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Abstract
Analytically tracking patterns emerging from a small amplitude Turing instabil-
ity to large amplitude remains a challenge as no general theory exists. In this
paper, we consider a three component reaction-diffusion system with one of its
components singularly perturbed, this component is known as the fast variable.
We develop an analytical theory describing the periodic patterns emerging
from a Turing instability using geometric singular perturbation theory. We
show analytically that after the initial Turing instability, spatially periodic pat-
terns evolve into a small amplitude spike in the fast variable whose amplitude
grows as one moves away from onset. This is followed by a secondary trans-
ition where the spike in the fast variable widens, its periodic pattern develops
two sharp transitions between two flat states and the amplitudes of the other
variables grow. The final type of transition we uncover analytically is where
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the flat states of the fast variable develop structure in the periodic pattern. The
analysis is illustrated and motivated by a numerical investigation. We conclude
with a preliminary numerical investigation where we uncover more complic-
ated periodic patterns and snaking-like behaviour that are driven by the three
transitions analysed in this paper. This paper provides a crucial step towards
understanding how periodic patterns transition from a Turing instability to
large amplitude.

Keywords: geometrical singular perturbation techniques,
three-component reaction-diffusion system, near-equilibrium patterns,
far-from-equilibrium patterns

Mathematics Subject Classification numbers: 34D15, 34E15, 35K40, 35K57,
37J46

(Some figures may appear in colour only in the online journal)

1. Introduction

The emergence of periodic patterns is one of the simplest examples of pattern formation and is
often found in physical and biological systems such as crime hotspots [9, 30, 43], vegetation
patches [26], cell polarization [50], and plant root hair growth [4] to name but a few. These
periodic patterns can be combined to form more complex patterns in two-dimensions with
sharp interfaces at the transition between the patterns like so-called grain boundaries [18, 25,
31, 39, 52]. These are often seen in nature, for instance in Rayleigh–Benard convection [20,
25], gannets nesting [41], graphene [24], and phyllotaxis [35].

For small amplitude periodic patterns that emerge from a Turing instability, a generic the-
ory exists (see for instance [25] for an overview and references) which yields insights into
the various behaviours one can expect to observe in experiments. In contrast, no general the-
ory exists for far from equilibrium patterns. Singular perturbation theory [19, 27, 28] is one
of the few techniques that has yielded new insights into the complex phenomenology of pat-
terns far from onset; see, for instance, [14, 16, 23] and references therein. Recently, there has
been an increasing interest in linking the small amplitude homoclinic patterns, that emerge
near a Turing instability, to localized patterns found near the singular limit away from onset
through a mixture of numerical investigations, return-map analysis and singular perturbation
theory [1–3, 10, 51]. The aim of this paper is to investigate analytically spatially periodic
patterns emerging from a Turing instability using geometric singular perturbation theory.

In particular, we study this connection for a three-component reaction-diffusion system
where one of the components has a much smaller diffusion coefficient than the other two
which gives a spatially singular perturbed system. This particular model originated as a phe-
nomenological model of gas-discharge dynamics [34, 36, 40], see also [29] and references
therein. It can be written as

Ut = ε2∇2U+U−U3 − (AV+BW+C) ,

τVt =∇2V+U−V,

θWt = D2∇2W+U−W, (1)
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where (U,V,W) = (U,V,W)(x, t) ∈ R3, with (x, t) ∈ Rn×R+, ∇2 is the standard Laplacian
operator in Rn, A,B,C,D ∈ R and ε,τ,θ ∈ R+. Typically, ε is taken to be the small parameter
in the system and the parameters τ,θ are assumed to be at least order 1 with respect to the
small parameter ε, that is, τ,θ =O(ε−χ), for some χ ⩾ 0. Provided D> ε, we can assume,
without a loss of generality, thatD> 1.Wewill restrict to patterns in one spatial dimension, i.e.
n= 1, and we will consider the existence of stationary periodic patterns when the parameters
B and C are small (order ε) and the parameter A ranging from small to order 1. In [34, 36,
40] versions of this model were studied to show the existence of Turing instabilities leading
to the emergence of small amplitude spatially periodic patterns. In addition, various results on
the existence and stability of far from equilibrium localized states—for A, B, and C order ε
(with ε small)—have been proved [11, 12, 17, 37, 42, 45–49], but less is known about far from
equilibrium periodic patterns. Indeed, the only analytical results for periodic patterns can be
found in [45] which restricts to the case that A, B, and C are of order ε. Moreover, a detailed
systematic numerical continuation study of versions of the reaction-diffusion system (1) has
only been performed for interacting pulses and two-dimensional spots [7, 32–34, 40].

Our short numerical exploration with A varying shows that there exist many periodic pat-
terns where U displays both rapid changes and more gradual evolution, while V and W only
change gradually, see figures 1 and 2. In this paper, we will show that these patterns can be
described by the singular perturbation theory of Fenichel (see for instance [19, 23, 27, 28] and
references therein). In addition, we are able to analytically describe the transition from small
amplitude periodic patterns created in a Turing bifurcation (that occurs when A is order 1),
to those found near the singular limit. Hence, we significantly extend the existence results in
[45]. A key contribution of this paper is the delicate analysis of the slow-fast structure which
induces a slow flow in the fast U variable as depicted in panels ± – ³ in figure 15.

The paper is outlined as follows: in section 2 we start with a numerical exploration of the
periodic patterns of (1) with n= 1, B and C small and A varying between order ε and order 1 to
motivate the analysis. The patterns observed display some fast transitions interspersing more
gradual behaviour. The major results of this paper, theorems 1–3, related to the existence of
three different types of numerically observed patterns are also given in section 2. Next, in
section 3, we describe the two spatial scales for the system (induced by the singular nature
of (1)), discuss the equilibria, and introduce the slow-fast structures in the system. In this
section, we also derive conditions for the Turing bifurcation from which near-equilibrium sta-
tionary periodic patterns emerge, see lemma 5. For this bifurcation to occur it is necessary that
not all three system parameters A,B and C are small. From this section onwards, we focus
predominantly on system parameter A, while we keep the other parameters B and C small. In
section 4, we analyse the far-from equilibria periodic patterns that have one slow-fast trans-
ition (see, e.g. panels ¬ and  of figure 1). Emerging from a Turing bifurcation, these patterns
can only occur if A is order 1 (since B and C are fixed at order ε values). That is, we prove the-
orem 1. In section 5, we analyse the far-from equilibria periodic patterns that have two distinct
slow-fast transitions. Two types of patterns emerge. One, related to theorem 2, occurs when
all three system parameters A,B and C are small (see, e.g. panels ¯ and ° of figure 1) and is
also studied in [45]. The other pattern related to theorem 3 is new and has not been studied
yet. It involves the analysis of the slow evolution of the fast variable U; see, e.g. panels ± and
² of figure 1. We end the paper with a discussion and outlook on further work.

5 The fast variable is labelled u in figure 1 to indicate that we are simulating the time-independent version of (1), see
also (2).
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2. A short numerical exploration of (1) and existence results

Aswe focus on stationary one-dimensional periodic patterns in (1), we numerically investigate
the time-independent version of (1) with n= 1:

0= ε2uxx+ u− u3 − (Av+Bw+C) ,

0= vxx+ u− v,

0= D2wxx+ u−w, (2)

and periodic boundary conditions, using the numerical continuation program AUTO-07P [13].
More specifically, we continue in system parameter A with the other system parameters fixed.
We take first B small and C= 0 (and D= 3, ε= 0.01). We observe that a near-equilibrium
pulse with small amplitude and small width is born for A of order 1. In the next section we will
show that this happens near A≈ 2/3 (indicated by the black dashed line in figure 1). Upon
reducing A the amplitude of the u variable of this pulse grows to approximately 2, however, its
width stays small. The v and w variables stay near-constant, see panels ¬–® of figure 1. The
small width pulse can be seen as slow-fast transition, hence this solution can be described as
a periodic solution with one slow-fast transition (in the u variable). An analytical description
of this type of pulses and its existence interval will be derived in section 4.

Once A is of order ε, the amplitude of the u-pulse stays approximately the same upon further
decreasing A, however, its widths grows to order 1 and the u-pulse transforms to a front-back-
like structure, see panels ®–° of figure 1. The front-back structure corresponds to two slow-
fast transitions and this type of solution is studied in section 5.1. As we have taken C= 0
and the system thus has an additional reflection symmetry, the pattern undergoes a pitchfork
bifurcation (shown in °) when the front-back structure has become symmetrically spaced and
v= w= 0 at the fast transitions in u. When C ̸= 0, but small, the system loses this symmetry
and the pitchfork bifurcation becomes a saddle-node bifurcation, see figure 2.

Switching branches and changing A further develops the symmetrically spaced solution,
this solution is studied in section 5.2. For A decreasing (i.e. A negative), this branch can be
followed for a large range of A values, see panel ± of figure 1. For increasing A values (i.e. A
positive) back to order 1, the branch terminates (for an A value larger than 2/3, see section 5.2)
and we observe the creation of a new near-equilibrium pulse with small amplitude and small
width, that is, we observe a pulse-splitting phenomena, see panels ® and ³ of figure 1 and, in
particular, panels ±–³ of figure 2.

During the numerical exploration of (2) we continued in system parameter A, while assum-
ing that the system parameter B was small. Continuing in system parameter B, with A small,
results in similar bifurcation diagrams (results not shown). We hypothesise that this is (likely)
due to the strong similarity in the structure of the linear slow components V and W in (1) (or
v and w in (2)), see also [17, 46, 47]. We do not further investigate this claim in this paper.

In the following sections, we will characterize these numerically observed patterns analyt-
ically and determine their regions of existence. We will not do this in the most generic case,
instead we make the assumption that the system parameters B and C are small with respect to
ε (as we also did in the numerical exploration before).

Assumption 1. Assume B,C of (1) or equivalently (2) are fixed and O(ε). In particular,
assume that B= εB1 and C= εC1 with B1,C1 ∈ R and O(1).

First we state the result about the existence of solutions as depicted in panels ¬ and  of
figure 1 and panel ¬ of figure 2.
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Figure 1. Numerical continuation in A of (2) on a domain of length 10. The other system
parameters are kept fixed at B= ε= 0.01, C= 0 and D= 3. The top left panel shows
the obtained bifurcation diagram of A versus the integral of u (its mass). The dashed
black line indicates A= 2/3. Panels ¬–³ show the associated profiles of the periodic
patterns as indicated in the bifurcation diagram.

Theorem 1. Let assumption 1 hold and L> 0. Then there is some ε0 > 0 such that for all
0< ε < ε0, the three-component reaction-diffusion system (1) has a stationary 2L-periodic
solution with one fast transition. The slow solutions are given by

vs (x) =±
√
1−A+O (ε) , ws (x) =±

√
1−A+O (ε) , x ∈ [−L,L] ;

and the fast solution

uf (ξ) =±uh (ξ;A)+O (ε) , ξ =
x
ε
∈
[
−L
ε
,
L
ε

]
.

Here, uh(ξ;
√
1−A) is the solution homoclinic to

√
1−A in uξξ + u− u3 −A

√
1−A= 0.

Next we state the existence result for solutions as depicted in the panels ¯ and ° of figure 1
and panel ® of figure 2.
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Figure 2. Numerical continuation in A of (2) on a domain of length 10. The other system
parameters are kept fixed at B= C= ε= 0.01, and D= 3. The top left panel shows the
obtained bifurcation diagram of A versus the integral of u (its mass). The dashed black
line indicated A= 2/3. Panels ¬–³ show the associated profiles of the periodic patterns
as indicates in the bifurcation diagram.

