐻 determines a point (𝐵∕𝑊−2𝐵,𝑊−1𝐵) in 𝐽𝐻 × 𝐽𝐻̂. However
𝐵 is not determined by this pair of extensions. Hain [11, Lemma 3.2.5] proves that the moduli of
biextensions (𝐻) of 𝐻 is given by the 𝔾𝑚-torsor associated to a twisted Poincaré bundle over
𝐽𝐻 × 𝐽𝐻̂.
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344 BLOCH et al.

If we forget the integral structure of𝐻 and pass to the associated real Hodge structure, then the
moduli of biextensions becomes much simpler. Let us write Re for the forgetful functor from ℤ-
to ℝ-(mixed) Hodge structures.

Proposition 2.3 [11, Proposition 3.2.8]. There are no non-trivial extensions of ℝ by Re(𝐻) as real
Hodge structures, that is,

Ext1MHSℝ
(ℝ, Re(𝐻)) = 0. (2.4)

Proof. Instead of a quick proof, we will give a longer but somewhat effective proof. Let 𝐸 be an
extension

0 → Re(𝐻) → 𝐸 → ℝ → 0. (2.5)

Choose 𝑠 ∈ 𝐸ℝ and 𝜂 ∈ 𝐹0𝐸 mapping to 1 ∈ ℝ. We have a decomposition 𝐻ℂ = 𝐹
0𝐻 ⊕𝐻ℝ so

we can write 𝜂 − 𝑠 = 𝑓 + 𝑟 with 𝑓 ∈ 𝐹0𝐻 and 𝑟 ∈ 𝐻ℝ. Observe that 𝑠 + 𝑟 = 𝜂 − 𝑓 ∈ 𝐸ℝ ∩ 𝐹0𝐻
splits 𝐸. □

Proposition 2.3 implies that Re(𝐵) has no moduli with respect to the two extensions
(𝐵∕𝑊−2𝐵,𝑊−1𝐵). Nevertheless, such ‘real biextensions’ of Re𝐻 have moduli, which we denote
by ℝ(𝐻).
Definition 2.4. We define a natural map 𝜑∶ ℝ → ℝ(𝐻). Given 𝑐′ ∈ ℝ construct 𝐵 = 𝜑(𝑐′) over
𝐵ℝ = ℝ(1) ⊕ 𝐻ℝ ⊕ ℝ with the obvious weight filtration and pieces of the Hodge filtration 𝐹𝑘𝐵ℂ
for 𝑘 ≠ 0 coming from the direct sum structure. As for 𝑘 = 0, we set 𝐹0𝐵ℂ = 𝐹0𝐻ℂ + ℂ(𝑐

′, 0, 1).

The following statement is a slight modification of [11, Corollary 3.2.9 and Proposition 3.2.13].

Proposition 2.5. The moduli of real biextensions ℝ(𝐻) of Re𝐻 is identified with the real line ℝ
via the map 𝜑 above.

Proof. We describe the inverse map 𝜑−1. Using Proposition 2.3 we split the real extension
𝐵∕𝑊−2𝐵 identifying it with Re𝐻 ⊕ ℝ. As 𝐹0ℝ(1) = 0, there exists a unique 𝜔 ∈ 𝐹0𝐵 lifting
(0, 1) ∈ 𝐵∕𝑊−2𝐵 = Re𝐻 ⊕ ℝ. Choose a section 𝑠 ∈ 𝐵ℝ lifting (0, 1) ∈ 𝐵∕𝑊−2𝐵. Split 𝑊−1𝐵 =

ℝ(1) ⊕ Re𝐻 and write 𝜔 − 𝑠 = (𝑐′ + 2𝜋i ⋅ 𝑟, 0) ∈ 𝑊−1𝐵. Then the section 𝑠 + 2𝜋i ⋅ 𝑟 splits 𝐵ℝ
in such a way that 𝜔 = (𝑐′, 0, 1). □

As the ℝ-extensions of Re𝐻 and Re 𝐻̂ split, the inverse of 𝜑 measures the obstruction for the
real biextension Re𝐵 to split completely into ℝ(1) ⊕ Re𝐻 ⊕ ℝ as a real mixed Hodge structure.
The obstruction map alluded to in the introduction is obst ∶= 𝜑−1.

Definition 2.6. For a biextension 𝐵, the height of 𝐵 is the real number ht(𝐵) ∶= obst(Re(𝐵)).

2.2 Period matrices and their heights

We can represent a biextension with a ‘period matrix’ which requires a choice of coordinates
respecting the weight and Hodge filtrations.
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HEIGHTS ON CURVES AND LIMITS OF HODGE STRUCTURES 345

Let 𝛾0, … , 𝛾2𝑘+1 be a basis of 𝐵ℤ respecting the weight filtration, that is,

∙ 𝛾0 = 2𝜋i ∈ ℤ(1);
∙ 𝛾1, … , 𝛾2𝑘 mod 𝑊−2𝐵 is a basis for𝐻ℤ; and
∙ 𝛾2𝑘+1 mod 𝑊−1𝐵 = 1 ∈ ℤ.

Let 𝜔1, … , 𝜔𝑘+1 ∈ 𝐹0𝐵 be a basis respecting the weight filtration, that is,

∙ 𝜔1, … , 𝜔𝑘 mod 𝑊−2𝐵 ⊗ ℂ is a basis for 𝐹0𝐻; and
∙ 𝜔𝑘+1 mod 𝑊−1𝐵 ⊗ ℂ = 1 ∈ 𝐹0ℤ.

Definition 2.7. For each 𝑖, write 𝜔𝑖 =
∑
𝑗 𝑎𝑖𝑗𝛾

𝑗 with 𝑎𝑖𝑗 ∈ ℂ. We call the matrix 𝑃𝐵 = (𝑎𝑖𝑗) a
period matrix of the biextension 𝐵. We can write the period matrix 𝑃𝐵 as follows:

𝑃𝐵 =

⎛⎜⎜⎜⎜⎜⎝
𝑏 𝑃𝐻 0

𝑐 𝑎 1

⎞⎟⎟⎟⎟⎟⎠
, (2.6)

with 𝑃𝐻 ∈ ℂ𝑘×2𝑘, 𝑎 ∈ ℂ1×2𝑘, 𝑏 ∈ ℂ𝑘×1, and 𝑐 ∈ ℂ.
Denote the real and imaginary parts of 𝑃𝐻 by Re𝑃𝐻 and Im𝑃𝐻 so that 𝑃𝐻 = Re𝑃𝐻 + i Im𝑃𝐻 .

Definition 2.8. The height of the matrix 𝑃𝐵 is given by the formula

ht(𝑃𝐵) = −2𝜋
⎛⎜⎜⎝Im 𝑐 − Im𝑎 ⋅

(
Im𝑃𝐻

Re𝑃𝐻

)−1

⋅

(
Im𝑏

Re 𝑏

)⎞⎟⎟⎠. (2.7)

2.3 A formula for the height of a biextension

The main result of this section is as follows.

Theorem 2.9. Let 𝐵 be a biextension. The height ht(𝐵) in the sense of Hain [11] is equal to the height
ht(𝑃𝐵), as in Definition 2.8, of any period matrix 𝑃𝐵 of 𝐵.

