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Abstract. Primordial non-Gaussianities from multi-field inflation are a leading target for
cosmological observations, because of the possible large correlations generated between long
and short distances. These signatures are captured by the local shape of the scalar bispec-
trum. In this paper, we revisit the nonlinearities of the conversion process from additional
light scalars into curvature perturbations during inflation. We provide analytic templates for
correlation functions valid at any kinematical configuration, using the cosmological bootstrap
as a main computational tool. Our results include the possibility of large breaking of boost
symmetry, in the form of small speeds of sound for both the inflaton and the mediators.
We consider correlators coming from the tree-level exchange of a massless scalar field. By
introducing a late-time cutoff, we identify that the symmetry constraints on the correlators
are modified. This leads to anomalous conformal Ward identities, and consequently the
bootstrap differential equations acquire a source term that depends on this cutoff. The solu-
tions to the differential equations are scalar seed functions that incorporate these late-time
growth effects. Applying weight-shifting operators to auxiliary “seed” functions, we obtain
a systematic classification of shapes of non-Gaussianity coming from massless exchange. For
theories with de Sitter symmetry, we compare the resulting shapes with the ones obtained
via the δN formalism, identifying missing contributions away from the squeezed limit. For
boost-breaking scenarios, we derive a novel class of shape functions with phenomenologically
distinct features in scale-invariant theories. Specifically, the new shape provides a simple
extension of equilateral non-Gaussianity: the signal peaks at a geometric configuration con-
trolled by the ratio of the sound speeds of the mediator and the inflaton.

Keywords: cosmological perturbation theory, cosmology of theories beyond the SM, infla-
tion, non-gaussianity
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1 Introduction

Are there additional light scalar degrees of freedom beyond the primordial curvature pertur-
bation? This intriguing question is particularly important for inflationary cosmology, as it is
closely related to the dynamics of the primordial Universe and provides great opportunities to
test fundamental physics at extremely high energies [1, 2]. Theories of inflation with multiple
scalar fields have been extensively investigated for many years. They have distinctive signa-
tures, due to correlations generated by the extra particles with masses much smaller than the
Hubble scale [3–15]. Specifically, the light scalars can be converted into the curvature per-
turbation after horizon crossing, and the nonlinearity of this process leads to non-Gaussian
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statistics in primordial fluctuations coupling long and short distances. In the scalar bispec-
trum of the curvature perturbation ζ, this corresponds to the well-known local shape [16]

〈ζk1ζk2ζk3〉
′ = 6

5fNL P
2
ζ Slocal(k1, k2, k3) , with Slocal(k1, k2, k3) = k3

1 + k3
2 + k3

3
k3

1k
3
2k

3
3

(1.1)

where Pζ ≡ k3〈ζkζ−k〉′ is the primordial power spectrum of ζ.1 As the smoking gun of ad-
ditional light scalars beyond the inflaton, a detection of local non-Gaussianity would rule
out (almost) all models of single field inflation.2 That, together with its very distinctive
observational imprint, makes the local form of the bispectrum a major target of observations
probing primordial non-Gaussianity. The latest CMB data from the Planck satellite gives
the current limit on the size parameter fNL = −0.9 ± 5.1 [21]. In many upcoming surveys,
of both galaxies and the CMB, we expect the local shape to be further constrained, and
potentially detected [2].

Meanwhile, on the theory frontier, there have been significant improvements on our
understanding of cosmological correlators. This partly comes from the “cosmological boot-
strap” program [22–52], which allows us to derive theoretically accurate predictions based
on fundamental principles, such as symmetries, unitarity and locality, while being relatively
model agnostic. The bootstrap approach provides a comprehensive classification of the infla-
tionary correlators based on minimal assumptions. Two parallel lines of development follow
different symmetry assumptions: first, the idea of bootstrap was implemented for theories
that respect all de Sitter (dS) isometries (the dS bootstrap) [22–24]. Later, a broader class
of theories with broken dS boost symmetry were considered in the boostless bootstrap, where
large signals and richer phenomenology are naturally expected [32–39]. Beyond reproducing
the known results in the literature, many new non-Gaussian signals were bootstrapped from
this novel formalism.

Our theoretical prior is that there are two broad classes of primordial non-Gaussianties:
one from self-interactions of the inflaton, leading to equilateral-type correlations; another
from the presence of new species of particles, which mediate long distance correlations during
inflation. A systematic study of these shapes — dubbed cosmological collider physics—
has provided a remarkable avenue for testing new physics in the extremely high energy
environment of the primordial Universe [37, 38, 53–93]. For example, now we understand
how to extract spectroscopic information (masses, spins and couplings) of mediator particles
from the shapes of non-Gaussianity. One notable case is when the intermediate states are
massless scalars: they can be the source of massless isocurvature perturbations. In the exactly
massless limit of multi-field inflation, the curvature perturbation can be continuously sourced
during inflation, and the action for the inflationary perturbations acquires an extra “scaling”
symmetry [94, 95] (see also ref. [96]).3

These recent developments encourage us to re-examine the cosmological correlators me-
diated by additional very light scalars, given the importance of these shapes to observations.

1The prime on correlators means that we have stripped the momentum-conserving δ-function
(2π)3δ(

∑
n

kn).
2See non-attractor inflation as a counterexample which has one scalar field but two degrees of freedom

in the background evolution. In other words, this class of models are not “single-clock,” and thus local
non-Gaussianity can be generated [17–20].

3As a proof of concept, a class of multi-field models was recently constructed with exact background solu-
tions and neutrally stable attractor behaviour [97]. Unlike many other scenarios, the isocurvatue perturbations
here remain massless for the whole duration of inflation. This model serves as a benchmark example for the
analysis presented in the current work.
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In this work, we perform a systematic analysis of cosmological correlators from multi-field
inflation, using the bootstrap as a main tool. This paper complements our previous work,
the boostless cosmological collider bootstrap [37], where we derived a large set of massive
exchange correlators with broken boost symmetry. Here, instead, our focus is to bootstrap
massless exchanges. An important difference in this case is the appearance of the well-known
infrared (IR) divergences for interacting massless scalars in dS space [98–112], which are
typically addressed within the framework of stochastic inflation [113, 114]. We will remain
in the perturbative regime, and compute correlators at tree-level, while carefully accounting
for the IR effects. An important technical step will be how to incorporate IR effects within
the bootstrap. We show that they introduce new terms in the “boundary” (late-time) differ-
ential equations. We consider both the dS-invariant and boost-breaking scenarios. We will
also compare our results with the literature on primordial non-Gaussianity within multi-field
inflation. When there is overlap, we find agreement. Nonetheless, we find new shapes of
non-Gaussianity, with new phenomenology of potential interest for future observations.

1.1 Summary of results

Our main results can be summarized in three points:

• IR divergences in the cosmological bootstrap. We incorporate IR divergences in
the cosmological bootstrap. Within the validity of perturbation theory, the tree-level
IR divergent terms are regularized by an explicit late-time cutoff η0 that is related to
the end of inflation. Technically, the resulting boundary correlators satisfy anomalous
conformal Ward identities. In particular, for exchange diagrams with an intermediate
massless state, the IR cutoff η0 modifies the boundary differential equations with new
source terms that were missed in previous studies. As a result, when computing the full
shape of correlators, the η0-dependent terms become dominant and must be accounted
for. We also perform the bootstrap analysis using the wavefunction method, where
the massless-exchange wavefunction coefficients remain IR-finite and the η0-dependent
divergent terms are found in the disconnected part. As an important outcome, we derive
the three-point and four-point “seed functions” of massless exchanges for both dS-
invariant and boost-breaking theories, from which more general shapes can be computed
using differential (weight-shifting) operators.

• Classification of massless-exchange correlators. The possible correlators of the
inflaton φ from the single exchange of a massless scalar σ fall in three categories:

– Correlators with (approximate) dS symmetry: two typical couplings here are φ̇σ
and (∂µφ)2σ. As the simplest setup, the scalar bispectrum contains IR-divergent
terms, and the shape function has a mild logarithmic deviation from the local
ansatz (1.1):

S(k1, k2, k3) ∝ 1
k3

1k
3
2k

3
3

[
(γE − 3− log(−ktη0)) (k3

1 + k3
2 + k3

3) + kte2 − 4e3 (1.2)

+ (k3
2 + k3

3) log(−2k1η0) + (k3
1 + k3

3) log(−2k2η0) + (k3
1 + k3

2) log(−2k3η0)
]
.

This result is derived and analyzed in (4.20) in section 4.1. The trispectrum is
IR-finite, with the standard τNL and gNL-type local forms.
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– Correlators from φ̇σ and boost-breaking cubic interactions, with arbitrary cs: the
bispectra here are also IR-divergent, with various new shapes that resemble the
local shape in the squeezed limit. One example is given by

S(k1, k2, k3) ∝ 1
k1k2k3

3

csk12 + 2k3
(csk12 + k3)2 log [−(1 + cs)k3η0] + 2 perms + . . . , (1.3)

where we have only kept the IR-divergent terms for demonstration. See (4.24) in
section 4.2.1 for more details. For both the bispectra and trispectra, their sizes
can become potentially large, and we identify richer analytical structure in their
shape functions away from the squeezed limit.

– Multi-speed non-Gaussianity: this is a new class of scale-invariant bispectra which
originate from higher-derivative quadratic interactions (e.g. φ̇σ̇, φ̇2∂2

i σ) and mul-
tiple reduced sound speeds. As an example, a simple template with three sound
speeds parameter c1,2,3 is given by4

S(k1, k2, k3) ∝ 1
k1k2k3(c1k1 + c2k2 + c3k3)3 + 5 perms . (1.4)

There is no logarithmic divergences, and the IR-finite shapes are of the equilateral-
type in terms of rational polynomials. However, as multiple sound horizon cross-
ings are involved, the peaks of shapes are shifted by the sound speed ratios. These
simple results with possibly large sizes provide interesting signatures of light de-
grees of freedom during inflation, with rich phenomenology. See section 4.2.3 for
more discussions.

• Comparison with multi-field δN analysis. We compare the shape function (1.2)
from the bootstrap and the one previously computed within the δN formalism in a
benchmark example. Explicitly, we consider a simple two-field model, which can be
analyzed by both the dS bootstrap and the δN method. For the squeezed limit of
the scalar bispectrum, we find agreement in these two results. Nevertheless, there is a
mismatch away from the squeezed limit, which is due to the oversimplified assumption
of initial field fluctuations in the previous computation. As the δN formalism mainly
captures the super-horizon effects, the bootstrap approach provides a more accurate
shape function by also including sub-horizon field interactions.

1.2 Outline and reading guide
Outline. The rest of the paper is organized as follows. In section 2, we briefly review some
key aspects of multi-field inflation, and present a model-independent reformulation of the
conversion mechanism based on field interactions. In addition, we also list the goals and
assumptions of the subsequent bootstrap analysis. In section 3, we perform a detailed anal-
ysis of IR divergences in the cosmological bootstrap with the presence of massless scalars.
We study how an explicit IR cutoff modifies the boundary differential equations for correla-
tors, and derive the scalar seed functions of massless exchanges in both the dS and boostless
bootstrap. A complementary analysis using the wavefunction of the universe is presented in
appendix A. In section 4 we use weight-shifting operators to bootstrap a complete set of infla-
ton correlators from massless exchanges. We also discuss the phenomenology of the shapes of
primordial non-Gaussianity. In section 5, we compare the bootstrap results with the ones from
the previous literature on multi-field inflation. Our conclusions are summarized in section 6.

4See [115] for an earlier work with similar results from a different setup.
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Reading guide. As these results are of interest for physicists with different research back-
grounds, we strived to make the paper self-contained. Therefore, it may be helpful to provide
a brief reading guide.

Theoretical cosmologists familiar with the bootstrap may skip ahead to section 3, which
incorporates IR effects from massless exchanges into the boundary differential equations.
Alternatively, they can read appendix A if their preference is the wavefunctional perspective.
Then section 4 presents the classification of the correlators with massless external fields,
which includes new phenomenology in boost-breaking scenarios. Sections 2 and 5 show how
the bootstrap results are related to previous analyses of multi-field inflation.

For experts who are more familiar with multi-field inflation, we recommend beginning
with section 2 to get familiar with our basic assumptions and notations. On a first reading,
section 3 can be skipped, while the reader may directly turn to section 4.1 for the dS bootstrap
results for the primordial bispectrum (4.20) and trispectrum (4.11). Next, the comparison
of these two results with the previous literature is demonstrated within a simple example
in section 5. After that, we recommend reading section 4.2, where we discuss the new
phenomenology associated to boost-breaking scenarios.

Notation and conventions. Throughout the paper, the metric signature is −+ ++. We
use natural units ~ = c ≡ 1 and the reduced Planck massM2

Pl = 1/8πG. We use Greek letters
for spacetime indices, µ = 0, 1, 2, 3, Latin letters for spatial indices, i = 1, 2, 3, and a, b, c, . . .
for internal field space indices. The background fields are denoted by Φa, while fluctuations φ
and σ corresponds to the inflaton (adiabatic modes) and additional light scalars (isocurvature
modes) respectively. The momentum of the n-th external leg of a correlator is denoted by kn
and its magnitude is kn ≡ |kn|. We use kt ≡ k1 + k2 + k3 as the total energy of three-point
functions. In four-point functions, the total energy is denoted by kT ≡ k1 + k2 + k3 + k4, and
we mainly focus on the s-channel exchange with s = |k1 + k2|. Functions with a hat, such
as Î, F̂ and K̂, are dimensionless by definition.

2 Disassembling the Pandora’s box of multi-field inflation

In this section, we give a lightning review for some key aspects of multi-field inflation, and
identify the universal features of the non-linear conversion process. This streamlines our
analysis in the following sections, allowing us to say a few general things about multi-field
inflation, despite the large freedom in terms of model building.

Light scalars with masses much smaller than the Hubble scale are ubiquitous in UV
completions of inflation [116]. For instance, they could be moduli fields arising from string
compactifications, or they appear as pseudo-Nambu-Goldstone bosons from the breaking of
a global symmetry. Thus the inflaton field may not be the only light scalar degree of freedom
during inflation. When there are additional light fields, both the background dynamics and
the behaviour of perturbations can become significantly different from the scenarios with
only the inflaton. In general, the background evolution involving multiple scalars traces a
complicated trajectory in field space, which in turn generates many interactions among these
light scalars (see refs. [94, 97, 117–125] for recent examples). As a result, predictions of multi-
field inflation are expected to be model-dependent, and the vast range of possible scenarios
is like Pandora’s Box, lacking some unifying theme.

However, we can still look for generic features of curvature perturbations when addi-
tional light fields are present, and try to extrapolate to more general lessons about multi-field
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inflation. A key feature of multi-field inflation is the conversion from isocurvature pertur-
bations to the adiabatic ones [126]. They lead to the super-horizon evolution of curvature
perturbations and change their statistics. Based on the time when this conversion happens,
multi-field models can be broadly classified as follows:

• Conversion after inflation: in this class of models, the additional light fields are spec-
tators during inflation. One way to achieve this is to consider a two-field system with
canonically normalized kinetic terms and a hierarchy between the inflaton mass and
the extra field mass, such that the extra field rolls much slower than the inflaton and
the field space trajectory can be approximated as a geodesic. As a result, the extra
fields do not contribute to the curvature perturbations during inflation and the single
field results remain unaffected. However, there can be some nontrivial effects at the
end of inflation or in the post-inflation eras. Famous examples include the curvaton
scenario [127–129] and modulated reheating [130]. In the former, after inflation the
energy density of the curvaton field dominates over the energy density of the inflaton,
and the curvaton fluctuations source the nonlinear evolution of curvature perturbations
on the super-horizon scales. As has been extensively discussed in the literature, this
process generates O(1) local non-Gaussianity.

• Conversion during inflation: when multiple fields are actively involved in the inflation-
ary background dynamics, the resulting trajectory can deviate from geodesic motion in
field space, and the curvature perturbation suffers significant backreaction from these
other fields during inflation. Depending on the choice of field basis, there are basically
two approaches to describe this class of scenarios:

– The “multi-inflaton” analysis. Since multiple scalars are dynamical in this sce-
nario, one natural choice is to consider their evolution in some convenient field
basis

Φ1(t), Φ2(t), Φ3(t), . . . (2.1)
For simplicity, in this approach the choice of field basis normally results in multi-
field models with canonical kinetic terms and sum-separable/product-separable
potentials, such that the background dynamics can be approximately solved. One
simple but typical example of this class of models is double inflation, where we
have two canonically normalized fields with a bowl-shaped potential, such as

V (Φ1,Φ2) = 1
2m

2
1Φ2

1 + 1
2m

2
2Φ2

2 . (2.2)

This model has been well-studied in the literature [131, 132]. In general, the in-
flaton rolls down along a bent trajectory. The perturbations are usually analyzed
using the δN formalism (see section 5.1 for a brief review). In this scenario, the pri-
mordial non-Gaussianities are typically small, because field interactions are slow-
roll suppressed. In most cases, the conversion from isocurvature to adiabatic per-
turbations is not significant, and the models behave more like single-field inflation.

– The covariant formalism. This approach begins with an adiabatic/isocurvature
basis for the two types of perturbations [126, 133–138]. The inflaton trajectory
in the internal field space Φa(t) picks a tangential vector along the trajectory T a,
with the orthogonal directions parametrized by normal vectors Na. Field fluc-
tuations along T a are associated with adiabatic perturbations, while the others

– 6 –
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Figure 1. An inflaton trajectory Φa0(t) in a curved field manifold with multiple scalars Φa. Adiabatic
and isocurvatue modes are defined by the decomposition of field fluctuations along the tangent and
normal vectors at each point of the trajectory. At the linear order σNa is a vector living on the
tangent space of one particular point on the manifold.

correspond to isocurvature. The two types of perturbations are coupled if the
inflation trajectory deviates from geodesic motion dictated by the metric of the
field manifold, with all couplings having a geometrical interpretation.

To summarize, if the background expansion history is known in specific models, the
δN formalism provides a simple description for the nonlinear evolution of perturbations on
super-horizon scales. This approach can also be applied for the conversion in post-inflation
stages. Meanwhile, the covariant formalism may seem quite complicated for the analysis of
specific models, as detailed information about the inflaton trajectory is needed. Previously
this approach was mainly used in studies of inflation models with curved field spaces and/or
sharp-turn trajectories. However, one of its advantages is that field interactions between the
adiabatic and isocurvature perturbations take constrained forms. In the following we will
take a closer look at the covariant formalism, and try to learn some generic lessons for the
bootstrap analysis.