Theorem 2. Let assumption 1 hold and let A= εA1, with A1 ∈ R and O(1), D> 1 and L> 0
be such that the Melnikov condition

M(L− 2x∗∗)+C1 = 0, 0< x∗∗ < L; where M(z) = A1
sinh(z)
sinh(L)

+B1
sinh(z/D)
sinh(L/D)

(3)

has N ∈ {1,2,3} solutions x∗∗i , i = 1, . . . ,N. Then there is some ε0 > 0 such that for all
0< ε < ε0, the three-component reaction-diffusion system (1) has N stationary 2L-periodic
solutions with two fast transitions. The slow solutions are in lowest order given by (37)–(39)
(with x∗∗ = x∗∗i ) in appendix A and the fast solutions are in lowest order given by
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u±f (x) = 1+ tanh

(
x− x∗∗√

2ε

)
− tanh

(
x+ x∗∗√

2ε

)
+O (ε) , x ∈ [−L,L] . (4)

The co-periodic stability, related to perturbations with the same period, is given by

dM(z)
dz

∣∣∣∣
z=L−2x∗∗

< 0. (5)

As part of the proof it will be shown that the Melnikov condition (3) has 0, 1, 2, or 3
solutions.

Finally we state the existence results for the periodic solutions as depicted in the panels ±
and ® of figure 1 and panel ¯ of figure 2.

Theorem 3. Let assumption 1 hold and let A= A0 + εA1, with A0 ̸= 0, D> 1 and L> 0. If
A0 < 2/3 or

A0 ⩾ 2/3 and L< Lmax (A0) := 6log

(√
6+

√
9A0 − 2√

2+
√
9A0 − 6

)
, (6)

then there is some ε0 > 0 such that for all 0< ε < ε0, the three-component reaction-diffusion
system (1) has a stationary 2L-periodic solution with two fast transitions at ±L/2.
The fast solution is in lowest order given by

u±f (x) =∓ tanh

(
x±L/2√

2ε

)
+O (ε)

near x=∓L/2 and, away from x=∓L/2, by the solutions of

ux =− A0q
3u2 − 1

, qx =
(1−A0)u− u3

A0
; |u|> 1√

3
, (7)

with the boundary conditions u→±1 for x→−L/2∓ (where the subscript± denotes the left
and right limit) and u→±1 for x→ L/2±.
The slow v solution is in lowest order given by the solution to (7) and a bijective relation

u= u±0 (v) between
{
v | ±A0v⩽ 2/(3

√
3)
}
and

{
u | ±u⩾ 1/

√
3
}
(implicitly given by u±0 −

(u±0 )
3 = A0v with A0v< 2/(3

√
3) for u+0 and A0v>−2/(3

√
3) for u−0 ). The slow w solution

is in lowest order given by

w(x) =
cosh(x/D)

Dcosh(L/(2D))

ˆ L
2

0
sinh

(
L− 2ξ
2D

)
u(ξ) dξ

− 1
D

ˆ x

0
sinh

(
x− ξ

D

)
u(ξ) dξ +O (ε) ,

r(x) =
sinh(x/D)

Dcosh(L/(2D))

ˆ L
2

0
sinh

(
L− 2ξ
2D

)
u(ξ) dξ

− 1
D

ˆ x

0
cosh

(
x− ξ

D

)
u(ξ) dξ +O (ε) ,

(8)
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for x ∈ (−L/2,L/2) and with u the solution of (7) in the same interval. On the other two
intervals, w and r are to leading order given by symmetry

w(x) =−w(x−L) , r(x) =−r(x−L) , for x ∈
(
L
2
,L

)
,

w(x) =−w(x+L) , r(x) =−r(x+L) , for x ∈
(
−L,−L

2

)
.

(9)

Before we prove these theorems, first we will make explicit the slow-fast structure of the
model and analyse its basic properties in the next section.

Remark 1. For the scaling of theorem 2 various results on the existence and stability of local-
ized states have been proved [11, 12, 17, 32, 37, 42, 45–49]. Less is known for periodic pat-
terns, although in [45] an action functional approach was used to determine criteria for exist-
ence and stability of stationary 2L-periodic solutions with two fast transitions, i.e. Theorem 2
was derived and proved. For completeness of the current paper, we also derive this existence
condition with our methodology. Subsequently, we go beyond [45] and further investigate this
condition in the context of the transitions between patterns. Note that in the aforementioned
works a slightly different notation is used

α↔ A1 , β ↔ B1 , γ ↔ C1,

and the periodic solutions constructed in [45] are, compared to the periodic solutions construc-
ted here, mirrored in the x-axis, see the right panel of figure 7.

3. Equilibria, the Turing bifurcation, and the slow-fast structure

3.1. Singular limit set-up

We write the time-independent system (2) as a first-order system of ordinary differential
equations (ODEs) by introducing p := εux,q := vx,r := Dwx. This gives the system

εux = p,

εpx =−u+ u3 +(A0 + εA1)v+(B0 + εB1)w+C0 + εC1,

vx = q,

qx = v− u,

wx =
r
D
,

rx =
1
D
(w− u) , (10)

where we used a regular expansion for A= A0 + εA1, B= B0 + εB1, and C= C0 + εC1 to be
able to easily distinguish between system parameters of strict order 1 and order ε. Given the
singular perturbed nature of the ODE system (10), this system can be viewed as the slow system
with the corresponding fast system of the form
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uξ = p,

pξ =−u+ u3 +(A0 + εA1)v+(B0 + εB1)w+C0 + εC1,

vξ = εq,

qξ = ε(v− u) ,

wξ = ε
r
D
,

rξ =
ε

D
(w− u) , (11)

where the fast variable is written as ξ = x/ε. For ε ̸= 0, these systems are equivalent, though
they are different in the singular limit ε→ 0.

The fast system is Hamiltonian as it takes the form uξ = J∇H(u), with u= (u,p,v,q,w,r)
and Hamiltonian

H(u) =
1
2
p2 − 1

4
u4 +

1
2
u2 −

(
Aq2

2
+
Br2

2
− Av2

2
− Bw2

2
+(Av+Bw+C)u

)
, (12)

and nonstandard symplectic operator

J= diag

( 0 1
−1 0

)
,

 0 − ε

Aε

A
0

 ,

 0 − ε

DBε

DB
0

 ,

where we recall that A= A0 + εA1, B= B0 + εB1, and C= C0 + εC1.

3.2. Equilibria for ε ̸=0

For ε ̸= 0, the equilibria of (10)/(11) are given by

ue = ue (1,0,1,0,1,0) , with u3e − ue (1−A−B)+C= 0 . (13)

If A+B⩾ 1, or if A+B< 1 and |C|> 2((1− (A+B))/3)3/2, then the equation for ue has
exactly one solution. If A+B< 1 and |C|< 2((1− (A+B))/3)3/2, then there are exactly
three roots, see figure 3.

The characteristic polynomial associated with the linearisation about a fixed point in (11)
is

p(λ) =
(
λ2 −

(
3u2e − 1

))(
λ2 − ε2

)(
D2λ2 − ε2

)
+Aε2

(
D2λ2 − ε2

)
+BD2ε2

(
λ2 − ε2

)
.
(14)

If 3u2e − 1 is not small, that is, not of order o(1) for ε→ 0, then there are two fast eigenvalues
with λ2

f (ε) = 3u2e − 1+O(ε2) and four slow ones. The slow ones can be written as λ2
s (ε) =

λ0ε
2 +O(ε4), where λ0 is a solution of

D2
(
3u2e − 1

)
λ4
0 −λ2

0

[(
1+D2

)(
3u2e − 1

)
+D2A+B

]
+
(
3u2e − 1

)
− (A+B) = 0.

If 3u2e − 1 becomes small, i.e. when A+B+
√
3|C| − 2/3= o(1), then the eigenvalues

denoted by λ2
f (ε) become small too and the fast-slow decomposition breaks down. In the fol-

lowing sections, we will see that this is consistent with the slow manifold losing hyperbolicity
at this point.
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Figure 3. Typical fixed point structure of (13) for fixed B and C; upon increasing A we
transition from three roots to one root at A= A∗ := 1−B− 3(C/2)2/3.

To finish this section on the equilibria, we give some more details about the persisting fixed
points in the full system when B0 = 0= C0, as these equilibria will play an important role in
the upcoming analysis.

Lemma 4. Let assumption 1 hold. Then there is some ε0 > 0 such that for all 0< ε < ε0 the
equilibria of (10)/(11) given in (13) satisfy ue = u0e(A0)+O(ε) where u0e(A0) solves

(
u0e
)3 − u0e (1−A0) = 0 . (15)

• For A0 > 1 (10)/(11) has one equilibrium and this equilibrium is O(ε). Moreover, the lin-
earisation about the equilibrium has two real hyperbolic slow O(ε) eigenvalues and two
pairs of purely imaginary eigenvalues, one fast O(1) pair and one slow O(ε) pair;

• for A0 < 1 (10)/(11) has three equilibria, one of which isO(ε) while the other two areO(1).
The linearisation about the small equilibrium has two pairs of real hyperbolic slow O(ε)
eigenvalues and one pair of purely imaginary fastO(1) eigenvalues. The linearisation about
the two O(1) equilibria have
∗ For A0 < 2/3 two pairs of hyperbolic slow O(ε) eigenvalues and one pair of hyperbolic
fast O(1) eigenvalues. At lowest order they are given by λ2

s,1 = ε2/D2; λ2
s,2 = 2ε2(1−

A0)/(2− 3A0); λ2
f = 2− 3A0; and

∗ For 2/3< A0 < 1 two pairs of hyperbolic slow O(ε) eigenvalues and one pair of purely
imaginary fast O(1) eigenvalues.

Note that the case A0 = 2/3 related to the Turing bifurcation (the dotted vertical line in the
bifurcation diagram of figure 1 indicates when A= 2/3 to leading order) will be discussed in
the next section, see in particular lemma 5. The degenerate case A0 = 1 is not discussed further
as it is not important for the current paper.

Proof. The leading order expression (15) of ue follows directly from (13) for A0 ̸= 1 and upon
implementing the constraints of assumption 1. Thus, there is always one equilibrium, which
has ue =O(ε). When A0 > 1, this is the only equilibrium. For A0 < 1, there are two more
equilibria with ue =±

√
1−A0 +O(ε).
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When ε is sufficiently small and A0 is away from 2/3, i.e. ue is away from 1/
√
3 and 3u2e − 1

is not small, the eigenvalues of the linearisation about the equilibrium are real or purely ima-
ginary. By assumption 1 we have B0 = 0= C0 and the characteristic polynomial (14) becomes

p(λ) =
[
(λ2 − (3(u0e)

2 − 1)(λ2 − ε2)+A0ε
2
]
(D2λ2 − ε2)+O(ε3λ2 + ε5 + ελ4) .

Thus, there is a hyperbolic pair of slow eigenvalues with λ2
s,1 = ε2/D2 +O(ε3), and, if (u0e)

2 ̸=
1/3, then there is a pair of fast eigenvalues with λ2

f = 3(u0e)
2 − 1+O(ε) and a second pair of

slow eigenvalues with λ2
s,2 = ε2

(
1+(A0/(3(u0e)

2 − 1))
)
+O(ε3). The results of the lemma

now follow immediately.

3.3. A Turing bifurcation

In this section, we will show how near-equilibrium spatially periodic patterns can emerge near
u2e = 1/3 through a Turing bifurcation in case that C and B are small and A is close to 2/3, i.e.
A0 = 2/3 and B0 = 0= C0

6. That is, we discuss the case where the eigenvalue configuration
of the O(1) equilibria of (10)/(11) changes, see lemma 4 .

Lemma 5. Let assumption 1 hold. Then there is some ε0 > 0 such that for all 0< ε < ε0 the
system (10)/(11) undergoes a Turing instability at the curve given by

A=
2
3
+ ε

(
2
√
2

3
√
3
−
(
B1 ±

√
3C1

))
+O

(
ε2
)
. (16)

It is known that a Turing instability for reaction-diffusion systems is equivalent to a spatial
Hamiltonian–Hopf bifurcation; see [38, lemma 2.11], and hence we show the existence of a
Hamiltonian–Hopf bifurcation in (11)7.

Proof. As seen in section 3.2, (u0e)
2 = 1/3 will occur for A0 = 2/3. Writing ue =±

√
1/3+

εue,1 +O(ε2) and A= 2/3+ εA1 +O(ε2) and using the Ansatz λ2 = εµ2, the characteristic
polynomial (14) can be written as

p(λ) = ε3
[(

µ2 ∓
√
3ue,1

)2
− 3u2e,1 +

2
3

]
µ2D2 +O

(
ε4
)
.

