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Abstract
Classifying elements of the Brauer group of a variety X over a p-adic field by the
p-adic accuracy needed to evaluate them gives a filtration on BrX. We relate this
filtration to that defined by Kato’s Swan conductor. The refined Swan conductor con-
trols how the evaluation maps vary on p-adic discs: this provides a geometric char-
acterisation of the refined Swan conductor. We give applications to rational points
on varieties over number fields, including failure of weak approximation for varieties
admitting a non-zero global 2-form.

Mathematics Subject Classification (2020) Primary 14F22 · Secondary 14G12 ·
14G20 · 14F30

1 Introduction

Let k be a p-adic field with ring of integers Ok , uniformiser π and residue field F, and
let X/k be a smooth geometrically irreducible variety. The most naïve filtration on
the Brauer group BrX, and the one we aim to understand, is that given by evaluation
of elements of BrX at the k-points of X. If A ∈ BrX has order coprime to p, then [7,
§5] shows that the evaluation map for A factors through reduction to the special fibre.
In this article, we describe the variation of the evaluation map in the considerably
more complicated case of elements of order a power of p in BrX.

To define the evaluation filtration, fix a smooth model X /Ok having geometrically
integral special fibre Y/F with function field F . Given A ∈ BrX, one can ask whether
the evaluation map |A| : X (Ok) → Brk factors through the reduction map X (Ok) →
X (Ok/π

i) for any i ≥ 1. We first define some notation.
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Let k′ be a finite extension of k of ramification index e(k′/k), with ring of integers
Ok′ and uniformiser π ′. For r ≥ 1 and P ∈ X (Ok′), let B(P, r) be the set of points
Q ∈X (Ok′) such that Q has the same image as P in X (Ok′/(π ′)r ). Define

Evn BrX = {A ∈ BrX | ∀ k′/k finite, ∀ P ∈X (Ok′),

|A| is constant on B(P, e(k′/k)(n + 1))} (n ≥ 0),

Ev−1 BrX = {A ∈ BrX | ∀ k′/k finite, |A| is constant on X (Ok′)},
Ev−2 BrX = {A ∈ BrX | ∀ k′/k finite, |A| is zero on X (Ok′)}.

Let {filn BrX}n≥0 denote the filtration given by Kato’s Swan conductor (see Def-
inition 2.1) and, for n ≥ 1, write rswn(A) for the refined Swan conductor of A ∈
filn BrX (see Definition 2.14). We have rswn(A) = [α,β]π,n for some (α,β) ∈
�2

F ⊕ �1
F . In Sect. 3 we will define a residue map ∂ : fil0 BrX → H1(Y,Q/Z).

Theorem A Let k be a finite extension of Qp . Let X be a smooth, geometrically irre-
ducible variety over k, and let X → SpecOk be a smooth model of X. Suppose that
the special fibre Y of X is geometrically irreducible. Then

1. Ev−2 BrX = {A ∈ fil0 BrX | ∂A = 0};
2. Ev−1 BrX = {A ∈ fil0 BrX | ∂A ∈ H1(F,Q/Z)};
3. Ev0 BrX = fil0 BrX;
4. for n ≥ 1, Evn BrX = {A ∈ filn+1 BrX | rswn+1(A) ∈ [�2

F ,0]π,n+1}.
Remark 1.1 1. By definition of the refined Swan conductor,

filn BrX ⊂ {A ∈ filn+1 BrX | rswn+1(A) ∈ [�2
F ,0]π,n+1},

with equality if p � n + 1. See Lemma 2.17 for more details.
2. In the case of H1(K) = H1(K,Q/Z), where K is the function field of X, Kato’s

filtration and the refined Swan conductor have been extensively studied in the
literature, and are closely related to ramification theory (see Sect. 10). We be-
lieve that Theorem A is the first geometric characterisation of Kato’s filtration
on H2(K) = BrK , with Theorem B below giving a geometric description of the
refined Swan conductor. The modified version of Kato’s filtration featuring in The-
orem A does not seem to have appeared elsewhere, though it is analogous to the
“non-logarithmic” version of Kato’s filtration on H1(K) defined by Matsuda [34]
in equal characteristic.

3. The reason for considering points over finite extensions of k, instead of just over
k itself, is that the filtration obtained is better behaved. (A function that is non-
constant on points over some field extension can be constant on the rational points,
simply because there are “too few” points of Y(F): see [7, Remark 5.20] for an
example.)

4. A consequence of Theorem A is that the evaluation filtration does not change if Y

is replaced by a non-empty open subset.
5. In fact, our proof of Theorem A shows that it remains true if we modify the defi-

nition of Evn BrX by restricting to unramified finite extensions k′/k instead of all
finite extensions, see Corollaries 9.4 and 9.7.
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6. The model X is not assumed to be proper. If X has bad reduction, for example
admitting a proper model whose special fibre has several components of multi-
plicity 1, then the filtrations filn and Evn are defined separately for each compo-
nent, by looking at the smooth model obtained by restricting to the smooth locus
of that component. The relationship between the filtrations corresponding to dif-
ferent components is in general complicated. However, in Sect. 5 we shall study
the specific case in which one component arises from blowing up the model in
a smooth point of another component, which will be a central ingredient of our
proofs.

7. The inclusion filn BrX[p] ⊂ Evn BrX[p] is implicit in work of Uematsu [42], at
least in the case when k contains a primitive pth root of unity.

8. Yamazaki [43] has proved a result very similar to Theorem A in the case that X

is a smooth proper curve. In that case, one can extend the Brauer–Manin pairing
to the Picard group PicX. Yamazaki defines a filtration on PicX by considering
the kernels of reduction modulo powers of π , and shows that the induced filtration
on BrX coincides with Kato’s filtration. (When X is a curve, the group �2

F is
trivial, so our filtration in Theorem A also coincides with Kato’s, by definition of
the refined Swan conductor.)

9. Sato and Saito [37] have shown that Ev−2 BrX coincides with the image of BrX
in BrX when X is regular and proper over Ok , but without the assumption of
smoothness. (They also assume that X satisfies purity for the Brauer group, but
this is now known to hold for all regular schemes [8].) In Corollary 3.7, we will
show how our results give a new proof of this when X is smooth over Ok .

In order to prove Theorem A, we examine the behaviour of the evaluation maps on
the graded pieces of Kato’s filtration on the Brauer group. The results of this study for
n ≥ 1 are summarised in Theorem B below; for a stronger and more detailed state-
ment, see Theorem 8.1. In order to state Theorem B, we need to introduce some more
notation. Let P ∈ X (Ok) and let P0 denote the image of P in Y(F). Elements in the
image of the reduction map B(P,n) → X (Ok/π

n+1) can be identified with tangent
vectors in TP0Y (see Lemma 7.1). Write [−→

PQ]n for the tangent vector corresponding
to the image in X (Ok/π

n+1) of a point Q ∈ B(P,n). In the statement of the follow-
ing theorem, we denote by x/p the image of x ∈ Fp under the identification of Z/p

with the p-torsion in Q/Z. The integer e is the absolute ramification index of k and
we set e′ = ep/(p − 1).

Theorem B Let k be a finite extension of Qp . Let X be a smooth, geometrically ir-
reducible variety over k, and let X → SpecOk be a smooth model of X. Suppose
that the special fibre Y of X is geometrically irreducible. Let n > 0, let A ∈ filn BrX,
and let rswn(A) = [α,β]π,n for some (α,β) ∈ �2

F ⊕ �1
F . Let P ∈ X (Ok), and let

P0 ∈ Y(F) be the reduction of P . Then α and β are regular at P0 and we have the
following description of the evaluation map |A| : X (Ok) → Brk.

1. For Q ∈ B(P,n),

invA(Q) = invA(P ) + 1

p
TrF/Fp

βP0([
−→
PQ]n).
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In particular, if βP0 	= 0 then |A| takes p distinct values on B(P,n).
2. If β = 0 and αP0 	= 0 then there exists Q ∈ B(P,1) such that |A| takes p distinct

values on B(Q,n − 1).

Remark 1.2 1. Case (2) is only possible if p | n: see Lemma 2.17.
2. Complementing the formula in (1), Theorem 8.1(3) gives a description of the eval-

uation map in the case where β = 0 and n > 2. See also Lemma 8.10 for the case
where β = 0 and p = n = 2.

3. If A has order pt in the Brauer group then evaluating A at points in X (Ok) gives
values in Br k[pt ] ∼= p−t

Z/Z. Theorem 8.1(5) gives sufficient conditions for all
pt possible values to be obtained.

Elements in BrX of order coprime to p have been thoroughly treated in the litera-
ture, in particular by Colliot-Thélène–Saito [9], Colliot-Thélène–Skorobogatov [11]
and Bright [7]. The computation of the evaluation map in the coprime to p case is
greatly aided by the fact that the map factors through reduction to the special fibre. In
a similar way, Theorem B enables the computation of the evaluation map for Brauer
group elements of order a power of p. Thus it facilitates a systematic treatment of
Brauer–Manin obstructions, which will have both theoretical and computational im-
plications for the study of rational points on varieties. Some first consequences of
Theorem B are outlined below (see Theorems C and D).

1.1 Applications to the Brauer–Manin obstruction

Manin [33] introduced the use of the Brauer group to study rational points on varieties
over number fields. Let V be a smooth, proper, geometrically irreducible variety over
a number field L. The evaluation maps |B| : V (Lv) → BrLv for each B ∈ BrV and
place v of L combine to give a pairing

BrV × V (AL) → Q/Z,

where AL denotes the ring of adèles of L. Manin observed that the diagonal image
of V (L) is contained in the right kernel of this pairing, denoted V (AL)Br. If V (AL)

is non-empty but V (AL)Br is empty, then there is a Brauer–Manin obstruction to
the Hasse principle; if V (AL)Br is not equal to the whole of V (AL), then there is a
Brauer–Manin obstruction to weak approximation.

The following question posed by Swinnerton-Dyer [11, Question 1] is of great
relevance to the computation of V (AL)Br.

Question 1.3 (Swinnerton-Dyer) Let L be a number field and let S be a finite set of
places of L containing the Archimedean places. Let V be a smooth projective OS -
scheme with geometrically integral fibres, and let V/L be the generic fibre. Assume
that Pic V̄ is finitely generated and torsion-free. Is there an open and closed set Z ⊂∏

v∈S V (Lv) such that

V (AL)Br = Z ×
∏

v /∈S

V (Lv)? (1.1)
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Informally: does the Brauer–Manin obstruction involve only the places of bad
reduction and the Archimedean places?

In [11, Theorem 3.1] Colliot-Thélène and Skorobogatov prove that if the transcen-
dental Brauer group of V (meaning the image of the natural map BrV → Br V̄ ) is
finite and S contains all the primes dividing its order then the answer to Question 1.3
is yes. Skorobogatov and Zarhin show in [40] that the transcendental Brauer groups
of Abelian varieties and K3 surfaces over number fields are finite; their question as to
whether this is true for smooth projective varieties more generally remains open (see
[40, Question 1]).

Before we address Question 1.3, let us introduce one further question.

Question 1.4 (Wittenberg) If a smooth projective variety V over a number field L

satisfies the Hasse principle and weak approximation over all finite extensions, does
it follow that H2(V ,OV ) = 0?

Question 1.4 is one of a family of questions posed by Olivier Wittenberg in a
private discussion with Jean-Louis Colliot-Thélène in 2010, as follows: if a smooth
projective variety V over a number field L satisfies the Hasse principle and weak
approximation over all finite extensions, does it follow that V is rationally connected?
Does it at least follow that Hi (V ,OV ) = 0 for all i > 0? Does it at least follow that
H2(V ,OV ) = 0? Note that the analogue of Question 1.4 with H2(V ,OV ) replaced by
H1(V ,OV ) has a positive answer – this follows from [21, Corollary 2.4], for example.

Our next result owes its existence to Wittenberg’s suggestion that our methods
could be used to address Question 1.4. It gives a positive answer to that question,
and also shows that the answer to Question 1.3 is no, in general. In fact, it shows
that if H0(V ,�2

V ) 	= 0 then every prime of good ordinary reduction is involved in a
Brauer–Manin obstruction over an extension of the base field.

Theorem C Let V be a smooth, proper variety over a number field L with
H0(V ,�2

V ) 	= 0. Let p be a prime of L at which V has good ordinary reduction,
with residue characteristic p. Then there exist a finite extension L′/L, a prime p′
of L′ lying over p, and an element A ∈ BrVL′ {p} such that the evaluation map
|A| : V (L′

p′) → BrL′
p′ is non-constant. In particular, if V (AL′) 	= ∅ then A obstructs

weak approximation on VL′ .

It has been conjectured that a smooth, projective variety over a number field L has
good ordinary reduction at a positive density set of primes of L: Joshi [25, Conjec-
ture 3.1.1] attributes this conjecture to Serre. In the cases of Abelian surfaces and K3
surfaces, it is known to be true [4, 25].

The assumption that H0(V ,�2
V ) 	= 0 implies, via Hodge theory, that the second

Betti number b2(V̄ ) and geometric Picard number ρ(V̄ ) are not equal. Since Br V̄
contains a copy of (Q/Z)b2−ρ (see [12, Proposition 5.2.9]), this implies that there
exists a finite extension L′/L such that the transcendental Brauer group of VL′ is
non-trivial. On the other hand, if the transcendental Brauer group is trivial then [9,
Theorem 3.1] shows that the answer to Question 1.3 is yes.

Having seen in Theorem C that the places involved in the Brauer–Manin obstruc-
tion need not be confined to the places of bad reduction and the Archimedean places,
one may be interested in the following question:
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Question 1.5 Let V be a smooth, proper, geometrically irreducible variety over a
number field L such that Pic V̄ is finitely generated and torsion-free. Does there exist
a finite set S of places of L and a closed set Z ⊂ ∏

v∈S V (Lv) such that

V (AL)Br = Z ×
∏

v /∈S

V (Lv)? (1.2)

If so, can one give an explicit description of such a set S?

The assumption in Questions 1.3 and 1.5 that Pic V̄ be finitely generated and
torsion-free is necessary: for example, in the case of an elliptic curve E over Q with
finite Tate–Shafarevich group and trivial Mordell–Weil group, [39, Proposition 6.2.4]
shows that

E(AQ)Br = E(R)0 ×
∏

p prime

{OE},

where E(R)0 denotes the connected component of the identity in E(R). This con-
tradicts the description of (1.2). More generally, note that non-trivial torsion in Pic V̄

implies that the abelianisation of πét
1 (V̄ ) is non-trivial. For a smooth, proper, geomet-

rically integral variety V over a number field L satisfying V (L) 	= ∅ and πét
1 (V̄ ) 	= 0,

Harari [21, §2] has shown that for any finite set � of places of L, the variety V

does not satisfy weak approximation outside �. The proof uses a descent obstruction
which, in the case of an abelian covering, is coarser than the Brauer–Manin obstruc-
tion. It follows that in this setting the Brauer–Manin set is not of the form described
in (1.2).

If one assumes that the transcendental Brauer group of V is finite in Question 1.5
then it follows from the Hochschild–Serre spectral sequence that the quotient of BrV
by the image of BrL is finite; therefore the existence of the finite set S is a con-
sequence of the Albert–Brauer–Hasse–Noether Theorem and the continuity of the
Brauer–Manin pairing. The finiteness of the quotient of BrV by the image of BrL
also implies that the Brauer–Manin set is open as well as closed. On the other hand,
without the finiteness assumption on the transcendental Brauer group, the existence
of the finite set S in Question 1.5 is not a priori obvious.

Theorem D below gives a positive answer to Question 1.5, without any finite-
ness assumption on the transcendental Brauer group of V . One consequence of this
theorem is that for a K3 surface over Q the only places that play a rôle in the Brauer–
Manin obstruction are the Archimedean places, the primes of bad reduction, and the
prime 2 (see Remark 11.5).

Theorem D Let L be a number field. Let V be a smooth, proper, geometrically ir-
reducible variety over L. Assume Pic V̄ is finitely generated and torsion-free. Then
there is a finite set of places S of L such that, for all A ∈ BrV and all places p /∈ S,
the evaluation map |A| : V (Lp) → BrLp is constant. Furthermore, the set S can be
taken to consist of the following places of L:

1. Archimedean places;
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2. places of bad reduction for V ;
3. places p satisfying ep ≥ p − 1, where ep is the absolute ramification index of p

and p is the residue characteristic of p;
4. places p for which, for any smooth proper model V → SpecOp of V , the group

H0(V(p),�1
V(p)

) is non-zero, where V(p) is the special fibre of V .

Remark 1.6 1. James Newton observed that the set in (4) is contained in the set con-
sisting of places that are ramified in L/Q and places lying above 2. Indeed, let p be
a place of L with ep/p = 1 and residue field Fp of characteristic p > 2. Since Pic V̄

is torsion-free, we have H1
ét(V̄ ,Z/pZ) = 0. Hence, the integral comparison theo-

rem of Fontaine–Messing ([15], see also [6, Theorems 3.1.3.1 and 3.2.3]) shows
that the de Rham cohomology group H1

dR(V(p)/Fp) is zero. Now by the degen-
eration of the Hodge–de Rham spectral sequence for V(p) (Deligne–Illusie [14,
Corollary 2.5]), this implies H0(V(p),�1

V(p)
) = 0.

2. In some cases of interest, such as when V is a K3 surface, one can show that the
set in (4) is always empty – see Remark 11.5.

1.2 Outline of the paper

Section 2 contains some technical results and background relating to Kato’s refined
Swan conductor. In Sect. 3 we define a residue map ∂ : fil0 BrX → H1(Y,Q/Z) and
use it to describe the evaluation maps for elements of fil0 BrX. The main body of the
paper, Sects. 4–8, is concerned with the proof of Theorem B. Its proof will involve
a chain of blowups with an associated decreasing sequence of Swan conductors at
the exceptional divisors. Eventually, we will obtain Swan conductor zero, whereupon
evaluations are controlled by the residue map, as in Sect. 3. Section 4 contains some
technical results that will be used in Sect. 8 to relate the refined Swan conductor of a
Brauer group element to that of its residue along the exceptional divisor. In Sect. 5, we
show how information about the refined Swan conductor is retained under blowups.
Section 6 gathers some calculations pertaining to the exceptional divisors of these
blowups. Section 7 relates lifts of points to tangent vectors and shows how to keep
track of them when blowing up. In Sect. 8 we bring everything together to complete
the proof of Theorem B. In Sect. 9 we prove Theorem A. In Sect. 10 we compare
various other filtrations in the literature with our modified version of Kato’s filtration
which gives rise to the evaluation filtration on the Brauer group. Section 11 is con-
cerned with applications to the Brauer–Manin obstruction and contains the proofs of
Theorems C and D.

1.3 Notation

If A is an Abelian group and n a positive integer, then A[n] and A/n denote the
kernel and cokernel, respectively, of multiplication by n on A. If 	 is prime, then
A{	} denotes the 	-power torsion subgroup of A.

We use extensively the notation introduced in [30, §1]. In particular, the notation
(Z/n)(r) has a particular meaning in characteristic p. Write n = psm with p � m.
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For any scheme S smooth over a field of characteristic p, the object (Z/n)(r) of the
bounded derived category Db(Sét) is defined by

(Z/n)(r) := μ⊗r
m ⊕ Ws�

r
S,log[−r].

Here Ws�
•
S,log is the logarithmic de Rham–Witt complex of Illusie: see [24, I.5.7].

We further use Kato’s notation

Hq
n(R) := Hq(Rét, (Z/n)(q − 1)), Hq(R) := lim−→

n

Hq
n(R)

whenever either n is invertible in R, or R is smooth over a field of characteristic p.
The definition of (Z/n)(r) ensures that, in any characteristic, we have an exact

triangle

(Z/n)(1) → Gm
n−→Gm → (Z/n)(1)[1] (1.3)

where the part prime to the characteristic is the Kummer sequence, and the p-part in
characteristic p is [24, Proposition I.3.23.2]. Given a ∈ R× = H0(R,Gm), we denote
the image of a in H1(R, (Z/n)(1)) by {a}. The exact triangle (1.3) further shows that,
for a field K of any characteristic, we have H2(K) = BrK .

2 Kato’s refined Swan conductor

In this section, we gather some technical results from [30] relating to Kato’s refined
Swan conductor, extending them as necessary. For this section only, K denotes a
Henselian discrete valuation field with ring of integers OK and residue field F of
characteristic p > 0. Let π be a uniformiser in OK and denote by mK the maximal
ideal of OK . Our goal is to describe, for each q ≥ 1, the following constructions.

• An increasing filtration {filn Hq(K)}n≥0 on Hq(K) (Definition 2.1). The Swan con-
ductor sw(χ) of χ ∈ Hq(K) is then defined to be the smallest n ≥ 0 such that
χ ∈ filn Hq(K). The prime-to-p part of Hq(K) is entirely contained in fil0 Hq(K),
as are all elements split by an unramified extension of K (Proposition 2.6(1)).

• An injection λπ : Hq(F ) ⊕ Hq−1(F ) → Hq(K) whose image coincides with
fil0 Hq(K) (see (2.3) and Proposition 2.6(1)). We also define ι

q
n : Hq

n(F ) → Hq
n(K)

to be the first component of λπ (restricted to Hq
n(F )), see Sect. 2.2.1. The “residue

map” ∂ : fil0 Hq(K) → Hq−1(F ) is defined to be the inverse of λπ followed by
projection to the second component (Definition 2.21).

• For each r ≥ 1, a surjection δr : Wr�
q−1
F → Hq

pr (F ) (Definition 2.10). Following
Kato, we sometimes also denote the composition λπ ◦ δr simply by λπ .

• For each n ≥ 1, an injection (the refined Swan conductor), denoted rswn, from
filn Hq(K)/filn−1 Hq(K) to an object that is essentially �

q
F ⊕ �

q−1
F (Defini-

tion 2.14).

The principal case of interest will be when K is the Henselisation of the func-
tion field of a variety X, and we will be interested in the case q = 2, for which
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Hq(K) = Br(K). In the details of our proofs in future sections, we will also need the
equal-characteristic case (when K is the function field of a variety in characteristic
p, Henselised at a prime divisor). Moreover, we will need the maps λπ and δr in a
more general context, as defined in Sect. 2.2.3.

2.1 Vanishing cycles and the Swan conductor

In order to define the Swan conductor, we need to deal not only with fields but also
with more general rings. The following definition serves this purpose.

Let A be a ring over OK , and let i, j be the inclusions of the special and generic
fibres, respectively, into SpecA. Denote R = A/mKA. If charK > 0, assume that
A ⊗OK

K is smooth over some field, so that (Z/n)(q − 1) is defined. Define

V
q
n (A) := Hq(Rét, i

∗Rj∗(Z/n)(q − 1))

and V q(A) := lim−→n
V

q
n (A). Note that, in the case when K has characteristic zero,

(Z/n)(q − 1) is simply a sheaf for the étale topology.
As an example, in the case A = OK with charK = 0 we can identify j∗(−) with

H0(Knr ,−), where Knr is the maximal unramified extension of K . The spectral se-
quence implicit in the definition of V

q
n (OK) is the inflation-restriction spectral se-

quence for the extension Knr/K , and we find V
q
n (OK) = Hq

n(K).
The construction is functorial in the following sense. Let K ′/K be an extension

of Henselian discrete valuation fields; let OK ′ be the ring of integers of K ′ and let F ′
be the residue field. Suppose that we have a commutative diagram

A −−−−→ A′
�
⏐
⏐

�
⏐
⏐

OK −−−−→ OK ′

where again A′ ⊗OK ′ K ′(= A′ ⊗OK
K) is smooth over some field. Let R′ =

A′/mK ′A′ and let i′, j ′ be the inclusions of the special and generic fibres, respec-
tively, of SpecA′ → SpecOK ′ . We have a commutative diagram

SpecR′ i′−−−−→ SpecA′ j ′
←−−−− Spec(A′ ⊗OK

K)

g

⏐
⏐
� f

⏐
⏐
� h

⏐
⏐
�

SpecR
i−−−−→ SpecA

j←−−−− Spec(A ⊗OK
K)

of schemes. Define

V
q
n (A′) := Hq(R′

ét, (i
′)∗R(j ′)∗(Z/n)(q − 1)).

Applying (i′)∗ to the natural base-change map

f ∗Rj∗(Z/n)(q − 1) → Rj ′∗(Z/n)(q − 1)
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and using (i′)∗f ∗ = g∗i∗ gives a map

g∗i∗Rj∗(Z/n)(q − 1) → (i′)∗Rj ′∗(Z/n)(q − 1)

and so, by adjunction, a natural map V
q
n (A) → V

q
n (A′) for all q , n.

In the case of the field K , we have product maps

Hq
n(K) × (K×)⊕r → Hq+r

n (K)

defined by (χ, a1, . . . , ar ) �→ χ ∪ {a1} ∪ · · · ∪ {ar}, where {−} denotes the Kummer
map K×/(K×)n → H1(K,μn) as in (1.3). This construction can be generalised to
V

q
n (A) as follows. The natural map of sheaves

Rj∗(Z/n)(q − 1) → i∗i∗Rj∗(Z/n)(q − 1).

gives a natural map

Hq
n(A ⊗OK

K) = Hq(A,Rj∗(Z/n)(q − 1)) → V
q
n (A) (2.1)

for all q , n, which Gabber [17] (see also [41, Theorem 09ZI]) has proved to be an
isomorphism if (A,mKA) is Henselian. (Note that this generalises the observation
V

q
n (OK) = Hq

n(K) above.) In that case, we mimic the construction just described
and define a product

V
q
n (A) × ((A ⊗OK

K)×)⊕r → V
q+r
n (A)

(χ, a1, . . . , ar ) �→ {χ,a1, . . . , ar}
(2.2)

using the Kummer map (A⊗OK
K)× → H1(A⊗OK

K, (Z/n)(1)) and the cup prod-
uct

Hq
n(A ⊗OK

K) × H1(A ⊗OK
K, (Z/n)(1))⊕r → Hq+r

n (A ⊗OK
K).