Proof. We prove that ht(𝑃𝐵) equals 𝜑−1(Re 𝐵) by following the proof of Proposition 2.5 above. We
recall the bases 𝛾𝑗, 𝜔𝑖 used to define the period matrix (2.6).
We use the section 𝑠 = 𝛾2𝑘+1 ∈ 𝐵ℝ and let 𝜂 = 𝜔𝑘+1 − 𝑠 mod 𝑊−2𝐵 ⊗ ℂ. Note that 𝜂 lands

in 𝐻ℂ. As an ℝ-vector space we have a decomposition 𝐻ℂ = 𝐻ℝ ⊕ 𝐹0𝐻. Write 𝜂 = 𝑟 + 𝑓 in this
decomposition. As in the proof of Proposition 2.3, 𝜔𝑘+1 − 𝑓 splits Re(𝐵)∕𝑊−2𝐵 = Re𝐻 ⊕ ℝ.
There is a unique lift 𝑓 of 𝑓 to 𝐹0𝐵 and 𝜔 ∶= 𝜔𝑘+1 − 𝑓 is the unique element in 𝐹0𝐵 mapping

to (0, 1) ∈ Re(𝐵)∕𝑊−2𝐵. Let 𝑐 ∈ ℂ be such that 𝜔 = 𝑐 ⋅ 𝛾0 mod 𝛾1, … , 𝛾2𝑘+1. It is now clear that
Re(𝑐 ⋅ 𝛾0) = 𝜑−1(Re 𝐵).
We now express 𝑓 and 𝑐 using the periodmatrix 𝑃𝐵 and the notation of (2.6). The coordinates of

𝜂 ∈ 𝐻ℂ with respect to the basis 𝛾1, … , 𝛾2𝑘 mod 𝑊−2𝐵 are given by 𝑎 ∈ ℂ1×2𝑘. We will compute
the coordinates of𝑓 ∈ 𝐹0𝐻with respect to𝜔1, … , 𝜔𝑘 mod 𝑊−2𝐵 ⊗ ℂ. The projection𝐻ℂ → 𝐹0𝐻
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346 BLOCH et al.

can be factored through Im∶ 𝐻ℂ → i𝐻ℝ and the inverse of Im∶ 𝐹0𝐻 → i𝐻ℝ (as real vector
spaces). Using the real bases 𝜔1, … , 𝜔𝑘, i𝜔1, … , i𝜔𝑘 mod 𝑊−2𝐵 ⊗ ℂ for 𝐹0𝐻 and i𝛾1, … , i𝛾2𝑘
mod 𝑊−2𝐵 ⊗ ℂ for i𝐻ℝ, the map 𝐹0𝐻 → i𝐻ℝ is represented by the matrix(

Im𝑃𝐻

Re𝑃𝐻

)
(2.8)

acting on the right. It follows that the ℂ-coordinates of 𝑓 in 𝜔1, … , 𝜔𝑘 are

[𝑓] ∶= Im𝑎 ⋅

(
Im𝑃𝐻

Re𝑃𝐻

)−1

⋅

(
id𝑘

i ⋅ id𝑘

)
, (2.9)

where id𝑘 is the 𝑘 × 𝑘 identity matrix. Now 𝜔𝑘+1 − 𝑓 has 𝛾0 coordinate

𝑐 = 𝑐 − [𝑓] ⋅ 𝑏. (2.10)

Contracting the two products id𝑘 ⋅𝑏 to 𝑏 and taking imaginary parts gives us the expression (2.7).
For this we note that Re(𝑐𝛾0) = Re(𝑐 ⋅ 2𝜋i) = −2𝜋 Im(𝑐). □

2.4 Twisted biextensions

In geometrical contexts we often encounter Tate twists of biextensions. We make the following
definitions.

Definition 2.10. An integral mixed Hodge structure 𝑉 is called a 𝑘-twisted biextension if 𝑉(−𝑘)
is a biextension 𝐵, that is, 𝑉 = 𝐵(𝑘). The height of 𝑉 is defined to be ht(𝑉) ∶= ht(𝐵). Further, the
notion of a periodmatrix 𝑃𝐵 of a biextension 𝐵 naturally generalizes to the notion of periodmatrix
𝑃𝑉 of a twisted biextension 𝑉.

Remark 2.11. Suppose 𝑉 = 𝐵(𝑘) is a twisted biextension. If 𝑃𝐵 is a period matrix of 𝐵 then
(2𝜋i)−𝑘𝑃𝐵 is a period matrix of 𝑉.

3 SMOOTHING A NODAL CURVE

Let 𝑋0 be an integral proper complex curve with a single node. Let 𝐶 be the normalization of 𝑋0
and let 𝑝, 𝑞 ∈ 𝐶 be the preimages of the node.
We put 𝑋0 into a proper flat family of curves 𝑋∕𝑆 where 𝑆 is a connected quasi-projective

smooth complex curve with base point 0 ∈ 𝑆, the total space 𝑋 is smooth, and the generic fiber
is smooth.
The choice of a non-zero cotangent vector 𝜒 ∈ Ω𝑆,0 determines [14] a limit mixed Hodge struc-

ture 𝐿𝜒 associated to the deformation 𝑋∕𝑆. This limit mixed Hodge structure is a (−1)-twisted
biextension in the sense ofDefinition 2.10,with central piece𝐻 = H1(𝐶, ℤ). Its height is controlled
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HEIGHTS ON CURVES AND LIMITS OF HODGE STRUCTURES 347

by the element 𝜒 in the sense that

ht(𝐿𝜆⋅𝜒) = ht(𝐿𝜒) − log |𝜆| , 𝜆 ∈ ℂ×. (3.1)

Our main result in this section, Theorem 3.1, gives a formula that expresses the height of our
limit mixed Hodge structure in terms of a limit integral on the curve 𝐶 itself.
The Kodaira–Spencer map induces an isomorphism

𝜅∶ Ω𝑆,0
∼
→ Ω𝐶,𝑝 ⊗ Ω𝐶,𝑞 (3.2)

of one-dimensional ℂ-vector spaces. Let 𝑢 and 𝑣 be local holomorphic coordinates around 𝑝 and
𝑞, respectively, with 𝑢(𝑝) = 𝑣(𝑞) = 0 and such that d𝑢|𝑝 ⊗ d𝑣|𝑞 = 𝜅(𝜒).
Theorem 3.1. Let 𝜂 ∈ H0(𝐶,Ω𝐶(𝑝 + 𝑞)) be a differential with simple poles and purely imaginary
periods. Assume 𝜂 is scaled so that it has residue 1 at 𝑝 and −1 at 𝑞. Then, we have an equality

ht(𝐿𝜒) = lim
𝑝′,𝑞′→𝑝,𝑞

Re

(
∫

𝑝′

𝑞′
𝜂

)
− log(|𝑢(𝑝′)𝑣(𝑞′)|). (3.3)

3.1 The small Kodaira–Spencer map

We recall here the construction of the ‘small’ Kodaira–Spencer map (3.2). For our applications,
we assume everything in sight is defined over a given subfield 𝐾 ⊂ ℂ, including the two points
𝑝, 𝑞 ∈ 𝐶(𝐾), as in the introduction. Then the map 𝜅 becomes an isomorphism of 𝐾-vector spaces,
as we now explain.
Denote the node of 𝑋0 by 𝑥. Locally in the étale topology, there are coordinates 𝑢̃, 𝑣 around

𝑥 ∈ 𝑋, and a coordinate 𝑡 around 0 ∈ 𝑆 so that the surface 𝑋 looks like 𝑢̃𝑣 = 𝑡 near 𝑥. Replace 𝑆
by the formal spectrum of 𝐾[[𝑡]] and 𝑋 by the formal spectrum of 𝐾[[𝑢̃, 𝑣]] so that the morphism
𝑋 → 𝑆 is described by the map 𝑡 ↦ 𝑢̃𝑣. The functions 𝑢̃ and 𝑣 lift to local coordinates 𝑢 and 𝑣 on
𝐶 around 𝑝 and 𝑞, respectively, possibly after relabeling. Let 𝜒 ∈ Ω𝑆,0 be such that d𝑡|0 = 𝜒. We
define 𝜅(𝜒) to be d𝑢|𝑝 ⊗ d𝑣|𝑞. It is straightforward to check that this map does not depend on the
choices for 𝑡, 𝑢̃, 𝑣.