For a Hamiltonian–Hopf bifurcation, we need a pair of double purely imaginary roots of the
characteristic polynomial. Hence ue,1 =∓

√
2/3 and µ2 =−

√
2/3+O(ε). On the other hand,

we find from the equilibrium equation (13) that ue,1 =∓
√
3/2

(
A1 +B1 ±

√
3C1
)
. One can

also verify that the eigenvalues (labelled λf and λs,2 in lemma 4) change from pairs on the
imaginary axis to a quadruple in the complex plane upon varying A. Thus, for B0 = 0= C0 a
Hamiltonian–Hopf bifurcation, and hence also a Turing instability [38, lemma 2.11], occurs
at the curve given by (16).

This Hamiltonian–Hopf bifurcation is illustrated in figure 4, where the eigenvalues involved
in the bifurcation are traced for A going through the Hamiltonian–Hopf curve (16). Note that

6 However, since the analysis only relies on u2e being close to 1/3, similar results can be derived for the more general
case.
7 We shall use Turing instability and spatial Hamiltonian–Hopf bifurcation interchangeably throughout the paper.
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Figure 4. Tracing of the four eigenvalues (labelled λf and λs,2 in lemma 4) involved
in the Hamiltonian–Hopf bifurcation for A going through the Hamiltonian–Hopf curve
and ε= 0.01, B= 0.01, C= 0 and D= 3.

there is only a very small window in the A variable for which there is a quadruple of com-
plex eigenvalues with nonzero real part, which corresponds to the earlier observation that the
eigenvalues are real or purely imaginary if A0 ̸= 2/3.

Remark 2. In contrast to typical Turing bifurcationswe do not observe sinusoidal-like periodic
patterns near the bifurcation, see panel ¬ in figures 1 and 2. This stems from the fact that at
the Hamiltonian–Hopf bifurcation the eigenvalues are O(ε2) and, hence, the period of the
bifurcating orbit is expected to be O(ε−2). So, numerically we do not observe sinusoidal-like
periodic patterns bifurcating off for ε is small. Figure 4 corroborates this observation aswe only
have a small window in the A variable for which there is a quadruple of complex eigenvalues
with nonzero real part.

3.4. The reduced fast system

Next, we consider the fast dynamics, i.e. the behaviour near the u-interfaces in figures 1 and 2.
The reduced fast system is obtained from the singular limit ε= 0 of (11). It has v,q,w,r con-
stant and the dynamics in u and p is

uξ = p,

pξ =−u+ u3 +K(v,w) , (17)

where

K(v,w) := A0v+B0w+C0 (18)
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Figure 5. The left panel shows in black the relation between û0 and K which generates
the reduced slow manifold M0, see (20). The equilibria on the left and right branches
M±

0 of M0 are hyperbolic (solid curves), while the middle ones are elliptic (dashed
curve). In blue a sketch of the associated reduced fast flow associated to (17), see also
figure 6. ForK= 0 there are two heteroclinic orbits connecting the equilibria onM+

0 and
M−

0 , while for 0< |K|< 2/(3
√
3) there is one homoclinic orbit connecting toMsgn(K)

0 .
The right panel shows the relation Kpers =±A0

√
1−A0 (21), obtained by substituting

û0 =±
√
1−A0 into (20). The dashed curve, where A0 > 2/3, is related to the elliptic

branch of the reduced slow manifold (shown in the left panel), while the solid curves are
related to the hyperbolic branches. Note that A0 < 0 on the hyperbolic branches M±

0
when |û0|> 1.

is constant (since v and w are constant). This system is Hamiltonian with Hamiltonian

Hf (u,p;K) =
1
2
p2 +Vf (u;K) ,and potential Vf (u;K) =−1

4
u4 +

1
2
u2 −Ku. (19)

The equilibria (û0, p̂0) in the fast system (17) are given by p̂0 = 0 and the solutions of û30 −
û0 +K= 0. For |K|⩽ 2/(3

√
3), there are three û0 values associated with one K value, while

there is only û0 value associated with one K value for |K|> 2/(3
√
3), see the left panel of

figure 5. The potential Vf and the reduced fast dynamics (17) are sketched in figure 6.
In the full six dimensional reduced fast system (i.e. (11) in the singular limit ε= 0) the

equilibria form a four dimensional manifold

M0 =
{
(û0 (v,w) ,0,v,q,w,r) | û30 − û0 +K(v,w) = 0, v,q,w,r ∈ R4

}
. (20)

The eigenvalues associated with the linearisation in the reduced fast system (17) about the

equilibria in M0 are given by λf(û0) =±
√

3û20 − 1. Thus, the equilibria on the left and right
branches of M0 are hyperbolic, while the middle ones are elliptic. For the analysis later on,
the branches with hyperbolic equilibria are of most interest, hence we define the points û±0 as
the u value of the equilibria on M0 with ±û±0 > 1/

√
3, i.e. û−0 lies on the left branch and û+0

lies on the right branch, see also the left panel of figure 5. In a similar way, we define the left
and right reduced slow manifolds M−

0 respectively M+
0 as

M±
0 =

{
(û0 (v,w) ,0,v,q,w,r) ∈M0 | ±û0 >

1√
3

}
.
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Figure 6. The potential Vf(u;K) and fast dynamics in the various K regions. The figures
for K< 0 follow by the symmetry (u,p,K)→ (−u,−p,−K).

The hyperbolic four dimensional slow manifolds M±
0 have five dimensional stable and

unstable manifolds denoted byWs(M±
0 ) andWu(M±

0 ) respectively. The reduced fast dynam-
ics creates those stable and unstable manifolds. The phase portraits in figure 6, see also the left
panel of figure 5, illustrate that for |K|> 2/(3

√
3) there is only one branch, M−sgn(K)

0 , and

there are no bounded orbits in the fast dynamics, hence Ws(M−sgn(K)
0 ) and Wu(M−sgn(K)

0 )

do not intersect. At K= 2/(3
√
3), we have û+0 = 1/

√
3 and the hyperbolicity of M+

0 breaks
down (M−

0 is still hyperbolic). A similar observation holds for K=−2/(3
√
3) and M−

0 . For
0< K< 2/(3

√
3), there is one fast homoclinic orbit associated with û+0 and for−2/(3

√
3)<

K< 0, there is one fast homoclinic orbit associated with û−0 . This implies that parts of the five
dimensional stable and unstable manifolds coincide. At K= 0, û±0 =±1 and there are two fast
heteroclinic orbits connecting these equilibria and hence the two manifolds M±

0 . Thus, parts
of the stable manifold Ws(M±

0 ) coincide with the unstable manifold Wu(M∓
0 ).

As we will show in sections 4 and 5, 0< |K|< 2/(3
√
3) is related to fast transitions in the

profiles of panels ¬ and  in figure 1 and panel ¬ in figure 2, i.e. Theorem 1, while K= 0
is related to fast transitions in the profiles in panel ° in figure 1 and panel ® in figure 2, i.e.
Theorem 2, as well as panels ± and ® in figure 1 and panel ¯ in figure 2, i.e. Theorem 3.

In the proof of theorem 1, the persisting equilibria will play an important role. So here
we explicitly discuss the persisting equilibria and the associated reduced fast dynamics under
assumption 1 that B and C are small. Under assumption 1, the persisting equilibria have u0e =
±
√
1−A0 in leading order. Substituting û0 = u0e =±

√
1−A0 into the relation (20) gives

Kpers =±A0

√
1−A0. (21)

This relation is depicted in the right panel of figure 5. In the reduced fast dynamics, if
0< A0 < 2/3, these equilibria have a homoclinic orbit associated to them, see the middle pan-
els of figure 6. In these phase portraits with K= Kpers, there is another hyperbolic equilibrium
with no bounded connections. As this equilibrium has the same K-value, it is thus related to
another A0-value. In particular, it is related to u0e =∓

√
1− Ã0, with −1/3< Ã0 < 0 and Ã0

determined by −Ã0

√
1− Ã0 = Kpers, see also the right panel of figure 5. If A0 = 0, i.e. K= 0,
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then there are heteroclinic connections between u0e =+1 and u0e =−1, see the left panels of
figure 6. If A0 <−1/3, then the equilibria u0e =∓

√
1−A0 do not have homoclinic or hetero-

clinic connections connected to them in the reduced fast system, see the right panels of figure 6.
These observations are summarised below, see also figure 5.

Lemma 6. Let assumption 1 hold. Then the persisting equilibria satisfy u0e =±
√
1−A0 to

leading order. In the reduced fast system, these equilibria have

• A homoclinic orbit for 0< A0 < 2/3;
• Two heteroclinic orbits connecting u0e =±1 to u0e =∓1 for A0 = 0; and
• No heteroclinic or homoclinic orbits for A0 < 0 and A0 > 2/3.

Remark 3. Assumption 1 simplifies the relation (18) to K(v,w) = A0v. The persisting equilib-
ria have v= ue in leading order, hence this relation becomes A0v=±A0

√
1−A0 = Kpers (21).

Hence, this is consistent with the derivation of Kpers via relation (20).

3.5. The reduced slow system

Next, we consider the slow dynamics, i.e. the behaviour away from the u-interfaces in figures 1
and 2. The reduced slow system dynamics is obtained from the singular limit ε= 0 of (10). It
lies on the manifold M0 given by (20). The dynamics on the slow manifold is defined by the
system

vx = q ,

qx = v− û0 (v,w) ,

wx =
r
D
,

rx =
1
D
(w− û0 (v,w)) .

(22)

Hence, equilibria for the reduced slow system are limits for ε→ 0 of the equilibria determined
in (13). Note that away from the equilibria, K(v,w) is not constant (unless all parameters are
order ε, which implies K= 0, irrespective of the values of v and w) and therefore, u= û0(v,w)
will vary along with the dynamics of the slowmanifold whenK ̸= 0.We will study the reduced
slow system (22) in more detail in the upcoming sections for the different types of periodic
patterns.

3.6. Slow-fast periodic solutions and persisting locally invariant manifolds

For any δ > 0, define the truncated slow manifolds

M±
0,δ =

{
(û0 (v,w) ,0,v,q,w,r) ∈M±

0 | ±û0 ⩾
1√
3
+ δ

}
. (23)

By normal hyperbolicity, these manifolds, and their stable and unstable manifolds, persist (for
fixed δ) as locally invariant slow manifolds M±

ε,δ with associated stable and unstable mani-
folds in the full dynamics for ε ̸= 0 [19, 27, 28]. The coinciding stable and unstable manifolds
associated with the homoclinic orbit will persist as the full system is still Hamiltonian and
hence this manifold is the levelset of the conserved Hamiltonian, which is smoothly changed.
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However, while the unperturbed truncated slow manifolds M±
0,δ consist of fast equilibria of

the reduced fast system (17), only the true equilibria (13) persist in the full perturbed sys-
tem (10)/(11) and the existence of a homoclinic orbit to the persisting equilibria requires some
further analysis and is shown in sections 4 and 5. In contrast, the coinciding of the stable and
unstable manifolds associated with the heteroclinic orbit will generically not persist and fur-
ther study is thus also needed to obtain conditions that give a persisting heteroclinic orbit, see
section 5.

As seen in lemma 4, when B and C are small, one of the equilibria satisfies uεe =O(ε) and,
when A0 < 1, there are also equilibria with uεe =±

√
1−A0 +O(ε). When A0 < 2/3, the last

two equilibria are hyperbolic and hence part of the persisting locally invariant slow manifolds
M±

ε,δ . These equilibria have three dimensional stable and unstable manifolds Wu,s(uεe) and

these manifolds are embedded in the stable respectively unstable manifolds of M±
ε,δ . We will

use the persisting locally invariant slowmanifolds and the slow-fast dynamics to investigate the
persistence of the intersection of their stable and unstable manifolds and to prove the existence
of slow-fast periodic solutions in the full system and give approximations for these solutions.