For general A, let A(h) denote the Henselisation at the ideal mKA; then the natural
map V

q
n (A) → V

q
n (A(h)) is an isomorphism, because the stalks of i∗Rj∗(Z/n)(q −1)

do not change when A is replaced by A(h). We deduce V
q
n (A) ∼= Hq(A(h) ⊗OK

K),
which allows us to define the product (2.2) for A as well. The products for different
n are compatible and so give rise to a product

V q(A) × ((A ⊗OK
K)×)⊕r → V q+r (A).

Taking A = OK [T ], we can now define Kato’s Swan conductor.

Definition 2.1 [Kato [30, §2]] The increasing filtration {filn Hq(K)}n≥0 is defined by

χ ∈ filn Hq(K) ⇐⇒ {χ,1 + πn+1T } = 0 in V q+1(OK [T ]).
For χ ∈ Hq(K), define the Swan conductor sw(χ) to be the smallest n ≥ 0 satisfying
χ ∈ filn Hq(K).
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Remark 2.2 For r ≥ 1, the map Hq
pr (K) → Hq(K) allows us to pull the filtration back

to Hq
pr . By [30, Proposition 1.8], the map V

q+1
pr (OK [T ]) → V q+1(OK [T ]) is injec-

tive, showing that χ ∈ Hq
pr (K) lies in filn Hq

pr (K) if and only if {χ,1 + πn+1T } = 0

in V
q+1
pr (OK [T ]).

Remark 2.3 There is an equivalent definition using only Galois cohomology. Namely,
Kato [30, Proposition 6.3] states that χ ∈ Hq(K) lies in filn Hq(K) if and only if, for
any Henselian discrete valuation field L/K such that OK ⊂ OL and mL = OLmK ,
we have {χL,1 + πn+1OL} = 0 in Hq+1(L).

Remark 2.4 Suppose that K is a finite extension of Qp and take q = 1. The filtration
on H1(K) = Hom(Gal(K̄/K),Q/Z) coincides with that induced by the upper rami-
fication filtration on Gal(K̄/K). This is an exercise in local class field theory, using
the fact that the local reciprocity map identifies the upper ramification filtration on
the Galois group with the unit filtration on K×.

Remark 2.5 If K is a finite extension of Qp then the filtration on H2(K) = Br(K) is
uninteresting: we have fil0 H2(K) = H2(K). This follows, for example, from Propo-
sition 2.6 and is related to the fact that every element of the Brauer group of K is
split by an unramified extension. The filtration on Br(K) is only interesting when the
residue field F is not perfect.

2.2 The maps ι
q
n and λπ

2.2.1 ι
q
n in the Henselian local case

Let A be a Henselian local ring with fraction field L and residue field 	 of character-
istic p > 0. In [30, §1.4], Kato defines a homomorphism (the “canonical lifting”)

ι
q
n : Hq

n(	) → Hq
n(L)

for all positive integers n, which we now recall. If n is coprime to p, define ι
q
n simply

as the composite

Hq(	, (Z/n)(q − 1)) ∼= Hq(Aét, (Z/n)(q − 1)) → Hq(L, (Z/n)(q − 1)).

If n = ps is a power of p, then this works only for q = 1; in the other cases, we have
not defined a sheaf (Z/n)(q − 1) on Aét. In those cases we define ι

q
n by the formula

ι
q
n({χ, ā1, . . . , āq−1}) = {ι1n(χ), a1, . . . , aq−1}

for χ ∈ H1
n(	) and a1, . . . , aq−1 ∈ A×; Kato has proved that this characterises a well-

defined homomorphism.
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2.2.2 λπ in the Henselian DVR case

We now return to our Henselian discrete valuation field K with ring of integers OK

and residue field F . For a fixed uniformiser π ∈ OK , we define

λπ : Hq
n(F ) ⊕ Hq−1

n (F ) → Hq
n(K) (2.3)

as

λπ(χ,χ ′) = ι
q
n(χ) + {ιq−1

n (χ ′),π}.
Kato has proved that this is injective. An important relationship between λπ and the
filtration filn is given by the first part of the following proposition.

Proposition 2.6 (Kato, [30, Proposition 6.1]) Let p = charF > 0.

1. fil0 Hq(K) coincides with the image of λπ , and furthermore

fil0 Hq(K) = Hq(K)(non-p) ⊕ ker(Hq(K){p} → Hq(Knr){p}),
where (non-p) denotes the prime-to-p part and Knr the maximal unramified ex-
tension of K .

2. We have Hq(K) = fil0 Hq(K) if [F : Fp] = pc < ∞ and q > c + 1.

2.2.3 The smooth-over-DVR case

We will also need a version of λπ for more general rings. Specifically, we need a def-
inition that works for the ring OK [T ] in order to define the refined Swan conductor;
and in order to prove the main result of Sect. 3 we need a definition that works for
the coordinate ring of an affine piece of our smooth model X . Both of these are rings
smooth over a Henselian discrete valuation ring. So let A be a ring smooth over OK ,
with R = A/mKA; we seek an injective homomorphism

Hq
pr (R) ⊕ Hq−1

pr (R) → V
q
pr (A)

coinciding with the definition of λπ in Sect. 2.2.2 in the case A = OK .
In [30, §1.9], Kato treats the case r = 1, which is all that is needed in order to

define the refined Swan conductor. The extra case we will need in Sect. 3 is for
r > 1 in the case of mixed characteristic. Assume therefore charK = 0. We will now
explain how to define a homomorphism

λπ : Hq
pr (R) ⊕ Hq−1

pr (R) → V
q
pr (A)

for all q ≥ 2 and r ≥ 1 (Definition 2.8). In Lemma 2.12 we prove that our definition
of λπ coincides with that of Definition (2.3) in the case when A = OK and n = pr .
We closely follow [30, §1.9] throughout, though we believe this contains a sign error
which we will correct below.
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Since R has p-cohomological dimension ≤ 1 (see [2, X, Théorème 5.1]), the spec-
tral sequence calculating V

q
pr (A) reduces to a short exact sequence

0 → H1(Rét, i
∗Rq−1j∗(Z/pr)(q − 1))

α−→ V
q
pr (A)

→ H0(Rét, i
∗Rqj∗(Z/pr)(q − 1)) → 0. (2.4)

Following Bloch and Kato in [3], write M
q−1
r = i∗Rq−1j∗(Z/pr)(q − 1). By [3,

Theorem 1.4], there is a finite decreasing filtration {UmM
q−1
r }m≥0 on M

q−1
r with

U0M
q−1
r = M

q−1
r and with graded pieces grm(M

q−1
r ) = UmM

q−1
r /Um+1M

q−1
r that

can be described as follows: there is an isomorphism

gr0(M
q−1
r ) ∼= Wr�

q−1
R,log ⊕ Wr�

q−2
R,log (2.5)

and, for m ≥ 1, a surjection

ρm : �
q−2
R ⊕ �

q−3
R → grm(M

q−1
r ). (2.6)

(For i < 0 we set �i
R = 0.)

Lemma 2.7 Suppose q ≥ 2. The natural map

H1(Rét,M
q−1
r ) → H1(Rét,gr0(M

q−1
r )) ∼= H1(Rét,Wr�

q−1
R,log ⊕ Wr�

q−2
R,log)

is an isomorphism.

Proof We first show H1(Rét,grm(M
q−1
r )) = 0 for m ≥ 1, using (2.6). On the one

hand, we have H1(Rét,�
i
R) = 0 for i ≥ 0 because �i

R is a coherent sheaf on the affine
scheme SpecR. On the other hand, if we let Km = ker(ρm), then H2(Rét,Km) = 0
because cdp(R) ≤ 1. The long exact sequence in cohomology coming from the short
exact sequence

0 → Km → �
q−2
R ⊕ �

q−3
R → grm(M

q−1
r ) → 0

shows H1(Rét,grm(M
q−1
r )) = 0 for m ≥ 1.

A simple induction now gives H1(Rét,U
mM

q−1
r ) = 0 for m ≥ 1, and the short

exact sequence

0 → U1M
q−1
r → M

q−1
r → gr0(M

q−1
r ) → 0

completes the proof. �

The group H1(Rét,Wr�
q−1
R,log ⊕ Wr�

q−2
R,log) appearing in Lemma 2.7 is, by defini-

tion of the sheaf (Z/n)(q − 1), equal to Hq
pr (R) ⊕ Hq−1

pr (R).
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Definition 2.8 Suppose charK = 0. For q ≥ 2, define

λπ : Hq
pr (R) ⊕ Hq−1

pr (R) → V
q
pr (A)

to be (−1)q−1 times the inverse of the isomorphism of Lemma 2.7, composed with
the map labelled α in (2.4). Moreover, define

ι
q
pr : Hq

pr (R) → V
q
pr (A)

to be the first component of λπ .

Remark 2.9 In the case A = OK , the étale cohomology groups become Galois coho-
mology: the sequence (2.4) becomes

0 → H1(F,Hq−1(Knr , (Z/pr)(q − 1)))

→ Hq(K, (Z/pr)(q − 1))
res−→ Hq(Knr , (Z/pr)(q − 1))

where Knr is the maximal unramified extension of K . The map (−1)q−1λπ factors
as

H1(F,Wr�
q−1
log (F s) ⊕ Wr�

q−2
log (F s))

∼=←− H1(F,Hq−1(Knr , (Z/pr)(q − 1)))

→ Hq(K, (Z/pr)(q − 1)).

(Here F s is a separable closure of F , and we identify Gal(Knr/K) ∼= Gal(F s/F )

without further comment.)

2.2.4 The map δr

We keep the notation of the previous subsection: A is a ring smooth over OK , and
R = A/mKA. By [30, §1.3] (see also [10, Lemme 2] and [24, I.3.3]), there is an exact
sequence

0 → Wr�
q−1
log → Wr�

q−1 C−1−1−−−−→ Wr�
q−1/dV r−1�q−2 → 0 (2.7)

of sheaves on Rét. Here we have abused notation by using C−1 to denote the map
denoted F in [30, §1.3] and [24, §I.2.17], which coincides with the inverse Cartier
operator when r = 1. The map V is the Verschiebung defined in [24, §I.1]. By defi-
nition, we have Hq

pr (R) = H1(Rét,Wr�
q−1
log ).

Definition 2.10 We define

δr : Wr�
q−1
R /dV r−1�

q−2
R → Hq

pr (R)

to be the boundary map in the long exact sequence of cohomology corresponding
to (2.7). We also use δr to denote the map Wr�

q−1
R → Hq

pr (R) obtained by precom-

posing with the natural surjection Wr�
q−1
R → Wr�

q−1
R /dV r−1�

q−2
R .
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Following Kato, we sometimes use λπ to denote the composition

Wr�
q−1
R ⊕ Wr�

q−2
R

δr−→ Hq
pr (R) ⊕ Hq−1

pr (R)
λπ−→ V

q
pr (A). (2.8)

The following lemma will be used in the proofs of Lemmas 2.12 and 2.13.

Lemma 2.11 Let w ∈ Wr�
q−1
R and a ∈ R×. Let dlog(a) ∈ Wr�

1
R,log be as in [24,

§I.3.23] and let

fa : Hq
pr (R) → Hq+1

pr (R)

be the homomorphism H1(Rét,Wr�
q−1
R,log) → H1(Rét,Wr�

q

R,log) induced by

Wr�
q−1
R,log → Wr�

q

R,log, x �→ x ∧ dlog(a).

Then we have

δr (w ∧ dlog(a)) = fa(δr (w)) = δr (w) ∪ {a}.

In other words, we can take the wedge product “inside the H1”.

Proof The sequences (2.7) give the rows of a diagram of sheaves on Rét as follows:

0 −−−−→ Wr�
q−1
log −−−−→ Wr�

q−1 C−1−1−−−−→ Wr�
q−1/dV r−1�q−2 −−−−→ 0

∧dlog ā

⏐
⏐
� ∧dlog ā

⏐
⏐
� ∧dlog ā

⏐
⏐
�

0 −−−−→ Wr�
q

log −−−−→ Wr�
q C−1−1−−−−→ Wr�

q/dV r−1�q−1 −−−−→ 0.

It is easy to check that this diagram commutes, using C−1(dlog(a)) = dlog(a) (see
[24, §I.3.23]). Taking cohomology now gives the first claimed equality. The second
is the final statement of [30, §1.3]. �

2.2.5 Compatibility of the two definitions of λπ

We can now prove that the definition of λπ in Definition 2.8 is compatible with that
described in §2.2.2.

Lemma 2.12 In the case charK = 0, A = OK and q ≥ 2, the map λπ defined in
Definition 2.8 agrees with that defined in §2.2.2.

Proof We will prove this by induction on q , by showing that our map λπ of Defini-
tion 2.8 satisfies the characterisation given in §2.2.2. Let ι1pr : H1(F ) → H1(K) be

the natural map defined in §2.2.1. Recall that, for q ≥ 2, the notation ι
q
pr refers to the

first component of λπ . Specifically, we will show:

1. for χ ∈ H1
pr (F ) and a ∈ O×

K , we have ι2pr ({χ, ā}) = {ι1pr (χ), a};
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2. for χ ∈ H1
pr (F ), we have λπ(0, χ) = {ι1pr (χ),π};

3. for q ≥ 2, χ ∈ Hq
pr (F ), and a ∈O×

K , we have ι
q
pr ({χ, ā}) = {ιq−1

pr (χ), a};
4. for q ≥ 2, χ ∈ Hq−1

pr (F ), and a ∈O×
K , we have λπ(0, {χ, ā}) = −{λπ(0, χ), a}.

Then (1) and (2) prove the claim for q = 2; statement (3) shows that the first com-
ponent of λπ agrees with the previous definition of ι

q
pr in §2.2.1 for all q ≥ 2;

and all four statements together imply the final part of the characterisation, namely
λπ(0, χ) = {ιq−1

pr (χ),π} for χ ∈ Hq−1
pr (F ).

We prove (3) and (4) first. Let q ≥ 2 and let a be an element of O×
K . Let ā ∈ F×

be the reduction of a and let {ā} be its class in H1(F, (Z/pr)(1)). We claim that the
following diagram commutes.

Hq(K, (Z/pr)(q − 1))
{a}∪−−−−−−−−−−−−−→ Hq+1(K, (Z/pr)(q))

�
⏐
⏐

�
⏐
⏐

H1(F,Hq−1(Knr , (Z/pr)(q − 1)))
{a}∪−−−−−−−−→ H1(F,Hq(Knr , (Z/pr)(q)))

∼=
⏐
⏐
�

⏐
⏐
�∼=

H1(F,Wr�
q−1
log (F s))⊕ (dlog ā∧,dlog ā∧)−−−−−−−−−→ H1(F,Wr�

q

log(F
s))⊕

H1(F,Wr�
q−2
log (F s)) H1(F,Wr�

q−1
log (F s))

∥
∥
∥

∥
∥
∥

Hq
pr (F ) ⊕ Hq−1

pr (F )
(∪(−1)q−1{ā},∪(−1)q {ā})−−−−−−−−−−−−−−→ Hq+1

pr (F ) ⊕ Hq
pr (F )

Here the horizontal maps are as follows. The first horizontal map is cup product
with the class of a in H1(K, (Z/pr)(1)). The second horizontal map is induced by
cup product with the class of a in H1(Knr , (Z/pr)(1)). The third horizontal map is
that induced on cohomology by the homomorphism ω �→ dlog ā ∧ ω on each factor.
The fourth horizontal map is given by cup products as written. That the top square
commutes is [26, §1.2, Lemma 2 (2)] (and it is in order to apply that lemma that we
have put the cup products on the left). That the middle square commutes is shown by
the formula after [3, Corollary 1.4.1]. The bottom square commutes by Lemma 2.11
and the anti-commutativity of the wedge product.

In this diagram, the map going upwards from bottom left to top left is, by defini-
tion, (−1)q−1λπ , and that from bottom right to top right is (−1)qλπ . Let χ ∈ Hq

pr (F ).
The commutativity of the diagram gives

(−1)qλπ (χ ∪ (−1)q−1{ā},0) = (−1)q−1{a} ∪ λπ(χ,0)

−λπ(χ ∪ {ā},0) = (−1)q−1(−1)qλπ (χ,0) ∪ {a}
λπ(χ ∪ {ā},0) = λπ(χ,0) ∪ {a},
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proving (3). Similarly, for χ ∈ Hq−1
pr (F ) we have

(−1)qλπ (0, χ ∪ (−1)q{ā}) = (−1)q−1{a} ∪ λπ(0, χ)

λπ(0, χ ∪ {ā}) = (−1)q−1(−1)qλπ (0, χ) ∪ {a}
λπ(0, χ ∪ {ā}) = −λπ(0, χ) ∪ {a},

proving (4).
The case q = 1 is similar but easier. The sequence (2.4) is simply the inflation-

restriction sequence, and one checks that the following diagram commutes.

H1(K,Z/pr) H2(K, (Z/pr)(1))

H1(F,Z/pr) H1(F,H1(Knr , (Z/pr)(1)))

H1(F,Z/pr) H1(F,Wr�
1
log(F

s) ⊕ Wr�
0
log(F

s))

H1
pr (F ) H2

pr (F ) ⊕ H1
pr (F )

{a}∪

inf

a

∼=
(dlog ā,0)

ε

(∪{ā},0)

The bottom left vertical map is induced by the isomorphism ε : Z/pr → Wr�
0
log(F

s)

(see [24, Proposition 3.28]). The first horizontal map is cup product with the class of
a in H1(K, (Z/pr)(1)), the second horizontal map is that induced on cohomology by
sending 1 to the class of a in H1(Knr , (Z/pr)(1)), the third horizontal map is that
induced on cohomology by 1 �→ (dlog ā,0), and the fourth horizontal map is the cup
product map as written.

The left-hand column, from bottom to top, is the map ι1pr , and the right-hand col-

umn from bottom to top is −λπ . Let χ ∈ H1
pr (F ). Commutativity of this diagram

gives

−λπ(χ ∪ {ā},0) = {a} ∪ ι1pr (χ)

λπ(χ ∪ {ā},0) = ι1pr (χ) ∪ {a}
proving (1).

Finally, we have a third diagram

H1(K,Z/pr) H2(K, (Z/pr)(1))

H1(F,Z/pr) H1(F,H1(Knr , (Z/pr)(1)))

H1(F,Z/pr) H1(F,Wr�
1
log(F

s) ⊕ Wr�
0
log(F

s))

{π}∪

π

inf

∼=
(0,ε)
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in which the bottom horizontal map is induced by the isomorphism ε : Z/pr →
Wr�

0
log(F

s). Again, this commutes by [3, formula after Corollary 1.4.1] and

[26, §1.2, Lemma 2 (2)]. For χ ∈ H1
pr (F ), commutativity of this diagram gives

−λπ(0, χ) = {π} ∪ ι1pr (χ), proving (2) and completing the proof of the lemma. �

2.2.6 Change of ring

We finish this section on λπ by describing how it behaves with respect to base change.
Let K ′/K be an extension of Henselian discrete valuation fields of characteristic

zero with finite ramification index. Let OK ′ be the ring of integers of K ′ and let F ′
be the residue field. Suppose that we have a commutative diagram

A
φ−−−−→ A′

�
⏐
⏐

�
⏐
⏐

OK −−−−→ OK ′

where A is smooth over OK and A′ is smooth over OK ′ . Let R′ = A′/mK ′A′ and let
i′, j ′ be the inclusions of the special and generic fibres, respectively, of SpecA′ →
SpecOK ′ . As described in Sect. 2.1, there are natural maps φ∗ : V

q
n (A) → V

q
n (A′).

Let φ̄ : R → R′ be the map on residue rings induced by φ, and φ̄∗ : Hq
n(R) → Hq

n(R′)
and φ̄∗ : Wr�

q
R → Wr�

q

R′ the induced maps. Let π ′ be a uniformiser in OK ′ .

Lemma 2.13 In the situation described above, let e be the ramification index of K ′/K
and define ā ∈ F ′ to be the reduction of φ(π)(π ′)−e . Then, for all q ≥ 2 and r ≥ 1,
the following diagram commutes:

Wr�
q−1
R′ ⊕ Wr�

q−2
R′ Hq

pr (R
′) ⊕ Hq−1

pr (R′) V
q
pr (A

′)

Wr�
q−1
R ⊕ Wr�

q−2
R Hq

pr (R) ⊕ Hq−1
pr (R) V

q
pr (A)

δr λπ ′

δr

(α,β) �→(φ̄∗α+φ̄∗β∧dlog(ā),eφ̄∗β)

λπ

(α,β) �→(φ̄∗α+{φ̄∗β,ā},eφ̄∗β) φ∗

(2.9)

Proof We go through the steps of the construction of λπ . Let g : SpecR′ → SpecR

be the morphism corresponding to φ̄. The natural map

i∗Rj∗(Z/n)(q − 1) → g∗(i′)∗Rj ′∗(Z/n)(q − 1)

of sheaves on Rét induces a map between the sequences (2.4) for A and A′. The
definition of the Bloch–Kato filtration on M

q−1
r = i∗Rq−1j∗(Z/pr)(q − 1) shows

that the map φ∗ : Mq−1
r,A → M

q−1
r,A′ respects the filtration, so induces a map on gr0.

The sheaf M
q−1
r,A is locally generated by symbols; we now explain what this means.

Let t1, . . . , tq−1 be local sections of i∗j∗Gm. The Kummer sequence allows us to push
these forward into M1

r,A, and the cup product of the resulting classes is a local section
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of M
q−1
r,A which we denote by {t1, . . . , tq−1}. Bloch and Kato prove that the resulting

“symbols” locally generate the sheaf M
q−1
r,A in the étale topology.

The isomorphism gr0(M
q−1
r ) → Wr�

q−1
R,log ⊕Wr�

q−2
R,log of (2.5) is described in the

formula after [3, Corollary 1.4.1]: if x1, . . . , xq−1 are local sections of Gm on Rét and
x̃1, . . . , x̃q−1 are any lifts of the xi to i∗(Gm)A, then we have

{x̃1, . . . , x̃q−1} �→ (dlogx1 ∧ · · · ∧ dlogxq−1,0)

{x̃1, . . . , x̃q−2,π} �→ (0,dlogx1 ∧ · · · ∧ dlogxq−2).

Working in M
q−1
r,A′ we have

φ∗{x̃1, . . . , x̃q−2,π} = {φ(x̃1), . . . , φ(x̃q−2),φ(π)}
= {φ(x̃1), . . . , φ(x̃q−2), a(π ′)e}
= {φ(x̃1), . . . , φ(x̃q−2), a} + e{φ(x̃1), . . . , φ(x̃q−2),π

′}
where a = φ(π)(π ′)−e . Therefore the isomorphisms (2.5) for A and A′ satisfy the
following commutative diagram:

gr0(M
q−1
r,A′ ) −−−−→ Wr�

q−1
R′,log ⊕ Wr�

q−2
R′,log�

⏐
⏐

�
⏐
⏐(α,β) �→(φ̄∗α+φ̄∗β∧dlog ā,eφ̄∗β)

gr0(M
q−1
r,A ) −−−−→ Wr�

q−1
R,log ⊕ Wr�

q−2
R,log

The rest of the proof follows from Lemma 2.11. �

2.3 The refined Swan conductor

Equipped with the map λπ for the ring OK [T ], we can now define Kato’s refined
Swan conductor. We follow the exposition in [5, 4.5–4.6].

Firstly, let us define the group in which the refined Swan conductor lives. To start
with, consider the scheme SpecOK with the divisor D given by the closed point.
The coherent sheaf �1

OK
(logD) of differentials with log poles at D is, concretely,

the OK -submodule of �1
K generated by �1

OK
together with dlogπ = dπ/π for any

uniformiser π ; this submodule is independent of the choice of π . (See [41], Section
0FMU, for more details on differentials with log poles.) This sheaf fits into a short
exact sequence

0 → �1
OK

→ �1
OK

(logD)
res−→ OK → 0,

and a choice of uniformiser π gives a splitting a �→ a dlogπ . Now define ω1
F to be

the pullback of this coherent sheaf under the closed immersion SpecF → SpecOK .
Concretely, we have ω1

F = �1
OK

(logD) ⊗OK
F . (A more direct definition is that ω1

F

is the sheaf of absolute Kähler differentials on the log scheme obtained by equipping
SpecF with the “standard log point” log structure coming from its embedding in

https://stacks.math.columbia.edu/tag/0FMU
https://stacks.math.columbia.edu/tag/0FMU
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SpecOK , see [29, 1.1, 1.7].) For q ≥ 1, let ω
q
F denote the qth exterior power of ω1

F .

The map �
q−1
F → ω

q
F given by η �→ η ∧ dlogπ yields a splitting of the natural exact

sequence

0 → �
q
F → ω

q
F

res−→ �
q−1
F → 0.

The refined Swan conductor at level n will be an element of m−n
K ⊗OK

ω
q
F , which is

also non-canonically isomorphic to �
q
F ⊕ �

q−1
F .

From (2.8) applied to A = OK [T ], we have the map λπ : �
q
F [T ] ⊕ �

q−1
F [T ] →

V q+1(OK [T ]). Kato [30, Theorem 5.1] proves the following: if χ is an element of
filn Hq(K) for n ≥ 1, then there exists a unique (α,β) ∈ �

q
F ⊕ �

q−1
F such that

{χ,1 + πnT } = λπ(T α,Tβ) in V q+1(OK [T ]). (2.10)

Note that here λπ really means λπ ◦ δ1, as in (2.8).

Definition 2.14 Let n ≥ 1. Given χ ∈ filn Hq(K), the refined Swan conductor of χ is

rswn(χ) = π−n(α + β ∧ dlogπ) ∈ m
−n
K ⊗OK

ω
q
F

where α, β are as in (2.10). We will often write [α,β]π,n as shorthand for π−n(α +
β ∧ dlogπ).