Remark 3.2. To justify the name of the map (3.2) we construct it now by alluding to the original
Kodaira–Spencer map

Ω∨
𝑆,0
→ Ext1𝑋0 (Ω𝑋0,𝑋0) (3.4)

associated to the family 𝑋∕𝑆. This construction will not be needed in this paper.
Consider the local-to-global spectral sequence for Ext’s which, in this case, gives

0 → H1(𝑋0, HOM (Ω𝑋0,𝑋0))
→ Ext1𝑋0 (Ω𝑋0,𝑋0) → Ext1𝑋0,𝑥 (Ω𝑋0,𝑥,𝑋0,𝑥) → 0. (3.5)
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348 BLOCH et al.

The last term in this expression admits an identification

Ext1𝑋0,𝑥 (Ω𝑋0,𝑥,𝑋0,𝑥) ≃ Ω∨𝐶,𝑝 ⊗ Ω∨
𝐶,𝑞
, (3.6)

canonical up to ordering 𝑝 and 𝑞, as explained in [1, Section 11, (3.8)]. Since our family 𝑋∕𝑆 gives
a simple smoothing of the node, the composition of the Kodaira–Spencer map with the projection
in (3.5) gives an isomorphism

Ω∨
𝑆,0

∼
→ Ω∨

𝐶,𝑝
⊗ Ω∨

𝐶,𝑞
. (3.7)

The inverse dual of this isomorphism coincides with our identification (3.2).

3.2 The limit mixed Hodge structure

Fromhere on, without loss of generality we take 𝑆 to be a small open disk around 0 inℂ, andwrite
𝑆∗ = 𝑆 ⧵ {0} for the associated punctured disk. The structure map for the family 𝑋∕𝑆 is denoted
by 𝜋∶ 𝑋 → 𝑆.
The map 𝜋 induces a variation of pure Hodge structures 𝑉 of weight 1 with the ℤ-local system

having fibers 𝑉𝑠,ℤ = H1(𝑋𝑠, ℤ) and the Hodge filtration determined by 𝐹1𝑉𝑠 = H0(𝑋𝑠,Ω𝑋𝑠 ). We
get a limit mixed Hodge structure at 0 once we fix a coordinate function for 𝑆 at 0; see [14, 17].
In fact, if the differential of two coordinate functions coincide at 0 then they determine the

same limit mixed Hodge structure. We will write 𝐿𝜒 for the limit mixed Hodge structure induced
by any coordinate function 𝑡 ∶ 𝑆 → ℂ satisfying d𝑡|0 = 𝜒. It is easy to see that 𝐿𝜒 is a (−1)-twisted
biextension; see the arguments below.

3.3 Period matrix of the limit mixed Hodge structure

We will now give an explicit description of the period matrix of the twisted biextension 𝐿𝜒 . We
refer to [8, Section 1.2] for a detailed exposition along similar lines.
Let 𝜔1, … , 𝜔g be a basis of holomorphic 1-forms on 𝐶 and 𝛾1, … , 𝛾2g be loops on 𝐶 giving a basis

for H1(𝐶, ℤ). Choose the loops so that they stay away from 𝑝, 𝑞. Choose a differential of the third
kind 𝜔g+1 on 𝐶 with poles along 𝑝, 𝑞 and res𝑝 𝜔g+1 = 1, res𝑞 𝜔g+1 = −1. Pick a path 𝛼 from 𝑞 to
𝑝 and a small loop 𝛽 oriented counter-clockwise around 𝑝. The basis 𝛾𝑖 and the path 𝛼 descend
to loops whose classes form a basis of the first homology of 𝑋0. The loop 𝛽 is homologous to 0 on
𝐶 and on 𝑋0. The induced loops on 𝑋0, as well as their classes, will be denoted by 𝛾𝑖(0), 𝛼(0) and
𝛽(0) (Figure 1).
Choose a coordinate function 𝑡 on 𝑆 near 0 with d𝑡|0 = 𝜒. Let 𝜔𝑋∕𝑆 be the relative dualizing

sheaf of the family 𝜋∶ 𝑋 → 𝑆. Then 𝜋∗𝜔𝑋∕𝑆 is a vector bundle of rank g + 1 over 𝑆 with the fibers
having the following canonical identifications

(
𝜋∗𝜔𝑋∕𝑆

)|||𝑡 =
⎧⎪⎨⎪⎩
H0(𝑋𝑡,Ω𝑋𝑡 ) 𝑡 ≠ 0,
H0(𝐶,Ω𝐶(𝑝 + 𝑞)) 𝑡 = 0.

(3.8)
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HEIGHTS ON CURVES AND LIMITS OF HODGE STRUCTURES 349

F IGURE 1 Our designated loops on 𝐶, 𝑋0 and 𝑋𝑡 .

Pick sections 𝜇1, … , 𝜇g+1 of 𝜋∗𝜔𝑋∕𝑆 so that 𝜇𝑖(0) = 𝜔𝑖 . In particular, these sections form a basis
for 𝜋∗𝜔𝑋∕𝑆 around 𝑡 = 0.
The integral homology groupsH1(𝑋𝑡, ℤ) for 𝑡 ≠ 0 fit into a local systemon 𝑆 ⧵ {0}. The inclusion

𝑋𝑡 ↪ 𝑋 gives an exact sequence

0 → ℤ⟨𝛽(𝑡)⟩→ H1(𝑋𝑡, ℤ) → H1(𝑋, ℤ) → 0, (3.9)

where 𝛽(𝑡) is the vanishing cycle (unique up to sign). The inclusion 𝑋0 ↪ 𝑋 is a deformation
retract, hence H1(𝑋, ℤ) ≃ H1(𝑋0, ℤ). For each 𝑖 we choose a lift 𝛾𝑖(𝑡) ∈ H1(𝑋𝑡, ℤ) of 𝛾𝑖(0) and a
(mildly multivalued) lift 𝛼(𝑡) of 𝛼(0). We also fix a smooth family of circles representing these
loops. We do the same for 𝛽(𝑡) so that it specializes to the contractible loop 𝛽(0), which in turn
fixes the orientation for 𝛽(𝑡).
Let𝑇∶ H1(𝑋𝑡, ℤ) → H1(𝑋𝑡, ℤ) be themonodromy operator for going counter-clockwise around

0. By Picard–Lefschetz theory, 𝑇(𝛿) = 𝛿 − ⟨𝛿, 𝛽(𝑡)⟩𝛽(𝑡) where ⟨⋅, ⋅⟩ represents the intersection
product on homology. By our choice of basis,𝑇(𝛾𝑖(𝑡)) = 𝛾𝑖(𝑡),𝑇(𝛼(𝑡)) = 𝛼(𝑡) + 𝛽(𝑡), and𝑇(𝛽(𝑡)) =
𝛽(𝑡).
Our choice of orientation on the vanishing cycle 𝛽(𝑡) and our choice of the residues of 𝜔g+1

imply that

lim
𝑡→0

1

2𝜋i ∫𝛽(𝑡) 𝜇g+1(𝑡) =
1

2𝜋i ∫𝛽 𝜔g+1 = 1. (3.10)

Write 𝛾0(𝑡) = 𝛼(𝑡) and 𝛾2g+1(𝑡) = 𝛽(𝑡). We will denote the dual cohomology basis by 𝛾𝑖(𝑡) ∈
H1(𝑋𝑡, ℤ) for 𝑖 = 0, … , 2g + 1.

