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Abstract
Many advanced nanomaterials rely on carefully designed morphology and ele-
mental distribution to achieve their functionalities. Among the few experimental
techniques that can directly visualise the 3D elemental distribution on the
nanoscale are approaches based on electron tomography in combination with
energy-dispersive X-ray spectroscopy (EDXS) and electron energy loss spec-
troscopy (EELS). Unfortunately, these highly informative methods are severely
limited by the fundamentally low signal-to-noise ratio, which makes long exper-
imental times and high electron irradiation doses necessary to obtain reliable 3D
reconstructions. Addressing these limitations has been the major research ques-
tion for the development of these techniques in recent years. This short review
outlines the latest progress on themethods to reduce experimental time and elec-
tron irradiation dose requirements for 3D elemental distribution analysis and
gives an outlook on the development of this field in the near future.
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1 INTRODUCTION

With the ongoing advance of nanotechnology, there is
an ever-growing interest towards nanostructures with
increasing complexity: both in terms of morphology as
well as the number of different compositions combined
in a single material. Establishing the structure-property
relationship for such materials requires advanced charac-
terisation methods that would be able to assess the (3D)
distribution of chemical elements on very small spatial
scales, reaching an atomic level of detail. One of the few
experimental methods that can directly visualise complex
nanostructures is electron tomography, which uses trans-
mission electron microscopy (TEM) images acquired from
different directions to mathematically reconstruct the 3D
structure of the imaged object. In materials science, elec-
tron tomography is typically performed using high-angle
annular dark-field scanning TEM (HAADF-STEM), which

minimises unwanted crystal orientation-dependent con-
trast in the images and enables correct reconstruction of
the studied object’s morphology. An additional advantage
of the HAADF-STEM imaging is that it allows for record-
ing additional signals generated by the electron probe
scanned across the sample. Of special interest formaterials
science are energy-dispersive X-ray spectroscopy (EDXS)
and electron energy loss spectroscopy (EELS) signals,
which can be used to retrieve the distribution of chemical
elements in the studied objects with a very high spatial
resolution.1 Notably, these techniques can be combined
with the principle of tomography to assess elemental
distribution in 3D. However, although EDXS and EELS
tomography provide exceptionally rich information about
the structure of nanomaterials – in theory allowing for
identifying every atom in a given nanostructure – they are
severely limited by the fundamentally low probabilities
of generating characteristic X-rays and inelastic electron
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scattering events. This leads to poor signal-to-noise ratio
of the respective techniques, resulting in high electron
irradiation doses and long experimental times required for
obtaining 3D reconstructions with acceptable quality. This
reason makes EDXS and EELS tomography applicable
only to materials that are relatively stable against electron
irradiation, such as noble metals. Moreover, experimental
time limitations make these techniques unsuitable for
studying dynamic processes and for high throughput
applications, for example statistical analysis of the sample
or quality control in industrial settings. Extending 3D ele-
mental analysis to more electron beam sensitive materials
and reducing the experimental time requirements have
therefore been the main research questions in the field
for the last decade. This mini-review outlines the recent
progress on addressing this challenge brought by explor-
ing new approaches for visualising elemental distribution
and by improving data analysis methodology to retrieve
higher quality 3D reconstructions from limited data.