For n ≥ 1, the refined Swan conductor defines an injective homomorphism

rswn : filn Hq(K)/filn−1 Hq(K) ↪→m
−n
K ⊗OK

ω
q
F

as shown in [30, Corollary 5.2].

Remark 2.15 The pair (α,β) in (2.10) depends on the choice of uniformiser π ; how-
ever, rswn(χ) is independent of the choice of π , as stated by Kato [30, Definition 5.3].
This motivates the choice of m−n

K ⊗OK
ω

q
F as the target group and the definition of

rswn(χ). The precise dependence of (α,β) can also be seen as a consequence of
Lemma 2.16.

We now prove several auxiliary results about the refined Swan conductor.

Lemma 2.16 Suppose charK = 0. Let K ′/K be a finite extension of Henselian dis-
crete valuation fields of ramification index e. Let π ′ be a uniformiser in K ′, let F ′ be
the residue field of K ′ and define ā ∈ F ′ to be the reduction of π(π ′)−e . Let χ be an
element of filn Hq(K), and let

res : Hq(K) → Hq(K ′)

be the restriction map. Then res(χ) lies in filen Hq(K ′). Furthermore, for n ≥ 1, set-
ting rswn(χ) = [α,β]π,n we have

rswen(res(χ)) = [ā−n(α + β ∧ dlog ā), ā−neβ]π ′,en.



Evaluating the wild Brauer group 839

Proof That res(χ) lies in filen Hq(K ′) follows from the characterisation of filn given
in [30, Proposition 6.3]. Lemma 2.13 gives

λπ ′(T (α + β ∧ dlog ā), eTβ) = {resχ,1 + πnT } = {resχ,1 + (π ′)enanT },
where a = π(π ′)−e . Applying Lemma 2.13 a second time to the automorphism of
OK [T ] defined by T �→ anT proves the claimed formula. �

The following lemma is implicit in [30, Proposition 5.4], which is stated without
proof. For completeness, we provide a proof here.

Lemma 2.17 Let χ be an element of filn Hq(K) with rswn(χ) = [α,β]π,n. Then dα =
0 and dβ = (−1)qnα.

We first prove a lemma whose first part will be used in the proof of Lemma 2.17
and whose second part will be used in the proof of Lemma 2.19 below. We use C to
denote the Cartier operator. Recall the definition of δ1 : �

q
R → Hq+1

p (R) from Defi-
nition 2.10.

Lemma 2.18 Let R = F(T ) and let α be an element of �
q−1
F for some q ≥ 2.

1. We have δ1(T dα) = (−1)q{δ1(T α),T } ∈ Hq+1
p (R).

2. Suppose dα = 0, so that C(α) is defined. Then δ1(T C(α)) = δ1(T
pα).

Proof By [30, 1.3.2], the subgroup d�
q−1
R is in the kernel of δ1 : �

q
R → Hq+1

p (R), so

0 = δ1(d(T α)) = δ1(T dα) + δ1(dT ∧ α)

and therefore

δ1(T dα) = −δ1(dT ∧ α) = (−1)qδ1(T α ∧ dT /T ) = (−1)q{δ1(T α),T }
by the last formula of [30, §1.3], proving (1).

To prove (2), note firstly that d(T pα) = T pdα = 0, so that C(T pα) is defined.
The image of C−1 − 1 is in the kernel of δ1, so we have

0 = δ1((C
−1 − 1)(C(T pα))) = δ1(T

pα − C(T pα))

and therefore

δ1(T
pα) = δ1(C(T pα)) = δ1(T C(α)). �

Proof of Lemma 2.17 By definition of rswn, we have {χ,1 + πnT } = λπ(T α,Tβ) in
V q+1(OK [T ]). We would like to take the cup product with −πnT , but as this is not
a unit in K[T ] we first have to pass to a larger ring. Let A be the Henselisation of
the localisation of OK [T ] at the ideal mKOK [T ]. By [30, 1.8.1], the natural map
V q+2(OK [T ]) → V q+2(A) = Hq+2(A ⊗OK

K) is injective. Working in V q+2(A),
we compute

0 = {χ,1 + πnT ,−πnT }
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= {λπ(T α,Tβ),−πnT }
= {λπ(T α,Tβ),T } + n{λπ(T α,Tβ),π} + {λπ(T α,Tβ),−1}. (2.11)

The last term in (2.11) is zero; this follows from Lemma 2.11 and dlog(−1) = 0. Let
ι
q
p : Hq

p(F (T )) → V q(A) be the canonical lifting map of Sect. 2.2.1, which is the first
component of λπ . By Lemma 2.18(1) and Definition (2.3), the first term of (2.11) is

{λπ(T α,Tβ),T } = {ιq+1
p (δ1(T α)), T } + {ιqp(δ1(Tβ)),π,T }

= {ιq+1
p (δ1(T α)), T } − {ιqp(δ1(Tβ)), T ,π}

= ι
q+2
p {δ1(T α),T } − {ιq+1

p {δ1(Tβ),T },π}
= (−1)q+1(ι

q+2
p (δ1(T dα)) + {ιq+1

p (δ1(T dβ)),π})

= (−1)q+1λπ(T dα,T dβ).

For the middle term of (2.11) we have

{λπ(T α,Tβ),π} = {ιq+1
p (δ1(T α)),π} + {ιqp(δ1(Tβ)),π,π} = λπ(0, T α),

because again {ιqp(δ1(Tβ)),−1} = 0 and {π,−π} = 0. This produces

(−1)q+1λπ(T dα,T dβ) + nλπ(0, T α) = 0,

in V q+2(A) and therefore also in V q+2(OK [T ]). The result now follows from the
injectivity of λπ and [30, Lemma 3.8]. �

We conclude this subsection with a description of the refined Swan conductor of
pχ when sw(χ) is sufficiently large, in the char(K) = 0 setting.

Lemma 2.19 Suppose char(K) = 0, let e be the absolute ramification index of K , and
set e′ = ep/(p − 1). Let u = p/πe and let ū ∈ F× be its reduction. Let χ ∈ Hq(K)

have sw(χ) = n > 0 and write rswn(χ) = [α,β]π,n.

1. Suppose n ≥ e′ − 1. Then pχ ∈ filn−e Hq(K).
2. Suppose n > e′. Then rswn−e(pχ) = [ūα, ūβ]π,n−e and consequently, sw(pχ) =

n − e.
3. Suppose n = e′. Then dα = dβ = 0 and

rswe′−e(pχ) =
[
ūα + C(α), ūβ + C(β)

]

π,e′−e
.

Proof To prove (1), let m = n − e. Then

{pχ,1 + πm+1T } = {χ, (1 + πm+1T )p}
= {χ,1 + πn+1T ′}
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where T ′ = (1+πm+1T )p−1
πn+1 = a1T +a2T

2 +· · ·+apT p with a1, . . . , ap ∈ OK . There-

fore, T ′ ∈OK [T ]. Since sw(χ) = n, we have {χ,1+πn+1T ′} = 0 in V q+1(OK [T ]),
by the functoriality of V q+1(·). Therefore, sw(pχ) ≤ m = n − e, which completes
the proof of (1).

Now we move on to prove (2) and (3). We are assuming that n ∈ Z satisfies n ≥
e′ > e, whereby n − e ≥ 1. Similarly to the calculation above, we have

{pχ,1 + πn−eT } = {χ,1 + πnT ′′} (2.12)

where T ′′ = (1+πn−eT )p−1
πn = b1T + b2T

2 + · · · + bpT p with b1 = p/πe ∈ O×
K and

b2, . . . , bp−1 ∈ πOK . If n > e′ then bp ∈ πOK ; if n = e′ then bp = 1. Now [30,
6.3.1] gives

{χ,1 + πnT ′′} = λπ(αb̄1T ,βb̄1T ) + λπ(αb̄pT p,βb̄pT p). (2.13)

If n > e′ then b̄p = 0. Thus, (2) follows from (2.12) and (2.13). Finally, suppose
n = e′ and therefore bp = 1. Since n = ep/(p − 1) ∈ Z, we have p | n, whereby
Lemma 2.17 yields dα = dβ = 0. Now Lemma 2.18(2) shows that λπ(αT p,βT p) =
λπ(C(α)T ,C(β)T ), giving (3). �

Remark 2.20 In the context of Lemma 2.19, suppose β ∧ dū = 0 as happens, for
example, if dū = 0. One perhaps surprising consequence of Lemma 2.19 in this set-
ting is that for χ ∈ Hq(K) with sw(χ) = n > e′ and rswn(χ) = [α,β]π,n, we have
eα = 0, where e is the absolute ramification index of K . This can be seen by apply-
ing Lemma 2.17 twice: applying it to χ yields dβ = (−1)qnα, and applying it to pχ

yields ūdβ = (−1)q(n − e)ūα. For χ ∈ Hq(K) with sw(χ) = e′, we obtain the more
complicated formula d(C(β)) = (−1)q+1e(ūα + C(α)), which reduces to eα = 0 if
α and β are exact.

2.4 The residue map ∂

Let n ≥ 1. By Proposition 2.6, the image of

λπ : Hq
n(F ) ⊕ Hq−1

n (F ) → Hq
n(K) = BrK[n]

coincides with fil0 Hq
n(K).

Definition 2.21 Define a homomorphism

∂ : fil0 Hq
n(K) → Hq−1

n (F )

to be the inverse of λπ followed by projection onto the second factor, c.f. [30, §7.5].
Its inductive limit is a homomorphism fil0 Hq(K) → Hq−1(F ), which we also denote
by ∂ . We will refer to ∂ as the residue map.
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2.5 Comparison with the classical residue map on the Brauer group

For a Henselian discrete valuation field K of characteristic zero with perfect residue
field, there is a standard definition of a residue map on BrK , as in for example [38,
§XII.3], [13, §1.1], or [12, §1.4.3], where it is called the Witt residue. In our setting,
this definition carries over unchanged to define a residue map

∂ ′ : Br(Knr/K) → H1(F,Q/Z).

We will now recall this definition and verify that it is compatible with ours. For the
rest of this section, assume charK = 0. First note that Br(Knr/K) = fil0 H2(K), as
follows from Proposition 2.6(1) and [12, p. 35].

Let δ : H1(F,Q/Z) → H2(F,Z) be the connecting map coming from the short
exact sequence 0 → Z → Q → Q/Z → 0 of Galois modules. It is an isomorphism.
Let ∂ ′ be the composite map

H2(Knr/K,K×
nr )

v−→ H2(Knr/K,Z) ∼= H2(F,Z)
δ←− H1(F,Q/Z),

where v : K×
nr → Z is the valuation. Let A be the ring of integers in K , and let ι′ be

the composite of the natural maps

BrF
∼←− BrA → Br(Knr/K).

By the same argument as [38, §XII.3, Theorem 2] and the remark following it, the
sequence

0 → BrF
ι′−→ Br(Knr/K)

∂ ′−→ H1(F,Q/Z) → 0 (2.14)

is exact.
To state the following proposition, we make use of the exact triangle (1.3) of com-

plexes of sheaves on the étale site of any field, for any n ≥ 1. Recall also the “canon-
ical lifting” map ι2n : H2

n(F ) → fil0 H2
n(K), which is the first component of λπ (see

Sect. 2.2.2).

Proposition 2.22 For any integer n ≥ 1, the following diagram commutes:

H2
n(F )

ι2n−−−−→ fil0 H2
n(K)

∂−−−−→ H1
n(F )

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

BrF
ι′−−−−→ Br(Knr/K)

∂ ′−−−−→ H1(F,Q/Z)

. (2.15)

Here the two left-hand vertical maps come from the triangle (1.3), and the right-hand
one from the natural inclusion Z/n → Q/Z.

We first prove a lemma on cup products.
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Lemma 2.23 Let L be a field, and let n be a positive integer. Let u : L× →
H1(L, (Z/n)(1)) and t : H2(L, (Z/n)(1)) → BrL be the maps coming from the tri-
angle (1.3). Let δ : H1(L,Z/n) → H2(L,Z) be the connecting map coming from
the short exact sequence 0 → Z → Z → Z/n → 0 of Galois modules. For χ ∈
H1(L,Z/n) and a ∈ L×, we have δχ ∪ a = t (χ ∪ u(a)).

Note that this definition of δ agrees with the previous one when H1(L,Z/n) is
considered as a subgroup of H1(L,Q/Z).

Proof It suffices to prove the lemma separately for n invertible in L, and for n = pr

where p > 0 is the characteristic of L and r ≥ 1. For n invertible in L, we have
(Z/n)(1) = μn, the triangle (1.3) is the Kummer sequence, and the lemma is proved
in [18, proof of Proposition 4.7.1].

For n = pr , let Ls be a separable closure of L. The triangle (1.3) is the short exact
sequence

0 → (Ls)× pr

−→ (Ls)× dlog−−→ Wr�
1
Ls,log → 0

of Galois modules, u is the map dlog : L× → Wr�
1
L,log, and t is the boundary map

H1(L,Wr�
1
Ls,log) → H2(L, (Ls)×). Note that the above sequence is isomorphic to

that obtained by taking the short exact sequence 0 → Z → Z → Z/pr → 0 and
forming the tensor product with (Ls)×. The result then follows from [18, Proposi-
tion 3.4.8]. �

Proof of Proposition 2.22 We first express ι′ in terms of Galois cohomology. The
strict Henselisation Ash is the ring of integers in Knr and has residue field F s ,
a separable closure of F . The Hochschild–Serre spectral sequence, together with
Pic(Ash) = Br(Ash) = 0 [35, Corollary IV.1.7], gives an isomorphism

H2(Knr/K, (Ash)×) ∼= BrA,

compatible with the usual isomorphisms

H2(F, (F s)×) ∼= BrF and H2(Knr/K,K×
nr )

∼= Br(Knr/K).

So ι′ is identified with the composite

H2(F, (F s)×)
∼←− H2(Knr/K, (Ash)×) → H2(Knr/K,K×

nr ).

Both rows of the diagram (2.15) are split exact sequences: the map χ �→ {ι1n(χ),π}
is (by definition) a section of ∂ ; and the map χ �→ δχ ∪π is a section of ∂ ′. (Here we
identify the absolute Galois group of F with Gal(Knr/K).) It is therefore enough to
show that the following diagram commutes:

H2
n(F )

ι2n−−−−→ fil0 H2
n(K)

χ �→{ι1n(χ),π}←−−−−−−− H1
n(F )

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

H2(F, (F s)×)
ι′−−−−→ H2(Knr/K,K×

nr )
χ �→δχ∪π←−−−−− H1(F,Q/Z)

.
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That the right-hand square commutes follows from Lemma 2.23 applied to K . (Note
that ι1n is simply the identification of Galois groups just mentioned)

For the left-hand square, ι2n is defined separately in Sect. 2.2.2 for n invertible in
F , and for n = pr . If n is invertible in F , then the commutativity follows imme-
diately from the definition and the Kummer sequence on A. For n = pr , it suffices
to prove it for elements {χ, ā} where χ ∈ H1(F,Z/n) and ā ∈ F×. By definition,
we have {χ, ā} = χ ∪ u(ā), so Lemma 2.23 shows that the image of this element in
H2(F, (F s)×) is equal to δχ ∪ ā; applying ι′ gives δχ ∪ a, where a ∈ A× is a lift of
ā and we have as before identified Gal(F s/F ) with Gal(Knr/K). On the other hand,
first applying ι2n gives {ι1n(χ), a} = χ ∪ u(a) and Lemma 2.23 again shows that the
image in H2(Knr/K,K×

nr ) is δχ ∪ a, as desired. �

3 The tame part

We return to the situation of the introduction. Let k be a finite extension of Qp with
ring of integers Ok , uniformiser π and residue field F. Let X/k be a smooth, geo-
metrically irreducible variety over k, and let X be a smooth Ok-model of X having
geometrically irreducible special fibre Y . Denote by K the function field of X and by
F the function field of Y . Let Kh be the field of fractions of a Henselisation of the
discrete valuation ring OX ,Y .

The natural map BrX → BrKh allows us to pull back Kato’s definition of the
Swan conductor, and the associated filtration, to BrX. In this section we look at
the smallest piece fil0 BrX of Kato’s filtration on BrX. By Proposition 2.6 and [19,
Corollaire 1.3], this is the same as the subgroup of BrX consisting of those ele-
ments whose image in BrKh is split by an unramified extension of Kh. Equivalently,
such an element is split by a finite extension L/K , where L is the field of fractions
of a discrete valuation ring étale over OK = OX ,Y . To see this equivalence, note
that the maximal unramified extension Kh

nr of Kh is the field of fractions of a strict
Henselisation of OK , and therefore is the colimit of all such extensions L/K . Re-
call the residue map ∂ defined in Definition 2.21. We will denote the composition

fil0 BrX → fil0 H2(Kh)
∂−→ H1(F ) also by ∂ . Recall that ∂ : Brk → H1(F,Q/Z) is

an isomorphism, by a standard calculation of local class field theory. The main result
of this section is the following.

Proposition 3.1 1. If A ∈ fil0 BrX, then ∂(A) ∈ H1(Y,Q/Z) ⊂ H1(F,Q/Z).
2. Let P ∈ X (Ok) reduce to a point P0 ∈ Y(F). Then the following diagram com-

mutes:

fil0 BrX
∂−−−−→ H1(Y,Q/Z)

P ∗
⏐
⏐
�

⏐
⏐
�P ∗

0

Brk
∂−−−−→∼=

H1(F,Q/Z)

.

The following corollary is immediate.
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Corollary 3.2 (i) For A ∈ fil0 BrX, the evaluation map |A| : X (Ok) → Br k depends
only on ∂(A).

(ii) For A ∈ fil0 BrX and P ∈ X(k) reducing to a smooth point P0 ∈ Y(F), the eval-
uation A(P ) depends only on P0.

Proposition 3.1 will be used in the proof of Theorem B, in combination with the
following lemma. We use 1

p
to denote the map H1(F,Z/p) → H1(F,Q/Z) induced

by identifying Z/p with the p-torsion in Q/Z.

Lemma 3.3 Let δ1 : F → H1(F,Z/p) be the Artin–Schreier map. Suppose that A ∈
Brk[p] satisfies ∂(A) = 1

p
δ1(x), with x ∈ F. Then inv(A) = 1

p
TrF/Fp

(x).

Proof Let q = pr be the cardinality of F. By definition, inv(A) is obtained by
evaluating ∂(A) ∈ H1(F,Q/Z) = Hom(Gal(F̄/F),Q/Z) at the q-power Frobenius
element Frob ∈ Gal(F̄/F). On the other hand, the 1-cocycle δ1(x) is defined as
follows: let y ∈ F̄ be such that yp − y = x; then, for σ ∈ Gal(F̄/F), we define
δ1(x)(σ ) = σ(y) − y ∈ Z/p. Combining these definitions gives

inv(A) = 1

p
(Frob(y)−y) = 1

p

(
(ypr −ypr−1

)+· · ·+ (yp −y)
)

= 1

p
TrF/Fp

(x). �

In Sect. 3.1 we prove Proposition 3.1 for A ∈ BrX[pr ]. The result for Brauer
group elements of order prime to p follows from comparison with the classical
residue map (see Proposition 2.22) and well-known properties of the latter: see for
example [7, Proposition 5.1], together with [12, Theorem 1.4.14 and Theorem 2.3.5]
for comparing the various different residue maps.

3.1 Evaluation of tame elements of p-power order

We first prove a lemma.

Lemma 3.4 Let i : Y → X be the inclusion of the special fibre and let j : X → X be
the inclusion of the generic fibre. Let τ : SpecF → Y be the inclusion of the generic
point. Let q, r ≥ 1. Then the map

i∗Rqj∗(Z/pr)(q − 1) → τ∗τ ∗i∗Rqj∗(Z/pr)(q − 1)

of sheaves on Y is injective.

Proof We use induction on r . For the case r = 1, it suffices to prove the statement
after adjoining a pth root of unity to the base field k, and then this is [3, Proposi-
tion 6.1(i)].

For any q , m, the sheaf τ ∗i∗Rqj∗(Z/pr)(m) on Fét is the sheaf corresponding to
the Gal(F s/F )-module Hq(Kh

nr , (Z/pr)(m)). Consider the long exact sequence in
cohomology on Kh

nr coming from the short exact sequence

0 → Z/pr−1 → Z/pr → Z/p → 0 (3.1)
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of Galois modules. We have a commutative diagram

Kq−1(K
h
nr ) Kq−1(K

h
nr )

⏐
⏐
�

⏐
⏐
�

Hq−1(Kh
nr , (Z/pr)(q − 1)) −−−−→ Hq−1(Kh

nr , (Z/p)(q − 1))

in which the vertical maps are the Galois symbols, which are surjective by [3, §5];
this shows that the bottom map is surjective. It follows that the long exact sequence
of cohomology of (3.1) gives

0 → Hq(Kh
nr , (Z/pr−1)(q − 1)) → Hq(Kh

nr , (Z/pr)(q − 1))

→ Hq(Kh
nr , (Z/p)(q − 1)).

Consider this as a sequence of sheaves on Fét. Applying τ∗ gives the bottom row of
the following commutative diagram of sheaves on Y .

i∗Rqj∗(Z/pr−1)(q − 1) i∗Rqj∗(Z/pr)(q − 1) i∗Rqj∗(Z/p)(q − 1)

0 τ∗τ ∗i∗Rqj∗(Z/pr−1)(q − 1) τ∗τ ∗i∗Rqj∗(Z/pr)(q − 1) τ∗τ ∗i∗Rqj∗(Z/p)(q − 1)

By induction, the two outer vertical maps are injective, and therefore the middle one
is as well. �

To prove Proposition 3.1(1), we will prove a result for general q , in the case that
X is affine.

Lemma 3.5 Suppose that X = SpecA is affine, and define R = A/mkA. Let r ≥ 1
and q ≥ 2. Let χ be an element of fil0 Hq

pr (K
h), whereby χ = λπ(α,β) for a unique

(α,β) ∈ Hq
pr (F ) ⊕ Hq−1

pr (F ). If χ lies in the image of V
q
pr (A), then (α,β) lies in the

image of Hq
pr (R) ⊕ Hq−1

pr (R).

Proof Let λπ : Hq
pr (R) ⊕ Hq−1

pr (R) → V
q
pr (A) be the map defined in Definition 2.8.

The sequences (2.4) give a commutative diagram as follows.

0 Hq
pr (R) ⊕ Hq−1

pr (R) V
q
pr (A) H0(R, i∗Rqj∗(Z/pr)(q − 1))

0 Hq
pr (F ) ⊕ Hq−1

pr (F ) Hq
pr (K

h) H0(F,Hq
pr (K

h
nr ))

a

λπ

b c

λπ res

(3.2)

By assumption χ = λπ(α,β) lies in the image of b. To show that (α,β) lies in the
image of a, it is enough to prove that c is injective; but this follows from Lemma 3.4.

�
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Proof of Proposition 3.1 We first prove part (1). Let A lie in fil0 BrX[pr ]; then ∂(A)

lies in H1(F,Z/pr) and we must show that it actually lies in H1(Y,Z/pr). By [20,
Corollaire I.10.3], this subgroup consists of all classes in H1(F,Z/pr) such that
the corresponding torsor is unramified on Y ; this condition may be checked on an
affine cover of Y . Let SpecA be any affine open subset of X that meets Y . Lift
A (using the Kummer sequence) to H2(X, (Z/pr)(1)). Looking at (2.1) for the
morphisms SpecOX ,Y → SpecA → X shows that the map H2(X, (Z/pr)(1)) →
H2(Kh, (Z/pr)(1)) = V 2

pr (OX ,Y ) factors through V 2
pr (A), and so Lemma 3.5 shows

that ∂(A) lies in H1(Spec(A/mkA),Z/pr). The affine schemes Spec(A/mkA) aris-
ing in this way cover Y , proving the statement.

Part (2) now follows easily from Lemma 2.13. �

We conclude this section with an alternative description of the kernel of ∂ .
The natural map BrK → BrKh allows us to extend the definition of the classical

residue map ∂ ′ to Br(Kh
nr/K) = fil0 BrK . The following lemma is a generalisation

of a result of [13, §1.1] to the case of imperfect residue field.

Lemma 3.6 The kernel of ∂ ′ : fil0 BrK → H1(F,Q/Z) coincides with the image of
BrOX ,Y → BrK .

Proof Let i : SpecF → SpecOX ,Y and j : SpecK → SpecOX ,Y be the inclusions
of the special and generic points, respectively. As in [19, §2], where the case of perfect
residue field is treated, the short exact sequence

0 → Gm → j∗Gm → i∗Z → 0

of sheaves on SpecOX ,Y gives rise to an exact sequence

0 → BrOX ,Y → H2(OX ,Y , j∗Gm) → H2(F,Z).

The Leray spectral sequence shows that H2(OX ,Y , j∗Gm) is the kernel of the natural
map BrK → BrKh

nr . Applying the same construction to the Henselisation A = Oh
X ,Y

gives a commutative diagram with exact rows

0 −−−−→ BrOX ,Y −−−−→ Br(Kh
nr/K) −−−−→ H2(F,Z)

⏐
⏐
�

⏐
⏐
�

∥
∥
∥

0 −−−−→ BrA −−−−→ Br(Kh
nr/K

h) −−−−→ H2(F,Z)

.