Remark 3.3. Observe that 𝑇(𝛾𝑖(𝑡)) = 𝛾𝑖(𝑡) for all 𝑖 < 2g + 1 and 𝑇(𝛾2g+1(𝑡)) = 𝛾2g+1(𝑡) − 𝛾0(𝑡).
Note that the logarithm of monodromy 𝑁 = log 𝑇 evaluates to 𝑇 − 1.

The weight filtration on H1(𝑋𝑡, ℤ) is given by [14]

𝑊0 = Im(𝑇 − 1) = ⟨𝛾0(𝑡)⟩, 𝑊1 = ker(𝑇 − 1) = ⟨𝛾0(𝑡), … , 𝛾2g (𝑡)⟩, and𝑊2 = H
1(𝑋𝑡, ℤ). (3.11)

As a basis of holomorphic forms on 𝑋𝑡 we have

𝐹1H1(𝑋𝑡, ℂ) = H
0(𝑋𝑡, Ω

1
𝑋𝑡
) = ⟨𝜇1(𝑡), … , 𝜇g+1(𝑡)⟩. (3.12)

 14697750, 2023, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12747 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [05/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



350 BLOCH et al.

With respect to these bases, the period matrix of 𝑋𝑡 for 𝑡 ≠ 0 is equal to

𝑃(𝑡) =

(
∫𝛾𝑗(𝑡) 𝜇𝑖(𝑡)

)
𝑖=1,…,g+1
𝑗=0,…,2g+1

; (3.13)

see Definition 2.10. Let 𝑃𝑖𝑗(𝑡) be the (𝑖, 𝑗)-entry of the matrix 𝑃(𝑡) and 𝑒𝑖𝑗 ∈ ℂ(g+1)×(2g+2) be the
matrix with a 1 at position (𝑖, 𝑗) and 0’s everywhere else. All 𝑃𝑖𝑗(𝑡)’s are holomorphic on 𝑆 except
for the corner entry 𝑃g+1,0(𝑡) which is multi-valued holomorphic at 𝑆 ⧵ {0} (single valued if we
take a branch cut for log(𝑡)).
By definition of the limit mixed Hodge structure [14] of the variation 𝐻1(𝑋𝑡, ℤ), the period

matrix of 𝐿𝜒 is

𝑃𝜒 = lim
𝑡→0

𝑃(𝑡) ⋅ exp
(
log(𝑡)

2𝜋i
𝑁

)
(3.14)

= lim
𝑡→0

(
𝑃(𝑡) − 𝑒g+1,0

log(𝑡)

2𝜋i ∫𝛾2g+1(𝑡) 𝜇g+1(𝑡)

)
(3.15)

= lim
𝑡→0

(
𝑃(𝑡) − 𝑒g+1,0 log(𝑡)

)
. (3.16)

We immediately arrive at the following lemma.

Lemma 3.4. The (biextension) period matrix of 𝐿𝜒 (Definition 2.10) satisfies

𝑃𝜒 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫𝛼 𝜔1 ∫𝛾1 𝜔1 … ∫𝛾2g 𝜔1 0

∫𝛼 𝜔2 ∫𝛾1 𝜔2 … ∫𝛾2g 𝜔2 0

⋮ ⋮ ⋮ ⋮ ⋮

∫𝛼 𝜔g ∫𝛾1 𝜔g … ∫𝛾2g 𝜔g 0

𝐼𝜒(𝛼, 𝜔g+1) ∫𝛾1 𝜔g+1 … ∫𝛾2g 𝜔g+1 2𝜋i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.17)

where

𝐼𝜒(𝛼, 𝜔g+1) = lim
𝑡→0 ∫𝛾0(𝑡) 𝜇g+1(𝑡) − log(𝑡) . (3.18)

Note that all integrals in (3.17) are computed on 𝐶, except for the corner entry 𝐼𝜒(𝛼, 𝜔g+1). We
will show that this expression too can be computed on 𝐶. This immediately shows that the limit
mixedHodge structure is independent of the choice of smoothing of𝑋0, except for the deformation
rate of the node.
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HEIGHTS ON CURVES AND LIMITS OF HODGE STRUCTURES 351

Remark 3.5. Our choice of ℤ-bases for 𝑊0 = ⟨𝛾0(𝑡)⟩ and 𝑊2∕𝑊1 = ⟨𝛾2g+1(𝑡)⟩ is not canonical.
However, the four possible choices of bases induce the same biextension height up to sign. We
fixed this sign by insisting for 𝑁 = log 𝑇 to map the basis of 𝑊2∕𝑊1 to minus the basis of 𝑊0.
This is equivalent to taking 𝛾0 ⋅ 𝛾2g+1 = 1 so that the minus sign is compatible with the Picard–
Lefschetz formula.

3.4 Proof of Theorem 3.1

We continue with the notation of Section 3.3. Theorem 3.1 follows immediately by combining the
following three lemmas.

Lemma 3.6. Suppose that 𝜔g+1 has purely imaginary periods. Then

ht(𝐿𝜒) = Re 𝐼𝜒(𝛼, 𝜔g+1) . (3.19)

Proof. The periodmatrix 𝑃𝜒 of 𝐿𝜒 is given in (3.17). The biextension 𝐵 ∶= 𝐿𝜒(1) has periodmatrix
𝑃𝐵 ∶= (2𝜋i)

−1𝑃𝜒; see Remark 2.11. Now using the notation in (2.6) for 𝑃𝐵, our assumption on
𝜔g+1 implies that Im𝑎 = 0. Therefore, the height of 𝐵, and therefore of 𝐿𝜒 , is given by

−2𝜋 Im
𝐼𝜒(𝛼, 𝜔g+1)

2𝜋i
= Re 𝐼𝜒(𝛼, 𝜔g+1) (3.20)

via Definition 2.8, Theorem 2.9 and Definition 2.10. □

As above, we choose coordinates 𝑢 and 𝑣 around 𝑝 and 𝑞 such that d𝑢|𝑝 ⊗ d𝑣|𝑞 = 𝜅(𝜒).
Lemma 3.7. If 𝜔g+1 has purely imaginary periods and 𝑟 is a positive real variable, then

Re 𝐼𝜒(𝛼, 𝜔g+1) = lim
𝑟→0+

Re

(
∫

𝑢−1(
√
𝑟)

𝑣−1(
√
𝑟)

𝜔g+1

)
− log(𝑟). (3.21)

Proof. We use the formula (3.18) to write

𝐼𝜒(𝛼, 𝜔g+1) = lim
𝑟→0+ ∫𝛾0(𝑟) 𝜇g+1(𝑟) − log(𝑟). (3.22)

We will now break the right-hand side of (3.22) into three pieces and study them separately. The
integration domain will be broken into two pieces: one piece in a neighborhood of the node and
the other in the complement of this neighborhood. Near the node, we will express the integrand
as a sum of an explicit divergent part and a holomorphic part. The resulting three terms appear
in the left-hand sides of (3.23), (3.26), (3.28).
Let𝑊 ⊂ 𝑋 be an open neighborhood of the node 𝑥 with coordinate functions 𝑢, 𝑣 extending

the coordinates 𝑢, 𝑣 on the two branches of 𝑋0. Fix a small 𝜀 > 0, let 𝐷𝜀 ⊂ 𝑊 be the rectangular
region {𝑤 ∈ 𝑊 ∣ max(|𝑢(𝑤)|, |𝑣(𝑤)|) < 𝜀}. Analogously, we define 𝐷√

𝑟
.