2 RECENT TRENDS AND
DEVELOPMENTS

2.1 Quantitative HAADF-STEM
tomography

One of the recent lines of development in 3D elemental
distribution analysis represents approaches based on
HAADF-STEM imaging. In the first approximation, the
HAADF-STEM signal depends on the atomic number of
chemical elements in the illuminated area of the sample,
which results in a so-called Z-contrast. This property is
routinely used in materials science applications of TEM
to differentiate components of heterogeneous materials
and locate different elements in atomic resolution images
of crystals. HAADF-STEM imaging offers a drastically
better signal-to-noise ratio in comparison to EDXS and
EELS, which makes it very attractive for high-throughput
and low electron dose applications. However, quantitative
analysis that would be able to retrieve the 3D distribution
of the constituting chemical elements based on HAADF-
STEM signal is a non-trivial task, which had not been
explored in the literature until recently. This problem has
been carefully analysed by van den Bos et al. who showed
that because of electron diffraction effects, the HAADF-
STEM signal generated by each column of atoms in a
crystalline nanostructure depends both on the number
and relative depth coordinates of atoms corresponding
to different chemical elements.2 In principle, this opens
exciting perspectives for elemental distribution analysis,
since even a single atomic resolution HAADF-STEM
image can be sufficient to retrieve the 3D locations of

atoms in a nanostructure. In practice, however, such
analysis is complicated by the immense search space for
the possible atomic configurations, where many config-
urations correspond to nearly identical HAADF-STEM
intensities. To constrain the search space, prior knowledge
about the studied object can be employed: for example,
van den Bos et al. investigated the tips of Au-Ag nanorods
that are known to have spherical core-shell morphology.
In combination with a newly proposed ‘atomic lensing’
model that allowed to efficiently simulate HAADF-STEM
intensities produced by atomic columns with different
configurations, the authors could retrieve the number and
position of Au atoms in the core, effectively reconstructing
the full 3D structure for the tips of nanorods fromHAADF-
STEM images acquired from two directions. Furthermore,
numerical experiments demonstrated that for very thin
crystals (about 15 atoms thick or less for Au-Ag system)
the precision of the method should be sufficient to retrieve
3D reconstruction from even a single image.
Following an alternative approach, Yang et al. assumed a

simplified linear relationship between the HAADF-STEM
intensity and the number of atoms corresponding to each
constituting element illuminated by the electron beam.3
With this, the 3D structure of the studied objects – Fe-Pt
nanoparticles – was reconstructed from a full tilt series of
68 images acquired using a wide angular range. The posi-
tion of each atom in the 3D reconstructionwas determined
using a Gaussian peak fitting and the individual peaks
were assigned to either Fe or Pt depending on their inten-
sity. Using numerical experiments based on physically
accurate simulated HAADF-STEM images, the authors
demonstrated that their approach leads to a good accu-
racy both in terms of the determined atom positions and
their classification. The proposed method therefore pro-
vides an ultimate picture of the atomic structure of the
studied object, making it invaluable for answering a range
of materials science questions. However, since tens of high
quality HAADF-STEM images are required for obtaining
the atomically resolved 3D reconstructions, the technique
still has a significant experimental time and electron dose
cost.
The experimental time and electron dose requirements

for retrieving the 3D elemental distribution usingHAADF-
STEM tomography were significantly improved in an
approach reported by Skorikov et al., who focused on
obtaining lower resolution reconstructions using the tech-
niques of accelerated tilt series acquisition involving a
rapid rotation of the sample holder in the microscope.4 In
absence of atomically resolved data, a continuous model
for the relationship between the HAADF-STEM intensity
and elemental compositionwas used. Hereby, the intensity
of each voxel in the 3D reconstruction was assumed to be
linearly proportional to the concentration of each chemical
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F IGURE 1 Analysis of 3D elemental distribution based on HAADF-STEM tomography. (A) Slice through a HAADF-STEM 3D
reconstruction of a Au-Ag nanorod. (B) Concentrations of Au and Ag in each voxel are calculated based on the assumption that
HAADF-STEM intensity is linearly proportional to the concentration of the constituting chemical elements. (C) Slice through the calculated
3D elemental distribution. (D) Slices through the 3D elemental distributions in the Au-Ag nanorod at different stages of heat-induced
alloying, which were captured in situ in the electron microscope using the described method. Adapted with permission from 4. Copyright
2019 American Chemical Society