If α ∈ fil0 BrK satisfies ∂ ′(α) = 0, then the exact sequence (2.14) shows that the
image of α in BrKh lies in the image of ι′, which is the image of BrA. From the
above diagram it then follows that α lies in the image of BrOX ,Y . �

Corollary 3.7 The kernel of ∂ : fil0 BrX → H1(Y,Q/Z) coincides with the image of
the natural map BrX → BrX.
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Proof The purity theorem [8, Theorem 1.2] shows BrX = BrX ∩ BrOX ,Y , with the
intersection taking place inside BrK . (This particular case of the purity theorem was
proved by Gabber [16, Theorem 2.2].) By Lemma 3.6, this consists of those elements
of fil0 BrX lying in the kernel of ∂ ′, and by Proposition 2.22 this coincides with the
kernel of ∂ . �

4 Comparisons of some (refined) Swan conductors

In this section we begin working towards the proof of Theorem B. Our main tool
will be to blow up the model in a smooth point; this results in a new component
of the special fibre, corresponding to a new discrete valuation and so to a new Swan
conductor and refined Swan conductor. This and the following sections are devoted to
studying the effect of blowing up on the Swan conductor and refined Swan conductor;
this study will lead in Sect. 8 to an inductive proof of Theorem B. We begin by
recalling some more notions from Kato’s paper [30].

4.1 Unramified elements

Let X be a normal irreducible scheme with function field K . For x ∈ X, let Kx be the
field of fractions of the Henselisation Oh

X,x of OX,x and let κ(x) denote the residue
field at x. Following [30, §1.5], we say that an element χ of Hq(K) is unramified on
X if for any x ∈ X, the image of χ in Hq(Kx) belongs to the image of the canonical
lifting map ιq(Oh

X,x) : Hq(κ(x)) → Hq(Kx), which is the first component of λπ (see
Sect. 2.2.1). In the case q = 1, χ is unramified on X in this sense if and only if χ

belongs to H1(X,Q/Z) ⊂ H1(K).

4.2 (Refined) Swan conductors in a geometric setting

As in Sect. 4.1, let X be a normal irreducible scheme with function field K and let
χ ∈ Hq(K). For p ∈ X1 = {x ∈ X | dimOX,x = 1}, the field Kp = Frac(Oh

X,p) is a
Henselian discrete valuation field. Let χp denote the image of χ in Hq(Kp). Follow-
ing [30, Part II], we denote by swp(χ) the Swan conductor of χp. Now let n ≥ 1 and
suppose that χp lies in filn Hq(Kp) (i.e. swp(χ) ≤ n). We denote by rswp,n(χ) the
refined Swan conductor rswn(χp). For an irreducible subset Z ⊂ X of codimension
one with generic point z, we let swZ(χ) = swz(χ) and rswZ,n(χ) = rswz,n(χ) for
n ≥ 1.

4.3 Comparisons

Blowing up a smooth model leads to a new model having two components in its
special fibre. Along each of these components, a given element of the Brauer group
of the generic fibre has a Swan conductor and a refined Swan conductor. In order to
understand how these relate to each other, we put ourselves in the following more
general setting and follow [30, Sect. 7].

For the rest of this section, let A be an excellent regular local ring with field of
fractions K and residue field 	 of characteristic p > 0 such that [	 : 	p] = pc. Let
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(πi)1≤i≤r be part of a regular system of parameters of A, let pi = πiA ∈ SpecA

and let {pi} denote the closure of {pi} in SpecA. Let Ri = A/pi and let κ(pi ) =
Frac(Ri) denote the residue field at pi . For j ∈ {1, . . . , r}, let Dj denote the divi-
sor

∑
i 	=j ({pi} ∩ {pj }) on {pj } = SpecRj . We use �·

Rj
(logDj) to denote the Fp-

subalgebra of �·
κ(pj ) generated by �·

Rj
and elements of the form dlogf such that

f ∈ Rj and Supp(Rj /f ) ⊂ Dj . Let q ≥ 0 and let χ ∈ Hq(K) be unramified on
SpecA \ ⋃r

i=1 {pi}. Let ni = swpi
χ for 1 ≤ i ≤ r .

We now state some results of Kato that will be used here and in the proof of
Theorem B in Sect. 8. The first is an integrality statement. As defined, the refined
Swan conductor at pj is given by

rswpj
(χ) = π

−nj

j (α + β ∧ dlogπj ) (4.1)

with α ∈ �
q

κ(pj ) and β ∈ �
q−1
κ(pj ). The following theorem states that α, β are in fact

integral outside Dj and describes their possible poles along Dj . (Note that the α, β

occurring in Theorem 4.1 coincide with those in (4.1) when r = 1, and in other cases
they are rescaled by

∏
i 	=j π

ni

i .)

Theorem 4.1 (Kato, [30, Theorem 7.1]) Let j ∈ {1, . . . , r} and assume nj ≥ 1. Write

rswpj
(χ) =

( r∏

i=1

π
−ni

i

)
· (α + β ∧ dlogπj )

with α ∈ �
q

κ(pj ) and β ∈ �
q−1
κ(pj ). Then we have

α ∈ �
q
Rj

(logDj), β ∈ �
q−1
Rj

(logDj).

The following proposition describes how the refined Swan conductors associated
to the different pj are related to each other. Retain the notation of Theorem 4.1. For
a subset s ⊂ {1, . . . , r}, let |s| = card(s) and let s(1), . . . , s(|s|) denote the elements
of s ordered so that s(1) < · · · < s(|s|). Theorem 4.1 allows one to write

rswpj
(χ) =

( r∏

i=1

π
−ni

i

)
·
∑

s

ωs(j) ∧ dlogπs(1) ∧ · · · ∧ dlogπs(|s|)

with ωs(j) ∈ �
q−|s|
Rj

, where s ranges over all subsets of {1, . . . , r}.

Proposition 4.2 (Kato, [30, Proposition 7.3]) Let R = A/(p1 + · · · + pr ) and let
j1, j2 ∈ {1, . . . , r} be such that nj1 ≥ 1 and nj2 ≥ 1. Then for each s ⊂ {1, . . . , r}
the images of ωs(j1) and ωs(j2) in �

q−|s|
R coincide.

We now state a definition and a theorem concerning blowups.
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Definition 4.3 (Kato, [30, Definition 7.4]) Recall that 	 is the residue field of A. We
say that χ is strongly clean with respect to A if for any j such that nj ≥ 1, the image

of ωs(j) in �
q−|s|
	 under �

q−|s|
Rj

→ �
q−|s|
	 is not zero for some s.

Theorem 4.4 (Kato, [30, Theorem 8.1]) Let f : X → SpecA be the blowup at the
closed point of SpecA, and let ν ∈ X be the generic point of the exceptional divisor.
Then

swν(f
∗χ) ≤

r∑

i=1

ni

with equality if and only if χ is strongly clean with respect to A.

In fact, Theorem 4.4 is only the first part of Kato’s statement, but it will suffice for
our purposes.

An important case that is missing from Theorem 4.1 and Proposition 4.2 is the
case nj = 0. In that case, there is no refined Swan conductor at pj . However, in its
place we have the isomorphism Hq(κ(pj )) ⊕ Hq−1(κ(pj )) → fil0 Hq(Kpj

) given by
λπj

(see Proposition 2.6(1)). If we write χ = λπj
(χ1, χ2), then we can ask about

the Swan conductors and refined Swan conductors of χ1, χ2 at the prime ideals of
Rj corresponding to the pi . The following lemma, which we see as an analogue of
Theorem 4.1 in the case nj = 0, deals with the Swan conductors.

Lemma 4.5 Let j ∈ {1, . . . , r} and assume nj = 0, whereby there exist unique χ1 ∈
Hq(κ(pj )) and χ2 ∈ Hq−1(κ(pj )) such that χ = λπj

(χ1, χ2) in Hq(Kpj
). Denote

by p̄i the image of pi in Rj = A/pj . Then, for i 	= j , we have swp̄i
(χ1) ≤ ni and

swp̄i
(χ2) ≤ ni .

Proof As in Kato’s proof of Theorem 4.1, we reduce to the following situation:
dim(A) = 2; A is complete; Hc+1

p (	) 	= 0 where pc = [	 : 	p]; and the order of χ

is a power of p. The reduction to dim(A) = 2 comes from replacing A by Aq, where
q corresponds to a height one prime ideal of Rj . By [30, Lemma 7.7], there exists
a field extension 	′/	 such that Hc+1

p (	′) 	= 0 (where c is defined by pc = [	′ : 	′p])
and a p-basis of 	 remains a p-basis of 	′, implying in particular that 	′/	 is separa-
ble. Applying [27, Lemma 1] to A/ms for s ≥ 1 and taking the inverse limit shows
the existence of a complete two-dimensional regular local ring A′ which is flat over
A and has residue field A′ ⊗ 	 = 	′. Now the stability of the Swan conductor un-
der well-behaved extensions of Henselian discrete valuation fields described in [30,
Lemma 6.2 and Proposition 6.3] shows we can replace A by A′. By Proposition 2.6(1)
we may replace χ by its p-primary component and so assume that the order of χ is a
power of p.

Our assumption that dim(A) = 2 implies r ≤ 2. The statement for r = 1 is empty
so assume r = 2, swp1(χ) = 0, swp2(χ) = n ≥ 0. The discrete valuation correspond-
ing to p̄2 on Kp1 has residue field 	 with [	 : 	p] = pc, so by Proposition 2.6(2) the
result is automatically true for q > c + 2; we therefore assume q ≤ c + 2. Kato [30,
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§7.5] defines a complex that in our situation becomes

Hc+3(K)
(∂q)q−−−→

⊕

q∈Spec(A)1

Hc+2(κ(q))
(∂ ′

q)q−−−→ Hc+1(	). (4.2)

Note that fil0 Hc+3(Kq) = Hc+3(Kq); this follows from [30, Corollary 2.5] if
charκ(q) = 0 and from Proposition 2.6(2) if charκ(q) = p. Thus the residue map
of Definition 2.21 is defined on the whole of Hc+3(Kq). Composing it with the nat-
ural map Hc+3(K) → Hc+3(Kq) gives the map ∂q in (4.2). The map ∂ ′

q is defined
similarly.

Consider the element

t = {χ,1 + aπn+1
2 , b1, . . . , bc+2−q} ∈ Hc+3(K),

for arbitrary a ∈ A and b1, . . . , bc+2−q ∈ A[1/π1π2]×. Since swp2(χ) = n, Defini-
tion 2.1 shows that t becomes 0 in Hc+3(Kp2). Now let q ∈ Spec(A)1 \{p1,p2}. Since
t is unramified on SpecA \ ({p1} ∪ {p2}), we have ∂q(t) = 0 by [30, §7.5]. Therefore,
∂q(t) = 0 for all height one prime ideals q 	= p1. Now Kato’s complex (4.2) gives
∂ ′
p1

∂p1(t) = 0. Moreover, the p-primary part of ∂ ′
p1

: Hc+2(κ(p1)) → Hc+1(	) is an
isomorphism by [28, Theorem 3 (3)] and so it follows that ∂p1(t) = 0.

For p1, the definition of λπ in Sect. 2.2.2 gives

t = {λπ1(χ1, χ2),1 + aπn+1
2 , b1, . . . , bc+2−q}

= {ιq(χ1),1 + aπn+1
2 , b1, . . . , bc+2−q}

+ {ιq−1(χ2),π1,1 + aπn+1
2 , b1, . . . , bc+2−q}

in Hc+3(Kp1). If the bi are all units in A then the properties of ιq (see Sect. 2.2.1)
give

t = ιc+3({χ1,1 + āπ̄n+1
2 , b̄1, . . . , b̄c+2−q})

+ {ιc+2((−1)c+1−q{χ2,1 + āπ̄n+1
2 , b̄1, . . . , b̄c+2−q}),π1}

= λπ1

({χ1,1 + āπ̄n+1
2 , b̄1, . . . , b̄c+2−q},

(−1)c+1−q{χ2,1 + āπ̄n+1
2 , b̄1, . . . , b̄c+2−q}),

where the bars denote images in A/p1. Now, recalling that the residue map ∂p1 is
given by the inverse of λπ1 followed by projection on the second factor, we obtain

0 = ∂p1(t) = (−1)c+1−q{χ2,1 + āπ̄n+1
2 , b̄1, . . . , b̄c+2−q}

in Hc+2(κ(p1)). In other words, χ2 annihilates Un+1 Kc+3−q(κ(p1)), where the unit
filtration is defined using the discrete valuation corresponding to p̄2. By [30, Propo-
sition 6.5], this means that swp̄2(χ2) ≤ n.

A similar argument with b1 = π1 gives swp̄2(χ1) ≤ n. �
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Our next result is an analogue of Proposition 4.2 in the case nj = 0. For simplicity
we state it only in the case r = 2. Suppose swp1(χ) = 0 and swp2(χ) = n ≥ 1. Write
χ = λπ1(χ1, χ2) in Hq(Kp1), with χ1 ∈ Hq(κ(p1)) and χ2 ∈ Hq−1(κ(p1)). Apply-
ing Theorem 4.1 with j = 2, we can write

rswp2,n(χ) = [
η + ω ∧ dlog π̄1, η

′ + ω′ ∧ dlog π̄1
]
π2,n

where η ∈ �
q
R2

;ω, η′ ∈ �
q−1
R2

;ω′ ∈ �
q−2
R2

and π̄1 denotes the image of π1 in R2 =
A/p2.

Lemma 4.6 We have

rswp̄2,n(χ1) = [η̄,−η̄′]π̄2,n,

rswp̄2,n(χ2) = [−ω̄, ω̄′]π̄2,n,

where the bars denote reductions modulo p1.

Proof As in the proof of Lemma 4.5, we reduce to the case where dim(A) = 2; A

is complete; Hc+1
p (	) 	= 0 where c is defined by pc = [	 : 	p]; and the order of χ is

a power of p. Our assumption that swp2(χ) = n ≥ 1 implies that q ≤ c + 2. This
follows from Proposition 2.6(2) because Kp2 has residue field κ(p2) with [κ(p2) :
κ(p2)

p] = pc+1 (see [30, Lemma 7.2], for example).
Consider the element

t = {χ,1 + aπn
2 , b1, . . . , bc+2−q} ∈ Hc+3(K)

for arbitrary a ∈ A and b1, . . . , bc+2−q ∈ A[1/π1π2]×. Since t is unramified on
SpecA \ ({p1} ∪ {p2}), we have ∂q(t) = 0 for all q ∈ Spec(A)1 \ {p1,p2} by [30,
§7.5]. Therefore, Kato’s complex (4.2) gives

∂ ′
p1

∂p1(t) + ∂ ′
p2

∂p2(t) = 0. (4.3)

Beware that in what follows, for x ∈ A, the notation x̄ will sometimes denote the
reduction of x modulo p1 and sometimes it will denote the reduction of x modulo
p2. In each new context, we will state which reduction is meant by the notation. The
notation ¯̄x will always mean the image of x in 	, in other words its reduction modulo
p1 + p2.

In Hc+3(Kp2), by definition of the refined Swan conductor (Definition 2.14) we
have

{χ,1 + aπn
2 } = λπ2(ā(η + ω ∧ dlog π̄1), ā(η′ + ω′ ∧ dlog π̄1)),

where the bars denote reduction modulo p2. Therefore, by definitions of t and of λπ

(Sect. 2.2.2 and (2.8)),

t = {λπ2(ā(η + ω ∧ dlog π̄1), ā(η′ + ω′ ∧ dlog π̄1)), b1, . . . , bc+2−q}
= {ιq+1(δ1(ā(η + ω ∧ dlog π̄1))), b1, . . . , bc+2−q}
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+ {ιq(δ1(ā(η′ + ω′ ∧ dlog π̄1))),π2, b1, . . . , bc+2−q}
in Hc+3(Kp2), where again the bars denote reduction modulo p2.

Suppose first that b1, . . . , bc+2−q ∈ A×. Then Lemma 2.11 gives

∂p2(t) = (−1)c−q{δ1(ā(η′ + ω′ ∧ dlog π̄1)), b̄1, . . . , b̄c+2−q}
= (−1)c−q{δ1(āη′), b̄1, . . . , b̄c+2−q}

+ (−1)c−q{δ1(āω′ ∧ dlog π̄1), b̄1, . . . , b̄c+2−q}
= (−1)c−q{δ1(āη′), b̄1, . . . , b̄c+2−q} + (−1)c−q{δ1(āω′), π̄1, b̄1, . . . , b̄c+2−q}
= (−1)c−q{δ1(āη′), b̄1, . . . , b̄c+2−q} + {δ1(āω′), b̄1, . . . , b̄c+2−q, π̄1}

in Hc+2(κ(p2)), where the bars denote reduction modulo p2. Therefore,

∂ ′
p2

∂p2(t) = {δ1( ¯̄aω̄′), ¯̄b1, . . . ,
¯̄bc+2−q}

= δ1( ¯̄aω̄′ ∧ dlog ¯̄b1 ∧ · · · ∧ dlog ¯̄bc+2−q) (4.4)

in Hc+1(	), where ¯̄x denotes the image of x in 	 and ω̄′ denotes the image of ω′ in
�

q−2
	 .
On the other hand, under the assumption that b1, . . . , bc+2−q ∈ A×, a calculation

similar to the one in the proof of Lemma 4.5 yields

∂p1(t) = (−1)c+1−q{χ2,1 + āπ̄n
2 , b̄1, . . . , b̄c+2−q}

in Hc+2(κ(p1)), where this time the bars denote reduction modulo p1. Now write
rswp̄2,n(χ2) = [α,β]π̄2,n for some α ∈ �

q−1
	 , β ∈ �

q−2
	 , where again the bars denote

reduction modulo p1. By definition of the refined Swan conductor, this means {χ2,1+
āπ̄n

2 } = λπ̄2(
¯̄aα, ¯̄aβ), where x̄ denotes the reduction of x modulo p1 and ¯̄x denotes

the image of x in 	. Thus, with the same convention for the bar notation,

∂p1(t) = (−1)c+1−q{λπ̄2(
¯̄aα, ¯̄aβ), b̄1, . . . , b̄c+2−q}

= (−1)c+1−q{ιq(δ1( ¯̄aα)), b̄1, . . . , b̄c+2−q}
+ (−1)c+1−q{ιq−1(δ1( ¯̄aβ)), π̄2, b̄1, . . . , b̄c+2−q}

= (−1)c+1−q{ιq(δ1( ¯̄aα)), b̄1, . . . , b̄c+2−q}
− {ιq−1(δ1( ¯̄aβ)), b̄1, . . . , b̄c+2−q, π̄2}

in Hc+2(κ(p1)). We obtain

∂ ′
p1

∂p1(t) = −{δ1( ¯̄aβ), ¯̄b1, . . . ,
¯̄bc+2−q}

= −δ1( ¯̄aβ ∧ dlog ¯̄b1 ∧ · · · ∧ dlog ¯̄bc+2−q) (4.5)

in Hc+1(	). Now combine (4.3), (4.4), (4.5) and Lemma 4.7 below to obtain β = ω̄′.
The other equalities are obtained by taking some of the bi equal to π1, π2. �
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Lemma 4.7 Let 	 be a field of characteristic p > 0 with [	 : 	p] = pc and Hc+1
p (	) 	=

0. Let α ∈ �
q

	 be such that, for all a ∈ 	 and all b1, . . . , bc−q ∈ 	×,

δ1(aα ∧ dlogb1 ∧ · · · ∧ dlogbc−q) = 0

in Hc+1
p (	). Then α = 0.

Proof By [41], Lemma 07P2, �1
	 is a 	-vector space of dimension c. By linear alge-

bra, �c
	 has dimension 1, and the wedge product �

q
	 × �

c−q
	 → �c

	 is a perfect 	-
linear pairing. The elements a dlogb1 ∧ · · · ∧ dlogbc−q for a ∈ 	 and b1, . . . , bc−q ∈
	× generate �

c−q
	 ; so, if α 	= 0, then the hypothesis implies that δ1(�

c
	) = 0. But

δ1 : �c
	 → Hc+1

p (	) is surjective, so this contradicts Hc+1
p (	) 	= 0. �

5 Blowing up

In this section, we show how information about the refined Swan conductor [α,β]π,n

is retained under blowups. Namely, in Lemma 5.1, we show that after a blowup at
a point P0 on the special fibre, one can read off αP0 and βP0 from the residues at
logarithmic poles of some relevant differentials.

First, we introduce some notation.

5.1 Residues

Let q ≥ 1, let X → S be a morphism of schemes and let D ⊂ X be an effective Cartier
divisor. Suppose that X étale locally along D looks like D ×A

1, in the sense that the
de Rham complex of log poles is defined for D ⊂ X over S (see [41], Definition
0FMV); this is for example true if D is a smooth prime divisor in a smooth variety X

over a field. Recall (from [41], Section 0FMU, for example) the exact sequence

0 → �
q
X/S → �

q
X/S(logD)

ρ−→ �
q−1
D → 0 (5.1)

of sheaves on X, where ρ is the residue map: on a sufficiently small open set U , we
have D ∩ U = (f ) for some rational function f and any section ω of �q(logD) on
U can be written as ω = η + g dlogf with η ∈ �q(U) and g ∈ �q−1(U); then ρ(ω)

is defined to be g|D , which is independent of the choices made.

5.2 Residues after a blowup

For the remainder of this section, let Y be a smooth variety of dimension m over a
field L, P0 ∈ Y(L) a point, R = OY,P0 the local ring at P0 with maximal ideal m.
Let f : Ỹ → SpecR be the blowup at P0; by definition, we have Ỹ = ProjS, where
S is the graded ring R ⊕ ⊕

i≥1 m
i , with the grading putting the factor mi in degree

i. Let Z = f −1(P0) be the exceptional fibre, isomorphic to P
m−1
L . There is a natural

homomorphism m → S sending x ∈m to the element x(1) ∈ S, which is x considered

https://stacks.math.columbia.edu/tag/07P2
https://stacks.math.columbia.edu/tag/0FMV
https://stacks.math.columbia.edu/tag/0FMV
https://stacks.math.columbia.edu/tag/0FMU
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as an element of the degree-1 factor of S. This induces a natural homomorphism
m/m2 → H0(Z,O(1)), which we also denote by x �→ x(1).

We begin by identifying some natural isomorphisms.
The map d : m/m2 → �1

Y/L|P0 = �1
R/L ⊗R L is an isomorphism; let

ψ : �1
Y/L|P0 → H0(Z,OZ(1)) (5.2)

be the inverse of this isomorphism composed with the map x �→ x(1) defined above
(so ψ(dx) = x(1)).

By [22, Theorem II.8.13], there is a short exact sequence of sheaves

0 → �1
Z/L(2) →OZ(1)m →OZ(2) → 0

on Z, giving a short exact sequence

0 → H0(Z,�1
Z/L(2)) → H0(Z,OZ(1))m → H0(Z,OZ(2)).

Observe that H0(Z,OZ(1))m can be identified with H0(Z,OZ(1))⊗2: one con-
crete way to see this is by choosing an L-basis (comprising m basis vectors) for
H0(Z,OZ(1)). Having made this identification, the map to H0(Z,OZ(2)) is given
by x ⊗ y �→ xy, and so its kernel is naturally (up to a choice of sign) identified with∧2 H0(Z,OZ(1)) under the embedding x ∧ y �→ (x ⊗ y) − (y ⊗ x). Combining this
with the isomorphism ψ gives an isomorphism

ϕ : �2
Y/L|P0 → H0(Z,�1

Z/L(2)). (5.3)

The proof of [22, Theorem II.8.13] leads to the following explicit description of ϕ: if
x1, . . . , xm form a basis for m/m2, then

ϕ(dxi ∧ dxj ) = (x
(1)
j )2d(x

(1)
i /x

(1)
j ).

We are now ready to state the main result of this section.

Lemma 5.1 Fix x ∈m \m2 and let πZ = f ∗x.

1. The element πZ is a local parameter in OỸ ,Z .
2. Take β ∈ �1

R/L and denote by βP0 the image of β in �1
Y/L|P0 . Then (f ∗β)/πZ lies

in �1
OỸ ,Z

(logZ) and has residue ψ(βP0)/x
(1).

3. If furthermore βP0 	= 0, then (f ∗β)/πr
Z does not lie in �1

OỸ ,Z
(logZ) for r > 1.

4. Take α ∈ �2
R/L and denote by αP0 the image of α in �2

Y/L|P0 . Then (f ∗α)/π2
Z lies

in �2
OỸ ,Z

(logZ) and has residue ϕ(αP0)/(x
(1))2.

5. If furthermore αP0 	= 0, then (f ∗α)/πr
Z does not lie in �2

OỸ ,Z
(logZ) for r > 2.

Proof Since the statements concern OỸ ,Z , we may work on the affine piece U of Ỹ

obtained by inverting x(1). Denote by fU the restriction of f to U . We use standard
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facts about blowups: see, for example, [41], Section 052P. Extend x to a basis x =
x1, x2, . . . , xm for m/m2; then we have U = SpecR′, where

R′ = R[u2, . . . , um]/(xu2 − x2, . . . , xum − xm)

and ui = x
(1)
i /x(1). The ideal mR′ is principal, generated by the image of x, prov-

ing (1). In what follows we will often abuse notation and identify R with its image in
R′.

We can write β = a1dx1 + · · · + amdxm with a1, . . . , am ∈ R. Then

f ∗
U(β) = a1dx1 + a2(u2dx1 + x1du2) + · · · + am(umdx1 + x1dum).

and so (writing πZ = x = x1 in R′)

f ∗
U(β)/πZ = (a2du2 + · · · + amdum) + (a1 + a2u2 + · · · + amum)dπZ/πZ.

By definition, this lies in �1
OỸ ,Z

(logZ). Since each ai lies in R, the restriction of ai

to Z is the constant function ai(P0). The residue of f ∗
U(β)/πZ is therefore

a1(P0) + a2(P0)u2|Z + · · ·am(P0)um|Z = (a1(P0)x
(1)
1 + · · ·am(P0)x

(1)
m )/x

(1)
1

= ψ(βP0)/x
(1)
1

proving (2). Statement (3) follows easily: if (f ∗β)/πr
Z were to lie in �1

OỸ ,Z
(logZ)

with r > 1, then (f ∗β)/πZ would lie in �1
OỸ ,Z

; but this is not the case, since by (2)

its residue is non-zero.
To prove (4), write α = ∑

i>j aij dxi ∧ dxj with aij ∈ R. We treat the terms sepa-
rately.