2.1 Conversion from interactions

Let’s look at a simple model to illustrate some of the points made above. Consider a theory
with a set of light scalars Φa in a curved manifold with field space metric Gab. A generic
Lagrangian with two-derivative kinetic terms takes the form

L = −1
2Gab(Φ)∂µΦa∂µΦb − V (Φ), (2.3)

where both Gab and the potential are functions of the field coordinates. In multi-field infla-
tion, the background trajectory is given by Φa

0(t) as shown in figure 1. For the two-field case,
the tangent and normal vectors of the trajectory are

T a ≡ Φ̇a
0

Φ̇0
, Na ≡

√
detGεabT b , (2.4)

where Φ̇2
0 = GabΦ̇a

0Φ̇b
0 and εab is the anti-symmetric tensor. One important background

parameter here is the turning rate Ω = −T aDtNa, with Dt being the covariant derivative
with respect to cosmic time t. The size of Ω tells us how much the inflationary trajectory

– 7 –
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deviates from geodesic motion in field space. For perturbations, we decompose them in the
following way

Φa(t,x) ≡ Φa
0(t+ π) + σNa(t+ π) = Φa

0(t) + φ(t,x)T a + σ(t,x)Na + . . . (2.5)

where · · · represent higher order contributions.5 We see that φ = Φ̇0π is the canonically
normalized fluctuations along the trajectory and σ is the isocurvature modes. Next, we sub-
stitute (2.5) in the Lagrangian (2.3) and identify the couplings between the perturbations.
For the purpose of highlighting multi-field effects, we work in flat gauge and take the decou-
pling limit, where gravitational interactions vanish. The curvature and isocurvature modes
remain orthogonal along the background motion, which is a constraining feature. It implies
that the general form of the quadratic and cubic interacting Lagrangian is fixed to be [15, 139]

Lint = −λφ̇σ − g(∂µφ)2σ + αφ̇σ2 + βσ3 (2.6)

up to (small) contributions from the potential term.6 While we are only left with a few
possibilities for interactions, φ̇σ and (∂µφ)2σ are the two most important ones.7 First, the
φ̇σ linear mixing is responsible for the conversion process in multi-field inflation. On super-
horizon scales, in terms of the curvature perturbation ζ ≡ H

Φ̇0
φ and the isocurvature S ≡ H

Φ̇0
σ,

the equation of motion approximately reduces to

ζ̇ ' λ S , (2.7)

which basically describes the growth of curvature perturbations sourced by the isocurvature
modes. In addition, the couplings λ and g are both proportional to the turning rate Ω:

λ = 2Ω , g = − Ω
Φ̇0

, (2.8)

which means that these two interaction operators are expected to be nonzero as long as the
inflaton trajectory is not geodesic. Therefore, a complete treatment of the conversion process
should include not only the linear mixing φ̇σ, but also the cubic coupling (∂µφ)2σ, regardless
of specific models. This is not explicit in the “multi-inflaton” analysis for models like double
inflation (2.2) where the scalar fields are thought to be non-interacting. However, as multiple
fields are rolling, these scalars actually become coupled as long as the trajectory deviates
from field space geodesics.

Generally speaking, the correlation of the quadratic and cubic interactions can be seen
as a consequence of the spontaneously broken boost symmetry during inflation. To show
this, let’s take a look at the effective field theory of inflation [140] with an additional scalar
σ. In this framework, the adiabatic degree of freedom is contained in the metric fluctuations,

5See ref. [136] for a systematic study on the higher order perturbations via a geometrical approach.
6The inflaton mass and self-interactions are suppressed by slow-roll parameters. The masses of extra scalars

receive contributions not only from the Hessian of the potential, but also from the turning and field space
curvature. For light fields, we assume the mass is much smaller than the Hubble scale, and the self-interactions
are negligible.

7The other two cubic vertices may become important for models with highly curved field manifolds, since
the couplings α and β are related to the field space geometry [15, 139]. However, they are not necessarily
associated with the conversion mechanism of multi-field inflation. Therefore, we don’t focus on those couplings
in this paper.
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such as δg00 ≡ 1 + g00. Then at lowest derivatives, the mixing with the σ field is given by8

Lint ∝ δg00σ −→
[
− 2π̇ + (∂µπ)2]σ , (2.9)

where in the second step we have introduced the Goldstone boson π from the breaking of
the time-translation symmetry and taken the decoupling limit. The particular form of δg00

is fixed by the nonlinearly realized boost symmetry. By using the field rescaling φ = Φ̇0π,
we see that these two interactions are the same as the first two terms in (2.6). Thus they
have a unique origin from the same EFT operator, and the couplings are related to each
other.9 As long as we have the conversion caused by the φ̇σ linear mixing, the corresponding
cubic interaction is also expected. It is easy to check that this conclusion remains valid if we
include higher-derivative operators in the EFT, though a systematic construction needs to
be done for the EFT description of internal field manifold of inflation.

2.2 Towards the bootstrap of multi-field inflation

With this knowledge, now we move forward to bootstrapping multi-field inflation. Our goal
is to derive general results of cosmological correlators due to the presence of light scalar fields
during inflation. To be specific, there are two novelties we aim to achieve via the bootstrap
approach.

The first one is related to the comparison with previous studies. Instead of using the δN
formalism and the separate universe approximation, here we would like to perform the first-
principle computation of the primordial bispectra and trispectra based on field interactions.
Particularly, we will focus on the conversion process from the isocurvature to adiabatic pertur-
bations, and present a full description by using the mixed propagator from the φ̇σ quadratic
interaction.

Next, in addition to the simplest version of the conversion, here we will also systemati-
cally investigate all the possible boost-breaking interactions between curvature and isocurva-
ture modes, and take into account the reduced sound speeds for these two perturbations. In
this most general setup, by releasing the power of the bootstrap, we will be able to go beyond
the standard δN analysis, and find a complete classification of cosmological correlators from
additional light fields. New phenomenologies will be identified.

As a first step, it is important to draw some boundaries in Pandora’s box, and specify
for which regions can we derive definite answers by using the bootstrap method. For this
purpose, the fences are built as follows:

• First, we focus on the situations where the conversion happens during inflation. This
simplifies the bootstrap analysis, as we will be allowed to exploit some of the de Sit-
ter symmetries. For scenarios with post-inflation conversion, such as curvaton, similar
physics may apply, while it becomes more complicated to perform concrete computa-
tions based on field interactions.

8Notice that for the EFT with multiple scalars, here we adopted a different strategy from the construction
in [13]. We are particularly interested in the interaction operators responsible for the conversion, while ref. [13]
parametrized the conversion effects via a δN -like field redefinition, and focused on other interactions among
the Goldstone π and extra light scalars. More comments are left to the end of section 5.

9This is similar with the situation in the single field EFT [140], that a reduced sound speed is correlated with
the enhanced cubic interaction π̇(∂µπ)2, as they are both uniquely generated by the EFT operator (δg00)2. Re-
cently, the nonlinearly realized boost symmetry has been analyzed in the context of soft theorems in ref. [141].

– 9 –



J
C
A
P
0
5
(
2
0
2
3
)
0
4
3

• Second, we are interested in theories with (approximately) constant couplings for per-
turbations during inflation, such that the dS dilation symmetry is still respected, and
perturbations are nearly scale-invariant. For multi-field inflation, this requirement not
only tells us all the model parameters should be constant, but also gives constraints
on time dependence caused by the field space trajectories. In other words, we do not
consider sharp-turn trajectories, but focus on the ones with (approximately) constant
turning rate.

• Third, we restrict ourselves to the perturbative regime. This first means that the
dimensionless couplings of two fields are required to be smaller than unity. Furthermore,
as logarithmic IR divergences are generally expected for massless scalar interactions in
dS, a stronger condition is needed such that in the regularized correlators, the IR-
divergent term multiplied by the coupling is smaller than one. For instance, the λφ̇σ
linear mixing leads to (λ/H) log(−kη0) ' (λ/H)N∗ < 1, where η0 is the end of inflation,
and N∗ is the number of e-folds from the horizon-exit time of the k mode. We can trust
the perturbative computation in this weakly coupled regime, but may need to consider
the stochastic effects if we go beyond. In the literature, the condition λ� H is normally
known as the “slow-turn approximation”.

The three conditions above define the Elpis region in the Pandora’s box of multi-field
inflation, where hope remains for a model-independent description. In fact, the conditions are
satisfied by a majority of multi-field “slow-roll slow-turn” models. One particular example
is shown in section 5.2. Meanwhile the Elpis region also contains more general theories of
multiple interacting scalars, such as the ones with higher derivative couplings. With these
preparations, we bootstrap the inflationary correlators with the presence of additional light
scalars in the next two sections.

3 IR divergences in the cosmological bootstrap

The cosmological bootstrap is based on the assumption that cosmological correlators become
constant (or vanishing) at the future boundary of de Sitter space η → 0 (i.e. the end of infla-
tion). However, we may encounter circumstances where the correlators keep growing before
the end of inflation. This secular behaviour is a consequence of the well-known IR divergence
of quantum field theory in de Sitter spacetime. In particular, cosmological correlators involv-
ing massless scalars typically contain logarithmic terms, which may become divergent in the
late-time limit η → 0. At the practical level, as inflation must end, a nonzero conformal time
η0 is expected to provide an explicit late-time cutoff to regularize the singular correlators.

In this section, we present a systematic investigation of the IR-divergent correlators
using the bootstrap approach. After a brief review of the cosmological bootstrap, we begin
with the examination of the IR divergence of the 〈ϕϕφ〉 correlator from contact interaction
in section 3.2, and show that how the explicit IR cutoff η0 leads to the anomalous con-
formal Ward identities in the boundary perspective. After this warmup exercise, we move
to consider the cases with exchange diagrams, for both the four-point function in de Sitter
bootstrap in section 3.3 and the three-point function with a mixed propagator in section 3.4.
We find analytic expressions for these “seed” functions. They serve as building blocks for
bootstrapping non-Gaussianities of multi-field inflation. In section 3.5, we investigate the IR
divergence in the wavefunctional approach, leaving further details to appendix A.
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3.1 Recap of bootstrap

Let’s first give a brief review of the cosmological bootstrap and explain our notations. We
fix the spacetime background to be the de Sitter (dS) Universe which serves as a good
approximation for cosmic inflation

ds2 = a(η)2(−dη2 + dx2) , a(η) = − 1
Hη

, with −∞ < η < η0 . (3.1)

where H is the Hubble scale, η is the conformal time, and η0 corresponds to the end of infla-
tion. The late-time limit η0 → 0 can also be seen as the future boundary of dS. Our goal is
to find correlation functions of quantum fields on this boundary. The standard approach to
compute primordial correlators is the in-in (or Schwinger-Keldysh) formalism, where we need
to track the field interactions in the bulk of dS (during inflation) and then derive observables
on the boundary (at the end of inflation). The starting point of this bulk perspective compu-
tation is the propagation of free fields in dS. We are mainly interested in the massless scalar
φ with m2 = 0 and the conformally coupled scalar ϕ with m2 = 2H2. Their mode functions
in Fourier space are given by

φk(η) = H√
2k3

(1 + ikη)e−ikη , (3.2)

ϕk(η) = iHη√
2k
e−ikη . (3.3)

For the bulk computation of their correlators, as the two fields correspond to the external
lines of Feynman diagrams, we introduce their bulk-to-boundary propagators

K+(k, η) = φk(η0)φ∗k(η), K−(k, η) = φ∗k(η0)φk(η), (3.4)
Kϕ

+(k, η) = ϕk(η0)ϕ∗k(η), Kϕ
−(k, η) = ϕ∗k(η0)ϕk(η), (3.5)

which describe the propagation of free fields from some bulk time η to the late-time boundary
at η0. The massless scalar φ is related to inflaton fluctuations. There can also be additional
massless fields σ which will mix with φ through exchange diagrams. Their bulk-to-bulk
propagators are given by

Gσ++(k, η, η′) = σk(η)σ∗k(η′)θ(η − η′) + σ∗k(η)σk(η′)θ(η′ − η)
Gσ+−(k, η, η′) = σ∗k(η)σk(η′)
Gσ−+(k, η, η′) = σk(η)σ∗k(η′)
Gσ−−(k, η, η′) = σk(η)σ∗k(η′)θ(η′ − η) + σ∗k(η)σk(η′)θ(η − η′) (3.6)

which describe the propagation of the σ field between time η and η′. These propagators
satisfy the following differential equation

OηGσ±±(k, η, η′) = ∓iH2η2η′2δ(η − η′), OηGσ±∓(k, η, η′) = 0, (3.7)

where Oη ≡ η2∂2
η − 2η∂η + k2η2. With these propagators, we can apply the Feynman rules

to write down the in-in integrals over bulk time to compute boundary correlators. See
refs. [142–145] for more details.

The idea of the cosmological bootstrap is that we can derive the self-consistent results of
boundary correlators directly from basic principles, such as symmetries, unitarity and locality,
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without referencing to specific bulk evolutions. This “boundary perspective” can be realized
in various guises. Here we mainly follow the symmetry-guided approach developed in [22].

As a maximally symmetric spacetime, the dS space (3.1) has four types of isometries
with the following Killing vectors

Pi = ∂i , D = −η∂η − xi∂i ,

Jij = xi∂j − xj∂i , Ki = 2xiη∂η +
(
2xjxi + (η2 − x2)δji

)
∂j .

(3.8)

While the spatial translation Pi and rotation Jij act in the same way as in Minkowski
spacetime, the dS dilation D and the dS boosts Ki require special attention. In particular,
the latter act as special conformal transformations (SCTs) on the late-time boundary. For
field theories that respect all the dS isometries, their boundary correlators must be invariant
under all these transformations. On the late-time boundary η → 0, a general scalar has the
scaling behaviour

lim
η→0

σ(k, η) = O+(k)η∆+ +O−(k)η∆− (3.9)

where the scaling dimensions are determined by the scalar field mass

∆± = 3
2 ± iµ , µ =

√
m2

H2 −
9
4 . (3.10)

An important observation is that the O± operators satisfy the transformation rules of the
three-dimensional conformal group. Therefore they can be seen as primary operators with
weights ∆± in conformal field theory (CFT), and the structure of their correlators 〈On〉 is
strongly constrained by the conformal symmetry. In the boundary perspective, these CFT
correlators are the object of interest which we would like to bootstrap.

Before spelling out the conformal symmetry constraints on correlators, let us clarify the
notations first. Following the standard convention, we shall mainly focus on the correlation
functions of O− operators in the rest of the paper, and drop the superscript for convenience.
The result of the dual operator O+ can be obtained via a rescaling O+ = k∆+−∆−O−. Also,
for a general scalar, we set the conformal dimension ∆ = ∆−, and use σ∆ to denote the
bulk field and O∆ = O− for the boundary CFT operator. As we are mainly interested in
the massless exchange in this work, we shall drop the subscript ∆ and simply use σ for
the internal massless scalar. For the two external fields in (3.2) and (3.3), the massless
scalar φ corresponds to ∆ = 3 and the conformally coupled scalar has ∆ = 2. For light
fields with m < 3H/2, the ∆+ fall-off dominates at the late time η0, and thus the O+

operator contributes to the σ∆-correlators with σ∆(k, η0) = η∆+
0 O+(k) = η3−∆

0 k3−2∆O∆(k).
Explicitly, the n-point cosmological correlator of these light scalars σ∆ is related to the
boundary CFT correlator through

〈σ∆1(k1)σ∆2(k2) . . . σ∆n(kn)〉′ = η3n−∆t
0 k3−2∆1

1 . . . k3−2∆n
n 〈O∆1(k1)O∆2(k2) . . . O∆n(kn)〉′ ,

(3.11)
where ∆t = ∆1 + ∆2 + . . .+ ∆n and the prime means that we have stripped the momentum-
conservation δ-function in the correlators. In the end, we are interested in computing inflaton
correlators with ∆t = 3n such that the decaying prefactor of η0 vanishes. But we shall also
consider correlators with conformally coupled fields (∆ = 2) in the intermediate steps of the
bootstrap.
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ϕ ϕ φ

η0

Figure 2. As a warm up, we look into the IR behaviour of the contact interaction with two confor-
mally coupled scalars ϕ (with m2

ϕ = 2H2) and one massless field φ.

Now let’s look at how the dS dilation and SCTs act on the boundary CFT operators.
In Fourier space, we have

DO∆ =
(
3−∆ + kj∂kj

)
O∆ (3.12)

KiO∆ =
[
2(∆− 3)∂ki − 2kj∂kj∂ki + ki∂kj∂kj

]
O∆ . (3.13)

As a result, the boundary correlators satisfy the conformal Ward identities associated with
the two symmetries above[

−3 +
n∑
a=1

Da

]
〈O∆1 · · ·O∆a · · ·O∆n〉′ = 0 , (3.14)

n∑
a=1

Ki
a 〈O∆1 · · ·O∆a · · ·O∆n〉′ = 0 , (3.15)

where Da and Ki
a are differential operators given in (3.12) and (3.13), with k→ ka and ∆→

∆a. While the dilation Ward identity simply require the correlators to be scale-invariant,
the special conformal Ward identities provide a set of boundary differential equations that
determine the functional form of the n-point function. Solving these differential equations,
one can directly bootstrap boundary correlators with full generalities.

There is one subtlety in the above analysis. On the boundary, as the time-dependence
of σ∆ has been separated into the scaling behaviours in (3.9) and O∆ operators are constant,
it is typical to assume that the CFT correlators 〈O∆1 . . . O∆n〉′ are also time-independent. In
cosmology this provides good description for many circumstances, as correlators are expected
to be frozen on super-horizon scales before the end of inflation. However, the assumption of
time independence breaks down for correlators that become singular at the late-time limit
η0 → 0. This circumstance is typically associated with IR divergences in dS when massless
fields are involved. From the perspective of the boundary CFT, it corresponds to the situation
where 〈O∆1 . . . O∆n〉′ diverge and the renormalization leads to conformal anomalies. In the
rest of this section, we shall look at these particular cases and demonstrate how to bootstrap
the singular correlators on the boundary.

3.2 Contact three-point function 〈ϕϕφ〉

Now we consider modifications of the cosmological bootstrap due to the presence of IR diver-
gences. As a warmup, we first study the contact three-point function 〈ϕϕφ〉. To characterize
the differences from the IR-finite cases, we examine this simple example from both bulk and
boundary perspectives.
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Let’s first take a look at the bulk computation. By assuming a contact interaction ϕ2φ,
we can easily compute the three-point correlator

〈ϕk1ϕk2φk3〉′ = i

∫ η0

−∞
dηa(η)4 [Kϕ

+(k1, η)Kϕ
+(k2, η)K+(k3, η)− c.c.

]
+ perm.

= H2η2
0

8k1k2k3
3
Iϕϕφ (k12, k3, η0) + perm. , (3.16)

where the bulk integral is given by

Iϕϕφ ≡ i
∫ η0

−∞

dη

η2

[
eiktη(1− ik3η)− c.c.