A slow-fast periodic solution has transitions between slow and fast behaviour. The minimal
number of transitions will be one: there will be one slow phase near M+

ε,δ or M−
ε,δ and one

fast phase. The plots marked with ¬ and  in figure 1 and ¬ in figure 2 correspond to such
type of solutions. These solutions require a homoclinic connection, so they can only occur
when 0< |K(v,w)|< 2/(3

√
3) in lowest order during the fast phase, see the middle panels of

figure 6.
To analyse such solutions and capture the spatial dynamics, we will look for 2L-periodic

solutions with x ∈ [−L,L] and divide this interval in one slow and one fast region. We write

[−L,L] =
[
−L,−

√
ε
]
∪
(
−
√
ε,
√
ε
)
∪
[√

ε,L
]
=: Is ∪ If,with If :=

(
−
√
ε,
√
ε
)
,

where we, without loss of generality, centred the fast transition at x= 0, see also the left plot in
figure 7. The choice of the asymptotic width of the fast interval to be 2

√
ε is arbitrary and not

intrinsically related to the original problem, but rather a necessary ingredient of the geometric
approach. Actually, any other choiceMεχ with χ ∈ (0,1), such that the fast interval vanishes
in the singular limit ε→ 0 in the slow scaling, but blows up to the whole real line in the fast
scaling, will work. Note that the asymptotic scaling also does not play an essential role in the
description of the solution. In the slow regions, the dynamics will take place near one of the
two slow locally invariant manifolds M±

ε,δ . In the fast region, the slow variables v and w are
constant in lowest order and the fast variable u leaves the slowmanifold, but has to return to the
same manifold as there is only one transition. This return has to correspond to the dynamics
staying close to a homoclinic connection to the slow manifold.

A different type of periodic solution is obtained when there are two transitions and both fast
phases involve a heteroclinic connection of the stable and unstable manifolds, see, for instance,
the plots marked with ¯–® in figure 1 and ®–° in figure 2. These fast transitions should occur
near K(v,w) = 0 as this is the only value for which heteroclinic orbits exist, see figure 6. Note
that K(v,w) can become small (order ε) in two distinctive ways. Firstly, the system parameters
A, B, and C can be small (order ε) as is the case for ¯ and ° in figure 1 and for ® and ° in
figure 2. Alternatively, B, C, v and w can be small (order ε) while A is order 1 near the fast
transition as is the case for ± and ® in figure 1 and for ¯ in figure 2.
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Figure 7. Periodic existence setup. The left panel is associated to periodic solutions with
one fast transition, while the right panel is associated to periodic solutions with two fast
transitions.

To analyse such 2L-periodic solutions, we write

[−L,L] =
[
−L,x∗ −

√
ε
]
∪
(
x∗ −

√
ε,x∗ +

√
ε
)
∪
[
x∗ +

√
ε,x∗∗ −

√
ε
]

×∪
(
x∗∗ −

√
ε,x∗∗ +

√
ε
)
∪
[
x∗∗ +

√
ε,L
]

=: I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5,
(24)

where the large odd numbered intervals are expected to be dominated by slow dynamics and
the small even numbered ones by fast dynamics, see the right plot in figure 7, and where
−L< x∗ < x∗∗ < L need to be determined. Again, in the slow regions, the dynamics will take
place near one of the two slow locally invariant manifolds M±

ε,δ . The fast dynamics uses a
heteroclinic connection between these two manifolds.

Other periodic slow-fast solutions in figures 1 and 2 can be obtained by combining these two
scenarios. For instance, the plot marked with ® in figure 2 has three transitions: the two outer
ones involve the heteroclinic connections (happing near K(v,w) = 0 as both v,w are small),
while the middle one involves the homoclinic connection (as 0< |K(v,w)|< 2/(3

√
3) here).

4. Proof of theorem 1: a slow-fast periodic solution with one fast transition

In this section, we study slow-fast periodic solutions with one fast transition and, in particular,
prove theorem 1. As we have discussed in section 3, a slow-fast periodic solution with one fast
transition has one slow phase near M+

ε,δ (or M−
ε,δ) and one fast phase. The fast phase takes

place near a homoclinic connection between the stable and unstable manifolds of M+
ε,δ (or

M−
ε,δ) as it has to return to the slow phase on the same branch of the slow manifold. Such

connections can only occur when 0< |K(v,w)|< 2/(3
√
3) in lowest order during the fast

phase, see the middle panels of figure 6. We assumed in theorem 1 that both B and C are small,
i.e. B0 = 0= C0.

8 Then, K(v,w) (18) simplifies to K= A0v, with, by assumption, A0 ̸= 0. This

8 This assumption is not without loss of generality, but we postulate that similar results can be obtained in the more
general case.
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implies that we can use the variable v, instead of K(v,w), to characterize the relevant parts of
the two branches of the slow manifold at which transitions to the fast phase can occur:

M±
0,1fs = {(û±0 (v),0,v,q,w,r) | (û±0 )

3 − û±0 +A0v= 0; v,q,w,r ∈ R4,
1√
3
<±û±0 (v)< 1}.

Here we used that if K= A0v> 0 then û+0 (v) has a homoclinic connection in the fast zeroth
order dynamics, while the same holds for û−0 (v) if K= A0v< 0, see figure 6 and lemma 6.

We start the search for periodic orbits with one fast transition with a heuristic investigation
of such solutions. Assume that us(x,ε) = (us,ps,vs,qs,ws,rs)(x,ε) is a 2L-periodic solution
with one fast transition, represented in the slow coordinates. In the fast coordinates this solution
can be written as

uf (ξ,ε) := us (εξ,ε) , ξ ∈ [−T,T] , with T=
L
ε
.

Wewill first show that the transition to the fast region has to occur near a fixed point of the full
system, i.e. near (û±0 (v),0,v,q,w,r) =±

√
1−A0(1,0,1,0,1,0). During the slow phase Is, the

fast variables are near the slow manifold:

us (x) = û0 (v(x))+ o(1) , ps (x) = 0+ o(1) , x ∈ Is,

where we recall that we assumed B and C are small and hence û0 does not explicitly depend
on w(x). The slow flow is to leading order determined by (22). During the fast phase If, the
slow variables are constant in lowest order:

vf (ξ) = v0 + o(1) ; qf (ξ) = q0 + o(1) ;

wf (ξ) = w0 + o(1) ; rf (ξ) = r0 + o(1) ; εξ ∈ If;

and (uf,pf) move fast near a homoclinic connection to one of the points (û±0 (v0),0,v0,
q0,w0,r0) on the slow manifold M±

0,1fs. Hence

uf (ξ) = uh (ξ,v0)+ o(1) ; pf (ξ) = ph (ξ,v0)+ o(1) ,

where (uh,ph)(ξ,v0) are the homoclinic connection to (û±0 (v0),0) in the reduced fast system.
To determine near which of the hyperbolic fixed points on the slow manifold the fast transition
takes place, we evaluate the change in the slow variables during the fast phase. Using the fast
equation (11), the change in q is given by

∆f
q (ε) := qf

(
1/
√
ε
)
− qf

(
−1/

√
ε
)
=

ˆ 1√
ε

− 1√
ε

dqf
dξ

dξ = ε

ˆ 1√
ε

− 1√
ε

(vf− uf) dξ

= ε

ˆ 1√
ε

− 1√
ε

(v0 − uh (ξ,v0)+ o(1)) dξ

= 2
(
v0 − û±0 (v0)

)√
ε+ o

(√
ε
)
, (25)

since uh(ξ,v0) converges to û±0 (v0) and ε
´∞
−∞(û±0 (v0)− uh(ξ,v0))dξ is bounded. So, in the

singular limit ε→ 0, the slow solution qs(x) is continuous at x= 0. Similar arguments for
the slow variables r, v and w show that these slow solutions are also continuous at x= 0
in lowest order. By (22), this implies that the lowest order slow solutions are constant with
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v0 = û±0 (v0) = w0, q0 = 0= r0. The only equilibria that satisfy this relation and the constraint
1/
√
3< |û±0 |< 1 are û±0 =±

√
1−A0, with 0< A0 < 2/3. Thus, if a 2L-periodic solution

with one transition exists, then necessarily 0< A0 < 2/3 and its zeroth order approximation
is

v0 (x) = w0 (x) = v0 = w0 =±
√

1−A0; q0 (x) = r0 (x) = 0; x ∈ [−L,L] ;(
u0s (x) ,p

0
s (x)

)
=
(
±
√

1−A0,0
)
, x ∈ Is;(

u0f (ξ) ,p
0
f (ξ)

)
=±

(
uh
(
ξ,±

√
1−A0

)
,ph
(
ξ,±

√
1−A0

))
, εξ ∈ If.

Recall that (uh(ξ,v0),ph(ξ,v0)) is the homoclinic solution of (17) with B0 = 0= C0 (i.e. K=
A0v0). Using that the Hamiltonian of the fast system (17) is conserved, we find that the extremal
point of the u-coordinate of this homoclinic orbit is given by

uext0 =±
(√

2A0 −
√

1−A0

)
. (26)

This extremal point goes to ∓1 for A0 → 0, illustrating the fact that the fast homoclinic orbit
becomes heteroclinic when A0 → 0. For A0 → 2/3 the extremal point converges to its fixed
point value ±1/

√
3, illustrating that the fast homoclinic orbit degenerates in a Hamiltonian–

Hopf bifurcation of the fixed points. See also panels ¬–® of figure 1 and panels ¬ and  of
figure 2.

After these heuristics, we now show that the orbit homoclinic to u0
e =±

√
1−A0(1,0,1,0,

1,0) for 0< A0 < 2/3 persists as a homoclinic orbit to the persisting fixed point uεe = ue =
u0
e +O(ε) (see (13)) for ε small and can be used to construct a slow-fast periodic solution.
First we observe that the five dimensional stable and unstable manifoldsWu,s(M±

0,δ) trans-
versely intersect the hyperplane

P = {(u,0,v,0,w,0) | u,v,w ∈ R}

with the two dimensional intersection given by

Wu,s

(
M±

0,δ

)
∩P = {(uh (0,v) ,0,v,0,w,0) | v,w ∈ R} .

Recall that uh(ξ,v) is the u-component of the symmetric homoclinic connection to (û±0 (v),0)
in the reduced fast system. Thus for ε small, the stable and unstable manifolds of the
persisting manifolds Wu,s(M±

ε,δ) will also intersect P and the intersection will be nearby

Wu,s(M±
0,δ)∩P .

A persisting fast homoclinic orbit will be in the intersection of the stable and unstable
manifolds of the persisting fixed point uεe . The three dimensional stable manifold Ws(uεe) lies
in the five dimensional stable manifold Ws(M±

ε,δ) and the homoclinic orbit(
uh
(
ξ,
√

1−A0

)
,ph
(
ξ,
√

1−A0

)
,
√

1−A0,0,
√

1−A0,0
)
, ξ ⩾ 0,

lies nearby Ws(M±
ε,δ). So a dimension count gives that there has to be at least one point in

which Ws(M±
ε,δ) intersects P .

Thus there exists an orbit uεs (ξ) ∈Ws(uεe) which intersects P in ξ= 0. The Hamiltonian
nature of the equations gives a reversibility symmetry in the system: if u(ξ) is a
solution, then (u,−p,v,−q,w,−r)(−ξ) is a solution too. This implies that uεu(ξ) :=
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(uεs ,−pεs ,vεs ,−qεs ,wε
s ,−rεs )(ξ) is a solution on the unstable manifold Wu(uεe) which intersects

P at ξ= 0 in the same points as uεs . In other words, they form a homoclinic connection to uεe
nearby the homoclinic connection to u0

e .
Now we have shown the persistence of a homoclinic orbit to the persisting fixed point uεe ,

we can use Fenichel’s singular perturbation theory, see for instance [19, 27, 28], to justify
the existence of a slow-fast periodic orbit and to finalise the proof of theorem 1. We omit the
further technical details.

Remark 4. The results of theorem 1 are independent of the period of the 2L-periodic solution
(though ε0 will depend on L with ε0 decreasing once L gets large or small as can be seen in
appendix B). We need to compute the next order correction terms of the periodic solutions to
see how the period comes into play. This computation can be found in appendix B.