For terms with j = 1, we have

f ∗
U(ai1dxi ∧ dx1) = ai1d(x1ui) ∧ dx1 = ai1x1dui ∧ dx1

and so

π−2
Z f ∗

U(ai1dxi ∧ dx1) = ai1dui ∧ dπZ/πZ,

which has residue

ai1(P0)d(x
(1)
i /x

(1)
1 ) = ϕ(ai1(P0)dxi ∧ dx1)/(x

(1)
1 )2.

as required. For terms with i, j 	= 1, we have

f ∗
U(aij dxi ∧ dxj ) = aij d(x1ui) ∧ d(x1uj )

= aij (x
2
1dui ∧ duj + x1uidx1 ∧ duj + x1ujdui ∧ dx1)

and so

π−2
Z f ∗

U(aij dxi ∧ dxj ) = aij dui ∧ duj + aij (uj dui − uiduj ) ∧ dπZ/πZ,

https://stacks.math.columbia.edu/tag/052P
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with residue

aij (P0)u
2
j d(x

(1)
i /x

(1)
j ) = ϕ(aij (P0)dxi ∧ dxj )/(x

(1)
1 )2.

This proves (4), and (5) follows as in the first case. �

6 Some calculations for Pn

This section collects some calculations for projective space. In Sect. 6.1 we study
some spaces of differentials on projective space with poles of bounded (logarith-
mic) order along a hyperplane, and show to what extent they are determined by their
residues. This will be used in Sect. 8 in the proof of Theorem B in conjunction with
a result of Kato (Proposition 4.2) to transfer information about the refined Swan con-
ductor along a chain of blowups. The relevant projective spaces will be the excep-
tional divisors of these blowups. In Sect. 6.2 we describe the graded pieces of Kato’s
filtration by Swan conductor on H1(E \ Z,Q/Z), where E is projective space over
a field of characteristic p and Z is a hyperplane. This will be used in Sect. 8 in the
proof of Theorem B once our successive blowups have reduced the Swan conductor
to zero, and Proposition 3.1 has reduced our task to computing the residue map ∂ via
Lemma 3.3.

6.1 Differentials with logarithmic poles along a hyperplane in P
n

Let L be a field and let Pn = P
n
L have coordinates X0, . . . ,Xn. Let H ⊂ P

n be the
hyperplane defined by X0 = 0.

Lemma 6.1 1. The homomorphism

H0(Pn,�1(logH)(H))
ρ−→ H0(H,O(1)), (6.1)

obtained by forming the tensor product with O(H) in (5.1) and using O(H)|H ∼=
OH (1), is an isomorphism. H0(Pn,�1(logH)(H)) has a basis {d(Xi/X0) : 1 ≤
i ≤ n} satisfying ρ(d(Xi/X0)) = −Xi |H .

2. H0(Pn,�1(2H)) has a basis consisting of the n(n + 1)/2 elements

{(X2
i /X2

0)d(Xj/Xi) = −(X2
j /X2

0)d(Xi/Xj ) : 0 ≤ i < j ≤ n}.
The n of these with i = 0 make up the aforementioned basis of the subspace
H0(Pn,�1(logH)(H)). The natural morphism of sheaves �1

Pn → ι∗�1
H (where

ι is the inclusion of H in P
n) gives rise to a short exact sequence

0 → H0(Pn,�1(logH)(H)) → H0(Pn,�1(2H))
ω �→ω|H−−−−→ H0(H,�1(2)) → 0

in which, for 0 < i < j ≤ n, the basis element (X2
i /X2

0)d(Xj/Xi) maps to
X2

i d(Xj/Xi) ∈ H0(H,�1(2)).
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3. The homomorphism

H0(Pn,�2(logH)(2H))
ρ−→ H0(H,�1(2)),

obtained by forming the tensor product with O(2H) in (5.1) and using
O(2H)|H ∼= OH (2), is an isomorphism. H0(Pn,�2(logH)(2H)) has a basis con-
sisting of the n(n − 1)/2 elements

{d(Xi/X0) ∧ d(Xj/X0) : 1 ≤ i < j ≤ n}
satisfying ρ(d(Xi/X0) ∧ d(Xj/X0)) = X2

i d(Xj/Xi).

Proof We will repeatedly use the short exact sequence

0 → �1
Pn → OPn(−1)n+1 →OPn → 0 (6.2)

of [22, Theorem II.8.13] which, together with the standard calculation of the coho-
mology groups Hi (Pn,O(r)), lets us calculate the cohomology of �1(r) (or, equiva-
lently, �1(rH)). For r > 0, taking the tensor product with O(r) and taking cohomol-
ogy gives the exact sequence

0 → H0(Pn,�1(r)) → H0(Pn,O(r − 1))n+1 α−→ H0(Pn,O(r)) →
→ H1(Pn,�1(r)) → 0, (6.3)

where we have used H1(Pn,O(r − 1)) = 0. Identifying H0(Pn,O(r − 1)) with the
space of homogeneous polynomials of degree r − 1, the map α is given by

α(f0, . . . , fn) = f0X0 + · · · + fnXn.

To prove (1), take r = 1; then α is an isomorphism, showing that H0(Pn,�1(1))

and H1(Pn,�1(1)) are both zero. It then follows easily that

ρ : H0(Pn,�1(logH)(H)) → H0(H,O(1))

is an isomorphism. We have

d(Xi/X0) = (Xi/X0)dlog(Xi/X0) = −(Xi/X0)dlog(X0/Xi)

showing ρ(d(Xi/X0)) = −Xi |H . The elements −Xi |H form a basis of H0(H,O(1)),
showing that the d(Xi/X0) form a basis for H0(Pn,�1(logH)(H)).

To prove (2), take r = 2; then a basis for the kernel of α is given by the n(n +
1)/2 elements having Xi in the j th position and −Xj in the ith position, for i < j .
Therefore H0(Pn,�1(2H)) has dimension n(n + 1)/2.

We can now prove by induction on n that the claimed elements do indeed form
a basis. For n = 1 the dimension is 1 and it is clear. Assuming the statement to
be true for P

n−1, the elements X2
i d(Xj/Xi) with 0 < i < j ≤ n form a basis for

H0(H,�1(2)). Now, of the claimed basis elements (X2
i /X2

0)d(Xj/Xi), those with
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i = 0 form a basis for H0(Pn,�1(logH)(H)) by (1) and restrict to zero on H . Those
with i > 0 map bijectively onto our basis for H0(H,�1(2)), showing that all together
they form a basis for H0(Pn,�1(2H)).

To prove (3), we first verify ρ(d(Xi/X0)∧d(Xj/X0)) = X2
i d(Xj/Xi) by writing

d(Xi/X0) ∧ d(Xj/X0) = (XiXj/X2
0)dlog(Xi/X0) ∧ dlog(Xj/X0)

= (XiXj/X2
0)dlog(Xj/X0) ∧ dlog(X0/Xi)

= (XiXj/X2
0)(dlog(Xj/Xi) − dlog(X0/Xi))

∧ dlog(X0/Xi)

= (X2
i /X2

0)d(Xj/Xi) ∧ dlog(X0/Xi)

which, since X0/Xi is a local parameter at H , gives the claimed result.
Given the exact sequence

0 → H0(Pn,�2(2H)) → H0(Pn,�2(logH)(2H))
ρ−→ H0(H,�1(2)),

and that the elements X2
i d(Xj/Xj ) form a basis for H0(H,�1(2)) by (2), it is now

enough to show H0(Pn,�2(2H)) = 0. To see this, consider the short exact sequence

0 → �2
Pn → ∧2(OPn(−1)n+1) → �1

Pn → 0

arising from (6.2); for details see [41], Lemma 0FUK, and its proof. As remarked
there, the middle term is isomorphic to the direct sum of n(n+1)/2 copies of O(−2).
Twisting and taking global sections gives a short exact sequence

0 → H0(Pn,�2(2)) → H0(Pn,O)n(n+1)/2 → H0(Pn,�1(2)) → H1(Pn,�2(2))

in which the last term vanishes by loc. cit.. Comparing dimensions shows that
H0(Pn,�2(2)) = 0, completing the proof. �

6.2 (Refined) Swan conductors for H1(E \ Z,Q/Z)

Let F be a field of characteristic p > 0, let E = P
m
F

and let Z ⊂ E be a hyperplane.
Let κ(E)Z be the field of fractions of the Henselisation of OE,Z . Let 1

p
denote the

canonical map H1
p(κ(E)Z) → H1(κ(E)Z,Q/Z) induced by identifying Z/p with the

p-torsion in Q/Z.

Lemma 6.2 Let E = P
m
F

with homogeneous coordinates X0, . . . ,Xm and let Z be
the hyperplane X0 = 0. Write π = X0/X1. Let κ(E)Z be the field of fractions of the
Henselisation of OE,Z and consider the filtration on H1(E \ Z,Q/Z) obtained by
pulling back {filn H1(κ(E)Z)}.
1. fil0 H1(E \ Z,Q/Z) consists of the constant classes H1(F,Q/Z).

https://stacks.math.columbia.edu/tag/0FUK
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2. For p � n, there is an isomorphism

H0(Z,O(n)) → grn H1(E \ Z,Q/Z)

given by F �→ 1
p
δ1(F̃ /Xn

0 ), where F̃ ∈ H0(E,O(n)) is any lift of F and

δ1 : κ(E)Z → H1
p(κ(E)Z) is the Artin–Schreier map. The refined Swan conductor

is given by

rswn

(
1

p
δ1(F̃ /Xn

0 )

)

= [ − d(F/Xn
1 ), nF/Xn

1

]
π,n

.

Proof There is an exact sequence

0 → H1(F,Q/Z) → H1(E \ Z,Q/Z) → H1(Ē \ Z̄,Q/Z)

where Ē, Z̄ are base changes of E, Z to a separable closure of F. By Proposi-
tion 2.6, the piece fil0 H1(E \ Z,Q/Z) is generated by the prime-to-p torsion in
H1(E \ Z,Q/Z) together with the elements unramified at Z, that is, the image of
H1(E,Q/Z). We have E = P

m
F

and E \ Z ∼= A
m
F

. Therefore H1(Ē \ Z̄,Q/Z) has
no prime-to-p torsion, showing that the prime-to-p torsion in H1(E \ Z,Q/Z) all
comes from H1(F,Q/Z). Moreover, H1(Ē,Q/Z) is trivial, showing that the image
of H1(E,Q/Z) also coincides with H1(F,Q/Z). This proves (1).

Since the filtration on H1(E \ Z,Q/Z) is obtained by pulling back that on
H1(κ(E)Z), the resulting map

grn H1(E \ Z,Q/Z) → grn H1(κ(E)Z)

is injective. By [30, Lemma 3.6], for p � n there is a surjection

h : κ(Z) → grn H1(κ(E)Z), x �→ 1

p
δ1(x̃π−n).

By [30, Lemma 3.7], the resulting element has refined Swan conductor

rswn

(
1

p
δ1(x̃π−n)

)

= [−dx,nx]π,n.

In particular, this shows that h is an isomorphism for p � n. We claim that the image
of H0(Z,O(n)) under the injective map F �→ F/Xn

1 corresponds under the isomor-
phism h to grn H1(E \ Z,Q/Z).

Indeed, we have h(F/Xn
1 ) = 1

p
δ1(F̃ /Xn

0 ), which is unramified outside Z. On the

other hand, if χ is an element of grn H1(E \ Z,Q/Z) then we write χ = 1
p
δ1(x̃π−n)

and consider its refined Swan conductor. By Theorem 4.1 applied to the local rings
of all points in Z, we see that x is regular on Z apart from a pole of order at most n

along X1 = 0. (For points where π is a local equation for Z this follows immediately;
at other points of Z a simple change of variables is needed.) Thus x is of the form
F/Xn

1 for some F ∈ H0(Z,O(n)), as claimed. �
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7 Tangent vectors

We return to the setting and notation of Theorem B, wherein k is a p-adic field with
ring of integers Ok , uniformiser π and residue field F, and X/k is a smooth geomet-
rically irreducible variety with smooth model X /Ok , and geometrically irreducible
special fibre Y . For r ≥ 1 we write qr for the reduction map X (Ok) → X (Ok/π

rOk),
where π denotes a uniformiser of k. For P ∈ X (Ok) we use B(P, r) to denote
the set q−1

r (qr (P )) of points Q ∈ X (Ok) such that Q has the same image as P in
X (Ok/π

r). We write P0 for the image of P in Y(F).
In Lemma 7.1 we collect some well-known facts relating lifts of points to tangent

vectors. In Lemma 7.3 we show how to keep track of these tangent vectors when
blowing up our scheme X at a point on the special fibre.

Lemma 7.1 There is a function B(P, r) → TP0(Y ), which we denote as Q �→ [−→
PQ]r ,

depending on the choice of uniformiser π and with the following properties.

1. The function factors as qr+1 followed by a bijection from qr+1(B(P, r)) to TP0(Y ).
2. For a point Q ∈ B(P, r) and a regular function f ∈OX ,P0 , we have

f (Q) ≡ f (P ) + πrdfP0([
−→
PQ]r ) (mod πr+1), (7.1)

where df ∈ �1
OY,P0/F

is the derivative of f restricted to Y , dfP0 ∈ �1
Y |P0 is its

image in the stalk at P0, and �1
Y |P0 is naturally identified with the F-linear dual

of TP0(Y ).
3. Let k′/k be a finite extension, with F

′/F the extension of residue fields, and let X′
and Y ′ be the base changes of X to k′ and Y to F

′, respectively. Let P ′ ∈ X′(k′)
be the base change of P . Fix a uniformiser π ′ in k′ and write π = c(π ′)ε with
c ∈ O×

k′ , so that ε is the ramification index of k′/k. Let c̄ denote the image of c in
F

×. Then the diagram

qr+1(B(P, r))
[−→P ·]r−−−−→ TP0(Y )

⏐
⏐
�

⏐
⏐
�×c̄r

qεr+1(B(P ′, εr)) [−→P ′·]εr−−−−→ TP0(Y
′)

commutes, where we identify TP0(Y
′) with TP0(Y ) ⊗F F

′.

Proof One explicit way to see this is as follows. Write d = dimX. Since X → Ok

is smooth at P0, there is a neighbourhood of P0 that embeds into A
n
Ok

as the zero
set of n − d polynomials f1, . . . , fn−d . Such an embedding induces an embedding
of the tangent space TP (X ) into TP (An) ∼= On

k . Consider a point Q ∈ A
n(Ok) that

is congruent to P modulo πr ; we can write Q = P + πrv, where v ∈ TP (An
Ok

) is a
vector. Using the Taylor expansion, the condition that qr+1(Q) lie in X can be written
as

(f1(Q), . . . , fn−d(Q)) = (f1(P ), . . . , fn−d(P )) + πrJ(P )v

≡ 0 (mod πr+1), (7.2)
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where J is the (n − d) × n Jacobian matrix of partial derivatives of the fi . Let v̄ ∈ F
n

be the reduction of v modulo π ; the reduction of J(P ) modulo π is J(P0). The con-
dition (7.2) is equivalent to J(P0)v̄ = 0, which simply says that v̄ lies in the tangent
space TP0(Y ); because Y is smooth at P0, this is an F-vector space of dimension d . So

every point Q ∈ B(P, r) gives rise to a vector v̄ ∈ TP0(Y ), and we define [−→
PQ]r = v̄.

Conversely, every v̄ ∈ TP0(Y ) gives a solution to (7.2), which by Hensel’s Lemma
lifts to a point of B(P, r). This defines the bijection of (1).

For (2), take Q ∈ B(P, r) and write as before Q = P + πrv, where v ∈ On
k has

reduction v̄ lying in TP0(Y ). The function f extends to a regular function on a neigh-
bourhood of P0 in A

n
Ok

, and we denote the extension also by f . Taylor expansion
gives

f (Q) ≡ f (P ) + πr∇f (P ) · v (mod πr+1).

This depends only on v̄, and the restriction of ∇f (P ) to TP0(Y ) is dfP0 , proving (2).
Also, property (2) characterises the bijection and does not depend on the embedding
used to define it, showing that the bijection itself does not depend on the embedding.

The statement (3) follows easily from the definitions using

P + πrv = P + cr(π ′)εrv. �

Remark 7.2 The canonical bijection is between qr+1(B(P, r)) and the vector space
TP0(Y )⊗F (mr/mr+1), instead of TP0(Y ), as can be seen by applying (3) with k = k′.
See, for example, [20, §III.5]. That gives a bijection independent of the choice of π .
However, since we will use the formula (2), we opt for the explicit rather than the
canonical choice.

7.1 Tangent vectors and blowups

Let m denote the maximal ideal of OY,P0 . Let f : X̃ → X be the blowup of X at
P0 and let E be the exceptional divisor, isomorphic to P

m
F

. Let Ỹ denote the strict
transform of Y . The linear form π(1) ∈ H0(E,O(1)) cuts out a hyperplane in E which
is E ∩ Ỹ . Its complement U is naturally isomorphic to Spec Sym(m/m2), the affine
space corresponding to the vector space m/m2. To make this explicit, choose a system
of local parameters π,x1, . . . , xm in OX ,P0 ; then π(1), x

(1)
1 . . . , x

(1)
m give a system of

projective coordinates on E, so the ui = x
(1)
i /π(1) for 1 ≤ i ≤ m restrict to a system of

affine coordinates on U . This means that, for every point O ∈ U(F), there is a natural
isomorphism θ from m/m2 to the cotangent space mO/m2

O . (In explicit coordinates,
θ(dxi) = dui .)

Lemma 7.3 Let Q ∈ B(P, r), let P̃ , Q̃ be the strict transforms of P , Q, respectively,
and let P̃0, Q̃0 ∈ E(F) be their respective reductions.

1. If r > 1, then Q̃ ∈ B(P̃ , r − 1) and the dual map θ∨ : TP̃0
U → TP0Y sends

[−→̃
PQ̃]r−1 to [−→

PQ]r . In explicit coordinates, dui([
−→̃
PQ̃]r−1) = dxi([−→

PQ]r ) for
1 ≤ i ≤ m.
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2. If r = 1 then ui(Q̃0) = dxi([−→
PQ]1) for 1 ≤ i ≤ m.

Proof Work on the affine piece of X̃ corresponding to π(1); then f is defined by
xi = πui for 1 ≤ i ≤ m and (7.1) yields

πui(Q̃) ≡ πui(P̃ ) + πrdxi([−→
PQ]r ) (mod πr+1). (7.3)

Hence, ui(Q̃) ≡ ui(P̃ ) (mod πr−1) for 1 ≤ i ≤ m, whereby Q̃ ∈ B(P̃ , r − 1). For
r > 1, (7.1) yields

ui(Q̃) ≡ ui(P̃ ) + πr−1dui([
−→̃
PQ̃]r−1) (mod πr). (7.4)

and comparing (7.3) and (7.4) proves (1).
To prove (2), observe that for r = 1, (7.3) gives

dxi([−→
PQ]1) ≡ ui(Q̃) − ui(P̃ ) (mod π)

= ui(Q̃0) − ui(P̃0) = ui(Q̃0)

since ui(P̃0) = 0. �

8 Proof of Theorem B

We continue with the setting and notation of Theorem B. In this section, we will
prove the following strengthening of Theorem B.

Theorem 8.1 Let k be a finite extension of Qp . Let X be a smooth, geometrically
irreducible variety over k, and let X → SpecOk be a smooth model of X. Suppose
that the special fibre Y of X is geometrically irreducible. Let n > 0, let A ∈ filn BrX,
and let rswn(A) = [α,β]π,n for some (α,β) ∈ �2

F ⊕ �1
F . Let P ∈ X (Ok), and let

P0 ∈ Y(F) be the reduction of P . Then

1. α and β are regular at P0.

Moreover, we have the following description of the evaluation map |A| : X (Ok) →
Brk.

2. For Q ∈ B(P,n),

invA(Q) = invA(P ) + 1

p
TrF/Fp

βP0([
−→
PQ]n).

In particular, if βP0 	= 0 then |A| takes p distinct values on B(P,n).
3. If β = 0 and n > 2 then there exists γ ∈ �1

Y |P0 such that, for Q ∈ B(P,1) and
R ∈ B(Q,n − 1),

invA(R) = invA(Q) − 1

p
TrF/Fp

αP0([
−→
PQ]1, [−→QR]n−1)

+ 1

p
TrF/Fp

(γ ([−→QR]n−1)).
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If, furthermore, p is odd and 2 < n < e′ + 2 + te for some t ∈ Z≥0 such that
[k(μpt+1) : k] is coprime to p then the following holds. For any integer s with
1 ≤ s < n/2, Q ∈ B(P, s) and R ∈ B(Q, r) with r = n − s, we have

invA(R) = invA(Q) − s

p
TrF/Fp

αP0([
−→
PQ]s , [−→QR]r ) + gA,Q(R),

where gA,Q : B(Q, r) → p−(t+1)
Z/Z is a continuous function satisfying

gA,Q(R) = 1
p

TrF/Fp
(γ ([−→QR]n−1)) for all R ∈ B(Q,n − 1).

4. If β = 0 and αP0 	= 0 then there exists Q ∈ B(P,1) such that |A| takes p distinct
values on B(Q,n − 1).

5. Suppose A has order pt+1 in BrX for some t ∈ Z≥0. Suppose either that n >

e′ + (t − 1)e, or that n = e′ + (t − 1)e and C(α) = C(β) = 0, where C denotes
the Cartier operator.
(i) If βP0 	= 0 then |A| : B(P,n − te) → Br k[pt+1] ∼= p−(t+1)

Z/Z is surjective.
(ii) If β = 0 and αP0 	= 0 then, under the additional assumptions that n > e′ + 2

and n ≥ te + 3, there exists Q ∈ B(P,1) such that |A| : B(Q,n − te − 1) →
Brk[pt+1] ∼= p−(t+1)

Z/Z is surjective.

Remark 8.2 1. As remarked in the introduction, case (4) is only possible if p | n. In
fact, Lemma 2.17 shows that if p � n and β = 0 then α = 0.

2. Lemma 8.10 provides a complement to (3) in the case where β = 0 and p = n = 2.
3. The function gA,Q(R) in (3) satisfies gA,Q(R) = invD(R) − invD(Q) for some

D ∈ filn−1 Br(OX ,P0 [p−1]): see the proof below.
4. The condition in (3) that the Swan conductor of A be smaller than e′ + 2 + te

for some t ∈ Z≥0 with [k(μpt+1) : k] coprime to p is automatically satisfied (with
t = 0) if p2 does not divide the order of A in BrX, see [30, Proposition 4.1(1)]
and Proposition 2.6(1).

5. The condition in (5)(ii) that n ≥ te + 3 is only needed if p = e = 2. In all
other cases where t ≥ 1, it follows from n ≥ e′ + (t − 1)e combined with p | n

(Lemma 2.17) and p | e (Remark 2.20). The result for t = 0 is (4).

We begin the proof by noting that Theorem 8.1(1) follows from Theorem 4.1 ap-
plied to the local ring OX ,P0 . (Note that A lying in BrX ⊂ H2(K) is equivalent to
A being unramified on X in the sense of § 4.1 by [30, Corollary 2.5] and purity, see
[12, Theorem 3.7.3], for example.)

Now let f : X̃ →X be the blowup of X at P0 and let E be the exceptional divisor,
isomorphic to P

m
F

. Let Ỹ , P̃ , Q̃, R̃ denote the strict transforms of Y , P , Q, R and
let Z = E ∩ Ỹ . Let P̃0, Q̃0, R̃0 ∈ E(F) be the reductions of P̃ , Q̃, R̃, respectively.
Let K denote the function field of X. Let m be the maximal ideal of OX ,P0 . Extend

π to a basis π,x1, . . . , xm for m/m2. Then the restrictions of π(1), x
(1)
1 , . . . , x

(1)
m ∈

H0(X̃ ,O(1)) give a system of homogeneous coordinates on E ∼= P
m
F

, in which Z ⊂ E

is cut out by π(1) = 0. On X̃ we have πx
(1)
1 = x1π

(1), giving π = πỸ πE where

πỸ = π(1)/x
(1)
1 , πE = f ∗(x1)
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are local parameters at the divisors Ỹ and E respectively.
Our first two results in this section relate the Swan conductor and refined Swan

conductor at E of f ∗A to those of A. We recall the definitions of swE(f ∗A) and
rswE,n(f

∗A) from Sect. 4.2. We make use of the homomorphisms

ψ : �1
Y/F|P0 → H0(Z,O(1)),

ϕ : �2
Y/F|P0 → H0(Z,�1

Z/F(2)),

ρ : H0(E,�1(logZ)(Z)) → H0(Z,O(1))

defined in (5.2), (5.3) and (6.1), respectively.

Lemma 8.3 Let A ∈ BrX with sw(A) = n > 1 and rswn(A) = [α,β]π,n. Then
swE(f ∗A) ≤ n − 1 and rswE,n−1(f

∗A) = [αE,βE]π,n−1 where βE is the unique
element of H0(E,�1(logZ)(Z)) satisfying ρ(βE) = −ψ(βP0). Explicitly, if βP0 =
∑

i aidxi for some ai ∈ F then βE = ∑
i aidui where ui = x

(1)
i /π(1). In particular, if

βP0 	= 0 then swE(f ∗A) = n − 1.

Proof The blowup f induces an isomorphism OX ,Y → OX̃ ,Ỹ , whereby
swỸ (f ∗A) = swY A and

rswỸ ,n(f
∗A) = π−n

(
f ∗α + f ∗β ∧ dlogπ

)
.

Since F is perfect, �1
F

= �2
F

= 0. In particular, this implies that the images of α

and β in �2
F

and �1
F

, respectively, are zero. Thus, A is not strongly clean with respect
to OX ,P0 (see Definition 4.3). Consequently, Theorem 4.4 shows swE(f ∗A) < n.
Write swE(f ∗A) = n − r for some r ≥ 1.