element within this voxel. When only two chemical ele-
ments can be present in any given voxel, this relationship
is unambiguous, and therefore can be inverted to calcu-
late the concentration of the respective elements at each
point of the 3D reconstruction (Figure 1A–C). In combina-
tion with the accelerated tilt series acquisition technique,
the proposed approach allows for retrieving the 3D ele-
mental distribution in a nanostructure in only about 10
minutes of acquisition time, enabling studies of dynami-
cal behaviour of heterogeneous nanomaterials (Figure 1D)
and their high-throughput analysis.
One major drawback of all HAADF-STEM based meth-

ods for elemental distributions analysis remains the fact
that the contrast between different elements strongly
depends on the ratio between their atomic numbers. This
means that it is fundamentally challenging to resolve ele-
mentswith similar atomic numbers, for exampleAu andPt
that are commonly combined in advanced catalytic mate-
rials. In such cases, spectroscopic methods such as EDXS
or EELS are indispensable.

2.2 Multimodal tomography

Apromising idea towards combining the superior ability of
EDXS andEELS to resolve different chemical elements and
the better signal-to-noise ratio of HAADF-STEM imaging
lies in mathematically searching for a 3D reconstruction
that would optimally match several imaging modalities
simultaneously. One of the first applications of this con-
cept to elemental distribution analysis was reported by
Zhong et al., who used the fact that HAADF-STEM image
of a thin object must equal a weighted sum of EDXS sig-
nals from each constituent element.5 This allowed the
authors to reconstruct 3D distributions of each chemi-
cal element that simultaneously fit both EDXS maps and
HAADF-STEM images in the experimental tilt series. The
relative importance of fitting either imaging modality was
controlled by a weighting parameter, which was chosen
based on the difference in noise level between the EDXS
maps and HAADF-STEM images. Using simulated data
for a core-shell structure, the authors demonstrated the
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superior performance of the proposed method in com-
parison to reconstructing the 3D distribution of each
chemical element separately. Furthermore, the improved
signal-to-noise ratio of 3D reconstructions provided by
the multimodal approach was qualitatively demonstrated
on experimental data for core-shell and partially alloyed
Au-Ag nanoparticles.
A different approach to connecting the HAADF-STEM

and EDXS signals in the 3D reconstruction of elemental
distribution consists in using an algorithm that promotes
common features in the reconstructions obtained using
the different modalities. To achieve this goal, Zhong et al.
proposed to minimise total nuclear variation (TNV) of
all reconstructed signals as an additional constraint in
the reconstruction algorithm.6 TNV forces the 3D recon-
structions obtained from different signals to have common
edges and intensity gradients – in this manner, these fea-
tures can be transferred from the high signal-to-noise ratio
HAADF-STEM reconstruction to the reconstructions of
individual chemical elements obtained from EDXS signal
to improve their fidelity. An additional advantage of min-
imising TNV is that it suppresses noise in the reconstruc-
tions by promoting piecewise-constant 3D reconstructions.
This approach was further expanded by Huber et al.,
who replaced TNV with total generalised variation (TGV),
which applies the idea of common edges to the higher
order derivatives.7 This allows for smooth reconstructions,
making TGV applicable to materials exhibiting gradual
variations in the distribution of constituting chemical ele-
ments. The authors tested the proposed approach on both
simulated data and experimental measurements for an Al-
based alloy with inclusions of Yb and Si (Figure 2), where
it was shown to significantly improve the accuracy and
signal-to-noise ratio of 3D reconstructions in comparison
to themore conventional approaches that do not utilise the
correlation between different imagingmodalities or do not
promote reconstruction smoothness.
The described developments in the methodology for

multimodal reconstruction show that coupling HAADF-
STEM with EDXS or EELS can be used to obtain 3D
reconstructions that complement the strengths of the
respective imaging modalities. In the future, the signif-
icantly higher signal-to-noise ratios resulting from this
combination can therefore be instrumental in reducing
the experimental time and electron dose required for visu-
alising the features of interest in relevant heterogeneous
nanomaterials.