]
= 2k3 − 2k12 [γE − 1 + log(−ktη0)] , (3.17)

with k12 = k1 + k2 and kt = k12 + k3. Note that we have explicitly introduced the end of
inflation η0 as the upper limit of the integration, and taken |η0| � 1 in the final result.10

The correlator 〈ϕϕφ〉 is actually vanishing in the late-time limit because of the η2
0 prefactor

from ϕ-propagators. To highlight the logarithmically divergent term, we focus on the CFT
correlator 〈OϕOϕOφ〉′ ∝ Iϕϕφ. Without explicitly solving the integral, its IR divergence can
be identified by noticing that

η0∂η0Iϕϕφ = −2k12 . (3.19)

Meanwhile, we notice that the late-time cutoff η0 introduces a new scale in the correlator,
which explicitly breaks the dilation constraint of the conformal group. Indeed we find the
conformal Ward identity in (3.14) is violated[

− 3 +
3∑

a=1
Da

]
〈OϕOϕOφ〉′ ∝

[
− 1 +

3∑
a=1

kia∂kia

]
Iϕϕφ = −2k12 . (3.20)

In the CFT language, this corresponds to the anomalous conformal Ward identity of dilation
when the renormalized correlators contain logarithms [41, 146–150]. Instead of focusing on
the conformal boundary, we may also restore the time dependence and check the constraint
equation on equal-time correlators [41] from the dS dilation in (3.8):[

−η0∂η0 − 3 +
3∑

a=1
Da

]
〈OϕOϕOφ〉′ = 0 . (3.21)

Thus the conformal anomaly is precisely cancelled by the η0∂η0 term in (3.19), and the dS
dilation isometry is not broken.

Next, let’s consider the boundary perspective. A similar three-point function has been
analyzed in [22, 62], with the massless field φ being replaced by a general scalar σ∆. There,
from the symmetry constraints, the boundary CFT correlator can be expressed as

〈Oϕ(k1)Oϕ(k2)O∆(k3)〉′ = k∆−2
3 Îϕϕ∆(u) , with u ≡ k3/k12 . (3.22)

10There is one subtlety about the 〈ϕϕφ〉 correlator: in principle, the Iϕϕφ integral should be given by

Iϕϕφ ≡ i
∫ η0

−∞

dη

η2

[
eiktη+ik12η0 (1− ik3η)− c.c.

]
= 2k3 − 2k12 [γE + log(−ktη0)] , (3.18)

where e±ik12η0 from boundary mode functions in (3.5) change the coefficient of the k12 term. As this difference
is irrelevant when we consider inflaton correlators with derivative interactions, for simplicity Iϕϕφ is defined
as the one without these e±ik12η0 terms. We would like to thank Enrico Pajer for pointing this out.
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Furthermore, it has been shown that the conformal Ward identities of dilation and SCTs
in (3.14) and (3.15) lead to the homogeneous differential equation11 [22][

∆u − (∆− 1)(∆− 2)
]
Îϕϕ∆ = 0 , (3.23)

with the differential operator of u defined by

∆u ≡ u2(1− u2)∂2
u − 2u3∂u . (3.24)

This equation can be solved by noticing that the correlator should be regular at the folded
limit k12 = k3 as a consequence of the Bunch-Davies vacuum. Thus, using the absence of
singularity at u→ 1 as a boundary condition, we find the hypergeometric solution

Îϕϕ∆ ∝ 2F1

[
2−∆,∆− 1; 1; u− 1

2u

]
. (3.25)

If we want to generate the result with a massless scalar by choosing ∆ = 3 here, we find
Îϕϕ∆ ∝ u−1, which differs from the bulk computation in (3.17). This mismatch is expected,
since the 〈OϕOϕOφ〉′ correlator does not satisfy the conformal Ward identities as we have
shown. Therefore, one can no longer use the constraint equations in (3.14) and (3.15) to
derive the boundary differential equation in (3.23).

Does this signal the breakdown of the boundary approach when we have IR-divergent
correlators due to the presence of massless scalars? Or could there be another way to derive
the boundary differential equation when there are IR divergences? The major problem here
is that fixing the boundary at η0 explicitly breaks the dilation symmetry. Therefore, we may
apply a simple trick to bypass this issue by introducing a rescaled cutoff x0 = k3η0. Then the
upper limit of the bulk integral in (3.17) becomes x0/k3. Now we do not solve the integral
in (3.17) explicitly, and notice that the bulk-to-boundary propagator of the massless scalar
satisfies (

k2∂2
k − 2k∂k + k2η2

) [
eikη(1− ikη)

]
= 0 . (3.26)

Using this differential equation, we find that Iϕϕφ satisfies(
k2

3∂
2
k3 − 2k3∂k3 − k2

3∂
2
k12

)
Iϕϕφ = −6k12 . (3.27)

The source term is generated when the k3-derivatives hit on the upper-limit of the integral
x0/k3. Next, we consider the dimensionless function Îϕϕφ = Iϕϕφ/k3 which depends on the
ratio u ≡ k3/k12 only. We find the differential equation

(∆u − 2) Îϕϕφ(u) = −6
u
, (3.28)

with ∆u being the differential operator introduced in (3.24). This inhomogeneous boundary
equation with a nontrivial source provides the modified version of (3.23) for ∆ = 3. The
appearance of this source term is due to the fact that the massless scalar becomes constant
on super-horizon scales. If we perform the same derivation for Îϕϕ∆ with general massive
scalar σ∆, we find a decaying source term with a positive power of x0. Therefore, by taking
the x0 → 0 limit, the source term vanishes, and we reproduce the boundary equation (3.23).

11Recall that the conformal weight ∆ is related to the mass of the σ∆ field via (∆−1)(∆−2) = 2−m2/H2.
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From the CFT point of view, we suspect that (3.28) may be seen as a consequence of the
anomalous special conformal Ward identities.

Solving (3.28), we find the general solution

Îϕϕφ(u) = c1
1
u

+ c2

[
1 + 1

2u log
(1− u

1 + u

)]
− 1
u

log
(

1− u2

u2

)
, (3.29)

with two free constants. Again, one boundary condition is given by the absence of the folded
singularity at u→ 1, which fixes c2 = 2. The other constant c1 is related to the cutoff scale
which is arbitrary. This can be normalized by imposing the soft behaviour limk3→0 Îϕϕφ,
which gives c1 = −2[γE−1+log(−x0)] (or alternatively, at least in part, by using the scaling
behavior in (3.19)). In the end we find

Îϕϕφ(u, x0) = 2− 2
u

[
γE − 1 + log

(1 + u

u

)
+ log(−x0)

]
, (3.30)

which matches the bulk computation (3.17), after restoring x0 = k3η0. As expected, the
final result only contains the total-energy pole, while the suspicious logarithmic k3-pole is
cancelled.

Although this warmup example is simple and can be easily computed from direct bulk
integration, there are lessons about how to treat IR divergences in the cosmological bootstrap,
and we shall get back to this contact example in the subsequent analysis of massless exchange
diagrams. We close this section with a few observations:

• With no need for solving the bulk integral, one simple criterion to tell if a correlator is
IR-divergent or not is to use the η0∂η0 operator. Only if

lim
η0→0

η0∂η0〈On〉 → 0 , (3.31)

the correlator is IR-finite, and one can safely take the late-time cutoff to 0, otherwise one
needs to be careful with the singular behaviour of boundary correlators. This condition
becomes useful when we consider exchange diagrams for which the explicit integration
may become difficult. Meanwhile, as we can see from the time-dependent dS dilation
constraint on equal-time correlators (3.21), this criterion also tells us if the dilation
conformal Ward identity in (3.14) remains valid, or becomes the anomalous one.

• The singular behaviour of the boundary correlators is typically associated with massless
fields with no derivatives in the interaction vertices, as they become constant on super-
horizon scales and keep contributing in the bulk integral. For massive fields which decay
after horizon-exit, the correlators are regular. For massless fields with derivative inter-
actions, the correlators are given by rational polynomials with no logarithmic terms [49].

• For IR-divergent correlators, the conformal Ward identities become the anomalous ones.
As a new scale, the cutoff η0 explicitly breaks scale-invariance. One useful trick to “re-
store” the dilation symmetry is to consider a dimensionless cutoff by rescaling x0 = kη0.
As a consequence, the boundary differential equation acquires one extra source term.
We will see this behaviour again in the analysis of exchange processes.

• In the end, we notice that the IR divergence is also present in other contact n-point
functions with one or more massless scalar fields. Another well-known example is the
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Figure 3. The four-point scalar seed function of massless exchange.

〈φφφ〉 correlator from the φ3 interaction

〈φk1φk2φk3〉′ = i

∫ η0

−∞
dηa(η)4 [K+(k1, η)K+(k2, η)K+(k3, η)− c.c.] + perm. (3.32)

= H2

2k3
1k

3
2k

3
3

[
(k3

1 + k3
2 + k3

3) (γE − 1 + log(−ktη0)) + 4e3 − e2kt
]
,

with e2 = k1k2 + k1k3 + k2k3 and e3 = k1k2k3. This is known as the conformal non-
Gaussianity from the inflaton self-interaction, and can also be analyzed in the same
approach from the boundary perspective [151].

3.3 Massless exchange in dS bootstrap

Now we are ready to investigate the IR divergences in exchange diagrams. In this section,
we shall focus on the seed function of dS bootstrap, which is the four-point function of
conformally coupled scalars exchanging one additional scalar field, while we leave the analysis
of the three-point scalar seed of the boostless bootstrap in section 3.4.

Let’s restrict our discussion to the s-channel contribution to the tree-level exchange,
where s ≡ |k1 + k2| is the Mandelstam-like variable. In the dS bootstrap, because of the
symmetry constraints on kinematics, the boundary four-point correlator of ϕ mediated by a
general scalar σ∆ with mass m can be expressed in the following form

〈Oϕ(k1)Oϕ(k2)Oϕ(k3)Oϕ(k4)〉′ = 1
s
F̂ (u, v) , with u ≡ s

k12
, v ≡ s

k34
, (3.33)

where F̂ is the so-called four-point scalar seed function, which depends on two momentum
ratios u and v only. It was shown that the conformal Ward identities of SCTs in (3.15) lead
to a set of differential equations for F̂[

∆u + m2

H2 − 2
]
F̂ = uv

u+ v
,[

∆v + m2

H2 − 2
]
F̂ = uv

u+ v
, (3.34)

where ∆u is the differential operator given in (3.24). Solving this equation with proper
consideration of boundary conditions from singularities, we can derive the full analytical
results of the massive exchange. In this work we are interested in the situation where we
take the intermediate scalar mass to zero. We would like to examine if this seed function F̂
becomes IR-divergent, and if it does, how the differential equation (3.34) will be modified.
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We first notice that the boundary four-point function above corresponds to the following
bulk computation of the correlator for conformally coupled scalars

〈ϕk1ϕk2ϕk3ϕk4〉′ =
η4

0H
2

2k1k2k3k4s
F̂ (k12, k34, s) + t- and u-channels , (3.35)

where the integral form of the seed function F̂ is given by

F̂ = − s

2H2

∫ η0

−∞

dη

η2

∫ η0

−∞

dη′

η′2

[∑
±±

(±)(±)e±ik12η±ik34η′G±±(s, η, η′)
]
. (3.36)

Again, we have kept the late-time cutoff η0 explicit as the upper limit of the integration.
In this integral form, we also neglected the e±iknη0 ’s from ϕ-propagators in (3.5).12 Here G
is the bulk-to-bulk propagator introduced in (3.6). This is a nested double integral, which
becomes more difficult to solve. To trace its IR behaviour, let’s take the η0∂η0 operation on F̂

η0∂η0F̂ = − 1
2s2

[
k12Iϕϕφ(k34, s, η0) + k34Iϕϕφ(k12, s, η0)

]
, (3.37)

where Iϕϕφ is the integral introduced in (3.17), which contains logarithmic divergence. There-
fore the four-point scalar seed of massless exchange has explicit η0-dependence, and becomes
singular in the η0 → 0 limit. As a result, the boundary equation (3.34) should be modified
when m = 0.

Due to the presence of the cutoff scale η0, the scalar seed F̂ may not be a function
of two momentum ratios u and v only. To remove the explicit η0 dependence, we use the
dimensionless cutoff x0 = sη0, and then rescale η′ by x = sη′. The F̂ function becomes

F̂ = − 1
2s

∫ x0/s

−∞

dη

η2

∫ x0

−∞

dx

x2

[∑
±±

(±)(±)e±ik12η±ix/vĜ±±(sη, x)
]
, (3.38)

where Ĝ(sη, sη′) = s3G(s, η, η′)/H2 is the dimensionless bulk-to-bulk propagator. One non-
trivial consequence of this rescaling is that the upper limit of the η integral now becomes
s-dependent. Without solving this nested double integral, we notice that the G-propagators
satisfy eq. (3.7). As the dependence of Ĝ on η and η′ is through the combination sη and
sη′, we can trade η-derivatives with s-derivatives. To derive the differential equation for F̂
in terms of u ≡ s/k12, we first set v ≡ s/k34 to be a constant. Then we find

1
s

(
s2∂2

s − 2s∂s − s2∂2
k12

) (
sF̂
)

= s

kT
− 3k12

sv

[
1− γE + v + log

(
v

1 + v

)
− log(−x0)

]
.

(3.39)
The first source term is the standard contact term in the dS bootstrap, which can be seen
as a result of collapsing the internal line. The second source term, which has the form of the
〈ϕϕφ〉 correlator in (3.17), is generated when the s-derivatives act on the upper limit of the
η integral. Changing variable to u, we find the differential equation

(∆u − 2)F̂ = uv

u+ v
− 3

2uÎϕϕφ(v, x0) , (3.40)

12Like we discussed in footnote 10 for the 〈ϕϕφ〉 correlator, in principle the 〈ϕ4〉 correlator corresponds to
the double integral with e±ik12,34η0 ’s from the boundary ϕk(η0). The revised integral has similar IR behaviour
but more complicated form. As our goal is to bootstrap inflaton correlators with derivative interactions, the
difference becomes negligible after the weight-shifting procedure (see section 4). Thus we shall use F̂ as the
scalar seed for analysis, but notice that this subtlety may become nontrivial for correlators from non-derivative
interactions.

– 18 –



J
C
A
P
0
5
(
2
0
2
3
)
0
4
3

with Îϕϕφ given in (3.30). If we rescale another integration variable η, we find the second
differential equation in terms of u, which can also be obtained simply from the permutation
symmetry u ↔ v. Comparing with the IR-finite equations (3.34), we find an additional
source term for correlators which become singular on the late-time boundary. This result
is in analogy with what we have shown for contact interactions in (3.28). Schematically,
when an explicit late-time cutoff is present, the (∆u − 2) operator reduces the four-point
exchange diagram into the contact one, as well as the three-point function 〈ϕϕσ〉 by taking
the internal line to the boundary. For the exchange of a general massive scalar σ∆, it is easy
to apply the same derivation, and in the end we find the second source term is simply given
by ∝ x∆±

0 Îϕϕ∆. Thus, in the late-time limit x0 → 0, this term vanishes, and we return to
the equations in (3.34).

We now wish to find the solution for this modified differential equation of massless
exchange. Let’s first take a look at the u-equation with v being a constant. Its general
solution can be expressed in a closed-form, which we first separate into two parts

F̂ = F̂fin(u, v) + F̂div(u, v, x0) . (3.41)

Let’s first look at F̂fin. This is the IR-finite part of the solution, which satisfies (∆u−2)F̂fin =
uv/(u+v). This solution does not depend on the IR cutoff η0, and has been derived in [22]13

F̂fin = − 1
2uv

[
Li2

(
u(1− v)
u+ v

)
+ Li2

(
v(1− u)
u+ v

)
+ log

(
u(1 + v)
u+ v

)
log

(
v(1 + u)
u+ v

)
− π2

6

]

+1
v

log
(
u(1 + v)
u+ v

)
+ 1
u

log
(
v(1 + u)
u+ v

)
− 1 , (3.42)

where Li2(x) is the dilogarithm. To analyze its analytical structure, we notice that F̂fin has
IR-finite logarithmic poles, which can be classified into total-energy pole at u+ v ∝ kT → 0,
and partial-energy poles at u+ 1→ 0 and v + 1→ 0.

The second term F̂div has been missed in previous considerations. It corresponds to
the singular piece of the solution that has been regularized by the IR cutoff and satisfies
(∆u − 2)F̂div = −3Îϕϕφ/2u. Solving this equation explicitly, we find F̂div is given by a sum
of the particular and homogeneous solutions

F̂div = − 1
4u log

(
1− u2

u2

)
Îϕϕφ(v, x0) + c1

1
u

+ c2

[
1 + 1

2u log
(1− u

1 + u

)]
, (3.43)

with two arbitrary constants c1 and c2. To impose boundary conditions, we first notice that
the absence of the folded singularity at u = 1 fixes c2 = Îϕϕφ(v, x0)/2, while c1 can be
determined by requiring the solution to be symmetric in u↔ v

c1 = −1
2
[
γE − 1 + log(−x0)

]
Îϕϕφ(v, x0) . (3.44)

This completely fixes the IR-divergent solution to be

F̂div = 1
4 Îϕϕφ(u, x0)Îϕϕφ(v, x0)

=
[
1− 1

u

(
γE − 1 + log(−ELη0)

)] [
1− 1

v

(
γE − 1 + log(−ERη0)

)]
, (3.45)

13In [22, 24, 150], there are differences for the last term in the first line because of choices of the boundary
condition at u, v → 0. As this term can be moved to the homogenoues solution, without losing generality here
we choose −π2/6 which makes the terms in the bracket vanish at u→ 0.
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Figure 4. The three-point scalar seed function of massless exchange with one mixed propagator K.

where in the second line we have restored η0 by x0 = sη0, and introduced EL ≡ k12 + s
and ER ≡ k34 + s. Thus F̂div has IR-divergent partial-energy poles. The factorized form
suggests that F̂div belongs to the disconnected part of the four-point function that can be
written as the product of two three-point functions. We shall confirm this expectation from
the wavefunctional approach in section 3.5.

Combining F̂fin and F̂div, we find the complete solution of the four-point scalar seed
of massless exchange. The IR-divergent part of the solution is particularly important when
we use this seed function to compute non-Gaussianities from multi-field inflation, as we
shall see in section 4. In the end, we notice that one has u, v ∈ [0, 1] in the dS bootstrap
as a consequence of triangle inequality. But this is not assumed for deriving the closed-
form solution above. Thus the seed function here can also be applied in the boost-breaking
scenarios with reduced sound speeds, where u and v can be any positive number. We will
elaborate on this point in section 4.2.2.

3.4 Mixed propagator and three-point scalar seed

The above analysis on IR divergences has assumed the full dS isometries and then allowed the
mild breaking of the dilation symmetry by introducing the late-time cutoff η0. In cosmology,
a broader class of theories correspond to the circumstances where the dS boost symmetry is
strongly broken, and thus one can no longer rely on the special conformal Ward identities
for deriving differential equations of boundary correlators. These theories typically have
reduced sound speeds and large field interactions, which give large signals of primordial non-
Gaussianity with immediate observational relevance. Recently, systematical investigations
into these cases have been performed in the context of the boostless bootstrap [32–39]. Here
we mainly follow the approach in [37] to examine the IR divergences of massless exchange in
boost-breaking scenarios.