Take a smoothly deforming family of paths𝜓(𝑟) representing the homology class 𝛾0(𝑟). Further-
more, we may assume that 𝜓𝜀(𝑟) ∶= 𝜓(𝑟) ∩ 𝐷𝜀 is the real line segment with coordinates 𝑢𝑣 = 𝑟 in
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352 BLOCH et al.

F IGURE 2 A depiction of the paths 𝜓𝜀(𝑟) and 𝜓√
𝑟,𝜀(0).

ℝ2 ∩ 𝐷𝜀. Note that𝜓𝜀(0) becomes the union of the two real axes in𝐷𝜀. Taking 𝑟 ≪ 𝜀, the orientation
of 𝜓𝜀(𝑟) is so that it points from (𝜀, 𝑟∕𝜀) to (𝑟∕𝜀, 𝜀) (Figure 2).
With 𝐷𝑐𝜀 the complement of 𝐷𝜀 in 𝑋, let 𝜓

𝑐
𝜀 (𝑟) ∶= 𝜓(𝑟) ∩ 𝐷

𝑐
𝜀 . Since 𝜇g+1(𝑟) is holomorphic on

the complement 𝐷𝑐𝜀 , and 𝜓(𝑟) varies smoothly, the following equality is immediate:

lim
𝑟→0+ ∫𝜓𝑐𝜀 (𝑟)

𝜇g+1(𝑟) = ∫𝜓𝑐𝜀 (0)
𝜇g+1(0). (3.23)

For 𝑟 > 0 and on 𝑋𝜀𝑟 ∶= 𝑋𝑟 ∩ 𝐷𝜀 ⊂ 𝑊 we can construct the following Poincaré–Griffiths
residue:

𝜈(𝑟) = res𝑋𝜀𝑟
d𝑢d𝑣

𝑢𝑣 − 𝑟
. (3.24)

We can write this form alternatively as

𝜈(𝑟) =
d𝑢

𝑢

||||𝑋𝜀𝑟 = − d𝑣𝑣 ||||𝑋𝜀𝑟 . (3.25)

The limit of 𝜈(𝑟) on 𝑋𝜀
0
will be defined by the formula (3.25), but using the first expression d𝑢∕𝑢

when 𝑣 = 0 and the second expression −d𝑣∕𝑣 when 𝑢 = 0.
Observe that the difference 𝜇g+1(𝑟) − 𝜈(𝑟) is holomorphic on 𝑋𝜀𝑟 for all 𝑟 ⩾ 0. This gives

lim
𝑟→0+ ∫𝜓𝜀(𝑟) 𝜇g+1(𝑟) − 𝜈(𝑟) = ∫𝜓𝜀(0) 𝜇g+1(0) − 𝜈(0). (3.26)

Let 𝜓√
𝑟,𝜀
(0) = 𝜓(0) ∩ 𝐷𝑐√

𝑟
∩ 𝐷𝜀. Then, the last integral clearly satisfies

∫𝜓𝜀(0) 𝜇g+1(0) − 𝜈(0) = lim
𝑟→0+ ∫𝜓√

𝑟,𝜀
(0)
𝜇g+1(0) − 𝜈(0). (3.27)
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HEIGHTS ON CURVES AND LIMITS OF HODGE STRUCTURES 353

To conclude the proof, it remains to show that the following two limits agree

lim
𝑟→0+ ∫𝜓𝜀(𝑟) 𝜈(𝑟) − log(𝑟) = lim

𝑟→0+ ∫𝜓√
𝑟,𝜀
(0)
𝜈(0) − log(𝑟). (3.28)

Recall 𝜓𝜀(𝑟) begins at (𝜀, 𝑟∕𝜀) and ends at (𝑟∕𝜀, 𝜀) so

∫𝜓𝜀(𝑟) 𝜈(𝑟) = ∫𝜓𝜀(𝑟)
d𝑢

𝑢
= log(𝑟) − 2 log(𝜀). (3.29)

The path 𝜓√
𝑟,𝜀
(0) has two components along the two axes and this gives

∫𝜓√
𝑟,𝜀
(0)
𝜈(0) = ∫

√
𝑟

𝜀

d𝑢

𝑢
+ ∫

𝜀√
𝑟
−
d𝑣

𝑣
= log(𝑟) − 2 log(𝜀). (3.30)

□

Remark 3.8. We note here the similarity of the previous proof with that of [9, III.B.11]. The ref-
erenced result may be interpreted as a special case of our main theorem in the case of genus
0 curves.

The proof of Theorem 3.1 is completed once we show the path independence of the limit
appearing in Lemma 3.7.

Lemma 3.9. Suppose 𝜔g+1 has purely imaginary periods. Then the following limit:

lim
𝑝′,𝑞′→𝑝,𝑞

Re

(
∫

𝑝′

𝑞′
𝜔g+1

)
− log(|𝑢(𝑝′)𝑣(𝑞′)|) (3.31)

is independent of the way the points 𝑝′, 𝑞′ approach 𝑝, 𝑞 in 𝐶 ⧵ {𝑝, 𝑞}.

Proof. This is straightforward. But we can also appeal to Equations (4.3) and (5.1) which imply
the convergence of this integral through Proposition 4.5. □

4 REGULARIZED LOCAL NÉRON PAIRINGS

We begin by recalling the standard local Néron pairing for disjoint divisors of degree 0 on a
curve over a number field. We then give our definition of regularized local pairing for divi-
sors with common support by removing divergent terms from a limit of local intersections; see
Definition 4.1.
Our definition is comparable to the extension of the Néron pairing by Gross [10, Section 5]; see

Remark 4.7. We use this comparison to prove a local-to-global formula for our regularized local
pairings. The regularized Archimedean pairing could also be compared to the limit biextension
heights defined by Brosnan and Pearlstein [7]; see Remark 4.2.
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354 BLOCH et al.

4.1 Local Néron pairings in the case of disjoint support

The main reference for this section is [10]. Let 𝐾 be a number field, and let 𝐶 be a smooth projec-
tive geometrically connected curve over 𝐾. Let 𝐷, 𝐸 be 𝐾-divisors of degree 0 on 𝐶 with disjoint
support. Then the Néron pairing of 𝐷 and 𝐸 decomposes into local components as follows:

⟨𝐷, 𝐸⟩ =∑
𝜈

⟨𝐷, 𝐸⟩𝜈 , (4.1)

where 𝜈 runs through the places of 𝐾.
The Néron pairing is invariant under linear equivalence and descends to a positive definite

bilinear form on Jac(𝐶)(𝐾) ⊗ℤ ℝ. The associated quadratic form is the (non-normalized) Néron–
Tate height ht(𝐷) of divisor classes associated to twice the canonical principal polarization of
Jac(𝐶); see [10, Section 4].