2.3 Deep learning-based approaches

One of the most promising directions for approaching
the low signal-to-noise ratio problem of EDXS and EELS
tomography has been brought by the advancements in the

methodology of processing the experimental data. This
has been underlined by the emergence of learning-based
approaches for denoising and 3D reconstruction, which
attempt to mathematically extract the typical features of
relevant objects from a sufficiently large set of experimen-
tal or simulated data and use them as prior knowledge to
improve the quality of data analysis for new experimental
measurements. This contrasts with the more conventional
data processing methods that rely on explicit modelling
of underlying data features based on expectations about,
for example, smoothness of the studied objects or the
properties of experimental noise. In comparison to the
classical methods, the learned approaches allow for flex-
ibly incorporating more complex prior information about
the studied objects, for example their shape, and avoid
having to manually implement and tune algorithms that
would optimise the result for a given quality of interest.
Because of these properties, the learning-based methods
– especially based on deep artificial neural networks –
are having a transformative impact on data processing
workflows in various scientific fields, including electron
microscopy.
The strengths of the deep learning-based data denois-

ing have recently been applied to EDXS tomography of
nanoparticles by Skorikov et al.8 In their work, the authors
generated an extensive set of 3D shapes that are typically
encountered in nanoparticles, for example, cubes, spheres,
rods, bipyramids and platelets with randomised size,
aspect ratio, rotation and smoothness. The dataset includes
solid and core-shell structures with both sharp and smooth
interfaces, which allows for representing the relevant
variability in the typical geometric features observed in
nanoparticles. The provided dataset can therefore be used
for implementation and quantitative analysis of various
data-driven approaches for (3D) analysis of nanoparticles,
and hence has been published by the authors in open
access. In the context of EDXS tomography, the authors
used this dataset to simulate a large number of elemen-
tal maps and corrupted them with heavy Poisson noise
characteristic of EDXS measurements obtained with low
exposure times and electron doses. Next, a deep artificial
neural network was trained to recover the original clean
elemental maps from the simulated noisy measurements,
and the denoised maps were used in combination with a
classical reconstruction algorithm to obtain 3D reconstruc-
tions of elemental distribution. Using a set of simulated
data that had not been exposed to the neural network
during training, the authors quantitatively demonstrated
that the proposed deep learning-based approach produces
more accurate results both in terms of denoised elemental
maps and reconstructed 3D distributions when compared
to the conventional data denoising approaches used in
processing EDXS data, such as Gaussian denoising and
total variation minimisation. Furthermore, an analysis of
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F IGURE 2 Multimodal 3D reconstruction method based on total generalised variation (TGV) minimisation applied to a specimen of
Al-based alloy with inclusions of Yb and Si. (A) Slices through 3D reconstructions obtained from HAADF-STEM and EDXS signals for
different elements that were calculated using simultaneous iterative reconstruction technique (SIRT) – a conventional reconstruction
algorithm. (B) Slices through the reconstructions using the TGV minimisation approach that does not employ correlation between
HAADF-STEM and EDX signals. Reconstruction smoothness is improved but details in the elemental distributions are insufficiently resolved.
(C) Slices through the reconstructions using TGV minimisation with multimodal coupling between HAADF-STEM and EDXS signals. The
additional information from HAADF-STEM helps to resolve finer details in the elemental distributions. Reprinted with permission form 6.
Copyright 2019 Royal Society of Chemistry
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F IGURE 3 Deep learning-based denoising for improving 3D elemental distribution reconstructions from noisy data. (A) 3D
visualisations of bimetallic nanoparticles used for testing the proposed method and the orientation of the depicted slices. (B) Slices through
3D reconstructions based on low exposure EDXS data denoised using conventional methods – Gaussian filtering and total variation (TV)
minimisation – in comparison to the proposed deep learning-based method (U-net). The latter shows smoother distributions and a better
correspondence to the reference reconstructions, which were obtained from EDXS data with about an order of magnitude longer exposure.
Scale bars represent 30 nm. Reprinted with permission from 7. Copyright 2021 Royal Society of Chemistry