Without dS boost symmetry, the main object of interest is the exchange bispectrum
as shown in figure 4, and thus it is much more convenient to introduce a mixed propagator
between the inflaton field φ and another massless scalar σ. Consider the transfer vertex φ̇σ,
and then a new bulk-to-boundary propagator is given as [37, 145]

K±(k,η,η0)=±i
∫ η0

−∞
dη′a(η′)3[Gσ±±(cσk,η,η′)∂η′K±(csk,η′)−Gσ±∓(cσk,η,η′)∂η′K∓(csk,η′)

]
,

(3.46)
which describes the propagation from σ at some bulk time η to the inflaton φ at future
boundary η0. Here we also introduced the sound speed of the inflaton field cs and the one
of the additional scalar cσ. For simplicity, we can remove the cσ-dependence by rescaling
cσk → k and cs → cs/cσ, after which cs becomes the ratio of two sound speeds and thus can
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be any positive number. We will restore the cσ parameter when we consider one particular
new phenomenology in section 4.2.3. While the free bulk-to-boundary propagators satisfy a
homogeneous equation of motion, from (3.7), this mixed propagator is found to be governed
by the following inhomogeneous equation

OηK±(k, η, η0) = −Hη
2

2csk
e±icskη. (3.47)

As both φ and σ are massless scalars, the mixed propagator can be easily solved. For
illustration, the analytical expression of K+ is given by

K+(k, η, η0) = H

4k3

[
e−ikη(1 + ikη) Ei

(
i(1 + cs)kη

)
+ eikη(1− ikη) D − 2

cs
eicskη

]
, (3.48)

with Ei(x) being the exponential integral and

D =


γE − 2 + iπ

2 + log
(

2k2η2
0

−kη

)
, cs = 1

2γE − 2 + iπ + 2 log (−kη0) + log
(
1− c2

s

)
− Ei

(
i(−1 + cs)kη

)
, cs 6= 1

. (3.49)

The result of K− is the complex conjugation of K+. At first sight, the mixed propagator
seems to have a non-Bunch-Davies state, with a mixture of positive- and negative-frequency
modes. However, the negative-frequency mode only becomes comparable to the positive
frequency component at late times. In the early-time limit, we find

lim
η→−∞

K+(k, η, η0)→


iHη

4k2 e
ikη log(−kη) , cs = 1

− iHη4k2 e
ikη log

[
(1− c2

s)k2η2
0

]
, cs 6= 1

. (3.50)

Thus we still have the adiabatic vacuum deep inside the horizon, but there could be a defor-
mation from the standard Bunch-Davies state because of the linear mixing. Meanwhile, we
can see that the mixed propagator explicitly depends on the IR cutoff η0. For perturbations
outside of the horizon −kη � 1, we find the η-dependence drops out with

lim
−kη�1

K+(k, η, η0) = H

2csk3

[
(γE − 1)cs − 1 + cs log (−(1 + cs)kη0)

]
, (3.51)

which diverges when η0 → 0. This secular behaviour of the mixed propagator basically cap-
tures the super-horizon conversion effect in multi-field inflation, where the isocurvature mode
keeps sourcing the growth of the curvature perturbation. As this super-horizon evolution is
widely believed to be responsible for the generation of local non-Gaussianity, later we will see
in section 5 that indeed this extensively studied shape is closely related to the IR-divergent
behaviour of the mixed propagator.

In the following we will mainly use the dimensionless mixed propagator K̂+ ≡ csk3K+/H
and rescale the IR cutoff η0 = x0/k. As a result, K̂+ depends on k and η only through the
combination kη. Therefore, we can trade η-derivatives with k-derivatives on K̂+, and the
differential equation (3.47) is equivalent to(

k2∂2
k − 2k∂k + k2η2

)
K̂±(kη, x0) = −1

2k
2η2e±icskη. (3.52)
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The late-time limit becomes a function of x0 only

lim
η→0
K̂±(kη, x0) = K̂(x0) = 1

2
[
(γE − 1)cs − 1 + cs log (−(1 + cs)x0)

]
. (3.53)

Next, we consider the single-exchange three-point correlator with a mixed propagator.
The starting point of the bootstrap approach is the bispectrum 〈ϕϕφ〉 with two conformally
coupled scalars and an inflaton, exchaning one additional massless scalar σ. At the practical
level, one advantage of the mixed propagator is that the exchange correlator can be expressed
in a “contact-like” form in the bulk computation. For the cubic vertex ϕ2σ, the three-point
function becomes

〈ϕk1ϕk2φk3〉
′ = i

∫ η0

−∞
dηa(η)4 [Kϕ

+(csk1, η)Kϕ
+(csk2, η)K+(k3, η, η0)− c.c.

]
+ perms.

= − Hη2
0

4c3
sk1k2k2

3
Î(k12, k3, x0) + perms. , (3.54)

where we have set ϕ has the same sound speed with the inflaton. Then the three-point scalar
seed is given by the following integral

Î(k12, k3, x0) ≡ − i

k3

∫ x0/k3

−∞

dη

η2

[
eicsk12ηK̂+(k3η;x0)− e−icsk12ηK̂−(k3η;x0)

]
. (3.55)

Notice here the upper limit of the integral is taken to be x0/k3, as we have already used
x0 = k3η0 as the rescaled IR cutoff in the mixed propagator. This integral is still IR-
divergent when the upper limit goes to zero, and it is rather complicated to compute, as the
explicit expression of K contains exponential integral and logarithms. Instead, we will find
its differential equation and solve it from the boundary approach. First, we see that Î is
dimensionless by definition, and depends on k12 and k3 through the momentum ratio

w ≡ k3
csk12

, (3.56)

which can take any positive value w < c−1
s as cs is an arbitrary sound speed ratio. Using

the differential equation of K̂ in (3.52), and following the same approach for the four-point
scalar seed, we find the boundary equation in terms of w

(∆w − 2) Î(w, x0) = w

1 + csw
+ 6
w
K̂(x0) . (3.57)

where ∆w is the operator (3.24) with u→ w. The second source term is a consequence of the
nontrivial upper limit of the Î integral (3.55). It is interesting to notice that this equation
can be reproduced from (3.34) by replacing u → w and v → 1/cs. This is due to the fact
that ∂ηφ has the same mode function with a conformally coupled scalar ϕ, and the four-point
scalar seed (3.36) matches with Î by taking k4 → 0. The explicit connection between the
three-point and four-point seed functions has been analyzed in [37].

With this observation in mind, it is straightforward to obtain the solution of (3.57).
The IR-finite part of the solution which satisfies (∆w − 2)Îfin = w/(1 + csw) is simply given
by the F̂fin solution in (3.42) via

Îfin(w) = F̂fin(w, c−1
s ) . (3.58)
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Meanwhile, the IR-divergent part regularized by x0 satisfies (∆w − 2)Îdiv = 6K̂(x0)/w, and
can be solved as

Îdiv(w, x0) = 1
w

log
(

1− w2

w2

)
K̂(x0) + c1

1
w

+ c2

[
1 + 1

2w log
(1− w

1 + w

)]
. (3.59)

Again, we need to impose boundary conditions to fix the two free coefficients. For non-
unity cs, w = 1 does not correspond to the folded configuration, but still no physical
singularity is allowed in this limit, which fixes c2 = −2K̂(x0). The other boundary con-
dition can be obtained by taking the soft limit k3 → 0, where the mixed propagator is
given by the late-time limit (3.53), and the seed function (3.55) factorizes into limw→0 Î =
2 [γE − 1 + log(−x0/w)] K̂(x0)/w. This leads to c1 = 2 (γE − 1 + log(−x0)) K̂(x0), and thus
we find

Îdiv(w, x0) = 2
w
K̂(x0)

[
γE − 1− w + log

(1 + w

w

)
+ log(−x0)

]
. (3.60)

The full analytical solution is then given by Î = Îfin + Îdiv, which will be used as our main
building block for bootstrapping multi-field non-Gaussianities in section 4. As an illustration,
let’s take a look at the three-point scalar seed with cs = 1, which has the following simple form

Î(k12, k3, η0) = k12
k3

[
γE − 1 + log(−ktη0)

][
γE − 2− k3

k12
+ log(−2k3η0)

]
+ k12

2k3

[
π2

6 − Li2
(
k12 − k3

kt

)]
. (3.61)

Here we have restored η0, k12 and k3 explicitly. This result shows that the η0-dependent
logarithm arise in two ways: it comes with 2k3 and also with kt. While the k3 term is asso-
ciated with the mixed propagator, the kT -type IR divergence is a consequence of the cubic
interaction vertex,14 as we observed in the contact example in section 3.2. In the exchange
bispectrum, the IR-divergent term is a product of these two η0-dependent logarithms, like in
the exchange four-point function. We shall also confirm that the IR-divergence is given by
the disconnected part in the wavefunctional approach in section 3.5.

3.5 Wavefunction approach

The recent development of cosmological bootstrap shows that the wavefunction of the Uni-
verse provides a convenient approach for the analysis of boundary correlators. We leave the
detailed discussion in appendix A, while here we mainly present the results for dS-invariant
theories, and demonstrate the behaviour of IR divergences using the wavefunction method.

The primary object of interest here is the wavefunction coefficients ψn in the Fourier
space at the late-time boundary of the dS spacetime. In perturbation theory, the bulk compu-
tation of ψn can also be performed in a diagrammatic fashion, where similarly we introduce
bulk-to-boundary propagator KΨ(k, η) and the bulk-to-bulk propagator GΨ(k, η, η′). Ex-
plicitly, the bulk-to-boundary propagators of massless and conformally coupled scalars are
expressed as

KΨ(k, η) = (1− ikη)eikη , Kϕ
Ψ(k, η) = η

η0
eikη , (3.62)

14For cases with a general sound speed ratio, this term is given by log(−ELη0), with EL = csk12 + k3.
When cs = 1, the partial-energy EL-pole concides with the logarithmic kt-pole.
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which become 1 in the late-time limit η = η0 → 0. They are similar with the ones in the
in-in formalism, but with different normalizations. Meanwhile, the bulk-to-bulk propagator
has a boundary condition that it becomes 0 in the late-time limit, and thus takes a different
form. For instance, the one for massless scalars is given by

GσΨ(k,η,η′) = H2

2k3

[
(1+ ikη)(1− ikη′)eik(η′−η)θ(η−η′)+(1− ikη)(1+ ikη′)eik(η−η′)θ(η′−η)

−(1− ikη)(1− ikη′)eik(η′+η)
]
. (3.63)

As we see, the presence of the last term ensures that GσΨ vanishes when we take η or η′
to 0. As a result, in the wavefunction approach, the bulk-to-bulk propagator of massless
fields decays after the perturbation mode exits the horizon, which essentially differs from the
behaviour of G in the in-in formalism. As we have mentioned for several times, the super-
horizon freezing of the massless scalar plays an important role for the appearance of the
IR-divergences. Next, we will show that, in the wavefunction approach the ψn from massless
exchanges remain IR-finite due to the decaying behaviour of GσΨ outside of the horzion.

Here let’s consider the two diagrams we analyzed in the dS bootstrap: the contact cubic
interaction ϕ2φ and the four-point seed function from the s-channel massless exchange. Their
corresponding wavefunction coefficients are given by

ψϕϕφ3 = −2i
∫ η0

−∞
dηa(η)4Kϕ

Ψ(k1, η)Kϕ
Ψ(k2, η)KΨ(k3, η) (3.64)

ψ4 = 4
∫ η0

−∞
dηdη′a(η)4a(η′)4Kϕ

Ψ(k1, η)Kϕ
Ψ(k2, η)GσΨ(s, η, η′)Kϕ

Ψ(k3, η
′)Kϕ

Ψ(k4, η
′) .

We leave the derivation of their solutions in appendix A, and here let’s take a look at the
final results

ψϕϕφ3 ∝ − 2i
η0

+ iπ + Iϕϕφ(k12, k3, η0) , ψ4 ∝
1
s
F̂fin(u, v) , (3.65)

with Iϕϕφ and F̂fin given in (3.17) and (3.42) respectively. The contact three-point function
ψϕϕφ3 remains divergent at the late-time boundary, as the bulk-to-boundary propagator of
φ becomes contant outside of the horizon and thus keeps contributing to the bulk integral.
Meanwhile, because of the decay of GσΨ on super-horizon scales, we see that ψ4 is independent
of the IR cutoff η0, and corresponds to the IR-finite part of the four-point scalar seed.

The wavefunction coefficients are not physical observables, and correlation functions
can be computed via simple algebraic relations of their real parts. For the ϕϕφ contact
bispectrum, the real part of ψϕϕφ3 simply gives us the result in (3.16), while the unphysical
1/η0 divergence drops out as it is purely imaginary. For the exchange four-point function,
in addition to Reψ4, there is also contribution to the corresponding correlator from the
disconnected part, which is proportional to a product of two three-point functions Reψϕϕσ3 .
Combining these two parts, we find the correlator becomes

〈ϕk1ϕk2ϕk3ϕk4〉′ ∝
[1
s
F̂fin(u, v) + 1

4s3 Iϕϕφ(k12, s, η0)Iϕϕφ(k34, s, η0)
]

+ t- and u-channels ,
(3.66)

which precisely agrees with the result of the four-point seed function (3.41) with the dis-
conneted part given by the IR-divergent term in (3.45). The detailed deviation with proper
consideration of various prefactors is left in appendix A. The agreement between two different
approaches provides a useful consistency check for our analysis of IR divergences in massless
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exchange. Similarly, one can perform the computation for the boost-breaking three-point
scalar seed with a mixed propagator using the wavefunction approach. This is presented in
appendix A as well, and the final result matches what we found in section 3.4.

As a concluding remark of this section, we note that in our analysis of IR divergences
of cosmological bootstrap, we have looked into three objects: the cosmological correlation
functions at the end of inflation, the boundary CFT correlators and the wavefunction coef-
ficients. In many circumstances, such as for contact diagrams and massive exchanges, their
distinctions are not so important, and they may be simply related with each other by using
normalization factors, such as (3.11). However, when we have IR divergences, the distinction
among these objects become nontrivial. In particular, we have seen that for the massless
exchange, the constraints on CFT correlators from conformal Ward identities lead to the
bootstrap equations (3.34) with the IR-finite term only, which agrees with the result for the
corresponding wavefunction coefficient ψ4. Meanwhile, the physical observable — the cos-
mological correlator 〈ϕ4〉 is IR-divergent, as we need to include the disconnected part which
becomes singular at the late-time limit. In this sense, the CFT correlators on the bound-
ary are associated with the wavefunction coefficients, instead of the cosmological correlators.
This can be explained by the fact that it is more natural to see the appearance of the confor-
mal group as a result of dS isometries in the late-time wavefunction. As we will show in the
next section, the IR-divergent terms are particularly important for predictions on inflationary
correlators, thus one needs to be careful when bootstrapping these observables of primordial
non-Gaussianity by exploiting conformal symmetry or using the wavefunction method.

4 Inflationary massless-exchange correlators

For the IR-divergent correlators in massless exchanges, in the previous section we have pre-
sented the four-point scalar seed of the dS bootstrap and the three-point seed function for
the boostless bootstrap, which both contain conformally coupled scalars as external fields.
Meanwhile, for inflationary predictions of the primordial curvature perturbation, we are in-
terested in results with all external lines being the inflaton fluctuations (a nearly massless
field). To derive inflationary bispectra and trispectra from the scalar seeds, we will apply the
weight-shifting operators as the major tool. These are differential operators which map the
conformally coupled scalar ϕ to the massless inflaton φ. By using this approach, we generate
a complete set of inflationary predictions from the single exchange of a massless scalar in
both dS-invariant and boost-breaking theories, many of which are of immediate interest for
ongoing and upcoming observations.

In section 4.1, we derive the inflaton four-point and the three-point correlation functions
from massless exchange in theories where the full dS isometries are (approximately) respected.
In section 4.2, we look into all the possible massless exchange correlators from boost-breaking
theories with nontrivial sound speeds. In particular, we consider the bispectra with IR-
divergent terms in section 4.2.1, and then we identify a new class of non-Gaussianity shapes
in IR-finite correlators in section 4.2.3.

Weight-shifting operators. Before moving to the inflationary correlators, let’s first give
a brief review of the weight-shifting operators. We shall mainly follow the approach in [37]
which is based on the bulk intuition and generalizes to theories with broken boost symmetries.
See [22, 23] for the symmetry-based derivation of the weight-shifting operators in the dS
bootstrap from a purely boundary perspective.
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Our goal here is to raise the conformal weight of the external fields from ∆ = 2 (con-
formally coupled scalar) to ∆ = 3 (massless scalar). To achieve this, we mainly use the
observation that the massless bulk-to-boundary propagator in (3.4) can be generated from
the one of the conformally coupled scalar by some differential operators. For simplicity, let’s
strip the overall normalization factors with H and k, and look at the η-dependent part of
these two propagators

φk → (1− icskη)eicskη , ϕk → ηeicskη . (4.1)
Next, we are interested in generating the φφσ-type cubic interactions from the ϕ2σ vertex
used in the scalar seeds. For the inflaton coupling, here we mainly focus on the boost-breaking
ones with lowest derivatives φ̇2σ, (∂iφ)2σ, and their dS-invariant combination (∂µφ)2σ. From
the EFT point of view, they are normally expected to provide the leading vertices for infla-
tionary predictions. It is convenient to look at the products of field operators ∂φk1∂φk2 and
ϕk1ϕk2 . Then in the bulk computation of the particular cubic interactions, we find the two
products can be connected by

φ̇2σ : η∂ηφk1η∂ηφk2 = k1k2 W φ̇2σ
12
[
ϕk1ϕk2

]
(4.2)

(∂iφ)2σ : (−k1 · k2)η2φk1φk2 = k1k2 W(∂iφ)2σ
12

[
ϕk1ϕk2

]
. (4.3)

The two W12’s are the weight-shifting operators for corresponding cubic interactions:

W φ̇2σ
12 = −c2

sk1k2∂
2
k12 , (4.4)

W(∂iφ)2σ
12 = − 1

2k1k2
(s2 − k2

1 − k2
2)(1− k1∂k1) (1− k2∂k2) , (4.5)

where we have used s2 = (k1 + k2)2 to rewrite k1 · k2 = (s2 − k2
1 − k2

2)/2. For the exchange
bispectrum, we simply have s = k3. By setting cs = 1 and combining the two interactions
above, we also find the weight-shifting operator in the dS bootstrap

WdS
12 = −W φ̇2σ

12 +W(∂iφ)2σ
12 = 1

2
(
k2

12 − s2
)
∂2
k12 −

1
2k1k2

(
s2 − k2

1 − k2
2

)
(1− k12∂k12) , (4.6)

which maps the ϕ2σ vertex to the dS-invariant one (∂µφ)2σ. Using the same approach, we
are able to derive the weight-shifting operators for all the φφσ-type boost-breaking cubic
interactions with any number of time and spatial derivatives. The most general form is
presented in [37].