Writing π = πỸ πE gives

rswỸ ,n(f
∗A) = (πn

Ỹ
πn−r

E )−1π−r
E

(
f ∗α + f ∗β ∧ dlogπE + f ∗β ∧ dlogπỸ

)
. (8.1)

Let RỸ = OX̃ ,Z/πỸ = OỸ ,Z and RE = OX̃ ,Z/πE = OE,Z . Now Theorem 4.1 gives

π−r
E f ∗β ∈ �1

RỸ
(logZ).

Suppose βP0 	= 0. Applying Lemma 5.1(3) shows that r = 1, that is, swE(f ∗A) =
n − 1. On the other hand, using π as a uniformiser on E, we have

rswE,n−1(f
∗A) = (πn−1)−1

(
αE + βE ∧ dlogπ

)

with (αE,βE) ∈ �2
κ(E) ⊕ �1

κ(E). Writing π = πỸ πE gives

rswE,n−1(f
∗A) = (πn

Ỹ
πn−1

E )−1πỸ

(
αE + βE ∧ dlogπỸ + βE ∧ dlogπE

)
. (8.2)

Applying Theorem 4.1 to all local rings of E gives βE ∈ �1
E(logZ)(Z).

We now apply Proposition 4.2, which states that the terms in dlogπỸ ∧ dlogπE

in (8.1) and (8.2) coincide, after restricting to κ(Z). In other words, the residue
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of −π−1
E f ∗β along Z ⊂ Ỹ and the residue of πỸ βE along Z ⊂ E are equal. By

Lemma 5.1(2) and Lemma 6.1(1), this is equivalent to ρ(βE) = −ψ(βP0).
If, on the other hand, we have βP0 = 0, then either r = 1 and the above calculation

gives βE = 0; or r > 1 and αE , βE both vanish; in either case, the claimed equation
for βE holds. �

Taking s = 0 in Lemma 8.4 below shows that when β = 0 the Swan conductor
drops further and the refined Swan conductor at E of f ∗A is related to αP0 .

Lemma 8.4 Suppose n > 0 and p | n. Let s ≥ 0 and suppose sw(A) = n −
2s and rswn−2s(A) = [αs,βs]π,n−2s with αs = ∑

i>j aij dxi ∧ dxj and βs =
s
∑

i>j aij x
2
j d(xi/xj ) for some aij ∈ OY,P0 . Then swE(f ∗A) ≤ n − 2(s + 1) and

rswE,n−2(s+1)(f
∗A) = [αE,βE]π,n−2(s+1) with

αE =
∑

i>j

aij (P0)dui ∧ duj

βE ≡ (s + 1)
∑

i>j

aij (P0)u
2
j d(ui/uj ) mod H0(E,�1(logZ)(Z)).

In particular, if αs,P0 	= 0 then swE(f ∗A) = n − 2(s + 1).

Remark 8.5 By Lemma 6.1(2), the statement concerning βE is equivalent to βE |Z =
(s + 1)ϕ(αP0), where ϕ is defined as in (5.3).

Proof By Lemma 8.3 and its proof, we have swE(f ∗A) ≤ n − 2s − 1 and
rswE,n−2s−1(f

∗A) = [α′,0]πE,n−2s−1 for some α′ ∈ �2
F , since all the xi vanish

at P0 and hence βs,P0 = 0. Suppose for contradiction that swE f ∗A = n − 2s − 1.
Then (8.1) gives

rswỸ ,n−2s(f
∗A)

= (πn−2s

Ỹ
πn−2s−1

E )−1π−1
E

(
f ∗αs + f ∗βs ∧ dlogπE + f ∗βs ∧ dlogπỸ

)
. (8.3)

Since βs,P0 = 0, Lemma 5.1 shows that π−1
E f ∗βs ∈ �1(Ỹ ) and π−1

E f ∗αs ∈ �2(Ỹ ),
with (π−1

E f ∗αs)|Z = 0. Moreover, (8.2) becomes

rswE,n−2s−1(f
∗A) = (πn−2s

Ỹ
πn−2s−1

E )−1πỸ α′. (8.4)

Applying Theorem 4.1 to all local rings of E gives α′ ∈ �2
E(logZ)(Z). Now we

apply Proposition 4.2 twice: comparing the dlogπE terms in (8.3) and (8.4) gives
(π−1

E f ∗βs)|Z = 0; comparing the remaining terms gives α′ ∈ �2(E). Since E ∼= P
m
F

,
we have �2(E) = 0 and hence α′ = 0. Therefore, rswE,n−2s−1(f

∗A) = 0, which
contradicts the assumption that swE f ∗A = n−2s −1. Hence swE f ∗A ≤ n−2(s +
1).



Evaluating the wild Brauer group 867

It remains to prove the claims concerning the refined Swan conductor at level
n − 2(s + 1). Write swE f ∗A = n − 2(s + 1) − r for some r ≥ 0. Then (8.1) gives

rswỸ ,n−2s(f
∗A)

= (πn−2s

Ỹ
π

n−2(s+1)−r
E )−1π−2−r

E

(
f ∗αs + f ∗βs ∧ dlogπE + f ∗βs ∧ dlogπỸ

)
.

(8.5)
By Theorem 4.1, π−2−r

E f ∗βs ∈ �1
OỸ ,Z

(logZ) and π−2−r
E f ∗αs ∈ �2

OỸ ,Z
(logZ),

whereupon Lemma 5.1 shows that if r > 0 then αs,P0 = 0. This implies that all the
aij (P0) are zero, which proves the claimed equality in the case r > 0, since then αE

and βE are zero by definition of the refined Swan conductor at level n − 2(s + 1).
Let us assume henceforth that αs,P0 	= 0 and hence swE(f ∗A) = n − 2(s + 1).

Now (8.2) becomes

rswE,n−2(s+1)(f
∗A)

= (πn−2s

Ỹ
π

n−2(s+1)
E )−1π2

Ỹ

(
αE + βE ∧ dlogπỸ + βE ∧ dlogπE

)
. (8.6)

Applying Theorem 4.1 to all local rings of E gives βE ∈ �1
E(logZ)(2Z) and

αE ∈ �2
E(logZ)(2Z). Now we apply Proposition 4.2 several times. Comparing the

dlogπE ∧ dlogπỸ terms in (8.5) and (8.6) shows that the residue of π2
Ỹ
βE along

Z ⊂ E equals the residue of −π−2
E f ∗βs along Z ⊂ Ỹ . We now show that this residue

is zero. Recalling that f ∗x1 = πE , we have

−π−2
E f ∗βs = s

∑

i>j

f ∗aiju
2
i d(uj /ui) = s

∑

i>j

f ∗aij (uiduj − ujdui), (8.7)

which has zero residue along Z ⊂ Ỹ . Therefore, π−2
E f ∗βs ∈ �1

OỸ ,Z
and βE ∈

�1
E(2Z). Comparing the dlogπE terms in (8.5) and (8.6) shows that (π2

Ỹ
βE)|Z equals

the sum of the residue of π−2
E f ∗αs along Z ⊂ Ỹ and π−2

E f ∗βs |Z . Lemma 5.1 shows
that the residue of π−2

E f ∗αs along Z ⊂ Ỹ is

ϕ(αs,P0)/(x
(1))2 = ϕ

(∑

i>j

aij (P0)dxi ∧ dxj

)
/(x(1))2.

Moreover,

π−2
E f ∗βs |Z = sϕ

(∑

i>j

aij (P0)dxi ∧ dxj

)
/(x(1))2.

Hence, (π2
Ỹ
βE)|Z = (s + 1)ϕ

(∑
i>j aij (P0)dxi ∧ dxj

)
/(x(1))2. Multiplying by

(x(1))2 shows that

βE |Z = (s + 1)ϕ
(∑

i>j

aij (P0)dxi ∧ dxj

)
.
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By Lemma 6.1(2), this proves the claim regarding βE .
Now compare the dlogπỸ terms in (8.5) and (8.6) to see that π−2

E f ∗βs |Z is
equal to the sum of the residue of π2

Ỹ
αE along Z ⊂ E and (π2

Ỹ
βE)|Z . By our

calculations above, this implies that the residue of π2
Ỹ
αE along Z ⊂ E equals

−ϕ
(∑

i>j aij (P0)dxi ∧ dxj

)
/(x(1))2. Now Lemma 6.1(3) shows that this residue

is equal to ρ(αE)/(x(1))2 and hence αE = ∑
i>j aij (P0)dui ∧ duj . �

The next two results deal with the end game, where the Swan conductor at E is
zero and our task is to compute the residue ∂E(f ∗A).

Lemma 8.6 Let A ∈ BrX with sw(A) = 1 and rsw1(A) = [α,β]π,1. Then
swE(f ∗A) = 0. Let F ∈ H0(E,O(1)) be any linear form restricting to ψ(βP0) on
Z. The residue ∂E(f ∗A) ∈ H1(κ(E),Q/Z) lies in H1(E \ Z,Q/Z) and coincides,
modulo H1(F,Q/Z), with the image of F/π(1) under the map

κ(E) → H1(κ(E),Z/p)

1
p−→ H1(κ(E),Q/Z)

induced by the Artin–Schreier sequence.

Proof We begin as in the proof of Lemma 8.3 to obtain swE(f ∗A) = 0 and

rswỸ ,1(f
∗A) = (πỸ )−1π−1

E

(
f ∗α + f ∗β ∧ dlogπE + f ∗β ∧ dlogπỸ

)
.

Write χ2 = ∂E(f ∗A) ∈ H1(κ(E)). By Proposition 3.1, χ2 lies in the subgroup
H1(E \ Z,Q/Z). Denote by κ(E)Z the field of fractions of the Henselisation of
OE,Z . To determine χ2, we consider Kato’s filtration on H1(κ(E)Z). Lemma 4.5
gives swZ(χ2) ≤ 1, and Lemma 4.6 gives

rswZ,1(χ2) = [α′, β ′]π̄Ỹ ,1

in which β ′ is equal to the residue of π−1
E f ∗β at Z, that is,

β ′ = ψ(βP0)/x
(1)
1

by Lemma 5.1. The proof is completed by Lemma 6.2. �

Lemma 8.7 Suppose p = 2. Let A ∈ BrX with sw(A) = 2 and rsw2(A) = [α,0]π,2.
Then swE(f ∗A) = 0. Furthermore, let κ(E)Z be the field of fractions of the
Henselisation of OE,Z and consider the filtration on H1(E \ Z,Q/Z) obtained by
pulling back {filn H1(κ(E)Z)}. Let F ∈ H0(E,O(2)) be any quadratic form such
that dF restricts to ϕ(αP0) on Z. The residue ∂E(f ∗A) ∈ H1(κ(E),Q/Z) lies in
H1(E \ Z,Q/Z) and coincides, modulo fil1 H1(E \ Z,Q/Z), with the image of

F/(π(1))2 under the map κ(E) → H1(κ(E),Z/p)

1
p−→ H1(κ(E),Q/Z) induced by

the Artin–Schreier sequence.
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Proof We begin as in the proof of Lemma 8.4 to obtain swE(f ∗A) = 0 and

rswỸ ,2(f
∗A) = π−2

Ỹ
π−2

E f ∗α = [π−2
E f ∗α,0]πỸ ,2.

Write χ2 = ∂E(f ∗A) ∈ H1(κ(E)). By Proposition 3.1, χ2 ∈ H1(E \ Z,Q/Z).
Lemma 4.5 gives swZ(χ2) ≤ 2, and Lemma 4.6 gives

rswZ,2(χ2) = [−ω̄,0]π̄Ỹ ,2 (8.8)

in which ω̄ is equal to the residue of π−2
E f ∗α at Z, that is

ω̄ = ϕ(αP0)/(x
(1)
1 )2 (8.9)

by Lemma 5.1.
Let F ∈ H0(E,O(2)) be any quadratic form such that dF restricts to ϕ(αP0) on

Z. To see that such an F exists, write α = ∑
i>j aij dxi ∧ dxj with aij ∈OY,P0 . Then

ϕ(αP0) =
∑

i>j

aij (P0)(x
(1)
j )2d(x

(1)
i /x

(1)
j )

=
∑

i>j

aij (P0)d(x
(1)
i x

(1)
j )

since we are in characteristic p = 2.
Now let δ1 : κ(E)Z → H1

p(κ(E)Z) denote the Artin–Schreier map. Note that

δ1(F/(π(1))2) is unramified outside Z and hence 1
p
δ1(F/(π(1))2) ∈ H1(E \Z,Q/Z).

By [30, Lemmas 3.6 and 3.7], 1
p
δ1(F/(π(1))2) ∈ H1(κ(E)Z) has refined Swan con-

ductor

rswZ,2
(
δ1(F/(π(1))2)

) = [−dF/(x
(1)
1 )2,0]πỸ ,2

= [−ϕ(αP0)/(x
(1)
1 )2,0]πỸ ,2. (8.10)

The result now follows from (8.8), (8.9), (8.10) and the injectivity of the refined Swan
conductor on the graded pieces of Kato’s filtration by Swan conductor. �

We now prove Theorem 8.1(2) in the case n = 1. This will form the basis for a
proof of Theorem 8.1(2) by induction.

Lemma 8.8 Let A ∈ fil1 BrX, and let rsw1(A) = [α,β]π,1. Let P ∈ X (Ok), and let
P0 ∈ Y(F) be the reduction of P . For Q ∈ B(P,1),

invA(Q) = invA(P ) + 1

p
TrF/Fp

βP0([
−→
PQ]1).

In particular, if βP0 	= 0 then |A| takes p distinct values on B(P,1).



870 M. Bright, R. Newton

Proof We have

invA(Q) − invA(P ) = invA,

where A = f ∗A(Q̃) − f ∗A(P̃ ) ∈ Br k. By Lemma 8.6, Proposition 3.1 and
Lemma 3.3, A ∈ Br k[p] and

invA = 1

p
TrF/Fp

(
F/π(1)(Q̃0) − F/π(1)(P̃0)

)
,

where F ∈ H0(E,O(1)) is any linear form restricting to ψ(βP0) on Z. Write βP0 =
∑

i aidxi . Then we can take F = ∑
i aix

(1)
i and hence F/π(1) = ∑

i aiui , where

ui = x
(1)
i /π(1). Since ui(P̃0) = 0 for 1 ≤ i ≤ m, we have F/π(1)(P̃0) = 0 and

invA = 1

p
TrF/Fp

(
F/π(1)(Q̃0)

)
.

Now the result follows from Lemma 7.3(2). �

We now prove Theorem 8.1(2) by induction.

Proof of Theorem 8.1(2) Let N ≥ 1 and suppose that we have proved Theorem 8.1(2)
for all n ≤ N . Our task is to prove it for n = N + 1. Suppose that A ∈ filN+1 BrX,
rswN+1 A = [α,β]π,N+1, Q ∈ B(P,N + 1). It follows from Lemma 8.3 that
swE(f ∗A) ≤ N and rswE,N(f ∗A) = [αE,βE]π,N where βE is the unique element of
H0(E,�1(logZ)(Z)) satisfying ρ(βE) = −ψ(βP0). Now we apply Theorem 8.1(2)
to f ∗A ∈ BrX, P̃ ∈ X̃ (Ok), Q̃ ∈ B(P̃ ,N) to obtain

invf ∗A(Q̃) = invf ∗A(P̃ ) + 1

p
TrF/Fp

(
βE,P̃0

(
[−→̃
PQ̃]N

))
. (8.11)

Lemma 7.3(1) shows that βE,P̃0

(
[−→̃
PQ̃]N

)
= βP0

(
[−→
PQ]N+1

)
. Noting that

f ∗A(Q̃) = A(Q) and f ∗A(P̃ ) = A(P ) completes the proof of Theorem 8.1(2). �

Now we turn our attention to the proof of Theorem 8.1(3) and (4). We begin with
the first statement of Theorem 8.1(3), which is the content of the next lemma.

Lemma 8.9 Let n > 2 and let A ∈ filn BrX with rswn A = [α,0]π,n. There exists
γ ∈ �1

Y |P0 such that the following holds: for any Q ∈ B(P,1) and R ∈ B(Q,n − 1),
we have

invA(R) = invA(Q) − 1

p
TrF/Fp

(
αP0([

−→
PQ]1, [−→QR]n−1) + γ ([−→QR]n−1)

)
.

Furthermore, if αP0 	= 0 then there exists Q ∈ B(P,1) such that |A| takes p distinct
values on B(Q,n − 1).
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Proof By Lemma 8.4, we have swE(f ∗A) ≤ n − 2 and rswE,n−2(f
∗A) =

[αE,βE]π,n−2 where βE ∈ H0(E,�1(2Z)) satisfies βE |Z = ϕ(αP0). Writing αP0 =
∑

aij dxi ∧dxj for some aij ∈ F and letting ui = x
(1)
i /π(1), this means βE = β1 +β2

where β1 = ∑
aiju

2
j d(ui/uj ) and β2 ∈ H0(E,�1(logZ)(Z)). Lemma 6.1(1) shows

we can write β2 = ∑
bidui for some bi ∈ F. Note that R̃ ∈ B(Q̃,n − 2). Now Theo-

rem 8.1(2) gives

invA(R) − invA(Q) = invf ∗A(R̃) − invf ∗A(Q̃) = 1

p
TrF/Fp

βE,Q̃0
([−→̃QR̃]n−2).

It remains to check that β1,Q̃0
([−→̃QR̃]n−2) = −αP0([

−→
PQ]1, [−→QR]n−1) and set γ =

−∑
bidxi ∈ �1

Y |P0 . We have

β1,Q̃0
([−→̃QR̃]n−2) =

∑
aij

(
uj (Q̃0)dui([

−→̃
QR̃]n−2) − ui(Q̃0)duj ([

−→̃
QR̃]n−2)

)

Now the claimed formula follows from Lemma 7.3.
For the second claim, it suffices to show the existence of tangent vectors v,w ∈

TP0(Y ) such that TrF/Fp

(
αP0(v,w) + γ (w)

)
	= 0, since one can then multiply w

by scalars in Fp . Since αP0 	= 0, it is easily seen that there exist v′,w′ ∈ TP0(Y ) such
that αP0(v

′,w′)+γ (w′) 	= 0. The non-degeneracy of the trace form implies that there
exists λ ∈ F such that

TrF/Fp

(
λ
(
αP0(v

′,w′) + γ (w′)
)) 	= 0.

Now take v = v′ and w = λw′. �

The following lemma for the case p = n = 2 completes the proof of Theo-
rem 8.1(4).

Lemma 8.10 Suppose p = 2. Let A ∈ fil2 BrX, and suppose that rsw2(A) =
[α,0]π,2. Write αP0 = ∑

aij dxi ∧ dxj for some aij ∈ F. Let P ∈ X (Ok), and let
P0 ∈ Y(F) be the reduction of P . There exists γ ∈ �1

Y |P0 such that for Q ∈ B(P,1),

invA(Q) = invA(P ) + 1

2
TrF/F2

(∑
aij dxi([−→

PQ]1)dxj ([−→
PQ]1) + γ ([−→

PQ]1)
)
.

Furthermore, if αP0 	= 0 then |A| takes 2 distinct values on B(P,1).

Proof We have

invA(Q) − invA(P ) = invA,

where A = f ∗A(Q̃) − f ∗A(P̃ ) ∈ Br k. By Proposition 3.1, Lemma 8.7 and
Lemma 6.2, A ∈ Br k[2] and

∂(A) = ∂E(f ∗A)(Q̃0) − ∂E(f ∗A)(P̃0)
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= 1

2
δ1

(
F/(π(1))2 + G/π(1)

)
(Q̃0) − 1

2
δ1

(
F/(π(1))2 + G/π(1)

)
(P̃0)

where F ∈ H0(E,O(2)) is any quadratic form such that dF restricts to ϕ(αP0) on
Z, G ∈ H0(E,O(1)) is a linear form, and δ1 : κ(E)Z → H1

p(κ(E)Z) is the Artin–

Schreier map. Recalling that the characteristic is 2, we can take F = ∑
aij x

(1)
i x

(1)
j ,

whereby F/(π(1))2 = ∑
aijuiuj . Now Lemma 3.3 gives

inv(A) = 1

2
TrF/F2

((
F/(π(1))2 + G/π(1)

)
(Q̃0) − (

F/(π(1))2 + G/π(1)
)
(P̃0)

)

= 1

2
TrF/F2

((
F/(π(1))2 + G/π(1)

)
(Q̃0)

)
,

since ui(P̃0) = 0 for 1 ≤ i ≤ m and therefore (F/(π(1))2)(P̃0) = (G/π(1))(P̃0) = 0.
Recall from Lemma 7.3(2) that ui(Q̃0) = dxi([−→

PQ]1). By Lemma 6.2, we can write
G = ∑

bix
(1)
i for some bi ∈ F. Hence we set γ = ∑

bidxi ∈ �1
Y |P0 .

For the second claim, let Q(v) = ∑
aij dxi(v)dxj (v) and let the associated bilin-

ear form be

B(v,w) = Q(v + w) − Q(v) − Q(w) =
∑

aij (dxi(v)dxj (w) + dxi(w)dxj (v)).

Note that B(v,w) = (Q(v + w) + γ (v + w)) − (Q(v) + γ (v)) − (Q(w) + γ (w)).
It suffices to show the existence of v,w ∈ TP0(Y ) such that TrF/F2(B(v,w)) 	= 0,
since then at least one of TrF/F2(Q(v + w) + γ (v + w)), TrF/F2(Q(v) + γ (v)),
TrF/F2(Q(w) + γ (w)) is non-zero. Since αP0 	= 0, there exist v′,w′ ∈ TP0(Y ) such
that B(v′,w′) 	= 0. Now the non-degeneracy of the trace form shows the existence of
λ ∈ F such that TrF/F2(λB(v′,w′)) 	= 0, whence the result. �

Now we complete the proof of Theorem 8.1(3).

Proof of Theorem 8.1(3) The first statement of Theorem 8.1(3) has been proved in
Lemma 8.9. We will now prove the second statement. Note that if αP0 = 0 then
the second statement follows from the first by setting gA,Q(R) equal to invA(R) −
invA(Q). Henceforth we will assume αP0 	= 0.

We first introduce notation for successive blowups. Let X1
f1−→ X be the blowup

of X at P0 with exceptional divisor E1 and let Z1 = E1 ∩ Ỹ . Let P1 ∈ X1(Ok) be

the section lifting P and let X2
f2−→ X1 be the blowup at the closed point P1,0 of P1.

Iterating this construction gives a sequence of blowups

. . .
f4−→ X3

f3−→ X2
f2−→X1

f1−→X .

Write Ei for the exceptional divisor of the ith blowup and let Pi,Qi,Ri ∈ Xi (Ok)

be the sections lifting P , Q, R, respectively. Let m be the maximal ideal of OX ,P0

and let π,x1, . . . , xm be a basis for m/m2. Let u1,j = x
(1)
j /π(1) so that u1,1, . . . , u1,m

restrict to a system of affine coordinates on E1 \ Z1 ∼= A
m
F

. Now let u2,j = u
(1)
1,j /π

(1)
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so that u2,1, . . . , u2,m restrict to a system of affine coordinates on E2 \ Z2, and so on
and so forth.

Write α = ∑
i>j aij dxi ∧ dxj for some aij ∈ OY,P0 . By Lemma 8.4,

swE1(f
∗
1 A) = n − 2 and, furthermore, rswE1,n−2(f

∗
1 A) = [αE1 , βE1 + β ′

E1
]π,n−2

with αE1 = ∑
i>j aij (P0)du1,i ∧ du1,j , βE1 = ∑

i>j aij (P0)u
2
1,j d(u1,i/u1,j ) and

β ′
E1

∈ H0(E1,�
1(logZ1)(Z1)).

Let C1 ∈ BrV1 (where V1 is the generic fibre of some open neighbourhood V1 of
P0 in X ) be the explicit Brauer group element constructed in Lemma 8.11 below
with swE1(C1) ≤ n − 2 and rswE1,n−2(C1) = [0, β ′

E1
]π,n−2. (To apply Lemma 8.11

we must check that n − 2 is not of the form e′ + 	e for any integer 	. If n − 2 were
of this form, then we would have e′ ∈ Z and hence p | e′. But we also have p | n by
Lemma 2.17 and p | e by Remark 2.20 so this would give p | 2, a contradiction.) Let
B1 = f ∗

1 A− C1 ∈ BrV1 and note that rswE1,n−2(B1) = [αE1 , βE1]π,n−2.
Now we blow up at P1,0 = Q1,0. Applying Lemma 8.4 to B1 and repeating the

argument above, we can write f ∗
2 B1 = B2 + C2 in BrV2, where V2 is the generic

fibre of some open neighbourhood V2 of P1,0 in X1, swE2(B2) = n − 4, swE2(C2) ≤
n − 4, rswE2,n−4(B2) = [αE2, βE2 ]π,n−4 with αE2 = ∑

i>j aij (P0)du2,i ∧ du2,j and

βE2 = 2
∑

i>j aij (P0)u
2
2,j d(u2,i/u2,j ), and rswE2,n−4(C2) = [0, β ′

E2
]π,n−4 for some

β ′
E2

∈ H0(E2,�
1(logZ2)(Z2)). Thus,

f ∗
2 f ∗

1 A = B2 + C2 + f ∗
2 C1.

Continuing in this way, after s blowups we obtain an equality

f ∗
s . . . f ∗

2 f ∗
1 A = Bs +Ds

of elements in BrVs , where Vs is the generic fibre of some open neighbourhood
Vs of Ps,0 in Xs , swEs (Bs) = n − 2s and rswEs,n−2s(Bs) = [αEs ,βEs ]π,n−2s with
αEs = ∑

i>j aij (P0)dus,i ∧ dus,j and βEs = s
∑

i>j aij (P0)u
2
s,j d(us,i/us,j ). We

have gathered all the terms coming from the Ci ’s into Ds .
Note that Rs ∈ B(Qs,n − 2s) so Theorem 8.1(2) gives

invBs(Rs) = invBs(Qs) + 1

p
TrF/Fp

βEs,Qs,0([
−−−→
QsRs]n−2s). (8.12)

A calculation shows that βEs,Qs,0([
−−−→
QsRs]n−2s) = −sαP0([

−→
PQ]s , [−→QR]n−s). Finally,

invA(R) − invA(Q) = invf ∗
s . . . f ∗

2 f ∗
1 A(Rs) − invf ∗

s . . . f ∗
2 f ∗

1 A(Qs)

= invBs(Rs) − invBs(Qs) + invDs(Rs) − invDs(Qs)

= −s

p
TrF/Fp

αP0([
−→
PQ]s , [−→QR]n−s)

+ invDs(Rs) − invDs(Qs).