experimental data for Au-Ag nanoparticles with differ-
ent shapes showed that the developed method allows for
reconstructing 3D elemental distribution with sufficiently
high quality while using EDXS measurements obtained
with experimental times and electron doses that are more
than an order of magnitude lower than the conventionally
used values (Figure 3).
An alternative approach to training a deep learning

method for EDXS tomography was proposed by Han et al.
and further developed in the subsequent work by Cha
et al.9,10. They used unsupervised learning, where instead
of using pairs of noisy and clean elemental maps the
neural network is trained purely on noisy experimental
measurements in amanner that attempts to extract consis-
tent features from the underlying data. The advantage of
this approach is that it eliminates the need for simulating
the training data, which is especially relevant for complex
objects of interest that can be too challenging to represen-
tatively reproduce in a simulation. The authors applied the
deep neural network-powered unsupervised learning both
for denoising individual elemental maps and for synthe-
sising projection images of nanoparticles corresponding to
tilt angles not captured in the experiment. The developed

approach was applied to several core-shell InP/ZnSe
quantum dots, which are prone to electron beam-induced
damage and therefore can withstand only moderate
electron dose and exposure times during the experi-
ment. A qualitative analysis indicated that the proposed
combination of learning-based approaches resulted in a
higher fidelity and fewer artefacts in the reconstructed 3D
elemental distributions in comparison to various classical
algorithms for denoising and tomographic reconstruc-
tion. The authors showed that the achieved qualitative
improvement is instrumental for answering several
relevant questions about the materials of interest, for
example whether the shell of the nanoparticles completely
covers the core. This study therefore illustrates that the
advanced learning-based data processing methods may
be the key ingredient for a successful application of EDXS
tomography to beam sensitive materials.

3 OUTLOOK

In the near future, it can be expected that themethodology
for the 3D analysis of elemental distribution will continue
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its development towards using lower electron irradiation
doses and experimental times. On the experimental side,
this will be driven by improvements in detector technol-
ogy. For EDXS, the emergence and commercial availability
of very large detectors covering solid angles of more than
4 sr (in comparison to about 0.7 sr typical for the detectors
commonly used for EDXS tomography so far)will bring the
much-needed increase in the signal collection efficiency,
which directly translates into electron dose and/or exper-
imental time reduction.11 In EELS, the recent adoption of
single-electron counting detectors will be instrumental in
extracting useful information from very low exposuremea-
surements, where the signal would typically be buried in
the read-out noise of traditional CCD-based detectors.12
On the data analysis side, one of the most promising

directions consists in the further development of deep
learning-based approaches, as evidenced by their trans-
formative effect in many other scientific fields. By devel-
oping more comprehensive and openly available datasets
for training and analysing the respective methods, vari-
ous advanced neural network architectures and training
regimes proposed for image denoising and 3D recon-
struction tasks can be explored for application in EDXS
and EELS tomography. Moreover, the ideas on employ-
ing the HAADF-STEM signal in a multimodal manner to
improve the quality of 3D elemental distribution analysis
can be incorporated in the deep learning-based frame-
work. Finally, learning-based approaches can be applied
in the spectral domain at the stage of extracting elemental
maps. Especially for EELS, where the spectral signatures
of chemical elements are complex and difficult to model
explicitly, learning-based approaches can make a differ-
ence in the practical applicability of this technique. In turn,
addressing this problem could give a new impetus to the
improvement of the methodology for EELS tomography,
which received only limited attention in recent years.
The combination of advancements in instrumentation

and data processing methodology has a potential to bring
a wide adoption to 3D elemental distribution analysis.
The main milestone for the field will be transitioning
from occasional experiments on beam stable materials
to a wider range of nanostructures as well as enabling
dynamic and large-scale studies, where assessing elemen-
tal distribution in 3D could bring an invaluable piece of
information for answering the relevant materials science
questions.
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