Now we consider how to derive the inflaton correlators from the scalar seed functions.
In the bulk computation with φφσ-type cubic couplings, it is easy to see that we can apply
the relations connecting two field products, such as (4.2) and (4.3), and then take the W
operators outside of bulk integrals. By doing so, we find the maps from the scalar seed
functions to the corresponding inflaton three-point and four-point correlators

〈φk1φk2φk3〉
′ = −H3

4c7
sk

2
1k

2
2k

2
3
W12 Î + perms. , (4.7)

〈φk1φk2φk3φk4〉
′ = H6

2c12
s k

2
1k

2
2k

2
3k

2
4s
W12 W34 F̂ + t- and u-channels , (4.8)

where W34 is the weight-shifting operator associated with the momenta k3 and k4. As
we already have the analytical results for Î and F̂ , we can simply use the weight-shifting
operators to derive inflaton correlators on the boundary, with no need to solve the complicated
bulk integrals case by case. In the following, we shall apply this approach to bootstrap
inflationary bispectra and trispectra from the single-exchange of a massless scalar.
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Figure 5. The inflaton four-point and three-point correlators mediated by one additional massless
scalar.

4.1 (Almost) dS-invariant correlators

Let’s first consider the cosmological correlators from (approximately) dS-invariant theories.
For cosmic inflation, the full dS symmetries restrict us to slow-roll models where the boost
isometry can only be mildly broken by the time dependence of the inflaton field, and thus one
always finds small level of non-Gaussianities. In single-field inflation, the resulting signal is
due to graviton exchange and slow-roll suppressed, which is widely known as the gravitational
floor [142]. When an additional light scalar is present and coupled to the inflaton, the
famous conclusion is that local non-Gaussianity is generated. We show that the dS-invariant
massless scalar exchange in our analysis provides the minimal amount of non-Gaussianities
from multi-field inflation. In particular, here we derive the inflationary four-point and three-
point functions from the first-principle computation using the bootstrap method. Then, in
section 5 we will compare these results with the local non-Gaussianity from the approximated
computation in multi-field inflation models.

Scalar trispectrum. The inflaton four-point function from massless exchange can be gen-
erated by two exactly dS-invariant cubic vertices g(∂µφ)2σ. Here we keep the coupling con-
stant g for the later convenience. Applying theWdS operator on the four-point seed function,
we can derive the scalar trispectrum from (4.8). First, let’s take a look at the contribution
from the IR-finite part of the scalar seed in (3.42)

1
s
WdS

12 WdS
34 F̂fin + (t- and u-channels) = 1

4k1k2k3k4

(
k3

1 + k3
2 + k3

3 + k3
4 − s3 − t3 − u3

)
,

(4.9)
with s = |k1 + k2|, t = |k1 + k3| and u = |k1 + k4|.15 We see that the weight-shifting
operator annihilates the logarithmic and dilogarithmic functions in F̂fin, and change the
expression into simple polynomials of the momenta. Similarly, the s-channel contribution
from the IR-divergent part of the scalar seed (3.45) is given by

1
s
WdS

12 WdS
34 F̂div = 1

4k1k2k3k4

[
(k3

1 + k3
2)(k3

3 + k3
4)

s3 − k3
1 − k3

2 − k3
3 − k3

4 + s3
]
, (4.10)

where the singular η0-dependence in F̂div is completely removed, and we find an IR-finite
polynomials of the external and internal fields energies. These two results are in agreement
with the proof in ref. [49] that only rational functions are allowed for interactions of massless

15For the rest of the paper, we use u as one of the Mandelstam variables, no longer as the ratio s/k12.
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scalars with at least two derivatives. Combining the two contributions above, we find the
final inflaton four-point function

〈φk1φk2φk3φk4〉
′ = g2H6

8 [Tlocal1 − 2Tlocal2] , (4.11)

with the two shape functions

Tlocal1 = 1
k3

1k
3
2k

3
3k

3
4

[
(k3

1 +k3
2)(k3

3 +k3
4)

s3 + (k3
1 +k3

3)(k3
2 +k3

4)
t3

+ (k3
1 +k3

4)(k3
2 +k3

4)
u3

]
, (4.12)

Tlocal2 = k3
1 +k3

2 +k3
3 +k3

4
k3

1k
3
2k

3
3k

3
4

. (4.13)

This massless-exchange trispectrum has the standard local shape. Recall that the primordial
trispectrum has two size parameters gNL and τNL for the corresponding local ansatzs

〈ζk1ζk2ζk3ζk4〉
′ =

[
τNLTlocal1 + 54

25gNLTlocal2

]
P 3
ζ . (4.14)

In our result (4.11), we find the particular combination of these two shapes makes the trispec-
trum vanish in the soft limit k1 → 0. This is a consequence of the cubic coupling (∂µφ)2σ
where the external field φ has a shift symmetry .

In addition, we notice that the trispectrum above has no total-energy singularities.16

One intuitive way to understand why this happens is the following: we start from the cubic
vertex (∂µφ)2σ. By doing integration by parts, we obtain (�φ)σ with � = ∂µ∂

µ, and another
term with the derivative hitting σ. As φ is massless, its equation of motion gives �φ = 0, and
thus only the φ∂µφ∂µσ term remains. If we integrate by parts again, we get �σ, which has
�σ = m2

σσ on shell and again vanishes if σ is massless. More manifestly, using integration
by parts and on-shell condition we have∫

d4x
√
−g(∂µφ)2σ = −

∫
d4x
√
−gφ∂µφ∂µσ = m2

σ

2

∫
d4x
√
−gφ2σ → 0 (4.16)

We are cavalier with boundary terms here, as their job is to ensure that the final shape
vanishes in the soft limit. The upshot is that the cubic vertex can be reduced to φ2σ plus
boundary terms that ensure shift symmetry. As the non-derivative interaction breaks shift
symmetry, one is likely to be cornered into the case where the coefficient of φ2σ being zero.
Therefore, the trispectrum (4.11) has no total- or partial-energy poles, can be seen as the
consequence of a local field redefinition, for instance φ→ φ+ gφ2 − g2φ3. In section 5.2, we
will compare this bootstrap result with the one from the δN analysis in one particular model
of multi-field inflation.

16As a contrast, the non-derivative quartic φ4 contact interaction gives a trispectrum of the following form

(k1k2k3k4)3〈φφφφ〉 ∝ 3E4 + k2
TE2 − 4kTE3

kT
− (k3

1 + k3
2 + k3

3 + k3
4) log[−kT η0] (4.15)

with kT ≡
∑

i
ki, E2 ≡

∑
i<j

kikj , E3 ≡
∑

i<j<k
kikjkk, E4 ≡ k1k2k3k4. The contact interactions with

derivatives lead to rational polynomials with higher-order kT -poles, which are systematically classified in
ref. [34]. In addition to the kT -poles, partial energy poles are also expected for exchange diagrams at EL =
k1 + k2 + s→ 0, ER = k3 + k4 + s→ 0.
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Scalar bispectrum. To have the exchange three-point function, one needs to consider the
mild breaking of the dS symmetry by taking one of the inflaton legs to the background Φ(t).
For the cubic vertex we considered above, this is simply achieved by

g(∂µΦ)2σ → −2gΦ̇φ̇σ + g(∂µφ)2σ, (4.17)

which leads to the linear mixing between the inflaton and σ with the coupling λ = −2gΦ̇.
Thus, by using the mixed propagator from λφ̇σ, the massless exchange bispectrum of the
inflaton can be derived from the three-point scalar seed in (3.61). By using the weight-shifting
operator (4.6), the IR-finite part of the scalar seed leads to

WdS
12 Îfin (k3/k12) = − k3

2k1k2kt
(k2

1 + k1k2 + k2
2 − k2

3)− k2
3

2k1k2
log(2k3/kt) . (4.18)

This contribution corresponds to the massless-exchange bispectrum eq. (6.10) in [22]. Al-
though this result contains logartithmic functions of momenta, it is IR-finite with no depen-
dence on the late-time cutoff η0. Meanwhile, to find the complete result, we also need to
include the IR-divergent part of the seed function, which gives

WdS
12 Îdiv (k3/k12, k3η0) = −k

3
1 + k3

2 − k3
3

2k1k2k3

[
γE − 2 + log(−2k3η0)

]
. (4.19)

This contribution, which becomes large and dominates over the IR-finite term in the late-time
limit η0 → 0, was missed in ref. [22]. Combining these two parts and adding permutations,
we use (4.7) to find the full expression of the inflaton bispectrum from massless exchange

〈φk1φk2φk3〉
′ = gλH3

4k3
1k

3
2k

3
3

[
(γE − 3− log(−ktη0)) (k3

1 + k3
2 + k3

3) + kte2 − 4e3 (4.20)

+ (k3
2 + k3

3) log(−2k1η0) + (k3
1 + k3

3) log(−2k2η0) + (k3
1 + k3

2) log(−2k3η0)
]
.

As one key result of the paper, this is the bispectrum shape that corresponds to the local
non-Gaussianity from additional light fields during inflation. While we leave the detailed
discussion and comparison in section 5, the connection with the multi-field analysis can be
understood in the following way. Recall that the well-known explanation for the generation of
local non-Gaussianity is the nonlinearities of the super-horizon conversion process that trans-
fers the isocurvature perturbations to the curvature ones. In the above computation based on
field interactions, the couplings in (4.17) provide the minimal interactions between the infla-
ton and the light scalar. In particular, the φ̇σ mixed propagator captures the conversion effect
from the additional light field (isocurvature modes) to the curvature pertubation. As the lin-
ear mixing φ̇σ is always accompanied by the cubic coupling (∂µφ)2σ, the first-principle com-
putation here provides the full consideration of the nonlinearities from the conversion process.

Although the bispectrum shape in (4.20) is not exactly the same as the local ansatz
in (1.1), there are similarities. We first notice that there are two types of logarithmic IR
divergences: log(−ktη0) and log(−2kaη0) with a = 1, 2, 3. The first line in (4.20) with
log(−ktη0) is the same as the bispectrum shape (3.32) from the φ3 contact interaction, which
is not explicitly associated with the conversion effect. The appearance of the logarithmic kt-
pole indicates that this contribution comes from a cubic vertex. Meanwhile, the second line
with log(−2kaη0) terms is the super-horizon contribution of the mixed propagator. It can be
generated by a field redefinition with time-dependent coefficients. As we shall show in sec-
tion 5, the δN formula provides a particular form of this field redefinition. In other words, the
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full bispectrum of massless exchange contains two parts: one has the same form as the shape
from a contact interaction of massless scalars; another is due to the super-horizon conversion
process. Both of these contributions have shape functions that are similar to the local ansatz.

Next, let’s look at the squeezed limit of the bispectrum, where the effect of the exchanged
massless scalar is mostly manifested

lim
k3→0
〈φk1φk2φk3〉

′ = gλH3

4k3
1k

3
3

[γE − 2 + log(−2k3η0)] . (4.21)

This soft behaviour is contributed from the IR-divergent part of the seed function as shown
by (4.19), and it encodes the super-horizon form of the mixed propagator in (3.53). Here
we find a logarithmic deviation from the local ansatz, which is shown in the left panel of
figure 6. For perturbation modes within the range of the observational test, the logarithmic
deviation corresponds to the number of e-foldsNl from the horizon-exit of the long wavelength
mode kl = k3 to the adiabatic limit when perturbation freezes. Thus the mild logarithmic
dependence can be approximately taken as a constant number 0 < Nl < 60, and the squeezed
bispectrum returns to the standard result of the local ansatz.

Correction to the power spectrum. With the mild breaking of the dS symmetry, we
can also put two external legs of the inflaton to the background in the four-point exchange
diagram, which leads to corrections to the two-point correlator. This contribution comes
from two λφ̇σ linear mixing vertices, and can be computed by taking k1 = 0 and k2 = k3 = k
in the three-point scalar seed (3.61)

δ〈φkφ−k〉′ =
λ2

2k3 Î(1, kη0) = λ̃2
[(

log(−2kη0) + γE − 2
)2
− 1 + π2

12

]
Pφ(k) , (4.22)

with λ̃ = λ/H and Pφ(k) = H2

2k3 being the two-point function of a free massless scalar. We
also see the appearance of the IR-divergent term, which dominates the correction to the
power spectrum. This result agrees with the in-in computation presented in ref. [94]. Here
the logarithmic function can be rewritten in terms of the number of e-folds Nk counting from
the horizon-exit of the k-mode. Then the size of this correction is approximately given by
λ̃2N2

k . For massive exchange, this correction is order of λ̃2, and λ̃ < 1 is sufficient to have
perturbative control. For massless exchange, we need λ̃Nk < 1 to ensure perturbativity, and
thus this coupling with additional light scalars is further constrained. As a consequence, we
find a suppressed signal for the massless-exchange bispectrum in dS-invariant scenarios. This
also explains the observation from many multi-field examples that it is usually difficult to
generate large local fNL during inflation in models with nearly scale-invariant perturbations
(see the review [11] and references there).17

4.2 Boost-breaking correlators

To achieve larger levels of non-Gaussianity, we need to consider the strong breaking of the dS
boost isometry. In these scenarios, the field interactions can become significantly enhanced,
and perturbations have small sound speeds. Now we provide a systematic classification of
the inflationary massless-exchange correlators in the boost-breaking theories. By using the
mixed propagator and three-point scalar seed derived in section 3.4, we mainly focus on the

17Large local non-Gaussianity can be generated in the post-inflation conversion, such as the curvaton sce-
nario [127–129]. For the bootstrap analysis, we focus on the conversion during inflation in the current work.
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Figure 6. The bootstrap results of the bispectrum shapes (with k1 = k2) demonstrate mild loga-
rithmic deviations from the local ansatz. Left panel: the shape functions from the dS-invariant cubic
vertex and two boost-breaking ones with cs = 1. Right panel: boost-breaking bispectrum shapes with
various sound speed ratios. In this figure we have reintroduced the σ sound speed by cs → cs/cσ.
We choose η0 = −10−3 for demonstration. The dimensionless shape functions Ŝ = (k1k2k3)2S are
normalized to be 1 at k3/k12 = 10−3.

scalar bispectra, while similar analysis applies for the inflationary four-point function. In
the following we show that there are two classes of massless-exchange bispectra: one has IR-
divergent terms caused by the φ̇σ linear mixing, and others are rational functions of momenta
due to the higher derivative quadratic interactions. We comment on the comparison with
previous studies of multi-field inflation in section 5.

4.2.1 IR-divergent bispectra
For this class of correlators, we consider that the quadratic interaction is still given by λφ̇σ,
while the cubic vertices can take any boost-breaking form. Our starting point is the three-
point scalar seed Î introduced in (3.55) with an arbitrary sound speed ratio cs. Because
of the sizable cubic couplings and reduced sound speeds, the bispectrum signal can become
large and potentially detectable. Here we mainly focus on the two leading cubic vertices
given by the ones with lowest derivatives from the EFT of inflation

gIφ̇
2σ , gIIa

−2(∂iφ)2σ , (4.23)

where the gII coupling is correlated with the quadratic coupling by λ = −gII(8|Ḣ|)1/2MPl/cs
due to the nonlinearly realized spacetime symmetry, though the gI coupling is free.

By applying the weight-shifting operator (4.4), we find the inflaton bispectrum from the
gIφ̇

2σ and λφ̇σ couplings

〈φk1φk2φk3〉
′ = gIλH

3

4c2
sk1k2k3

3E
2
L(csk12 − k3)2

[
(csk12 − k3)(1− cs)k3

3
c2
skt

− 1
cs
k2

3EL (4.24)

+2k3
3

(
γE − 1 + log(−csktη0)

)
+ 2k12

(
c2
sk

2
12 − 3k2

3
)
K̂(k3η0)

]
+ perm.

where EL = csk12 + k3 is the total energy entering the cubic vertex, and K̂(k3η0) is the
late-time limit of the mixed propagator given in (3.53). Unlike the dS-invariant case, the
correlator above cannot be seen as a combination of contributions from field redefinition and
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cubic contact interactions. Thus this massless-exchange result corresponds to a new class of
bispectrum shapes uncategorised in previous classifications. The dominant part of the shape
function is the IR-divergent terms with η0, which is the result shown in (1.3). In figure 6, we
see the deviations from the standard local ansatz.

Let’s take a closer look at the singularity structure of this three-point function. First,
there seems to be a pole at k3 = csk12, however it is easy to check the bispectrum remains
regular in this limit, as required by the absence of the w = 1 singularity in the scalar seed
function. For cs 6= 1, the correlator has total and partial-energy poles

lim
kt→0

(k1k2k3)3〈φk1φk2φk3〉
′ → gIλH

3

4c4
s(c2

s−1)
e2

2
kt

(4.25)

lim
EL→0

(k1k2k3)3〈φk1φk2φk3〉
′ → gIλH

3

4c2
s

k1k2e3
E2
L

[
γE−1+log(−k3η0)+ 1

2 log
(
c2
s−1

)]
, (4.26)

while for cs = 1 these two physical singularities coincide with each other and we find

lim
kt→0

(k1k2k3)3〈φk1φk2φk3〉
′ → gIλH

3

4
e2e3
k2
t

log(kt) . (4.27)

And last, the soft limit of the bispectrum, which also corresponds to the ER = 2k3 → 0
partial-energy pole, is given by

lim
k3→0
〈φk1φk2φk3〉

′ = gIλH
3

4c4
sk

3
1k

3
3
K̂(k3η0) . (4.28)

This soft behaviour also encodes the late-time limit of the mixed propagator, similar with
what we found for the dS-invariant bispectrum in (4.21), except for the appearance of the
sound speed ratio cs. For the massive exchange of cosmological colliders, the effect of the
sound speed is to shift the phase of the squeezed limit signal, which can lead to new types of
non-Gaussianity such as the equilateral collider shapes [37]. In the massless exchange here,
the squeezed bispectrum has a nearly constant scaling, and thus changing the sound speed
does not lead to large modifications to the shape function, as shown in figure 6.

The inflaton bispectrum from the gII(∂iφ)2σ interaction can be obtained by using the
weight-shifting operator (4.5) in (4.7)

〈φk1φk2φk3〉
′= gIIλH

3(k2
1+k2

2−k2
3)

8c7
sk

3
1k

3
2k

3
3E

2
L

[
K̂(k3η0)PolyI+log

((1+cs)k3
cskt

)
PolyII+PolyIII

]
+perm.,

(4.29)
with the three polynomial functions of the momenta given by

PolyI = 2c2
s(k2

1 + k2
2 + k1k2)(EL + k3) + 2k2

3(2csk12 + k3)

PolyII = csk
3
3

[
EL

csk12 − k3
+ 2c2

sk1k2
(csk12 − k3)2

]

PolyIII = k2
3

[
EL + c2

sk1k2(kt + k3)− csk1k2k3
kt(csk12 − k3)

]
. (4.30)

Again, it is easy to check that the shape function is regular at k3 = csk12. The singularity
structure and soft-limit behaviour are similar with the ones in the φ̇2σ bispectrum. From
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these two examples we see that the massless-exchange bispectra become more complicated in
the boost-breaking scenarios. However, as the main contribution to the squeezed bispectra
still comes from the IR-divergent terms in the φ̇σ mixed propagator, the shape functions
remain close to the dS-invariant one, as shown in figure 6. Thus here we find no significant
deviations from the local ansatz either. Nevertheless, the size of the non-Gaussian signal can
become potentially large. While in literature it was found to be difficult to generate large
local non-Gaussianity during inflation for multi-field models with canonical scalars [11], our
results here show that this could be achieved in boost-breaking scenarios.