4.1.1 Local fields and absolute values

For each place 𝜈 of 𝐾, we denote by ℂ𝜈 the completion of an algebraic closure of 𝐾𝜈, endowed
with the 𝜈-adic topology. The pairing ⟨𝐷, 𝐸⟩𝜈 extends to ℂ𝜈-divisors with disjoint support, and
this pairing is continuous on both sides provided supports remain disjoint.
For each place 𝜈 of 𝐾, we fix an absolute value | ⋅ |𝜈 on 𝐾𝜈 by demanding that |𝜋|−1𝜈 = Nm(𝔭) if

𝜈 is non-Archimedean, given by a maximal ideal 𝔭 of norm Nm(𝔭), and with 𝜋 a generator of the
maximal ideal of 𝐾,𝔭. When 𝜈 is a real embedding we set | ⋅ |𝜈 to be the usual absolute value on
𝐾𝜈 = ℝ; if 𝜈 is a pair of complex conjugate embeddings we set | ⋅ |𝜈 to be the square of the usual
absolute value on 𝐾𝜈 = ℂ. The absolute value | ⋅ |𝜈 extends uniquely as an absolute value on ℂ𝜈.
4.1.2 Archimedean pairing

If 𝜈 is an Archimedean place of 𝐾, the component ⟨𝐷, 𝐸⟩𝜈 is defined as follows. By abuse of nota-
tion continue to denote by𝐶,𝐷, 𝐸 their pullback from𝐾 toℂ via 𝜈. Let 𝜂𝐸 be the unique differential
with simple poles on 𝐶(ℂ), with purely imaginary periods, and with residual divisor equal to 𝐸,
that is,

𝐸 = Res(𝜂𝐸) ∶=
∑

𝑟∈𝐶(ℂ)

res𝑟(𝜂𝐸) ⋅ 𝑟. (4.2)

Let 𝛾𝐷 be any 1-chain on 𝐶(ℂ) such that 𝜕𝛾𝐷 = 𝐷. Set 𝜖𝜈 = 1 if 𝜈 is a real embedding, and 𝜖𝜈 = 2
if 𝜈 is a pair of complex conjugate embeddings. Then

⟨𝐷, 𝐸⟩𝜈 ∶= 𝜖𝜈 Re∫𝛾𝐷 𝜂𝐸. (4.3)

4.1.3 Non-Archimedean pairing

If 𝜈 is a non-Archimedean place, that is, a maximal ideal 𝔭 of the ring of integers 𝐾 of 𝐾, the
component ⟨𝐷, 𝐸⟩𝔭 is defined as follows. Let 𝔭 be a proper regular model of 𝐶 over 𝐾,𝔭 and

 14697750, 2023, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12747 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [05/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



HEIGHTS ON CURVES AND LIMITS OF HODGE STRUCTURES 355

let ,  be ℚ-divisors on 𝔭 extending 𝐷, 𝐸 so that one of ,  restricts to a divisor of degree 0
on every component of 𝔭|𝔽𝔭 . By [12, Theorem 9.1.23], the intersection pairing on the fiber 𝔭|𝔽𝔭
is negative semi-definite, with radical spanned by the fiber itself. From this it follows that such
ℚ-divisors,  exist. Then

⟨𝐷, 𝐸⟩𝔭 ∶= −𝜄𝔭(, ) logNm(𝔭) , (4.4)

where 𝜄𝔭 refers to the intersection multiplicity on the regular model 𝔭 and where Nm(𝔭) is the
norm of the maximal ideal 𝔭.

4.2 The definition of regularized local pairings

We note that when 𝐷 and 𝐸 have common support on 𝐶, both the Archimedean and the non-
Archimedean local intersection pairings (4.3) and (4.4) are divergent. However, their global Néron
pairing still can be defined, using that the global pairing is invariant under linear equivalence.
Gross [10, Section 5] proposes fixing tangent vectors at the common support of 𝐷 and 𝐸 to

extend the above local pairing decomposition to the case with common supports. We follow his
lead but using a dual notation.
For any divisor 𝐷 on 𝐶 let |𝐷| stand for the support of 𝐷. Let

𝑍 = |𝐷| ∩ |𝐸| = {𝑝1, … , 𝑝𝑚} (4.5)

be the reduced common support of 𝐷 and 𝐸. We will assume for simplicity that the points in 𝑍
are 𝐾-rational points of 𝐶. Let 𝑎𝑖 be the multiplicity of 𝑝𝑖 in 𝐷 and 𝑏𝑖 the multiplicity of 𝑝𝑖 in 𝐸.
Pick an element 𝜉 in the image of the following map

𝑚⨁
𝑖=1

Ω𝐶,𝑝𝑖 →

𝑚⨂
𝑖=1

Ω
⊗𝑎𝑖𝑏𝑖
𝐶,𝑝𝑖

∶ (𝛼1, … , 𝛼𝑚) ↦ 𝛼
⊗𝑎1𝑏1
1

⊗⋯⊗ 𝛼
⊗𝑎𝑚𝑏𝑚
𝑚 , (4.6)

where the tensor product is taken over 𝐾.
Choose for each 𝑖, a rational function 𝑢𝑖 ∈ 𝐾(𝐶) vanishing on 𝑝𝑖 to order 1 so that 𝜉 =⨂𝑚
𝑖=1(d𝑢𝑖|𝑝𝑖 )⊗𝑎𝑖𝑏𝑖 . Note that that 𝑢𝑖 is a local coordinate around 𝑝𝑖 at every place of𝐾. We will say

that the tuple of coordinates (𝑢1, … , 𝑢𝑚) determines 𝜉.
Wewrite𝐷′ → 𝐷 tomean the points 𝑝𝑖 in𝐷 are perturbed to give points 𝑝′𝑖 in𝐷

′ and thenmade
to approach 𝑝𝑖 in 𝐶(ℂ𝜈).

Definition 4.1. The regularization ⟨𝐷, 𝐸⟩𝜉,𝜈 of the 𝜈-local Néron pairing is defined as
⟨𝐷, 𝐸⟩𝜉,𝜈 = lim

𝐷′→𝐷

(⟨𝐷′, 𝐸⟩𝜈 − 𝑚∑
𝑖=1

𝑎𝑖𝑏𝑖 log |𝑢𝑖(𝑝′𝑖 )|𝜈
)
. (4.7)

We will show in Proposition 4.5 that the limit exists, is well defined, and is compatible with
Gross’ definition [10, Section 5]. As a consequence we will see that it satisfies a local-to-global
formula computing the global pairing ⟨𝐷, 𝐸⟩.
Remark 4.2. Over an Archimedean place, if we correctly arrange the deformation 𝐷′ → 𝐷 to be
over a disk and form the family of Hain biextensions associated to each of the pair of disjoint
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356 BLOCH et al.

cycles 𝐷′ and 𝐸 [11, Section 3.3], then the limit of the biextension heights as defined by Brosnan
and Pearlstein [7, Definition 70] will equal our regularized pairing in (4.7).

4.3 Local-to-global formula for regularized local pairings

Let 𝑓 ∈ 𝐾(𝐶) be a rational function. Let (𝑢1, … , 𝑢𝑚) be any tuple of coordinates determining 𝜉.

Definition 4.3. We say 𝑓 is compatible with (𝐷, 𝐸, 𝜉) if 𝐷 and 𝐸 + div(𝑓) have disjoint support
and, for each 𝑖, the formal local expansion of 𝑓 ∈ ℚ[[𝑢𝑖]] around 𝑝𝑖 has leading coefficient 1, and
𝑓 evaluates to 1 at every other point in 𝐷.

Remark 4.4. It is a standard result that an 𝑓 compatible with (𝐷, 𝐸, 𝜉) always exists.

Proposition 4.5. Pick any 𝑓 compatible with (𝐷, 𝐸, 𝜉). Then the regularized local pairings are well
defined and they satisfy the following identity:

⟨𝐷, 𝐸⟩𝜉,𝜈 = ⟨𝐷, 𝐸 + div(𝑓)⟩𝜈. (4.8)

For the proof we need the following definition.