5. Slow-fast periodic solutions with two fast transitions

Theorem 1 is valid for 0< A0 < 2/3. For A0 near 2/3 a Hamiltonian–Hopf bifurcation occurs,
see lemma 5, and we see the creation of the near-equilibrium periodic pattern. For A0 near 0,
the homoclinic orbit associated with the persisting fixed points is near the transition to a pair of
heteroclinic orbits, see lemma 6. The extremal point uext0 (26) becomes ∓1+O(

√
A0) and the

passage time near the extremal point is of the order log(A0) as follows from the linearisation,
hence becomes slow. In this case for A0 near 0, a transition to orbits with two fast transitions
takes place.

From figure 6 and lemma 6 it follows that, a priori, there can be two types of periodic
solutions with two fast transitions: one is a solution with two jumps involving solutions near
the heteroclinic orbits and going from nearM−

ε to nearM+
ε and back. The other is a solution

near two homoclinics. The latter solution will involve onlyM−
ε or onlyM+

ε and the continuity
condition from the previous section will need to be satisfied at both jump points. This leads to
solutions similar to the ones of the previous section and we will not further study these type
of solutions.

So in this section we focus on periodic solutions with two fast transitions formed by two
heteroclinic connections. If we assume that assumption 1 holds such thatB0 = 0= C0, then this
means that during the fast phase, the system should satisfy 0= K(v0,w0) = A0v0, see lemma 6.
Thus, either A0 = 0 or v0 = 0 during the fast transition and the fast variable uwill change from
near −1 to near +1 or the other way around. As described in section 3.6 and sketched in the
right plot in figure 7, to characterize a slow-fast periodic solution with two fast transitions,
we define 2L to be the period (in the slow variables) and split the interval [−L,L] in five sub-
intervals: [−L,L] = I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5, where the odd numbered intervals are dominated by
slow dynamics and the even numbered ones by fast dynamics. Using the translation invariance,
we can assume that the periodic pattern starts near M+

ε at x=−L with q(−L) = 0, has a
transition in I2 to near M−

ε with u changing fast from near +1 to near −1, continues near
M−

ε in I3, changes back to nearM+
ε in I4 with u changing fast from near −1 to near +1, and

continues near M+
ε in I5 to q(L) = 0, see the right plot in figure 7. We write the interval I2 as

centred around a point x∗ that will be determined later, i.e. I2 = (x∗ −
√
ε,x∗ +

√
ε). Again,

the choice of width of order
√
ε in the slow coordinates is not essential. Similarly, I4 has the

same width and is centred around x∗∗.
The condition 0= K(v0,w0) = A0v0 during the fast phase implies that either A0 = 0

or v0 = 0 during the fast phase. In section 5.1, we will consider the case A0 = 0, i.e. A small,
and in section 5.2, we will consider the case A0 ̸= 0, i.e. v0 = 0 during the fast jump. That is,
in section 5.1 we prove theorem 2 and the proof of theorem 3 is discussed in section 5.2.
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Figure 8. The reduced fast and slow system phase planes for A0 = 0: the reduced fast
dynamics is sketched in panel (a); panels (b) and (c) show the linear slow dynamics on
M−

0 respectively on M+
0 .

5.1. Proof of theorem 2: all parameters small such that A0 = 0

First we focus on the case where, in addition to B0 = 0= C0 (by assumption 1), A0 = 0.
For A0 = 0, the expression K(v,w) = A0v= 0 holds for all v and w and û±0 (v) =±1. Thus
at A0 = 0, the hyperbolic parts of the slow manifoldM0 are uniform in the slow variables and
are now given by

M±
0 = {(±1,0,v,q,w,r) | v,w,q,r ∈ R} . (27)

During the fast phases I2 and I4, the slow variables are constant in lowest order. We denote the
lowest order approximation of the slow variables by v∗,q∗,w∗,r∗ in I2 and v∗∗,q∗∗,w∗∗,r∗∗
respectively in I4. The reduced fast system (17) in the (u, p) variables becomes

uξ = p,

pξ =−u+ u3. (28)

The (u, p)-phase plane is depicted in figure 8(a), see also the bottom left panel of figure 6, and
the heteroclinic connections are known explicitly and given by

u±0 (ξ) =± tanh

(
ξ√
2

)
and p±0 (ξ) =± 1√

2
sech2

(
ξ√
2

)
. (29)

Thus in the fast dynamics on I2 we have in lowest order

uf (ξ) = u−0 (ξ)+ o(1) , pf (ξ) = p−0 (ξ)+ o(1) ,
vf (ξ) = v∗ + o(1) , pf (ξ) = p∗ + o(1) , wf (ξ) = w∗ + o(1) , rf (ξ) = r∗ + o(1) ,

(30)

and on I4

uf (ξ) = u+0 (ξ)+ o(1) , pf (ξ) = p+0 (ξ)+ o(1) ,
vf (ξ) = v∗∗ + o(1) , pf (ξ) = p∗∗ + o(1) , wf (ξ) = w∗∗ + o(1) , rf (ξ) = r∗∗ + o(1) .

(31)

Observe that the fast expressions uf of (30) and (31) to leading order coincide with (4) (with
x∗ =−x∗∗, see further down).
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The reduced slow system (22) on M±
0 (27) is linear with decoupled v and w dynamics:

vx = q,

qx = v∓ 1,

wx =
r
D
,

rx =
1
D
(w∓ 1) . (32)

It possesses the hyperbolic equilibria (v,q,w,r) =±(1,0,1,0) with stable and unstable man-
ifolds as sketched in figures 8(b) and (c). The fast system gives boundary conditions for each
of the slow intervals I1, I3, and I5:

v(x∗) = v∗, v(x∗∗) = v∗∗, q(x∗) = q∗, q(x∗∗) = q∗∗,
w(x∗) = w∗, w(x∗∗) = w∗∗, r(x∗) = r∗, r(x∗∗) = r∗∗,

and the periodicity of the solution gives boundary conditions for I1 and I5

v(−L) = v(L) , q(−L) = q(L) , w(−L) = w(L) , r(−L) = r(L) .

Furthermore, because the problem is translation invariant we can set, without loss of generality,

q(−L) = q(L) = 0 .

Solving the ODEs (32) with the boundary conditions above leads to x∗ =−x∗∗ and hence
x∗∗ ∈ (0,L) (and x∗ ∈ (−L,0)). The slow solutions in lowest order are given in appendix A.
Furthermore, at lowest order, the values of the slow variables in the fast solution in (30) and (31)
are

v∗ = v∗∗ =
sinh(L− 2x∗∗)

sinh(L)
, q∗ =−q∗∗ =−2sinh(x∗∗)

sinh(L)
sinh(L− x∗∗) ,

w∗ = w∗∗ =
sinh((L− 2x∗∗)/D)

sinh(L/D) ,
, r∗ =−r∗∗ =−2sinh(x∗∗/D)

Dsinh(L/D)
sinh((L− x∗∗)/D) .

(33)

Finally, the jump point x∗∗ is determined by the Melnikov condition for the transition between
M−

ε andM+
ε – the persisting locally invariant slowmanifolds near (27). To find this condition,

we use the Hamiltonian of the full fast system (12). In the fast interval I4, the solution jumps
from nearM−

ε to nearM+
ε . Specifically, at the end points ξ = ξ∗∗ ∓ 1/

√
ε, with ξ∗∗ = x∗∗/ε

we have

u=∓1+ o(1) , p= o(1) , v= v∗∗ + o(1) ,

q= q∗∗ + o(1) , w= w∗∗ + o(1) , r= r∗∗ + o(1) .

The Hamiltonian is constant, hence substitution of the expressions above in (12) gives

0= H(u(ξ∗∗ + 1/
√
ε))−H(u(ξ∗∗ − 1/

√
ε)) = 2ε(A1v∗∗ +B1w∗∗ +C1)+ o(ε) .

Using (33), we can conclude that x∗∗ has to satisfy (3).
In the parameter space, we analyse the number of spatially periodic solutions of (2) and their

stability as given by the Melnikov condition (3) and the stability criterion (5), respectively.
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Lemma 7. The number of solutions x∗∗ satisfying the Melnikov condition (3) depends on C1.

• If C1 = 0, then there are always one or three solutions to (3). To be specific, x∗∗ = L/2
always satisfies the Melnikov condition. Furthermore, define

B1
1 :=min

(
−Dsinh(D/L)

sinh(L)
A1,−A1

)
, and B2

1 :=max

(
−Dsinh(D/L)

sinh(L)
A1,−A1

)
.

∗ If B1 ∈ (B1
1,B

2
1), then there are two more solutions x

∗∗ in (0,L), symmetrically placed
around L/2.

∗ If B1 =−A1, then there are two more solutions at x∗∗ = 0 and x∗∗ = L.
∗ If B1 =−Dsinh(D/L)

sinh(L)
A1, then there is a triple solution at x∗∗ = L/2, i.e. at this B1 value,

there is a pitchfork bifurcation in the solutions of the Melnikov condition.
∗ If B1 ̸∈ [B1

1,B
2
1], there are no more solutions in [0,L].

See figure 9(a) for details including co-periodic stability of the solutions as calculated
from (5).

• If C1 ̸= 0, then the Melnikov condition (3) is satisfied by either 0, 1, 2 or 3 solutions.
Transitions in the number of solutions occur at the curves (details are visualised in figure 9(b)
including co-periodic stability of the solutions as calculated from (5)):
∗ A1 +B1 = C1, when x∗∗ → L (black curve);
∗ A1 +B1 =−C1, when x∗∗ → 0 (red curve);
∗ The (blue) parametric curve

A∗
1 (z) =

C1 sinh(L)
cosh(z)(D tanh(z/D)− tanh(z))

,

B∗
1 (z) =− C1Dsinh(L/D)

cosh(z/D)(D tanh(z/D)− tanh(z))
,

(34)

for z ∈ [−L,0)∪ (0,L], at which there is a saddle-node bifurcation and two solutions col-
lide.

For B1 and C1 fixed and |A1| large, there is a unique solution x∗∗ to (3), which satisfies x∗∗ =
L/2+C1 sinhL/(2A1)+O(A−2

1 ), |A1| →∞. This implies that v∗∗ =−C1/A1 +O(A−2
1 )

for |A1| →∞.

The proof of this lemma involves the analysis of the function M(z) and can be found in
appendix C. This appendix also contains bifurcation diagrams depicting the changes in stability
along the dashed black lines in right panel for the case C1 =−1 (see figure 13).

Combining the above lemma with the preceding analysis gives the singular limit (i.e. ε= 0)
existence results as stated in theorem 2. What remains to be shown is the persistence of these
results for ε> 0 small. This persistence can be shown by the singular perturbation theory
of Fenichel and can be seen as a natural extension of the persistence result for localized 1-
pulse solutions for the three-component reaction-diffusion system (1) in the same parameter
regime, see sections 2.2–2.4 of [17] (with A= εA1 = εα, B= εB1 = εβ and C= εC1 = εγ,
see remark 1).