4.2.2 Boostless trispectra
Another interesting example is the inflationary trispectrum from massless exchange with
two boost-breaking φφσ interactions. Similarly, we can start from the seed function F̂ and
apply the weight-shifting procedure to derive the results. Before moving to the computation,
one extra thing to notice is that the four-point scalar seed presented in section 3.3 is for
fields with sound speeds being unit. To extend this seed function to the one with nontrivial
sound speeds F̂BB, we introduce a new set of momentum-ratio variables ũ ≡ s/csk12 and
ṽ ≡ s/csk34. Then we find the differential equation of F̂BB(ũ, ṽ, x0) in terms of these new
variables has the same form with (3.40), which also leads to the IR-finite and -divergent
solutions (3.42) and (3.45). One major difference with the previous case is the range of the
two new variables ũ, ṽ ∈ [0, c−1

s ].18 However, as we noted earlier at the end of section 3.3, no
assumptions for the range of u and v are needed to derive the closed-form solutions for the seed
function.19 Therefore, the F̂ solution can be easily extended to the situation with arbitrary
sound speeds. Explicitly, the boost-breaking version of the four-point scalar seed is given by

F̂BB = F̂fin

(
s

csk12
,

s

csk34

)
+ F̂div

(
s

csk12
,

s

csk34
, sη0

)
. (4.31)

We consider the trispectrum from two φ̇2σ cubic vertices for demonstration. Substituting
F̂BB into (4.8) and using the weight-shifiting operator (4.4), we find

〈φk1φk2φk3φk4〉
′ = g2

IH
6

c7
sk1k2k3k4

[
c3
s(EL + s)(ER + s)

2s3E2
LE

2
R

− ELER + cskT s

k3
TE

2
LE

2
R

]
+ t- and u-channels ,

(4.32)
with EL = csk12 + s and ER = csk34 + s. Again, the logarithmic and dilogarithmic functions
are annihilated by the weight-shifting operator in the trispectrum, and we find the IR-finite
shape function expressed by rational polynomials. Unlike the dS-invariant result in (4.11),
here we find both total-energy and partial-energy poles, which means that this result cannot
be given by a field redefinition. Meanwhile, as the coupling constant gI is less constrained in
the EFT, this massless-exchange trispectrum provides potentially large signals that can be
tested in the observational surveys.

4.2.3 Multi-speed non-Gaussianity
Now let’s consider one particularly interesting case for the massless-exchange bispectrum with
a new class of phenomenology. In the above analysis, we have focused on the three-point

18Recall that in our notation cs is the sound speed ratio between φ and σ, which can take any positive value.
Thus ũ and ṽ may become larger than 1 for small cs, differing from the range u, v ∈ [0, 1] in the dS-invariant
case.

19This is different from the massive-exchange case, where extra work needs to be done to extend the series
solution to the ũ, ṽ > 1 regime, as recently discussed in [38].
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function with the φ̇σ linear mixing, which leads to the logarithmic IR-divergent terms and
consequently local-like shape functions. In both dS-invariant and boost-breaking scenarios,
the appearance of the IR divergence can be seen as a consequence of the fact that there is
only one derivative in this quadratic interaction of two massless scalars. Next, we extend
the analysis to two-point vertices with higher derivatives. The most generic form of the
boost-breaking quadratic interaction can be written as

Lφσ = a−m∂mi
(
∂n1
t φ∂n2

t σ
)
, (4.33)

where m is the number of spatial derivatives, and n1 and n2 are the numbers of time
derivatives on φ and σ respectively. For interactions with at least two derivatives, i.e.
m + n1 + n2 ≥ 2, the mixed propagators become rational functions of k, the logarithms
and IR-singular terms disappear [49]. Next, we shall see that the multiple sound speeds of
the scalars become important for the non-Gaussianity signal.

Convention. Previously, “cs” is used as the ratio of the sound speeds of the two fields. For
the convenience of analysis in this subsection, we reintroduce the individual sound speeds for
each field: cs for the inflaton φ and cσ for the massless field σ.

We first take a close look at the φ̇σ̇ coupling as the simplest example. This quadratic
interaction arises in theories with more than one derivative per field, and was also identified
in the EFT of multifield inflation [13]. One way to generate this coupling is to consider the
following interacting operator of the inflaton Φ and σ, and then take one inflaton leg to the
background

∂µνΦ∂µνΦσ → −2Φ̈φ̇σ̇ + . . . (4.34)

where we have used integration by parts, and dots represent terms with φ̇σ couplings. In the
following, we will keep agnostic about the model realization, but focus on the new effects on
massless exchange correlators from this higher-derivative linear mixing. First, we construct
the mixed propagator from the φ̇σ̇ coupling. The bulk-to-bulk propagator for ∂ησ from one
bulk time to another is given by

G
∂ησ
++ (cσk, η, η′) = ∂ησk(η)∂η′σ∗k(η′)θ(η − η′) + ∂ησ

∗
k(η)∂η′σk(η′)θ(η′ − η)

G
∂ησ
+− (cσk, η, η′) = ∂ησ

∗
k(η)∂η′σk(η′) , (4.35)

where G∂ησ−− and G∂ησ−+ are their complex conjugates respectively. The new mixed propagator
from σ to φ is given by

K±(k,η,η0) =±i
∫ η0

−∞

dη′

H2η′2

[
G
∂ησ
±± (cσk,η,η′)∂η′K±(csk,η′)−G∂ησ±∓ (cσk,η,η′)∂η′K∓(csk,η′)

]
.

(4.36)
This integration can be easily solved, and we find a simple analytical expression for K+

K+(k, η) =


H2η

4csk
(1− icskη)eicskη , cs = cσ

cσ
(c2
σ − c2

s)
H2η

2csk
(
cσe

icskηa − cseicσkη
)
, cs 6= cσ

. (4.37)

The parameter a = 1−iε is introduced to take care of the iε-prescription such thatK+ ∝ eicσkη
in the early-time limit η → −∞. We first notice that there is no logarithmic functions or
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η0-related singular behaviour for this linear mixing with two derivatives. When cs = cσ, the
mixed propagator is similar with one free bulk-to-boundary propogator of the external field
with sound speed cs. The cs 6= cσ case is more interesting, where K+ becomes a combination
of two free bulk-to-boundary propogators with different sound speeds. The eicskη piece can
always be mimicked by the inflaton propagator, and thus its contribution to correlators is
present already within single field inflation. The novel effect of the additional light field σ
is given by the eicσkη piece, which propagates to the boundary with the σ sound speed and
thus cannot be mimicked by K. This is due to the fact that the mixed propagator encodes
some behaviour of the intermediate field. While for the φ̇σ interaction the IR-divergent terms
always dominate, for φ̇σ̇ and other higher derivative couplings, the sound speed effect of the
exchanged field gets manifested in a novel way.

Next, to investigate new signatures in correlation functions, we separate out the cσ-
related term in K+, and introduce the following form of the bulk-to-boundary propagator

Kcσ+ (cσk, η) = H2η

2cσk
eicσkη . (4.38)

For demonstration, we assume the cubic interaction is given by φ̇2σ̇, and then the single-
exchange contribution to the inflaton correlator from the above mixed propagator becomes

〈φk1φk2φk3〉
′ = i

∫ η0

−∞
dηa(η)

[
∂ηK+(csk1, η)∂ηK+(csk2, η)Kcσ+ (cσk3, η)− c.c.

]
+ perm.

∝ 1
k3

1k
3
2k

3
3

e2
3

(csk12 + cσk3)3 + perm. . (4.39)

The bispectrum shape is similar with the equilateral shape from the φ̇3 self-interaction,
however because of the two sound speeds, the shape function may not be peaked at the
equilateral configuration. Figure 7 shows how the shape changes with different choices of the
two sound speeds. For cs > cσ, as k3 ≤ k12, the bispectrum is still close to the equilateral
shape. For cs < cσ, the location of the peak is shifted to k3/k12 = cs/cσ. For the extremal
situation cs � cσ, we find the shape function reaches its maximum around the squeezed
limit k3 � k12, which is similar with the local shape. Thus by tuning the sound speed ratio,
we find a parameter class of shape functions that can have arbitrary peak location, and
approximately interpolate the local shape and the equilateral shape.

The shifted location of the peak in the shape function has a simple and intuitive ex-
planation. Recall that in single field inflation with a nontrivial sound speed, the bispectrum
is generated by contact interactions, and its shape is peaked at the equilateral limit due to
the enhancement of resonance when three modes exit the sound horizon at the same time
k1 = k2 = k3 = a(t∗)H/cs. In the massless exchange here with (4.38), the mixed inflaton
leg propagates to the boundary with the sound speed of the exchanged scalar cσ. Thus,
at some time t∗ when k1 and k2 modes of the free inflaton leg exit the cs sound horizon
with k1 = k2 = a(t∗)H/cs, the mixed k3-leg has a different sound horizon crossing with
k3 = a(t∗)H/cσ. As a consequence, the resonance enhancement happens for csk12 = cσk3,
and thus the sound speed ratio determines where the bispectrum peak is located. Similar phe-
nomenon was recently reported as the low-speed resonance signal in massive exchanges [38].
Our focus here is the massless exchange bispectra, and the shape functions take simpler forms.

Furthermore, we can extend our analysis to exchange processes with two or three mixed
propagators. Let’s consider a double-exchange diagram that has two intermediate fields σI
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cs = 0.02cσ

cs = 0.1cσ

equilateral

cs = 10cσ

local ansatz

Figure 7. The dimensionless shape function of the bispectrum (4.39) with k1 = k2 and various sound
speed ratios. We have also include the standard equilateral and local shapes for comparison. The
peaks of the shapes are normalized to be 1 regardless of its location.

(a) c1 = c2 = 0.8, c3 = 1. (b) c1 = 0.3, c2 = 0.4, c3 = 1.

(c) c1 = 0.5, c2 = 0.2, c3 = 1. (d) c1 = c2 = 0.05, c3 = 1.

Figure 8. The multi-speed shapes Ŝmulti−cs(k1, k2, k3) with four different choices of sound speed
parameters. For comparison, we have also plotted the standard equilateral shape (blue transparent
surfaces) in figures a), b), c), and the local shape (purple transparent surface) in figure d). From
figure a) to d) we see the peak of shape is shifted from the equilateral configuration k1 = k2 = k3 = 1
to the squeezed limit k2 � k1 ' k3.

– 36 –



J
C
A
P
0
5
(
2
0
2
3
)
0
4
3

and σII with sound speeds cI and cII respectively. The two mixed propagator KI
+ and KII

+
can be expressed by (4.38) with their own sound speed being the one of the exchanged field.
Then for the cubic interaction φ̇σ̇Iσ̇II, the bispectrum becomes

〈φk1φk2φk3〉
′ = i

∫ η0

−∞
dηa(η)

[
∂ηK+(csk1, η)KI

+(cIk2, η)KII
+(cIIk3, η)− c.c.

]
+ perm.

∝ 1
k3

1k
3
2k

3
3

e2
3

(csk1 + cIk2 + cIIk3)3 + perm. . (4.40)

Now we have three massless fields involved, and each of them has its own sound speed. The re-
sulting bispectrum demonstrates richer structure in the shape function, with each momentum
k associated with a sound speed parameter. Intuitively, the location of its peak is determined
by two sound speed ratios: cs/cI and cs/cII. Similarly, we can also consider the triple-exchange
bispectrum, where all the three sound speeds are the ones of the mediator fields.

Let’s summarize the major messages from the above example. In the massless exchanges
with higher-derivative quadratic interactions, the IR divergences vanish and we find the
bispectrum in terms of rational polynomials of k. More importantly, as the mixed propagators
inherit the sound speeds of the exchanged fields, it becomes possible for each momentum
to be associated with a different sound speed. As a result, the exchange processes can
probe multiple sound horizon crossings, which leads to the new phenomenology in the scalar
bispectrum. In addition to the simplest φ̇σ̇ mixing we considered here, the analysis can be
easily extended to other quadratic interactions, such as φ̈σ, φ̇∂2

i σ, etc., and cubic ones, though
the expressions of mixed propagators and the final bispectra become more complicated.

We dub this new class of bispectrum shapes the multi-speed non-Gaussianity, which
is a distinctive signature of additional light degree of freedom during inflation. For the
convenience of data analysis, a simple ansatz of the dimensionless shape function is given by

Ŝmulti−cs(k1, k2, k3) = k1k2k3
(c1k1 + c2k2 + c3k3)3 + 5 perms , (4.41)

where 0 < c1,2,3 ≤ 1 are three different sound speed parameters. When they have the
same value, we return to the equilateral shape. But as we are free to tune their ratios,
this shape function is able to capture various possibilities of the scalar bispectra that are
rational functions of three momenta. Examples are shown in figure 8. In particular, the
location of the peak is sensitive to the sound speed ratios. When the sizes of three sound
speed are comparable, we return to the equilateral shape. While for large hierarchies among
sound speeds, the shape function can even be peaked around the squeezed configuration
which mimics the local shape. For the general parameter choices, (4.41) interpolates the
two standard non-Gaussian shapes. Therefore, this simple but general template can be of
particular interest for the observational search of primordial non-Gaussianity.

In the end, we would like to comment on the difference with [115] where a similar type of
shape functions were reported. There the conversion is due to the φ̇σ linear mixing and this
interaction is only turned on later when modes are on super-horizon scales. This particular
version of the super-horizon assumption introduces a time-dependent coupling, which explic-
itly breaks the dilation symmetry. Thus it corresponds to another type of scenarios with
scale-dependent features, which is beyond our classification. Instead, the bootstrap analysis
here shows that for scale-invariant theories the multi-speed shapes can only be generated
from higher derivative quadratic interactions.
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5 Revisiting multi-field non-Gaussianities

The generation of nonlinearities in primordial perturbations has been extensively investigated
in the context of multi-field inflation. The standard approach to compute primordial non-
Gaussianities in this class of models is the δN formalism, which uses the separate universe
assumption, and mainly captures the nonlinearity of curvature perturbations outside of the
Hubble radius [3, 152–157]. Meanwhile, as shown in the previous sections, the bootstrap ap-
proach takes another perspective, where all the nonlinearities are generated as consequence
of interactions among quantum fields in a (quasi-)dS background. Thus an interesting ques-
tion is how these two different approaches are related to each other. In this section, we shall
review the analysis of multi-field inflation using δN , and then compare with the bootstrap
result explicitly.

First, in section 5.1, we will give a brief review of the δN formalism, and in particular the
standard computation of the primordial bispectrum and trispectrum in multi-field inflation.
Then we consider a specific two-field model of inflation with exactly solvable background
dynamics in section 5.2. From this concrete example, we shall compare the non-Gaussianity
results from the δN computation and the dS bootstrap. In section 5.3, we comment on
multi-field models with higher derivatives.

5.1 The δN formalism

The starting point of the δN formalism is the observation that the curvature perturbation ζ
outside of the Hubble radius is related to the perturbed scale factor for a local patch of the
Universe. The super-horizon curvature perturbations can be analyzed by considering a local
FLRW spacetime which evolves like a separate homogeneous universe. Explicitly, the scale
factor of a local universe is given by the following form

a(t,x) = a(t)eζ(t,x) . (5.1)

Now consider the number of e-folds of this local FLRW universe N(t∗,x) from an initial time
t∗ to the end of inflation at t0: we pick a spatially flat slice at time t∗, with ζ(t∗,x) = 0; and
then consider the comoving curvature slice at time t0. For this local patch of the Universe,
the number of e-folds (and the corresponding curvature perturbation ζ(x) at t0) is given by

N(t∗,x) = log
(
a(t0,x)
a(t∗)

)
= N(t∗) + ζ(x) ⇒ ζ(x) = δN(x) ≡ N(t∗,x)−N(t∗) . (5.2)

On the spatially flat slice at t∗, though the curvature perturbation vanishes, we are left with
fluctuations of scalar fields Φa(t∗,x) = Φa

0(t∗)+φa(t∗,x). In multi-field inflation, these scalar
fields constitute the “multiple inflatons” which control the expansion history of the Universe.
Therefore, for a set of initial field values of Φa(t∗,x), the background evolution of this local
universe leads to the corresponding number of e-folds N(t∗,x) = N(Φa). As a result, we are
able to expand the δN formula in terms of initial field fluctuations φa(t∗,x) at time t∗

ζ(x) = N(Φa
0 + φa)−N(Φa

0) = Naφ
a + 1

2Nabφ
aφb + 1

6Nabcφ
aφbφc + . . . , (5.3)

where Na ≡ ∂N(t∗,x)/∂Φa, and other higher order ones Nab, Nabc are the derivatives of N
defined on the initial slice at t∗. Typically we work in Fourier space, and the initial slice is
taken at the time tk when the Fourier mode k exits the horizon k = a(tk)H(tk). Thus these
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derivatives of N may acquire some mild k-dependence when background parameters are not
exactly time-independent during inflation. To avoid clutter, we will not explicitly write them
as Na(k), Nab(k), . . . , but shall keep in mind that these e-folds derivatives are associated
with the corresponding k-mode of the curvature perturbation.

One key assumption of the δN formalism is the separation of the sub-horizon (quantum)
physics from the super-horizon (classical) effects [158]. This can be seen from the above
derivation of the δN formula (5.3): field fluctuations at t∗ provide initial conditions around
horizon crossing; the δN expansion captures the subsequent evolution on super-horizon scales.
In the conventional approach, these two contributions are supposed to take factorized forms
as shown in each term of (5.3), where initial field fluctuations are normally given by the mode
functions of free massless scalars. For multi-field inflation, as light scalar fluctuations freeze
after horizon exit, one expects the major contribution to the nonlinearity of ζ comes from
the super-horizon conversion process. In this sense, the δN formalism provides a simple and
intuitive method for computing the dominant contribution to multi-field non-Gaussianities.

Now let’s briefly review the correlation functions of ζ in Fourier space using the δN
formula. The two-point correlator in this approach is simply given by

〈ζkζ−k〉′ = NaNb〈φakφb−k〉′ = GabNaNbPφ(k) , with Pφ(k) = H2

2k3 , (5.4)

where Gab is the field space metric and Pφ is the two-point function of a canonically nor-
malized massless scalar. Then the scale-invariant primordial power spectrum is defined as
Pζ ≡ k3〈ζkζ−k〉′. Similarly, using (5.3) up to the second order, we can find the bispectrum
of the primordial curvature perturbation

〈ζk1ζk2ζk3〉
′ = NaNbNc〈φak1φ

b
k2φ

c
k3〉
′
∗ + 1

2NaNbNcd 〈φak1φ
b
k2

∫
p
φck3−pφ

d
p〉′ + 2 perms.