Define gA,Q(R) to be invDs(Rs) − invDs(Qs). We claim that this does not depend
on the choice of a suitable s. In other words, suppose that Q ∈ B(P, s) for some s
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with 1 < s < n/2. Then we can also consider Q as lying in B(P, s − 1). Our claim is
that for R ∈ B(Q,n − s + 1) we have invDs(Rs) − invDs(Qs) = invDs−1(Rs−1) −
invDs−1(Qs−1). To prove the claim, write Ds = f ∗

s Ds−1 + Cs , with swEs Cs ≤ n −
2s. For R ∈ B(Q,n − s + 1) we have

invDs(Rs) − invDs(Qs)

= invf ∗
s Ds−1(Rs) + invCs(Rs) − invf ∗

s Ds−1(Qs) − invCs(Qs)

= invDs−1(Rs−1) − invDs−1(Qs−1) + invCs(Rs) − invCs(Qs).

For R ∈ B(Q,n− s +1), we have Rs ∈ B(Qs,n−2s +1), whereby [−−−→
QsRs]n−2s = 0.

Therefore, Theorem 8.1(2) shows that invCs(Rs) = invCs(Qs), whence the claim.
For s = 1, we have D1 = C1 and Theorem 8.1(2) gives

invC1(R1) − invC1(Q1) = 1

p
TrF/Fp

β ′
E1,Q1,0

([−−−→
Q1R1]n−2).

Now let U1 = E1 \ Z1 and let γ ∈ �1
Y |P0 be the image of β ′

E1,Q1,0
under the isomor-

phism �1
U1

|Q1,0 → �1
Y |P0 (see Sect. 7.1). Then β ′

E1,Q1,0
([−−−→

Q1R1]n−2) = γ ([−→QR]n−1),
which completes the proof. �

Lemma 8.11 Let e be the absolute ramification index of k and set e′ = ep/(p − 1).
Let β ∈ H0(E,�1(logZ)(Z)) and suppose that either 0 < n < e′ or e′ + (t − 1)e <

n < e′ + te for some t ∈ Z≥1 with [k(μpt+1) : k] coprime to p. There exists an open

neighbourhood V of P0 in X with generic fibre V and an element C ∈ filn BrV [pt+1]
such that rswE,n(C) = [0, β]π,n. Explicitly, writing K for the function field of X, we
can take

C =

⎧
⎪⎨

⎪⎩

coresK(μ
pt+1 )/K

∑
i

(
1 + pt b̃iui

ε(n−te)πn (ζp − 1)p,ui

)

pt+1
if p � n − te,

coresK(μ
pt+1 )/K

∑
i

(
1 + pt b̃iui

επn (ζp − 1)p,π
)

pt+1
if p | n − te,

where ε = [k(μpt+1) : k], β = ∑
i bidui with bi ∈ F, and b̃i is an arbitrary lift of bi

to Ok .

Proof By Lemma 6.1(1), β = ∑
i bidui = d(

∑
i biui) for some bi ∈ F, whereby

dβ = 0. Take arbitrary lifts b̃i of the bi to Ok . Let k′ = k(μpt+1), let ε = [k′ : k]
and let π ′ be a uniformiser of k′. Let K ′ = Kk′. Let F denote the common residue
field of K and K ′ and let Kh and (K ′)h be their respective Henselisations. Let
w = (π ′)−εNk′/kπ

′ and let w̄ ∈ F
× be its reduction. The Brauer group element C

will be constructed via corestriction. We begin by proving the following claims.

1. We have cores(K ′)h/Kh(λπ ′(·, ·)) = λNk′/kπ
′(ε·, ·).

2. Suppose C′ ∈ filεn Br(K ′)h for n > 0 and rswεn(C′) = [α′, β ′]π ′,εn. Then
cores(K ′)h/Kh(C′) ∈ filn BrKh and

rswn(cores(K ′)h/Kh C′) = [εw̄nα′, w̄nβ ′]Nk′/kπ
′,n. (8.13)
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To prove (1), consider the isomorphism ν′ : gr0(M
q−1
r,O

(K ′)h
) → Wr�

q−1
F,log ⊕

Wr�
q−2
F,log of (2.5), the inverse of which is used to define λπ ′ . By [3, p. 113],

the sheaf M
q−1
r,O

(K ′)h
is generated by symbols and ν can be defined as follows. Let

x1, . . . , xq−1 ∈ F× and let x̃1, . . . , x̃q−1 be lifts of the xi to OKh ⊂ O(K ′)h . Then

ν′({x̃1, . . . , x̃q−1}) = (dlogx1 ∧ · · · ∧ dlogxq−1,0) and

ν′({x̃1, . . . , x̃q−2,π
′}) = (0,dlogx1 ∧ · · · ∧ dlogxq−2).

Now let ν : gr0(M
q−1
r,O

Kh
) → Wr�

q−1
F,log ⊕ Wr�

q−2
F,log be the isomorphism from (2.5)

whose inverse is used to define λNk′/kπ
′ . It is defined by

ν({x̃1, . . . , x̃q−1}) = (dlogx1 ∧ · · · ∧ dlogxq−1,0) and

ν({x̃1, . . . , x̃q−2,Nk′/kπ
′}) = (0,dlogx1 ∧ · · · ∧ dlogxq−2).

Therefore, ν ◦ cores(K ′)h/Kh({x̃1, . . . , x̃q−2,π
′}) = ν′({x̃1, . . . , x̃q−2,π

′}). Further-
more, since x̃1, . . . , x̃q−1 ∈ OKh , we have cores(K ′)h/(K)h({x̃1, . . . , x̃q−1}) = ε{x̃1,

. . . , x̃q−1} and hence ν ◦cores(K ′)h/Kh({x̃1, . . . , x̃q−1}) = εν′({x̃1, . . . , x̃q−1}). There-
fore, the isomorphisms ν, ν′ satisfy the following commutative diagram.

gr0(M
q−1
r,O

(K ′)h
)

ν′−−−−→ Wr�
q−1
F,log ⊕ Wr�

q−2
F,log

cores
(K ′)h/Kh

⏐
⏐
�

⏐
⏐
�(α,β) �→(εα,β)

gr0(M
q−1
r,O

Kh
)

ν−−−−→ Wr�
q−1
F,log ⊕ Wr�

q−2
F,log

Now the definitions of λπ and δr (Definitions 2.8 and 2.10) yield the commutative
diagram below for all q ≥ 2 and r ≥ 1

Wr�
q−1
F ⊕ Wr�

q−2
F Hq

pr (F ) ⊕ Hq−1
pr (F ) V

q
pr (O(K ′)h)

Wr�
q−1
F ⊕ Wr�

q−2
F Hq

pr (F ) ⊕ Hq−1
pr (F ) V

q
pr (OKh)

δr

(α,β) �→(εα,β)

λπ ′

(α,β) �→(εα,β) cores
(K ′)h/Kh

δr
λN

k′/k
π ′

(8.14)
proving (1).

Now we prove (2). Suppose C′ ∈ filεn Br(K ′)h for n > 0 and rswεn(C′) =
[α′, β ′]π ′,εn. That cores(K ′)h/Kh(C′) ∈ filn BrKh follows from the compatibility of
corestriction with cup products and [30, Proposition 6.3(ii)]. Recall that the defini-
tion of the refined Swan conductor (Definition 2.14) involves an abuse of notation
wherein we write λπ for the composition λπ ◦ δ1. With this convention, the compati-
bility of corestriction with cup products and (1) yield

{cores(K ′)h/Kh C′,1 + (Nk′/kπ
′)nT } = cores(K ′)h/Kh({C′,1 + (Nk′/kπ

′)nT })
= cores(K ′)h/Kh({C′,1 + (π ′)εnwnT })
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= cores(K ′)h/Kh(λπ ′(α′w̄nT ,β ′w̄nT ))

= λNk′/kπ
′(εα′w̄nT ,β ′w̄nT ),

proving (2).
Now let a = π/(π ′)ε and let ā denote the image of a in F×. The defi-

nition of the refined Swan conductor (Definition 2.14) shows that [0, β]π,n =
[0, w̄nā−nβ]Nk′/kπ

′,n. Therefore, by (2), our task is to construct C′ ∈ filεn BrK ′ with

rswεn(C′) = [0, ā−nβ]π ′,εn.

Let ζpt+1 ∈ k′ be a fixed choice of primitive pt+1th root of unity in k′. The choice of
ζpt+1 yields choices of primitive ps th roots of unity for 1 ≤ s ≤ t +1 by setting ζps =
ζ

pt+1−s

pt+1 . For 1 ≤ s ≤ t + 1 and x, y ∈ (K ′)×, let (x, y)ps ∈ BrK ′[ps] denote the class

of the corresponding cyclic algebra, which depends on our chosen primitive ps th root
of unity. Alternatively, as in [38, §XIV.2], (x, y)ps can be constructed as a cup product
as follows: let δ : (K ′)×/(K ′)×ps → H1(K ′,μps ) be the Kummer isomorphism, and
take the image of (δ(x), δ(y)) under the composition

H1(K ′,μps ) × H1(K ′,μps )

∪−→ H2(K ′,μ⊗2
ps )

∼=−→ H2(K ′,μps ) → H2(K ′, (K̄ ′)×) = BrK ′,

where we have used the choice of ζps to give an isomorphism μ⊗2
ps

∼= μps . Note that

(x, y)ps = pt+1−s(x, y)pt+1 .
First suppose 0 < n < e′ and p � n. Let

C′ =
∑

i

(
1 + b̃iui

εnπn
(ζp − 1)p,ui

)

p
∈ BrK ′[p].

By [30, Proposition 4.1 and Lemma 4.3], C′ ∈ filεn BrK ′ and rswεn(C′) =
[0, ā−nβ]π ′,εn, as desired.

Now suppose 0 < n < e′ and p | n. Then [30, Proposition 4.1 and Lemma 4.3]
show that

C′ =
∑

i

(
1 + b̃iui

επn
(ζp − 1)p,π

)

p
∈ BrK ′[p]

has the desired Swan conductor and refined Swan conductor.
So far, we have proved the lemma for 0 < n < e′. Now suppose e′ + (t − 1)e <

n < e′ + te for some t ≥ 1. Recall that our task is to construct C′ ∈ filεn BrK ′ with

rswεn(C′) = [0, ā−nβ]π ′,εn.

By Lemma 2.19, it suffices to construct C′ ∈ BrK ′ such that ptC′ ∈ filε(n−te) BrK ′
and

rswε(n−te)(p
tC′) =

[
0,

pt

(π ′)εet
ā−nβ

]

π ′,ε(n−te)
,
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where we are abusing notation by writing pt/(π ′)εet for its image in F×.
If p � n − te, let

C′ =
∑

i

(
1 + pt b̃iui

ε(n − te)πn
(ζp − 1)p,ui

)

pt+1
∈ BrK ′[pt+1].

Then

ptC′ =
∑

i

(
1 + pt b̃iui

ε(n − te)πn
(ζp − 1)p,ui

)

p
∈ BrK ′[p]

and [30, Proposition 4.1 and Lemma 4.3] show that ptC′ has the desired properties.
If p | n − te, let

C′ =
∑

i

(
1 + pt b̃iui

επn
(ζp − 1)p,π

)

pt+1
∈ BrK ′[pt+1].

and apply [30, Proposition 4.1 and Lemma 4.3] to ptC′. �

Finally, we prove the surjectivity results of Theorem 8.1(5).

Proof of Theorem 8.1(5) First suppose that βP0 	= 0. We proceed by induction on t .
The case t = 0 follows from Theorem 8.1(2) and Theorem 8.1(4). Now suppose the
statement of Theorem 8.1(5) holds for some t0 ∈ Z≥0. Let A have order pt0+2 in
BrX and suppose that either n > e′ + t0e or n = e′ + t0e and C(α) = C(β) = 0.
By Lemma 2.19, sw(pA) = n − e and rswn−e(pA) = [ūα, ūβ]π,n−e , where ū is the
image of p/πe in F

×. Consider the following exact sequence coming from multipli-
cation by p:

0 p−1
Z/Z p−(t0+2)

Z/Z p−(t0+1)
Z/Z 0.

p

Let I denote the image of inv◦|A| : B(P,n − (t0 + 1)e) → p−(t0+2)
Z/Z. By the

induction hypothesis, inv◦|pA| : B(P,n − (t0 + 1)e) → p−(t0+1)
Z/Z is surjective.

Therefore, for each x ∈ p−(t0+1)
Z/Z, I contains at least one preimage of x under

multiplication by p. Now Theorem 8.1(2) shows that in fact I contains all preim-
ages of elements of p−(t0+1)

Z/Z under multiplication by p, i.e. I = p−(t0+2)
Z/Z, as

required.
Now suppose that β = 0, αP0 	= 0, n > e′ + 2 and n ≥ te + 3. Lemma 8.9 shows

that there exists γ ∈ �1
Y |P0 such that for Q ∈ B(P,1) and R ∈ B(Q,n − 1),

invA(R) = invA(Q) − 1

p
TrF/Fp

(
αP0([

−→
PQ]1, [−→QR]n−1) + γ ([−→QR]n−1)

)
. (8.15)

The proof of Lemma 8.9 shows that γ is constructed as follows. Let
rswE,n−2(f

∗A) = [αE,βE]π,n−2 and write αP0 = ∑
aij dxi ∧ dxj for some aij ∈ F.

Then

βE −
∑

aiju
2
j d(ui/uj ) =

∑
bidui
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for some bi ∈ F and we set γ = −∑
bidxi . The proof of Lemma 8.9 goes on to show

the existence of v,w ∈ TP0Y such that

TrF/Fp

(
αP0(v,w) + γ (w)

)
	= 0. (8.16)

Let QA ∈ B(P,1) be such that [−−−→
PQA]1 = v. Then |A| takes p distinct values on

B(QA, n − 1). We will show that inv◦|A| : B(QA, n − te − 1) → p−(t+1)
Z/Z is

surjective. The case t = 0 follows immediately from (8.15) and (8.16). Now suppose
we have proved the result for t0 and we want to prove it for t0 + 1. By Lemma 2.19,
sw(pA) = n − e and rswn−e(pA) = [ūα, ūβ]π,n−e . Applying Lemma 2.19 to
f ∗A shows that sw(f ∗(pA)) = n − 2 − e and rswE,n−2−e(f

∗(pA)) = [ūαE,

ūβE]π,n−2−e . The construction of γ detailed above shows that for Q ∈ B(P,1) and
R ∈ B(Q,n − e − 1) we have

inv(pA)(R) = inv(pA)(Q)

− 1

p
TrF/Fp

(
ūαP0([

−→
PQ]1, [−→QR]n−e−1) + ūγ ([−→QR]n−e−1)

)
.

The induction hypothesis states that if v′,w′ ∈ TP0Y are such that

TrF/Fp

(
ūαP0(v

′,w′) + ūγ (w′)
)

	= 0 (8.17)

and QpA ∈ B(P,1) is such that [−−−−→
PQpA]1 = v′ then the map inv◦|pA| : B(QpA, n−

(t0 + 1)e − 1) → p−(t0+1)
Z/Z is surjective. By (8.16), we can take w′ = w/ū, v′ = v

and QpA = QA. Let I denote the image of inv◦|A| : B(QA, n − (t0 + 1)e − 1) →
p−(t0+2)

Z/Z. The result for pA shows that for each x ∈ p−(t0+1)
Z/Z, I contains

at least one preimage of x under multiplication by p. To show that I contains all
preimages of x under multiplication by p, we will show that for any S ∈ B(QA, n −
(t0 + 1)e − 1), the map inv◦|A| gives a surjection from B(S,n − 1) to p−1

Z/Z.
Since n ≥ (t0 + 1)e + 3, we have [−→PS]1 = [−−−→

PQA]1 = v, whereby the result follows
from (8.15) and (8.16). �

9 Proof of Theorem A

We now prove Theorem A. The notation and assumptions of that theorem will be in
force throughout this section, so k denotes a finite extension of Qp , X/k is a smooth,
geometrically irreducible variety with smooth model X → SpecOk , and the special
fibre Y of X is assumed to be geometrically irreducible.

For ease of notation we define a modified version of Kato’s filtration as follows.

fĩl−2 BrKh = {A ∈ fil0 BrKh | ∂A = 0};
fĩl−1 BrKh = {A ∈ fil0 BrKh | ∂A ∈ H1(F,Q/Z)};

fĩl0 BrKh = fil0 BrKh;
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fĩln BrKh = {A ∈ filn+1 BrKh | rswn+1(A) ∈ [�2
F ,0]π,n+1} for n ≥ 1.

For the purposes of the definition, Kh could be replaced by any Henselian dis-
crete valuation field of characteristic zero. Pulling back from BrKh to BrX gives a
filtration on BrX whose pieces we denote by fĩln BrX.

Lemma 9.1 For n ≥ −2, we have fĩln BrX ⊂ Evn BrX.

Proof This follows from Proposition 3.1 for n = −2,−1,0 and from Theorem B(1)
and Lemma 2.16 for n ≥ 1. �

The reverse inclusions will be given by the following lemmas.

Lemma 9.2 Let n ≥ 1, and let A be an element of fĩln BrX \ fĩln−1 BrX. Then there
exists a finite unramified extension k′/k and P ∈ X (Ok′) such that |A| takes p dis-
tinct values on B(P,n). In particular, A /∈ Evn−1 BrX.

Proof Since A ∈ fĩln BrX, we have A ∈ filn+1 BrX and rswn+1(A) = [α,0]π,n+1 for
some α ∈ �2

F . By Theorem 8.1(1), α lies in �2(Y ). Suppose first that α 	= 0. Let Z ⊂
Y be the zero locus of α, which by assumption is a strict closed subset of Y , and set
U = Y \Z. By the Lang–Weil estimates [32], there is a finite extension F

′/F such that
U(F′) is non-empty. Let k′/k be the unramified extension of k having residue field
F

′. Choose any P0 ∈ U(F′) and lift it (by Hensel’s Lemma) to a point P ∈ X (Ok′).
By Lemma 2.16 we have resk′/k A ∈ filn BrXk′ and rswn+1(resk′/k A) = rswn+1(A).
Since αP0 	= 0, Theorem B(2) shows that there exists Q ∈ B(P,1) such that |A| takes
p distinct values on B(Q,n). It follows that A /∈ Evn−1 BrX.

Now suppose that α = 0. Then A ∈ filn BrX. Let rswn(A) = [α′, β ′]π,n for some
(α′, β ′) ∈ �2(Y ) ⊕ �1(Y ). Note that β ′ 	= 0 since A /∈ fĩln−1 BrX. Then by the same
argument as above, there exists a finite extension F

′/F and a point P0 ∈ Y(F′) satis-
fying β ′

P0
	= 0. Let k′/k be the unramified extension with residue field F

′ and lift P0
to a point P ∈ X (Ok′). Now Theorem B(1) shows that |A| takes p distinct values on
B(P,n), whereby A /∈ Evn−1 BrX. �

Lemma 9.3 For n ≥ 0, we have

Evn BrX

{A ∈ BrX | ∀ k′/k finite unramified, ∀ P ∈X (Ok′), |A| is constant on B(P,n + 1)}

fĩln BrX.

⊂
⊂

Proof The first containment is obvious. Now take A ∈ BrX such that for all finite
unramified extensions k′/k and all P ∈ X (Ok′), |A| is constant on B(P,n + 1). Let
r be the smallest non-negative integer such that A ∈ fĩlr BrX. By Lemma 9.2, r ≤ n,
whence the result. �
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Corollary 9.4 For n ≥ 0, we have

Evn BrX

{A ∈ BrX | ∀ k′/k finite unramified, ∀ P ∈X (Ok′), |A| is constant on B(P,n + 1)}

fĩln BrX.

=
=

Proof Immediate from Lemmas 9.1 and 9.3. �

Lemma 9.5 For every r ≥ 1, there are inclusions

Ev−2 BrX ⊂ {A ∈ BrX | ∀ k′/k finite unramified, |A| is zero on X (Ok′)} (9.1)

⊂ fĩl−2 BrX

and

Ev−1 BrX ⊂ {A ∈ BrX | ∀ k′/k finite unramified, |A| is constant on X (Ok′)} (9.2)

⊂ fĩl−1 BrX.

Proof The first inclusions in (9.1) and (9.2) are clear. By Lemma 9.3,

{A ∈ BrX | ∀ k′/k finite unramified, |A| is constant on X (Ok′)} ⊂ fĩl0 BrX

and so the statement only concerns elements of fĩl0 BrX = fil0 BrX. Suppose that
A ∈ fil0 BrX satisfies ∂(A) 	= 0. We will prove the existence of a finite unramified
extension k′/k such that |A| is non-zero on X (Ok′) and, furthermore, if ∂(A) does
not lie in H1(F,Q/Z) then we will show that |A| is non-constant on X (Ok′). The
argument we use is the same as that used in [7, §5] for elements of order prime to p.

Write Ȳ for the base change of Y to an algebraic closure of F. Since Y is ge-
ometrically connected, the Hochschild–Serre spectral sequence gives a short exact
sequence

0 → H1(F,Q/Z) → H1(Y,Q/Z) → H1(Ȳ ,Q/Z).

If ∂(A) lies in H1(F,Q/Z) and X (Ok) is non-empty, then Proposition 3.1 shows
that the corresponding evaluation map X (Ok) → Brk is constant and non-zero, as
desired. If ∂(A) lies in H1(F,Q/Z) and X (Ok) is empty, we can use Lang–Weil to
pass to an unramified extension k′/k of degree prime to the order of A where X (Ok′)
is non-empty, and we obtain the same result.

On the other hand, suppose that ∂(A) does not lie in H1(F,Q/Z). To prove that
|A| is non-constant, we may change A by a constant algebra. Write ∂̄(A) for the
image of ∂(A) in H1(Ȳ ,Q/Z). Let m be the order of ∂̄(A); then m∂(A) lies in
H1(F,Q/Z), which is isomorphic to Q/Z. Therefore there exists α ∈ H1(F,Q/Z)
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satisfying mα = m∂(A). The map ∂ : Brk → H1(F,Q/Z) is an isomorphism; let
A′ ∈ Brk satisfy ∂(A′) = α. Replacing A by A − A′, we reduce to the case where
∂(A) and ∂̄(A) have the same order m.

The class ∂(A) lies in the subgroup H1(Y,Z/m) ⊂ H1(Y,Q/Z). Let T → Y be
a Z/m-torsor representing this class; since its image in H1(Ȳ ,Z/m) also has or-
der m, [7, Lemma 5.15] shows that the variety T is geometrically connected. As
it is smooth, it is also geometrically irreducible. The image of T (F) → Y(F) con-
sists of those points P0 ∈ Y(F) such that ∂(A) maps to 0 under the induced map
P ∗

0 : H1(Y,Z/m) → H1(F,Z/m). Similarly, for any a ∈ H1(F,Z/m), let Ta → Y be
a torsor representing the class ∂(A)− a; then the image of Ta(F) → Y(F) consists of
those P0 satisfying P ∗

0 (∂(A)) = a. For any fixed a, it follows from Lang–Weil that Ta

has points over any sufficiently large extension of F. Therefore, for some extension
F

′/F, there exist P0,Q0 ∈ Y(F′) satisfying P ∗
0 (∂(A)) 	= Q∗

0(∂(A)) in H1(F′,Z/m).
Let k′/k be the unramified extension with residue field F

′, and let P , Q be lifts of P0,
Q0 to X (Ok′). By Proposition 3.1, we have A(P ) 	= A(Q) in Brk′, and our proof is
complete. �

Remark 9.6 Lemma 9.5 was already known for elements of order prime to p: for
instance, the statement Ev−1 BrX ⊂ fĩl−1 BrX for the prime-to-p parts is the main
result of [9], and we believe that the proof there also gives the slightly stronger result
of Lemma 9.5 for the prime-to-p parts.

Corollary 9.7 We have

Ev−2 BrX = {A ∈ BrX | ∀ k′/k finite unramified, |A| is zero on X (Ok′)}
= fĩl−2 BrX

and

Ev−1 BrX = {A ∈ BrX | ∀ k′/k finite unramified, |A| is constant on X (Ok′)}
= fĩl−1 BrX.

Proof Immediate from Lemmas 9.1 and 9.5. �

This completes the proof of Theorem A. The following corollary of Theorem A
describes how the evaluation filtration behaves under base field extension.

Corollary 9.8 Let A ∈ BrX and let k′/k be a finite extension with ramification index
e.

1. For −2 ≤ n ≤ 0 we have

A ∈ Evn BrX =⇒ resk′/k(A) ∈ Evn BrXk′ .
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2. Now let n ≥ 1, suppose A ∈ Evn BrX \ Evn−1 BrX and write rswn+1(A) =
[α,0]π,n+1. If α = 0, write rswn(A) = [α′, β ′]π,n. We have

resk′/k(A) ∈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Eve(n+1)−1 BrXk′ \ Eve(n+1)−2 BrXk′ if α 	= 0;
Even BrXk′ \ Even−1 BrXk′ if α = 0 and p � e;
Even−1 BrXk′ \ Even−2 BrXk′ if α = 0, α′ 	= 0 and p | e;
Even−1 BrXk′ if α = α′ = 0 and p | e.