Before detailing the proof of the persistence of the periodic solutions, first we succinctly
describe to persistence proof for the localized 1-pulse solution. Full details can be found in
[17]. In section 2.2 of [17] the authors first derive the singular limit results for localized 1-
pulse solutions (that asymptote to (−1,−1,−1)+O(ε) as x→±∞), that is, they derive the
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Figure 9. Overview of the stability of the spatially periodic solutions that satisfy
the Melnikov condition (3) in the (A1,B1)-parameter space. Each Ⓢ represents one
stable solution and similarly U⃝ represents one unstable solution. The left panel shows
C1 = 0 and the right panel C1 =−1, while the other parameters are fixed at D= 3
and L= 5. In the green region there are no roots, in the red regions one, in the blue
regions two, and in the yellow regions three. The green dashed curves represent the
boundaries of the region in which the Melnikov function M(z) is non-monotonic on
[−L,L], i.e. the green curves are B1 =−A1D tanh(L/D)/ tanh(L) (extremum at ±L)
and B1 =−A1Dsinh(L/D)/sinh(L) (merging of the two extrema in the origin). On the
black line (C1 = A1 +B1), one of the solutions corresponds to x∗∗ = L; on the red line
(−C1 = A1 +B1), one of the solutions corresponds to x∗∗ = 0 (note that the black and
the red curve coincide in the left panel). The blue curve represents a saddle-node bifurc-
ation corresponding to double solutions x∗∗ ∈ (0,L] (note that the blue and one of the
green curves coincide in the left panel), see lemma 8 for details. The termination points
of the blue curves on the black/red curves are (A1,B1) = (A∗

1 (±L),B∗
1 (±L)), where

A∗
1 and B∗

1 depend linearly on C1 and nonlinearly on D and L, see (34). Furthermore,
the black/red and blue curves intersect once more at (A1,B1) = (∓1− b̃,±b̃), with
b̃= 3(e10/3 + 1)2/(e10/3 − 1)2 ≈ 3.46. The number of roots of (3) changes by two
when crossing the blue curves and by one when crossing the black and red curves. In
appendix C, figure 13, bifurcation curves can be found depicting the changes in stability
along the dashed black lines in right panel for the case C1 =−1.

equivalent of the Melnikov condition (3), as well as the leading order profiles of the localized
solutions. Next, in section 2.4 of [17] they prove the persistence of such a pattern for ε> 0
by showing the existence of a homoclinic orbit γh(ξ) in the fast system (i.e. (11)) that is con-
tained in the intersection of the stable and unstable manifold of the asymptotic equilibrium
point involved and that is in leading order given by the earlier derived profiles. To do so, the
authors utilise the reversibility symmetry of the system (i.e. (ξ,p,q,r)→−(ξ,p,q,r) in (11))
and study both the three-dimensional unstable manifold of the equilibrium point as well as the
five dimensional unstable manifold of the (truncated)9 locally invariant slow manifoldM−

ε (u
near−1) as they pass along the other (truncated) slowmanifoldM+

ε (u near+1, see also (23)).
They show that there is a one-parameter family of heteroclinic orbits in the unstable manifold
of the equilibrium point that is forward asymptotic to M+

ε . The evolution of such an orbit
near M+

ε is governed by the reduced slow system (to leading order given by (32)) and the

9 In [17] there is no need to truncate to locally invariant slow manifolds as the orbits stay away from the fold.
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orbit γh(ξ) of interest is exponentially close to one of these orbits (the one that obeys a version
of theMelnikov condition) for an asymptotically long (spatial) time. Next, a three-dimensional
tube around this heteroclinic orbit is constructed and this tube is studied as it flows from M−

ε

to M+
ε and (partly) back to M−

ε again. By transversality, which follows from a Melnikov
computation, the intersection of this tube with the stable manifold ofM−

ε is two-dimensional
and, by the reversibility symmetry, orbits in this intersection are close to the part of the stable
manifold that are forward asymptotic to the equilibrium point (that is, they are close to the per-
sisting perturbed stable yellowmanifolds in panel (b) of figure 8).What remains to show is that
there exists an orbit in this intersection that touches down exactly on this stable manifold. This
follows again from the reversibility symmetry. In particular, a similar two-dimensional object
(the intersection of a related three-dimensional tube with the unstable manifold of M−

ε ) can
be constructed and it is subsequently shown that these two two-dimensional objects intersect
yielding the existence of the persisting homoclinic orbit γh(ξ).

Next, we extend this proof for localized solutions to periodic solutions. The main differ-
ence between a 2L-periodic solution and a localized solution—where L is assumed to be suf-
ficiently large to support the slow-fast structure—is that localized solutions need to asymptote
on one of the equilibrium points (that is, they have to lie on the stable and unstable mani-
folds of the equilibrium point), while this is not the case for a 2L-periodic solution. Instead
the periodic solutions are fixed by the requirement that they have zero derivative at the match-
ing point ±L. For the slow components (and in the singular limit ε= 0) this difference is
indicated in the phase planes of panels (b) and (c) of figure 8: localized solutions need to lie
(asymptotically) close to the yellow stable and unstable manifolds, while 2L-periodic solu-
tions are indicated by the blue orbits intersecting {q,r= 0}. In particular, to prove the per-
sistence of a 2L-periodic pattern for ε> 0 one needs to show the existence of a periodic orbit
γP(ξ) in the fast system (11) that is contained in the forward and backward flow of the three-
dimensional hyperplane {p= 0,q= 0,r= 0} in the neighbourhood of the persisting equi-
librium with ue =−1+O(ε). However, by the scale separation and the linear nature of the
reduced slow system (to leading order given by (32)), the forward and backward flows of this
three-dimensional hyperplane will be asymptotically close to the related three-dimensional
manifolds of interest for the localized pattern while they make the transition to the other slow
manifold. That is, the information of the flow of the five dimensional unstable manifold of
the truncated locally invariant slow manifoldM−

ε,δ as it passes along the other truncated slow

manifold M+
ε,δ (with u near +1, see also (23)) can still be utilised, similarly for the stable

manifold. Furthermore, the reversibility symmetry of (11) still holds. As a result, the proof of
the persistence of the localized solution from [17] (and as outlined above) only needs to be
adjusted slightly. We omit further technical details and refer to [15], where a similar adjusted
proof is given for periodic patterns in the one-dimensional Gray–Scott model. This completes
the proof of the existence part of theorem 2.

For the proof of the stability result, we refer to [45], where the authors derive a stability
criterion for the periodic orbits under perturbations with the same period (known as co-periodic
stability). In our notation the condition reads as (5). □

After finishing the proof of theorem 2, we reflect on the case C= 0 and the transition to
C= εC1. From theorem 2 and lemma 7 it follows that, for ε small enough and if A= εA1,
B= εB1 and C= 0, then there exists a symmetric periodic solution with fast transitions at
x=±L/2 and the slow components v,w are to leading order zero during the fast trans-
itions, see panel ° in figure 1. Furthermore, there are two more periodic solutions when
B1 ∈ (−A1Dsinh(L/D)/sinh(L),−A1), see panel ¯ in figure 1 for a typical example. At
B1 =− A1Dsinh(L/D)/sinh(L)+ o(1), these solutions get created in a symmetric pitchfork
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bifurcation at the solution with the fast transitions at x=±L/2. At B1 =−A1 + o(1), these
solutions cease to exist as the transition points start approaching x= 0 or x=±L.

The symmetric pitchfork bifurcation breaks open and there are two curves of periodic solu-
tions with two fast transitions when C= εC1 with C1 ̸= 0, see figure 2. This results in regions
in (A1,B1)-parameter space with 0,1,2 or 3 periodic solutions with two fast transitions. The
transition between the different regions are determined by (34) and the curves A1 +B1 =±C1.
Furthermore, we observe that there are no solutions when A1 and B1 are too small compared to
C1, see figure 9. For instance, a necessary—but not sufficient—condition for the existence of
periodic solutions with two fast transitions in this parameter regime is |A1|+ |B1|> |C1|. From
figure 9 it also follows that the number of supported periodic solutions with two fast transitions
depends intrinsically on both A1 and B1. For instance, it is not possible to have three different
periodic solutions with two fast transitions for B= 0= B1. For B= 0, system (1) effectively
reduces to a two-component model. Hence, the existence of three different periodic solutions
with two fast transitions requires the three-component system (1) and is not present in the
simpler two-component model.

Note that when x∗∗ → L, the leading order value of v during the fast transitions approaches
minus one (i.e. v∗∗ →−1) and the two heteroclinic connections are very close together, hence
one of the slow intervals becomes very small. This type of solution is in lowest order similar
to the limiting solutions with one fast jump seen in the previous section when A→ 0. The
same holds for x∗∗ → 0 as then v∗∗ → 1. Furthermore, for L→∞ the Melnikov condition (3)
approaches the existence condition for stationary localized 1-pulse solutions (i.e. a periodic
solution with the two fast transitions and infinite period) as constructed in [17]10. Finally,
from (33) and lemma 7 it follows that for A1 →∞ (with B1,C1 fixed) the transition points
of the unique periodic solution approach ±L/2 (i.e. x∗∗ → L/2), and hence v∗∗ → 0. That is,
they connect to the periodic solutions with two fast jumps at A0 ̸= 0, see figures 1 and 2 and
the next section for more details.

5.2. Proof of theorem 3: A0 ̸= 0 and a fast jump at v0 = 0

Next we look at slow-fast periodic solutions with two fast transitions where A0 ̸= 0, while
keeping B0 = 0= C0. That is, assumption 1 holds. The u-component of the hyperbolic parts
of the slow manifold are characterized by v:

M±
0 =

{(
û±0 (v) ,0,v,q,w,r

)
|
(
û±0
)3 − û±0 +A0v= 0;±û±0 >

1√
3
; v,q,w,r ∈ R4

}
.

Contrary to the previous section, the function K(v,w) = A0v≡ û±0 − (û±0 )
3 can—and will—

vary during the slow evolution. A heteroclinic fast transition between the two slow manifolds
can only occur when K= 0, hence when v= 0, see figure 6 and lemma 6. During the fast
phases I2 and I4, the slow variables are again constant in lowest order and we denote the lowest
order approximation of the slow variables by v∗ = 0, q∗,w∗,r∗ in I2 and v∗∗ = 0, q∗∗,w∗∗,r∗∗
respectively in I4. Moreover, without loss of generality, we assume that p< 0 in I2 and p> 0
in I4, that is, in I2 the fast component u jumps down, while it jumps up in I4, and q(−L) =
q(L) = 0.

10 In [17] the stationary localized 1-pulse solutions asymptote to −1, while the constructed period solutions in this
paper approach +1 at the boundary ±L, see figure 7. Hence, by the symmetry (U,V,W,C) 7→ (−U,−V,−W,−C)
of the system we actually have that the Melnikov condition (3) for L→∞ approaches existence condition of [17]
with γ replaced by −γ.
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During the slow phase I1 ∪ I3 ∪ I5, the slow dynamics in lowest order is given by

(vs)x = qs, (qs)x = vs− û±0 (vs) , D(ws)x = rs, D(rs)x = ws− û±0 (vs) ,(35)

where û±0 (vs) lies on the slow manifold M±
0 . At the end points of the slow phase intervals

(i.e. at x∗ and x∗∗), the vs orbits must approach v= 0, hence û±0 (vs) approaches ±1, see,
for instance, panels ± and ® of figure 1. In the approximate slow system (35), the (vs,qs)-
component decouples from the (ws,rs) one. Once the (vs,qs)-component is solved, the remain-
ing (ws,rs)-component is a linear non-autonomous system, hence it can be solved explicitly
in terms of vs.

We focus first on the (vs,qs)-system and drop the index ‘s’ for the time being. As we have
seen before (see also figure 5), if K= A0v< 2/(3

√
3), then there is a unique u+0 (v) ∈M+

0

with u+0 (v)> 1/
√
3 and if K= A0v>−2(3

√
3), then there is a unique u−0 (v) ∈M−

0 with
u−0 (v)<−1/

√
3. Hence, the relation u= u±0 (v) is a bijection between

{
v | ±A0v⩽ 2/(3

√
3)
}

and
{
u | ±u⩾ 1/

√
3
}
. By using this bijection to change from the slow v variable to the u

variable, we get an explicit slow system on I1 ∪ I3 ∪ I5 given by (7) and with the boundary
conditions |u| → 1 for x→ x∗ and x→ x∗∗. The (u, q)-system (7) is Hamiltonian and this leads
to a conserved quantity given by

E(u,q) =
A2
0q

2

2
+V(u) , with V(u) :=

u2

4

(
A0
(
2− 3u2

)
− 2
(
u2 − 1

)2)
.