= GacGbdNaNbNcd

[
Pφ(k1)Pφ(k2) + Pφ(k1)Pφ(k3) + Pφ(k2)Pφ(k3)

]
, (5.5)

where in the second line we have neglected the mild k-dependence in the derivatives of N .
Meanwhile, the three-point function 〈φφφ〉′∗ is a correlator evaluated at the time t∗, and is
generated by interactions of scalar fields around horizon crossing. In the second step, this
contribution is taken to be very small and subdominant, as shown in [4] for slow-roll models.
The above formula provides the standard derivation of local non-Gausianity in multi-field
inflation. If we compare with the notation in (1.1), we find the above bispectrum shape is
simply Slocal, and the size of the non-Gaussianity is given by

fNL = 5
6
GacGbdNaNbNcd

(GabNaNb)2 . (5.6)

The primordial trispectrum can be derived by considering the δN expansion (5.3) up to the
third order. We can also neglect the slow-roll suppressed terms from contact interactions,
and then the trispectrum has two types of contributions [8, 9]

〈ζk1ζk2ζk3ζk4〉
′ = GadGbeGcfNaNbNcNdef

[
Pφ(k1)Pφ(k2)Pφ(k3) + 3 perms.

]
(5.7)

+GacGbeGdfNaNbNcdNef

[
Pφ(k1)Pφ(k2)Pφ(|k1 + k3|) + 11 perms.

]
.

Again we have ignored the k-dependence in the derivatives of N . This shape is given by the
two local ansätze in (4.14), and we find the corresponding size parameters given by

τNL = GacGbeGdfNaNbNcdNef

(GabNaNb)3 , gNL = 25
54
GadGbeGcfNaNbNcNdef

(GabNaNb)3 . (5.8)
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As we can see, for both the bispectrum and trispectrum, the local non-Gaussianities are
generated as a result of the δN expansion (5.3), which is a field redefinition at some local point
x in coordinate space that converts fluctuations of multiple free scalars to the final curvature
perturbation on super-horizon scales. Again, we notice that in the above computation of
correlation functions, the factorization of sub-horizon and super-horizon physics plays an
important role. In particular, the sub-horizon information is simply given by correlators at
t∗, which are the ones of non-interacting scalars. Next, we are interested in understanding
the δN analysis from the perspective of field interactions. In other words, can we justify this
treatment in first-principle computations? If we see it as an approximation, how good is the
δN formalism, and what are the differences with the exact results? With these questions
in mind, we will explicitly compare the δN analysis with the bootstrap by examining one
specific two-field example.

5.2 A concrete case study

Consider the following inflation model with two scalar fields Φ and Σ

L = −1
2(∂µΦ)2 − 1

2(∂µΣ)2 − 1
2

Σ
Λ(∂µΦ)2 − Vsr(Φ)− V (Σ) . (5.9)

The coupling between two field comes from a dimension-five operator in the kinetic term,
which can be seen as a field space with the metric Gab = diag{1 + Σ/Λ, 1}. Meanwhile,
by requiring that the inflaton rolls in the Φ direction with any constant Σ, the form of the
potential here is given by the Hamilton-Jacobi formalism

Vsr(Φ) = 1
2m

2Φ2 , V (Σ) = − m2M2
Pl

3 (1 + Σ/Λ) . (5.10)

This is one version of the shift-symmetric orbital inflation proposed in [97]. Then in the
FLRW spacetime, we find the two-field system and the inflationary background can be exactly
solved

Φ̇ = −
√

2
3

mMPl
(1 + Σ/Λ) , Σ = Σ0 , H2 = m2

6M2
Pl

Φ2 . (5.11)

This exact solution ensured by the Hamilton-Jacobi construction shows a constant turning
trajectory of the inflaton in the internal field manifold. It is helpful to apply the covari-
ant formalism here and introduce the tangent and normal vectors to the trajectory T a =
(−1/

√
1 + Σ0/Λ, 0) andNa = (0, 1). Then the slow-roll and turning parameters are given by

ε ≡ GabΦ̇aΦ̇b

2H2M2
Pl

= 2M2
Pl

(1 + Σ0/Λ)Φ2 , (5.12)

Ω ≡ −NaDtT
a = − 1

2
√

1 + Σ0/Λ
Φ̇
Λ . (5.13)

As we will see soon, this is also the coupling constant for the linear mixing between the
curvature and isocurvature perturbations. With the background solution (5.11) we can also
solve for the analytical expression of N in this two-field model. From an initial time t∗ to
the end of inflation, the number of e-folds is given by

N∗ = 1
4M2

Pl

(
1 + Σ

Λ

)
Φ2
∗ −

1
2 , (5.14)
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with Φ∗ = Φ(t∗). As a last comment on the background dynamics, we take a look at the
dimension-five operator from the EFT perspective. This coupling can be seen as a leading
order expansion which respects the (approximate) shift symmetry of the inflaton field Φ, and
thus the validity of the EFT requires that Σ0 � Λ.

Next, we shall look into the generation of non-Gaussianity in this toy model using the δN
formalism, and then compare with the bootstrap results. Before going into the particulars,
we notice that the similar analysis can be applied in other multi-field inflation models, as
long as the Elpis conditions in section 2 are satisfied. Meanwhile, there are several reasons
that we choose this specific model for demonstration:

• First, we have exact solutions for the background dynamics, with no need of slow-roll
or other approximations. This makes it possible to apply the δN formalism in a con-
trollable fashion where contributions to non-Gaussianities can be accurately computed.
Thus, it becomes much easier to trace the conversion process in this class of models.20

• Second, since the inflaton moves in the Φ direction only, the curvature and isocurvature
perturbations here are automatically associated with the Φ and Σ field fluctuations.
As we discussed in section 2, in many multi-field inflation models this decomposition
is less manifest, and one needs to apply the field-space tangent and normal vectors at
each point of the inflaton trajectory to identify the two corresponding perturbations.

• Third, it is also convenient to track interactions of field fluctuations in this model.
Perturbing the background solution Φ = Φ0(t) + φ and Σ = Σ0 + σ, we find the
Lagrangian of fluctuations with interaction terms

Lint = −λφ̇σ − g(∂µφ)2σ , (5.15)

where the coupling constants are given by λ = 2Ω ' −Φ̇/Λ and g = 1/2Λ. These
are the first two terms in the general form (2.6) of the interacting Lagrangian which
are responsible for the conversion. As shown in (2.7), due to the φ̇σ linear mixing,
the additional light scalar σ can source the growth of the curvature perturbation after
horizon-exit. The two coupling coefficients λ and g are associated with the turning
rate (5.13), which is an important indicator of the multi-field effects. Thus this model
provides the simplest setup for the conversion mechanism. In addition, we notice that
the interactions in (5.15) are the same as the one we discussed in section 4.1 for the
bootstrap of the (approximately) dS-invariant correlators.

Therefore, the predictions here can be analytically derived via both the bootstrap and δN
methods, and thus this toy model serves as a link between these two approaches. It becomes
a convenient choice for the purpose of comparison of different computations.

δN analysis. Now we perform the computation for perturbations by using the δN formal-
ism. For the number of e-folds in (5.14), we consider the initial time to be the horizon-exit
time tk of the perturbation mode k. Then, the δN formula can be written as

δNk = 1√
2εMPl

φ+ Nk

Λ σ + 1√
2εΛMPl

φσ + 1
4M2

Pl
φ2 + 1

4ΛM2
Pl
φ2σ + . . . , (5.16)

20In this sense, the shift-symmetric orbital inflation can be seen as an analogy of power-law inflation where
the exact solutions helped to justify the slow-roll approximations in single-field inflation. From this toy model
of multi-field inflation, we are able to perform the exact examination of the conversion effects when additional
light scalars are present.
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where the background quantities in the δN formula are from the derivatives of N and defined
at time tk. In particular, the N -dependent prefactor of the second term demonstrates the
growth of the curvature perturbation with the isocurvature source. We keep the mild k-
dependence of Nk explicit here, and later will show its role in the exact δN calculation of
non-Gaussianities.

We first take a look at the two-point correlator of the curvature perturbation using the
δN formula

Pζ(k) ≡ 〈ζkζ−k〉′ =
1

2εM2
Pl
Pφ(k)

(
1 + λ̃2N2

k

)
, (5.17)

where Pφ is the power spectrum introduced in (5.4), and λ̃ = 2Ω/H is a dimensionless
coupling. This result agrees with what we find for the power spectrum correction (4.22) from
the bootstrap analysis, and matches the one from in-in formalism in ref. [94]. We explicitly
see that the IR-divergent logarithmic functions are expressed as the number of e-folds in
the δN calculation. This correction is simply due to the conversion from σ to ζ on super-
horizon scales. Here we also take the slow-turn approximation, and thus the theory is under
perturbative control, which requires λ̃Nk < 1. As a result, the single field power spectrum
Pζ(k) ' Pφ(k)/(2εM2

Pl) remains a good approximation. For the primordial bispectrum, the
δN formula leads to

〈ζk1ζk2ζk3〉
′
δN '

λ̃2

k3
1k

3
2k

3
3

[
Nk1(k3

2 + k3
3) +Nk2(k3

1 + k3
3) +Nk3(k3

1 + k3
2)
]
P 2
ζ , (5.18)

where we have neglected slow-roll suppressed terms. The shape function matches the second
line of the bootstrap result (4.20) by taking Nk ' − log(−2kη0). As we noticed in the
bootstrap analysis, this contribution can be seen as the consequence of a field redefinition
with time-dependent coefficients. The δN formula (5.16) here provides its explicit form. If
we ignore the mild k-dependence in the number of e-folds and take Nk = N∗, this bispectrum
reproduces the local shape in (1.1). From perturbativity, the size of non-Gaussianity here is
small, as in many other multi-field models with nearly scale-invariant perturbations.

Comparison with bootstrap. Next, we would like to understand the agreements and
differences with the bootstrap result in (4.20).21 First, we notice that, to have a complete
result in the δN analysis, we also need to include the cubic interaction term that was discarded
in (5.5). Instead of being related to slow-roll suppressed couplings, here this contribution is
given by the (∂µφ)2σ vertex, and we find

〈ζk1ζk2ζk3〉
′
int = NφNφNσ〈φk1φk2σk3〉

′
∗+perms. = − λ̃

2

2 Nk3
k3

1 + k3
2 − k3

3
k3

1k
3
2k

3
3

P 2
ζ +perms. , (5.19)

where 〈φφσ〉′∗ is evaluated right after horizon crossing.22 In other words, the 〈φφσ〉′∗ correlator
provides the non-Gaussian initial condition at t∗ that is transferred by the δN formula to
the correlation of ζ at the end of inflation. While we are looking at the toy model in (5.9),
the key point here is that, the presence of the (∂µφ)2σ vertex is independent of particular
models as long as the multi-field conversion happens (see section 2.1), and its contribution

21Another approach for computing the bispectrum is the in-in formalism, which tracks the full field inter-
actions during inflation. For this model, the in-in integral is given by the three-point diagram in figure 5 with
interaction vertices in (5.15). From this computation we found agreement with the bootstrap result.

22This three-point function is of the local form, which can be explained by the observation in (4.16).
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has comparable size with the result (5.18) from the δN formula. Adding (5.19) into the final
bispectrum, we find the squeezed limit matches the bootstrap result in (4.21).

On the other hand, away from the squeezed limit we find a mismatch between the δN and
bootstrap results. To understand the difference, we first recall that one primary assumption of
the δN analysis is the factorization of the super-horizon and sub-horizon physics, as we dis-
cussed in section 5.1. Especially, in this approach the initial field fluctuations on the spatially
flat slice are simply taken as the free mode function of massless scalars. Precisely speaking,
however, this treatment is not exact if we track the full field interactions during inflation.
For explicit demonstration, let’s take a close look at the δN formula (5.16) and the mixed
propagator (3.48) with cs = 1. In this specific model, the second term of the δN expansion
captures the super-horizon growth of ζ sourced by the isocurvature field σ, and its sub-horizon
behaviour is simply given by the σ mode function. Meanwhile, in the field-theoretic compu-
tation, the same physics process is described by the mixed propagator K from the φ̇σ linear
mixing. We see that the late-time limit of K in (3.51) corresponds to the super-horizon growth
from the conversion, which agrees with the second term in the δN formula. Nevertheless, the
conversion is already turned on before horizon exit, and field fluctuations are also affected by
the φ̇σ quadratic interaction in early times. As a result, the mixed propagator has a more
complicated form, which cannot be simply captured by the free σ mode function. This subtle
difference leaves nontrivial imprints in the field-theoretic computation, and is responsible for
the mismatch away from the squeezed limit. Or, we may put it another way: to implement
the δN computation more accurately, one needs to use the mixed propagator K in (3.48) as
the initial field fluctuations on the spatially flat slice, instead of the free σ mode function.

As a consequence, one novelty from the bootstrap is the logarithmic kt-pole in (4.20).
This type of singularity at kt → 0 is a ramification of field interactions at very early times
η → −∞. In general, the residue of correlators in this limit is associated with the scattering
amplitudes in flat spacetime [159, 160]. Thus the kt-pole terms arise only in field-theoretic
computations, and cannot be mimicked by field redefinitions. More specifically, the loga-
rithmic kt-pole of the massless-exchange bispectrum is generated by the early-time limit of
the mixed propagator in (3.50). This is a feature of the φ̇σ field interaction deep inside the
horizon. Thus it is absent when we separate the super-horizon and sub-horizon effects in a
factorized form like in (5.16).

The primordial trispectrum can also be derived from the δN formula

〈ζk1ζk2ζk3ζk4〉
′ = λ̃2

[
Tlocal1 + 3

2Tlocal2

]
P 3
ζ , (5.20)

with the two local ansatzs given in (4.12) and (4.13). Compared with the bootstrap re-
sult (4.11), the δN computation gives a different combination of these two shapes, for which
the soft limit of (5.20) does not vanish. Like in the bispectrum, the difference here is due to
field interactions from cubic vertices, which is missed by just using the δN formula.

To summarize, from this toy model we see that the δN formalism provides a good ap-
proximation for the multi-field non-Gaussianities in the squeezed limit, and we need to be
careful to incorporate the full nonlinearities of the conversion process: one is given by the
δN formula; another is from the (∂µφ)2σ cubic vertex. In the bootstrap analysis, the super-
horizon contribution to the multi-field non-Gaussianity is associated with the long-wavelength
behaviour of the mixed propagator (3.51) with the IR-divergent term. Meanwhile, away from
the squeezed limit, there are differences in these two approaches. In particular, the total-
energy singularity due to sub-horizon quantum interactions is missed in the previous δN
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computation. As the multi-field conversion is in general due to the φ̇σ and (∂µφ)2σ field
interactions, the specific model discussed here provides the minimal setup for demonstrating
the agreement and difference in the bootstrap and δN results. Similar analysis can be ex-
tended to other multi-field models with the conversion mechanism, which may have nontrivial
background dynamics and more complicated Feynman diagrams. See ref. [161] for some early
studies.

5.3 Models with higher derivatives

While the dS bootstrap corresponds to multi-field inflation with two-derivative kinetic terms,
the boost-breaking scenarios we analyzed in section 4.2 can be compared with models with
higher derivative interactions. One example is the multi-field version of P (X)-type theories,
where both curvature and isocurvature perturbations may have reduced sound speeds [162–
167]. In these previous studies, it was shown that this class of models can generate both
local- and equilateral-type primordial non-Gaussianities. In our classification these models
correspond to the scenarios in section 4.2.1, where the logarithmic IR behaviour becomes
dominant and leads to local-type shapes. Meanwhile the equilateral shape is generated
through the inflaton self-interaction as in single field inflation. Although the squeezed-limit
behaviour there remains similar with the dS-invariant case, we identify richer singularity
structures in these analytical results, which are consequences of nontrivial sound speeds and
boost-breaking interactions.

Multi-field inflation has also been studied by using the EFT of fluctuations [13].
There the authors chose to be agnostic about the conversion mechanism, and proposed a
parametrization for the relation between additional light scalars and the final curvature per-
turbation. In that approach, apart from the conversion, the higher-derivative EFT operators
with light scalars were constructed in a systematic way. New shapes of non-Gaussianities
were identified as a result of the nontrivial self-interactions of additional fields. Our work
mainly focuses on the inadequacy of the super-horizon approximation for the conversion
process, and the bootstrap analysis of massless exchange diagrams.

As a final remark, we have shown that the conversion mechanism can be more accurately
described by field interactions in a model-independent fashion. As we have discussed in sec-
tion 2.1, the coupling forms are constrained by the nonlinearly realized spacetime symmetry
and the orthogonality condition between curvature and isocurvature modes. Therefore, it re-
mains a very interesting question about how to embed these interactions in the EFT, which
may require a construction based on internal field spaces. We leave this for future work.

6 Conclusions and outlook

In this paper, we presented a systematic investigation of primordial correlation functions with
the presence of intermediate massless scalars, working at leading order in the weak coupling of
this scalar to curvature perturbations. In inflationary cosmology, the signatures correspond to
primordial non-Gaussianity from multi-field models. The resulting non-Gaussianities couple
short and long distances, which make them a suitable target for cosmological observations.
Despite having been extensively studied in the literature, the recent theoretical advances
coming from the bootstrap motivated us to revisit this important topic.

We began with the analysis of IR divergences caused by interacting massless scalars
in de Sitter space. As light fields freeze after horizon crossing, there are cumulative effects
due to interactions on super-horizon scales, which typically lead to logarithmic-type singular
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behaviour in correlators at the future boundary. An explicit late time cutoff η0, related to
the end of inflation, is necessary to regulate the IR effects. Focusing on the leading order in
perturbation theory, we showed that the boundary differential equations acquire explicit η0-
dependence, and proceeded to solve the equations in detail. Using weight-shifting operators,
we obtained a large menu of multi-field inflationary bispectra and trispectra. Our results
incorporate both the (approximately) dS-invariant and boost-breaking scenarios:

• For the (approximately) dS-invariant case, we recover much of the previous literature
on multi-field inflation. We show that the super-horizon conversion from isocurvature to
curvature perturbations, which is responsible for the generation of local non-Gaussianity
during inflation, can be reformulated in terms of field interactions and a φ̇σ mixed prop-
agator. Using a benchmark example, we compared the bootstrap results with the ones
from the δN formalism. Both of them resemble the local shape, and we find agreement
in the squeezed limit. Meanwhile, contributions from field interactions around and be-
fore horizon-exit are more accurately captured by the bootstrap method. In particular,
it is interesting to notice that the conversion generally leads to modifications on initial
field fluctuations, which were missed in previous considerations.

• For theories with broken boosts, the number of possibilities is richer. Having a differ-
ent dispersion relation for the inflaton boosts the overall signal, and we can now make
the mediator subluminal, and also couple it to the inflaton in a variety of ways. We
systematically classified the possible signals in this scenario. In particular, IR-divergent
terms remain in the three-point function, due to the φ̇σ linear mixing. Consequently,
the squeezed bispectra are similar to the dS-invariant ones, though the shape functions
differ away from that limit. For the case of higher derivative quadratic interactions, the
light scalars generate what we called multi-speed non-Gaussianity. The resulting shapes
are equilateral-like, but the location of the peak is determined by the sound speed ratios
among light scalars. With a very simple ansatz, we capture the various phenomeno-
logical possibilities: depending on the sound speed parameters, we interpolate between
the standard local and equilateral shapes.