Proof 1. The statements for n = −1,−2 are clear from the definitions. For n = 0,
use Theorem A(3) and Proposition 2.6(1).

2. If α 	= 0 then A ∈ filn+1 BrX \ filn BrX. Lemma 2.16 shows that resk′/k(A) ∈
file(n+1) BrXk′ and

rswe(n+1)(resk′/k(A)) = [ā−(n+1)α,0]π ′,e(n+1),

where π ′ is a uniformiser of k′ and a = π(π ′)−e . This shows that resk′/k(A) ∈
Eve(n+1)−1 BrXk′ . Since ā ∈ F

×, ā−(n+1)α is non-zero, whereby resk′/k(A) /∈
file(n+1)−1 BrXk′ . Since Eve(n+1)−2 BrXk′ ⊂ file(n+1)−1 BrXk′ , it follows that
resk′/k(A) /∈ Eve(n+1)−2 BrXk′ .

Henceforth, suppose that α = 0 and therefore A ∈ filn BrX. Lemma 2.16 shows
that resk′/k(A) ∈ filen BrXk′ and

rswen(resk′/k(A)) = [ā−nα′, ā−neβ ′]π ′,en. (9.3)

Since filn−1 BrX ⊂ Evn−1 BrX and A /∈ Evn−1 BrX, we have rswn(A) 	= 0,
whereby at least one of α′, β ′ is non-zero. If p � e, it follows that
rswen(resk′/k(A)) 	= 0 and hence resk′/k(A) ∈ Even BrXk′ \ Even−1 BrXk′ .

If p | e then (9.3) becomes rswen(resk′/k(A)) = [ā−nα′,0]π ′,en, whereby
resk′/k(A) ∈ Even−1 BrXk′ . If α′ 	= 0 then ā−nα′ 	= 0 and resk′/k(A) /∈
filen−1 BrXk′ , implying that resk′/k(A) /∈ Even−2 BrXk′ . �

Remark 9.9 Recall from Lemma 2.17 that if p � n + 1 then α = 0 in Corollary 9.8(2).

10 Comparison with other filtrations

Throughout this section, let K denote a Henselian discrete valuation field of charac-
teristic zero with residue field F .

There are several other constructions in the literature which give rise to filtrations
on BrK , and the question naturally arises as to whether our filtration {fĩln BrK}, as
defined at the beginning of Sect. 9, coincides with any of these. In this section we
look at the relationships between several existing filtrations and ours. We consider
two sources of filtrations: existing filtrations on H1(K), which give rise to filtrations
on BrK via the cup product; and ramification filtrations on the absolute Galois group
of K , which give rise to filtrations on BrK by considering those elements in the
kernel of restriction to the subgroups in the filtration.
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In what follows, we only consider filtrations on BrK[p]. We often exclude the less
interesting case in which the filtrations {filn BrK[p]} and {fĩln BrK[p]} coincide; this
happens if e′ < p or if �2

F = 0, for example.

10.1 Filtrations on H1

The most obvious filtration to consider on H1(K) = H1(K,Q/Z) is Kato’s filtration.
In the case of equal characteristic, Kato shows [30, Theorem 3.2(2)] that his filtrations
on Hq(K) for all q ≥ 1 are induced by the cup product from that on H1(K). When K

has characteristic zero, as in our case, this is at least true for the p-torsion, assuming
that K contains a primitive pth root of unity [30, Proposition 4.1(6)].

There is also a modified or “non-logarithmic” version of Kato’s filtration on
H1(K), introduced by Matsuda [34] in the case of equal characteristic; as shown
in [34, Proposition 3.2.7], it can be obtained by modifying Kato’s filtration on H1(K)

in exactly the same way that we modify the filtration on H2(K).
The Proposition 10.2 below shows our modified version of Kato’s filtration on

H2
p(K) = BrK[p] is not induced in general by any filtration on H1(K), even if we

omit fĩl−1 and fĩl−2. We begin with a lemma.

Lemma 10.1 Suppose that K contains a primitive pth root of unity, and that the
residue field F of K is not perfect. Let χ ∈ H1

p(K) satisfy sw(χ) = n. Then there

exists y ∈ O×
K such that sw({χ,y}) = n and, if n > 0, we can choose y so that

{χ,y} /∈ fĩln−1 BrK[p].

Proof We use Bloch–Kato’s explicit description of the graded pieces of the filtration,
as described in [30, Theorem 4.1(6)]. Fixing a primitive pth root of unity in K gives
an isomorphism H1

p(K) ∼= K×/(K×)p , under which Kato’s filtration on H1
p(K) cor-

responds to the reverse of the natural filtration on K×. There are now several cases
to consider.

• If n = 0, then χ ∈ fil0 H1
p(K) and it follows that sw({χ,y}) = 0 for all y ∈ K×.

• If 0 < n < e′, then χ corresponds to an element (1 + xπe′−n) ∈ K×/(K×)p with
x ∈ O×

K . Let x̄ ∈ F× be the reduction of x. First suppose that p � n. Let y ∈ O×
K

be an element satisfying dȳ 	= 0; such an element exists since F is not perfect.
Then x̄

dȳ
ȳ

∈ �1
F is non-zero, and by the first isomorphism of [30, (4.2.2)] the ele-

ment {1 + xπe′−n, y} has Swan conductor n. Moreover, [30, Proposition 4.1 and
Lemma 4.3] show that rswn({1 + xπe′−n, y}) = [c̄d(x̄

dȳ
ȳ

), nc̄x̄
dȳ
ȳ

]π,n, where c =
πe′

/(ζ − 1)p . Since nc̄x̄
dȳ
ȳ

	= 0, it follows that {1 + xπe′−n, y} /∈ fĩln−1 BrK[p].
Now suppose that p | n. Then the second isomorphism of [30, (4.2.2)] shows
firstly (using q = 1) that dx̄ 	= 0, and then (using q = 2) that {1 + xπe′−n,π}
has Swan conductor n. Furthermore, [30, Proposition 4.1 and Lemma 4.3] show
that rswn({1 + xπe′−n,π}) = [0, c̄dx̄]π,n so {1 + xπe′−n,π} /∈ fĩln−1 BrK[p].

• If n = e′, then isomorphism [30, (4.2.1)] with q = 1 shows that χ corresponds
to xπi ∈ K×/(K×)p , with x ∈ O×

K and either p � i or dx̄ 	= 0. First suppose that
dx̄ 	= 0. Then [30, (4.2.1)] with q = 2 shows sw({xπi,π}) = sw({x,π}) = e′ (the
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term {πi,π} lies in fil0 H2(K) and so does not contribute). More precisely, [30,
Proposition 4.1 and Lemma 4.3] show that rswe′({xπi,π}) = rswe′({x,π}) =
[0, c̄ dx̄

x̄
]π,e′ . Now suppose that dx̄ = 0 and p � i. Let y ∈ O×

K be an element satis-
fying dȳ 	= 0; we claim that {xπi, y} has the desired properties. Write {xπi, y} =
{x, y} − i{y,π}. Then [30, (4.2.1)] with q = 2 shows that sw({x, y}) ≤ e′ − 1
and sw({y,π}) = e′. Furthermore, [30, Proposition 4.1 and Lemma 4.3] show that
rswe′({xπi, y}) = −i rswe′({y,π}) = [0,−ic̄

dȳ
ȳ

]π,e′ . �

Proposition 10.2 Suppose that K contains a primitive pth root of unity and that the
filtrations {fĩln BrK[p]} and {filn BrK[p]} do not coincide for n ≥ 0. Then there is
no increasing filtration {Filn H1(K,Z/p)} on H1(K,Z/p) such that, for all n ≥ 0,
fĩln BrK[p] is generated by {Filn H1(K,Z/p),K×}.

Proof Suppose for contradiction that such a filtration {Filn H1(K,Z/p)} exists.
First, we claim that Filn H1

p(K,Z/p) ⊂ filn H1
p(K) for all n ≥ 0. Here, filn H1

p(K)

denotes Kato’s filtration. To prove the claim, let α ∈ Filn H1
p(K,Z/p). Suppose for

contradiction that α /∈ filn H1
p(K). Then sw(α) > n and, by Lemma 10.1, there exists

b ∈ K×/K×p such that {α,b} /∈ fĩln BrK[p], which gives the desired contradiction.
Now we complete the proof of the proposition. Let A ∈ fĩln BrK[p] for n ≥ 0.

Then A is in the subgroup generated by the image of the map Filn H1
p(K,Z/p) ×

K×/K×p → BrK[p]. Since Filn H1
p(K,Z/p) ⊂ filn H1

p(K), we deduce that A ∈
filn BrK[p]. This implies that fĩln BrK[p] = filn BrK[p]. �

10.2 Ramification filtrations

Let K̄ be a separable closure of K , and let G = Gal(K̄/K) be the absolute Ga-
lois group. Given a descending filtration (Gi)i≥0 on G, we can obtain an ascend-
ing filtration on Hq

n(K) by taking the kernels of the restriction maps Hq
n(K) =

Hq(G, (Z/n)(q − 1)) → Hq(Gi, (Z/n)(q − 1)).
In the case of perfect residue field, the ramification groups with the upper num-

bering give a well-studied filtration on G: see [38, Ch. IV]. In the general set-
ting, Abbes and Saito [1] made two definitions of ramification groups, (Ga)a∈Q≥0

and (Ga
log)a∈Q≥0 , called “non-logarithmic” and “logarithmic”. In the case of perfect

residue field, these coincide (up to a shift in numbering) but in general they are dif-
ferent.

Each of these ramification filtrations gives a filtration on H1(K) = Hom(G,Q/Z),
and one might naturally ask whether those filtrations are related to those described
in Sect. 10.1. This is indeed the case: Kato and Saito [31] have proved that Kato’s
filtration on H1(K) coincides with that induced by the logarithmic ramification fil-
tration; and Saito [36] has proved in the case of positive characteristic that Matsuda’s
non-logarithmic variant of Kato’s filtration on H1(K) coincides with that induced by
the non-logarithmic ramification filtration. We will show that our modified Kato fil-
tration on BrK[p] = H2

p(K) is not induced by either of the Abbes–Saito filtrations
(where the numbering of the non-logarithmic filtration is shifted by 1).
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Given χ ∈ Hq
p(K), define

fK(χ) = inf{a ∈ Q>0 | χ ∈ ker(Hq
p(K) → Hq(Ga, (Z/p)(q − 1))},

f
log
K (χ) = inf{a ∈ Q>0 | χ ∈ ker(Hq

p(K) → Hq(Ga
log, (Z/p)(q − 1))}.

For q = 1, this is what Abbes and Saito call the (logarithmic) conductor of the field
extension corresponding to χ : see [1, Proposition 6.4 and Proposition 9.5]. We have

fĩl0Hq
p(K) = {χ ∈ Hq

p(K) | fK(χ) ≤ 1} = {χ ∈ Hq
p(K) | f log

K (χ) ≤ 0}.
We first prove a positive result for the case q = 1. In the case of positive charac-

teristic, this follows from [36, Corollary 3.3].

Proposition 10.3 Suppose that K contains a primitive pth root of unity. Let χ ∈
H1

p(K). Then, for all n ≥ 0,

fK(χ) ≤ n+1 ⇐⇒
(
χ ∈ filn+1 H1

p(K) and rswn+1(χ) = [α,0]π,n+1 with α ∈ �1
F

)
.

Proof Since K contains a primitive pth root of unity, Kato’s filtration on H1
p(K) co-

incides with that of Bloch–Kato (see [30, Proposition 4.1(6)]). This gives explicit
generators for the graded pieces of the right-hand filtration, so it is just a case of cal-
culating the conductors of the corresponding cyclic extensions. This is accomplished
in the following series of lemmas by finding the minimal polynomial of a generator
for the ring of integers in each extension and applying [1, Lemma 6.6]. �

The calculations in the following lemmas are standard and probably well known.

Lemma 10.4 Suppose that K contains a primitive pth root of unity. Let χ ∈
H1(K,Z/p) correspond to the extension K( p

√
π)/K . Then fK(χ) = e′ + 1.

Proof Let L = K( p
√

π). Then OL = OK [ p
√

π]. Now apply [1, Lemma 6.6]. �

Lemma 10.5 Suppose that K contains a primitive pth root of unity. Let x ∈ O×
K be

such that x̄ ∈ F is not a pth power. Let χ ∈ H1(K,Z/p) correspond to the extension
K( p

√
x)/K . Then fK(χ) = e′.

Proof Let L = K( p
√

x). Then L/K is ferociously ramified (i.e. the residue field of L

is a purely inseparable degree p extension of F ) and OL = OK [ p
√

x]. Now apply [1,
Lemma 6.6]. �

Lemma 10.6 Suppose that K contains a primitive pth root of unity. Let χ ∈
H1(K,Z/p) correspond to the extension K( p

√
1 + xπm)/K , where x ∈ O×

K , 0 <

m < e′ and p � m. Then fK(χ) = e′ + 1 − m.

Proof Let L = K( p
√

1 + xπm) and let � = p
√

1 + xπm − 1. Write 1 = rm + sp for
r, s ∈ Z. Considering the terms of smallest valuation in the minimal polynomial of �

shows that �rπs is a uniformiser for L and hence OL = OK [�rπs]. Now apply [1,
Lemma 6.6]. �
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Lemma 10.7 Suppose that K contains a primitive pth root of unity. Let x ∈ O×
K be

such that x̄ ∈ F is not a pth power. Let χ ∈ H1(K,Z/p) correspond to the extension
K( p

√
1 + xπnp)/K , where 0 < np < e′. Then fK(χ) = e′ − np.

Proof Let L = K( p
√

1 + xπnp) and let u = ( p
√

1 + xπnp − 1)/πn. Then L/K is fe-
rociously ramified and OL = OK [u]. Now apply [1, Lemma 6.6]. �

We now move to q = 2 and show that the filtration {fĩln BrK[p]} is not in general
induced by either of the Abbes–Saito ramification filtrations, beginning with the non-
logarithmic filtration.

Proposition 10.8 Suppose that K contains a primitive pth root of unity and that the
residue field F of K is not perfect. Then it is not true that, for all n ≥ 0,

fĩln BrK[p] = {χ ∈ BrK[p] | fK(χ) ≤ n + 1}.

Proof We will show that the equality does not hold for n = e′. Let x be an element
of F \ Fp , let x̃ ∈ OK be a lift of x and let ψ ∈ H1(K,Z/p) correspond to the
extension K(

p
√

x̃)/K . By [30, Proposition 4.1 and Lemma 4.3], the element {ψ,π}
lies in fĩle′ BrK[p] but not in fĩle′−1 BrK[p]. On the other hand, by Lemma 10.5, we
have fK(ψ) = e′, and so fK({ψ,π}) ≤ e′. �

Now we treat the logarithmic filtration, by showing that its behaviour under field
extension differs from that of our filtration. For each finite extension L of K contained
in K̄ , let {Ga

L,log} be the logarithmic filtration on GL = Gal(K̄/L).

Proposition 10.9 Suppose �2
F 	= 0. It is not true that, for all finite extensions L/K ,

we have

fĩlnH2
p(L) = {χ ∈ H2

p(L) | f log
L (χ) ≤ n}.

Proof Suppose for contradiction that the statement is true. We may assume that K

contains a primitive pth root of unity. Let x, y ∈ F be such that ω = dx
x

∧ dy
y

	= 0, and
let x̃, ỹ ∈OK be lifts of x, y respectively. Define A = (x̃, ỹ)p ∈ BrK . By [30, Propo-
sition 4.1 and Lemma 4.3], we have A ∈ file′ BrK[p], and rswe′(A) = [c̄ω,0]π,e′
where c̄ ∈ F is non-zero. Therefore A lies in fĩle′−1 BrK[p], and by assumption
f

log
K (A) ≤ e′ − 1.

Let L/K be any wildly ramified extension of degree p. The inclusion G
pa

L,log ⊂
Ga

log for all a ≥ 0 (see [1]) implies f
log
L (resL/K A) ≤ p(e′ − 1), and so the image of

A in BrL lies in fĩlp(e′−1) BrL[p]. However, the same calculation as before shows
that rswe′

L
(resL/K A) = [c̄Lω,0]πL,e′

L
, where πL is a uniformiser of L, e′

L = pe′ and

c̄L is some non-zero element of F. So the image of A lies in fĩlpe′−1 BrL[p] but not
fĩlpe′−2 BrL[p], giving a contradiction. �



Evaluating the wild Brauer group 887

11 Applications to the Brauer–Manin obstruction

Let V be a smooth, proper, geometrically irreducible variety over a number field L

such that V (AL) 	= ∅. The surjectivity results described in Theorem B have implica-
tions for the existence of Brauer–Manin obstructions to the Hasse principle and weak
approximation on V , as follows. Suppose that B has order n in BrV , and that p is a
finite place of L such that the evaluation map |B| : V (Lp) → BrLp[n] is surjective.
Write V (AL)B for the subset of adelic points of V that are orthogonal to B under the
Brauer–Manin pairing; this contains V (AL)Br. Our freedom to adjust the value taken
by B at the place p shows that

∅ 	= V (AL)B � V (AL).

In other words, B does not obstruct the Hasse principle on V , but it does obstruct
weak approximation on V . Note that in order to show that B obstructs weak approx-
imation on V , it suffices that |B| : V (Lp) → BrLp be non-constant. The existence
of Brauer group elements with non-constant evaluations at primes of good ordinary
reduction is the subject of Theorem C, which we now prove.

Proof of Theorem C Let Vp be the base change of V to Lp, and choose a smooth model
V of Vp over the ring of integers of Lp such that the special fibre Y is ordinary. Let V̄p

denote the base change of Vp to an algebraic closure of Lp. The spectral sequences [3,
0.2]

E
s,t
2 = Hs(Ȳ , ī∗Rt j̄∗Z/pr) =⇒ Hs+t (V̄p,Z/pr)

define decreasing filtrations on Hq(V̄p,Z/pr) for all r , and also on Hq(V̄p,Zp) and
Hq(V̄p,Qp). For any of these filtrations, let gri denote the graded pieces.

Since Y is ordinary, gr0 H2(V̄p,Qp) 	= 0 by [3, Theorem 0.7(iii)]. Therefore
gr0 H2(V̄p,Zp) is also non-zero, and so gr0 H2(V̄p,Z/pr) is non-zero for some r ≥ 1.

Let L̄ be the algebraic closure of L inside our chosen algebraic closure of Lp,
and let V̄ be the base change of V to L̄. By proper base change [35, Corol-
lary VI.2.6], the natural map H2(V̄ ,Z/pr) → H2(V̄p,Z/pr) is an isomorphism. Let
α ∈ H2(V̄ ,Z/pr) have non-zero image in gr0 H2(V̄p,Z/pr). Replacing L by a finite
extension, we may assume that α is defined over L and that L contains the pr th roots
of unity. We fix an isomorphism Z/pr ∼= (Z/pr)(1) on V , and view α as an element
of H2(V , (Z/pr)(1)).

We will show that the image of α in BrVp does not lie in fil0 BrVp. Let Kh be the
Henselisation of the function field K = Lp(V ) at the discrete valuation correspond-
ing to Y , and let Kh

nr be its maximal unramified extension. Comparing the spectral
sequences of vanishing cycles for Vp and Kh gives a commutative diagram

H2(Vp, (Z/pr)(1))
f−−−−→ H0(Y, i∗R2j∗(Z/pr)(1))

⏐
⏐
� g

⏐
⏐
�

H2
pr (K

h)
res−−−−→ H0(Kh,H2

pr (K
h
nr ))
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in which res is the usual restriction map of Galois cohomology, gr0 H2(Vp,

(Z/pr)(1)) is the coimage of f (the quotient of H2(Vp, (Z/pr)(1)) by the kernel
of f ), and fil0 H2

pr (K
h) is the kernel of res. By construction, f (α) is non-zero. By

Lemma 3.4, g is injective, showing that g(f (α)) is non-zero. So the image of α in
H2(Kh) does not lie in fil0 H2(Kh).

Let A be the image of α in BrV . By Theorem A, after possibly replacing L by
a further finite extension, the evaluation map |A| : V (Lp) → BrLp is non-constant,
showing that A obstructs weak approximation on V . �

Our final task is to prove Theorem D. We begin by gathering some criteria which
can be used to show that various graded pieces of the filtration on BrX vanish.
Lemma 11.1 is not actually used in the proof of Theorem D but is included as a
first example of how one can deduce information about BrX from properties of the
special fibre.

Lemma 11.1 Suppose that H0(Y,�1
Y ) = H0(Y,�2

Y ) = 0. Then fil0 BrX = BrX.

Proof If A is an element of filn BrX for n ≥ 1, then Theorem 8.1(1) shows that
rswn(A) = [α,β]π,n with (α,β) ∈ H0(Y,�2

Y ) ⊕ H0(Y,�1
Y ) = 0. This shows that

filn BrX = filn−1 BrX for all n ≥ 1, and so fil0 BrX = BrX. �

Lemma 11.2 Suppose H0(Y,�1
Y ) = 0 and e < p − 1. Then fil0 BrX = BrX.

Proof It suffices to show rswn(A) = 0 for all A ∈ filn BrX with n ≥ 1. Suppose
rswn(A) = [α,β]π,n. If p � n, then Lemma 2.17 shows nα = dβ . Since β lies in
H0(Y,�1

Y ) = 0, it follows that α = β = 0, completing the proof in this case.
We have e′ = ep/(p − 1) < p, and so p � n holds for all n ≤ e′. The remaining

case is when A ∈ BrX has sw(A) = n > e′ with p | n. Then Lemma 2.19 shows
sw(pA) = n − e, which is not divisible by p; as above, we deduce rswn−e(pA) =
0 and therefore, by Lemma 2.19 again, rswn(A) = 0, contradicting the assumption
sw(A) = n.

Thus we have filn BrX = filn−1 BrX for all n ≥ 1, and so fil0 BrX = BrX. �

Lemma 11.3 Suppose H1(Ȳ ,Z/p) = 0. Then fĩl−1 BrX{p} = fil0 BrX{p}.

Proof Firstly, the group H1(Ȳ ,Z/pr) is trivial for all r : it is an Abelian p-group and
its p-torsion subgroup H1(Ȳ ,Z/p) is trivial. Now, for every r , the Hochschild–Serre
spectral sequence gives a short exact sequence

0 → H1(F,Z/pr) → H1(Y,Z/pr) → H1(Ȳ ,Z/pr),

showing that the natural map H1(F,Z/pr) → H1(Y,Z/pr) is an isomorphism. The
result then follows from Proposition 3.1. �

Lemma 11.4 Let X → Ok be a smooth proper morphism such that the generic fibre
X is geometrically integral. Let n be a positive integer and suppose H1(X̄,Z/n) = 0.
Then the special fibre Y satisfies H1(Ȳ ,Z/n) = 0.
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Proof Let k′ be a finite extension of k, with ring of integers Ok′ and residue field F
′.

Let X ′ = X ×Ok
Ok′ be the base change and denote its special and generic fibres

by Y ′ and X′ respectively. X ′ is proper over Ok′ , so the proper base change theorem
gives an isomorphism H1(Y ′,Z/n) ∼= H1(X ′,Z/n). On the other hand, by [20, Corol-
lary I.10.2], an étale cover of a connected normal scheme is uniquely determined by
its fibre at the generic point, so the natural map H1(X ′,Z/n) → H1(X′,Z/n) is in-
jective. We deduce that H1(Y ′,Z/n) injects into H1(X′,Z/n). Taking the limit over
all finite extensions k′/k shows that H1(Ȳ ,Z/n) injects into H1(X̄,Z/n) = 0. �

Proof of Theorem D Since V is smooth and proper over L, there exists a smooth
proper model V → SpecOS for some finite set S of places of L containing all the
infinite places. The assumption that Pic V̄ be torsion-free implies H1(V ,OV ) = 0
and hence, by Hodge theory, H0(V ,�1

V ) = 0. For a finite place p /∈ S, denote by
V(p) the fibre V ×OS

k(p). Semi-continuity shows that, after possibly enlarging S,
we have H0(V(p),�1

V(p)
) = 0 for all p /∈ S.

Let n be any positive integer. Since Pic V̄ is torsion-free, the Kummer sequence
gives H1(V̄ ,Z/n) ∼= H1(V̄ ,μn) = 0. Suppose that p is a place of L not contained
in S. By [35, VI.2.6], we have H1(V̄ ×L̄ L̄p,Z/n) = 0, and Lemma 11.4 applied to
V ×OS

OLp
shows H1(V(p),Z/n) = 0.

We enlarge S to include all finite places p whose absolute ramification index ep
satisfies ep ≥ p−1, where p is the residue characteristic of p. (It is enough to include
all primes ramified in L and all primes above 2.) Let p be a place not in S, of residue
characteristic p. Lemma 11.2 and Lemma 11.3 show that, for any A ∈ BrV {p}, the
evaluation map |A| : V (Lp) → BrLp is constant. [11, Proposition 2.4] proves the
same for A ∈ BrV of order prime to p, completing the proof. �

Remark 11.5 If, for example, V is a K3 surface, then there is no need to enlarge S

to ensure that H0(V(p),�1
V(p)

) = 0 for all p /∈ S. In other words, there are no places
included in the subset (4) of Theorem D. Indeed, in this case, for any place p admit-
ting a smooth proper model V → SpecOp, the reduction V(p) is also a K3 surface,
as follows. Because PicV → PicV is an isomorphism and ωV/k is trivial, it fol-
lows that ωV/Ok

is also trivial, and therefore so is ωV(p)/Fp . Serre duality then gives
h2(V(p),OV(p)) = h0(V(p),ωV(p)) = h0(V(p),OV(p)). Since V(p) is geometrically
connected, one has h0(V(p),OV(p)) = 1, and the fact that the Euler characteristic is
constant in flat families gives h1(V(p),OV(p)) = 0, showing that V(p) is a K3 sur-
face. It follows by [23, Theorem 9.5.1] that H0(V(p),�1

V(p)
) is trivial.
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