Definition 4.6. Let 𝐹∕𝐾 be a field extension. When 𝑍 =
∑
𝑐𝑖𝑧𝑖 with 𝑐𝑖 ∈ ℤ is a divisor on 𝐶 with

𝑧𝑖 ∈ 𝐶(𝐹) and 𝑓 ∈ 𝐹(𝐶) a function such that div(𝑓) and 𝑍 have disjoint support we write

𝑓(𝑍) ∶=
∏
𝑖

𝑓(𝑧𝑖)
𝑐𝑖 ∈ 𝐹× . (4.9)

Proof of Proposition 4.5. Pick any 𝑓 compatible with (𝐷, 𝐸, 𝜉). Let 𝜈 be a place of 𝐾. The local
Néron pairings are continuous in both arguments and hence we have

⟨𝐷, 𝐸 + div(𝑓)⟩𝜈 = lim
𝐷′→𝐷

⟨𝐷′, 𝐸 + div(𝑓)⟩𝜈. (4.10)

We expand out the term in the limit to get

⟨𝐷′, 𝐸 + div(𝑓)⟩𝜈 = ⟨𝐷′, 𝐸⟩𝜈 + log |𝑓(𝐷′)|𝜈, (4.11)

where 𝑓(𝐷′) is as in (4.9). Since 𝑓 is compatible with (𝐷, 𝐸, 𝜉)we have 𝑓 = 𝑢−𝑏𝑖
𝑖
(1 + 𝑂(𝑢𝑖)) near 𝑝𝑖

and 𝑓 evaluates to 1 on other points on𝐷. Therefore, in the limit, we have the following equality:

lim
𝐷′→𝐷

⟨𝐷′, 𝐸⟩𝜈 + log |𝑓(𝐷′)|𝜈 = lim
𝐷′→𝐷

⟨𝐷′, 𝐸⟩𝜈 − 𝑚∑
𝑖=1

𝑎𝑖𝑏𝑖 log |𝑢𝑖(𝑝′𝑖 )|𝜈. (4.12)

□

Remark 4.7. We see from Proposition 4.5 that if for each 𝑖 we fix the tangent vector 𝜕𝑢𝑖 |𝑝𝑖 dual to
d𝑢𝑖|𝑝𝑖 , our definition of the regularized local pairing ⟨𝐷, 𝐸⟩𝜉,𝜈 is a special case of Gross’ defini-
tion in [10, Section 5] based on the tangent vectors 𝜕𝑢𝑖 |𝑝𝑖 . We have arranged matters so that the
correction term log |𝑓[𝐷]|𝜈 introduced in [10, Section 5] is 0 for each 𝜈.
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HEIGHTS ON CURVES AND LIMITS OF HODGE STRUCTURES 357

The original local-to-global formula (4.1) is defined for a pair of disjoint divisors.We now extend
this formula using our regularized local pairings to an arbitrary pair of divisors but with the choice
of 𝜉 as in (4.6).

Proposition 4.8. With 𝐷, 𝐸, 𝜉 as above, we have a local-to-global formula

⟨𝐷, 𝐸⟩ =∑
𝜈

⟨𝐷, 𝐸⟩𝜉,𝜈. (4.13)

Proof. Pick any 𝑓 compatible with (𝐷, 𝐸, 𝜉). As the global pairing is invariant under linear
equivalence we have

⟨𝐷, 𝐸⟩ = ⟨𝐷, 𝐸 + div(𝑓)⟩. (4.14)

Using the local-to-global formula (4.1) we write

⟨𝐷, 𝐸 + div(𝑓)⟩ =∑
𝜈

⟨𝐷, 𝐸 + div(𝑓)⟩𝜈 . (4.15)

We can now finish by appealing to Proposition 4.5. □

5 PROOF OF THEMAIN THEOREM

We start by recalling the notation for our main theorem as stated in the introduction. We have
a proper geometrically integral curve 𝑋0 defined over a number field 𝐾 with a single node, a
smoothing deformation 𝜋∶ 𝑋 → 𝑆 of 𝑋0 over 𝐾, and a non-zero cotangent vector 𝜒 ∈ Ω𝑆,0. For
the case where 𝑋0 has multiple nodes, see Section 5.4.
Let 𝑥 be the node of 𝑋0. Without loss of generality we assume that the tangent directions at 𝑥

are defined over 𝐾. Let 𝐶 be the normalization of 𝑋 and let 𝑝, 𝑞 ∈ 𝐶(𝐾) denote the preimages of
𝑥 in 𝐶.
Let 𝑢, 𝑣 ∈ 𝐾(𝐶) be 𝐾-rational local coordinates around 𝑝, 𝑞 so that d𝑢|𝑝 ⊗ d𝑣|𝑞 = 𝜅(𝜒), where

𝜅 is the small Kodaira–Spencer map (3.2).
Let 𝜈 be any place of 𝐾. Definition 4.1 specializes to give the regularized local pairing

⟨𝑝 − 𝑞, 𝑝 − 𝑞⟩𝜅(𝜒),𝜈 = lim
𝑝′,𝑞′→𝑝,𝑞

⟨𝑝′ − 𝑞′, 𝑝 − 𝑞⟩𝜈 − log |𝑢(𝑝′)𝑣(𝑞′)|𝜈 (5.1)

for 𝑝′, 𝑞′ varying in𝐶(ℂ𝜈). In particular, the limit exists and is independent of how 𝑝′, 𝑞′ approach
𝑝, 𝑞 by Proposition 4.5.
We are going to evaluate these regularized local pairings and use the local-to-global formula

Proposition 4.8 to conclude the proof.

5.1 Contribution from the Archimedean places

When 𝜎∶ 𝐾 ↪ ℂ is a complex embedding of𝐾, we denote by 𝐿𝜒,𝜎 the limitmixedHodge structure
associated to the cotangent vector 𝜒 obtained after base changing the family 𝑋∕𝑆 to ℂ along the
embedding 𝜎.
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358 BLOCH et al.

Theorem 5.1. Let 𝜈 be an Archimedean place of the number field 𝐾. Then we have

⟨𝑝 − 𝑞, 𝑝 − 𝑞⟩𝜅(𝜒),𝜈 = ∑
𝜎∈𝜈

ht(𝐿𝜒,𝜎) . (5.2)

Here 𝜈 consists of a single real embedding or is a pair of complex conjugate embeddings.

Proof. Rewrite (5.1) using (4.3). Now the result is just a restatement of Theorem 3.1. □

5.2 Contribution from the non-Archimedean places

We now determine an explicit formula for the limit appearing in (5.1) in the case that the place 𝜈
is non-Archimedean, that is, equal to a maximal ideal of the ring of integers 𝐾 of 𝐾.
Let  be a proper regular flat model of 𝐶 over 𝐾 . The regular model  gives a (canonical) 𝐾-

sublattice inside Ω𝐶,𝑝 and Ω𝐶,𝑞 via Ω∕𝐾,𝑝 and Ω∕𝐾,𝑞. We carry the resulting 𝐾-sublattice of
Ω𝐶,𝑝 ⊗𝐾 Ω𝐶,𝑞 toΩ𝑆,0 via the canonical isomorphism 𝜅∶ Ω𝑆,0

∼
→ 𝐶,𝑝 ⊗𝐾 𝐶,𝑞 and define a norm‖ ⋅ ‖ on Ω𝑆,0 via

log ‖𝜒‖ =∑
𝔭

val𝔭(𝜒) logNm(𝔭) . (5.3)

Here Nm(𝔭) denotes the norm of the maximal ideal 𝔭.
We choose a vertical ℚ-divisor Φ on  so that 𝑝 − 𝑞 + Φ is of degree 0 on every geometric

component of every special fiber of ; see Section 4.1.
Theorem 5.2. Let 𝔭 be a finite prime of 𝐾. Then we have

⟨𝑝 − 𝑞, 𝑝 − 𝑞⟩𝜅(𝜒),𝔭 = (
val𝔭 𝜒 + 2 𝜄𝔭(𝑝, 𝑞) − 𝜄𝔭(𝑝 − 𝑞,Φ)

)
logNm(𝔭). (5.4)