We close by listing several interesting directions for future exploration:

• The analysis in this paper has been restricted within the perturbative regime of tree
diagrams with massless scalars. In order to go beyond that, we need to understand
IR effects in cosmology better. Thankfully, recent studies on IR divergences in dS
suggest that the stochastic formalism provides an effective framework for analyzing
correlators beyond perturbation theory [96, 107–112, 168]. It would be very interesting
to consider the non-perturbative behaviour of inflation with additional light scalars,
where “stochastic” effects are expected to become important.

• We mainly studied single exchanges of one additional light scalar. In general multi-
field models, there can also be double- or triple-exchange contributions to the inflaton
bispectrum. We briefly discussed these possible channels in section 4.2.3. New tools
are required to systematically deal with these diagrams. It would be interesting if
the resulting shapes have new phenomenology compared to the single-exchange cases
discussed here.

• Another intriguing question is the role of symmetries in cosmological correlators from
multi-field scenarios. Like single field inflation, here the interaction forms between
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the inflaton and additional fields are constrained by nonlinearly realized spacetime
symmetry, as we have seen in section 2.1. Unlike single field inflation, (broken) internal
symmetries may also be expected when multiple light scalars are present. It would
be really interesting if one could identify signatures of the symmetry breaking pattern
associated with the inflaton field space from correlation functions.
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A IR behaviour in the wavefunction of the universe

In this appendix, we briefly review the wavefunction approach to cosmological correlators, and
then we shall examine the IR divergences in the wavefunction coefficients for both contact and
exchange interactions. In particular, we provide more details for the discussion in section 3.5,
and show explicitly that for the four-point scalar seed function of massless exchange, the
wavefunction coefficient is IR-finite, and the IR divergence of the correlation function comes
from the disconneted part.

A.1 Wavefunction and correlators

The wavefunction of the Universe is introduced in the Schrödinger-picture approach to QFT
(see refs. [24, 40, 74, 105] for more details). We consider a set of bulk fields Σ(η,x) in dS
spacetime, and then the wavefunctional Ψ[Σ, η] is expected to contain all the information
for spatial field configurations at time η. Within the perturbative regime of the theory, the
wavefunctional at the late-time boundary η0 is normally expressed as

Ψ[Σ, η0] = exp
[∑
n=2

1
n!

∫ d3k1 · · · d3kn
(2π)3n Σk1 · · · Σkn (2π)3δ(k1 + · · ·+ kn)ψn(k1, . . . ,kn)

]
,

(A.1)
where ψn are the wavefunction coefficients in Fourier space. Although ψn is not physical
observable, in many circumstances it is an object that is more convenient for analysis than
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the cosmological correlation functions. Meanwhile, the equal-time correlators at η0 can be
derived through the standard quantum mechanics procedure

〈Σ(x1) · · ·Σ(xn)〉 =

∫
DΣ Σ(x1) · · ·Σ(xn) |Ψ[Σ, η0]|2∫

DΣ |Ψ[Σ, η0]|2
. (A.2)

In perturbation theory, we can find explicit relations between the wavefunction coefficients
and the corresponding correlators at the end of inflation. For illustration, let’s consider the n-
point functions of the conformally coupled scalar ϕ with the presence of a general scalar field
σ∆ as possible intermediate state. By expanding the exponential in (A.1) and performing
the Gaussian integrals in (A.2), we find the two-point functions are simply related by

〈ϕkϕ−k〉′ =
1

2Reψϕϕ2 (k) , 〈σ∆(k)σ∆(−k)〉′ = 1
2Reψσσ2 (k) , (A.3)

where ψ2’s on the boundary are fully fixed by the conformal symmetry: ψϕϕ2 = cϕk and
ψσσ2 = c∆k

2∆−3, with the normalization cϕ = (Hη0)−2 and c∆ = H−2η2∆−6
0 . For the three-

point functions, here let’s consider the one from cubic contact interactions23 with two ϕ fields
and one σ∆, and then we find the relation

〈ϕk1ϕk2σk3〉
′ = − Reψϕϕσ3 (k1,k2,k3)

4Reψϕϕ2 (k1) Reψϕϕ2 (k2) Reψσσ2 (k3) . (A.4)

The four-point function of ϕ may have contributions from both contact interactions and the
exchange diagrams with an intermediate σ∆ field, and the correlator is given by both ψ4 and
ψ3 through

〈ϕk1ϕk2ϕk3ϕk4〉
′ = −Reψϕϕϕϕ4 (k1,k2,k3,k4)

8∏4
a=1 Reψϕϕ2 (ka)

+ 〈ϕk1ϕk2ϕk3ϕk4〉
′
d , (A.5)

where the disconnected part has contributions from a product of two ψϕϕσ3

〈ϕk1ϕk2ϕk3ϕk4〉
′
d = 1

8∏4
a=1 Reψϕϕ2 (ka)

(A.6)

×
[

Reψϕϕσ3 (k1,k2, s)Reψσϕϕ3 (−s,k3,k4)
Reψσσ2 (s) + t- and u-channels

]
.

While the contact diagrams only contribute to the connected part of the four-point corre-
lator, there are contributions to both parts from exchange processes. As we will show, the
disconnected part becomes particularly important for the exchange of massless scalars.

The bulk computation of the wavefunction coefficients in perturbation theory is similar
with the in-in formalism for correlators discussed in section 3.1. We also need two types of
propagators: the bulk-to-boundary propagatorKΨ(k, η) that connects bulk interaction vertex
to the late-time boundary, and the bulk-to-bulk propagator GΨ(k, η1, η2) which describes the
propagation of fields between two bulk insertions. Here we use the lower index Ψ to denote

23If there is a mixed propagator due to quadratic interaction, we would also expect contributions to the
bispectrum from exchange diagrams. We leave the analysis of this case in appendix A.2.
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these are propagators in the wavefunction approach, which are distinguished from the in-
in propagators K± and G±± introduced in section 3.1. These propagators also satisfy the
following differential equations(
Oη −m2/H2

)
KΨ(k, η) = 0 ,

(
Oη −m2/H2

)
GΨ(k, η, η′) = −iH2η2η′2δ(η − η′) . (A.7)

However, as we have specified a late-time boundary at η0 for the wavefunction, these propa-
gators subject to different boundary conditions

lim
η→η0

KΨ(k, η) = 1 , lim
η→−∞

KΨ(k, η) = 0 (A.8)

lim
η→η0

GΨ(k, η, η′) = 0 , lim
η→−∞

GΨ(k, η, η′) = 0 . (A.9)

Let’s take a closer look at their explicit forms by considering a general bulk field σ∆ with the
conformal dimension ∆. Its mode function is given by

σ∆(k, η) = i
H
√
π

2 eiπ/4eiπν/2(−η)3/2H(1)
ν (−kη) with ν = ∆− 3

2 . (A.10)

For the bulk-to-boundary propagator, KΨ is similar with K+ up to normalizations

K∆
Ψ (k, η) = σ∗∆(k, η)

σ∗∆(k, η0) , (A.11)

which goes to unity at late time. Its expressions for massless scalar and conformally coupled
scalar are given in (3.62) in terms of simple functions. For the bulk-to-bulk propagator, here
we have

G∆
Ψ(k; η, η′) ≡ σ∆(k, η)σ∗∆(k, η′)θ(η − η′) + σ∗∆(k, η)σ∆(k, η′)θ(η′ − η)

− σ∆(k, η0)
σ∗∆(k, η0)σ

∗
∆(k, η)σ∗∆(k, η′) . (A.12)

Comparing with the in-in propagator G++, we notice that the nontrivial difference is given
by the last term in GΨ. This term is added to the bulk-to-bulk propagator such that it
vanishes in the late-time limit η, η′ → η0. One important consequence of this additional term
is that, whatever the field mass, the GΨ propagator always decays after the field fluctuations
exit the horizon, which essentially differs from the super-horizon behaviour of the massless
G±± propagators. This observation plays an important role in identifying the IR behaviour
of wavefunction coefficients from massless exchanges.

Contact three-point function. With these wavefunction propagators, one can apply
the Feynman rules for computing the wavefunction coeffients. As an explicit example,
let’s again look at the simple contact interaction ϕ2φ, which is also relevant for the later
discussion of massless exchange diagrams. The bulk computation with an explicit η0 is
presented in section 3.5. Here, instead of using an IR cutoff, we would like to apply another
regularization scheme by simutaneously extending the spacetime and conformal dimensions
in the following way

d = 3→ d = 3 + 2δ , ∆→ ∆ + δ . (A.13)

This type of dimensional regularization is known as the half-integer scheme [146], as the
indices of Hankel functions for ∆ = 2, 3 scalars remain to be half-integers. Thus the
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advantage of this scheme is that the mode functions of these fields can still be expressed as
simple elementary functions. Explicitly, the index of the Hankel function is given by

ν =

√
d2

4 −
m2

H2 = ∆− d

2 , (A.14)

and in dSd+1 spacetime the mode functions of these two fields become

∆ = 3 + δ : φk = H√
2k3

(−η)δ(1 + ikη)e−ikη (A.15)

∆ = 2 + δ : ϕk = iH√
2k

(−η)δηe−ikη . (A.16)

Then using the bulk-to-boundary propagator (A.11), we find the wavefunction coefficient

ψϕϕφ3 = −2i
∫ 0

−∞
dηa(η)d+1Kϕ

Ψ(k1, η)Kϕ
Ψ(k2, η)KΨ(k3, η) (A.17)

= −2(−i)δ

H4+2δη2+3δ
0

k−δT Γ(δ)
(
k12 + δ kT

1− δ

)
δ→0−−−→ −2

H4η2
0

[
kT + k12

(1
δ
− log kT − γE

)]
,

where in the last step we have absorbed the overall H and η0 prefactors in the coupling
constant and set them to 1 for simplicity. We see that the wavefunction coefficient is singular
when we take δ → 0. The divergence can be renormalized by adding a counterterm with a
renormalization scale µ [147, 148]. As a result, we find

ψϕϕφ3 = − 2
H4η2

0

[
k3 − k12

(
log

(
kT
µ

)
+ γE − 1

)]
, (A.18)

which matches the result with an explicit late-time cutoff by choosing µ = −1/η0. We
refer the reader to refs. [147, 148] for detailed analysis about the renormalization of
the IR-divergent correlators in CFT. By using relation (A.4), we find the corresponding
correlator at the end of inflation

〈ϕk1ϕk2φk3〉
′ = − H6η4

0
4k1k2k3

3
ψϕϕφ3 , (A.19)

which reproduces the in-in result in (3.16). For this particular contact interaction, the IR
divergence of wavefunction coefficient is basically the same with the analysis on correlators in
section 3.2. But next, we will show that the distinction between correlators and wavefunction
coefficients becomes nontrivial when we consider massless exchange diagrams.

A.2 IR behaviour in massless exchange

Our main focus here is to examine whether the wavefunction coefficients from massless ex-
change are IR-divergent or not. By doing so, we will demonstrate the origin of the IR
divergence in the wavefunction approach, and compare results from correlator analysis.

Four-point function. Let us begin with the ψ4 of four conformally coupled scalars with
the exchange of a massless field σ, for which the corresponding correlator has been discussed
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in section 3.3. Using the wavefunction propagators in (3.62) and (3.63), the bulk integral for
the s-channel contribution is given by

ψ4 = 4
∫ η0

−∞
dη

∫ η0

−∞
dη′a(η)4a(η′)4Kϕ

Ψ(k1, η)Kϕ
Ψ(k2, η)GσΨ(s, η, η′)Kϕ

Ψ(k3, η
′)Kϕ

Ψ(k4, η
′) .
(A.20)

It is more convenient to discuss its dimensionless version ψ̂4 = −η4
0H

6sψ4/4, which can be
expressed as

ψ̂4 = − s

H2

∫ η0

−∞

dη

η2

∫ η0

−∞

dη′

η′2
eik12η+ik34η′GσΨ(sη, sη′) . (A.21)

Here we see that ψ̂4 has a similar form with the four-point scalar seed F̂ in (3.36), while
the major difference is given by the bulk-to-bulk propagator. Likewise, we can act the η0∂η0

operator on ψ̂4 to trace its IR behaviour and find

lim
η0→0

η0∂η0ψ̂4 = −i23sη0 → 0 , (A.22)

which shows that ψ̂4 is IR-finite, very different from the behaviour of F̂ in (3.37). This
is due to the fact that in the wavefunction approach GσΨ decays on super-horizon scales
when η, η′ > −1/s, and thus that part of the integration only leads to finite result. For
the correlator seed function F̂ , the massless bulk-to-bulk propagator G becomes constant
outside of the horizon, and as a result of the accumulative effect of the massless field, the
bulk integral of F̂ diverges towards the late time. Therefore, the wavefunction coefficient ψ̂4
is independent of η0 at the late-time boundary, and we can apply the standard treatment of
the boundary perspective. First, in terms of u and v, the conformal symmetry leads to the
differential equations

(∆u − 2) ψ̂4(u, v) = uv

u+ v
, (∆v − 2) ψ̂4(u, v) = uv

u+ v
. (A.23)

Then the analytical solution can be solved by imposing the absence of the folded singularity
and the right normalization at the total or partial energy singularity. Explicitly, we find
ψ̂4 = F̂fin, where F̂fin is the IR-finite part of the scalar seed function in (3.42).

For the exchange process, there are also contributions which are proportional to the
product of two three-point functions. Thus to compute the four-point correlator, we also need
to include the disconnected part in (A.6). Again, let’s consider the s-channel contribution,
then the first term in the bracket of (A.6) becomes

H2

s3 ψ
ϕϕσ
3 (k1, k2, s)ψϕϕσ3 (k3, k4, s) = 4

η4
0H

6s
F̂div(u, v, η0) , (A.24)

where F̂div is the IR-divergent part of the four-point scalar seed in (3.45). This confirms
that the IR-divergence in the four-point scalar seed of massless exchange comes from the
disconnected contribution. As a result, from (A.5) the final four-point correlator is given by

〈ϕk1ϕk2ϕk3ϕk4〉
′ = H2η4

0
2k1k2k3k4s

[
F̂fin(u, v) + F̂div(u, v, η0)

]
+ t- and u-channels, (A.25)

which precisely matches the result in section 3.3. This computation provides supplementary
details for our sketchy analysis in section 3.5.
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Three-point function. Now we extend our analysis of the wavefunction approach to the
boost-breaking scenarios. We shall focus the three-point exchange diagrams with mixed
propagators as we have done in section 3.4 for correlators. Our starting point is to consider
the quadratic interaction between two massless field φ̇σ and introduce the sound speed cs for
φ field.24 Due to the presence of this linear mixing, we first notice that there is a nonzero
two-point wavefunction coefficient given by

ψφσ2 = −i
∫ η0

−∞
dηa3(η)∂ηKφ

Ψ(csk, η)Kσ
Ψ(k, η)

= −c
3
sk

3

H3

[
i

cskη0
− iπ

2 + γE − 1− 1
cs

+ log (−(1 + cs)kη0)
]
, (A.26)

which is singular when we take η0 to be 0. As only the real part of the wavefunction coefficient
matters for physical observables, we shall not worry about the divergence in the η−1

0 term.
Next, the quadratic interaction also leads to a mixed propagator for wavefunction

KΨ(k, η, η0) = i

∫ η0

−∞
dη′a(η′)3∂η′KΨ(csk, η′)GΨ(k, η, η′) , (A.27)

which satisfies the similar differential equation for the in-in mixed propagator K̂+

OηKΨ = − 1
H
c2
sk

2η2eicskη (A.28)

but subjects to a different boundary condition at the late time. It is convenient to take a
look at its analytical expression

KΨ(k, η, η0) = cs
2He−ikη(1 + ikη) Ei

[
i(1 + cs)kη

]
− cs

2Heikη(1− ikη) D̃ − 1
H
eicskη (A.29)

with

D̃ =


γE − 2− iπ

2 + log (−2kη) , cs = 1

Ei
(
i(−1 + cs)kη

)
+ log

(1 + cs
1− cs

)
, cs 6= 1

. (A.30)

Thus this mixed propagator is IR-finite with no dependence on the late-time cutoff η0, and
can be seen as a function of the combination kη. Now we check its behaviour in the late-time
limit

lim
η→0
KΨ(kη) = 1

2k
2η2 +O(η3) , (A.31)

which differs from the logartimically divergent one of K̂+ in (3.53). This fall-off is again
a consequence of the decaying GσΨ on super-horizon scales. It is also interesting to notice
that this mixed propagator satisfies ∂kKΨ(kη)|k=0 = 0, thus the manifestly local test [33]
can also be applied in the wavefunction coefficients with KΨ(kη). This is not valid for the
mixed propagator of correlators K̂±, which again shows the distinction between wavefunction
coefficients and correlation functions.

24As in section 3.4, cs can be seen as the sound speed ratio between two scalars, and thus is allowed be
larger than 1.
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With the new mixed propagator, the wavefunction coefficient of the three-point exchange
diagram with two conformally coupled scalar is simply given by

ψ3 = −2i
∫ η0

−∞
dηa(η)4Kϕ

Ψ(csk1, η)Kϕ
Ψ(csk2, η)KΨ(k3η) = 2k3c

2
s

H5η2
0
ψ̂3 (A.32)

where for the later convenience we have introduced the dimensionless version

ψ̂3 = − iH

c2
sk3

∫ η0

−∞

dη

η2 e
icsk12ηKΨ(k3η) , (A.33)

which can be written as a function of the momentum ratio w ≡ k3/csk12. This integral is
IR-finite, which can be simply seen by acting the η0∂η0 operator. However, it remains quite
difficult to do the integration directly. Instead, using the equation (A.28), we are able to find
the differential equation for ψ̂3 in terms of w

(∆w − 2)ψ̂3 = w

1 + csw
, (A.34)

which is the same with the equation for the IR-finite part of the three-point scalar seed Îfin.
Therefore, we identify the solution of ψ̂3(w) = Îfin(w), with the explicit expression given
in (3.58).

Next, to compute the corresponding correlator, we notice that it has the following
relation with the wavefunction coefficients

〈ϕk1ϕk2φk3〉
′ = − 1

4Reψϕϕ2 (k1) Reψϕϕ2 (k2) Reψφφ2 (k3)

[
Reψ3 −

Reψϕϕσ3 Reψφσ2
Reψσσ2

]
. (A.35)

In the disconnected part, ψφσ2 is given by (A.26) and ψϕϕσ3 is simply (A.18) with k12 → csk12.
In the end, the single-exchange three-point correlator becomes

〈ϕk1ϕk2φk3〉
′ = − Hη2

0
2k1k2k2

3c
3
s

[
ψ̂3 + ψ̂div

3

]
, (A.36)

where the IR-divergent term has the same form with Îdiv in (3.60)

ψ̂div
3 = 1

w

[
cs(γE−1)−1+cs log (−(1 + cs)k3η0)

][
γE−1−w+log(−(csk12 +k3)η0)

]
. (A.37)

Again, we identify that the late-time singular behaviour of the correlator comes from the
disconnected part. The above result from the wavefunction approach provides a consistency
check for our computation in section 3.4.
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