Since V ′(u) = u(1− 3u2)(u2 − 1+A0), the conserved quantity E has extrema at the
fixed points (u,q) = (0,0) and (u,q) =

(
±
√
1−A0,0

)
and the degenerate points (u,q) =(

±1/
√
3,0
)
. From the linearisation about the fixed and degenerate points, it follows that for

• A0 > 2/3: E(u,q) has saddles at (u,q) =

(
± 1√

3
,0

)
;11

• A0 <
2
3
:E(u,q) has saddles at (u,q) =

(
±
√
1−A0,0

)
andminima at (u,q) =

(
± 1√

3
,0

)
.12

The level sets of E are illustrated in figure 10 and only the regions with |u|> 1/
√
3 have

relevance for the slow dynamics. The irrelevant regions where |u|< 1/
√
3 are therefore shaded

grey in figure 10. Every orbit of the slow dynamics (7) lies on a level set of E and in figure 10
also the direction of the flow is indicated. The periodic solutions must satisfy the boundary
condition |u| → 1 for x→ x∗ and x→ x∗∗. Thus both slow orbits lie on the level set with value

E∗ =
A0

4

(
2A0q

2
∗ − 1

)
. (36)

Only the orbits which move from u=±1 towards a saddle and back towards u=±1 (hence
with the same sign of u) are relevant. The regions these orbits lie in are shaded red in figure 10
and the black dashed lines indicate u=±1. That is, the slow parts of the periodic orbits under
construction have to lie in the red shaded regions in figure 10. The symmetry of the E level
sets imply that q∗ =−q∗∗ < 0. Thus in I3, the orbit goes from (−1,q∗) at x∗ to (−1,−q∗) at
x∗∗, in I1, the orbit goes from (u(−L),0) at −L to (1,q∗) at x∗, and in I5 the orbit goes from

11 The fixed points with |u|< 1/
√
3 are not of interest for the slow dynamics.

12 The fixed points with |u|< 1/
√
3 are not of interest for the slow dynamics.
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Figure 10. Phase plane of the singular slow system (7) for four different A0 values. Note

that (7) is not defined in the grey areas as |u|< 1√
3
. The black dashed lines indicate

u=±1 and the red areas will be of interest in the construction of the periodic solution.

(1,−q∗) at x∗∗ to (u(−L),0) at L, see figures 7 and 10. Due to the rotational symmetry of order
two of system (7) the time of flight of both orbits is the same, that is, the spatial time x∗∗ − x∗

spend on I3 is the same as the spatial time 2L− (x∗∗ − x∗) spend on I1 ∪ I5. Combined with
the boundary conditions this implies that x∗ =−L/2. In addition, the orbits in I3 and I1 ∪ I5
are related by symmetry: for x ∈ I1 we have (u,q)(x) =−(u,q)(x+L) ∈ I3 and for x ∈ I5 it
holds that (u,q)(x) =−(u,q)(x−L) ∈ I3.

Using the relation between ux and q in (7) and substituting this into the definition of E, we
get on I3 an initial value problem for u

E∗ =
(ux)

2 (1− 3u2
)2

2
+V(u) ,hence ux =±

√
2(E∗ −V(u))

3u2 − 1
, u(x∗) =−1.
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This can be rewritten to get an implicit relation for u(x) and the relation between q∗ and L. The
further details depend on the value of A0 and we need to distinguish three cases.

• A0 < 0. In this case the saddles are at (±
√
1−A0,0), hence the u-components have an

absolute value greater than 1, see the bottom right plot of figure 10. The orbits con-
necting (−1,q∗)—recall that q∗ < 0—with (−1,−q∗) must have an E value less than

E(−
√
1−A0,0) =−A0(A0 − 1)2/4, hence−q∗ ∈

(
0,
√
(2−A0)/2

)
. The minimal u value

is attained at x= 0 when q= 0 and is implicitly given by

E(u∗min,0) = E∗, −
√

1−A0 < u∗min <−1

=⇒ (u∗min)
2

4

(
A0

(
2− 3(u∗min)

2
)
− 2
(
(u∗min)

2 − 1
)2
)
=
A0

4

(
2A0q

2
∗ − 1

)
,

−
√

1−A0 < u∗min <−1.

The ODE for u implies the implicit equation for u(x) for x> 0 and x ∈ I3

x=
ˆ u(x)

u∗min

3u2 − 1√
2(E∗ −V(u))

du ,

and by taking x= L/2 and recalling (36), it gives the relation between q∗ and L

L= 2
ˆ −1

u∗min

3u2 − 1√
2(E∗ −V(u))

du .

If q∗ goes from 0 to −
√

(2−A0)/2 then L goes from 0 to ∞.
• 0< A0 < 2/3. Again, the saddles are at (±

√
1−A0,0), but now the u-components have an

absolute value less than 1, see the bottom left plot of figure 10. The bound on the values of E

still gives that −q∗ ∈
(
0,
√
(2−A0)/2

)
, but now we get a maximal value of u on the orbit,

given by the relation

(u∗max)
2

4

(
A0

(
2− 3(u∗max)

2
)
− 2
(
(u∗max)

2 − 1
)2
)

=
A0

4

(
2A0q

2
∗ − 1

)
,−1< u∗max <−

√
1−A0.

The implicit equation for u(x) for x> 0 and x ∈ I3 is

x=
ˆ u∗max

u(x)

3u2 − 1√
2(E∗ −V(u))

du ,

and the relation between q∗ and L is

L= 2
ˆ u∗max

−1

3u2 − 1√
2(E∗ −V(u))

du .

As before, if −q∗ goes from 0 to
√
(2−A0)/2 then L goes from 0 to ∞.
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• A0 ⩾ 2/3. Now the saddle is at the degenerate point
(
1/
√
3,0
)
, see the top plots of

figure 10. Since E(1/
√
3,0) =−2/27+A0/12, the bound on the values of E gives that

−q∗ ∈ (0,

√
2(9A0 − 2)

27A2
0

). The maximum value of u on the orbit is given by the relation

(u∗max)
2

4

(
A0

(
2− 3(u∗max)

2
)
− 2
(
(u∗max)

2 − 1
)2
)
=
A0

4

(
2A0q

2
∗ − 1

)
,u∗max <−1/

√
3.

The implicit equation for u(x) for x> 0 and x ∈ I3 is

x=
ˆ u∗max

u(x)

3u2 − 1√
2(E∗ −V(u))

du ,

and the relation between q∗ and L is

L= 2
ˆ u∗max

−1

3u2 − 1√
2(E∗ −V(u))

du .

However, if −q∗ goes to

√
2(9A0 − 2)

27A2
0

, then u∗max goes to the singular value 1/
√
3 and

E∗ −V(u) goes to (3u2 − 1)2(6u2 + 9A0 − 8)/108. Thus the L integral loses its singularity
at u= 1/

√
3 and the length function is bounded with the maximal length given by (6)

Lmax (A0) = 6
√
6
ˆ − 1√

3

−1

du√
6u2 + 9A0 − 8

= 6log

(√
6+

√
9A0 − 2√

2+
√
9A0 − 6

)
.

This expression is monotonically decreasing in A0, decays to 0 for A0 →∞ and Lmax(2/3) =
6ln(

√
2+

√
3)≈ 6.9. See figure 11 for a sketch of this function. Note that Lmax has a ver-

tical derivative at A0 = 2/3. This explains the turning point in the continuation depicted in
the bifurcation diagram in figure 1 at point ³ and at point ± in the bifurcation diagram in
figure 2. From the expression above, it also follows that the maximal A0 value for L= 5 is
A0 ≈ 0.70. For A0 close to this maximal value, u∗max gets close to −1/

√
3 and the (u, q)-

system (7) becomes fast due to the degeneracy and hence a new type of solution will start,
as can also be seen in panel ³ of figure 1 and panel ± of figure 2. This is why the critical
value is not fully reached.

Now we have established the slow dynamics in the (u, q)-system, and hence the (v, q)-system,
we can solve the (w, r)-system. Using the method of variation of parameters to solve the
inhomogeneous linear ODE and the continuity conditions at x=±L/2 and x=±L, we get (8)
for x ∈ I3 and (9) for the other two slow intervals. Note that this implies that during the fast
phase w∗ = w∗∗ = 0 and r∗ =−r∗∗ < 0.

Thus far, we have described the lowest order heuristics for the periodic solutions with two
fast transitions with A0 ̸= 0. Again, a Melnikov function and the singular perturbation theory
of Fenichel can be used to prove the persistence of these periodic solutions for 0< ε≪ 1. As
this is similar in spirit to the proofs for the other two types of periodic solutions constructed
before we omit these details.
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Figure 11. Plot of Lmax as function of A0.

6. Discussion

In this paper, we studied stationary periodic solutions in a one-dimensional singularly per-
turbed three-component reaction-diffusion system (1). The model was originally developed
as a phenomenological model of gas-discharge dynamics [34, 36, 40]. Subsequently, various
rigorous existence and stability results of localized states were proven in a series of papers [11,
12, 17, 32, 37, 42, 45–49]. These results were derived, however, in the parameter regime where
the coupling between the slow v,w components with the fast u component is not too strong,
i.e. A,B and C in (1) were of order ε. In this paper, we expanded the parameter regime and
allowed the parameter A to range from small to order 1, while keeping the parameters B and C
small13. Moreover, in contrast to most previous studies, we analysed periodic solutions instead
of localized states.

We showed how near-equilibrium periodic patterns emerge through a Turing instability
and evolve to various far-from equilibrium 2L-periodic patterns by varying A from order 1 to
small. That is, we showed how the near-equilibrium periodic patterns and far-from equilibrium
periodic patterns are connected. In particular, we used techniques from singular perturbation
theory to show how a periodic solutionwith one fast transition emerges through aHamiltonian–
Hopf bifurcation from the trivial solution for A near 2/3, see lemma 5. This periodic solution
starts as near-equilibrium periodic pattern with a small amplitude, but grows, for decreasing A,
to a far-from equilibrium periodic pattern with one homoclinic fast transition; see theorem 1
for the details. Upon decreasing A further to order ε, the periodic solution transforms into a
periodic solution with two heteroclinic fast transitions. The width of this periodic solution is
to leading order determined by the solutions of the Melnikov condition (3) and is described
in theorem 2. Note that these periodic patterns are closely related to localized states studied

13 The role of the parameters A and B are interchangeable and similar results can thus be obtained for varying B while
keeping A and C small.
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previously in, for instance, [17]. Upon further decreasing, or increasing, A back to order 1 the
periodic solution with two fast transitions transforms into a different type of periodic solution
with two fast transitions; see theorem 3.

6.1. Coexistence of multiple periodic solutions

For a fixed L there is a maximum value Amax implicitly defined by L= Lmax(Amax) (6) such
that a 2L-periodic solution with two fast transitions and width L ceases to exist upon increasing
A to Amax. As a result, the solution branch obtained by the numerical continuation program
AUTO-07P [13] turns around when ones try to continue A past Amax(L). We observe that (an)
additional small fast transition(s), related to a small homoclinic orbit in the fast system, appears
in the solution; see panels ³ of figure 1 and panels ±–³ of figure 2 and figures 6 and 12.When
C ̸= 0 (figure 2), there is one new fast transition in the centre of the domain and when C= 0
(figure 12), there are two new fast transitions: one in the centre of the domain and one on
the boundaries. The two fast transitions are related by the additional symmetry (U,V,W)→
−(U,V,W) of the system with C= 0. The new periodic solution with one extra fast transition
can be seen as concatenations of a 2L-periodic solution with two fast transitions and width L
from theorem 3 and an L-periodic solution with one fast transition from theorem 1. As such,
it is expected that these new type of solutions can also be analysed with the techniques from
this paper. The other new type of solutions can be described and analysed in a similar fashion.
However, we decided to not pursue this direction in the current paper.

If one keeps on decreasing A back to order ε each new homoclinic fast transition again
transforms into two heteroclinic fast transitions and we thus observe the formation of a 2L-
periodic solution with four or six fast transitions, see figure 12. These new periodic solutions
can, in principle, again be explicitly studied using the earlier techniques of this paper. Upon
further continuing A this process of adding fast transitions and adjusting interface locations
continues and this process is reminiscent of homoclinic snaking [5, 6, 8]. It would be interesting
to further research this potential connection.

6.2. Future research

We have shown that for a given set of parameters system (1) supports a multiple of station-
ary periodic solutions with different characteristics. When all parameters are small, we have
also determined their co-periodic stability/instability using the action functional approach
from [45]. A natural next step would be to study the stability of the other periodic patterns
to see which of these are observable, e.g. by trying to extend the action functional method or
by using Evans function techniques from for instance [44]. These stability results, combined
with the results from this paper, would form the starting point for analysing and understanding
the dynamic properties of non-stationary periodic patterns. That is, how do initial conditions
(with certain properties) evolve towards the stable stationary periodic solutions? For localized
states and with all parameters small this was done in [47].