Proof. We recall from (5.1) that

⟨𝑝 − 𝑞, 𝑝 − 𝑞⟩𝜅(𝜒),𝔭 = lim
𝑝′,𝑞′→𝑝,𝑞

⟨𝑝′ − 𝑞′, 𝑝 − 𝑞⟩𝔭 − log |𝑢(𝑝′)𝑣(𝑞′)|𝔭. (5.5)

Prior to taking the limit, fix two points 𝑝′, 𝑞′ ∈ 𝐶(𝐾𝔭) close to but distinct from 𝑝, 𝑞. Let 𝑝′

and 𝑞′ be the closures of 𝑝′ and 𝑞′ on the proper regular 𝐾,𝔭-model  ⊗ 𝐾,𝔭. Using the defini-
tion of the local non-Archimedean Néron pairing in (4.4), the expression ⟨𝑝′ − 𝑞′, 𝑝 − 𝑞⟩𝔭 can be
expanded out using the local intersection products:

⟨𝑝′ − 𝑞′, 𝑝 − 𝑞⟩𝔭 = −(𝜄𝔭(𝑝′, 𝑝) − 𝜄𝔭(𝑝′, 𝑞) − 𝜄𝔭(𝑞′, 𝑝) + 𝜄𝔭(𝑞′, 𝑞) + 𝜄𝔭(𝑝′ − 𝑞′, Φ)) logNm(𝔭).
(5.6)

Let 𝑚 = val𝔭(d𝑢|𝑝). Let 𝜋 be a uniformizer at 𝔭. Then 𝑧 ∶= 𝜋−𝑚𝑢 has vanishing locus 𝑝 in a
neighborhood of 𝑝 on the local model  ⊗ 𝐾,𝔭. We then have

𝜄𝔭(𝑝
′
, 𝑝) = val𝔭(𝑧(𝑝

′)) , (5.7)

and the log |𝑢(𝑝′)|𝔭 term in (5.5) evaluates as

log |𝑢(𝑝′)|𝔭 = log |𝜋𝑚 ⋅ 𝑧(𝑝′)|𝔭 = −(val𝔭(d𝑢|𝑝) + val𝔭(𝑧(𝑝′))) logNm(𝔭). (5.8)
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HEIGHTS ON CURVES AND LIMITS OF HODGE STRUCTURES 359

The divergent terms ±val𝔭(𝑧(𝑝′)) logNm(𝔭) cancel one another. A similar line of reasoning goes
for the point 𝑞. The remaining terms are continuous as 𝑝′, 𝑞′ → 𝑝, 𝑞 so we can evaluate them in
the limit. We have val𝔭(d𝑢|𝑝) + val𝔭(d𝑣|𝑞) = val𝔭 𝜒. This leads to (5.4). □

5.3 Final steps of the proof

We can now put together the Archimedean and non-Archimedean contributions and complete
the proof of our main theorem.
First of all, by Proposition 4.8, we have

ht(𝑝 − 𝑞) =
∑
𝜈

⟨𝑝 − 𝑞, 𝑝 − 𝑞⟩𝜅(𝜒),𝜈 . (5.9)

By Theorem 5.1, we have∑
𝜈|∞⟨𝑝 − 𝑞, 𝑝 − 𝑞⟩𝜅(𝜒),𝜈 =

∑
𝜎∶ 𝐾↪ℂ

ht(𝐿𝜒,𝜎) = ht(𝐿𝜒) . (5.10)

For any two divisors,  on  with disjoint generic support we define
(, )f in ∶=

∑
𝔭

𝜄𝔭(, ) logNm(𝔭), (5.11)

where 𝜄𝔭 refers to the total intersection multiplicity over 𝔭.
From Theorem 5.2 we obtain∑

𝜈∤∞

⟨𝑝 − 𝑞, 𝑝 − 𝑞⟩𝜅(𝜒),𝜈 = log ‖𝜒‖ + 2 (𝑝 ⋅ 𝑞)f in −
(
(𝑝 − 𝑞) ⋅ Φ

)
f in
. (5.12)

The main theorem follows upon combining (5.9), (5.10) and (5.12).

5.4 The case of multiple nodes

We would like to make the observation that our techniques and results generalize easily to com-
pute Néron-Tate heights of divisors of the form𝐷 =

∑𝑚
𝑖=1(𝑝𝑖 − 𝑞𝑖) on𝐶where all points appearing

in the expression are distinct. Of course, any divisor class of degree 0 can be represented in this
manner but not every divisor is of this form.
In this more general setting one would consider the 𝑚-nodal curve 𝑋0 obtained from 𝐶 by

gluing each 𝑝𝑖 to 𝑞𝑖 . Fix a smoothing deformation 𝑋∕𝑆 of 𝑋0. Let 𝐿𝜒 be the limit mixed Hodge
structure associated to 𝑋∕𝑆 as 𝑡 → 0 where d𝑡|0 = 𝜒.
The twist 𝐵 = 𝐿𝜒(1) of the resulting limit mixed Hodge structure can appropriately be called a

rank 𝑚-biextension. Indeed, there are canonical finitely generated free abelian groups𝑀1,𝑀2 of
rank𝑚 such that the mixed Hodge structure 𝐵 has weight graded pieces

Gr𝑊 𝐵 = (ℤ(1) ⊗𝑀1) ⊕ 𝐻 ⊕𝑀2 ≃ ℤ(1)𝑚 ⊕ 𝐻 ⊕ℤ𝑚, (5.13)

where 𝐻 = H1(𝐶, ℤ(1)) is a pure Hodge structure of weight −1 (compare with Definition 2.1).
The obvious period matrix for 𝐵, using bases respecting the filtrations and using the notation in
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360 BLOCH et al.

Definition 2.7, will have entries 𝑎, 𝑏, 𝑐 that are matrices and where the corner entry 1 becomes the
𝑚 ×𝑚 identity matrix. The formula for the height of a period matrix as in Definition 2.8 makes
sense but returns a real 𝑚 ×𝑚 matrix. The sum of the entries of this height matrix is ‘the total
height’ of 𝐿𝜒 .
We claim that the total height of 𝐿𝜒 is once again a regularized Archimedean self-intersection.

Let us first introduce the small Kodaira–Spencer maps that we will use. For any 𝑖 = 1, … ,𝑚 the
Kodaira–Spencer map gives

𝜅𝑖 ∶ Ω𝑆,0
∼
→ Ω𝐶,𝑝𝑖 ⊗ Ω𝐶,𝑞𝑖 . (5.14)

Define 𝜅(𝜒) ∶= 𝜅1(𝜒) ⊗⋯⊗ 𝜅𝑚(𝜒) so that we have

𝜅∶ Ω𝑆,0
∼
→

𝑚⨂
𝑖=1

Ω𝐶,𝑝𝑖 ⊗ Ω𝐶,𝑞𝑖 . (5.15)

The total height of 𝐿𝜒 coincides with the 𝜅(𝜒)-regularized Archimedean self-intersection
of 𝐷, as in Definition 4.1. The proof of this fact follows easily from Section 3 as the key
analysis is purely local at each node. The generalization of our main theorem then fol-
lows by a straightforward modification of the proof of Theorem 5.2 for the 𝜅(𝜒)-regularized
non-Archimedean self-intersections.
The ultimate generalization of themain theorem to general divisors𝐷 =

∑
𝑖 𝑎𝑖𝑝𝑖 with

∑
𝑖 𝑎𝑖 = 0

seems doable in principle. However note that then𝑋0must be constructedwithmore complicated
singularities and this, in turn, makes the study of the limit mixed Hodge structure more involved.
We will not investigate this issue further here and leave the details to the interested reader.
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