This paper can also be seen as the foundation for further work on the analysis of planar
grain boundaries—where two differently orientated spatially periodic patterns meet on the
plane—that requires a sound knowledge of the existence and (transverse) stability properties
of periodic one-dimensional patterns; see for instance [21, 22, 39] in the context of the Turing
pattern forming systems.
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Figure 12. Figures showing the splitting of the periodic patterns for
B= 0.01,C= 0,ε= 0.01,D= 3 and (a) A= 0.035 1698 (b) A=−0.003 62148
(c) A=−0.004 789 36 (d) A=−0.004 871 84 (e) A=−0.004 747 95 (f)
A=−0.003 883 22 (g) A=−0.002 858 98 (h) A= 0.116 642 (i) A= 0.692 597
(j) A=−0.002 872 10 (k) A=−0.003 722 64.
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Appendix A. Slow approximation for all parameters small

The approximation of the slow solutions for all parameters small in theorem 2 and section 5.1.

• For x ∈ I1 (24): us(x) = 1+ o(1), ps(x) = 0+ o(1),

vs(x) = 1− 2sinh(x∗∗)
sinh(L)

cosh(L+ x)+ o(1),

qs(x) =−2sinh(x∗∗)
sinh(L)

sinh(L+ x)+ o(1),

ws(x) = 1− 2sinh(x∗∗/D)
sinh(L/D)

cosh((L+ x)/D)+ o(1),

rs(x) =−2sinh(x∗∗/D)
Dsinh(L/D)

sinh((L+ x)/D))+ o(1). (37)

• For x ∈ I3 (24): us(x) =−1+ o(1), ps(x) = 0+ o(1),

vs (x) =−1+
2sinh(L− x∗∗)

sinh(L)
cosh(x)+ o(1) ,

qs (x) =
2sinh(L− x∗∗)

sinh(L)
sinh(x)+ o(1) ,

ws (x) =−1+
2sinh((L− x∗∗)/D)

sinh(L/D) cosh(x/D)+ o(1) ,

rs (x) =
2sinh((L− x∗∗)/D)

Dsinh(L/D)
sinh(x/D)+ o(1) . (38)

• For x ∈ I5 (24): us(x) = +1+ o(1), ps(x) = 0+ o(1),

vs (x) = 1− 2sinh(x∗∗)
sinh(L)

cosh(L− x)+ o(1) ,

qs (x) =
2sinh(x∗∗)
sinh(L)

sinh(L− x)+ o(1) ,

ws (x) = 1− 2sinh(x∗∗/D)
sinh( L/D)

cosh((L− x)/D)+ o(1) ,

rs (x) =
2sinh(x∗∗/D)
Dsinh(L/D)

sinh((L− x)/D)+ o(1) . (39)
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Appendix B. Higher order correction terms of the slow-fast periodic solutions

We compute the next order correction terms of the slow-fast periodic solutions of theorem 1,
see also section 4, to see how the period comes into play. To obtain the next order approxim-
ation in the slow dynamics, we first determine the correction to the slow manifold. We write
û±(v;ε) = û±0 (v)+ εû±1 +O(ε2) and p̂= 0+ εp̂±1 +O(ε2), where û1 and p̂1 are functions of
(v,q,w,r). Substitution into the slow system (10) and truncating at second order in ε gives

p̂1 (v,q,w,r) =
dû0 (v)
dv

q=
Aq

1− 3û20 (v)
,

û1 (v,q,w,r) =
B1w+C1

1− 3û20
.

These expressions are well-defined on M±
0 away from the singular points at û0 =±1/

√
3

(i.e. away from A= 2/3). To find the slow dynamics, we write vs =±
√
1−A+ εvs1(x)+

O(ε2), ws =±
√
1−A+ εws1(x)+O(ε2), qs = εqs1(x)+O(ε2), rs = εrs1(x)+O(ε2). This

gives a linear constant coefficient system of ODEs

(vs1)x = qs1 ,

(qs1)x =
2(1−A)
2− 3A

vs1 +
C1 ±B1

√
1−A2

2− 3A
,

(ws1)x =
rs1
D
,

(rs1)x =
1
D

(
ws1 +

A
2− 3A

vs1 +
C1 ±B1

√
1−A2

2− 3A

)
,

where we used û0(±
√
1−A+ εvs1) =±

√
1−A+ εAvs1/(3A− 2)+O(ε2) and

û1(±
√
1−A+ εvs1, ±

√
1−A+ εws1) = (±B1

√
1−A2 +C1)/(3A− 2)+O(ε). The bound-

ary conditions follow from the behaviour of the slow variables during the fast phase. Using
that theorem 1 gives vf(ξ) =±

√
1−A+O(ε), the calculation in (25) gives that the change in

q over the fast interval is given by

∆f
q(ε) = ε

ˆ 1√
ε

− 1√
ε

(
±
√
1−A− uh(ξ;±

√
1−A

)
dξ + o(ε),

where uh(ξ; û
±
0 ) is the orbit in the fast system homoclinic to û±0 =±

√
1−A. This expression

gives the jump in qs1 during the fast phase and hence the boundary condition

qs1(0
+)− qs1(0

−) =

ˆ ∞

−∞

(
±
√
1−A− uh(ξ;±

√
1−A

)
dξ =: J1.

In a similar way, the jump in rs1 can be determined:

rs1(0
+)− rs1(0

−) =
1
D

ˆ ∞

−∞

(
±
√
1−A− uh(ξ;±

√
1−A

)
dξ =

J1
D
.
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As qs0 = 0 and rs0 = 0 during the fast phase, it follows that vs1 and w
s
1 do not have a jump during

the fast phase. Solving the system of ODEs with those boundary conditions, we get that for
x ∈ Is:

vs1 (x) =−C1 + u0eB1

2(1−A)
+

J1
2M

cosh(M(x±L))
sinh(ML)

; qs1 (x) =
J1
2

sinh(M(x±L))
sinh(ML)

;

ws1 (x) =−C1 + u0eB1

2(1−A)
+

J1Ncosh(M(x±L))
2M(D2M2 − 1)sinh(ML)

+
J1
((
M2 +N

)
D2 − 1

)
2D
(
1−D2M2

)cosh((x±L)/D)
(sinh(L/D))

;

and

rs1 (x) =
J1

2D(D2M2 − 1)

(
sinh(M(x±L))ND2

sinh(ML)
−
((
M2 +N

)
D2 − 1

)
sinh((x±L)/D)

sinh(L/D)

)

with M=
√
(2(1−A))/(2− 3A), N= A/(2− 3A) and u0e =±

√
1−A2 (the sign in this

expression is not related to the sign in Is, but it is the sign of the base point u0e). These cal-
culations break down for A near 2/3 as M and N start diverging. They also break down for A
near 0 as the integral J1 will diverge due to the homoclinic undergoing a heteroclinic bifurca-
tion. These above expressions determine the relation between the profiles and the periodicity
of the 2L-periodic slow-fast solutions of theorem 1.

Appendix C. Proof of lemma 7

Before we prove lemma 7, we analyse the Melnikov function M(z) (3).

Lemma 8. Define the function M : [−L,L]→ R as

M(z) := A1
sinh(z)
sinh(L)

+B1
sinh(z/D)
sinh(L/D)

.

This function has the following properties.

1. The function M(z) is odd and M(L) =−M(−L) = A1 +B1.

2. Define D̃=
Dsinh(L/D)

sinh(L)
and D̂=

D tanh(L/D)
tanh(L)

, then 0< D̃< 1 and D̂> 1.

• Ifmin(−D̃A1,−D̂A1)⩽ B1 ⩽max(−D̃A1,−D̂A1), thenM(z) is non-monotonic with two
turning points in [−L,L]. If B1 =−A1D̃, then the turning points coincide at z= 0 and if
B1 =−A1D̂, then the turning point is at z=±L.

• Otherwise M(z) is monotonic for z ∈ [−L,L].

3. In the A1-B1 plane, on the curves parametrised by z ∈ [−L,0)∪ (0,L] as

A∗
1 (z) = C1

sinh(L)
cosh(z)(D tanh(z/D)− tanh(z))

,

B∗
1 (z) =−C1

Dsinh(L/D)
cosh(z/D)(D tanh(z/D)− tanh(z))

,
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we have M(z)|(A1,B1)=(A∗
1 (z),B

∗
1 (z))

=−C1 and M ′(z)|(A1,B1)=(A∗
1 (z),B

∗
1 (z))

= 0, hence the

Melnikov condition (3) has a double root x∗∗. Furthermore,
B∗
1(z)
A∗
1(z)

=− D̃cosh(z)
cosh(z/D)

, an even

function, monotonically decreasing function for z ∈ [0,L], and A∗
1(z) = C1

3D2 sinh(L)
z3(D2 − 1)(

1+O(z2)
)
, B∗

1(z) =−D̃A∗
1(z)

(
1+O(z2)

)
, for z→ 0, and A∗

1(±L) =± C1

D̂− 1
, B∗

1(±L) =

∓ C1D̂

D̂− 1
=∓C1 −A∗

1(±L).

Proof of lemma 8. The first observation follows by inspection. To show the second observa-
tions, we first define the functions f(L) = Dsinh(L/D)− sinh(L) and g(L) = D tanh(L/D)−
tanh(L). Differentiation shows f ′(L)< 0 and g ′(L)> 0 for L> 0. Since f(0) = 0= g(0), this
implies that D̃< 1 and D̂> 1.

Next, we differentiateM and find

M ′ (z) = A1
cosh(z)
sinh(L)

+B1
cosh(z/D)
Dsinh(L/D)

=
cosh(z)

Dsinh(L/D)

[
A1D̃+B1

cosh(z/D)
cosh(z)

]
.

Thus M ′(z) = 0 if and only if −A1D̃
B1

=
cosh(z/D)
cosh(z)

. Since D> 1, the function
cosh(z/D)
cosh(z)

is

even and monotonically decreasing for z> 0 as

d
dz

(
cosh(z/D)
cosh(z)

)
=

cosh(z)sinh(z/D)−Dcosh(z/D)sinh(z)

Dcosh2 (z)

=
tanh(z/D)−D tanh(z)
Dcosh(z)cosh(z/D)

< 0.

A quick calculation shows that
cosh(L/D)
cosh(L)

=
D̃

D̂
< 1. Hence,

cosh(L/D)
cosh(L)

∈

[
D̃

D̂
,1

]
. Thus

M ′(z) has exactly one zero in [0,L] if −A1D̃
B1

∈ [
D̃

D̂
,1] and no zeros in [0,L] otherwise.

Rewriting this relation between A1 and B1 gives the condition in the lemma.
The statements about the functions A∗

1(z) and B∗
1(z) can be verified by substitution in the

expressions for M(z) and M ′(z).

Now we are ready to prove lemma 7.

Proof of lemma 7. Again we distinguish between C1 = 0 and C1 ̸= 0.

• Assume C1 = 0. The Melnikov condition (3) becomes M(2x∗∗ −L) = 0 for some x∗∗ ∈
(0,L). Point (1) in the lemma above shows that this equation is always satisfied at
2x∗∗ −L= 0, i.e. x∗∗ = L/2. Combining points (1) and (2) gives the remaining statements.

• Assume C1 ̸= 0. The saddle-node curve is derived in point (3) from the lemma above and
the other curves follow from points (1) and (2).
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Figure 13. The bifurcation diagrams for the solutions depicted in the right panel of
figure 9 along the dashed black lines. First the right panel of figure 9 is repeated. Then
going from left to right, the relation between A1 and B1 in the bifurcation diagrams is:
A1 −B1 =−10; A1 −B1 =−5; A1 −B1 = 0; A1 −B1 = 5; A1 −B1 = 10. In the bifurc-
ation diagrams, the solid black lines correspond to stable solutions, the dashed black
lines to unstable solutions.

The bifurcation diagrams along the dashed curves in the left panel of figure 9 are shown in
figure 13.
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